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Abstract. We prove boundedness of minimizers of energy-functionals, for instance of the anisotropic
type (1.1) below, under sharp assumptions on the exponents pi in terms of p∗: the Sobolev conjugate

exponent of p; i.e., p∗ = np
n−p , 1

p
= 1

n

Pn
i=1

1
pi

. As a consequence, by mean of regularity results due

to Lieberman [21], we obtain the local Lipschitz-continuity of minimizers under sharp assumptions
on the exponents of anisotropic growth.

1. Introduction

Integrals of the calculus of variations of the form

F(u) =
∫

Ω

n∑
i=1

|uxi(x)|pi(x) dx (1.1)

for some bounded measurable functions pi (x) may have not smooth, even unbounded, minimizers.
This happens also in the case of constant exponents pi, i = 1, . . . , n, if they are spread out; i.e.,
if the ratio max{pi}/min{pi} is not close enough to 1 in dependence on n. In fact integrals as in
(1.1), with constant exponents pi, may have unbounded minimizers ([18], [22], [23], see also [19])
for instance when n > 3 and

p1 = . . . = pn−1 = 2, pn = q >
2 (n− 1)
n− 3

. (1.2)

However a large literature already exists on regularity of solutions under suitable assumptions on
the exponents when these exponents are not spread out; see the end of this section for details.

Similar regularity questions can be posed for other integral-functionals, for instance of the form∫
Ω
{|Du|p log(1 + |Du|) + |uxn |q} dx (1.3)

for some exponents p, q (1 ≤ p < q), or∫
Ω
{[g(|Du|)]p + [g(|uxn |)]q} dx , (1.4)

where g = g(t) is a convex function satisfying the so-called ∆2-condition, namely there exists µ > 1
such that g(λt) ≤ λµg(t) for every λ > 1 and for every t sufficiently large (see Section 2). An
example of such a function, with a, b−growth, is

g(t) = t[a+b+(b−a) sin log log(e+t)]/2.

The regularity results known in the literature seem not applicable to the integrals (1.3), (1.4)
under sharp assumptions on the exponent p and q, as stated below.
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Recently Lieberman [21] proved that integrals of the calculus of variations as in (1.1) may have
Lipschitz continuous local minimizers u, independently of any condition on the {pi}, if we assume
a priori that u itself is bounded. This fact motivates the research proposed in this article.

To this aim and for the sake of exposition we deal again with integrals as in (1.1) and we consider
exponents pi, i = 1, . . . , n, and q greater than or equal to 1, such that{

pi ≤ pi (x) , a.e. x ∈ Br
q ≥ pi (x) , a.e. x ∈ Br, 1 ≤ i ≤ n, (1.5)

where Br is a ball of radius r > 0 contained in Ω. Then let p be the harmonic average of the {pi};
i.e.,

1
p

:=
1
n

n∑
i=1

1
pi

and let p∗ be the Sobolev conjugate exponent of p; i.e., p∗ = np
n−p if p < n, while p∗ is any fixed real

number greater than p, if p ≥ n. The following regularity result holds.

Theorem 1.1. Let u be a local minimizer of (1.1) and let q < p∗. Then u is locally bounded in Ω
and the following estimate holds

‖u− ur‖L∞(Br/(2
√
n)(x0)) ≤ c

{
1 +

∫
Br(x0)

n∑
i=1

|uxi(x)|pi(x) dx

} 1+θ
p

,

for some constant c > 0, where ur = 1
|Br(x0)|

∫
Br(x0) u dx, p = min

1≤i≤n
{pi} and θ = p∗(q−p)

p(p∗−q) .

Observe that if p1 = . . . = pn−1 = 2 and pn = q ≥ 2 then the assumption q < p∗ gives
q < 2 (n− 1) / (n− 3); this inequality is exactly the opposite of condition (1.2), apart from the
equality which is not achieved, since the borderline case q = p∗ is not included in Theorem 1.1.
Thus, our regularity result is essentially sharp.

As a consequence of the previous theorem and of the quoted result by Lieberman [21] we get the
following gradient estimate under a sharp assumption on the exponents of the anisotropic growth.

Corollary 1.2. Let u be a local minimizer of the integral F in (1.1) with exponents pi(x), for
i = 1, . . . , n, locally Lipschitz continuous in Ω. Let p(x) be the harmonic average of the {pi(x)}
and let p∗(x) be the Sobolev conjugate exponent of p(x). If p∗(x0) > pi(x0) for some x0 ∈ Ω and
for every i = 1, . . . , n, then u is Lipschitz continuous in a neighborhood of x0.

We emphasize that in fact in this paper we consider integrals more general than (1.1), (1.3) and
(1.4). Precisely, we are able to consider general integrals with non-homogeneous densities of the
form ∫

Ω
f(x, |ux1 |, . . . , |uxn |) dx

with f satisfying some non-standard pi-q growth conditions; precise assumptions and statements
are in Section 2. We observe explicitly that, in the case of the functional in (1.4), the assumptions
involve the exponents p and q, but they are independent of the function g.

The mathematical literature on the regularity in this context is very rich; energy functionals with
anisotropic, non-standard or general growth have been studied by many authors and in different
settings of applicability. Among the many related papers we quote, in a not exhaustive way, Mar-
cellini [24], [25], Lieberman [20], Bhattacharya-Leonetti [5], Moscariello-Nania [27], Mascolo-Papi
[26], Fan-Zhao [13], [14], Dall’Aglio-Mascolo-Papi [12] and, in the vectorial setting, Acerbi-Mingione
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[2], Coscia-Mingione [11], Cavaliere-D’Ottavio-Leonetti-Longobardi [8], Canale-D’Ottavio-Leonetti-
Longobardi [7]. Specific regularity results addressed to the study of functionals with anisotropic
growth under the sharp condition on the exponents p̄∗ > q, have been first obtained by Boccardo-
Marcellini-Sbordone [6], see also a generalization due to Stroffolini [29]. Fusco-Sbordone [16] con-
sider the borderline case p∗ = q and, later, in [17] they study more general anisotropic integrands
f = f(x, u,Du) satisfying a growth of the form

n∑
i=1

|uxi(x)|pi ≤ f(x, u,Du) ≤

(
c+

n∑
i=1

|uxi(x)|pi
)
,

obtaining a boundedness result by mean of De Giorgi’s methods. More general functionals are
considered in Cianchi [10], in which the study of the boundedness of minimizers is carried out using
the optimal Sobolev conjugate of convex functions.

Because of the pi − q growth, we use a different approach based upon a variant of the classical
Moser’s iteration method, which has its starting in an inequality of Euler’s type, see Theorem 5.1.
Moreover, for the anisotropic behavior of the integrand, we base our estimates on an embedding
result for anisotropic Sobolev spaces due to Troisi [31] (see also Acerbi-Fusco [1] and Fragalà-
Gazzola-Kawhol [15]).

