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Abstract

We study the weak* lower semicontinuity properties of functionals of the form

F (u) = ess sup
x∈Ω

f(x, Du(x))

where Ω is a bounded open set of RN and u ∈ W 1,∞(Ω). Without a continuity assumption on f(·, ξ)
we show that the supremal functional F is weakly* lower semicontinuous if and only if it is a level
convex functional (i.e. it has convex sub levels). In particular if F is weakly* lower semicontinuous,
than it can be represented through a level convex function. Finally a counterexample shows that it
is not possible to represent F through the level convex envelope of f .
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1 Introduction

In the last years a new class of functionals has been considered with growing interest in the mathematical
literature: these functionals are represented in the so called supremal form

F (u) = ess sup
x∈Ω

f(x,Du(x)) (1.1)

where Ω is a bounded open set of RN and u ∈ W 1,∞(Ω). According to part of the already existing
literature we will refer to a functional of the type (1.1) as supremal functional or L∞-functional while
we refer to the function f which represents F as an admissible supremand. The definition of this class
is very meaningful because in many situations one would like to minimize a quantity which cannot be
expressed as an integral: for example, a quantity which does not express a mean property of a body or
whose values can be relevant on sets of arbitrarily small measure. In these cases the problem could be
formulated as the minimization of a supremal functional: see for example the classical problem of finding
optimal Lipschitz extensions, first considered by McShane in [18] or the recent formulation of the first
dielectric breakdown for composite conductors given in [17].

In order to apply the direct methods of Calculus of Variations to this class of functionals, the main
issue to be solved is the identification of the qualitative conditions on the supremand f which imply the
lower semicontinuity of F with respect to the weak* W 1,∞ topology. In fact under reasonable growth
conditions for f this is the right topology in order to have the compactness of minimizing sequences. The
characterization of lower semicontinuity for a functional expressed by a supremum requires a new notion
of convexity: the level convexity. A function f = f(ξ) is said to be level convex (or quasi-convex) if it
has convex sub levels. Namely f is level convex if the set {ξ : f(ξ) ≤ λ} is convex for every λ ∈ R;
equivalently if

f(θξ + (1− θ)η) ≤ f(ξ) ∨ f(η)

for every ξ, η ∈ RN and θ ∈ [0, 1]. In [6] Barron, Jensen, Wang show the following sufficient condition:

Theorem 1.1 (Sufficient condition, Theorem 3.4 in [6]) Let f : Ω×RN → R be a Borel function such
that f(x, ·) is lower semicontinuous and level convex. Then for any open subset A ⊂ Ω the functional
F (u,A) = ess supx∈A f(x,Du(x)) is sequentially weakly* lower semicontinuous on W 1,∞(Ω).

In the same paper, they show that this condition is also necessary.

Theorem 1.2 (Necessary condition, Theorem 2.7 in [6]) Let f : Ω×RN → R be a Borel function such
that there exists a function w : R×R → R which is continuous in its first variable with w(0, ξ) = 0 for
every ξ ∈ RN and non-decreasing in its second variable, such that

|f(x1, ξ)− f(x2, ξ)| ≤ w(|x1 − x2|, |ξ|)

for any x1, x2 ∈ Ω and ξ ∈ RN . Let F (u,A) = ess supx∈A f(x,Du(x)) for every open subset A ⊂ Ω and
assume that F (·, A) is sequentially weakly* lower semicontinuous on W 1,∞(A). Then for every x ∈ Ω
f(x, ·) is a level convex function.

Note that the last theorem requires that the localized functional F (·, A) is weakly* lower semicontinuous
for every open subset A ⊂ Ω. Moreover in the case in which only F (·,Ω) is weakly* lower semicontinuous
we cannot apply the previous result in order to deduce some convexity property for f. The proof of
Theorem 1.2 heavily relies on the continuity assumption on f(·, ξ). If one drops this assumption, then the
statement of Theorem 1.2 can be false as it is shown in Remark 3.1 of [16]. This counterexample is based
on the fact that in general a supremal functional does not admit a unique representation. More precisely
the Authors construct a dense open set A ⊂ Ω with |A| > 0, |Ω \ A| > 0, two admissible level convex
supremands ϕ1, ϕ2 with ϕ1 ≤ ϕ2 on Ω and ϕ1 < ϕ2 on (Ω \A)×RN such that ess supΩ ϕ1(x,Du(x)) =
ess supΩ ϕ2(x,Du(x)) := F (u) for every u ∈ W 1,∞(Ω). Moreover F turns out to be weakly* lower
semicontinuous since it admits a level convex supremand, but it can be also represented by any function
f , possibly non level convex, such that ϕ1 ≤ f ≤ ϕ2. This means that without having a continuity
property on f(·, ξ), one cannot expect that any admissible supremand for a weakly* l.s.c. L∞ functional
is a level convex function.
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Despite to these facts, most of the results concerning the class of supremal functionals suppose a
priori that the weakly* lower semicontinuous functional F is represented by a level convex function. For
example the existence of absolute minimizers (the so called AML) shown in [7], the Γ-convergence result
given in [12], the homogenization theorem in [9], the principles of comparison with distance functions
for AML stated in [13] all assume such a representation.Thus the question whether a weakly* lower
semicontinuous functional always admits a level convex supremand turns out to be interesting and useful
for applications.

The first positive answer to this problem is given in the 1-dimensional case in [19] where in Corollary
3.1 it is shown that if F (u) = ess supΩ f(x, u′(x)) is weakly* lower semicontinuous on W 1,∞(Ω) then
there exists a level convex supremand f̃ which represents F .

The main contribution of this paper is the extension of this result to the N -dimensional case (see
Section 2, Theorems 2.5, 2.6 and 2.7). With a completely different technique, under mild assumptions
on f(x, ·) and without requiring a continuity property on f(·, ξ), we prove that all weakly* lower semi-
continuous supremal functionals

• F : W 1,∞(Ω) → R of the form (1.1)

• F : W 1,∞(Ω)×A → R of the form

F (u,A) = ess sup
A

f(x,Du(x)) (1.2)

(where A is the class of the open subsets of Ω) can be represented by a level convex supremand. The
proofs of these results are given in Section 6 and are achieved through two steps. First we show that if
a supremal functional of the form (1.1) is weakly* lower semicontinuous on W 1,∞(Ω) then F is a level
convex functional on W 1,∞(Ω), i.e. the sub level sets

Eλ := {u ∈W 1,∞(Ω) : F (u) ≤ λ}

are convex. The strategy used to prove this property follows the metric approach used in [16] where among
other results it is shown that a 1-homogeneous supremal functional can be written in terms of intrinsic
distances associated with the functionals (see Section 3). The second step concerns the representation in
terms of a level convex supremand. Since we know that the representation is not unique, the main issue
is to identify a good candidate. As shows the example constructed in Section 8, given a weakly* lower
semicontinuous F of the form (1.1), in general it is not possible to choose as an admissible level convex
supremand of F the level convex envelope f lc of f given by

f lc(x, ·) = sup{h : RN → R : h lower semicontinuous and level convex, h(·) ≤ f(x, ·)}.

In the choice of a suitable supremand we have been inspired by the one constructed in [11] (see
Theorem 2.2 and Lemma 3.4 therein). In this paper given an abstract functional F : W 1,∞(Ω)×A → R
such that F (·, A) is weakly* lower semicontinuous for every A ∈ A, the Authors construct a function f̃
in the following way

f̃(x, ξ) := inf
{
F (u,Br(x)) | r > 0, u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
(1.3)

where
û := {x ∈ Ω : x is a differentiability point of u and a Lebesgue point of Du}

and under some suitable assumptions on F , they represent the functional in the supremal form

F (u,A) = ess sup
A

f̃(x,Du(x)) (1.4)

but they cannot deduce that f̃ is a level convex function. Inspired by the above result, we devote Section
5 to show that if F is a coercive supremal functional of the form (1.2) (eventually not weak* lower
semicontinuous), then the function f̃ defined by (1.3) is an admissible supremand of F (see Theorem
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5.4). In the case in which F is weakly* l.s.c. on W 1,∞(Ω), we show that f̃ is a level convex supremand
of F . As easy consequence we obtain also that the function

ϕ(x, ξ) := inf
{
F (u) | u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
(1.5)

is an admissible level convex supremand of a weakly* l.s.c functional F of the form (1.1). Finally, as
special case we deal with to the class of the 1-homogeneous supremal functionals already considered by
Garroni, Ponsiglione, Prinari in [16] (see Theorem 2.6).

As consequence of these results in Section 7 we show the existence of Absolute minimizers for a
weakly* l.s.c. supremal functional. An absolute minimizer (or AML) of the functional (1.2) is a function
u ∈W 1,∞(Ω) such that for all subdomain V ⊂ Ω one has

F (u, V ) ≤ F (v, V )

for all v in W 1,∞(V ) such that v = u on ∂V . In [7] and in [12] it is shown that if the functional (1.2) is
coercive and represented by a level convex function f then there exists at least an absolute minimizer of
F . Thanks to Theorem 2.7 we can give a result of existence of AML under the natural assumptions that
F is weakly* l.s.c. and coercive (see Theorem 7.2). Moreover we discuss the problem of characterizing the
AMLs by extending the principle of comparison with cones introduced by Crandall, Evans and Gariepy in
[1] for the minimizing Lipschitz Extension Problem. In [13] Champion and De Pascale give a comparison
principle with distances but they restrict to the case when f is globally l.s.c.. Now if f is not globally
l.s.c. it is an open problem if it is possible to give an analogous principle. We obtain a partial result by
showing that if u satisfies a comparison principle with the distances functions introduced in Section 7
and associated to the supremal functional F then u is an AML of F .

Finally, a paper in preparation (see [20]), based on the above results, is devoted to study the weakly*
l.s.c. envelope of a supremal functional and to show that the lower semicontinuous envelope of a supremal
functional is a level convex functional.

We shall fix some notations useful in the sequel.
Notations
We denote by Ω a generic open bounded domain of RN and by A the family of open subsets of Ω.
For every x ∈ RN and r > 0 we denote by Br(x) the open ball {y ∈ RN : |x− y| < r} where | · | is

the euclidean norm on RN .
For any set B ⊂ RN we denote byH1(B) its one dimensional Hausdorff measure. Moreover if B ⊂ RN

is a measurable set then |B| will denote its Lebesgue measure.
A modulus of continuity will be any continuous function w : [0,+∞) → [0,+∞) such that w(0) = 0.
For every u ∈W 1,∞(Ω) we denote by û the set

û := {x ∈ Ω : x is a differentiability point of u and a Lebesgue point of Du} .

2 Necessary and sufficient conditions for the w* lower semicon-
tinuity

Before stating the main results of this paper we introduce the following definitions.

