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1 Introduction

There are several ways to mathematically define quasicrystalline patterns. We adopt here
the “cut and project” approach, where a quasicrystal consists of the projection of a ‘stripe’ of
a higher-dimensional periodic pattern. If the direction of this stripe is irrational with respect
to the periods of the original pattern then the resulting projected structure is not periodic,
lacking translational symmetry. However, it inherits some ‘quasiperiodic’ properties from the
original lattice. In the case of a Penrose lattice, for example, we have a five-fold symmetry
deriving from its description as the projection from a five-dimensional lattice on a two-
dimensional plane.

Our notation for the “cut and project” approach is as follows. We fix an n-dimensional
plane Πn ⊂ RN , and suppose that it is an “irrational” plane; i.e., that Πn ∩ZN = {0}. This
is not a restriction of our method: in the case that Πn ∩ ZN is a n-dimensional lattice then
we are in a simpler periodic setting, while the case when Πn ∩ZN is a k-dimensional lattice
with 0 < k < n can be seen as a combination of the extreme cases. We then consider a fixed
polyhedral neighbourhood of Πn, S = Πn ⊕ S0 with S0 a polyhedral set in the orthogonal
complement of Πn, and Σ = ZN ∩ S. A pictorical description for N = 3 and n = 1 is given
in Fig. 1.

We will consider interactions corresponding to nearest neighbours in Σ (i.e., pairs (i, j)
with |i− j| = 1). In order that this system of interactions give rise to a quasicrystal we have
to assume that Σ be large enough so that we do not have “disconnected” points inside Σ.
To that end, we assume that there exists a coordinate n-dimensional plane in RN , which we
identify with Rn such that the projection P : ZN → Zn ⊂ Rn satisfies:
• for all nearest neighbours α, β ∈ Zn there exists at least a pair of nearest neighbours
iα ∈ P−1(α) ∩ Σ and iβ ∈ P−1(β) ∩ Σ.

We will consider a “ferromagnetic” spin energy defined on Σ of the form∑
i,j

(ui − uj)2, u : Σ→ {−1, 1}, (1)
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Figure 1: Picture of S (n = 1, N = 3)

where the sum runs on nearest neighbours in Σ (note that on bounded sets this energy can
be rewritten in the more common form −2

∑
i,j uiuj , up to an additive constant. We prefer

(1) so that uniform states have zero energy), and describe its “macroscopic” behaviour. To
this end, we introduce a small parameter ε > 0 and scale the energies as

Fε(u) =
∑
i,j

εn−1(ui − uj)2, u : εΣ→ {−1, 1}. (2)

The scaling is justified by recalling that in the periodic setting with n = N this normalization
gives a non-trivial surface energy in the limit (see [1]). Note that our problem can be
interpreted as the asymptotic description of a “discrete thin film” concentrating on the
plane Πn (see e.g. [7]).

We will prove that, as ε→ 0, energies (2) can be approximated by an interfacial energy.
First, we prove a coerciveness property showing that sequences {uε} equibounded in energy
can be identified with sequences {vε} defined on Rn converging to a limit v : Rn → {±1}
(or, equivalently v : Πn → {±1}). Every such v is then identified with the set A = {v = 1};
the energies Fε are then shown to converge to an interfacial integral of the form

F (A) =
∫
∂∗A

ϕ(ν) dHn−1. (3)

A key point is the description of the surface tension ϕ, which is characterized by an
asymptotic formula involving discrete optimal transition problems on large sets in Σ, corre-
sponding to large cubes in Rn, similar to those introduced in [7] to deal with homogenization
problems on continuous thin films. The main technical issue of the paper is precisely the
proof of the existence of such ϕ, for which we adapt the quasiperiodic arguments of [11].
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To this end we make a technical hypothesis by requiring that the boundary of the stripe S
be itself composed of portions of irrational hyperplanes. Under this assumption we prove
a coarse-grained “almost invariance” of the energies for a wide set of translations; this is
a consequence of the fact that for all η > 0 we may find a uniformly dense set of “almost
periods” ση in ZN such that translations of the stripe Σ by ση superposes exactly with Σ
except for a set of points whose location can be controlled. As a consequence, the effect on
the translations of minimum problems can be estimated, which is a key point in the proof
of asymptotic homogenization formulas.