Our paper is organized as follows. In the next section we present the precise statement of our
regularity theorem and few more examples of applicability. In Section 3 preliminary properties of
convex functions are proved. Section 4 is devoted to higher integrability results for minimizers,
Section 5 to the Euler’s inequality and Section 6 to the proof of Theorem 2.1.

2. Assumptions and statement of the main results

Let us define the integral functional

F(u) :=
∫

Ω
f(x,Du(x)) dx, (2.1)

where Ω is an open bounded subset of Rn, n ≥ 2, and u ∈ W 1,1(Ω,R). For the sake of simplicity,
and with a slight abuse of notation, we assume

f = f(x, |ux1 |, . . . , |uxn |).

A more general case is considered in the last section. Denoting Rn
+ the set [0,+∞)n, we assume

(H1) f : Ω×Rn
+ → R, f(x, ξ) = f(x, ξ1, ..., ξn), is a Carathéodory function, convex and of class

C1 with respect to ξ and increasing with respect to each ξi,

(H2) there exist µ ≥ 1 and t0 ≥ 0, such that

f(x, λξ) ≤ λµf(x, ξ) (2.2)

for every λ > 1 and for a.e. x and every ξ, |ξ| ≥ t0.

A growth condition on f is assumed.
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(H3) there exist a > 0 and 1 ≤ pi ≤ q, 1 ≤ i ≤ n, such that
n∑
i=1

[g(ξi)]pi ≤ f(x, ξ) ≤ a

{
1 +

n∑
i=1

[g(ξi)]q
}

(2.3)

for a.e. x and every ξ ∈ Rn
+. Here g : R+ → R+ is of class C1, convex, increasing,

non-constant, g(0) = 0 and

g(λt) ≤ λµg(t) for every λ > 1 and every t ≥ t0. (2.4)

Without loss of generality, we assume t0 large so that g(t) > 0 and f(x, ξ) > 0 for all t > t0 and all
ξ with |ξ| ≥ t0.

We denote W 1,F (Ω) the space W 1,F (Ω) = {u ∈W 1,1(Ω) : F(u) < +∞} and we write W 1,F
0 (Ω)

in place of W 1,1
0 (Ω)∩W 1,F (Ω). A function u ∈W 1,1(Ω) is a local minimizer of (2.1) if u ∈W 1,F (Ω)

and F(u) ≤ F(u+ ϕ), for all ϕ ∈W 1,F (Ω) with suppϕ b Ω.

Our aim is to prove the local boundedness of local minimizers of (2.1). To do this, we need
a restriction on the exponents {pi} and q. We will use the following notations: we write p in
place of min{pi} and, as in the introduction, we denote by p the harmonic average of {pi}, i.e.,
1
p := 1

n

∑n
i=1

1
pi

and by p∗ the Sobolev exponent of p

p∗ :=
{ np

n−p if p < n,

any µ > p if p ≥ n.
(2.5)

Theorem 2.1. Assume (H1), (H2) and (H3), and let q < p∗. Then a local minimizer u of (2.1)
is locally bounded. Moreover, for every Br(x0) b Ω the following estimates hold true:

(1) there exists c > 0, depending on the data, such that

‖g(|u|)‖L∞(Br/2(x0)) ≤ c

{
1 +

∫
Br(x0)

[g(|u|)]q dx

} 1+θ
q

, (2.6)

(2) there exists c > 0, depending on the data, such that

‖g(|u− ur|)‖L∞(Br/(2
√
n)(x0)) ≤ c

{
1 +

∫
Br(x0)

f(x, |ux1 |, . . . , |uxn |) dx

} 1+θ
p

, (2.7)

where θ = p∗(q−p)
p(p∗−q) and ur := 1

|Br(x0)|
∫
Br(x0) u dx.

For the sake of simplicity we wrote the growth condition (2.3) in place of

b

{
n∑
i=1

[g(ξi)]pi
}
− c ≤ f(x, ξ) ≤ a

{
1 +

n∑
i=1

[g(ξi)]q
}
,

with b > 0, c ∈ R. This is not a loss of generality since u is a local minimizer of (2.1) if and only if
u is a local minimizer of the functional having the energy density f replaced by a1f+a2, with some
constants a1 > 0 and a2 ∈ R. Taking this into account, it is not difficult to check that Theorem
2.1 applies to the functionals (1.1), (1.3) and (1.4) in Section 1. For instance, as far as (1.1) is
concerned, we can take pi and q as in (1.5), µ = q, g(t) = t, a = n2q−1, b = 21−q, c = n.

Moreover Theorem 2.1 applies also to functionals F with different energy densities. We give
below some more examples.
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We can consider constants γ > 0 and α ≥ 1 such that αγ ≥ 1, a measurable function β : Ω →
[β1, β2], with β1 ≥ 1 and β1γ ≥ 1, and for instance the integrand

f(x, ξ) = (|ξ|α + |ξn|β(x))γ . (2.8)

In this case p = pi := γα, if 1 ≤ i ≤ n− 1, pn := γ ·max{α, β1} and q := γ ·max{α, β2}.
An other example can be exhibit through measurable functions ri : Ω→ [pi, q] and

f(x, ξ) = (
n∑
i=1

|ξi|ri(x))γ , (2.9)

with p := min{pi} ≥ 1 satisfying 1 ≤ γp ≤ γq < (γp)∗. Here, γp is the harmonic average of
{γp1, . . . , γpn}.

The previous example can be easily generalized to include integrands of the type

f(x, ξ) = F

(
n∑
i=1

[h(|ξi|)]ri(x)

)
; (2.10)

or, more in general,

f(x, ξ) = F

(
n∑
i=1

fi (x, |ξi|)

)
. (2.11)

In particular in (2.11) we consider a convex function f(x, ξ) of class C1 with respect to ξ, functions
fi (x, |ξi|) increasing with respect to each |ξi| and satisfying (2.2), F increasing and satisfying (2.4).
Finally the following growth condition holds

[g(t)]pi ≤ F (fi (x, t)) ≤ a {1 + [g(t)]q} ,
with g as in (H3).

3. Preliminary results

We begin clarifying the role played by (2.4).

Lemma 3.1. Consider h : R+ → R+ of class C1, convex and increasing, and fix t0 > 0 and µ ≥ 1.
The following two properties hold:

(1) Suppose that for every λ > 1 and t ≥ t0 we have

h(λt) ≤ λµh(t) (3.1)

for all λ > 1 and t ≥ t0. Then

h(λt) ≤ λµ(h(t) + h(t0)) and h′(t)t ≤ µ(h(t) + h(t0)) for all t ≥ 0. (3.2)

(2) Suppose that h(t) > 0 for every t > t0 and

h′(t)t ≤ µh(t) for all t ≥ t0. (3.3)

Then
h(λt) ≤ λµ(h(t) + h(t0)) for all t ≥ 0. (3.4)

Moreover, if (3.1) or (3.3) hold, then for every (t1, . . . , tk) ∈ Rk
+ we have:

k−1
k∑
i=1

h(ti) ≤ h

(
k∑
i=1

ti

)
≤ kµ

{
h(t0) +

k∑
i=1

h(ti)

}
. (3.5)

The lemma deals with well known properties of the convex functions (see [28]), however for the
sake of completeness we provide a proof.
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Proof. Let us prove (1). The first inequality in (3.2) is trivial, since, by the monotonicity of h, we
have h(λt) ≤ h(λt0) ≤ λµh(t0) for every t < t0.