Definition 2.1 A function f : Ω×RN → R is said to be

(a) a normal supremand if:

(i) f is a Borel function;

(ii) for a. a. x ∈ Ω the function ξ 7→ f(x, ξ) is lower semicontinuous in RN ;

(b) a Carathéodory supremand if:

(i) for every ξ ∈ RN the function x 7→ f(x, ξ) is measurable in Ω;

(ii) for a. a. x ∈ Ω the function ξ 7→ f(x, ξ) is continuous in RN ;
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(c) a level convex normal (respectively, a level convex Carathéodory) supremand if f is a normal
(respectively, a Carathéodory) supremand and f(x, ·) is level convex on RN for almost every x ∈ Ω.

Definition 2.2 A functional F : X → R defined on a topological vector space X is said to be level
convex if for every t ∈ R the level set {u ∈ X : F (u) ≤ t

}
is convex.

Now we are in a position to enunciate the main theorems of this paper. Theorems 2.3, 2.4 and 2.5 consider
functionals F : W 1,∞(Ω) → R of the form

F (u) = ess sup
Ω

f(x,Du(x)) (2.6)

where Ω is an open subset of RN .
First we show that for a large class of situations the level convexity of the functional F is a consequence

of its weak* lower semicontinuity.

Theorem 2.3 Let Ω ⊂ RN be a connected open set with Lipschitz continuous boundary. Let f : Ω ×
RN → R be a Carathéodory supremand satisfying the following assumption: for any M > 0 there exists
some modulus of continuity ωM such that

|f(x, ξ)− f(x, η)| ≤ ωM (|ξ − η|) (2.7)

for a.e. x ∈ Ω and for every ξ, η ∈ BM (0). If the functional F defined by (2.6) is weakly* l.s.c. on
W 1,∞(Ω) then F is a level convex functional.

As shown in Remark 3.1 of [16], in the general case the above result does not give as consequence the
level convexity of f(·, ξ). However, we can prove that there exists at least a level convex supremand ϕ for
a level convex supremal functional F . We notice, as shown in Section 8, that ϕ may not coincide neither
with the level convex envelope of f .

Theorem 2.4 Let Ω ⊂ RN be an open set. Let f : Ω ×RN → R be a normal supremand and let F be
the functional defined by (2.6). Then F is level convex if and only if there exists a level convex normal
supremand ϕ : Ω×RN → R such that

F (u) = ess sup
Ω

ϕ(x,Du(x))

for all u ∈W 1,∞(Ω). In particular if F is level convex then F is weakly* l.s.c. on W 1,∞(Ω).

In the previous theorem, if f is globally Lipschitz continuous then it is possible to show that the
function ϕ is Lipschitz continuous too (see Proposition 5.2). But when f is a Carathéodory supremand
it is not clear if ϕ is a Carathéodory supremand too. However if f satisfies (2.7) and a further coercivity
condition we may put together the previous results and obtain the following characterization.

Theorem 2.5 Let Ω ⊂ RN be a connected open set with Lipschitz continuous boundary. Let f : Ω ×
RN → R be a Carathéodory supremand satisfying (2.7) and the following assumption: there exists an
increasing continuous function α : R+ → R+such that limt→+∞ α(t) = +∞ and

f(x, ξ) ≥ α(|ξ|) for a.e x ∈ Ω, for every ξ ∈ RN . (2.8)

Let F be the functional defined by (2.6). The following facts are equivalent:

1) F is weakly* l.s.c. on W 1,∞(Ω);

2) F is a level convex functional;

3) there exists a level convex Carathéodory supremand ϕ : Ω×RN → R given by

ϕ(x, ξ) := inf
{

ess sup
Ω

f(y,Du(y)) | u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
(2.9)
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such that
F (u) = ess sup

Ω
ϕ(x,Du(x))

for all u ∈ W 1,∞(Ω). Moreover ϕ satisfies (2.8), (2.7) (for a suitable family (ω′M )M of moduli of conti-
nuity) and for a.e. x ∈ Ω ϕ(x, ·) ≥ f(x, ·).

The following result concerns the class of the 1-homogeneous supremal functional studied in [16]. Note
that compared with the assumptions done in Theorem 2.5, in the next result we do not require that f
satisfies assumption (2.7).

Theorem 2.6 Let Ω ⊂ RN be a connected open set with Lipschitz continuous boundary. Let f : Ω ×
RN → R be a Carathéodory supremand satisfying the following assumptions

α |ξ| ≤ f(x, ξ) ≤ β |ξ| (2.10)

and
f(x, tξ) = |t|f(x, ξ) (2.11)

for every ξ ∈ RN , for a.e. x ∈ Ω and for every t ∈ R and for some positive constants α, β > 0. Let F
be the functional defined by (2.6), let d : Ω× Ω → R be the distance defined by

d(x, y) = sup
{
u(x)− u(y), u ∈W 1,∞(Ω) : F (u) ≤ 1

}
. (2.12)

and let ϕd be the metric derivative of d defined as

ϕd(x, η) := lim sup
t→0+

d(x, x+ tη)
t

. (2.13)

Then the following facts are equivalent:

1) F is weakly* l.s.c. on W 1,∞(Ω);

2) F is a convex functional;

3) for all u ∈W 1,∞(Ω)
F (u) = ess sup

Ω
ϕ0

d(x,Du(x))

where
ϕ0

d(x, ξ) := sup
{
ξ · η : ϕd(x, η) ≤ 1

}
.

Moreover if ϕ is given by (2.9) there exists a negligible set H ⊂ Ω such that

ϕ0
d(x, ξ) = ϕ(x, ξ)

for every x ∈ Ω \H and for every ξ ∈ RN .

Finally, through a method of localization and an appropriate choice of the supremand, the results
above can be extended to the class of the supremal functionals F : W 1,∞(Ω)×A → R of the form

F (u,A) = ess sup
A

f(x,Du(x)). (2.14)

In particular we give the following result:

Theorem 2.7 Let Ω be an open subset of RN . Let f : Ω × RN → R be a Carathéodory supremand
satisfying (2.7) and (2.8). Let F (·, A) be the functional defined by (2.14). The following facts are
equivalent:

1) F (·, A) is weakly* l.s.c. on W 1,∞(Ω) for every A ∈ A;

2) F (·, A) is a level convex functional for every A ∈ A;
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3) there exists a level convex normal supremand f̃ : Ω×RN → R given by

f̃(x, ξ) := inf

{
ess sup
Br(x)

f(y,Du(y)) | r > 0, u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
(2.15)

such that
F (u,A) = ess sup

A
f̃(x,Du(x))

for all u ∈ W 1,∞(Ω) and for all A ∈ A. Moreover f̃ satisfies (2.8), (2.7) (for a suitable family
(ω′M )M of moduli of continuity) and for a.e. x ∈ Ω f̃(x, ·) ≥ f(x, ·).

Notice that in the previous theorem when f(·, ξ) is continuous for every ξ ∈ RN then for a.e. x ∈ Ω
f̃(x, ·) = f(x, ·) (see Theorem 5.4) and therefore we obtain that if F is weakly* l.s.c. then f is a level
convex supremand.

In order to show all the results above we need to introduce some tools, to recall some known facts
and to prove further preliminary results. For these reasons the proofs of the previous theorems will be
given later in Section 6.

3 The class of the difference quotients

In order to show that a weakly* lower semicontinuous supremal functional is level convex, we recall some
results and some tools given for the 1-homogeneous supremal functionals in [16] with the aim to extend
them to more general supremal functionals. Consider a supremal functional (2.6) represented through
a Carathéodory supremand f : Ω ×RN → R+ satisfying (2.7) and (2.8). With every λ ∈ R such that
the sub level set Eλ := {u ∈ W 1,∞(Ω) : F (u) < λ} is nonempty we can associate a distance dλ in the
following way:

dλ(x, y) := sup
{
|u(x)− u(y)| : u ∈W 1,∞(Ω) : F (u) ≤ λ

}
. (3.16)

Notice that if Br(x) ⊂ Ω then, from (2.8), we have that dλ(x, y) ≤ α−1(λ)r for every y ∈ Br(x). In
general if Ω is a connected open set, then for every x, y ∈ Ω it holds

dλ(x, y) ≤ α−1(λ)|x− y|Ω (3.17)

where
|x− y|Ω = inf{L(γ) : γ ∈ Γx,y(Ω)} ,

Γx,y(Ω) being the set of Lipschitz curves in Ω with end-points x and y, and L(γ) the Euclidean length of
γ. In particular if ∂Ω is Lipschitz continuous then there exists a constant C > 0 such that

dλ(x, y) ≤ |x− y|Ω ≤ C|x− y|. (3.18)

Moreover with every λ ∈ R there exists δ = δ(λ) such that for every x, y ∈ Ω

dλ(x, y) ≥ δ|x− y|. (3.19)

In fact since Eλ is nonempty, then ε > 0 there exists ε > 0 and u ∈ W 1,∞(Ω) such that F (u) < λ − ε.
Now fix x, y ∈ Ω and without loss of generality, assume u(x) ≥ u(y). Chosen M > ||u||1,∞ there exists
0 < σ < 1 such that wM+2(t) ≤ ε for every 0 < t ≤ σ. Thus if 0 < δ < min{ 1

diamΩ+1 , σ} then the
function

v(z) := u(z) + δ
(x− y)
|x− y|

· z

is such that
||v||1,∞ ≤M + δ(diamΩ) + σ ≤M + 2

and
F (v) ≤ F (u) + wM+2(δ) < λ− ε+ ε = λ.
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This implies

dλ(x, y) ≥ |v(x)− v(y)| = |δ|x− y|+ u(x)− u(y)| = δ|x− y|+ u(x)− u(y) ≥ δ|x− y|.

Now for every λ such that Eλ is nonempty, we consider the functional Rλ : W 1,∞(Ω) → R̄ given by

Rλ(u) := sup
x,y∈Ω, x 6=y

|u(x)− u(y)|
dλ(x, y)

. (3.20)

The functional Rλ is referred to as the difference quotient associated with level set Eλ of F .

Proposition 3.1 For every λ s.t. Eλ 6= ∅ the difference quotient Rλ is a convex lower semicontinuous
functional with respect to the strong convergence in L∞. Moreover Rλ(u+ v) ≤ Rλ(u) +Rλ(v) for every
u, v ∈W 1,∞(Ω).

Proof. Let u ∈ W 1,∞(Ω) and let {un} ⊂ W 1,∞(Ω) be a sequence converging to u in L∞(Ω). We have
that for every x, y ∈ Ω such that 0 < dλ(x, y) < +∞

|u(x)− u(y)|
dλ(x, y)

= lim
n

|un(x)− un(y)|
dλ(x, y)

≤ lim inf
n

Rλ(un).

