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Abstract

In this paper we prove that if Ω and Ω′ are close enough for the complementary

Hausdorff distance and their boundaries satisfy some geometrical and topological con-

ditions then

|λ1 − λ′1| ≤ C|Ω4Ω′|
α
N

where λ1 (resp. λ′1) is the first Dirichlet eigenvalue of the Laplacian in Ω (resp. Ω′)

and |Ω4Ω′| is the Lebesgue measure of the symmetric difference.

1 Introduction

In this paper we prove a stability result for the first Dirichlet eigenvalue of the Laplacian in

some bounded open sets in RN . More precisely, we estimate the difference

|λ1 − λ′1| ≤ C|Ω4Ω′|
α
N (1.1)

where λ1 (resp. λ′1) is the first Dirichlet eigenvalue of the Laplacian in Ω (resp. Ω′), and

|Ω4Ω′| := |Ω\Ω′ ∪ Ω\Ω′| is Lebesgue measure of the symmetric difference between Ω and

Ω′.

Stability results for the eigenvalues were studied a lot in the last two decades (see [4, 9, 11])

and have many applications, for instance in shape optimization problems (see [5, 10]). On

the other hand, as far as the authors know, estimates with a precise quantitative bound as

(1.1) were only recently investigated ([3, 1, 19]), and always for regular domains, C1,1 or at

least bi-Lipschitz domains. We would like to mention also [17] where a weaker inequality

than (1.1) is proved for a very large class of domains for instance bounded connected John

sets with a “twisting external cone condition”. The proof of Pang [17] uses a Brownian
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motion and is based on estimates on the Poisson kernel. In this paper we present a simpler

proof in the case of Reifenberg-flat domains.

More precisely, we seek some geometrical conditions to impose on the domains in order

to guarantee that (1.1) is true. What we obtain is that a “strong”-Reifenberg-flat boundary

is sufficient. In particular, domains with cracks are not permitted. Roughly, in terms of

regularity, such domains have boundaries which are well approximated by hyperplanes at

every scales (see Definition 1). This is weak enough to permit Hölderian spirals or snowflake-

like boundaries (in particular it is weaker than Lipschitz domains) but at the same time the

geometry of a Reifenberg-flat set is sufficiently under control in order to make some thin

estimates. We refer the reader to [6, 15, 16] for some earlier works on the analysis of

operators in Reifenberg-flat domains.

Notice that one could expect (1.1) to be true with α = 1 for the case of Lipschitz domains.

In this paper, since we work with Reifenberg flat domains we only get (1.1) with α < 1 which

is optimal in our class of Domains.

It is worth mentioning that (1.1) cannot be true without assuming any kind of regularity

on the boundary of the domains. For example in R2, the domains Ω := B(0, 1)\{x1 =

0, x2 ≤ 0} and Ω′ := B(0, 1) are such that |Ω4Ω′| = 0 but clearly λ1 6= λ′1. Inequality (1.1)

can either not be true without adding some topological assumptions. Indeed, the Lipschitz

domains Ω := B(0, 1)\{x1 = 0} and Ω′ := B(0, 1) are again such that |Ω4Ω′| = 0 but

λ1 6= λ′1.

We denote dH the Hausdorff distance, namely for two compact sets A and B

dH(A,B) := sup
x∈A

dist(x,B) + sup
y∈B

dist(y, A).

In this paper we consider the case of Reifenberg flat Domains which are defined as follows.

Definition 1. An (ε, r0)-Reifenberg-flat domain Ω ⊂ RN is an open and bounded set such

that for each x ∈ ∂Ω and for any r ≤ r0, Ω∩B(x, r) is connected and there exists a hyperplane

P (x, r) containing x which satisfies

1

r
dH(∂Ω ∩B(x, r), P (x, r) ∩B(x, r)) ≤ ε. (1.2)

Remark 2. This last definition is significant only when ε is small enough, less than 1/2 say.

For technical reasons, in the sequel we will always assume ε < ε0 ≤ 10−2 where ε0 is the

one given by the Theorem of Reifenberg [18]. Under this assumption, the topological disk

Theorem of Reifenberg [18] applies (see also Theorem 1.1. of [7]) and says that the boundary
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of our Reifenberg flat domains is locally the bi-Hölderian image of a N −1 dimensional disk.