Let us prove the other inequality in (3.2). By assumption, for every σ > 0 and t > t0 we have

h(t+ σ)− h(t)
σ

=
h(t(1 + σ

t ))− h(t)
σ

≤
{(

1 +
σ

t

)µ
− 1
} h(t)

σ

and for σ → 0 we get h′(t)t ≤ µh(t) for all t > t0 and, by continuity, for t ≥ t0.
Since h′ is increasing, if t ≤ t0 we have h′(t)t ≤ h′(t0)t0 ≤ µh(t0), which implies the last inequality
in (3.2).

Now, let us prove (2). By (3.3), for every t > t0 and λ > 1 we obtain∫ λt

t

h′(s)
h(s)

ds ≤ µ
∫ λt

t

1
s
ds ,

so that h(λt) ≤ λµh(t). From that, (3.4) follows.

The first inequality in (3.5) is implied by the monotonicity of h, since h(tj) ≤ h(
∑k

i=1 ti) for all j.
To prove the second inequality, use the monotonicity of h again and (3.4), obtaining

h

(
k∑
i=1

ti

)
≤ h

(
k max

1≤i≤k
{ti}

)
≤ kµ

{
h

(
max
1≤i≤k

{ti}
)

+ h(t0)
}

and the conclusion follows. �

Now, we consider the case of functions depending on more than one variable.

Lemma 3.2. Let f : Ω×Rn
+ → R+ satisfy (H1), (H2) and (H3). Then there exists c ≥ 0 such that

(i) f(x, λξ) ≤ cλnµ {1 + f(x, ξ)} for every ξ ∈ Rn
+ and every λ > 1,

(ii) f(x, ξ + ζ) ≤ c {1 + f(x, ξ) + f(x, ζ)} for every ξ, ζ ∈ Rn
+,

(iii) ∂f
∂ξi

(x, ξ)ξi ≤ c {1 + f(x, ξ)} for every ξ ∈ Rn
+.

Proof. Fix i = 1, ..., n. By (H1) for a.e. x ∈ Ω and for every ξ ∈ Rn
+, with ξi ≥ t0, we have

f(x, ξ1, . . . , ξi−1, λξi, ξi+1, . . . , ξn) ≤ f(x, λξ) ≤ λµf(x, ξ) for every λ > 1. (3.6)

Therefore, by Lemma 3.1 (1), then, for every ξ ∈ Rn
+,

f(x, ξ1, . . . , ξi−1, λξi, ξi+1, . . . , ξn) ≤
≤ λµ {f(x, ξ) + f(x, ξ1, . . . , ξi−1, t0, ξi+1, . . . , ξn)} . (3.7)

Now, fix ξ = (ξ1, . . . , ξn) ∈ Rn
+ and k ∈ N, 1 ≤ k ≤ n − 1. For each set of indexes {i1, . . . , ik},

with 1 ≤ i1 < ... < ik ≤ n, we define two vectors a(i1, . . . , ik) and b(i1, . . . , ik) in Rn with j-th
component

a(i1, . . . , ik)j =
{
ξj if j ∈ {i1, . . . , ik}
0 if j 6∈ {i1, . . . , ik}

and, respectively,

b(i1, . . . , ik)j =
{

0 if j ∈ {i1, . . . , ik}
2t0 if j 6∈ {i1, . . . , ik}.
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An iterated use of (3.7) implies that for every λ > 1 and every ξ ∈ Rn
+

f(x, λξ1, . . . , λξn)

≤(2λ)nµ
{
f

(
x,
ξ1

2
, . . . ,

ξn
2

)
+ f (x, t0, . . . , t0)

}
+ (2λ)nµ

n−1∑
k=1

∑
1≤i1<...<ik≤n

f

(
x,

1
2
a(i1, . . . , ik) +

1
2
b(i1, . . . , ik)

)
.

(3.8)

Notice that by the monotonicity of f with respect to each variable ξj and the right inequality in
(2.3)

f

(
x,
ξ1

2
, . . . ,

ξn
2

)
+ f (x, t0, . . . , t0) ≤ f(x, ξ) + f(x, 2t0, . . . , 2t0)

≤ c{1 + f(x, ξ)}.
(3.9)

To estimate the last sum in (3.8) we use the convexity of f and the monotonicity properties of f

f

(
x,

1
2
a(i1, . . . , ik) +

1
2
b(i1, . . . , ik)

)
≤1

2
f (x, a(i1, . . . , ik)) +

1
2
f (x, b(i1, . . . , ik)) ≤

1
2
f(x, ξ) +

1
2
f (x, 2t0, . . . , 2t0)

(3.10)

and apply (3.9). Thus, (i) is proved.

Claim (ii) is a trivial consequence of (i): fixed ξ, ζ ∈ Rn
+, by (2.2)

f(x, ξ + ζ) = f

(
x, 2

ξ + ζ

2

)
≤ c · 2nµ

{
1 + f

(
x,
ξ + ζ

2

)}
and the convexity of f gives the conclusion.

It remains to prove (iii). Fix ξ = (ξ1, . . . , ξn) ∈ Rn
+. By (3.6) and Lemma 3.1 (1)

∂f

∂ξi
(x, ξ)ξi ≤ µ {f(x, ξ) + f(x, ξ1, . . . , ξi−1, t0, ξi+1, ..., ξn)} .

The last term can be estimated using the monotonicity of f with respect to each variable ξj and
(ii). In fact,

f(x, ξ1, . . . , ξi−1, t0, ξi+1, ..., ξn) ≤ f(x, ξ1 + t0, . . . , ξi + t0, . . . , ξn + t0)

≤ c {1 + f(x, ξ) + f(x, t0, . . . , t0)} .

The last inequality in (2.3) implies (iii). �

4. The space W 1,F (Ω) and some higher integrability results

Due to the assumptions on f in Section 2 the space W 1,F (Ω) is a vector space.

Lemma 4.1. Assume (H1), (H2) and (H3). Then W 1,F (Ω) is a vector space.

Proof. By the right inequality of (2.3), the function u ≡ 0 is in W 1,F (Ω). Let us assume that u
and v are both in W 1,F (Ω) and γ ∈ R. By Lemma 3.2 (ii) we immediately have that u + v is in
W 1,F (Ω).
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Let us prove that γu ∈ W 1,F (Ω). If |γ| ≤ 1 the conclusion follows by the monotonicity of f , see
(H1). If, instead, |γ| > 1 then the conclusion follows by Lemma 3.2 (i), which implies that there
exists c independent of x and u, such that

f(x, |γ||ux1 |, . . . , |γ||uxn |) ≤ |γ|nµc {1 + f(x, |ux1 |, . . . , |uxn |)} .
�

To prove our result we use the following suitable anisotropic Sobolev space

W 1,(p1,...,pn)(Ω) :=
{
u ∈W 1,1(Ω) : uxi ∈ Lpi(Ω), for all i = 1, . . . , n

}
,

endowed with the norm

‖u‖W 1,(p1,...,pn)(Ω) := ‖u‖L1(Ω) +
n∑
i=1

‖uxi‖Lpi (Ω).