Taking the supremum for x, y ∈ Ω, x 6= y we get the thesis. The convexity and the sublinearity of Rλ are
trivial. ut

The key tool we will use in the sequel is the following lemma. It is an adaptation of Lemma 3.4 in
[16]: We report its revised proof for sake of completeness.

Lemma 3.2 Let Ω ⊂ RN be a connected open set with Lipschitz continuous boundary. Let F be a
supremal functional on W 1,∞(Ω) represented by a Carathéodory supremand f : Ω ×RN → R satisfying
(2.7) and (2.8). Let v ∈W 1,∞(Ω) be such that Rλ(v) < 1.Then there exists a sequence {vn} ⊂W 1,∞(Ω)
converging to v in L∞(Ω) with F (vn) ≤ λ for n ∈ N.

Proof. Let us fix r > 0. By the fact that Rλ(v) < 1 and thanks to (3.19), for every x, y ∈ Ω with
|x− y| = r

|v(y)− v(x)| < dλ(x, y)− γ, (3.21)

for a positive constant γ depending on r. Let us fix 0 < ε < γ
3 . For every x ∈ Ω and for every

y ∈ ∂Br(x) ∩ Ω, by the definition of dλ there exists a function wx,y
r ∈W 1,∞(Ω) such that

1) F (wx,y
r ) ≤ λ;

2) |wx,y
r (y)− wx,y

r (x)| ≥ dλ(x, y)− ε;

3) wx,y
r (x) = v(x);

the third property is possible thanks to the translation invariance of the first two. By properties 2), 3)
and by (3.21), for every y ∈ ∂Br(x) ∩ Ω

|wx,y
r (y)− v(x)| ≥ dλ(x, y)− ε > |v(y)− v(x)|+ γ − ε. (3.22)

Note that by (2.8) we have that ess supΩ |Dwx,y
r | < α−1(λ), and hence there exists δ > 0 (depending only

on ε) such that

|wx,y
r (z)−v(x)| > |v(z)−v(x)|+γ−2ε > |v(z)−v(x)|+ε for every z ∈ ∂Br(x)∩Ω : |z−y| ≤ δ. (3.23)

Moreover, since wx,y
r (x) = v(x), there exists 0 < r′ < r (depending only on ε) such that

|wx,y
r (z)− v(x)| < |v(z)− v(x)|+ ε for every z ∈ Br′(x) ∩ Ω. (3.24)
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For every x ∈ Ω, let us fix a finite set of points {y1, . . . , yN} on ∂Br(x) ∩ Ω such that

∂Br(x) ∩ Ω ⊂
N⋃

i=1

Bδ(yi),

and let us set the function wx
r : Br(x) ∩ Ω → R defined by

wx
r (z) := max

i
wx,yi

r (z) for every z ∈ Br(x) ∩ Ω. (3.25)

By construction and by (3.23) and (3.24), we have

1) ess supBr(x)∩Ω f(z,Dwx
r ) ≤ λ;

2) |wx
r (z)− v(x)| > |v(z)− v(x)|+ ε for every z ∈ ∂Br(x) ∩ Ω;

3) |wx
r (z)− v(x)| < |v(z)− v(x)|+ ε for every z ∈ Br′(x) ∩ Ω.

Now let Zr be a finite set of points of Ω such that

Ω ⊂
⋃

z∈Zr

Br′(z),

and consider the function wr : Ω → R defined by

wr(x) := min
z∈Zr∩Br(x)

wz
r (x). (3.26)

From properties 2) and 3) above it follows that wr is continuous. Moreover, for almost every x in Ω,
Dwr(x) coincides with Dwz

r (x) for some z ∈ Zr and this implies that wr ∈W 1,∞(Ω) and F (wr) ≤ λ.
Now let us prove that ‖wr − v‖∞ → 0 as r → 0+. To this aim, let us fix x ∈ Ω, and let z ∈ Br(x) be

such that wr(x) = wz
r(x). Recalling that by construction wz

r(z) = v(z), and by using (3.17) and (3.18)
we conclude

|wr(x)− v(x)| ≤ |wz
r(x)− wz

r (z)|+ |wz
r (z)− v(x)|

= |wz
r(x)− wz

r (z)|+ |v(z)− v(x)|
≤ ||Dwz

r ||∞|x− z|Ω + dλ(x, z)
≤ 2α−1(λ)|x− z|Ω ≤ 2α−1(λ)Cr

Therefore, for every {rn} → 0, the sequence vn := wrn does the job. ut

In the following version of the Lemma 3.2 we remove the assumption that Ω has Lipschitz continuous
boundary but we require that the supremal functional is weakly* l.s.c. on every open subset of Ω.

Lemma 3.3 Let Ω ⊂ RN be an open set. Let F be a supremal functional on W 1,∞(Ω) of the form
(2.14) represented by a Carathéodory supremand f : Ω ×RN → R satisfying (2.7) and (2.8). Assume
that F (·, A) is weakly* l.s.c. on W 1,∞(A) for every A ∈ A. If v ∈W 1,∞(Ω) is such that Rλ(v) < 1 then
F (v,Ω) ≤ λ.

Proof. Fix r̄ ∈ R+. If x ∈ Ωr̄ = {x ∈ Ω : d(x, ∂Ω) > r̄} then Br(x) ⊂ Br̄(x) ⊂ Ω for every 0 < r < r̄.
In particular for every x, y ∈ Ωr̄ with |x − y| = r we have that dλ(x, y) ≤ 2α−1(λ)r. By repeating the
proof of the previous lemma, for every r ∈ R+ we can construct a function wr ∈ W 1,∞(Ω) such that
F (wr,Ωr̄) ≤ λ and satisfying

|wr(x)− v(x)| ≤ 2α−1(λ)r

for every x ∈ Ωr̄. If {rn} → 0, the sequence vn := wrn
weakly* converges to v in Ωr̄ and thanks to the

weak* lower semicontinuity of F (·,Ωr̄) we have that

F (v,Ωr̄) ≤ lim inf
n

F (wrn
,Ωr̄) ≤ lim inf

n
F (wrn

,Ω) ≤ λ.

This easily implies that F (v,Ω) ≤ λ. ut
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Finally, we cite the following result obtained in [16] as a corollary of Lemma 3.2. This will be useful
when we will be interested to the 1-homogeneous supremal functionals represented by a Carathéodory
function.

Proposition 3.4 (Proposition 3.5 in [16]) Let f : Ω×RN → R be a Carathéodory supremand satisfying
(2.10) and (2.11). Let d : Ω× Ω → R+ be the distance defined by

d(x, y) := sup
{
u(x)− u(y), u ∈W 1,∞(Ω) : ess sup

Ω
f(x,Du(x)) ≤ 1

}
. (3.27)

If the functional F (u) = ess supΩ f(x,Du(x)) is a weakly* l.s.c. on W 1,∞(Ω) then

F (u) = sup
x,y∈Ω,x 6=y

u(x)− u(y)
d(x, y)

for every u ∈W 1,∞(Ω).

4 Approximation for supremal functionals

4.1 Moreau-Yosida Transform

A key tool we shall use is a modification of the Moreau-Yosida Transform. More precisely, the following
approximation result holds.

Theorem 4.1 Let F : W 1,∞(Ω) → [0,+∞] be a (strongly) l.s.c. functional such that F (u + c) = F (u)
for every u ∈W 1,∞(Ω) and for every c ∈ R. If we set

Fλ(u) := inf{F (v) ∨ λ||Du−Dv||∞ : v ∈W 1,∞(Ω)}

for every λ > 0 then we have
F (u) = sup

λ
Fλ(u).

Moreover, the functional Fλ satisfies the condition

Fλ(u) ≤ Fλ(v) + λ||Du−Dv||∞ for every u, v ∈W 1,∞(Ω). (4.28)

Therefore if F is finite in at least one point then

|Fλ(u)− Fλ(v)| ≤ λ||Du−Dv||∞ for every u, v ∈W 1,∞(Ω).

Proof. Fix u ∈W 1,∞(Ω). By taking v = u in the definition of Fλ(u) we obtain the inequality

Fλ(u) ≤ F (u).

Take now t < F (u); since F is lower semicontinuous there exists δ > 0 such that

t < inf
{
F (w) : w ∈W 1,∞(Ω), ||u− w||W 1,∞(Ω) < δ

}
.

Let 0 < δ′ < δ
1+diamΩ . Then

t < inf
{
F (v) : v ∈W 1,∞(Ω), ||Du−Dv||∞ < δ′

}
. (4.29)

In fact, let v ∈W 1,∞(Ω) be such that
||Du−Dv||∞ < δ′.

Fix x0 ∈ Ω and define w(x) := v(x) + u(x0)− v(x0). Then

||Du−Dw||∞ = ||Du−Dv||∞ ≤ δ′

10



and for a.e. x ∈ Ω

|u(x)− w(x)| ≤ |(u(x)− u(x0))− (w(x)− w(x0)| ≤ ||Du−Dw||∞|x− x0| ≤ δ′ · diamΩ.

Therefore
||u− v||W 1,∞(Ω) ≤ δ′ + δ′ · diamΩ < δ.

This implies F (v) = F (w) ≥ inf
{
F (w) : w ∈ W 1,∞(Ω), ||u− w||W 1,∞(Ω) < δ

}
and thus (4.29) follows.

Now let λ > 0 be such that λ · δ′ > t. For every v ∈W 1,∞(Ω) with ||Du−Dv||∞ < δ′ we have

F (v) ∨ λ||Du−Dv||∞ ≥ F (v) > t

whereas for every v ∈W 1,∞(Ω) with ||Du−Dv||∞ ≥ δ we have

F (v) ∨ λ||Du−Dv||∞ ≥ λδ′ > t.

Hence Fλ(u) ≥ t and, since t was arbitrary, this proves the inequality

F (u) ≤ sup
{
Fλ(u) : λ > 0

}
.

Finally take u, v ∈W 1,∞(Ω), let ε > 0 be fixed, and let w ∈W 1,∞(Ω) be such that

Fλ(v) ≥ F (w) ∨ λ||Dv −Dw||∞ − ε.

Taking into account that for every a, b, c ∈ R we have

a ∨ b ≤ a ∨ c+ |b− c|

we obtain

Fλ(u) ≤ F (w) ∨ λ||Du−Dw||∞
≤ F (w) ∨ λ||Dv −Dw||∞ + λ|||Du−Dw||∞ − ||Dv −Dw||∞|
≤ Fλ(v) + ε+ λ||Du−Dv||∞.

Since ε was arbitrary, inequality (4.28) follows and the proof is achieved. ut

Analogously one can show the following result:

Proposition 4.2 Let f : Ω×RN → [0,+∞) be a normal supremand. If we set for every λ > 0

fλ(x, ξ) = inf
{
f(x, η) ∨ λ|ξ − η| : ξ ∈ RN

}
(4.30)

then we have that fλ is a normal supremand such that

|fλ(x, ξ)− fλ(x, η)| ≤ λ|ξ − η|

and
f(x, ξ) = sup

{
fλ(x, ξ) : λ > 0

}
for every x ∈ Ω and for every ξ, η ∈ RN .

