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Abstract. The paper studies the quasistatic evolution for elastoplastic materials when
the yield surface depends on the position in the reference configuration. The main results
are obtained when the yield surface is continuous with respect to the space variable. The
case of piecewise constant dependence is also considered. The evolution is studied in
the framework of the variational formulation for rate independent problems developed
by Mielke. The results are proved by adapting the arguments introduced for a constant
yield surface, using some properties of convex valued semicontinuous multifunctions. A
strong formulation of the problem is also obtained, which includes a pointwise version of
the plastic flow rule. Some examples are considered, which show that strain concentration
may occur as a consequence of a nonconstant yield surface
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1. Introduction

The aim of this paper is to study quasistatic evolution problems in small strain asso-
ciative elastoplasticity for nonhomogeneous materials. More precisely, in the spirit of [5],
we consider the case of a material whose plastic response is governed by the Prandtl-Reuss
flow rule, without hardening (perfect plasticity); differently from [5], however, the elasticity
tensor and the yield surface are allowed to change pointwise. This is a situation which may
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occur for example in composite materials, when each of the components present a different
elastoplastic response. In the first part of the paper, indeed, we extend the results proved
in [5], to this more general setting, under suitable conditions.

The problem is formulated as follows in a domain Ω ⊂ Rn . The linearized strain Eu ,
that is the symmetric part of the spatial gradient of the displacement u , is decomposed as
the sum Eu = e + p , where e and p respectively represent the elastic and plastic strain.
The stress σ is determined only by e , through the formula σ = Ce , where C := C(x) is
the elasticity tensor. At each point x ∈ Ω, σ is constrained to lie in a prescribed subset K
of the space Mn×n

sym of n×n symmetric matrices, whose boundary ∂K is referred to as the
yield surface.

Given a time-dependent body force f(t, x), the classical formulation of the quasistatic
evolution problem in a time interval [0, T ] consists in finding functions u(t, x), e(t, x),
p(t, x), σ(t, x) satisfying the following conditions for every t ∈ [0, T ] and every x ∈ Ω:

(cf1) additive decomposition: Eu(t, x) = e(t, x) + p(t, x),
(cf2) constitutive equation: σ(t, x) = C(x)e(t, x),
(cf3) equilibrium: −divx σ(t, x) = f(t, x),
(cf4) stress constraint: σ(t, x) ∈ K
(cf5) associative flow rule: ṗ(t, x) ∈ NK(x)(σD(t, x)),

where the colon denotes the scalar product between matrices and NK(x) is the normal cone
to K(x). The problem is supplemented by initial conditions at time t = 0 and by boundary
conditions for t ∈ [0, T ] , x ∈ ∂Ω, of the form u(t, x) = w(t, x) on a portion Γ0 of the
boundary, and σ(t, x)ν(x) = g(t, x) on the complementary portion Γ1 , where ν(x) is the
outer unit normal to ∂Ω, w(t, x) is the prescribed displacement on Γ0 , and g(t, x) is the
prescribed surface force on Γ1 . Alternatively, one can consider the so-called Dirichlet-
Periodic problem: generally in this case the domain Ω is a cube and a periodic condition is
prescribed on the portion Γ1 of the boundary.

In this paper, we consider the case where K is a cylinder of the form K = K(x)+RI , where
I is the identity matrix and K(x) is a convex compact subset of Mn×n

D , the space of trace
free n×n symmetric matrices as in the model of Tresca and von Mises (see, e.g., [9]). We
shall suppose that there exist two balls Bm(0), BM (0) such that Bm(0) ⊆ K(x) ⊆ BM (0)
for every x ∈ Ω ∪ Γ0. If we introduce the support function

H(x, ξ) := supζ∈K(x)ξ : ζ ,

the flow rule (cf5) can be written in the equivalent forms (see Section 2):

(cf5′) flow rule in primal formulation: σD(t, x) ∈ ∂ξH(x, ṗ(t, x)),
(cf5′′) maximal dissipation: H(x, ṗ(t, x)) = σD(t, x) : ṗ(t, x),

where σD(t, x) denotes the deviator of σ(t, x) (see definition in the following section of the
paper) and ∂ξ is the subdifferential with respect to ξ.

An approximation of quasistatic evolution problems of this type is obtained by solving a
finite number of incremental variational problems. The time interval [0, T ] is divided into
k subintervals by means of points

0 = t0k < t1k < · · · < tk−1
k < tkk = T ,

and the approximate solution ui
k , ei

k , pi
k at time tik is defined, inductively, as a minimizer

of the incremental problem

min
(u,e,p)∈A(w(ti

k))
{Q(e) +H(p− pi−1

k )− 〈L(tki )|u〉} , (1.1)
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where

Q(e) := 1
2

∫

Ω

Ce(x) : e(x) dx , H(p) :=
∫

Ω

H(x, p(x)) dx ,

〈L(t)|u〉 :=
∫

Ω

f(t, x)u(x) dx+
∫

Γ1

g(t, x)u(x) dHn−1(x) , (1.2)

Hn−1 is the (n−1)-dimensional Hausdorff measure, and A(w(t)) is defined, at this stage of
the discussion, as the set of triples (u, e, p), with Eu(x) = e(x)+p(x) for every x ∈ Ω, such
that u satisfies the prescribed Dirichlet boundary condition at time t , i.e., u(x) = w(t, x)
for every x ∈ Γ0 . Finally, the stress at time tik is obtained as σi

k(x) := C(x)ei
k(x).

Since H has linear growth, problem (1.1) has, in general, no solution in Sobolev spaces: a
suitable functional space, for a weak formulation of the problem, proves then to be the space
BD(Ω) of functions with bounded deformation, whose theory was developed in [14], [8], [13];
the plastic strain p belongs to the space Mb(Ω∪Γ0;Mn×n

D ) of Mn×n
D -valued bounded Borel

measures on Ω∪Γ0 . In the weak formulation of problem (1.1) the functional H(p) is defined
as

H(p) :=
∫

Ω∪Γ0

H(x, p/|p|) d|p| , (1.3)

where p/|p| is the Radon-Nikodym derivative of the measure p with respect to its variation
|p| , while the boundary conditions are suitably relaxed, leading to a weaker definition of
A(w(t)) (see Section 2). Functionals of this type were first studied by Y.G.Reshetnyak,
who investigated their properties of w∗ -lower semicontinuity and continuity in the space of
bounded Radon measures.

The problem of continuous-time quasistatic evolution in the functional framework u ∈
BD(Ω), e ∈ L2(Ω;Mn×n

sym ), p ∈ Mb(Ω ∪ Γ0;Mn×n
D ), σ ∈ L2(Ω;Mn×n

sym ), can be solved, pro-
vided a uniform safe-load condition is satisfied, by means of the introduction of the following
weak definition (see also the work of Suquet [11] for a different approach): a quasistatic evo-
lution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into BD(Ω)×L2(Ω;Mn×n

sym )×Mb(Ω ∪
Γ0;Mn×n

D ) which satisfies the following conditions:

(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

Q(e(t))− 〈L(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈L(t)|v〉
for every (v, η, q) ∈ A(w(t));

(qs2) energy balance: the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γ0;Mn×n
D ) has

bounded variation and for every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈L(t)|u(t)〉 = Q(e(0))− 〈L(0)|u(0)〉+

+
∫ t

0

{〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉 − 〈L̇(s)|u(s)〉} ds ,

where σ(t) := Ce(t), dots denote time derivatives, the first brackets 〈·|·〉 in the
integral denote the scalar product in L2(Ω;Mn×n

sym ), while the other brackets 〈·|·〉
are defined as in (1.2).

Here for every time interval [s, t] contained in [0, T ] DH(p; 0, t) represents the dissipation
associated with H , defined by

DH(p; s, t) := sup
{ N∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ t1 ≤ · · · ≤ tN = t,N ∈ N
}
.

In the first part of the present paper we are going to slightly generalize results of [5],
about the existence and regularity properties of quasistatic evolutions: while the explicit
dependence on x of the elasticity tensor does not introduce changes in the proofs, some
effort has to be made for the functional H . Relying on the ideas of the theory of measurable
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compact convex multifunctions developed in [4] and using the above mentioned results by
Reshetnyak, it is possible to show that, if the map x 7→ K(x) is lower semicontinuous, the
functional H defined in (1.3) is lower semicontinuous too, but coercivity of the incremental
problems and the same Euler conditions as in [5] are not always guaranteed; however they
are still true if the multimap is continuous, or in some piecewise constant cases, for example
when the convex sets are given by the Von Mises’ condition; in these situations, also the
construction of a precise representative satisfying a strong formulation of the problem is still
valid.

In the second part of the paper we focus on one dimensional problems, which appear
also in the solution of multidimensional Dirichlet periodic problems as in the case of simple
shear. In dimension one the assumption on the stress constraint can be weakened, assuming
the multifunction x 7→ K(x) is only lower semicontinuous. Some interesting phenomena can
be observed in this case when the force does not depend on time; the plastic deformation
tends to be concentrated on a finite number of points (strain localization), except in some
degenerate situations; a complete qualitative study can be easily done in this case, showing
also an explicit formula for solutions in terms of the data. These results can also be used
to discuss the uniqueness of the solutions; moreover, they provide examples where, indipen-
dently of the regularity of the data, the elastic part of the solution has at best a Lipschitz
dependence on the time variable.

2. Notation and preliminary results

2.1. Mathematical preliminaries.

For what concerns definitions and notatins about measures, matrices and functions of
bounded deformation we refer to [5], Section 2. All the Borel measures are tacitly understood
to be extended to the corresponding completion of the σ -algebra of Borel sets.

Multifunctions. Let X and Y be two sets. A multifunction is a map ϕ : X → 2Y , that
is a map from X to the subsets of Y .
According to [4] , if (X, C) is a measurable space and Y is a finite-dimensional Hilbert space
we say this map to be C−measurable ⇐⇒

∀Uopen, ϕ−(U) ∈ C
where

ϕ−(U) := {x ∈ X|ϕ(x) ∩ U 6= Ø}.
If moreover X is a topological space, we say this map is lower semicontinuous ⇐⇒

∀Uopen, ϕ−(U) is open

We say this map is upper semicontinuous ⇐⇒
∀Uopen, the set : {x ∈ X|ϕ(x) ⊆ U} is open.

We say the map ϕ is continuous if it is upper and lower semicontinuous.
The following equivalence can be easily proved:

Proposition 2.1. Let ϕ : X → 2Y a map from X to the compact subsets of Y . Then ϕ
is lower semicontinuous (resp. upper semicontinuous) ⇐⇒

∀ε > 0 ∃U 3 x open t.c. ∀y ∈ U : ϕ(x) ⊆ ϕ(y) + εB

(resp.
∀ε > 0 ∃U 3 x open t.c. ∀y ∈ U : ϕ(y) ⊆ ϕ(x) + εB).