We write W 1,(p1,...,pn)
0 (Ω) in place of W 1,1

0 (Ω) ∩W 1,(p1,...,pn)(Ω). These spaces are studied in [31],
see also [1]. We remind an embedding theorem for this class of spaces (see [31]).

Theorem 4.2. Let Ω ⊂ Rn be a bounded open set and consider u ∈W 1,(p1,...,pn)
0 (Ω), pi ≥ 1 for all

i = 1, . . . , n. Let max{pi} < p∗, with p∗ as in (2.5). Then u ∈ Lp∗(Ω). Moreover, there exists c
depending on n, p1, . . . , pn if p < n, and also on Ω if p ≥ n, such that

‖u‖n
Lp∗ (Ω)

≤ c
n∏
i=1

‖uxi‖Lpi (Ω).

The following embedding result, which holds for the cubes of Rn, is proved in [1].

Theorem 4.3. Let Q ⊂ Rn be a cube with edges parallel to the coordinate axes and consider
u ∈ W 1,(p1,...,pn)(Q), pi ≥ 1 for all i = 1, . . . , n. Let max{pi} < p∗, with p∗ as in (2.5). Then
u ∈ Lp∗(Q). Moreover, there exists c depending on n, p1, . . . , pn if p < n, and also on Q if p ≥ n,
such that

‖u‖Lp∗ (Q) ≤ c

{
‖u‖L1(Q) +

n∑
i=1

‖uxi‖Lpi (Q)

}
.

A variant of the above lemma can be proved using Theorem 4.3 and a suitable Poincaré inequality
proved in [3].

Proposition 4.4. Let u ∈ W 1,1(Ω) and let g : R+ → R+ be of class C1, convex, increasing, non-
constant, g(0) = 0, g(λt) ≤ λµg(t), for some µ ≥ 1 and every λ > 1 and every t ≥ t0. Suppose that
g(|uxi |) ∈ L

pi
loc(Ω) for every i = 1, . . . , n, with pi ≥ 1. Let max{pi} < p∗, with p∗ as in (2.5), then

g(|u|) ∈ Lp
∗

loc(Ω). Moreover, if Q b Ω is a cube with edges parallel to the coordinate axes, then

‖g(|u|)‖Lp∗ (Q) ≤ c

{
1 + ‖g(|u|)‖L1(Q) +

n∑
i=1

‖g(|uxi |)‖Lpi (Q)

}
. (4.1)

Proof. We split the proof into steps.

Step 1. We claim that g(|Du|) ∈ L1
loc(Ω). In fact, since |Du| ≤

∑n
i=1 |uxi |, then by (3.5)

g(|Du|) ≤ nµ
{
g(t0) +

n∑
i=1

g(|uxi |)

}
. (4.2)

Step 2. Let us prove that g(|u|) ∈ L1
loc(Ω).
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For every convex bounded open set Σ b Ω, by Lemma 3.2 (ii) we get

g(|u|) ≤ g(|u− uΣ|+ |uΣ|) ≤ c {1 + g(|u− uΣ|) + g(|uΣ|)}

where uΣ = |Σ|−1
∫

Σ u dx and c is a positive constant independent of u and Σ. By Lemma 3.1 (1)∫
Σ
g (|u(x)− uΣ|) dx ≤ max {[diam(Σ)]µ, 1}

∫
Σ

{
g

(
|u(x)− uΣ|

diam(Σ)

)
+ g(t0)

}
dx (4.3)

and a Poincaré inequality proved in [3] implies∫
Σ
g

(
|u(x)− uΣ|

diam(Σ)

)
dx ≤

{
ωn[diam(Σ)]n

|Σ|

}1− 1
n
∫

Σ
g(|Du(x)|) dx, (4.4)

where ωn is the volume of the unit ball in Rn. The conclusion follows by Step 1.

Step 3. Let ak be an increasing sequence, ak → +∞ as k goes to +∞, such that the sets
{|u| = ak} have zero measure. Define the increasing sequence of functions gk defined as gk(t) = g(t)
if t < ak and gk(t) = g(ak) if t ≥ ak. We claim that gk(|u|) ∈W

1,(p1,...,pn)
loc (Ω).

In fact, let Σ be an open subset, Σ b Ω. Since gk is bounded then gk(|u|) is bounded, too. It
remains to prove that [gk(|u|)]xi ∈ Lpi(Σ). We notice that the following inequality holds: given two
non-decreasing and non-negative functions h1 and h2, it holds true that

h1(t1)h2(t2) ≤ h1(t1)h2(t1) + h1(t2)h2(t2) for every t1, t2. (4.5)

Hence, we have that

‖[gk(|u|)]xi‖Lpi (Σ) ≤

{∫
Σ∩{|u|≤ak}

[g′(|u|)]pi |u|pi dx

} 1
pi

+

{∫
Σ∩{|u|≤ak}

[g′(|uxi |)]pi |uxi |pi dx

} 1
pi

and from Lemma 3.1 (1) we get

‖[gk(|u|)]xi‖Lpi (Σ) ≤ c
{

1 + ‖gk(|u|)‖Lpi (Σ) + ‖g(|uxi |)‖Lpi (Σ)

}
< +∞. (4.6)

Thus, the claim is proved.

Step 4. Now, we conclude. Let Q b Ω be a cube with edges parallel to the coordinate axes.
Since gk(|u|) ∈ W 1,(p1,...,pn)(Q) we can apply Theorem 4.3, so that, using also (4.6), there exists
c1 > 0 such that

‖gk(|u|)‖Lp∗ (Q) ≤ c1

{
1 + ‖gk(|u|)‖L1(Q)

}
+ c1

{
n∑
i=1

‖gk(|u|)‖Lpi (Q) +
n∑
i=1

‖g(|uxi |)‖Lpi (Q)

}
.

(4.7)

Notice that if pi > 1 and being max{pi} < p∗, then there exists αi ∈ (0, 1) such that p−1
i =

(1− αi) + αi/p
∗. Hence for every ε > 0 and for every i there exists cε,i > 0 such that

‖gk(|u|)‖Lpi (Q) ≤ ‖gk(|u|)‖αiLp∗ (Q)
‖gk(|u|)‖1−αiL1(Q)

≤ ε‖gk(|u|)‖Lp∗ (Q) + cε,i‖gk(|u|)‖L1(Q).
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Of course, if pi = 1 the above inequality is trivial. Choosing ε = (2nc1)−1 the above inequalities
and (4.7) imply that a constant c2 > 0 exists such that

‖gk(|u|)‖Lp∗ (Q) ≤ c2‖gk(|u|)‖L1(Q) + 2c1

{
1 +

n∑
i=1

‖g(|uxi |)‖Lpi (Q)

}
.