4.2 An approximation through coercive functionals

Here we approximate a non negative supremal functional through a sequence of coercive supremal func-
tionals.

11



Proposition 4.3 Let Ω be an open subset of RN . Let g : Ω×RN → R+ be a normal supremand. Let

gn(x, ξ) := g(x, ξ) ∨ 1
n
|ξ| (4.31)

and let G,Gn : W 1,∞(Ω) → R be the functionals defined respectively by

G(u) = ess sup
Ω

g(x,Du(x)) (4.32)

and by
Gn(u) = ess sup

Ω
gn(x,Du(x)) (4.33)

where n ∈ N. Then

(i) for every n ∈ N and for every u ∈W 1,∞(Ω)

Gn(u) = G(u) ∨ 1
n
||Du||L∞(Ω); (4.34)

(ii) the sequence (Gn)n pointwise converges to G;

(iii) If Gn is a level convex functional for every n ∈ N then G is a level functional.

Proof. In order to show (i), fix n ∈ N and u ∈ W 1,∞(Ω). The inequality Gn(u) ≤ G(u) ∨
1
n ||Du||L∞(Ω) is trivial. For the converse inequality, for fixed δ there exists Bδ ⊂ Ω with |Bδ| > 0
such that gn(x,Du(x)) ≥ Gn(u) − δ for every x ∈ Bδ. Set B+

δ = {x ∈ Bδ : gn(x, ξ) = g(x, ξ)} and
B−δ = {x ∈ Bδ : gn(x, ξ) = 1

n |ξ|}. If |B+
δ | > 0 then G(u) ≥ Gn(u) − δ while if |B−δ | > 0 then

1
n ||Du||L∞(Ω) ≥ Gn(u) − δ. In both cases 1

n ||Du||L∞(Ω) ∨ G(u) ≥ Gn(u) − δ for every δ > 0. Then
1
n ||Du||L∞(Ω) ∨G(u) ≥ Gn(u). As consequence for every u ∈W 1,∞(Ω)

lim
n
Gn(u) = lim

n
G(u) ∨ 1

n
||Du||L∞(Ω) = G(u) ∨ 0 = G(u).

Now let u ∈W 1,∞(Ω) Then Finally, concerning (iii), fix u, v ∈ X and λ ∈ (0, 1). Then

G(λu+ (1− λ)v) = lim
n
Gn(λu+ (1− λ)v) ≤ lim

n
Gn(u) ∨Gn(v) = G(u) ∨G(v)

i.e. G is a level convex functional. ut

5 Some representation results

This section is devoted to the construction of admissible supremands for supremal functionals of the form
(2.6) and (2.14). Note that, as shown in the example given in the Section 1 of [11], if F is a supremal
functional of the form (2.14), it is not possible to represent F through the function h defined by

h(x, ξ) := inf
r>0

F (wx,ξ, Br(x))

where wx,ξ(y) := u+ ξ · (y − x).
The following proof is inspired by the proof of Lemma 3.3 in [11].

Proposition 5.1 Let Ω be an open subset of RN . Let F : W 1,∞(Ω) → R be a functional such that for
any M > 0 there exists a modulus of continuity ωM such that

|F (u)− F (v)| ≤ ωM (||Du−Dv||∞)

for every u, v ∈W 1,∞(Ω) s.t. ||Du||∞, ||Dv||∞ ≤M . Let ϕ : Ω×RN → R be defined by

ϕ(x, ξ) := inf
{
F (u) | u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
. (5.35)

Then for every ξ ∈ RN the function x 7→ ϕ(x, ξ) is measurable in Ω.
Moreover if there exists an increasing continuous function α : R+ → R+ such that limt→+∞ α(t) = +∞
and F (u) ≥ α(||Du||∞) then
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(i) ϕ is a Carathéodory supremand satisfying (2.8) and (2.7) for a suitable family (ω′M )M of moduli of
continuity;

(ii) for any u ∈W 1,∞(Ω)
F (u) ≥ ess sup

Ω
ϕ(x,Du(x)).

Proof. Let ξ ∈ RN and λ ∈ R be fixed. Define the sets

A(x) := {u ∈W 1,∞(Ω) : x ∈ û with Du(x) = ξ, }, (5.36)

and
Kλ := {x ∈ Ω : ∀u ∈ A(x) F (u) ≥ λ} = {x ∈ Ω : ϕ(x, ξ) ≥ λ}. (5.37)

If we prove that Kλ is measurable for every λ ∈ R, then ϕ(·, ξ) is measurable. Suppose that Kλ is not
measurable. Then there is a set C with Kλ ⊂ C s.t. C is measurable and of minimal measure. Let
x0 ∈ Ĉ \Kλ where Ĉ the set of the points of density 1 of C. From the definition of Kλ, there is some
u ∈ A(x0) such that F (u) < λ. Now, fix ε > 0 such that F (u) < λ− ε. Since the functional F is strongly
continuous in W 1,∞(Ω) then, there exists δ > 0 such that F (v) < λ for every v ∈ W 1,∞(Ω) such that
||v − u||W 1,∞(Ω) ≤ δ. Set

A1 =
{
x ∈ Ω | x ∈ û, |u(x)− u(x0)| ≤ δ/2, |Du(x)− ξ| ≤ δ

2diam(Ω)

}
. (5.38)

Note that A1 is measurable and since x0 is a Lebesgue point of Du, then |A1| > 0. We claim that
A1 ∩Kλ = ∅. In fact, if x ∈ A1, then the function vx ∈W 1,∞(Ω) defined by

vx(y) := u(y) + (u(x0)− u(x)) + 〈Du(x0)−Du(x), y − x〉

belongs to A(x) and ‖vx−u‖W 1,∞(Ω) ≤ δ. Thus it easily follows that F (vx) < λ. So x /∈ Kλ which implies
that Kλ ⊂ C \A1. Moreover the set C\A1 is still measurable. If we show that x0 is a point of density 1
of A1 then there exists r > 0 such that

|A1 ∩Br(x0)| ≥
1
2
|Br(x0)|

and
|C ∩Br(x0)| ≥

3
4
|Br(x0)|.

Therefore

|A1 ∩ C| ≥ |A1 ∩Br(x0) ∩ C| = |A1 ∩Br(x0)| − |A1 ∩Br(x0, ) \ C|
≥ |A1 ∩Br(x0)| − |Br(x0) \ C|
≥ |A1 ∩Br(x0)| − |Br(x0)|+ |Br(x0) ∩ C|

≥ 3
4
|Br(x0)| − |Br(x0)|+

1
2
|Br(x0)|

=
1
2
|Br(x0)|.

In particular |C \ A1| < |C| and since K ⊂ (C\A1), we have contradicted the minimality of C. In order
to show that x0 is a point of density 1 of A1 note that there exists r0 = r0(δ) > 0 such that for every
r < r0

Br(x0) ∩A1 =
{
x ∈ Br(x0); x ∈ û, |Du(x)− ξ0| ≤ δ

2diam(Ω)

}
. (5.39)

Now

|Br(x0) ∩A1|
|Br(x0)|

= 1− |Br(x0) \A1|
|Br(x0)|

= 1−

∫
Br(x0)\A1

dx

|Br(x0)|
≥ 1− 2diam(Ω)

δ|Br(x0)|

∫
Br(x0)

|Du(x)− ξ0|dx
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and since x0 is a Lebesgue point of Du with Du(x0) = ξ0 we obtain

lim
r→0+

|Br(x0) ∩A1|
|Br(x0)|

= 1

i.e. x0 is a point of density 1 of A1. Now we assume that F satisfies also the coercivity assumption
F (u) ≥ α(||Du||∞) for every u ∈ W 1,∞(Ω). We show that ϕ satisfies assumption (2.7) for a suitable
family of moduli of continuity. Let M > 0 be fixed. Then there is some constant K = K(M)) such that,
for any (x, ξ) ∈ Ω×RN with |ξ| ≤M and for any v ∈W 1,∞(Ω),

[F (v) ≤ ϕ(x, ξ) + 1 ] ⇒ ‖Dv‖∞ ≤M ′.

In fact from the continuity assumption on F ,

F (v) ≤ ϕ(x, ξ) + 1 ≤ F (ϕξ) + 1 ≤ F (0) + ωM (|ξ|) + 1

where ϕξ(x) := ξ · x and from the coercivity condition on F we have

‖Dv‖∞ ≤ α−1(F (0) + ωM (M) + 1) .

In particular if ξ, η ∈ BM (0) and uξ ∈W 1,∞(Ω) is such that F (uξ) ≤ ϕ(x, ξ) + ε where 0 < ε < 1 then

ϕ(x, η) ≤ F (uξ + ϕη−ξ) ≤ F (uξ) + ωM ′(|ξ − η|) ≤ ϕ(x, ξ) + ωM ′(|ξ − η|) + ε

where M ′ = α−1(ωM (M) + F (0) + 1) + 2M. As ε→ 0+ the last inequality implies

ϕ(x, η) ≤ ϕ(x, ξ) + ωM ′(|ξ − η|)

and by changing the roles of ξ and η it follows

|ϕ(x, η)− ϕ(x, ξ)| ≤ ωM ′(|ξ − η|).

Then it is sufficient to define ω′M := ωM ′ . Finally by the definition of ϕ it follows that

ess sup
Ω

ϕ(x,Du(x)) ≤ F (u)

for every u ∈W 1,∞(Ω). ut

Under the stronger assumption that F is a Lipschitz continuous functional, it is not necessary to
require a coercivity assumption in order to show that ϕ is a Carathéodory supremand.

Proposition 5.2 Let Ω be an open subset of RN . Let F : W 1,∞(Ω) → R be a functional. Assume that
there exists L > 0 such that F is L-Lipschitz continuous functional i.e.

|F (u)− F (v)| ≤ L||u− v||W 1,∞(Ω) for every u, v ∈W 1,∞(Ω).

Then

(i) the function ϕ defined by (5.35) is a Carathéodory supremand such that

|ϕ(x, ξ)− ϕ(x, η)| ≤ L|ξ − η| (5.40)

for every x ∈ Ω and for every ξ, η ∈ Ω;

(i) for any u ∈W 1,∞(Ω)
F (u) ≥ ess sup

Ω
ϕ(x,Du(x)).
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Proof. Thanks to Proposition 5.1 for every ξ ∈ RN the function x 7→ ϕ(x, ξ) is measurable in Ω.
In order to show that for every x ∈ Ω ϕ(x, ·) is L-Lipschitz continuous, fix x ∈ Ω and ξ, η ∈ RN . Let
uξ ∈W 1,∞(Ω) be such that F (uξ) ≤ ϕ(x, ξ) + ε. Then

ϕ(x, η) ≤ F (uξ + ϕη−ξ) ≤ F (uξ) + L|ξ − η| ≤ ϕ(x, ξ) + L|ξ − η|+ ε.