Here B denotes the closed unitary ball of Y .
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An important problem when dealing with multifunctions is the existence of a selection,
that is a map σ : X → Y with the property: σ(x) ∈ ϕ(x)∀x ∈ X . The following result, due
to E.Michael, besides its intrinsic relevance, will be useful for the purpose of the paper:

Theorem 2.2 (Continuous selections of lower semicontinuous multifunctions). If X is a
separable metric space, then every lower semicontinuous function ϕ from X to the non-
empty, convex, closed subsets of Y admits a sequence (σn) of continuous selections such
that

∀x ∈ X : ϕ(x) = {σn(x)}.
Proof. See for instance [7] for the existence of a continuous selection; the rest of the proof
follows with the same argument as in [4], Theorem III.7. ¤

Remark 2.3 (Monotone approximation by continuous multifunctions). Under the assump-
tions of the previous theorem we easily construct a sequence ϕj of continuous multifunctions
such that:

ϕj(x) ↗ ϕ(x) ∀x ∈ X
by putting, for all j ∈ N :

ϕj(x) := Co{σn(x)| 1 ≤ n ≤ j},
where as usual CoA denotes the smallest convex set containing a given set A and (σn) is
a sequence of continuous selections as in the previous theorem. If in addition there exists
m > 0 such that

B(0,m) ⊆ ϕ(x) ∀x ∈ X
we can also assume that

∀j ∈ N B(0,m) ⊆ ϕj(x) ∀x ∈ X
by putting:

ϕj(x) := CoB(0,m) ∪ {σn(x)| 1 ≤ n ≤ j}.
Given a closed convex nonempty subset C of a normed space V we define its indicator

function δC as

δC(v) =

{
0 if v ∈ C
+∞ if v /∈ C

and the normal cone NC to C at u ∈ C as:

NC(u) = {v∗ ∈ V ∗ : 〈v∗, v − u〉 ≤ 0} ∀v ∈ V.
It is easy to see that δC is a convex proper l.s.c. function.

2.2. Mechanical preliminaries.

The reference configuration. Throughout the paper Ω is a bounded connected open set
in Rn with C2 boundary . We suppose that the boundary ∂Ω is partitioned into two disjoint
open sets Γ0 , Γ1 and their common boundary ∂Γ0 = ∂Γ1 (topological notions refer here to
the relative topology of ∂Ω); we assume

Γ0 6= Ø (2.1)

∂Γ0 = ∂Γ1 is C2 regular (2.2)
that is: for every x ∈ ∂Γ0 = ∂Γ1 there exists a C2 diffeomorphism defined in an open
neighbourhood of x in Rn which maps ∂Ω to an (n−1)-dimensional plane and ∂Γ0 = ∂Γ1

to an (n− 2)-dimensional plane.
On Γ0 a Dirichlet boundary condition will be prescribed. This will be done by assigning

a function w ∈ H1/2(Γ0;Rn), or, equivalently, a function w ∈ H1(Rn;Rn), whose trace on
Γ0 (also denoted by w ) is the prescribed boundary value. The set Γ1 will be the part of
the boundary on which the traction is prescribed.
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Every function u ∈ BD(Ω) has a trace on ∂Ω, still denoted by u , which belongs to
L1(∂Ω;Rn). If uk , u ∈ BD(Ω), uk → u strongly in L1(Ω;Rn), and ‖Euk‖1 → ‖Eu‖1 ,
then uk → u strongly in L1(∂Ω;Rn) (see [13, Chapter II, Theorem 3.1]). Moreover, there
exists a constant C > 0, depending on Ω and Γ0 , such that

‖u‖1,Ω ≤ C ‖u‖1,Γ0 + C ‖Eu‖1,Ω (2.3)

(see [13, Proposition 2.4 and Remark 2.5]).
The space Mb(Ω ∪ Γ0;Mn×n

D ), which is the dual of C0(Ω ∪ Γ0;Mn×n
D ), can be identified

with the space of functions in C(Ω;Mn×n
D ) vanishing on Γ1 . The duality product is defined

by

〈τ |µ〉 :=
∫

Ω∪Γ0

τ : dµ :=
∑

ij

∫

Ω∪Γ0

τij dµij (2.4)

for every τ = (τij) ∈ C(Ω;Mn×n
D ) and every µ = (µij) ∈Mb(Ω ∪ Γ0;Mn×n

D ).

The set of admissible stresses. Let K : Ω ∪ Γ0 → 2M
n×n
D be a continuous or piecewise

constant multivalued map from Ω ∪ Γ0 to the closed convex subsets of Mn×n
D , which will

play the role of a constraint on the deviatoric part of the stress. We assume that there exist
two constants m and M , with 0 < m ≤M <∞ , such that

{ξ ∈Mn×n
D : |ξ| ≤ m} ⊂ K(x) ⊂ {ξ ∈Mn×n

D : |ξ| ≤M} ∀x ∈ Ω ∪ Γ0. (2.5)

It is convenient to introduce the convex closed set

KD(Ω) := {τ ∈ L2(Ω;Mn×n
D ) : τ(x) ∈ K(x) for a.e. x ∈ Ω} .

The set of admissible stresses is defined by

K(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) : σD ∈ KD(Ω)} .

For fixed x the support function H(x, ·) : Mn×n
D → [0,+∞[ of K(x) is given by

H(x, ξ) := supζ∈K(x)ξ : ζ . (2.6)

It turns out that H(x, ·) is the conjugate function of the indicator function δK(x) , hence it
is convex; moreover, it is positively homogeneous of degree one. In particular it satisfies the
triangle inequality

H(x, ξ + ζ) ≤ H(x, ξ) +H(x, ζ) .

From (2.5) it follows that

m|ξ| ≤ H(x, ξ) ≤M |ξ| (2.7)

for every (x, ξ) ∈ Ω ∪ Γ0 ×Mn×n
D .

It follows that:

Proposition 2.4. Let K : Ω∪Γ0 → 2M
n×n
D be a lower semicontinuous multivalued map from

Ω ∪ Γ0 to the closed convex subsets of Mn×n
D . Assume (2.5). Then the function H(x, ξ)

defined by (2.6) is lower semicontinuous from Ω ∪ Γ0 ×Mn×n
D to [0,+∞[.

Proof. Fix ξ in Mn×n
D and consider the function H(·, ξ). Let t ∈ R such that H(x, ξ) > t.

This means that K(x) meets the open set U := {ζ ∈Mn×n
D : ζ : ξ > t} , hence there is

an open neighborhood A of x such that, K(y) ∩ U 6= Ø for every y ∈ A.This in turn
implies that H(y, ξ) > t for every y ∈ A , i.e. the function H(·, ξ) is lower semicontinuous.
Since, for fixed x , using (2.5) and for instance [1, Lemma 13.2.1] the function H(x, ·) is
lipschitzian uniformly with respect to x , the function H is lower semicontinuous in the
product space. ¤
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For every µ ∈Mb(Ω ∪ Γ0;Mn×n
D ) let µ/|µ| be the Radon-Nikodym derivative of µ with

respect to its variation |µ| . We introduce the nonnegative Radon measure H(µ) ∈Mb(Ω ∪
Γ0) defined by H(µ) := H(·, µ/|µ|)|µ| , i.e.,

H(µ)(B) :=
∫

B

H(x, µ/|µ|(x)) d|µ| (2.8)

for every Borel set B ⊂ Ω∪Γ0 . Finally, we consider the functional H : Mb(Ω∪Γ0;Mn×n
D ) →

R defined by

H(µ) := H(µ)(Ω ∪ Γ0) =
∫

Ω∪Γ0

H(x, µ/|µ|(x)) d|µ| . (2.9)

Since H is lower semicontinuous and positively 1-homogeneous in the second variable it
follows from Reshetnyak’s lower semicontinuity theorem (see [2], Theorem 2.38) that H is
lower semicontinuous on Mb(Ω ∪ Γ0;Mn×n

D ) with respect to weak∗ convergence. It follows
from the properties of H that H satisfies the triangle inequality, i.e.,

H(λ+ µ) ≤ H(λ) +H(µ) (2.10)

for every λ, µ ∈Mb(Ω ∪ Γ0;Mn×n
D ).

The elasticity tensor. At each point x ∈ Ω, let C(x) be the elasticity tensor , con-
sidered as a symmetric positive definite linear operator C(x) : Mn×n

sym → Mn×n
sym . The or-

thogonal subspaces Mn×n
D and RI are assumed to be invariant under C(x) for every x .

This is equivalent to saying that there exist a symmetric positive definite linear operator
CD(x) : Mn×n

D →Mn×n
D and κ(x) > 0 such that

C(x)ξ := CD(x)ξD + κ(x)(tr ξ)I (2.11)

for every ξ ∈ Mn×n
sym . Note that when C(x) is isotropic we have C(x)ξ = 2µ(x)ξD +

κ(x)(trξ)I ; here µ(x) > 0 is the shear modulus and κ(x) is the modulus of compression, so
that our assumptions are satisfied. We shall suppose that C(x) is uniformly positive definite,
and we will require uniform boundedness of the norms of the operators C(x), which is to
say that, if Q(x, ·) : Mn×n

sym → [0,+∞[ be the quadratic form associated with C , defined by

Q(x, ξ) := 1
2C(x)ξ : ξ = 1

2CD(x)ξD : ξD + κ(x)
2 (tr ξ)2 . (2.12)

there exist 0 < α < β not depending on x such that

α|ξ|2 ≤ Q(x, ξ) ≤ β|ξ|2 (2.13)

for every x ∈ Ω and ξ ∈Mn×n
sym .

It is convenient to introduce the quadratic form Q : L2(Ω;Mn×n
sym ) → R defined by

Q(e) :=
∫

Ω

Q(e) dx (2.14)

for every e ∈ L2(Ω;Mn×n
sym ). It is well known that Q is lower semicontinuous on L2(Ω;Mn×n

sym )
with respect to weak convergence.

The prescribed boundary displacements. For every t ∈ [0, T ] the boundary displace-
ment w(t) is prescribed in the space H1(Rn;Rn). This choice is motivated by the fact that
it is preferable not to impose “discontinuous” boundary data, so that, if the displacement
develops sharp discontinuities, this is due only to energy minimization.

We assume also that the function t 7→ w(t) is absolutely continuous from [0, T ] into
H1(Rn;Rn), so that the time derivative t 7→ ẇ(t) belongs to L1([0, T ];H1(Rn;Rn)) and its
strain t 7→ Eẇ(t) belongs to L1([0, T ];L2(Rn;Mn×n

sym )).