We note that, contrary to the case of Penrose lattices considered in [11] where one can
essentially reason directly on the projection of the higher-dimensional lattice on Πn, here
the description of the system as a discrete thin film is exploited both in the proof of the
coerciveness of the energies and in the control over translations.

2 Notation and setting of the problem

Let N > n ≥ 1; we fix Πn an n-dimensional linear subspace in RN . As already remarked in
the introduction the relevant case is when

Πn ∩ ZN = {0}. (4)

Otherwise, there exists 0 < k ≤ n such that we can write Πn = Πk ⊕ Πn−k, where Πk is a
k-dimensional rational space; i.e., generated by k independent vectors of ZN , and Πn−k is
an n − k-dimensional space with Πn−k ∩ ZN = {0}, and the analysis can be decoupled in
the two spaces.

Given ξ 6= 0 in the orthogonal complement of Πn, denoted by Π⊥n , let H(ξ) be the
half-space defined by

H(ξ) = {x ∈ RN : 〈x− ξ, ξ〉 ≤ 0}.

Note that this is a way of describing any closed half-space H containing 0 in its interior. It
suffices to take the vector of minimal length in ∂H as ξ.

For K ∈ N we choose ξ1, . . . , ξK ∈ Π⊥n \ {0} such that
⋂K
j=1H(ξj) ⊂ {x ∈ RN :

dist(x,Πn) ≤ R} for some R > 0, and define

S =
K⋂
j=1

H(ξj), Σ = ZN ∩ S. (5)

Note that S is a polyhedral neighbourhood of Πn with boundary faces

Ej = S ∩ ({〈x, ξj〉 = 0}+ ξj).

With these assumptions, we have that S0 = S ∩Π⊥n is a compact convex polyhedral set. In
Fig. 1 we picture S for N = 3 and n = 1.

With a slight abuse of notation, we identify Rn with a coordinate n-dimensional space in
RN , which we may suppose to be the one generated by the first n coordinate basis vectors,
and denote by P the orthogonal projection on Rn from RN ; i.e.,

P (x1, . . . , xN ) = (x1, . . . , xn). (6)
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Our main assumption is that Σ is connected, in the sense that each pair of points in Σ can
be joined by a chain of nearest neighbours in Σ. This is assured by the following assumption
on P :

(H) for all nearest neighbours α, β ∈ Zn there exists at least a pair of nearest neighbours
iα ∈ P−1(α) ∩ Σ and iβ ∈ P−1(β) ∩ Σ.

In addition, we choose ξj such that

{x : 〈x, ξj〉 = 0} ∩ ZN = {0} for all j = 1, . . . ,K. (7)

With this technical assumption all boundary faces Ej of S lie on irrational hyperplanes
parallel to Πn, that is affine hyperplanes parallel to irrational N − 1-dimensional subspaces
containing Πn. This property will be used to ensure that translations along Πn do not
“change much” the geometry of Σ.

We introduce a small parameter ε > 0 and denote by Aε the set of all functions u : εΣ→
{−1,+1}. If ε = 1 we will write A1 = A. We define the energies Fε : Aε → [0,+∞] by

Fε(u) =
∑
i,j

εn−1(ui − uj)2, (8)

where ui = u(εi), and the sum runs on all pairs of nearest neighbours in Σ; i.e., i, j ∈ Σ
such that |i− j| = 1. Note that if Fε(u) < +∞ then ui is constant outside a bounded subset
of Σ.
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Figure 2: Projection from εΣ to εZn (n = 1, N = 2)

To each u ∈ Aε we can associate a function v = P (u) : εZn → {−1, 0, 1} as follows (see
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Fig. 2):

vα = v(εα) =


1 if ui = u(εi) = 1 for all i ∈ P−1(α) ∩ Σ
−1 if ui = u(εi) = −1 for all i ∈ P−1(α) ∩ Σ
0 otherwise .