As ε→ 0+ the last inequality implies

ϕ(x, η) ≤ ϕ(x, ξ) + L|ξ − η|

and by changing the roles of ξ and η it follows

|ϕ(x, η)− ϕ(x, ξ)| ≤ L|ξ − η|.

ut

Lemma 5.3 Let Ω be an open subset of RN . Let f : Ω × RN → R+ be a Carathéodory supremand
satisfying assumption (2.7) and let ϕ and f̃ the functions given respectively by (2.9) and (2.15). Then
there exists a negligible set H ⊂ Ω such that

ϕ ≥ f̃ ≥ f on (Ω \H)×RN .

Proof. By definition, it easily follows that ϕ ≥ f̃ . Now, for every ξ ∈ QN let Nξ be the negligible set
such that Ω \ Nξ is the set of the Lebesgue points of f(·, ξ). Then

⋃
ξ∈QN Nξ is a negligible set and if

x ∈ Ω′ = Ω \
( ⋃

ξ∈QN Nξ

)
then x is a Lebesgue point of f(·, η). In fact, let (ξn)n ⊂ QN be such that

ξn → η. Fix ε > 0 and n0 ∈ N such that |ξn − η| ≤ ε for every n ≥ n0. Then for every n ≥ n0 and for
every ρ > 0∫

Bρ(x)

|f(y, η)− f(x, η)|dy

≤
∫

Bρ(x)

|f(y, η)− f(y, ξn)|dy +
∫

Bρ(x)

|f(y, ξn)− f(x, ξn)|dy +
∫

Bρ(x)

|f(x, ξn)− f(x, η)|dy

≤
∫

Bρ(x)

2wM (|η − ξn|)dy +
∫

Bρ(x)

|f(y, ξn)− f(x, ξn)|dy

≤ 2|Bρ|wM (ε) +
∫

Bρ(x)

|f(y, ξn)− f(x, ξn)|dy.

Letting ρ→ 0 we obtain

lim
ρ→0

1
|Bρ|

∫
Bρ(x)

|f(y, η)− f(x, η)|dy ≤ 2wM (ε)

and from the arbitrariness of ε we can conclude. Now we will show that for every x ∈ Ω′ and for every
ξ ∈ RN it holds

f̃(x, ξ) ≥ f(x, ξ). (5.41)

Note that Ω \Ω′ is a negligible set. Fix x ∈ Ω′ and ξ ∈ RN . Then there exists Br(x) and ux ∈W 1,∞(Ω)
such that x ∈ ûx, Dux(x) = ξ and f̃(x, ξ) ≥ ess supBr(x) f(y,Dux(y))−ε. If we show that x is a Lebesgue
point of h = f(·, Dux(·)) then

f̃(x, ξ) ≥ ess sup
Br(x)

f(y,Dux(y))− ε ≥ f(x, ξ)− ε

15



for every ε > 0 and thus we can conclude. Let us show that x is a Lebesgue point of the function
h(y) := f(y,Dux(y)). For M = ||Dux||∞ we have∫

Bρ(x)

|f(y,Dux(y))− f(x,Dux(x))|dy ≤

≤
∫

Bρ(x)

|f(y,Dux(y))− f(y,Dux(x)|dy +
∫

Bρ(x)

|f(y,Dux(x))− f(x,Dux(x))|dy

≤
∫

Bρ(x)

ωM (|Dux(y)−Dux(x)|)dy +
∫

Bρ(x)

|f(y,Dux(x))− f(x,Dux(x))|dy.

Since x ∈ Ω′ we have that

1
|Bρ|

∫
Bρ(x)

|f(y,Dux(x))− f(x,Dux(x))|dy → 0 (5.42)

when ρ→ 0. Then for fixed ε > 0 there exists r0 = r0(ε) such that for every ρ ≤ r0∫
Bρ(x)

|Dux(y)−Dux(x)|dy ≤ ε|Bρ|.

By Cebishev Theorem we have that

|({y ∈ Bρ(x) : |Du(y)−Du(x)| ≥
√
ε}| ≤ 1√

ε

∫
Bρ(x)

|Dux(y)−Dux(x)|dy ≤
√
ε|Bρ|.

Thus for every ρ ≤ r0, we have∫
Bρ(x)

ωM (|Dux(y)−Dux(x)|)dy =
∫
{y∈Bρ(x):|D(y)−Du(x)|≥

√
ε}
ωM (|Dux(y)−Dux(x)|)dy +

+
∫
{y∈Bρ(x):|Du(y)−Du(x)|≤

√
ε}
ωM (|Dux(y)−Dux(x)|)dy ≤

≤ C
√
ε|Bρ|+ ωM (

√
ε)|Bρ|

where C = max{ωM (ξ) : |ξ| ≤ 2M}. Thus

lim
ρ→0+

1
|Bρ|

∫
Bρ(x)

ωM (|Dux(y)−Dux(x)|)dy ≤ C
√
ε+ ωM (

√
ε)

for every ε > 0 and thus

lim
ρ→0+

1
|Bρ|

∫
Bρ(x)

ωM (|Dux(y)−Dux(x)|)dy = 0. (5.43)

In particular from (5.42) and (5.43) it follows that

1
|Bρ|

∫
Bρ(x)

|f(y,Dux(y))− f(x,Dux(x))|dy → 0

when ρ→ 0. This completes the proof of (5.41). ut

We underline the difference between the following theorem and the representation result shown in
Theorem 2.2. in [11]. We prove that the function f̃ is an admissible supremand for a localized supremal
functional F (u,A) = ess supA f(x,Du(x)) without requiring that for every open set A ⊂ Ω F (·, A) is
weakly* lower semicontinuous.

Theorem 5.4 Let Ω be an open subset of RN . Let f : Ω × RN → R+ be a Carathéodory supremand
satisfying assumptions (2.7) and (2.8). Then
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(i) the functions ϕ and f̃ given respectively by (2.9) and (2.15) are Carathéodory supremands satisfying
(2.8) and (2.7) for a suitable family (ω′M )M of moduli of continuity;

(ii) for every u ∈W 1,∞(Ω) and for every A ∈ A

ess sup
Ω

f(x,Du(x)) = ess sup
Ω

ϕ(x,Du(x))

and
ess sup

A
f(x,Du(x)) = ess sup

A
f̃(x,Du(x));

(iii) if f(·, ξ) is continuous on Ω for every ξ ∈ RN then there exists a negligible set H such that f =
f̃ on (Ω \H)×RN .

Proof. By applying Proposition 5.1 to the functional F : W 1,∞(Ω) → R defined by

F (u) = ess sup
Ω

f(x,Du(x))

we obtain that the function ϕ is a Carathéodory supremand satisfying (2.8) and (2.7) for a suitable family
(ω′M )M of moduli of continuity and such that

ess sup
Ω

f(x,Du(x)) ≥ ess sup
Ω

ϕ(x,Du(x))

for any u ∈W 1,∞(Ω). Thanks to Lemma 5.3 the converse inequality follows.
Now let us choose a countable base (An)n∈N of open subsets of Ω and for every n ∈ N and for every

u ∈ W 1,∞(Ω) define Fn(u) := ess supAn
f(x,Du(x)). By applying Proposition 5.1 to the functional Fn

we obtain that for every n ∈ N

ϕn(x, ξ) := inf
{

ess sup
An

f(x,Du(x)) | u ∈W 1,∞(An) s.t. x ∈ û, with Du(x) = ξ

}
is a Carathéodory supremand such that

ess sup
An

f(x,Du(x)) ≥ ess sup
An

ϕn(x,Du(x)) (5.44)

for any u ∈W 1,∞(An). Since
f̃ = inf ϕn,

we have that f̃ is a Borel function. Moreover by applying Proposition 5.1 for any M > 0 there exists
some modulus of continuity ω′M such that

|ϕn(x, ξ)− ϕn(x, η)| ≤ ω′M (|ξ − η|)

for a.e. x ∈ Ω and for every ξ, η ∈ BM (0) and for every n ∈ N. This implies that

|f̃(x, ξ)− f̃(x, η)| ≤ ω′M (|ξ − η|)

for a.e. x ∈ Ω and for every ξ, η ∈ BM (0). Therefore f̃ is a Carathéodory supremand. Finally thanks to
(5.44) we have that for every n ∈ N

ess sup
An

f(x,Du(x)) ≥ ess sup
An

f̃(x,Du(x))

for any u ∈ W 1,∞(An). Thanks to Lemma 5.3 the converse inequalities follow and since (An)n∈N is a
countable base of open subsets of Ω it follows that

ess sup
A

f(x,Du(x)) = ess sup
A

f̃(x,Du(x))

for any u ∈W 1,∞(Ω) and for every A ∈ A.
Finally in order to show (iii) thanks to (5.41) it is sufficient to show that f(x0, ξ) ≥ f̃(x0, ξ) for every

x0 ∈ Ω′. Fix x0 ∈ Ω′. By the definition of f̃

ess sup
Br(x0)

f(x, ξ) ≥ f̃(x0, ξ).

By letting r → 0 and by using the continuity of f(·, ξ) it easily follows f(x0, ξ) ≥ f̃(x0, ξ). ut
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Finally we consider the particular case in which f(x, ·) is a 1-homogeneous function. Note that
inequality (5.45) cannot be proved directly by applying Lemma 5.3 since f does not satisfy (2.7).

Theorem 5.5 Let Ω be an open subset of RN . Let f : Ω × RN → R+ be a Carathéodory supremand
satisfying assumption (2.10) and (2.11). Then the function ϕ given by (2.9) is a Carathéodory supremand
satisfying assumption (2.10) and (2.11) and such that

(i) for a.e. x ∈ Ω
ϕ(x, ξ) ≥ f(x, ξ) ∀ξ ∈ RN ; (5.45)

(ii) for every u ∈W 1,∞(Ω)
ess sup

Ω
f(x,Du(x)) = ess sup

Ω
ϕ(x,Du(x)).