Body and surface forces. For every t ∈ [0, T ] the body force f(t) belongs to the space
Ln(Ω;Rn) and the surface force g(t) acting on Γ1 belongs to L∞(Γ1;Rn). By hypoth-
esis, the functions t 7→ f(t) and t 7→ g(t) are absolutely continuous from [0, T ] into
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Ln(Ω;Rn) and L∞(Γ1;Rn), respectively, so that the time derivative t 7→ ḟ(t) belongs
to L1([0, T ];Ln(Ω;Rn)), the weak∗ limit

ġ(t) := w∗- lim
s→t

g(s)− g(t)
s− t

,

exists for a.e. t ∈ [0, T ] , and t 7→ ‖ġ(t)‖∞ belongs to L1([0, T ]) (see [5], Theorem 7.1).
Throughout the paper we will assume also the following uniform safe-load condition:

there exist a function t 7→ %(t) from [0, T ] into L2(Ω;Mn×n
sym ) and a constant α > 0 such

that for every t ∈ [0, T ]

−div%(t) = f(t) a.e. on Ω , [%(t)ν] = g(t) on Γ1 , (2.15)

and
%D(t, x) + ξ ∈ K(x) (2.16)

for a.e. x ∈ Ω and for every ξ ∈ Mn×n
D with |ξ| ≤ α . In these formulas %D(t, x) denotes

the value of %D(t) at x ∈ Ω, and the trace [%(t)ν] of %(t)ν on Γ1 is interpreted in the sense
of (2.25) below. We assume also that the functions t 7→ %(t) and t 7→ %D(t) are absolutely
continuous from [0, T ] into L2(Ω;Mn×n

sym ) and L∞(Ω;Mn×n
D ), respectively, so that the time

derivative t 7→ %̇(t) belongs to L1([0, T ];L2(Ω;Mn×n
sym )),

%D(s)− %D(t)
s− t

⇀ %̇D(t) (2.17)

weakly∗ in L∞(Ω;Mn×n
D ) for a.e. t ∈ [0, T ] , and t 7→ ‖%̇D(t)‖∞ belongs to L1([0, T ])

(see [5], Theorem 7.1).

2.3. Stress and strain.

Admissible displacements and strains. Given a displacement u ∈ BD(Ω) and a
boundary datum w ∈ H1(Rn;Rn), the elastic and plastic strains e ∈ L2(Ω;Mn×n

sym ) and
p ∈Mb(Ω ∪ Γ0;Mn×n

D ) satisfy the equalities

Eu = e+ p in Ω , (2.18)
p = (w − u)¯ νHn−1 on Γ0 . (2.19)

Therefore we have e = Eau− pa a.e. on Ω and ps = Esu on Ω. Since tr p = 0, it follows
from (2.18) that div u = tr e ∈ L2(Ω) and from (2.19) that

(w − u) · ν = 0 Hn−1 − a.e. on Γ0 . (2.20)

The stress σ ∈ L2(Ω;Mn×n
sym ) is defined by

σ := Ce = CDeD + κ tr e . (2.21)

The stored elastic energy is given by

Q(e) =
∫

Ω

Q(e) dx = 1
2 〈σ|e〉 . (2.22)

Given w ∈ H1(Rn;Rn), the set of admissible displacements and strains for the boundary
datum w on Γ0 is denoted by A(w): it is defined as the set of all triples (u, e, p), with
u ∈ BD(Ω), e ∈ L2(Ω;Mn×n

sym ), p ∈Mb(Ω ∪ Γ0;Mn×n
D ), satisfying (2.18) and (2.19).

In the case n = 1 which I shall deal with in the last section of the paper, Ω will be an open
interval (a, b) in R, and u ∈ BV ([a, b]), e ∈ L2(Ω), p ∈Mb(Ω ∪ Γ0) will satisfy:

u′ = e+ p in Ω , (2.23)
p = (u(a)− w(a))δa + (w(b)− u(b))δb on {a, b} , (2.24)

where the boundary values are taken in the sense of traces.
We shall also use the space ΠΓ0(Ω) of admissible plastic strains, defined as the set of all p ∈
Mb(Ω∪Γ0;Mn×n

D ) for which there exist u ∈ BD(Ω), w ∈ H1(Rn;Rn), and e ∈ L2(Ω;Mn×n
sym )

satisfying (2.18) and (2.19), i.e., (u, e, p) ∈ A(w).
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The traces of the stress. If σ ∈ L2(Ω;Mn×n
sym ) and div σ ∈ L2(Ω;Rn), then the distribu-

tion [σν] on ∂Ω defined by

〈[σν]|ψ〉∂Ω := 〈div σ|ψ〉+ 〈σ|Eψ〉 (2.25)

for every ψ ∈ H1(Ω;Rn) belongs to H−1/2(∂Ω;Rn) (see, e.g., [13, Theorem 1.2, Chapter I]).
The normal and tangential parts of [σν] are respectively defined by

[σν]ν := ([σν] · ν)ν , [σν]⊥ν := [σν]− ([σν] · ν)ν . (2.26)

Since ν ∈ C1(∂Ω;Rn), we have that [σν]ν , [σν]⊥ν ∈ H−1/2(∂Ω;Rn). If, in addition, σD ∈
L∞(Ω;Mn×n

D ), then [σν]⊥ν ∈ L∞(∂Ω;Rn) and

‖[σν]⊥ν ‖∞,∂Ω ≤ 1√
2
‖σD‖∞ (2.27)

(see [13, Lemma 7.2]).

Stress-strain duality. Let

Σ(Ω) := {σ ∈ L2(Ω;Mn×n
sym ) : div σ ∈ Ln(Ω;Rn), σD ∈ L∞(Ω;Mn×n

D )} .
If σ ∈ Σ(Ω), then σ ∈ Lr(Ω;Mn×n

sym ) for every r < ∞ by [13, Proposition 7.1]. For the
definition of the bounded Radon measure [σD :EDu] we refer to [8] and [13], while for
what concerns the bounded Radon measure [σD :Es

Du], when u ∈ BD(Ω) with div u ∈ L2 ,
and the duality between Σ(Ω) and ΠΓ0(Ω) we refer to [5], Section 2.3: here some useful
properties are collected for the reader’s convenience. The measure [σD : p] does not depend
on the choice of u , e , and w . It satisfies

[σD : p]a = σD : pa a.e. on Ω , [σD : p]s = [σD :Es
Du] on Ω ∪ Γ0 ,

|[σD : p]| ≤ ‖σD‖∞|p| on Ω ∪ Γ0 , |[σD : p]s| ≤ ‖σD‖∞|ps| on Ω ∪ Γ0 .
(2.28)

Moreover
[ψσD : p] = ψ[σD : p] in Ω ∪ Γ0 (2.29)

for every ψ ∈ C1(Ω) and
〈[σD : p]|ϕ〉 = 〈ϕσD|p〉 (2.30)

for every σ ∈ C1(Ω;Mn×n
sym ) and every ϕ ∈ C1(Ω), where the duality used in the right-

hand side is defined in (2.4). By approximation, using the continuity properties collected
in (2.28), (2.30) holds also for every σ ∈ C(Ω;Mn×n

sym ) and every ϕ ∈ C(Ω). Therefore, for
every σ ∈ C(Ω;Mn×n

sym ) and every p ∈ ΠΓ0(Ω)

[σD : p] = σD : p on Ω ∪ Γ0 , (2.31)

where the right-hand side denotes the measure defined by

(σD : p)(B) :=
∫

B

σD : dp :=
∑

ij

∫

B

σij dpij (2.32)

for every Borel set B ⊂ Ω ∪ Γ0 .
If σk ⇀ σ weakly in L2(Ω;Mn×n

sym ), div σk ⇀ div σ weakly in Ln(Ω;Rn), and (σk)D is
bounded in L∞(Ω;Mn×n

D ),
〈[(σk)D : p]|ϕ〉 → 〈[σD : p]|ϕ〉 (2.33)

for every ϕ ∈ C(Ω).
Finally, for every σ ∈ Σ(Ω) and p ∈ ΠΓ0(Ω), we define

〈σD|p〉 := [σD : p](Ω ∪ Γ0)

= 〈σD|pa〉+ 〈σD|Es
Du〉+ 〈[σν]⊥ν |w − u〉Γ0

= 〈σD|EDu〉 − 〈σD|eD〉+ 〈[σν]⊥ν |w − u〉Γ0 , (2.34)

where u ∈ BD(Ω), e ∈ L2(Ω;Mn×n
sym ), and w ∈ H1(Rn;Rn) satisfy (2.18) and (2.19).
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In [5] the following integration by parts formula for stresses σ ∈ Σ(Ω) and displacements
u ∈ BD(Ω), involving the elastic and plastic strains e and p , is proved.

Proposition 2.5 (Integration by parts). Let σ ∈ Σ(Ω) , f ∈ Ln(Ω;Rn) , g ∈ L∞(Γ1;Rn) ,
and let (u, e, p) ∈ A(w) , with w ∈ H1(Rn;Rn) . Assume that −div σ = f a.e. on Ω and
[σν] = g on Γ1 . Then

〈σD|p〉+ 〈σ|e− Ew〉 = 〈f |u− w〉+ 〈g|u− w〉Γ1 , (2.35)

where 〈·|·〉Γ1 denotes the duality pairing between L∞(Γ1;Rn) and L1(Γ1;Rn) . Moreover

〈[σD : p]|ϕ〉+ 〈σ : (e− Ew)|ϕ〉+ 〈σ|(u− w)¯∇ϕ〉 =
= 〈f |ϕ(u− w)〉+ 〈g|ϕ(u− w)〉Γ1

(2.36)

for every ϕ ∈ C1(Ω) .

It is useful for our purposes to get insight of the behavior of [σD : p] on a C2 orientable
hypersurface S contained in Ω. First of all, we need a notion of trace. We fix an orientation
on S : locally S splits Ω into two disjoint open sets Ω+ and Ω− determined by the con-
vention that the oriented normal νS to S is inner to Ω− . Regarding S as a subset of ∂Ω+

and ∂Ω− we can define, as in the previous section, the distributions [σνS ]+, [σνS ]− and
the normal and tangential parts of the two distributions, which belong to H

−1/2
loc (S;Rn) as

well. But condition div σ ∈ Ln easily yelds:

[σνS ]+ = [σνS ]− in H−1/2
loc (S;Rn) (2.37)

and we denote this common value by [σνS ]. We then have the following formula, completely
analogous to that we already know in the case where S is part of the boundary of Ω.