(9)

In its turn each such v is extended to a piecewise-constant function on Rn; e.g., by

v(x) = vα if x ∈ εα+
(
−ε

2
,
ε

2

)n
.

We have the following coerciveness result.

Proposition 1 (coerciveness). Let hypothesis (H) hold. Let {uε} be a sequence in Aε with
supε Fε(uε) < +∞, and let vε = P (uε) be the corresponding piecewise-constant functions on
Rn defined as in (9). Then the sequence {vε} is strongly precompact in L1

loc(Rn), and each
its limit belongs to BV (Rn; {−1, 1}).

Proof. Proposition 1 follows easily by estimating the perimeter of the sets {vε = ±1} and
showing that the sets {vε = 0} are asymptotically negligible.

We will use the notation vεα := (vε)α and uεi := (uε)i. The letter c will denote a strictly
positive constant, whose value may change from line to line.

First, note that for all α ∈ Zn such that vεα = 0 there exist nearest neighbours i, j ∈
P−1(α) ∩ Σ such that uεi 6= uεj ; hence

4εn−1#{α : vεα = 0} ≤ Fε(uε) ≤ c

so that
εn−1#{α : vεα = 0} ≤ c (10)

and
|{x ∈ Rn : |vε(x)| 6= 1}| = |{x ∈ Rn : vε(x) = 0}| = εn#{α : vεα = 0} ≤ cε.

It is sufficient then to prove that the (characteristic function of the) sets

Vε = {x ∈ Rn : vε(x) = 1}

are pre-compact in L1
loc(Rn). To that end (see e.g. [3]) it suffices to prove that

Hn−1(∂∗Vε) ≤ c .

This follows immediately from the estimate

Hn−1(∂∗Vε) = εn−1#{(α, β) : |α− β| = 1, α ∈ Vε, β 6∈ Vε}

= εn−1
(

#{(α, β) : |α− β| = 1, vεα = 1, vεβ = 0}

+#{(α, β) : |α− β| = 1, vεα = 1, vεβ = −1}
)

≤ εn−1
(

#{α : vεα = 0}

+#{(i, j) : |i− j| = 1, uεi = 1, uεj = −1}
)

= εn−1#{α : vεα = 0}+
1
8
Fε(uε) ≤ c
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by (10).
The coerciveness result in Proposition 1 justifies the definition of the convergence

uε → u ⇐⇒ P (uε)→ u strongly in L1
loc(Rn), (11)

where u ∈ BV (Rn; {−1, 1}), or, also, equivalently

uε → A ⇐⇒ uε → u and u = −1 + 2χA, (12)

where A is a set of finite perimeter in Rn.

Remark 2. The convergence above can also be interpreted as a ‘thin-film convergence’; i.e.
as a L1-convergence on a fixed set obtained by scaling to a fixed size the components of
points in εΣ orthogonal to Πn (see [7]; see also [4] Section 14). In our case the convergence
may be considered in the set

S% = {x ∈ RN : dist(x,Πn) < %},

where % is small enough so that S% is contained in the union of all cubes i+(−1/2, 1/2)N with
i ∈ Σ (if no such % exists then the definition of convergence is slightly more complex). We
extend the functions u ∈ Aε to piecewise-constant functions on the cubes i+ (−ε/2, ε/2)N .
Note that S% = S′%⊕Πn, where S′% is in the orthogonal complement of Πn. If x = y+ s with
s ∈ S′% and y ∈ Πn, we set ũε(x) = uε(y+εs). Then for sequences with equi-bounded energy
we have uε → u if and only if ũε → ũ on bounded subsets of S%, where ũ(x) = u(P (y))
depends only on y ∈ Πn if x = y + s.