Proof. Let F be the functional defined by

F (u) = ess sup
Ω

f(x,Du(x))

for all u ∈ W 1,∞(Ω). In order to show (i) of definition (2.1), let ξ ∈ RN and λ ∈ R be fixed. Consider
the sets A(x) and Kλ defined respectively by (5.36), (5.37). If we prove that Kλ is measurable for every
λ ∈ R, then ϕ(·, ξ) is measurable. Suppose that Kλ is not measurable. Then there is a set C with
Kλ ⊂ C s.t. C is measurable and of minimal measure. In fact, let x0 ∈ Ĉ \Kλ where Ĉ the set of the
points of density 1 of C. From the definition of Kλ, there is some u ∈ A(x0) such that F (u) < λ. Now,
fix ε > 0 such that F (u) < λ− ε and set δ := ε

β . By (2.10) we have that F (v) ≤ ε for every v ∈W 1,∞(Ω)
such that ||v||W 1,∞(Ω) ≤ δ. Now consider the set A1 defined by (5.38). We claim that A1 ∩Kλ = ∅. Now,
if x ∈ A1, then the function vx ∈W 1,∞(Ω) defined by

vx(y) := u(y) + (u(x0)− u(x)) + 〈Du(x0)−Du(x), y − x〉

belongs to A(x) and ‖vx − u‖W 1,∞(Ω) ≤ δ. By Proposition 3.4 we can write F as

F (u) = sup
x,y∈Ω, x 6=y

u(x)− u(y)
d1(x, y)

where d1 is given by (3.27). In particular, by Proposition 3.1

F (u+ v) ≤ F (u) + F (v) (5.46)

for every u, v ∈W 1,∞(Ω). This implies

F (vx) ≤ F (vx − u) + F (u) < ε+ λ− ε = λ.

So x /∈ Kλ. This implies that Kλ ⊂ C \ A1. Moreover the set C\A1 is still measurable. Repeating the
proof of Proposition 5.1 one can show that

|A1 ∩ C| ≥
1
2
|Br(x0)|

which implies that |C \ A1| < |C| and since K ⊂ (C\A1), we have contradicted the minimality of C.
Now we show (ii) of definition (2.1). Let us fix x ∈ Ω, ε > 0 and ξ1, ξ2 ∈ RN such that |ξ1 − ξ2| ≤
min{ ε

2βdiam(Ω) ,
ε
2β }. From the definition of ϕ we can find some u ∈ W 1,∞(Ω) such that Du(x) = ξ1 and

ϕ(x, ξ1) ≥ F (u)− ε. Then, defined wx,ξi(y) := ξi · (y − x), we have

‖wx,ξ1 − wx,ξ2‖W 1,∞(Ω)) ≤
ε

β

and thus
ϕ(x, ξ2) ≤ F (u+ wx,ξ2 − wx,ξ1) ≤ F (u) + F (wx,ξ2 − wx,ξ1) ≤ ϕ(x, ξ1) + ε.
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By changing the roles of ξ1 and ξ2 we obtain that ϕ(x, ·) is uniformly continuous on RN . Concerning
(5.45), for every n ∈ N one can define

fn(x, ξ) = inf
η∈RN

{f(x, η) ∨ n|ξ − η|}. (5.47)

Then, thanks to Proposition 4.2 for every n ∈ N fn is a Lipschitz continuous function with Lipschitz
constant equal to n, fn ≤ fm if n ≤ m and since f(x, ·) is continuous, we have

f(x, ξ) = sup
{
fn(x, ξ) : n ∈ N

}
.

Now for every n ∈ N let ψn be defined by

ψn(x, ξ) := inf
{

ess sup
Ω

fn(x,Du(x)) | u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
. (5.48)

By definition, we have that ψn ≤ ϕ for every n ∈ N and, thanks to Theorem 5.4, ψn is a Carathéodory
supremand such that there exists a negligible set Hn ⊂ Ω such that

ψn ≥ fn on (Ω \Hn)×RN .

In particular, by defining H =
⋃∞

n=1Hn we obtain that

ϕ(x, ξ) ≥
∨

n∈N

ψn(x, ξ) ≥
∨

n∈N

fn(x, ξ) = f(x, ξ) on (Ω \H)×RN

which implies that for every u ∈W 1,∞(Ω)

ess sup
Ω

ϕ(x,Du(x)) ≥ ess sup
Ω

f(x,Du(x)).

By the definition of ϕ the converse inequality follows and thus (ii). ut

6 The proofs

Now we are in position to show the main theorems of this paper. In their proofs it is fundamental
the application of Lemma 3.2 in order to deduce the convexity of the sub level sets of a weakly* lower
semicontinuous functional.

Proof of Theorem 2.3. Suppose that f is a Carathéodory supremand satisfying also the coercivity
assumption (2.8). Let λ ∈ R be such that the sub level set Eλ := {u ∈ W 1,∞(Ω) : F (u) ≤ λ} is
nonempty. If Kλ := {u ∈ W 1,∞(Ω) : F (u) < λ} is nonempty too, then let Rλ be the corresponding
difference quotient defined by (3.20). Now we show that

Eλ = {u ∈W 1,∞(Ω) : Rλ(u) ≤ 1}. (6.49)

In fact, if Rλ(u) ≤ 1 then for every 0 < δ < 1 we have that Rλ(δu) ≤ δ < 1. By Lemma 3.2 there
exists a sequence {un} ⊂ W 1,∞(Ω) converging to δu in L∞(Ω) with F (un) ≤ λ. Since F is weakly*
lower semicontinuous it follows F (δu) ≤ λ and then, for the same reason, when δ → 1 we can conclude
F (u) ≤ λ. Vice versa, if F (u) ≤ λ then for every x, y ∈ Ω we have dλ(x, y) ≥ u(x)− u(y) by definition of
dλ. This implies Rλ(u) ≤ 1. By (6.49), by applying Proposition 3.1, it follows that Eλ is a convex set.
Finally, if Kλ is empty, note that Kλ+ε is nonempty for every ε > 0 since Eλ ⊂ Kλ+ε and from the first
part of this proof it follows that Eλ+ε is a convex set. Since

Eλ =
⋂
ε>0

Eλ+ε
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then Eλ is a convex set too. Now we remove the previous coercivity assumption on f. Define

g(x, ξ) := arctan(f(x, ξ)) +
π

2
)

and for every n ∈ N consider the function gn given by (4.31) and the functionals G and Gn given
respectively by (4.32) and (4.33). Then it holds:

(i) gn(x, ξ) ≥ 1
n |ξ| for every n ∈ N, for a.e. x ∈ Ω and for every ξ ∈ RN ;

(ii) for every n ∈ N, for a.e. x ∈ Ω and for every ξ, η ∈ BM (0)

|gn(x, ξ)− gn(x, η)| ≤ ω′M,n(|ξ − η|) (6.50)

where ω′M,n(s) := ωM (s) ∨ 1
n |s|.

Property (i) is trivial; concerning (ii), fix n ∈ N and let x ∈ Ω, ξ, η ∈ BM (0). If gn(x, ξ) ≥ 1
n |ξ| and

gn(x, η) ≥ 1
n |η| then (6.50) is trivial. If gn(x, ξ) ≤ 1

n |ξ| and gn(x, η) ≤ 1
n |η| then (6.50) is trivial. It

remains to show (6.50) when gn(x, ξ) < 1
n |ξ| and gn(x, η) > 1

n |η|. In this case

gn(x, ξ)− gn(x, η) =
1
n
|ξ| ∨ g(x, ξ)− g(x, η)

≤ (
1
n
|ξ − η|+ 1

n
|η|) ∨ (g(x, η) + ωM (|ξ − η|)− g(x, η)

≤ 1
n
|ξ − η| ∨ ωM (|ξ − η|)

and

gn(x, ξ)− gn(x, η) =
1
n
|ξ| − g(x, η) ∨ 1

n
|η|

≥ 1
n
|ξ| − (g(x, ξ) + ωM (|ξ − η|) ∨ (

1
n
|ξ − η|+ 1

n
|ξ|)

≥ −
( 1
n
|ξ − η| ∨ ωM (|ξ − η|)

)
.

Now, since the function h(s) = arctan s is uniformly continuous and increasing on R, then the supremal
functional G is weakly* lower semicontinuous on W 1,∞(Ω). Thus, thanks to (4.34), for every n ∈ N the
supremal functional Gn is a weakly* lower semicontinuous on W 1,∞(Ω). Since Gn is represented through
a coercive function, from the first part of this proof it follows that (Gn)n is a sequence of level convex
functionals. Since (Gn)n pointwise converges to G, then G is a level convex functional too. As easy
consequence F is a level convex functional. ut

Proof of Theorem 2.4. One implication is trivial. Now assume that F is a level convex functional.
With every n ∈ N let Fn : W 1,∞(Ω) → R be the functional defined by

Fn(u) := inf
{
F (v) ∨ n||Dv −Du||∞ : v ∈W 1,∞(Ω)

}
.

Then thanks to Proposition 4.1 for every n ∈ N Fn is an n-Lipschitz continuous functional such that

F =
∨
n

Fn.

Moreover for every n ∈ N Fn is a level convex functional. In fact let u1, u2 ∈ W 1,∞(Ω) and θ ∈ (0, 1).
For fixed ε > 0 there exist v1, v2 ∈W 1,∞(Ω) such that

Fn(ui) ≥ F (vi) ∨ n||Dvi −Dui||∞ − ε
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for every i ∈ {1, 2}. Then

Fn(θu1 + (1− θ)u2) ≤ F (θv1 + (1− θ)v2) ∨ n||D(θu1 + (1− θ)u2)−D(θv1 + (1− θ)v2)||∞
≤ F (v1) ∨ F (v2) ∨ n||Du1 −Dv1||∞ ∨ n||Du2 −Dv2)||∞
≤ Fn(u1) ∨ Fn(u2) + ε.

Since ε is arbitrary, it follows that

Fn(θu1 + (1− θ)u2 ≤ Fn(u1) ∨ Fn(u2),

i.e. Fn is a level convex functional. Now define

ϕn(x, ξ) := inf
{
Fn(u) | u ∈W 1,∞(Ω) s.t. x ∈ û, with Du(x) = ξ

}
. (6.51)

Thanks to Proposition 5.2, for every n ∈ N ϕn is a Carathéodory supremand, n-Lipschitz continuous
w.r.t. ξ and such that

ess sup
Ω

ϕn(x,Du(x)) ≤ Fn(u). (6.52)

Moreover for every n ∈ N ϕn is a level convex function. Fix x ∈ Ω, ξ, η ∈ RN and λ ∈ (0, 1). By the
definition of ϕn there exist Br(x), uε, vε ∈W 1,∞(Ω), differentiable at x such thatDuε(x) = ξ, Dvε(x) = η
and ϕn(x, ξ) ≥ Fn(uε)− ε and ϕn(x, η) ≥ Fn(vε)− ε. Since Fn is a level convex functional then

ϕn(x, λξ + (1− λ)η) ≤ Fn(λuε + (1− λ)vε) ≤ Fn(uε) ∨ Fn(vε) ≤ (ϕn(x, ξ)− ε) ∨ (ϕn(x, η)− ε)

By ε→ 0 we obtain the thesis. The sequence {ϕn}n is not decreasing and thus

∃ lim
n
ϕn(x, ξ) =

∨
n

ϕn(x, ξ) =: ϕ(x, ξ).