Proposition 2.6. Let S ⊂ Ω an orientable C2 hypersurface, σ ∈ Σ(Ω) ,p ∈ ΠΓ0(Ω) ,
u ∈ BD(Ω) , such that there exist w ∈ H1(Rn;Rn) , and e ∈ L2(Ω;Mn×n

sym ) satisfying (2.18)
and (2.19), i.e., (u, e, p) ∈ A(w) . Then [σνS ]⊥ν ∈ L∞(S;Rn) and

[σD : p]bS = [σνS ]⊥ν · (u+ − u−)Hn−1bS (2.38)

where u+ and u− are the traces on S of u .

Proof. By ([13, Chapter 2, Lemma 7.1]), we can take a sequence (σm) ⊂ C∞(Ω̄;Mn×n
sym )

such that:

σm → σ inL2(Ω;Mn×n
sym )

div σm → σ inLn(Ω;Rn)
||(σm)D||∞ ≤ ||σD||∞;

from the definitions we easily get:

[(σm)νS ] → [σνS ] inH−1/2
loc (S);

the same reasonings as in the case when S = ∂Ω (see [13, Chapter 2, Remark 7.2]), actually
show that:

[(σm)νS ]⊥ν
∗→ [σνS ]⊥ν , w

∗ inL∞(S;Rn) (2.39)
so that the right-hand side in (2.38) is well-defined. Now

pbS = EubS = (u+ − u−)¯ νSHn−1bS (2.40)

and the condition tr p = 0 implies

(u+ − u−) · νS = 0 Hn−1 − a.e. on S . (2.41)

By (2.31) and (2.41), formula (2.38) holds for the functions σm , hence we immediately
conclude by (2.39). ¤
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3. Quasistatic evolution

3.1. Properties of the functional H and study of the minimum problem.

The relevant differences between our situation and the one studied in [5] come only by the
definition of the functional H. Clearly, in fact, by (2.13), the assumptions on the elasticity
tensor allow us to repeat the same arguments as in [5] about the quadratic term Q. In this
sections, instead, we show the connections between the duality (2.34) and the functional H ;
only under certain conditions they will prove to be analogous to the case studied in [5]. We
start by the following approximation result.

Lemma 3.1. Let K : Ω∪Γ0 → 2M
n×n
D be a continuous multivalued map from Ω∪Γ0 to the

closed convex subsets of Mn×n
D , which satisfies (2.5). Fix ε > 0 . Let σ ∈ Σ(Ω) such that

σ(x) ∈ K for a.e. x ∈ Ω. Then there exist a sequence (σk) ⊂ C(Ω;Mn×n
sym )∩Σ(Ω) such that

(σk)D is uniformly bounded in L∞(Ω;Mn×n
D ) and:

(i) σk → σ strongly in L2(Ω;Mn×n
sym )

(ii) div σk → div σ strongly in Ln(Ω;Rn)
(iii) for every ε > 0 and every compact subset C of Ω ∪ Γ0 there exists k0 = k0(ε, C)

such that (σk)D(x) ∈ K(x) + εB for every x ∈ C , k ≥ k0 .

Proof. Taking the functions

σR(x) :=
1

Ln(B(x,R) ∩ Ω)

∫

B(x,r)∩Ω

σ(y) dy

it only suffices to show that there exist R sufficiently small, only depending on ε and C ,
such that (σR)D(x) ∈ K(x) + εB for every x ∈ C . Since the measure Ln

Ln(B(x,R)∩Ω) is a
probability measure on B(x,R) ∩ Ω and a.e. in B(x,R) ∩ Ω the function σD(y) belongs
to the fixed convex closed set ZR,x := Co

⋃
y∈B(x,R)K(y) it is well-known that, for every

x ∈ C , (σR)D(x) ∈ ZR,x . By an usual uniform continuity argument, one has that there exist
R̄ > 0, only depending on ε and C , such that for every y ∈ B(x, R̄), K(y) ⊂ K(x) + εB ;
this implies that for all R ≤ R̄ , ZR,x ⊂ K(x) + εB , this is to say (σR)D(x) ∈ K(x) + εB
for every x ∈ C. Observe that this R̄ does not depend on σ.

¤

We can now prove the analogous of proposition 2.4 of [5], in the continuous case.

Proposition 3.2. Let K : Ω ∪ Γ0 → 2M
n×n
D be a continuous multivalued map from Ω ∪ Γ0

to the closed convex subsets of Mn×n
D , which satisfies (2.5). Then, for every p ∈ ΠΓ0 :

H(p) ≥ [σD : p ] on Ω ∪ Γ0 (3.1)

Proof. Let ϕ ∈ C(Ω̄), ϕ ≥ 0. We fix ε > 0 and a compact set C ⊂ Ω ∪ Γ0 such that
|p|(Ω ∪ Γ0 \ C) < ε ; considering the sequence σk defined as in the previous lemma (we
omit to relabel subsequences), for every k ∈ N , for every x ∈ C , we get that there exists
ζk,x ∈ K(x) such that |(σk)D(x)− ζk,x| < ε , and so, by the Cauchy-Schwarz inequality:

(σk)D(x) : (p/|p|)(x) ≤ H(x, (p/|p|)(x)) + ε;

moreover, there exists a positive constant Z such that

||(σk)D||∞ ≤ Z
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for every k ∈ N . Then we get, by (2.32) and the previous inequalities:

〈[(σk)D : p ]|ϕ〉 =
∫

C

ϕ(σk)D :
p

|p| d|p|+
∫

Ω∪Γ0\C
ϕ (σk)D :

p

|p| d|p|

≤
∫

C

ϕH(x,
p

|p| (x)) d|p|+ ε

∫

C

ϕd |p|+ εZ||ϕ||∞

≤ 〈H(p)|ϕ〉+ ε

∫

Ω∪Γ0

ϕ d |p|+ εZ||ϕ||∞,

where the last inequality is trivially true by nonnegativeness of the integrands. As by (2.33),

[(σk)D : p ] ⇀∗ [σD : p ]

when k goes to +∞ , we obtain,

〈[σD : p ]|ϕ〉 ≤ 〈H(p)|ϕ〉+ ε

∫

Ω∪Γ0

ϕ d |p|+ εZ||ϕ||∞

and letting ε to 0 we have H(p) ≥ [σD : p ].
¤

Concerning the case of a piecewise constant constraint K(x) we assume that there exist
a finite collection (Ωi)m

i=1 of open subsets of Ω, a finite family (Ki)m
i=1 of compact convex

subsets of Mn×n
D and a closed subset N of Ω such that:

K1 ⊆ K2 ⊆ ... ⊆ Km (3.2)

Ω ⊂
m⋃

i=1

Ω̄i, Ωi pairwise disjoint (3.3)

(∂Ωi ∩ ∂Ωj ∩ Ω)\N is a C2 hypersurface (3.4)

(∂Ωi ∩ ∂Ω)\N is a C2 hypersurface (3.5)
K(x) ≡ Ki if x ∈ Ωi (3.6)
K(x) ≡ Ki∧j if x ∈ (∂Ωi ∩ ∂Ωj ∩ Ω)\N (3.7)
K(x) ≡ Ki if x ∈ ∂Ωi ∩ Γ0\N (3.8)
Hn−1(N) = 0 (3.9)

where i ∧ j = min{i, j} . By suitably redefining K(x) on N , we may assume that K(x) is
lower semicontinuous in Ω ∪ Γ0 .

Remark 3.3. Condition (3.2) is easily satisfied for example if the sets Ki are given by the
von Mises’condition. Condition (3.4), as N is closed, implies that if x ∈ (∂Ωi ∩∂Ωj ∩Ω)\N
one has νΩi(x) = −νΩj (x), as Ωi and Ωj are disjoint and so if m ≥ 3, (∂Ωi ∩ ∂Ωj ∩
∂Ωk ∩ Ω) ⊆ N whenever i < j < k . Similarly, by condition (3.5), we easily have that
(∂Ωi ∩ ∂Ωj ∩ ∂Ω) ⊆ N whenever i 6= j .

Proposition 3.4. Let K : Ω ∪ Γ0 → 2M
n×n
D be a piecewise constant multivalued map from

Ω ∪ Γ0 to the closed convex subsets of Mn×n
D , which satisfies (2.5), (3.2)-(3.9). Then, for

every p ∈ ΠΓ0 :
H(p) ≥ [σD : p ] on Ω ∪ Γ0. (3.10)

Proof. For each 1 ≤ i < j ≤ m let Γij = Ω̄i ∩ Ω̄j . By the above remark, for each
1 ≤ i < j ≤ m, Γij \N are disjoint C2 hypersurfaces contained in Ω. Fix i < j and a
relatively compact open subset S of Γij\N : we have K(y) ≡ Ki for every y ∈ Γij . We can
then regard S as the Dirichlet part of the boundary of a C2 open set Ω

′
i ⊆ Ωi oriented by
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the exterior normal. By Lemma 2.3 in [5] , we can take a sequence (σk) ⊂ C∞(Ω̄
′
i;Mn×n

sym )
such that:

σk → σ inL2(Ω
′
i;Mn×n

sym )

div σk → σ inLn(Ω
′
i;Rn)

(σk)D(x) ∈ Ki for every x ∈ Ω̄
′
i.

By [13, Chapter 2, Remark 7.2] and (2.37) we have:

[(σk)νS ]⊥ν
∗→ [σνS ]⊥ν , w

∗ inL∞(S;Rn) (3.11)

and so, as, by (2.31), the functions σk easily satisfy

H(p) ≥ [(σk)D : p ] on S

we get that

H(p) ≥ [σD : p ] on S

thanks to (3.11) and (2.38). This at once implies

H(p) ≥ [σD : p ] on
⋃

1≤i<j≤m

Γij

and then we conclude by applying Proposition 2.4. in [5] to each of the connected components
of the open set Ω∪Γ0 \(

⋃
1≤i<j≤m Γij ∪N), as the map K is constant on each of them. ¤

Remark 3.5. Easy examples show that the required inequality is not true in the case of
a piecewise constant multivalued map K , which does not satisfy (3.2), except in the case
n = 1 where each function σ ∈ Σ(Ω) has a continuous representative by usual imbeddings,
and so the required inequality trivially follows from (2.31) in the general case of a lower
semicontinuous multivalued map K. As (3.1) is crucial in proving the Euler conditions
related to the incremental minimum problems the results of [5], except in the onedimensional
case, can be extended only assuming the conditions on K given in Proposition 3.2 or in
Proposition 3.4.

It is well known that in the case when the multifunction K is constant, by [6] (Theorem
4) and [13] (Chapter II, Lemma 5.2) the following formula holds, for every µ ∈ Mb(Ω ∪
Γ0;Mn×n

D ) and every Borel set B ⊂ Ω ∪ Γ0 :

H(µ)(B) = sup
{∫

B

τdµ : τ ∈ C0(Ω ∪ Γ0) ∩ KD(Ω)
}

; (3.12)

this will be useful in the next theorem, which is proven in the general case of a lower
semicontinuous multivalued map.