As a consequence, all our results are still valid for a Lipschitz domain with sufficiently small

constant with respect to ε0. On the other hand the assumption ε ≤ ε0 could be weaken in

ε ≤ 10−2 by adding topological assumptions (see Remark 6).

Next we present our main result concerning the Dirichlet eigenvalues.

Theorem 3. Let Ω be an (ε, r0)-Reifenberg flat domain in RN such that

0 < HN−1(∂Ω) = L < +∞.

Let B be a ball such that 10B is contained in Ω and let γ1 be the first eigenvalue of B. Then

for every α < 1 and for every M > L there is a constant C depending on α, N , |Ω|, γ1, r0

and M such that the following holds. Let Ω′ be an (ε, r0)-Reifenberg-flat domain such that

0 < HN−1(∂Ω′) ≤M and let λ1 (resp. λ′1) be the first eigenvalue for the Dirichlet Laplacian

in Ω (resp. Ω′). If

dH(Ω′c,Ωc) ≤ C−1

then

|λ1 − λ′1| ≤ C|Ω4Ω′|
α
N .

The proof relies on a different approach than the technics in [1] and [17]. The principal

idea is to obtain some estimates on the behavior of eigenfunctions near the boundary and

combine them with the Min-Max principle using a good extension Lemma to compare two

functions defined on different domains.

The paper is organized as follows. Section 2 is devoted to some preliminary results,

especially a covering lemma and a geometrical fact saying that dH(Ω′c,Ωc) and |Ω4Ω′| 1N
are equivalent for two Reifenberg flat domains. Next in Section 3 we prove some boundary

estimates for both eigenfunctions and their gradients near the boundary of a Reifenberg flat

domain. The more difficult part is to control the gradient. We first prove a decay result on

balls centered at the boundary and then use the covering lemma to estimate the gradient

in a region close to the boundary. In Section 4 we prove an extension result for functions

in H1
0 (Ω). This extension lemma is a powerful tool which is used to compare two Dirichlet

eigenvalues. In Section 5 we remark that the extension Lemma implies a γ-convergence result

from which we automatically obtain the stability for Dirichlet eigenvalues. Finally Section

6 contains the proof of Theorem 3 using the Min-Max principle.
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Notations :

∆ : the Laplacian operator.

HN : the Hausdorff measure of dimension N .

|A| : the Lebesgue measure of the borel set A.

C∞0 (Ω) : the C∞ functions with compact support on Ω.

W 1,p(Ω) : the Sobolev space of Lp functions whose derivatives are in Lp.

W 1,p
0 (Ω) : the adherence of C∞0 (Ω) in W 1,p(Ω).

H1(Ω) : the space W 1,2(Ω).

H1
0 (Ω) : the space W 1,2

0 (Ω).

dH(A,B) : the Hausdorff distance between the sets A and B.

χA : the characteristic function associated to the set A.

2 Preliminary

We start by giving some useful and classical facts about the Dirichlet eigenvalue problem for

the Laplacian, that can be found for instance in [8] (see page 214).

Proposition 4. Let Ω be a domain in RN . Then −∆ has a countably infinite discrete set

of eigenvalues, whose eigenfunctions span H1
0 (Ω). Moreover each eigenfunction v belongs to

L∞(Ω) and we have

‖v‖∞ ≤ C(n, |Ω|)‖v‖2.

For a Reifenberg-flat domain Ω and for any ball B(x, r) centered at ∂Ω and radius r ≤ r0,

let us define the sets D±(x, r) in the following way. Let P (x, r) be the hyperplane given by

the definition of Reifenberg flatness of Ω. Denote by z±(x, r) the two points that lie at

distance 3r/4 from P (x, r) and whose orthogonal projection on P (x, r) is equal to x. Then

we set

D±(x, r) := B(z±(x, r), r/4) (2.1)

as in the following picture.
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We have the following useful fact regarding the sets D±.

Lemma 5. Let Ω be an (ε, r0)-Reifenberg flat domain. Then for all x ∈ ∂Ω and r < r0/2,

the balls D+(x, r) and D−(x, r) lie in different connected components of B(x, r)\∂Ω.

Proof. This can be seen as a consequence of the topological disk Theorem of Reifenberg [18].