It is easy to verify that ϕ is a level convex normal supremand and getting n→∞ in (6.52) we obtain

ess sup
Ω

ϕ(x,Du(x)) ≤ F (u).

In order to show the converse inequality, for every n ∈ N we re-introduce the functions fn, ψn defined
by (5.47) and (5.48). Now for every n ∈ N and for every u ∈W 1,∞(Ω) it holds

ess sup
Ω

fn(x,Du(x)) ≤ Fn(u). (6.53)

In fact, by definition, for fixed ε > 0 there exists uε ∈W 1,∞(Ω) such that

Fn(u) ≥ ess sup
Ω

f(x,Duε(x)) ∨ n||Duε −Du||∞ − ε.

In particular for a.e. x ∈ Ω

Fn(u) ≥ f(x,Duε(x)) ∨ n|Duε(x)−Du(x)| − ε ≥ fn(x,Du(x))− ε

which implies
Fn(u) ≥ ess sup

Ω
fn(x,Du(x))− ε.

Since ε is arbitrary, then (6.53) follows. From (6.53) and by the definitions of fn, ψn, ϕn we obtain

fn(x, ξ) ≤ ψn(x, ξ) ≤ ϕn(x, ξ) on (Ω \H)×RN

where H ⊂ Ω is a negligible set. By passing to the limit when n→∞ in the previous inequality and by
applying the fact that

f(x, ξ) =
∨

n∈N

fn(x, ξ)

21



we obtain that
f(x, ξ) ≤ ϕ(x, ξ) on (Ω \H)×RN

which implies that
F (u) ≤ ess sup

Ω
ϕ(x,Du(x)).

Proof of Theorem 2.5. 1)=⇒ 2). It follows by Theorem 2.3.
2)=⇒ 3). Thanks to Lemma 5.3 and Theorem 5.4 it remains to show that ϕ is level convex w.r.t. ξ. Fix
x ∈ Ω, ξ, η ∈ RN and λ ∈ (0, 1). By definition of ϕ there exist uε, vε ∈W 1,∞(Ω), differentiable at x such
that Duε(x) = ξ, Dvε(x) = η and ϕ(x, ξ) ≥ F (uε)− ε and ϕ(x, η) ≥ F (vε)− ε. Since F is a level convex
functional, we have that

ϕ(x, λξ + (1− λ)η) ≤ F (λuε + (1− λ)vε) ≤ F (uε) ∨ F (vε) ≤ (ϕ(x, ξ)− ε) ∨ (ϕ(x, η)− ε)

By ε→ 0 we obtain the thesis.
3)=⇒ 1) It follows by Theorem 1.1. ut

Proof of Theorem 2.6. 1)=⇒ 2) By applying Proposition 3.4 we have that

F (u) = sup
x,y∈Ω, x6=y

u(x)− u(y)
d(x, y)

.

Then F is convex (see for instance the proof of Proposition 3.1).
2)=⇒ 3) Thanks to Theorem 5.5 we can represent F through the function ϕ given by (2.9), i.e.

F (u) = ess supΩ ϕ(x,Du(x)) for every u ∈ W 1,∞(Ω). If we show that ϕ is convex w.r.t. ξ then by
applying Proposition 2.4 and Proposition 2.5 in [16] it follows that F can be represented also through
the function ϕ0

d. Fix x ∈ Ω, ξ, η ∈ RN and λ ∈ (0, 1). By definition of ϕ there exist uε, vε ∈ W 1,∞(Ω),
differentiable at x such that Duε(x) = ξ, Dvε(x) = η and ϕ(x, ξ) ≥ F (uε)− ε and ϕ(x, η) ≥ F (vε)− ε.
Since F is a convex functional, we have that

ϕ(x, λξ+(1−λ)η) ≤ F (λuε +(1−λ)vε) ≤ λF (uε)+ (1−λ)F (vε) ≤ λ(ϕ(x, ξ)− ε)+ (1−λ)(ϕ(x, η)− ε),

and getting ε→ 0 we obtain that ϕ is convex w.r.t. ξ. Finally , thanks to Lemma 5.3, we have that there
exists a negligible set H ⊂ Ω such that

ϕ0
d(x, ξ) ≤ ϕ(x, ξ) for every x ∈ Ω \H, for ξ ∈ RN .

The converse inequality follows by applying Proposition 1.6 in [16].
3)=⇒ 1) It follows by Theorem 1.1. ut

Proof of Theorem 2.7. 1) =⇒ 2) For every open subset A ⊂ Ω with Lipschitz continuous boundary
it is sufficient to apply Theorem 2.3 to the functional F (u) := F (u,A). Now let A ⊂ Ω be a generic open
set and u1, u2 ∈ W 1,∞(Ω) and θ ∈ (0, 1). Then there exists a countable family of open sets (An)n∈N

with Lipschitz continuous boundaries such that A =
⋃

nAn. For every n ∈ N we have that

F (θu1 + (1− θ)u2, An) ≤ F (v1, An) ∨ F (v2, An).

This implies

F ((θu1+(1−θ)u2, A) =
∨

n∈N

F (θu1+(1−θ)u2, An) ≤
∨

n∈N

F (v1, An)∨
∨

n∈N

F (v2, An) = F (v1, A)∨F (v2, A).

2)=⇒ 3) Since f satisfies all the assumptions of Theorem 5.4, F can be represented also by the
Carathéodory supremand f̃ . It remains to show that f̃ is a level convex function. Fix x ∈ Ω, ξ, η ∈ RN
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and λ ∈ (0, 1). By the definition of f̃ there exist Br(x), uε, vε ∈ W 1,∞(Ω), differentiable at x such that
Duε(x) = ξ, Dvε(x) = η and f̃(x, ξ) ≥ F (uε, Br(x))−ε and f̃(x, η) ≥ F (vε, Br(x))−ε. Since F (·, Br(x))
is a level convex functional then

f̃(x, λξ+(1−λ)η) ≤ F (λuε+(1−λ)vε, Br(x)) ≤ F (uε, Br(x))∨F (vε, Br(x)) ≤ (f̃(x, ξ)−ε)∨(f̃(x, η)−ε)

By ε→ 0 we obtain the thesis.
3)=⇒ 1) It follows by Theorem 1.1. ut

7 An existence theorem of AMLs and a principle of comparison

In general a minimizer for a supremal functional is not necessarily a local minimizer (see Example 1.2. in
[12]). Then by analogy with the case of integral functionals, G. Aronsson introduced the following notion
of local minimizers for a supremal functional of the form

F (u,A) = ess sup
A

f(x,Du(x)) (7.54)

(for instance see [3], [4], [5]).

Definition 7.1 Let g be a Lipschitz function defined on ∂Ω and let us denote by W 1,∞
g (Ω) the space of

functions such that (u− g) ∈W 1,∞(Ω) ∩ C0(Ω). A absolute minimizer or an AML for the problem

min
v∈W 1,∞

g (Ω)
F (v,Ω) (7.55)

(where F is given by (7.54)) is a minimizer u such that for all open subset V ⊂⊂ Ω one has

F (u, V ) ≤ F (v, V )

for all v in W 1,∞(V ) such that v = u on ∂V .

With different techniques Barron, Jensen and Wang in [7] and Champion, De Pascale, Prinari in [12]
have proved an existence theorem of AML for a supremal functional F by assuming that it is represented
by a level convex function f. Now, thanks to Theorem 2.7 we can give the following:

Theorem 7.2 Let f : Ω×RN → R be a Carathéodory supremand satisfying (2.7) and (2.8). Let F (·, A)
be the functional defined by (7.54). Let g be a Lipschitz function defined on ∂Ω. If F (·, A) is lower
semicontinuous with respect to the weak* convergence of W 1,∞(Ω) for every A ∈ A then there exists at
least an absolute minimizer v ∈W 1,∞

g (Ω).

Proof. By applying Theorem 2.7, we can represent F through a level convex Carathéodory supremand
satisfying (2.7) and (2.8). Then we can conclude by applying Theorem 4.1 in [12]. ut

Remark 7.3 In [12] (see Theorem 4.7) the authors give another existence theorem for AML based on a
Perron-like method. They show that if the functional (7.54) is weakly* l.s.c. and coercive and satisfies
the additional hypothesis that for any A ∈ A, w ∈W 1,∞(A) ∩ C(Ā) and y ∈ A, the image set

Ay,w = {u(y) : u ∈W 1,∞
w (A), u is an AML}

is connected then then there exists at least an absolute minimizer v ∈ W 1,∞
g (Ω). Now if the functional

(7.54) is weakly* lower semicontinuous for every A ∈ A and f satisfies (2.7) and (2.8) then the last
assumption is trivially satisfied. In fact, thanks to Theorem 2.3 F is a level convex functional and then
the sets Ay,w are convex.
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In Theorem 3.5 of the paper [13] Champion and De Pascale characterize the absolute minimizers of
a wide class of supremal functionals by extending the principle of comparison with cones introduced by
Crandall, Evans and Gariepy in [1] for the minimizing Lipschitz Extension Problem. Their characteriza-
tion relies on the fact that when f = f(x, ξ) is a lower semicontinuous function, satisfying (2.8) and level
convex in the ξ-variable, then for every open set V ⊂ RN the pseudo-distances

ρV
λ (x, y) = sup

{
u(x)− u(y), u ∈W 1,∞(V ) : ess sup

V
f(x,Du(x)) ≤ λ

}
(7.56)

coincide with the following distances:

δV
λ (x, y) = inf

γ∈Γx,y(V )

∫ 1

0

f0(γ, γ′, λ) dt

where f0 is defined by
f0(x, ξ, λ) := sup

{
ξ · η : f(x, η) ≤ λ

}
(see Lemma B.3 and Proposition A.2 in [13]). Now if f is not lower semicontinuous this equality could
fail. In fact let Ω = (−2, 2)2 and consider the segment S = (−1, 1) × {0}. Consider the Carathéodory
supremand defined by

f(x, ξ) =
{
β|ξ| if x ∈ Ω \ S
α|ξ| if x ∈ S

with 0 < β < α. Then f is not globally lower semicontinuous on Ω and for every λ ≥ 0 and for every
x, y ∈ V = (−1, 1)2 it holds

δV
λ (x, y) =

λ

β
|x− y|.

If x̄ = (−1, 0) e ȳ = (0, 1) then

δV
λ (x̄, ȳ) =

2λ
α
<

2λ
β

= ρV
λ (x̄, ȳ).