Theorem 3.6. Let K : Ω ∪ Γ0 → 2M
n×n
D be a lower semicontinuous multivalued map from

Ω ∪ Γ0 to the closed convex subsets of Mn×n
D , which satisfies (2.5). Then, for every µ ∈

Mb(Ω ∪ Γ0;Mn×n
D ) :

H(µ) = sup
{∫

Ω∪Γ0

τdµ : τ ∈ C0(Ω ∪ Γ0) ∩ KD(Ω)
}

; (3.13)

Proof. The ”≥” inequality is trivial by (2.31).
The proof is given in two steps. First we suppose that the map is continuous. We assume that
Γ0 = ∂Ω: this is not restrictive, because otherwise we can proceed by inner approximation
with smooth sets Ωk whose boundary is contained in Ω ∪ Γ0 .
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Let ε > 0 be fixed. By the compactness of Ω̄ and standard properties of bounded Radon
measures we can find a finite family of pairwise disjoint open sets (Qi)

j(ε)
i=1 such that:

Ω̄ ⊆
j(ε)⋃

i=1

Q̄i (3.14)

K(x) ⊆ K(y) + εB ∀x, y ∈ Qi ∩ Ω̄, ∀1 ≤ i ≤ j(ε); (3.15)
|µ|(∂Qi ∩ Ω̄) = 0. (3.16)

In particular, (3.15) easily yields:

|H(x, ξ)−H(y, ξ)| < ε|ξ| ∀x, y ∈ Qi ∩ Ω̄, ∀1 ≤ i ≤ j(ε), ∀ξ ∈Mn×n
D . (3.17)

We choose Xi ∈ Qi ∩ Ω̄ : we can find, by (3.12), functions τi ∈ C0(Qi ∩ Ω̄;Mn×n
D ) such that:

∫

Qi∩Ω̄

τi dµ ≥
∫

Qi∩Ω̄

H(Xi, µ/|µ|(x)) d|µ| − ε

j(ε)

and such that
τi(x) ∈ K(Xi)

for every x in Qi ∩ Ω̄ . Since the mapping K is continuous, putting

ϕi(x) := ΠK(x)(τi(x)),

where ΠK(x) is the canonical projection on the closed convex set K(x), the following prop-
erties are verified, thanks to (3.15):

ϕi ∈ C0(Qi ∩ Ω̄;Mn×n
D )

|ϕi(x)− τi(x)| < ε for every x ∈ Qi ∩ Ω̄, for every 1 ≤ i ≤ j(ε)
ϕi(x) ∈ K(x) for every x ∈ Qi ∩ Ω̄, for every 1 ≤ i ≤ j(ε);

We now easily have:
∫

Qi∩Ω̄

ϕi dµ ≥
∫

Qi∩Ω̄

H(Xi, µ/|µ|(x)) d|µ| − ε

j(ε)
− ε|µ|(Qi ∩ Ω̄);

so, if we put

ϕ(x) :=

{
ϕi(x) if x ∈ Qi ∩ Ω̄
0 if x ∈ Ω̄\⋃j(ε)

i=1 Qi

which is still continuous since the Qi ’s are a finite collection and the functions ϕi vanish
on the interfaces, we get an admissible function verifying

∫

Ω̄

ϕdµ ≥ (
j(ε)∑

i=1

∫

Qi∩Ω̄

H(Xi, µ/|µ|(x)) d|µ|)− ε− ε|µ|(Ω̄).

From (3.17), since |µ/|µ|| = 1 |µ|-a.e., we get:
∫

Ω̄

ϕdµ ≥
∫

Ω̄

H(x, µ/|µ|(x)) d|µ| − ε− 2ε|µ|(Ω̄)

and this implies:

H(µ) ≤ sup
{∫

Ω̄

τdµ : τ ∈ C0(Ω ∪ Γ0) ∩ KD(Ω)
}
,

as required.
By considering a continuous monotone approximation as in Remark 2.3 the result can be
easily extended to the case of a lower semicontinuous multivalued map. ¤
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Remark 3.7. Actually, the regularity of admissible functions in (3.13) can be improved: it
suffices in the previous proof to take a suitable uniform approximation in C∞0 (Ω ∪ Γ0)) of
the (admissible) function (1− ε)ϕ to get:

H(µ) = sup
{∫

Ω∪Γ0

τdµ : τ ∈ C∞0 (Ω ∪ Γ0) ∩ KD(Ω)
}
. (3.18)

As a corollary of the previous theorems, we have:

Corollary 3.8. Let K : Ω ∪ Γ0 → 2M
n×n
D be a continuous multivalued map from Ω ∪ Γ0 to

the closed convex subsets of Mn×n
D , which satisfies (2.5), or a piecewise constant multivalued

map from Ω ∪ Γ0 to the closed convex subsets of Mn×n
D , which satisfies (2.5), (3.2)-(3.9).

Assume that g ∈ L∞(Γ1;Rn) and that there exists ρ ∈ Σ(Ω) ∩ K(Ω) such that [ρν] = g on
Γ1 . Then, for every p ∈ ΠΓ0 :

H(p) = sup {〈σD|p〉 : σ ∈ Σ(Ω) ∩ K(Ω), [σν] = g on Γ1} . (3.19)

Proof. Apply the same argument of [5], Proposition 2.4., using Propositions 3.2 and 3.4,
and (3.18). ¤

It is now possible to prove the existence of the minima of the incremental problems exactly
the same way as in [5]. The data are the current values p0 ∈ ΠΓ0 of the plastic strain and
the updated values w ∈ H1(Rn;Rn), f ∈ Ln(Ω;Rn), and g ∈ L∞(Γ1;Rn), of the boundary
displacement and of the body and surface forces. The total load L ∈ BD(Ω)′ is defined by:

〈L|u〉 := 〈f |u〉+ 〈g|u〉Γ1 (3.20)

for every u ∈ BD(Ω). The minimum problem to be solved is then:

min(u,e,p)∈A(w){Q(e) +H(p− p0)− 〈L|u〉} (3.21)

and the following uniform safe-load condition is assumed: there exists % ∈ L2(Ω;Mn×n
sym ) and

α > 0 such that:
−div% = f a.e on Ω, [%ν] = g on Γ1, (3.22)

and
%D(x) + ξ ∈ K(x) (3.23)

for a.e. x ∈ Ω, and for every ξ ∈ Mn×n
D with |ξ| ≤ α. As shown in [5], the minimum

problem (3.21) is equivalent to

min(u,e,p)∈A(w){Q(e)− 〈%|e〉+H(p− p0)− 〈%D|p− p0〉} (3.24)

in the sense that they have the same solutions. The following theorem holds:

Theorem 3.9. Let w ∈ H1(Rn;Rn), f ∈ Ln(Ω;Rn), and g ∈ L∞(Γ1;Rn), and let L be
defined by (3.20). Assume (2.1), (2.2), (3.22), (3.23). Then, the minimum problem (3.21)
has a solution.

Proof. Thanks to (3.19), it is possible to apply the same arguments as in [5], Theorem
3.3. ¤

Also the same Euler conditions, summarized here for the reader’s convenience, hold.

Theorem 3.10. Assume (2.1), (2.2). Let w ∈ H1(Rn;Rn), f ∈ Ln(Ω;Rn), and g ∈
L∞(Γ1;Rn), let (u, e, p) ∈ A(w) , let σ := Ce and let L be defined by (3.20). The following
conditions are then equivalent:

(a) (u, e, p) is a solution of (3.21) with p0 = p ;
(b) −H(q) ≤ 〈σ|η〉 − 〈L|v〉 ≤ H(q) for every (v, η, q) ∈ A(0) ;
(c) σ ∈ Σ(Ω) ∩ K(Ω), −divσ = f a.e on Ω, [σν] = g on Γ1.

Proof. See [5], Theorem 3.6. ¤
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Remark 3.11. As in [5], Remark 3.9, if (u1, e1, p0) and (u2, e2, p0) are solutions to
problem (3.21) with the same data, then u1 = u2 and e1 = e2 a.e. on Ω.

3.2. Quasistatic evolution.

Thanks to Propositions 3.2 and 3.4, and to (3.18) the same results as in [5] about existence
and regularity of quasistatic evolutions hold in our case. Here they are collected for the
reader’s convenience. Through all of this Section it is understood that the stress constraint
is given by a continuous multifunction satisfying (2.5), or piecewise constant satisfying (2.5),
(3.2)- (3.9). We now consider time-dependent absolutely continuous boundary conditions
w(t), as well as absolutely continuous body and surface forces f(t) and g(t); also the
uniform safe-load condition (2.15)-(2.17) is assumed. For every t ∈ [0, T ] the total load
L(t) ∈ BD(Ω)′ is defined by:

〈L(t)|u〉 := 〈f(t)|u〉+ 〈g(t)|u〉Γ1 (3.25)

for every u ∈ BD(Ω). Considering the separable Banach space Y := C0(Ω ∪ Γ0;Mn×n
D ),

whose dual X is given by X = Mb(Ω∪Γ0;Mn×n
D ) and the closed convex set K1 = KD(Ω)∩

C0(Ω ∪ Γ0;Mn×n
D ), by (3.13) the functional H can be regarded as the support function of

K1 , that is:
H(x) = supy∈K1

〈x|y〉 ∀x ∈ X; (3.26)
this gives another proof of the w∗ -lower semicontinuity of H . By (2.7) the following bounds
hold:

m||x|| ≤ H(x) ≤M ||x|| ∀x ∈ X, (3.27)
where m, M are defined as in Section 2.1.

Given an absolutely continuous function p : [0, T ] → X the H -variation of p in the time
interval [s, t], which will play the role of the dissipation in [s, t], will be defined as:

DH(p; s, t) := sup
{ N∑

j=1

H(p(tj)− p(tj−1)) : s = t0 ≤ t1 ≤ · · · ≤ tN = t,N ∈ N
}
.

By the w∗ -lower semicontinuity of H it easily follows that:

DH(p; a, b) ≤ DH(pk; a, b) (3.28)

whenever pk(t) → p(t) in the w∗ -topology, for every t ∈ [a, b]; the following theorem,
proved in ( [5], Theorem 7.1) introduces the definition of ṗ(t) we will use in the rest of the
paper:

Theorem 3.12. Given an absolutely continuous function p : [0, T ] → X , the weak∗ -limit

ṗ(t) := w∗ − lims→t
p(s)− p(t)
s− t

(3.29)

exists for a.e. t ∈ [0, T ], and

H(ṗ(t)) = lims→tH
(
p(s)− p(t)
s− t

)
. (3.30)

Moreover, the function t 7→ H(ṗ(t)) is measurable and

DH(p; a, b) =
∫ b

a

H(ṗ(t)) dt (3.31)

for every a, b ∈ [0, T ] with a ≤ b .