Actually one could also prove it directly without using the whole result of Reifenberg but just

the very beginning of Reifenberg’s construction, but in our situation we find it convenient

to simply apply the Theorem. More precisely, we use the statement of Theorem 1.1. in [7]

(which holds for N 6= 3 for the case of hyperplanes) that gives for every r < r0 and x ∈ ∂Ω

a hyperplane P through x and a continuous homeomorphism f : B(x, 3
2
r)→ f(B(x, 3

2
r)) ⊂

B(x, 2r) such that

B(x, r) ⊂ f(B(x,
3

2
r)) ⊂ B(x, 2r) (2.2)

∂Ω ∩B(x, r) ⊂ f(P ∩B(x,
3

2
r)) ⊂ ∂Ω ∩B(x, 2r). (2.3)

Now if we denote by ν any normal vector to P and consider

P+ := {x ∈ RN ;x · ν > 0} P− := {x ∈ RN ;x · ν < 0},

it is clear from (2.2) and (2.3) that ∂Ω separates the domains f(P± ∩ B(x, 3
2
r)) and in

particular the sets D±(x, r).

Remark 6. Lemma 5 is the only reason we assume ε ≤ ε0 where ε0 is the one given by

the Theorem of Reifenberg [18]. All the results of this paper remains true assuming only

ε ≤ 10−2 and adding the separating property of Lemma 5 in the Definition of Reifenberg-

flat domains. On the other hand one can find an explicit value for ε0 in [18] depending on

dimension and for instance equals to 10−15 in dimension 3 (see [7]). So assuming ε < ε0 is

not restrictive.
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Remark 7. Since in our definition of Reifenberg flat domains we assume Ω ∩B(x, r) to be

connected for every x ∈ ∂Ω and r < r0, Lemma 5 implies in addition that one ball among

D±(x, r) lies in Ω while the other one lies in Ωc. Thanks to this fact, any boundary ∂Ω of

a Reifenberg-flat domain separates RN as in the Definition 2.1 of [16]. In other words our

Definition of Reifenberg-flat domains is equivalent to the one considered in [16].

Remark 8. An obvious consequence of Lemma 5 is that any Reifenberg-flat domain has a

twisting external cone condition as in the Assumption (AIII) of [17].

The following Lemma will be useful to obtain our main result.

Lemma 9. Let Ω1 and Ω2 be two (ε, r0)-Reifenberg flat domains such that dH(Ωc
1,Ω

c
2) ≤ r0/2.

Then

dH(Ωc
1,Ω

c
2) ≤ C|Ω14Ω2|

1
N

where C depends only on N .

Proof. Let x ∈ ∂Ω1, be such that r := dist(x, ∂Ω2) is maximum, and let y ∈ ∂Ω2 be such

that dist(x, ∂Ω2) = d(x, y) = r. Let us set D±1 := D±(x, r) and D±2 := D±(y, r) as being the

balls defined in (2.1). Under our assumptions we know that only one of D±1 lies in Ω1 and

only one of D±2 lies in Ω2. Let us simply denote Di those two balls.

Now by the definition of y, we know that B(y, r) ∩ ∂Ω1 is empty. In particular, the two

“approximating” hyperplanes P (x, r) and P (y, r) are almost parallel (with error less than

2.ε ≤ 2.10−2) as in the following picture.

∂Ω1

∂Ω2
�

9

w

o
r

y

x

P (x, r)

P (y, r)
1

1 B(y, r)
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Then it is not difficult to show, considering also a similar situation in B(x, 3r) and

B(y, 3r) with the corresponding selection of domains Di(3r) ∈ {D±(x, 3r), D±(y, 3r)}, that

whatever the positions of the Di and Di(3r) with respect to the lines P (x, 3r) and P (y, 3r),

one can always find a ball of radius equivalent to r that lies in the symmetric difference of

Ω1 and Ω2. We conclude the proof by exchanging the role of Ω1 and Ω2 and using the same

argument.

Finally we end this section with the following elementary covering lemma.