Using the monotone convergence theorem, inequality (4.1) follows. �

A consequence of the above result is the following corollary.

Corollary 4.5. Assume (H1), (H2) and (H3), with q < p∗. If u ∈W 1,F (Ω), then g(|u|) ∈ Lp
∗

loc(Ω).

5. The Euler’s inequality

Since (H1) does not imply the C1-regularity of ξ 7→ f(|ξ1|, . . . , |ξn|), ξ ∈ Rn, in place of the
Euler’s equation, we prove an inequality.

Theorem 5.1. Assume that (H1), (H2) and (H3) hold true and let u ∈ W 1,F (Ω) be a local
minimizer of (2.1). Then

n∑
i=1

∫
Ω∩{|uxi |>0}

∂f

∂ξi
(x, |ux1 |, ..., |uxn |) sgn (uxi)ϕxi dx

≤
n∑
i=1

∫
Ω∩{|uxi |=0}

∂f

∂ξi
(x, |ux1 |, ..., |uxn |) |ϕxi | dx,

(5.1)

for all ϕ ∈W 1,F (Ω), suppϕ b Ω.

Proof. Let ϕ ∈ W 1,F (Ω) be a function with compact support and λ ∈ (−1, 0). For every i ∈
{1, ..., n} define Hi : Ω× (−1, 0)× R+ → R+,

Hi(x, λ, s) := f(x, |ux1(x) + λϕx1(x)|, ...
..., |uxi−1(x) + λϕxi−1(x)|, s, |uxi+1(x)|, ..., |uxn(x)|).

Notice that if i ≤ n− 1 then

Hi(x, λ, |uxi(x) + λϕxi(x)|) = Hi+1(x, λ, |uxi+1(x)|).

By the minimality of u and the convexity of f with respect to each variable ξj , we get

0 ≥ 1
λ
{F(u+ λϕ)−F(u)}

=
1
λ

∫
Ω
{Hn(x, λ, |uxn + λϕxn |)−H1(x, λ, |ux1 |)} dx

=
1
λ

n∑
i=1

∫
Ω
{Hi(x, λ, |uxi + λϕxi |)−Hi(x, λ, |uxi |)} dx

≥
n∑
i=1

∫
Ω

∂Hi

∂s
(x, λ, |uxi + λϕxi |)

|uxi + λϕxi | − |uxi |
λ

dx.

(5.2)

Since ∂Hi
∂s = ∂f

∂ξi
, by Lemma 3.2 (iii) we obtain
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∣∣∣∣∂Hi

∂s
(x, λ, |uxi(x) + λϕxi(x)|) |uxi(x) + λϕxi(x)| − |uxi(x)|

λ

∣∣∣∣
≤ ∂Hi

∂s
(x, λ, |uxi(x)|+ |ϕxi(x)|)(|uxi(x)|+ |ϕxi(x)|)

≤ c{1 + f(x, |ux1(x) + λϕx1(x)|, ...
..., |uxi−1(x) + λϕxi−1(x)|, |uxi(x)|+ |ϕxi(x)|, |uxi+1(x)|, ..., |uxn(x)|)}

and, using the monotonicity property in (H1) and Lemma 3.2 (ii),

f(x, |ux1(x) + λϕx1(x)|, ...
..., |uxi−1(x) + λϕxi−1(x)|, |uxi(x)|+ |ϕxi(x)|, |uxi+1(x)|, ..., |uxn(x)|)
≤ f (x, |ux1(x)|+ |ϕx1(x)|, ..., |uxn(x)|+ |ϕxn(x)|)
≤ c {1 + f(x, |ux1(x)|, ..., |uxn(x)|) + f(x, |ϕx1(x)|, ..., |ϕxn(x)|)} .

Now, notice that the right hand side is in L1(Ω), being u, ϕ ∈ W 1,F (Ω). Moreover, by the
regularity C1 of f(x, ·),

lim
λ→0−

∂Hi

∂s
(x, λ, |uxi(x) + λϕxi(x)|) =

∂f

∂ξi
(x, |ux1(x)|, ..., |uxn(x)|) .

Thus, by the dominated convergence theorem and (5.2) we get
n∑
i=1

∫
Ω

∂f

∂ξi
(x, |ux1(x)|, ..., |uxn(x)|) lim

λ→0−

|uxi(x) + λϕxi(x)| − |uxi(x)|
λ

dx ≤ 0.

The conclusion follows. �

6. Proof of the boundedness of local minimizers

Fixed i ∈ {1, . . . , n} and β ≥ 1, let Φ : R→ R be the odd function defined as follows

Φ(i,β)(t) :=
∫ t

0
[g(|s|)]pi(β−1) ds. (6.1)

In a first step, we deal with an approximating sequence of odd functions Φ(i,β)
k . Fixed k ∈ N, the

function Φ(i,β)
k : R→ R is defined in R+ as

Φ(i,β)
k (t) :=

{
Φ(i,β)(t) if 0 ≤ t ≤ k
t (Φ(i,β))′(k) + Φ(i,β)(k)− k (Φ(i,β))′(k) if t > k.

(6.2)

From now on, we do not write explicitly the dependence on i and β. Notice that the restriction
of Φk to R+ is C1, increasing and convex. Moreover, its first order derivative is bounded and

|Φk(t)| ≤ Φ′k(t)|t| for all t ∈ R. (6.3)

In the following lemma we define ϕk, an admissible test function for the Euler’s inequality (5.1).

Lemma 6.1. Assume (H1), (H2) and (H3), with q < p∗. Let u ∈W 1,F (Ω), fix a ball BR(x0) b Ω
and let η ∈ C∞c (BR(x0)) be a cut-off function, satisfying the following assumptions

0 ≤ η ≤ 1, η ≡ 1 in Bρ(x0) for some ρ < R, |Dη| ≤ 2
R− ρ

. (6.4)



12 G. CUPINI – P. MARCELLINI – E. MASCOLO

Fixed k ∈ N, define

ϕk(x) := Φk(u(x))[η(x)]α for every x ∈ BR(x0), (6.5)

with α ≥ 1. Then ϕk is in W 1,F
0 (BR(x0)).

Proof. By Lemma 4.1, Lemma 3.2 and the definition of Φk we get the thesis if we prove that

A :=
∫
BR∩{|u|<k}

f (x, |[Φ(u)]x1 |, . . . , |[Φ(u)]xn |) dx < +∞

B :=
∫
BR∩{|u|<k}

f (x, |Φ(u)| |ηx1 |, . . . , |Φ(u)| |ηxn |) dx < +∞

C :=
∫
BR∩{|u|≥k}

f
(
x, [g(k)]pi(β−1)|ux1 |, . . . , [g(k)]pi(β−1)|uxn |

)
dx < +∞

D :=
∫
BR∩{|u|≥k}

f (x, |Φk(u)| |ηx1 |, . . . , |Φk(u)| |ηxn |) dx < +∞.