The definition of quasistatic evolution is the same as in [5], that is:

Definition 3.13. A quasistatic evolution is a function t 7→ (u(t), e(t), p(t)) from [0, T ] into
BD(Ω)× L2(Ω;Mn×n

sym )×Mb(Ω ∪ Γ0;Mn×n
D ) satisfying:
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(qs1) global stability: for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) and

Q(e(t))− 〈L(t)|u(t)〉 ≤ Q(η) +H(q − p(t))− 〈L(t)|v〉
for every (v, η, q) ∈ A(w(t));

(qs2) energy balance: the function t 7→ p(t) from [0, T ] into Mb(Ω ∪ Γ0;Mn×n
D ) has

bounded variation and for every t ∈ [0, T ]

Q(e(t)) +DH(p; 0, t)− 〈L(t)|u(t)〉 = Q(e(0))− 〈L(0)|u(0)〉+

+
∫ t

0

{〈σ(s)|Eẇ(s)〉 − 〈L(s)|ẇ(s)〉 − 〈L̇(s)|u(s)〉} ds ,

where σ(t) := Ce(t).

By the results previously obtained there’s actually nothing new to prove about the exis-
tence and regularity of quasistatic evolutions, in the sense that the same arguments as in [5]
lead to the following:

Theorem 3.14. Assume (2.1), (2.2),(2.12), (2.13), and that the maps t 7→ w(t), t 7→
f(t) , t 7→ g(t) are absolutely continuous. If the stress constraint is given by a continuous
multifunction satisfying (2.5), or piecewise constant satisfying (2.5), (3.2)-(3.9), and the
safe-load conditions (2.15)-(2.17) hold, given a triple (u0, e0, p0) ∈ A(w(t)) satisfying:

Q(e0)− 〈L(0)|u0〉 ≤ Q(η) +H(q − p0)− 〈L(0)|u〉 (3.32)

for every (u, e, p) ∈ A(w(0)), there exist a quasistatic evolution t 7→ (u(t), e(t), p(t)) such
that u(0) = u0, e(0) = e0, p(0) = p0.
Moreover, the functions t 7→ e(t), t 7→ p(t), and t 7→ u(t) are absolutely continuous from
[0, T ] into L2(Ω;Mn×n

sym ), Mb(Ω ∪ Γ0;Mn×n
D ), and BD(Ω) respectively and the functions

t 7→ e(t), t 7→ σ(t) are uniquely determined by the initial conditions.

Proof. Apply the same arguments as in [5], Theorem 4.5, Theorem 5.2, and Theorem 5.9 ¤

Remark 3.15. By the previous theorem and Theorem 3.12, condition (qs2) in the definition
of quasistatic evolution is actually equivalent to:

(qs2’) For a.e. t ∈ [0, T ]

〈σ(t)|ė(t)〉+H(ṗ(t)) = 〈σ(t)|Eẇ(t)〉 − 〈L(t)|ẇ(t)〉+ 〈L(t)|u̇(t)〉.

Moreover, as shown in [5], Remark 5.4, if the data are Lipschitz continuous in time, the
functions t 7→ e(t), t 7→ p(t), and t 7→ u(t) are Lipschitz continuous from [0, T ] into
L2(Ω;Mn×n

sym ), Mb(Ω ∪ Γ0;Mn×n
D ), and BD(Ω) respectively.

3.3. Strong formulation and precise definition of the stress.

Also in this case the construction done in [5], Theorem 6.4, of a so-called precise rep-
resentative of the stress satisfying a pointwise formulation of the classical flow rule, holds;
namely, given an absolutely continuous mapping t 7→ (e(t), p(t), u(t)) from [0, T ] into
L2(Ω;Mn×n

sym )×Mb(Ω∪Γ0;Mn×n
D )×BD(Ω) this formulation will be expressed by the inclu-

sion:
ṗ(t)
|ṗ(t)| (x) ∈ NK(x)(σD(t, x)) for |ṗ(t)| − a.e. x ∈ Ω ∪ Γ0 (3.33)

where NK(x) denotes the normal cone to the closed convex set K(x) and ṗ(t)
|ṗ(t)| is the Radon-

Nikodym derivative of ṗ(t) with respect to its variation |ṗ(t)| , which is a function defined
|ṗ(t)| − a.e. in Ω ∪ Γ0 . We only have to check the measurability and the boundedness of
this representative: they are guaranteed by the following simple lemma, which we state in
the general case when K is only lower semicontinuous.
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Lemma 3.16. Let K : Ω ∪ Γ0 → 2M
n×n
D be a lower semicontinuous multivalued map from

Ω ∪ Γ0 to the closed convex subsets of Mn×n
D , which satisfies (2.5). Let ξ : Ω ∪ Γ0 →Mn×n

D

be a bounded Borel function. Then, for every µ ∈Mb(Ω ∪ Γ0;Mn×n
D ) the map:

x 7→ (∂ξ)0H(x, ξ(x)),

where (∂ξ)0H(x, ξ) denotes the element of ∂ξH(x, ξ) with minimum norm, is µ-measurable
and bounded.

Proof. It easily follows from [4], Theorem III.41, that if the multifunction:

x 7→ ∂ξH(x, ξ(x)) (3.34)

is µ -measurable, so is the map:

x 7→ (∂ξ)0H(x, ξ(x)),

hence it only suffices to prove (3.34). Take an open set U ⊂ Mn×n
D : denoting by G(x, ζ)

the Borel function from the product space (Ω ∪ Γ0)× U into R defined by:

G(x, ζ) := H(x, ξ(x)) + δK(x)(ζ)− ζ : ξ(x),

we easily get, by well-known properties of the subdifferential (see for instance [1], Propisition
9.5.1), that:

{x ∈ X|∂ξH(x, ξ(x)) ∩ U 6= Ø} = ΠΩ∪Γ0 {(x, ζ)| G(x, ζ) = 0} ,
where ΠΩ∪Γ0 is the projection on the first factor: by the Projection Theorem ( [4], theorem
III.23), this is an universally measurable set. Finally, the boundedness of the map x 7→
(∂ξ)0H(x, ξ(x)) follows at once from the inclusion ∂ξH(x, ξ) ⊆ K(x) which is a trivial
consequence of the definitions. ¤

We have the following:

Theorem 3.17. Assume (2.1), (2.2),(2.12), (2.13), that the maps t 7→ w(t), t 7→ f(t) , t 7→
g(t) are absolutely continuous and that (2.15)-(2.17) hold. Assume that the stress constraint
is given by a continuous multifunction satisfying (2.5), or piecewise constant satisfying (2.5),
(3.2)-(3.9). Let t 7→ (u(t), e(t), p(t)) be a function from [0, T ] into BD(Ω)×L2(Ω;Mn×n

sym )
×Mb(Ω∪Γ0;Mn×n

D ) , let σ(t) := Ce(t) , and let µ(t) := Ln+|ṗ(t)| . Then t 7→ (u(t), e(t), p(t))
is a quasistatic evolution if and only if

(e) t 7→ (u(t), e(t), p(t)) is absolutely continuous and
(e1) for every t ∈ [0, T ] we have (u(t), e(t), p(t)) ∈ A(w(t)) , σ(t) ∈ Σ(Ω) ∩ K(Ω) ,

−div σ(t) = f(t) a.e. on Ω , and [σ(t)ν] = g(t) on Γ1 ,
(e2) for a.e. t ∈ [0, T ] there exists σ̂D(t) ∈ L∞µ(t)(Ω ∪ Γ0;Mn×n

D ) such that

σ̂D(t) = σD(t) Ln-a.e. on Ω , (3.35)

[σD(t) : ṗ(t)] =
(
σ̂D(t) :

ṗ(t)
|ṗ(t)|

)
|ṗ(t)| on Ω ∪ Γ0 , (3.36)

ṗ(t)
|ṗ(t)| (x) ∈ NK(x)(σ̂D(t, x)) for |ṗ(t)|-a.e. x ∈ Ω ∪ Γ0 , (3.37)

where σ̂D(t, x) denotes the value of σ̂D(t) at the point x .

Proof. By Lemma 3.16, one can repeat the same construction as in [5], Theorem 6.4; the
proof then follows with the same argument. ¤
Remark 3.18. By Remark 3.5, in the special case of the dimension n = 1 (and related
problems) the results of this section hold with the weaker assumption of a lower semicon-
tinuous multivalued map K ; there is no need of constructing a precise representative as all
admissible σ have a continuous representative by canonical imbeddings.
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4. One-dimensional problems

For the definition of the set of admissible displacements and strains in dimension n = 1,
we refer to Section 2.2; moreover we recall that in this case it is always assumed σ = σD .

4.1. The case of simple shear.

Before studying one-dimensional problems, here is a typical situation when the solution
to the quasistatic evolution problem leads to the solution of a one-dimensional one. Let
Ω = (− 1

2 ,
1
2 )2 , let Γ0 = (

{− 1
2

}× (− 1
2 ,

1
2 )) ∪ (

{
1
2

}× (− 1
2 ,

1
2 )), and Γ1 = ∂Ω \ Γ0 ; Dirichlet

conditions are prescribed only on Γ0 , while periodic ones (in the second coordinate) are
assumed on Γ1 . this problem will be referred as (DP) (Dirichlet-periodic problem). The
elasticity tensor C is assumed to be isotropic (see Section 2.2). In the following proposition
x and y respectively denote the first and the second coordinate in R2 ,

Proposition 4.1. Assume that the boundary displacement is of the form

ŵ(t, x, y) =
√

2w(t, x)e2,

the applied load is of the form

f̂(t, x, y) =
1√
2
f(t, x)e2,

the constraint on the deviatoric part is given by:

K(x, y) :=
{(

α β
β −α

)
|
√
α2 + β2 ≤ k1(x)

}

where k1(x) is a strictly positive lower semicontinuous function only depending on the first
coordinate. Assume also that the initial conditions are of the form:

û0(x, y) =
√

2u0(x)
ê0(x, y) = M(e0(x))
p̂0 = M(p0 ⊗ L1) in Ω
p̂0 = (ŵ0 − û0)¯ ν on Γ0 .

where (u0, e0, p0) is an admissible triple for the boundary displacement w0, the constraint
K1(x) := [−k1(x), k1(x)] and M is defined for every α ∈ R as follows:

M(α) :=

(
0 α√

2
α√
2

0

)
.