Lemma 10. Let Ω ⊂ RN be an (ε, r0)-Reifenberg-flat domain such that 0 < HN−1(∂Ω) =

L < +∞. Then for every r < r0/2 we can extract among {B(x, r)}x∈∂Ω a subfamily of at

most L/(CNr
N−1) balls that forms a covering of

⋃
x∈∂Ω B(x, 8

10
r) where CN is a dimensional

constant. Moreover, for all x we have that

]{i;x ∈ Bi} ≤ C (2.4)

where C is again a dimensional constant.

Proof. Since r < r0, we have that

dH(∂Ω ∩B(x, r), P (x, r) ∩B(x, r)) ≤ 10−2r. (2.5)

We also known that ∂Ω separates D+(x, r) from D−(x, r) and since the set of minimal HN−1

area having this property and satisfying (2.5) is the corresponding part of the hyperplane,

we deduce that there exists a dimensional constant CN such that for all x ∈ ∂Ω and all

r ≤ r0

HN−1(∂Ω ∩B(x, r)) ≥ CNr
N−1.

Now let B(xi, ri), be a subfamily of {B(x, r)}x∈∂Ω indexed by i ∈ I, maximal for the property

that 1
10
Bi ∩ 1

10
Bj = ∅. Using this fact (2.4) comes from a classical geometric argument in

RN . Now we claim that ]I is finite. Indeed, since 1
10
Bi are disjoint balls we have

L ≥ HN−1(∪i∈I∂Ω ∩ 1

10
Bi) ≥ ]ICNr

N−1101−N

thus

]I ≤ 10N−1L

CNrN−1
.

Finally, it remains to prove that the family {Bi}i∈I forms a covering of
⋃
x∈∂ΩB(x, 8

10
r). Let

y ∈
⋃
x∈∂ΩB(x, 8

10
r) and let x ∈ ∂Ω be such that y ∈ B(x, 8

10
r). Then by the maximality of
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the {Bi}, there exists a point z ∈ 1
10
Bi ∩B(x, r/10). Then if xi denotes the center of Bi, we

have

d(y, xi) ≤ d(y, x) + d(x, z) + d(z, xi) ≤
8

10
r +

2

10
r = r

which proves that y ∈ B(xi, r).

3 Estimates close to the boundary for some functions

in the Sobolev space

3.1 A Sobolev inequality at the boundary

We will need the following boundary version of the classical Sobolev inequality when Ω is a

Reifenberg flat domain.

Proposition 11. Let Ω be an (ε, r0)-Reifenberg flat domain in RN and u ∈ W 1,p
0 (Ω) for

some p ≥ 1. Then for all x ∈ ∂Ω and r ≤ r0 we have

‖u‖Lp(B(x,r)∩Ω) ≤ Cr‖∇u‖Lp(B(x,br)∩Ω)

where C := C(p,N) and b := b(N).

Proof. The proof is a small modification of the classical proof of the Sobolev inequality that

we will write here with full details for the convenience of the reader.

Without loss of generality, we may assume that u ∈ C1
0(Ω), x is the origin and that

P (x, r) is the hyperplane {x1 = 0}. We shall prove that

‖u‖Lp(Ω∩Q(x,r)) ≤ Cr‖∇u‖Lp(Ω∩Q(x,r)) (3.1)

where Q(x, r) is a cube centered at x, and with faces orthogonal to the axis of RN . Observe

that (3.1) implies the desired inequality with constant b coming from the comparison between

cubes and euclidian balls in RN .

By changing the orientation of x1 we can assume that Q(x, r) ∩ Ω (which is connected

by our assumptions) contains the upper part Q(x, r) ∩ {x1 >
r
2
}.

It is clear that for any u ∈ C1
0(Ω),

|u(x)| ≤
x1∫
−∞

|D1u| dx1 ≤
r∫

−∞

|D1u| dx1.
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Integrating over x1 we obtain

r∫
−∞

|u(x)| dx1 ≤ 2r

r∫
−∞

|Diu| dx1.

Now integrating the last inequality between−r and r successively over each variable x2, ..., xN

we get ∫
Q(x,r)∩Ω

|u(x)| dx1 ≤ 2r

∫
Q(x,r)∩Ω

|D1u| dx

≤ 2r

∫
Q(x,r)∩Ω

‖Du‖ dx.

Then (3.1) follows if we apply this last inequality to up and use the Hölder’s inequality.