Let us deal with A.
By the monotonicity of g, |[Φ(u)(x)]xj | ≤ [g(k)]pi(β−1)|uxj (x)|, for a.e. x ∈ {|u| < k}. Then, by
(H1) and Lemma 3.2 (ii) we get

A ≤ c
{

max{[g(k)]pi(β−1), 1}
}nµ
·

{
1 +

∫
BR∩{|u|<k}

f (x, |ux1 |, . . . , |uxn |) dx

}
,

which is finite being u ∈W 1,F (BR). The boundedness of C follows similarly.
As far as B is concerned, from (H1), the assumptions on η and the monotonicity of g we obtain

B ≤
∫
BR∩{|u|<k}

f

(
x,

2α
R− ρ

k[g(k)]pi(β−1), . . . ,
2α

R− ρ
k[g(k)]pi(β−1)

)
dx,

which is finite because of the growth condition (2.3).
Let us prove the boundedness of D.

From (6.3) we obtain |Φk(u(x))| ≤ [g(k)]pi(β−1)|u(x)| for a.e. x in the integration domain. Thus,

|Φk(u(x))| · |ηxj (x)| ≤ 2[g(k)]pi(β−1)

R− ρ
|u(x)|.

Using the assumptions on f and the right inequality in (2.3) we get

D ≤ c

{
max

{
2[g(k)]pi(β−1)

R− ρ
, 1

}}nµ
·

{
1 +

∫
BR∩{|u|≥k}

[g(|u|)]q dx

}
. (6.6)

Since q < p∗, Corollary 4.5 implies that the last term in (6.6) is finite. �

The lemma below is a simple consequence of the Hölder inequality. We omit the proof.

Lemma 6.2. Let Ω be a bounded measurable set. Suppose that 1 ≤ p ≤ q, β ≥ 1 and v ∈ Lqβ(Ω).
Then ∫

Ω
|v|q+p(β−1) dx ≤

{∫
Ω

(|v|+ 1)q dx
}1− p

q

·
{∫

Ω
(|v|β + 1)q dx

} p
q

.

Now, we turn to the proof of our main result.

Proof of Theorem 2.1. Let u be a local minimizer of (2.1) and consider x0 ∈ Ω andR0 > 0, such that
BR0 := BR0(x0) b Ω. In particular, by Corollary 4.5 g(|u|) ∈ Lp∗(BR0). Fix also 0 < ρ < R ≤ R0.
We split the proof into steps.
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Step 1. Assume that g(|u|) ∈ Lqβ(BR) for some β ≥ 1. Fixed i ∈ {1, . . . , n} we prove that if η
is a cut-off function satisfying (6.4), then∫

BR

{
[g(|u|)](β−1)g′(|uxi |)|uxi |ηµ

}pi
dx

≤ c

(R− ρ)µ
{
‖g(|u|)‖Lq(BR0

) + 1
}q−p

·
{∫

BR

(
gβ(|u|) + 1

)q
dx

} pi
q

,

(6.7)

for some c depending on n, µ, p, q, a, g(t0) and R0, but independent of i, β, u, R and ρ.

We begin using Theorem 5.1 with the test function ϕ(i,β)
k := Φ(i,β)

k ηµ with Φ(i,β)
k as in (6.2). From

now on, we write ϕk and Φk in place of ϕ(i,β)
k and Φ(i,β)

k , respectively. We obtain

n∑
j=1

∫
BR∩{|uxj |>0}

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj |Φ′k(u)ηµ dx

≤ µ
n∑
j=1

∫
BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |Φk(u)|ηµ−1|ηxj | dx.

Thus, using (6.3),
n∑
j=1

∫
BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj |Φ′k(u)ηµ dx

≤ 2µ
R− ρ

n∑
j=1

∫
BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) Φ′k(u)|u|ηµ−1 dx.

(6.8)

We estimate from below the left hand side using the convexity of f(x, ·), obtaining
n∑
j=1

∫
BR

∂f

∂ξj
(x, |ux1 |, ..., |uxn |) |uxj | Φ′k(u) ηµ dx

≥
∫
BR

{f (x, |ux1 |, ..., |uxn |)− f (x, 0, ..., 0)}Φ′k(u) ηµ dx.

(6.9)

Now, let us estimate from above the right hand side in (6.8). For a.e. x ∈ Ω and every s ≥ 0
define

Hj(x, s) := f(x, |ux1(x)|, . . . , |uxj−1(x)|, s, |uxj+1(x)|, . . . , |uxn(x)|).

Let L > 0 to be chosen later. Since f is convex we have that ∂Hj
∂s (x, ·) is increasing, then by (4.5)

and Lemma 3.2 (iii), the following chain of inequalities holds true for a.e. x ∈ {η 6= 0}

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|
η(R− ρ)

≤ 1
L

∂Hj

∂s

(
x, |uxj |

)
|uxj |+

1
L

∂Hj

∂s

(
x,

2µL|u|
η(R− ρ)

)
2µL|u|
η(R− ρ)

≤ c1

L

{
1 + f (x, |ux1 |, . . . , |uxn |) +Hj

(
x,

2µL|u|
η(R− ρ)

)}
,

with c1 depending only on n, µ, q, a, g(t0).
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Now, denote with ej the vector (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0). Using Lemma 3.2 (ii) with

ξ := (|ux1 |, . . . , |uxj−1 |, 0︸︷︷︸
j

, |uxj+1 |, . . . , |uxn |), ζ :=
2µL|u|
η (R− ρ)

ej ,

and the monotonicity property in (H1), we have that there exists c2 such that

Hj

(
x,

2µL|u|
η(R− ρ)

)
≤ c2

{
1 + f(x, |ux1 |, . . . , |uxn |) + f

(
x,

2µL|u|
η(R− ρ)

ej

)}
.

Thus,
n∑
j=1

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|
η(R− ρ)

≤ c3

L

1 + f(x, |ux1 |, . . . , |uxn |) +
n∑
j=1

f

(
x,

2µL|u|
η(R− ρ)

ej

)
with c3 depending only on n, µ, q, a, g(t0). Choosing L > max{2c3, (2µ)−1R0}, which implies 2µL >
η (R− ρ), and using Lemma 3.1 (1), the above inequality implies

n∑
j=1

∂f

∂ξj
(x, |ux1 |, . . . , |uxn |)

2µ|u|
η (R− ρ)

≤ 1
2
f(x, |ux1 |, . . . , |uxn |) +

c4

ηµ(R− ρ)µ

1 +
n∑
j=1

f(x, |u| ej)


(6.10)

for some positive c4. Collecting (6.8), (6.9) and (6.10), we obtain∫
BR

f(x, |ux1 |, . . . , |uxn |)Φ′k(u) ηµ dx

≤ 2
∫
BR

f(x, 0, . . . , 0)Φ′k(u) dx

+
2c4

(R− ρ)µ

∫
BR

{1 +
n∑
j=1

f(x, |u| ej)}Φ′k(u) dx.