This inequality is due to the fact that when one modifies the values of the supremand f on a negligible
subset of Ω the distances δV

λ can change while the distances ρV
λ does not depend on the supremand f

chosen to represent F.
Now when f is not globally l.s.c. it is an open problem if it is possible to characterize the AMLs of the

problem (7.55) through a comparison principle with distance functions. However thanks to the results
shown in Sections 3 and 6, we can give a partial result. We consider a supremal functional F represented
by a Carathéodory supremand f : Ω × RN → R+, level convex in the ξ-variable, satisfying (2.7) and
(2.8). For any open set V ⊂⊂ Ω, for every x, y ∈ V and for every λ ∈ R we define

dV
λ (x, y) :=


sup

{
|u(x)− u(y)| : u ∈W 1,∞(Ω), F (u, V ) ≤ λ

}
if λ > infv∈W 1,∞(V ) F (v, V )

infε>0 d
V
λ+ε(x, y) if λ = infv∈W 1,∞(V ) F (v, V )

−∞ if λ < infv∈W 1,∞(V ) F (v, V ).
(7.57)

Moreover for every x, y ∈ V̄ and for every λ ∈ R we define

dV
λ (x, y) := inf{lim inf

n
dV

λ (xn, yn) : (xn)n, (yn)n ⊂ V, xn → x, yn → y}. (7.58)

We point out that since the boundary of V may be not regular, it may happen that dV
λ (x̄, ȳ) = +∞ for

some λ ∈ R and for some x̄ ∈ ∂V and ȳ ∈ V. In this case it is easy to show that dV
λ (x̄, y) = +∞ for every

y ∈ V .

Definition 7.4 We shall say that a continuous function u : Ω̄ → R satisfies the Comparison with the
Distance Functions dV

λ from above in Ω if and only if for any connected open subset V ⊂⊂ Ω, any x0 ∈ V̄ ,
any λ ∈ R and α ∈ R the inequality

u ≤ dV
λ (x0, .) + α on ∂(V \ {x0})
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implies
u ≤ dV

λ (x0, .) + α on V̄ .

Now we can easily show that

Theorem 7.5 Under the assumption of Theorem 7.2 if u ∈W 1,∞(Ω) satisfies the Comparison with the
Distance Functions dV

λ on Ω from above then u is an absolute minimizer of F .

Proof. Assume that u satisfies the comparison principle with the Distance Functions dV
λ . Let V ⊂⊂ Ω

be an open set. We will show that

F (u, V ) = inf{F (v, V ) : v ∈W 1,∞(V ), v = u on ∂V }.

In fact since F (·, V ) is weakly* l.s.c. and coercive there exists w ∈W 1,∞(V ), such that

F (w, V ) = λ = min{F (v, V ) : v ∈W 1,∞(V ), v = u on ∂V }.

If λ > inf{F (v, V ) : v ∈W 1,∞(V )} then

|w(x)− w(y)| ≤ dV
λ (x, y) (7.59)

for every x, y ∈ V. Now w − u = 0 on ∂V means that there exists a sequence wn ∈ C∞0 (V ) weakly*
converging to w − u. In particular the sequence (wn + u)n is bounded in W 1,∞(Ω) and thus it admits a
subsequence which weakly* converges to a function v ∈W 1,∞(Ω). In particular v = w on V and therefore

|v(x)− v(y)| ≤ dV
λ (x, y)

for every x, y ∈ V. Since v ∈ C(V̄ ) and v = u on ∂V , by continuity we obtain that

|u(x)− u(y)| ≤ dV
λ (x, y) (7.60)

for every x, y ∈ ∂V. Since u satisfies the principle of comparison, (7.60) yields to u(x) ≤ u(y) + dV
λ (x, y)

for every y ∈ ∂V and for every x ∈ V . By applying again the the principle of comparison we obtain that
u(x) ≤ u(y) + dV

λ (x, y) for every y, x ∈ V i.e. Rλ(u, V ) := supx,y∈V,x 6=y
|u(x)−u(y)|

dV
λ

(x,y)
≤ 1 and thus for every

0 < δ < 1 Rλ(δu, V ) ≤ δ < 1. Now we can notice that thanks to Theorem 2.7 F (·, V ) is weakly* l.s.c. in
W 1,∞(V ). Thus by applying Lemma 3.3 we have that F (δu, V ) ≤ λ. By letting δ → 1 we can conclude
that F (u, V ) ≤ λ. If λ = min{F (v, V ) : v ∈W 1,∞(V )} it is sufficient to note that

|w(x)− w(y)| ≤ dV
λ+ε(x, y)

for every x, y ∈ V and for every ε > 0. By repeating the first part of this proof, it is easy to show that
F (u, V ) ≤ λ+ ε. By letting ε→ 0+ we obtain the thesis. ut

8 A counterexample

In this section we will show that in general even if F (u) = ess supΩ f(x,Du(xf)) is weakly* lower
semicontinuous on W 1,∞(Ω) it cannot be represented by the level convex envelope f lc of f i.e. in general
ess supΩ f

lc(x,Du(x)) < F (u).
In fact, with some suitable changes to Example 3.2 in [16], we can construct the following example.

Example 8.1 Let us call G the set of all continuous functions g : RN → R, positively 1-homogeneous
and satisfying α|ξ| ≤ g(ξ) ≤ β|ξ| for all ξ ∈ RN , and let

C := {C ⊆ RN : C = {ξ ∈ RN : g(ξ) ≤ 1} for some g ∈ G}. (8.61)

Note that the sets in C are closed, star-shaped (with respect to the origin), and that by definition to
every C ∈ C is associated a function g ∈ G, which we denote by gC . Moreover C is closed for intersection
and union.

Let now B be the unit closed ball in RN centered at 0. Then B ∈ C with gB(ξ) = |ξ|. Let H ∈ C be
satisfying the following properties:
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1) H is not convex;

2) H ∩B is convex;

3) H \B 6= ∅ and B \H 6= ∅;

4) B is contained in the convex hull of H .

Finally let us construct an open and dense set A ⊂ Ω with 0 < |A| < |Ω| as follows. Let {vi}i∈N be
a dense subset of ∂B and let {pj}j∈N be dense in Ω. For a given positive constant δ > 0 we define

A :=
⋃

i,j∈N

{
x ∈ Ω : dist(x, {pi + svj , s ∈ R}) < δ

2ij

}
.

Clearly, if δ is small enough, we have that 0 < |A| < |Ω|. Roughly speaking the set A is given by a
countable union of thin strips along a dense set of directions.

We consider the functions f , f+ : Ω×RN → R defined by

f(x, ξ) :=
{
gB(ξ) if x ∈ A;
gH(ξ) if x ∈ Ω \A. f+(x, ξ) :=

{
gB(ξ) if x ∈ A;
gH∩B(ξ) if x ∈ Ω \A.

The associated supremal functionals are

F (u) := ess sup
Ω

f(x,Du(x)) and F+(u) := ess sup
Ω

f+(x,Du(x)).

Now we will show the following facts:

1) F = F+ and therefore F is weakly* lower semicontinuous (in fact F+ is weakly* lower semicontin-
uous being represented by a (level) convex function);

2) ∃u ∈W 1,∞(Ω) such that F (u) > ess supΩ f
lc(x,Du(x)).

In fact, by construction we have that F+ ≥ F , and so let us assume by contradiction that for some
u ∈W 1,∞(Ω) we have

F+(u) > 1 while F (u) < 1. (8.62)

This will imply that Du ∈ H \ B on a set of positive measure. Therefore there exists a point x ∈ Ω of
differentiability for u with |Du(x)| > 1. To simplify the notation we can assume x = 0 and u(0) = 0. Let
{ρn} be a sequence converging to zero, and for every n let us consider the function un : B → R defined
by

un(x) :=
1
ρn
u(ρnx) for every x ∈ B.

By the definition of A, for every n and for every ε > 0 we can find an open strip Lε
n in B such that

ρnL
ε
n ⊂ A and such that Lε

n contains two points aε
n and bεn with∣∣∣∣aε

n −
Du(0)
|Du(0)|

∣∣∣∣ +
∣∣∣∣bεn − (

− Du(0)
|Du(0)|

)∣∣∣∣ ≤ ε. (8.63)

By Proposition 3.4, we have that

ess sup
Lε

n

|Dun(x)| = sup
x,y∈Lε

n

un(x)− un(y)
|x− y|

≥ un(aε
n)− un(bεn)
|aε

n − bεn|
.

Using that, by the differentiability of u at 0, {un} converges to Du(0) · x uniformly, by (8.63) we deduce
that, for n big enough,

ess sup
Lε

n

|Dun(x)| ≥ |Du(0)|+ o(ε),

26



where o(ε) → 0 as ε → 0. Therefore, recalling that |Du(0)| > 1, we can find ε and n such that
ess supLε

n
|Dun(x)| > 1. We conclude that

F (u) ≥ ess sup
A

|Du(x)| ≥ ess sup
ρnLε

n

|Du(x)| = ess sup
Lε

n

|Dun(x)| > 1,

which is in contradiction with (8.62).
Finally let ξ ∈ B such that ξ is not in H ∩ B. In particular ξ belongs to the convex hull of H and

therefore
f lc(x, ξ) ≤ 1 a.e. on Ω.

On the other hand by the definition of f+ and the choice of ξ we have

f+(x, ξ) > 1 a.e. on Ω \A. (8.64)

Therefore if we define ū(x) = x · ξ we obtain

F (ū) > 1 ≥ ess sup
Ω

f lc(x, ξ) = ess sup
Ω

f lc(x,Dū(x))
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H. Poincaré Anal. Non Linéaire (4) 18 (2001), 495–517.

[7] E. N. Barron, R. R. Jensen , C. Y. Wang: The Euler Equation and Absolute Minimizers of
L∞ Functionals. Arch. Rational Mech. Anal. (4) 157 (2001), 225–283.

[8] E. N. Barron, W. Liu: Calculus of Variation in L∞. Appl. Math. Optim. (3) 35 (1997),
237–263.

[9] A. Briani, A. Garroni, F. Prinari: Homogenization of L∞ functionals. Math. Models Methods
Appl. Sci. 14 (2004), no. 12, 1761–1784.

[10] G. Buttazzo, G. Dal Maso: Integral representation and relaxation of local functionals. Non-
linear Anal. 9 (1985), 512–532.

27



[11] P. Cardaliaguet, F. Prinari: Supremal representation of L∞ functionals. Appl. Math. Optim.
52 (2005), no. 2, 129–141.

[12] T. Champion, L. De Pascale, F. Prinari: Semicontinuity and absolute minimizers for supremal
functionals. ESAIM Control Optim. Calc. (1) 10, (2004), 14–27.

[13] T. Champion, L. De Pascale: Principles of comparison with distance functions for AML. To
appear on Journal of Convex Analysis.

[14] B. Dacorogna, P. Marcellini: Implicit Partial Differential Equations. Progress in Nonlinear
Differential Equations and their Applications, 37, Birkauser, Boston (1999).

[15] G. De Cecco, G. Palmieri: Distanza intrinseca su una varietá finsleriana di Lipschitz. Rend.
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