Corollary 12. Let Ω be an (ε, r0)-Reifenberg flat domain in RN and for δ ≤ r0/2 set

Aδ := Ω1 ∩ {d(x, ∂Ω1) ≤ δ}.

Then for any function u ∈ W 1,p
0 (Ω) we have(∫
Aδ

|u|p dx
) 1
p ≤ Cδ

( ∫
A2bδ

|∇u|p dx
) 1
p

where b is the dimensional constant of Proposition 11.

Proof. Let {Bi}i∈I be the subfamily of balls {B(x, 2δ)}x∈∂Ω1 given by Lemma 10. Then

Ω1 ∩ {x; d(x, ∂Ω1) ≤ δ} ⊂
⋃

x∈∂Ω1

B(x,
16

10
δ) ⊂

⋃
i∈I

Bi.

Moreover the covering is bounded by a dimensional constant C. Then,∫
Aδ

|u|p dx ≤
∑
i∈I

∫
Bi

|u|p dx

and using Proposition 11, together with the fact that the Bi are centered at ∂Ω1, we obtain∫
Aδ

|u|p dx ≤ C
∑
i∈I

δp
∫
bBi

|∇u|p dx

≤ Cδp
∫
A2bδ

|∇u|p dx

which proves the Corollary.
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3.2 Boundary estimate on the gradient of eigenfunctions

Proposition 13. Let Ω be an (ε, r0)-Reifenberg flat domain in RN , and let u be an eigen-

function for the Dirichlet Laplacian in Ω, associated to the eigenvalue λ. Then for every

β > 0 there is a constant C0 depending on N, |Ω| and β such that for every x ∈ ∂Ω and for

all r ≤ r0, we have that ∫
B(x,r)∩Ω

|∇u|2 dx ≤ C0λ‖u‖L2(Ω)

(
r

r0

)N−β
. (3.2)

Proof. For a given β > 0, define

a := 2
2
β . (3.3)

Without loss of generality we assume that r0 = 1 and ‖u‖2 = 1. Now let x ∈ ∂Ω. We

will obtain the appropriate decay by showing that for k ∈ N and a specific selection of the

constant C1 we have ∫
B(x,a−k)∩Ω

|∇u|2dx ≤ C1λa
−k(N−β). (3.4)

We will prove (3.4) inductively. It is clear that (3.4) is true for k = 0 if C1 ≥ 1.

Suppose now that (3.4) is true for k and denote by v the “harmonic” replacement of u in

Sk := B(x, a−k)∩Ω; that is a harmonic function v ∈ H1(Sk) which satisfies u− v ∈ H1
0 (Sk).

Such a function v can be obtained by minimizing the Dirichlet integral, and since u is a

competitor we have that ∫
Sk

|∇v|2dx ≤
∫
Sk

|∇u|2dx ≤ C1λa
−k(N−β)

by the inductive hypothesis. On the other hand w := |∇v|2 is subharmonic therefore by the

classical mean value inequality applied to w we have∫
Sk+1

|∇v|2dx ≤ a−N
∫
Sk

|∇v|2dx,

that is ∫
Sk+1

|∇v|2dx ≤ C1λa
−Na−k(N−β). (3.5)
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Now we want to estimate
∫
Sk
|∇(u− v)|2 dx. Notice that for all k, u is the unique solution

of the problem {
−∆w = λw in Sk

w − u ∈ H1
0 (Sk)

therefore u is minimizing the energy

1

2

∫
Sk

|∇w|2 dx−
∫
Sk

λuw dx

among all functions w such that u− w ∈ H1
0 (Sk). Therefore we deduce that

1

2

∫
Sk

|∇u|2 − λ
∫
Sk

|u|2 ≤ 1

2

∫
Sk

|∇v|2 − λ
∫
Sk

uv

hence ∫
Sk

|∇u|2 −
∫
Sk

|∇v|2 ≤ 2λ(

∫
Sk

|u|2 −
∫
Sk

uv)

≤ Cλ|Sk|‖u‖2
∞

≤ λC(N, |Ω|)a−kN

≤ λC2a
−kN (3.6)

where |v| was estimated in terms of ‖u‖∞ by the maximum principle and ‖u‖∞ ≤ C(N, |Ω|)
by Proposition 4.