Then every quasistatic evolution satisfying (DP) conditions, and the given boundary and
initial conditions is of the form:

û(t, x, y) =
√

2u(t, x)
ê(t, x, y) = M(e(t, x))
p̂(t) = M(p0 ⊗ L1) in Ω
p̂(t) = (ŵ(t)− û(t))¯ ν on Γ0 ,

where (u(t), e(t), p(t)) is an admissible triple for the one-dimensional Dirichlet problem on
the interval (− 1

2 ,
1
2 ) with boundary displacement w(t) verifying:

(Cf1) d
dxu(t) = e(t) + p(t) ,

(Cf2) σ(t) = 2µ e(t) ,
(Cf3) − d

dx σ(t) = f(t) ,
(Cf4) |σ(t, x)| ≤ k1(x)
(Cf5) (ξ−σ(t, x)) : ṗ(t)

|ṗ(t)| (x) ≤ 0 for |ṗ(t)|-a.e. x ∈ [− 1
2 ,

1
2 ] , for every ξ ∈ [−k1(x), k1(x)] .
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Proof. It is easily seen that if (u(t), e(t), p(t)) is an admissible triple, so is (û(t), ê(t), p̂(t)).
In our hypothesis, σ̂ = σ̂D , so the constraint is easily satisfied and so is the equilibrium
equation, since −div σD(t, x, y) = f(t, x.y) whenever (Cf3) holds.
Frome the definition of p̂(t) it easily follows that:

˙̂p(t)
| ˙̂p(t)| (x, y) = M(

ṗ(t)
|ṗ(t)| (x));

this equality is also true on the boundary Γ0 . Hence, for fixed (x, y) ∈ Ω ∪ Γ0 , taken
ξ̂ ∈ K(x, y):

(ξ̂ − σ̂(t, x, y)) :
˙̂p(t)
| ˙̂p(t)| (x, y) =

√
2(ξ̂12 − σ̂12(t, x, y))

ṗ(t)
|ṗ(t)| (x),

that is to say, with easy computations:

(ξ̂ − σ̂(t, x, y)) :
˙̂p(t)
| ˙̂p(t)| (x, y) = (

√
2ξ̂12 − σ12(t, x))

ṗ(t)
|ṗ(t)| (x);

as the stress constraint implies, for every ξ̂ ∈ K(x, y):

|
√

2ξ̂12| ≤ k1(x),

by (Cf5) we conclude that, | ˙̂p(t)|-a.e.

(ξ̂ − σ̂(t, x, y)) :
˙̂p(t)
| ˙̂p(t)| (x, y) ≤ 0

and so (û(t), ê(t), p̂(t)) is a quasistatic evolution according to Theorem 3.17.
Vice versa, since σ̂(t) is uniquely determined by the initial conditions, so it certainly is of
the required form, it only suffices to verify that, given q̂(t) such that (û(t), ê(t), q̂(t)) is a
quasistatic evolution, there exists q1(t) ∈Mb([− 1

2 ,
1
2 ]) such that q(t) = M(q1(t)⊗L1): once

this is achieved infact, straightforward computations assure that (Cf1)-(Cf5) are verified.
The constraint K(x, y) is a sphere in the space of deviatoric matrices, so it is well known
that:

NK(x,y)(σ̂(t, x, y)) = {λσ̂(t, x, y) |λ ≥ 0} ;

by Theorem 3.17, we deduce that, for a.e. t, there exists g(t, x, y) ∈ L1
| ˙̂q(t)| such that:

˙̂q(t)
| ˙̂q(t)| (x, y) = M(g(t, x, y));

this implies by absolute continuity, taking into account the initial conditions, that:

q̂(t) = M(ν(t))

for a suitable ν(t) ∈Mb(Ω ∪ Γ0), and that:

Eu(t) = M(σ(t, x) + ν(t)).

This implies that there exists two functions u1(t), u2(t) ∈ BV ([− 1
2 ,

1
2 ]) such that:

û(t, x, y) = u1(t, y)e1 + u2(t, x)e2;

but (2.20), since the normal to Γ0 is parallel to e1 implies that:

u1(y) = 0 L1 − a.e. in (−1
2
,
1
2
).

From this the conclusion easily follows. ¤
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4.2. The autonomous case.

We first study a one-dimensional Dirichlet problem where the force does not depend on
time: in this case a complete qualitative study, as it will be shown, is possible. The data
of the problem are an open interval in R (only to simplify notation, this interval will be
(0, 1)),the stress constraint

K(x) := [−α(x), β(x)] (4.1)
where α, β are strictly positive lower semicontinuous functions, and the boundary displace-
ment w(t, x) : from now on, we define w0(t) := w(t, 0) and similarly w1(t) := w(t, 1). These
two functions are absolutely continuous with respect to time. For simplicity, the function µ
in the elasticity tensor will be taken constant and equal to 1. According to Theorem 3.17,
the problem to be solved will be then:

d

dx
u(t) = σ(t) + p(t), (4.2)

− d

dx
σ(t) = f (4.3)

σ(t, x) ∈ K(x) (4.4)
ṗ(t)
|ṗ(t)| (x) ∈ NK(x)(σ(t, x)) for |ṗ(t)|-a.e. x ∈ [0, 1]; (4.5)

in fact, since the elastic part is in the 1-dimensional case absolutely continuous in space by
canonical imbeddings, the continuous representative is a precise representative in the sense
of Theorem 3.17. We easily have that:

NK(x)(σ(t, x)) =





[0,+∞) if σ(t, x) = β(x)
{0} if α(x) < σ(t, x) < β(x)
(−∞, 0] if σ(t, x) = α(x)

(4.6)

We assume for simplicity that

σ0(x) := σ(0, x) ∈ (−α(x), β(x))

for every x and that p0 ≡ 0; most of the reasonings later developed will also work, however,
with different initial data, with slight adaptations. The initial displacement can be recovered
from σ0 by integration, taking into account the boundary conditions. The function σ0

provides a safe-load solution at any time, so quasistatic evolution exists in every time interval
[0, T ] with T > 0: from now on, T will be fixed. By (4.3) the elastic part will be given by:

σ(t, x) = σ0(x) + c(t) (4.7)

for a suitable function c(t) to be determined in the sequel, and, by continuity in time,
at small times the solution will be purely elastic, that is to say, taking into account the
boundary conditions

c(t) = h(t) := w1(t)− w0(t)−
∫ 1

0

σ0(x) dx. (4.8)

In fact, from (4.5), since, given a convex closed set C NC(ξ) = {0} whenever ξ is an interior
point of C , no plastic deformation can appear as long as σ(t, x) is in the interior of K(x)
at any point. Now if for every t ∈ [0, T ] ,

−(min[0,1] (α(x) + σ0(x))) < h(t) < (min[0,1] (β(x)− σ0(x)))

the solution remains purely elastic and it is given by (4.7) and (4.8). Plastic deformation
may instead occur when, putting

ν := min[0,1] (β(x)− σ0(x)), (4.9)
λ := min[0,1] (σ0(x) + α(x)), (4.10)
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either inf {t ∈ [0, T ]|h(t) = ν} or inf {t ∈ [0, T ]|h(t) = −λ} are finite; they cannot coincide,
as both λ, ν are strictly positive, so it is not restrictive to assume for example that

t1 := inf {t ∈ [0, T ]|h(t) = ν} < inf {t ∈ [0, T ]|h(t) = −λ}
(the discussion of the other case is similar). First of all, we make some general remarks.

An interesting case is when the minimum values defining λ, ν are attained at a finite num-
ber of points of [0, 1]: in this case the plastic deformation will be necessarily concentrated.
In fact, let {xi}m

i=1 be the set of points such that

β(xi)− σ0(xi) = ν

and {yj}n
j=1 the set of points such that

σ0(yj) + α(yj) = λ.

Clearly, by (4.4), the function c(t) defined in (4.7), must satisfy:

−λ ≤ c(t) ≤ ν; (4.11)

so, whenever x /∈ {xi}m
i=1 ∪{yj}n

j=1 , by lower semicontinuity of the functions involved there
exists an open neighborhood Ux of x such that, for every y ∈ Ux :

−α(y) < σ0(y)− λ ≤ σ0(y) + c(t) ≤ σ0(x) + ν < β(y);

from (4.5), since, given a convex closed set C NC(ξ) = {0} whenever ξ is an interior point
of C , it is easy to conclude that:

ṗ(t)
|ṗ(t)| = 0 |ṗ(t)|-a.e. in Ux,

hence supp ṗ(t) ⊆ {x1, ..., xm} ∪ {y1, ..., yn} : since this set is finite (this is the only point
where it is exactly needed), one has that there exist suitable functions ϕi, ψj such that:

〈f, ṗ(t)〉 =
m∑

i=1

ϕi(t) f(xi) +
n∑

j=1

ψj(t) f(yj) for every f ∈ C([0, 1])

and by the w∗ -absolute continuity of the map t 7→ p(t), one gets:

〈f, p(t)〉 =
m∑

i=1

(
∫ t

0

ϕi(s) ds) f(xi) +
n∑

j=1

(
∫ t

0

ψj(s) ds) f(yj) for every f ∈ C([0, 1]

hence:

p(t) =
m∑

i=1

(
∫ t

0

ϕi(s) ds)δxi +
n∑

j=1

(
∫ t

0

ψj(s) ds)δyj . (4.12)

Given a quasistatic evolution (u(t), σ(t), p(t)), we define:

P (t) = p(t)([0, 1]); (4.13)

we observe that P is absolutely continuous and that:

Ṗ (t) = ṗ(t)([0, 1]). (4.14)

By (4.2), taking into account the relaxed boundary conditions and (4.7),(4.8) one gets the
equality σ(t, x) = σ0(x) + h(t)− P (t), so P (t) is uniquely determined by σ(t).

We claim that there exists a right neighborhood [t1, t2] of t1 such that, for every t in
this neighborhood:

P (t) = r(t) := maxs∈[t1,t]h(s)− ν (4.15)
σ(t, x) = σ0(x) + h(t)− r(t). (4.16)

To prove the claim, we define σ̃(t, x) as the right-hand side of (4.16) and observe that it
suffices to find an absolutely continuous function t 7→ (ũ(t), p̃(t)) such that p̃(t)([0, 1]) = r(t)
and the triple (ũ(t), σ̃(t), p̃(t)) satisfies (4.2)-(4.5).
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Clearly (4.3) is verified by σ̃(t): the definition of r(t) yields

σ̃(t, x) ≤ β(x)

and by continuity in time, in a suitable neighborhood of t1, we will have:

σ̃(t, x) ≥ −α(x).