We will describe the asymptotic behaviour of the energies Fε through the computation of
their Γ-limit with respect to the convergence defined in (12). This limit will turn out to be
a surface integral. In order to define the limit surface tension we introduce some notation:
for fixed ν ∈ Sn−1 we will denote by Qν ⊂ Rn an n-cube centered in 0 with side length 1
and one face orthogonal to ν. We also consider the function

vν(x) =

{
1 if 〈x, ν〉 ≥ 0
−1 otherwise.

(13)

If E ⊂ Zn we will set
E = {i ∈ Zn : ∃j ∈ E : |i− j| ≤ 1}

and (with abuse of notation) for E ⊂ Rn we set E = E ∩ Zn. Finally, we localize our
energies on (pre-images of) subsets of Rn by setting

Fε(u,E) =
∑

i,j∈Σ∩P−1(E)

εn−1(ui − uj)2, (14)

where the sum is taken on all nearest neighbours in Σ ∩ P−1(E). If ε = 1 we will write
F1 = F .

With this notation we can state the following proposition, which will be proved in Sec-
tion 4.
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Proposition 3 (existence of the surface tension). For all ν ∈ Sn−1 there exists the limit

lim
T→+∞

1
Tn−1

gT (ν), (15)

where
gT (ν) = min{F (u, TQν) : u ∈ A, P (u) = vν on Zn \ TQν} . (16)

The previous proposition allows us finally to state the main result of the paper.

Theorem 4 (homogenization of quasicrystalline lattices). Let Πn be a linear subspace of
RN of dimension n satisfying (4), let Σ be defined by (5) and satisfy hypotheses (H) and (7).
Let the energy Fε be defined by (8) and the surface tension ϕ be defined by (15). Then the
Γ-limit of Fε with respect to the convergence (12) is given by

F0(A) =
∫
∂∗A

ϕ(νA)dHn−1, (17)

where ∂∗A denotes the reduced boundary of A and νA its interior normal.

The proof of this result will be obtained in Section 5.

Remark 5. In the case n = N − 1 hypothesis (7) is always satisfied thanks to (4) since the
two faces of the boundary of S are parallel to Πn.

If we remove hypothesis (4) then Πn = Πk ⊕Πn−k, where Πk is an irrational plane and
Πn−k is a rational plane (i.e., Πn−k ∩ ZN is a n − k-dimensional lattice). Then the same
theorem holds provided that S can be written as Πn−k ⊕ S′, where S′ satisfies (7) in the
N − n+ k dimensional space orthogonal to Πn−k. We will not deal with this case in detail.

It is not clear if (7) is just a technical hypothesis, and if the proof of the theorem can be
adapted to cover non-polyhedral neighbourhoods of Πn.

Remark 6 (local version of the homogenization theorem). In the same way as for Theorem 4
we can prove that for any fixed bounded open subset Ω in Rn with Lipschitz boundary we
have convergence of the localized functionals Fε(·,Ω) to the localized interfacial energy

F0(A,Ω) =
∫

Ω∩∂∗A
ϕ(νA)dHn−1 . (18)

This can be proved by extending all functions to 1 outside εΣ ∩ P−1(Ω) and using the
theorem on compactly contained subsets of Ω to get a lower bound, while an upper bound
is obtained by the same direct construction of the upper bound of the theorem. Note that
in this case the Γ-limit is computed with respect to the convergence in L1(Ω) in (11).
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3 Quasiperiodic properties of quasicrystals

In this section we derive some properties of Σ when the plane Πn satisfies (4).

Proposition 7. For all η > 0 the set

Tnη = {τ ∈ Zn : dist(P−1(τ) ∩ Σ,Πn) < η}

is relatively dense in Rn; i.e., there exists an inclusion length Lη > 0 such that for all x ∈ Rn
there exists τ ∈ Tnη such that x ∈ τ + [0, Lη]n.