Now since v is harmonic in Sk and u− v ∈ H1
0 (Sk), we deduce that ∇v and ∇(u− v) are

orthogonal in L2(Sk) thus (3.6) and Pythagoras inequality imply∫
Sk

|∇u−∇v|2 =

∫
Sk

|∇u|2 −
∫
Sk

|∇v|2 ≤ λC2a
−kN . (3.7)

Gathering (3.5) and (3.7) together we complete the induction as follows:∫
Sk+1

|∇u|2dx ≤ 2

∫
Sk+1

|∇v|2 + 2

∫
Sk+1

|∇(u− v)|2dx

≤ 2C1λa
−Na−k(N−β) + 2λC2a

−kN

≤ C1λa
−(k+1)(N−β)

where the last inequality holds by the definition of a and provided for instance

C1 ≥ C22
2(N+1)

β . (3.8)
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Now to finish the proof, since (3.4) is true, for every r < 1 one can find an integer k such

that

r ≤ a−k < ar

thus ∫
B(x,r)

|∇u|2 dx ≤
∫

B(x,a−k)

|∇u|2 dx ≤ C1λa
−k(N−β) ≤ C1λ(ar)N−β

so the Proposition is true with C0 := aN−βC1.

A consequence of the above proposition is the following.

Corollary 14. Let Ω be an (ε, r0)-Reifenberg flat domain in RN such that 0 < HN−1(∂Ω1) =

L < +∞. Then for any α < 1 there is a constant C1 := C1(|Ω|, r0, N, α) such that for any

eigenfunction u for the Dirichlet Laplacian associated to the eigenvalue λ in Ω and for any

δ ≤ r0/2 we have ∫
Ω1∩{d(x,∂Ω1)≤δ}

|∇u|2 dx ≤ C1λL‖u‖L2(Ω)δ
α.

Proof. We argue as in Corollary 12. Let {Bi}i∈I be the subfamily of balls {B(x, 2δ)}x∈∂Ω1

given by Lemma 10. We know that

]I ≤ L/(2N−1CNδ
N−1)

and that

Ω1 ∩ {x; d(x, ∂Ω1) ≤ δ} ⊂
⋃

x∈∂Ω1

B(x,
16

10
δ) ⊂

⋃
i∈I

Bi.

Moreover the covering is bounded by a dimensional constant C. Then,∫
Ω1∩{d(x,∂Ω1)≤δ}

|∇u|2 dx ≤
∑
i∈I

∫
Bi

|∇u|2 dx

and using Proposition 13 together with the fact that the Bi are centered at ∂Ω1 we obtain∫
Ω1∩{d(x,∂Ω1)≤δ}

|∇u|2 dx ≤ Cλ‖u‖L2(Ω)

∑
i∈I

δN−1+α

≤ Cλ‖u‖L2(Ω)]Iδ
N−1+α

≤ CLλ‖u‖L2(Ω)δ
α

where C = C(r0, N, α, |Ω|) and the proof is complete.
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4 An extension Lemma

In our approach we need the following extension Lemma for Sobolev functions in Reifenberg-

flat domains. The proof relies on a Whitney extension which is now quite common. A

first result of this kind is probably due to P. Jones in [12] which has been used by several

authors, particulary by scientists working on quasiconformal maps (see for instance [2] and

references therein). We would like to mention that [15] contains a Lemma very close to the

following one but for Neumann extensions and for domains with cracks. One can also find a

similar extension Lemma used together with a stopping time argument to prove some thin

convergence results in [13], or a regularity result in [14].

Lemma 15. Let Ω1 and Ω2 be two (ε, r0)-Reifenberg flat domains such that

dH(Ωc
1,Ω

c
2) ≤ δ ≤ (100b)−1r0.

Set

Aδ := {x; d(x, ∂Ω1) ≤ δ}.

Then for any v ∈ W 1,p
0 (Ω1) there exists a function ṽ ∈ W 1,p

0 (Ω2) such that v = ṽ in Ω1\A2δ

and

‖ṽ‖Lp(Ω2) ≤ ‖v‖Lp(Ω1) (4.1)

‖∇ṽ‖Lp(Ω2) ≤ ‖∇v‖Lp(Ω1) + C‖∇v‖Lp(A4bδ). (4.2)

Proof. Let {Bi}i∈I be the subfamily of balls {B(x, 2δ)}x∈∂Ω1 given by Lemma 10. We will

denote by xi the center of Bi and ri its radius. Since Ω14Ω2 ⊂
⋃
i∈I Bi, to define a function

ṽ ∈ W 1,2(Ω2), it is sufficient to define an extension of v in Ω2 ∩
⋃
i∈I Bi.