(6.11)

By (H3) and Lemma 3.1 (1) applied with h = gpi

f(x, |ux1 |, . . . , |uxn |) ≥
n∑
j=1

[g(|uxj |)]pj ≥ g(|uxi |)]pi

≥ 1
µq

(gpi)′(|uxi |)|uxi | − [g(t0) + 1]q.

(6.12)

Moreover, by (2.3)

1 + f(x, 0, . . . , 0) +
n∑
j=1

f(x, |u| ej) ≤ c5 {[g(|u|)]q + 1} . (6.13)
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Inequalities (6.11), (6.12) and (6.13) give∫
BR

(gpi)′(|uxi |)|uxi | Φ′k(u) ηµ dx ≤ c6

(R− ρ)µ

∫
BR

{[g(|u|)]q + 1}Φ′k(u) dx.

We recall that Φk = Φ(i,β)
k and we explicitly notice that c6 is independent of β, ρ and R. Using the

monotone convergence theorem we let k go to +∞ and by the definition of Φ we obtain∫
BR

[g(|u|)]pi(β−1)[g(|uxi |)]pi−1g′(|uxi |)|uxi | ηµ dx

≤ c6

(R− ρ)µ

∫
BR

{
[g(|u|)]pi(β−1) + [g(|u|)]q+pi(β−1)

}
dx .

Now, by the Hölder inequality there exists c, depending on R0, such that∫
BR

[g(|u|)]pi(β−1) dx ≤
∫
BR

(
[g(|u|)]β + 1

)pi
dx

≤ c
{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

(6.14)

Moreover, by Lemma 6.2 applied to v = g(|u|), with p replaced by pi, we get the existence of a
positive constant c, independent of β, such that∫

BR

[g(|u|)]q+pi(β−1) dx ≤ c {κ+ 1}q−pi
{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

where κ := ‖g(|u|)‖Lq(BR0
) is finite by Corollary 4.5 and the assumption q < p∗. So, it follows that∫
BR

[g(|u|)]pi(β−1)[g(|uxi |)]pi−1g′(|uxi |)|uxi |ηµ dx

≤ c7
{κ+ 1}q−pi

(R− ρ)µ

{∫
BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

(6.15)

Now, by (2.4) and by the first step of the proof of Lemma 3.1 (1) we get that for a.e. x ∈ {|uxi | >
t0} the inequality g(|uxi |) ≥ 1

µg
′(|uxi |)|uxi | holds true. Moreover, being µ ≥ 1 and pi ≤ q we get

µpi−1 ≤ µq−1. Thus, (6.15) implies∫
BR∩{|uxi |>t0}

[g(|u|)]pi(β−1)[g′(|uxi |)]pi |uxi |piηµ dx

≤ c8
{κ+ 1}q−pi

(R− ρ)µ

{∫
BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

(6.16)

with c8 independent of i. Filling the hole, that is adding to both sides∫
BR∩{|uxi |≤t0}

[g(|u|)]pi(β−1)[g′(|uxi |)]pi |uxi |piηµ dx,
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and noticing that, due to the convexity of g, (2.4), the first step of the proof of Lemma 3.1 (1) and
(6.14) imply∫

BR∩{|uxi |≤t0}
[g(|u|)]pi(β−1)[g′(|uxi||)|uxi||]

piηµ dx

≤
∫
BR∩{|uxi |≤t0}

[g(|u|)]pi(β−1)[g′(t0)t0]piηµ dx

≤ µq
∫
BR

[g(|u|)]pi(β−1)[g(t0)]piηµ dx

≤ µq[g(t0) + 1]q
∫
BR

[g(|u|)]pi(β−1)ηµ dx ≤ c9

{∫
BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

,

we obtain that ∫
BR

{
[g(|u|)](β−1)g′(|uxi |)|uxi |

}pi
ηµ dx

≤ c10
{κ+ 1}q−pi

(R− ρ)µ

{∫
BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

Since ηµpi ≤ ηµ and pi ≥ p we get (6.7).

Step 2. In this step we prove that if g(|u|) ∈ Lqβ(BR) for some β ≥ 1, then there exists c,
independent of β, R and ρ, such that∫

BR

∣∣∣∣[ηµ([g(|u|)]β + 1)
]
xi

∣∣∣∣pi dx
≤ c βγ

(R− ρ)γ
{
‖g(|u|)‖Lq(BR0

) + 1
}q−p

·
{∫

BR

([g(|u|)]β + 1)q dx
} pi

q

,

(6.17)

with γ = max{µ, q}.
We begin noticing that∫

BR

∣∣∣∣[ηµ([g(|u|)β + 1)
]
xi

∣∣∣∣pi dx
≤ 2q−1

∫
BR

{∣∣[ηµ]xi
∣∣ ([g(|u|)]β + 1)

}pi
dx

+ 2q−1βq
∫
BR

{
[g(|u|)]β−1g′(|u|)|uxi | ηµ

}pi
dx = I1 + I2.

(6.18)

By (6.4) and the Hölder inequality we have that

I1 ≤
c

(R− ρ)q

{∫
BR

([g(|u|)]β + 1)q dx
} pi

q

. (6.19)

Let us consider I2. Use (4.5) with h1 = g′pi , h2 = idpi , t1 = |u(x)| and t2 = |uxi(x)|, obtaining

[g′(|u(x)|)]pi |uxi(x)|pi ≤ [g′(|uxi(x)|)]pi |uxi(x)|pi + [g′(|u(x)|)]pi |u(x)|pi .
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Therefore

I2 ≤ 2q−1βq
∫
BR

{
[g(|u|)](β−1)g′(|uxi |)|uxi | ηµ

}pi
dx

+ 2q−1βq
∫
BR

{
[g(|u|)]β−1g′(|u|)|u| ηµ

}pi
dx.

The first term in the right hand is estimated by (6.7). To estimate the second term, use Lemma
3.1 (1), which implies g′(|u|)|u| ≤ c {g(|u|) + 1}, obtaining∫

BR

{
[g(|u|)]β−1g′(|u|)|u| ηµ

}pi
dx

≤ c
∫
BR

[g(|u|)]pi(β−1)([g(|u|)]pi + 1) dx

≤ c
∫
BR

(
[g(|u|)]β + 1

)pi
dx ≤ c

{∫
BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

.

Thus,

I2 ≤
c βq

(R− ρ)µ
{
‖g(|u|)‖Lq(BR0

) + 1
}q−p

·
{∫

BR

(
[g(|u|)]β + 1

)q
dx

} pi
q

. (6.20)

The inequalities (6.18), (6.19) and (6.20) imply (6.17).