Proof. The function f(x) = dist(P−1(x) ∩ Πn,ZN ) is continuous and quasiperiodic; hence,
it is uniformly almost-periodic in Rn. By the characterization of uniformly almost-periodic
functions in [2], the set T̃nη = {x : f(x) < η} is relatively dense in Rn. Then P ({σ ∈ ZN :
dist(σ, P−1(T̃nη ) ∩Πn) < η}) is also relatively dense. Since by construction we have that

{σ ∈ ZN : dist(σ, P−1(T̃nη ) ∩Πn) < η} = {σ ∈ Σ : dist(σ,Πn) < η},

then Tnη = P ({σ ∈ ZN : dist(σ, P−1(T̃nη ) ∩Πn) < η}) concluding the proof.

We define
TNη = {σ ∈ Σ : dist(σ,Πn) < η} , (19)

so that Tnη = P (TNη ). For any σ ∈ TNη we define

B(σ) =
{
α ∈ Zn : (P−1(α) ∩ Σ) + σ 6= P−1(α+ P (σ)) ∩ Σ

}
and

Bη =
⋃

σ∈TNη

B(σ). (20)

Proposition 8. There exist a sequence {Rη} with Rη → +∞ as η → 0, such that for any
x ∈ Rn and any ν ∈ Sn−1

#(Bη ∩ (RηQν + x)) ≤ K,

where K is the number of the faces of the neighbourhood S of Πn.

For η > 0 and j = 1, . . . , k we define

Λjη = {i ∈ ZN : dist(i, Lj + ξj) < η} and Λη =
K⋃
j=1

Λjη

Hj
η = {x ∈ RN : 〈x− ξj , ξj〉 < η |ξj |} and Sη =

K⋂
j=1

Hj
η

where Lj = {x ∈ RN : 〈x, ξj〉 = 0} (see Fig. 3). Note that Sη is a polyhedral “η-
neighbourhood” of S, so that Λη are the points in ZN lying in a polyhedral “η-neighbourhood”
of ∂S.
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Figure 3: Parameterization of an η-neighbourhood of S

Proof. We start by showing that for any η > 0

Bη ⊂ P (Λη ∩ Sη) (21)

(see Fig. 4). Indeed, suppose by contradiction that there exists α ∈ Bη such that for any

��

��

� ������	

Figure 4: The set P (Λη ∩ Sη)

i ∈ P−1(α) either the inequality

dist(i, Lj + ξj) =
|〈i− ξj , ξj〉|
|ξj |

≥ η holds for every j = 1, . . . ,K, (22)

or the inequality

〈i− ξj , ξj〉 ≥ η|ξj | holds for some j ∈ {1, . . . ,K}. (23)

9



Let σ ∈ TNη be such that α ∈ B(σ). Then for any j such that |〈i− ξj , ξj〉| ≥ η|ξj |, it follows
that for i ∈ P−1(α)

η2|ξj |2 > |〈σ, ξj〉|2 ≥ η2|ξj |2 − 2〈i+ σ − ξj , ξj〉〈i− ξj , ξj〉. (24)

This implies that i and i+σ belong to the same half-space H(ξj) defined by Lj + ξj . If (22)
holds, then (24) holds for any j, and we have

i ∈ Σ⇐⇒ i ∈ H(ξj) for any j ⇐⇒ i+ σ ∈ H(ξj) for any j ⇐⇒ i+ σ ∈ Σ.