For all i, define a function ϕi ∈ C1
c (5Bi), such that ϕi = 1 in 2Bi, |∇ϕ| ≤ δ−1 and let ϕ0

be a function that is equal to 1 in Ω1\
⋃
i∈I 4Bi, ϕ0 = 0 in

⋃
i∈I 2Bi and ϕ0 +

∑
j∈J ϕj ≥ 1 in

Ω1 ∪
⋃
j∈J 5Bi. Moreover, we can assume that for all x ∈ 4Bi\2Bi, |∇ϕ0(x)| ≤ δ−1. Indeed,

such a function ϕ0 can be obtained by setting

ϕ0(x) :=
∏
i∈I

l(d(x, xi)/δ)

where l is a Lipschitz function equal to 0 in [0, 2], equal to 1 in [4,+∞) and l′(x) ≤ 1.

Finally, define

θi :=
ϕi

ϕ0 +
∑

i∈I ϕi
for i ∈ I ∪ {0}.
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This allows us to obtain a partition of the unity in Ω1 ∪
⋃
i∈I 5Bi.

Next we simply define ṽ by

ṽ(x) := θ0(x)v(x) (4.3)

in such a way that ṽ(x) vanishes on ∪i∈I2Bi ⊃ ∂Ω2. We claim that ṽ ∈ W 1,p
0 (Ω2) and

that (4.1), (4.2) are satisfied. The first estimate (4.1) comes directly from the fact that

θ0(x) ≤ χΩ1 . So we only have to prove (4.2), which will also imply that ṽ ∈ W 1,p(Ω2).

We have that

∇ṽ(x) = v(x)∇θ0(x) + θ0(x)∇v(x)

thus

‖∇ṽ(x)‖Lp(Ω2) ≤ ‖∇v(x)χsupp(θ0)‖Lp(Ω2) + ‖v(x)∇θ0(x)‖Lp(Ω2)

≤ ‖∇v(x)‖Lp(Ω1) + ‖v(x)∇θ0(x)‖Lp(Ω2)

therefore it is enough to prove that

‖v(x)∇θ0(x)‖Lp(Ω2) ≤ C‖∇v(x)‖Lp(A) (4.4)

with

A := Ω1 ∩
⋃
i∈I

4bBi ⊂ A4bδ.

On the other hand, from the construction of θ0 we have

|∇θ0(x)| ≤
∑
i∈I

χ4bBi(x)δ−1. (4.5)

Therefore, since the sum in (4.5) is locally finite we conclude that

‖v(x)∇θ0(x)‖pLp(Ω2) ≤
∫
Ω2

∣∣∣v(x)
∑
j∈J

χ4Bi(x)δ−1
∣∣∣p

≤ C
∑
i∈I

δ−p
∫

4Bi

|v(x)|p. (4.6)

Now since Bi is centered on ∂Ω1, from Proposition 11 we have∫
4Bi

|v|p dx ≤ Cδp
∫
b4Bi

|∇u|p dx

so

‖v(x)∇θ0(x)‖pLp(Ω2) ≤ C
∑
i∈I

∫
4Bi

|∇v(x)|p ≤ C

∫
A4bδ

|∇v(x)|p

which concludes the proof.
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5 Mosco convergence and consequences

As in [15], the extension Lemma will imply the Mosco-convergence of H1
0 (Ωn) to H1

0 (Ω) while

Ωn tends to Ω for the complementary Hausdorff distance. It is well known that this notion

is equivalent to the γ-convergence of Ωn to Ω which will in particular imply a stability result

for eigenvalues. Actually this section will not be used in the proof of our main result but

the authors would like to say a few words about those classical notions.

For u ∈ H1
0 (Ω) we will identify u and ∇u as function in L2(RN) and L2(RN ,RN) by

extending them being zero outside Ω.