Regarding (4.5), we choose p̃(t) defined by (4.12), with ϕi replaced by ϕ̃i and ψj ≡ 0 (we
already know that in our hypothesis no plastification appear at these times at points yj ).
It then suffices to check that there is, for every 1 ≤ i ≤ m, for every t ∈ [t1, t2] a choice of
ϕ̃i(t) compatible with the condition:

ṙ(t) =
m∑

i=1

ϕ̃i(t) (4.17)

such that, for every 1 ≤ i ≤ m,

˙̃p(t)
| ˙̃p(t)| (xi) ∈ NK(xi)(σ̃(t, xi)). (4.18)

Since r is absolutely continuous and nondecreasing, ṙ(t) ≥ 0: moreover,

r(t) > h(t)− ν ⇒ ṙ(t) = 0; (4.19)

indeed, under this assumption, r is constant in a neighborhood of t . In this case, the choice:

ϕ̃i(t) = 0 ∀ 1 ≤ i ≤ m

is clearly compatible with both (4.17) and (4.18). The only other possible case is r(t) =
h(t) − ν; in this case, by (4.9), σ̃(t, xi) = β(xi): (4.17) and (4.18), by (4.6), are easily
satisfied by putting:

ϕ̃i(t) ≥ 0,
m∑

i=1

ϕ̃i(t) = ṙ(t).

It is now easy to verify that:

u(t, x) =
∫ x

0

σ0(y) dy + (h(t)− r(t))x+ p̃(t)([0, x)) + w0(t)

is a distributional primitive of σ̃+ p̃ satisfying the relaxed boundary conditions, so the claim
is proved. Observe that, by the uniqueness of σ the conditions on ϕ̃i are also necessary.
We also can get rid of t1 by putting:

r(t) = maxs∈[0,t](h(s)− ν)+. (4.20)

The solutions found in this way obviously change form if at a certain time, still labeled by
t2 , one has:

minx∈[0,1]σ(t2, x) = −λ
that is to say:

h(t2)− r(t2) = −λ.
At this time a concentrated plastic deformation can occur at points yj ’s.

We claim that there exists a right neighborhood [t2, t3] where the elastic part of the
solution is given by:

σ(t, x) = σ0(x) + h(t)− r(t)− s(t), (4.21)

where s(t) is defined as:

s(t) := mins∈[0,t][−(h(s)− r(s) + λ)−]; (4.22)

as before, we get rid of t2 in the definition of s(t) by noticing that, at times smaller than
t2 h(s)− r(s) + λ is strictly positive, hence at these times s(t) = 0. In general, it turns out
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that s(t) is a non-positive, nonincreasing, absolutely continuous function. Noticing that t3 ,
if we assume the claim, can be defined as:

t3 = inf {t ∈ [0, T ] : h(t)− r(t)− s(t) ≥ ν} , (4.23)

with the convention t3 = T whenever the right-hand side is the empty set, one also has, by
the nonpositiveness of the function s, with an easy application of (4.19), that:

ṙ(t) = 0 ∀t ∈ [t2, t3) : (4.24)

in particular, equation:
m∑

i=1

ϕi(t) = ṙ(t)

is still verified (no new plastification is possible at points xi at these times, so we are forced
to put ϕi(t) = 0 for every t ∈ [t2, t3)). The claim can now be proved with the same
reasonings as before, leading to the following possible choices of ψj :

ψj(t) ≤ 0,
n∑

j=1

ψj(t) = ṡ(t).

Clearly, the procedure can be further iterated:if t3 < T , at time t3 new plastification can
appear at points xi : one should then define a new function r1(t) as:

r1(t) = maxs∈[0,t] [(h(s)− r(s)− s(s)− ν)]+

and then proceed as before.
These results can be summarized as follows:

Theorem 4.2. Let T > 0 be fixed, let Ω = (0, 1) , let f(t, x) ≡ f(x) , let the stress constraint
be K(x) := [−α(x), β(x)] where α, β are strictly positive lower semicontinuous functions,
and the boundary displacement w(t) be an absolutely continuous function from [0, T ] into
H1((0, 1)) , let the stress tensor be equal to 1. Suppose that

σ0(x) := σ(0, x) ∈ (−α(x), β(x))

for every x, and that

t1 := inf {t ∈ [0, T ]|h(t) = ν} < (T ∧ inf {t ∈ [0, T ]|h(t) = −λ}),
where h(t) is defined as in (4.8) and

ν := min[0,1] (β(x)− σ0(x)), λ := min[0,1] (σ0(x) + α(x)). (4.25)

Suppose that the values λ, ν are attained at a finite number of points in the interval [0, 1] ,
and let {xi}m

i=1 and {yj}n
j=1 be the set of points such that

β(xi)− σ0(xi) = ν

and
σ0(yj) + α(yj) = λ.

Let r(t) , s(t) , t3 as in (4.20), (4.22), (4.23) respectively: then, for every quasistatic evolu-
tion (u(t), σ(t), p(t)) in the time interval [0, t3) one has:

σ(t, x) = σ0(x) + h(t)− r(t)− s(t) (4.26)

p(t) =
m∑

i=1

(
∫ t

0

ϕi(s) ds)δxi +
n∑

j=1

(
∫ t

0

ψj(s) ds)δyj (4.27)
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where the functions ϕi, ψj respectively satisfy

ϕi(t) ≥ 0,
m∑

i=1

ϕi(t) = ṙ(t) (4.28)

ψj(t) ≤ 0,
n∑

j=1

ψj(t) = ṡ(t). (4.29)

Viceversa, to every pair (σ(t), p(t)) defined as before, corresponds a quasistatic evolution.

Remark 4.3. The solution is then unique whenever it is purely elastic or when m = n = 1;
elsewhere, we have always infinitely many solutions. For other examples of non-uniqueness
of the solutions, see [11], or [12]. Moreover, as we already knew, lipschitzianity in the time
variable of the boundary displacement (in this case, this is the only time-dependent datum,
as both the force and the safe-load solution only depend on the space variable) ensures
lipschitzianity in time of the quasistatic evolutions, but Theorem 4.2 is also an example
showing that this is the best dependence to be a priori assumed on the solutions; in fact,
whatever the regularity of the boundary displacement is, the functions r, s of the previous
theorem are in general not better than lipschitzian, and so are obviously the explicit solutions
found in this particular case.

4.3. The nonautonomous case.

This last, very simple example is a case where a solution can be explicitly found but,
due to the time dipendence of the force, we cannot observe a concentration phenomenon,
even if the situation is somewhat similar to that considered in Theorem 4.2: the effect of
a time-dependent force is in fact, as it is intuitive, that the points where plasticity appears
“move” along the body, giving rise to a diffuse plastic deformation.

Example 4.4. Let Ω := (0, 3), consider a boundary displacement w(t, x) := tx and an
applied load of the form f(t, x) := −t . The stress constraint is K(x) := [−1, k(x)] where:

k(x) := 3 + (x− 1)2 (4.30)

and the initial condition is the null triple. We consider the quasistatic evolution problem in
the time interval [0, 5

2 ] : a correspondant safe-load solution is for example %(t, x) = tx− 2
3 .

We easily have σ(t, x) = tx + c(t) and at small times c(t) ≡ 0. Plastic deformation may
occur at time when the function tx meets the yield surface at at least one point, and this
is easily equivalent to say that, for fixed t, the function:

d(t, x) = 3 + (x− 1)2 − tx

has minimum value 0 in the space variable. The function d , for fixed t takes its minimum
value at the point x = t+2

2 : the smallest time when the minimum value is 0 is then, by a
direct computation, t = 2. At this time a plastic deformation appears at the point x = 2.
We claim that for t ∈ (2, 5

2 ] one has c(t) = 3 − t2

4 − t. We assume the claim: with this
assumption one has, by (4.5), that at every time t ∈ [2, 5

2 ] only at the point x = t+2
2 (which

is always in Ω) a new plastic deformation appears, so we have:

ṗ(t) = α(t)δ t+2
2

(4.31)
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for a function α to be determined. Taking a test function ϕ , by absolute continuity and by
the initial conditions one has:

〈p(t), ϕ〉 =
∫ t

2

d

ds
〈p(s), ϕ〉 ds

=
∫ t

2

α(s)ϕ(
t+ 2

2
) ds

=
∫ t+2

2

2

2α(2(x− 1))ϕ(x) dx

with an easy change of variables, so the claim implies that:

p(t) = 2α(2(x− 1))χ[2, t+2
2 ](x)L1, (4.32)

that is a diffuse measure. Finally as the boundary conditions imply:

p(t)([0, 3]) = −c(t) (4.33)

by deriving the formula:
∫ t+2

2

2

2α(2(x− 1)) dx =
t2

4
+ t− 3 (4.34)

one gets:

α(t) =
t

2
+ 1

hence

p(t) = 2xχ[2, t+2
2 ](x)L1

ṗ(t) = (
t

2
+ 1) δ t+2

2
. (4.35)

With this choice of p(t) the claim can now a posteriori be easily verified. By the uniqueness
of σ one can also infer that this is the only solution to the considered problem (the above
reasonings show that if we assume that σ is of the claimed form, ṗ(t) necessarily verifies
(4.35)): we thus have a diffuse plastic deformation as announced; at every fixed time, instead,
the w∗ - derivative of the measure p(t) is concentrated.

Acknowledgments. The author wishes to thank prof G. Dal Maso for suggesting the
problem and for useful advice.

References

[1] Attouch H., Buttazzo G., Michaille G. Variational analysis in Sobolev e BV spaces. MPS-SIAM series
on optimization, 2006.

[2] Ambrosio L., Fusco N., Pallara D..: Functions of bounded variation and free discontinuity problems.
Oxford University Press, Oxford, 2000

[3] Anzellotti G.: On the extremal stress and displacement in Hencky plasticity. Duke Math. J. 51 (1984),
133-147.

[4] Castaing C., Valadier M.: Convex Analysis and measurable multifunctions. Springer-verlag, Berlin, 1977
[5] Dal Maso G., De Simone A., Mora M.G.: Quasistatic evolutions problems for linearly elastic-plastic

perfect materials Arch. Rational Mech. Anal. 180 (2006), 237-291.
[6] Goffman C., Serrin J.: Sublinear functions of measures and variational integrals. Duke Math. J. 31

(1964), 159-178.
[7] Michael, E.: Continuous selections I, Ann. of Math. 63 (1956), 361-382.
[8] Kohn R.V., Temam R.: Dual spaces of stresses and strains, with applications to Hencky plasticity. Appl.

Math. Optim. 10 (1983), 1-35.
[9] Lubliner J.: Plasticity theory. Macmillan Publishing Company, New York, 1990.

[10] Rudin W.: Real and Complex Analysis. McGraw-Hill, New York, 1966.



QUASISTATIC EVOLUTION PROBLEMS FOR NONHOMOGENEOUS ELASTOPLASTIC MATERIALS27
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