Step 3. Now, we prove the boundedness of u and the estimate (1). If g(|u|) ∈ Lqβ(BR) for some
β ≥ 1, then Step 2 implies that x 7→ ηµ(x){[g(|u(x)|)]β + 1} is in W

1,(p1,...,pn)
0 (BR). Multiplying

(6.17) on i and being pi ≥ p, we get
n∏
i=1

{∫
BR

∣∣∣Di

(
ηµ([g(|u|)]β + 1)

)∣∣∣pi dx} 1
pi

≤ c11

{
β

R− ρ

}nγ
p

{‖g(|u|)‖Lq(BR0
) + 1}n

q−p
p

{∫
BR

([g(|u|)]β + 1)q dx
}n

q

,

with c11 independent of β, R and ρ. By Theorem 4.2 we get{∫
Bρ

(
[g(|u|)]β + 1

)p∗
dx

} 1
p∗

≤ c12

{
β

R− ρ

} γ
p

{‖g(|u|)‖Lq(BR0
) + 1}

q−p
p

{∫
BR

([g(|u|)]β + 1)q dx
} 1
q

and, defining G(x) := max{1, g(|u(x)|)}, we obtain{∫
Bρ

[G(x)]βp
∗
dx

} 1
p∗

≤ 2c12

{
β

R− ρ

} γ
p

{‖g(|u|)‖Lq(BR0
) + 1}

q−p
p

{∫
BR

[G(x)]βq dx
} 1
q

.

(6.21)

For all h ∈ N define βh =
(
p∗

q

)h−1
, ρh = R0/2 + R0/2h+1 and Rh = R0/2 + R0/2h. By (6.21),

replacing β, R and ρ with βh, Rh and ρh, respectively, we have that G ∈ Lβhq(BRh) implies
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G ∈ Lβh+1q(BRh+1
). Precisely,

‖G‖
Lβh+1q(BRh+1

)

≤

2c12

{
2h+1

R0

(
p∗

q

)h−1
} γ

p

{‖g(|u|)‖Lq(BR0
) + 1}

q−p
p


1
βh

‖G‖Lβhq(BRh )

(6.22)

holds true for every h. Corollary 4.5 and the inequality q < p∗ imply G ∈ Lq(BR0). An iterated
use of (6.22) implies the existence of a constant c13 such that

‖G‖L∞(BR0/2
(x0)) ≤ c13 {‖g(|u|)‖Lq(BR0

) + 1}
p∗(q−p)
p(p∗−q) ‖G‖Lq(BR0

(x0)).

Therefore, by the very definition of G,

‖g(|u|)‖L∞(BR0/2
(x0)) ≤ c14

{
‖g(|u|)‖Lq(BR0

(x0)) + 1
} p∗(q−p)
p(p∗−q)+1

.

From (H3), which implies that g(t) → +∞ as t → +∞, the above inequality implies that u is in
L∞(BR0/2(x0)).

Step 4. Here we prove estimate (2.7). Fix Br(x0) b Ω. Notice that if Qs(x0) denotes the
cube with edges parallel to the coordinate axes, centered at x0 and with side length 2s, then
Br/
√
n(x0) ⊆ Qr/√n(x0) ⊆ Br(x0).

Let u ∈W 1,F (Ω) be a local minimizer of F and define ur := −
∫
Br(x0) u dx. Since u− ur is a local

minimizer, too, then by (2.6) and the Hölder inequality

‖g(|u− ur|)‖L∞(Br/(2
√
n)(x0)) ≤ c

{
1 + ‖g(|u− ur|)‖Lp∗ (Br/

√
n(x0))

} p∗(q−p)
p(p∗−q)+1

. (6.23)

By (4.1) in Proposition 4.4

‖g(|u− ur|)‖Lp∗ (Br/
√
n(x0))

≤ ‖g(|u− ur|)‖Lp∗ (Qr/
√
n(x0))

≤ c

{
1 + ‖g(|u− ur|)‖L1(Br(x0)) +

n∑
i=1

‖g(|uxi |)‖Lpi (Br(x0))

}
.

(6.24)

and by the Poincaré inequality proved in [3], (see (4.2), (4.3) and (4.4))

‖g(|u− ur|)‖L1(Br(x0)) ≤ c

{
1 +

n∑
i=1

‖g(|uxi |)‖L1(Br(x0))

}
.

Therefore, using (6.24) we get

‖g(|u− ur|)‖Lp∗ (Br/
√
n(x0)) ≤ c

{
1 +

n∑
i=1

‖g(|uxi |)‖Lpi (Br(x0))

}
. (6.25)

Now, (2.3) implies
n∑
i=1

‖g(|uxi |)‖Lpi (Br(x0)) ≤ c
{

1 + ‖f(x, |ux1 |, . . . , |uxn |)‖L1(Br(x0))

} 1
p . (6.26)

The final estimate (2.7) follows collecting (6.23), (6.24), (6.25) and (6.26). �
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Remark 6.3. It is not difficult to see that similar results to those stated in Theorem 2.1 can be
proved for functionals (2.1) with more general Lagrangians f . For instance, few and straightforward
changes in the proof of Theorem 2.1 allow to obtain the local boundedness of local minimizers of
(2.1), together with estimates similar to (2.6) and (2.7), under the following set of assumptions:

f : Ω× Rn → R+ is a Carathéodory function, convex and of class C1 with respect to ξ, satisfying
the growth assumption

f̄(x, |ξ1|, . . . , |ξn|) ≤ f(x, ξ) ≤M
{

1 + f̄(x, |ξ1|, . . . , |ξn|)
}
, M > 0,

with f̄ : Ω×Rn
+ → R+, f̄ = f̄(x, z1, ..., zn), satisfying (H1), (H2) and (H3), and such that, for some

Λ > 0, ∣∣∣∣ ∂f∂ξi (x, ξ)
∣∣∣∣ ≤ Λ

∂f̄

∂zi
(x, |ξ1|, . . . , |ξn|) for all ξ ∈ Rn.
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[3] T. Bhattacharya and F. Leonetti, A new Poincaré inequality and its application to the regularity of minimizers
of integral functionals with nonstandard growth, Nonlinear Anal., 17 (1991) 833–839.

[4] T. Bhattacharya and F. Leonetti, Some remarks on the regularity of minimizers of integrals with anisotropic
growth, Comment. Math. Univ. Carolin., 34 (1993) 597–611.

[5] T. Bhattacharya and F. Leonetti, W 2,2 regularity for weak solutions of elliptic systems with nonstandard growth,
J. Math. Anal. Appl., 176 (1993) 224–234.

[6] L. Boccardo, P. Marcellini and C. Sbordone, L∞-regularity for variational problems with sharp nonstandard
growth conditions, Boll. Un. Mat. Ital. A, 4 (1990) 219–225.

[7] A. Canale, A. D’Ottavio, F. Leonetti and M. Longobardi, Differentiability for bounded minimizers of some
anisotropic integrals, J. Math. Anal. Appl., 253 (2001) 640–650.

[8] P. Cavaliere, A. D’Ottavio, F. Leonetti and M. Longobardi, Differentiability for minimizers of anisotropic inte-
grals,Comment. Math. Univ. Carolinae, 39 (1998) 685–696.

[9] A. Cianchi, Boundedness of solutions to variational problems under general growth conditions, Comm. Partial
Differential Equations, 22 (1997) 1629–1646.

[10] A. Cianchi, Local boundedness of minimizers of anisotropic functionals, Ann. Inst. Henri Poincaré, Analyse non
linéaire, 17 (2000) 147–168.
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