Definition 16 (Mosco-convergence). Let Ωn and Ω be open subsets of RN . We say that

H1
0 (Ωn) converges to H1

0 (Ω) in the sense of Mosco if the following two properties hold:

(M1) for every u ∈ H1
0 (Ω), there exists a sequence un ∈ H1

0 (Ωn) such that un converges to u

strongly in L2(RN) and ∇un converges to ∇u strongly in L2(RN ,RN);

(M2) if hk is a sequence of indices converging to +∞, uk is a sequence such that uk ∈ H1
0 (Ωhk)

for every k, and uk converges weakly in L2(RN) to a function φ, while ∇uk converges

weakly in L2(RN ,RN) to a function ψ, then ϕ ∈ H1
0 (Ω).

The Mosco convergence is a great tool to study stability for elliptic problems. Indeed,

for any bounded open set Ω ⊂ RN and any f ∈ H−1(Ω) let us denote by ufΩ ∈ H1
0 (Ω) the

unique solution of the equation −∆u = f in Ω.

Definition 17. Let D ⊂ RN be bounded. We say that the sequence of open sets Ωn ⊂ D

γ-converge to Ω ⊂ D if for any f ∈ H−1(D) we have that ufΩn strongly converges to ufΩ in

H1
0 (D).

The following classical result shows the link between Mosco convergence and γ-convergence

(see for instance Proposition 3.5.4 of [10]).

Proposition 18. Ωn γ-converges to Ω if and only if H1
0 (Ωn) converges to H1

0 (Ω) in the sense

of Mosco.

In our situation, by the same argument as for Theorem 11 of [15], we can prove the

following.

Theorem 19. Let r0, ε > 0 and let {Ωn}n∈N and Ω be some (ε, r0)-Reifenberg-flat domains.

Assume that Ωn converges to Ω for the complementary Hausdorff distance. Then H1
0 (Ωn)

converges to H1
0 (Ω) in the sense of Mosco.
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Proof. The proof is the same as for Theorem 11 in [15], using this time the extension Lemma

for H1
0 (Lemma 15).

A useful consequence of γ-convergence is the stability of eigenvalues, which is again very

standard (see [10, 5]).

Proposition 20. Let r0, ε > 0 and let {Ωn}n∈N and Ω be (ε, r0)-Reifenberg-flat. Assume

that Ωn converges to Ω for the complementary Hausdorff distance. Then the k-th eigenvalue

in Ωn converges to the k-th eigenvalue in Ω.

6 Quantitative Stability

We are now ready to prove Theorem 3. Notice that our theorem contains in particular a

second proof of Proposition 20 for the case of the first eigenvalue.

Proof of Theorem 3. Let u1 (resp. u′1) be an eigenfunction of unit norm associated to the

first eigenvalue λ (resp. λ′) in Ω (resp. Ω′). We denote by δ := dH(Ωc,Ω′c). Let γ1 be the

first eigenvalue of the Laplacian in a ball contained in both Ω and Ω′, in such a way that

the inequality max(λ, λ′) ≤ γ1 holds by the monotonicity property for Dirichlet eigenvalues.

We finally denote by C := min(C0, C1) where C0 and C1 are the constants of Corollary 12

and Corollary 14, depending on N , α and max(|Ω|, |Ω′|) ≤ 10|Ω|.
We know that

λ := inf
u∈H1

0 (Ω)

∫
Ω
|∇u|2∫

Ω
|u|2

=

∫
Ω

|∇u1|2.

Let ũ′1 ∈ H1
0 (Ω) be the extension of u′1 given by Lemma 15. Using Corollary 12 and

Corollary 14 we obtain

λ1 =

∫
Ω

|∇u1|2 ≤
∫

Ω
|∇ũ′1|2 dx∫

Ω
|ũ′1|2 dx

≤
∫

Ω′
|∇u′1|2 dx+ Cδα

1− Cδα

≤ λ′1 +
Cδα(1 + γ1)

1− Cδα
≤ λ′1 + Cδα

provided for instance that δ ≤ (2C)−α. Here C depends on γ1, C2, N , α, |Ω|, and M . Then

by the same argument and exchanging the role of λ1 and λ′1 we get the desired inequality,
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namely

|λ1 − λ′1| ≤ Cδα1 .

We conclude the proof by observing that the estimate involving |Ω14Ω2|
1
N is a direct con-

sequence of Lemma 9.
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