On the other hand, if (23) holds, then there exists an index j such that (24) holds and
i 6∈ H(ξj). Thus, i+ σ 6∈ H(ξj), hence i+ σ 6∈ Σ. We conclude that i+ σ ∈ Σ if and only if
i ∈ Σ. This implies that (P−1(α) + σ) ∩ Σ = (P−1(α) ∩ Σ) + σ and since the set equality
P−1(x+ y) = P−1(x) + Y holds for any Y ∈ P−1(y), we get

P−1(α+ P (σ)) ∩ Σ = (P−1(α) + σ) ∩ Σ = (P−1(α) ∩ Σ) + σ,

which gives a contradiction since α ∈ B(σ). This proves (21).
We recall that the family {ξj} satisfies the hypothesis Lj∩ZN = {0} for any j = 1, . . . ,K.

Then, setting
rj(η) = inf{|ij − i′j | : ij , i′j ∈ Λjη, ij 6= i′j},

we show that limη→0 r
j(η) = +∞ for any j. Indeed, suppose by contradiction that there

exists a subsequence {ηk} such that rj(ηk) ≤ Cj < +∞ for any k; then for any k ∈ N there
exist ij(k) and i′j(k) in Λjηk such that ij(k) 6= i′j(k) and |ij(k) − i′j(k)| ≤ Cj . Then (up to
subsequences) ij(k) − i′j(k) is constant, say ij(k) − i′j(k) = ζ ∈ ZN \ {0}. Since ij(k) and
i′j(k) belong to Λjηk , it follows that for any k dist(ζ, Lj) ≤ 2ηk → 0; this implies ζ ∈ Lj ,
giving the contradiction since Lj ∩ ZN = {0}. Setting

rη = min{rj(η) : j = 1, . . . ,K},

it follows that limη→0 rη = +∞, and satisfies the property that if i and i′ belong to Λjη and
|i− i′| ≤ rη, then i = i′. Therefore, for any closed ball DN

η ⊂ RN with diameter rη we get

#(DN
η ∩ Λη) ≤ K. (25)

Now we define
Rη =

rη√
n(1 + p)

,

where
p = ‖(P |Πn)−1‖ = max{|(P |Πn)−1(v)| : |v| = 1}.

Let Dn
η be the ball with center x and diameter

√
nRη; we now prove that

diam(P−1(Dn
η ) ∩ Sη) ≤ rη. (26)

Let c be the diameter of Sη ∩P−1(0). If i, i′ ∈ P−1(Dn
η )∩Sη, and w = P (i− i′), then i− i′

admits a decomposition i− i′ = (P |Πn)−1(w) + w0, where w0 ∈ P−1(0). We have

|i− i′| ≤ c+ |(P |Πn)−1(w)| ≤
√
nRη + p|w| ≤

√
nRη(1 + p) ≤ rη,
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since c ≤
√
nRη for η small enough.

If α ∈ (RηQν +x)∩P (Sη∩Λη), there exists iα ∈ P−1(α)∩Sη∩Λη ⊂ P−1(Dn
η )∩Sη∩Λη;

then, (26) implies

(RηQν + x) ∩ P (Sη ∩ Λη) ⊂ P (P−1(Dn
η ) ∩ Sη ∩ Λη) ⊂ P (DN

η ∩ Λη),

where DN
η denotes a closed ball in RN with diameter rη as in (25). Thus, (21) and (25) give

#((RηQν + x) ∩Bη) ≤ K,

and the proof is concluded.

4 The surface-tension formula

In this section we prove Proposition 3, which will be obtained using the following result.

Proposition 9. Let ν ∈ Sn−1, T > 0, and let uT ∈ A satisfy F (uT , TQν) ≤ CTn−1 and the
boundary condition PuT = vν on Zn \ TQν , where vν is defined in (13); then for all η > 0
and for all τ ∈ Tnη there exists uτT such that (PuτT )(α) = vν(α− τ) for α ∈ Zn \ (TQν + τ)
and

F (uτT , TQν + τ) ≤ F (uT , TQν) +
c

Rη
Tn−1,

where c depends only on n,N,Σ and C, and Rη is given by Proposition 8.

Proof. The idea behind the construction of uτT is that we can simply translate the function
uT except close to some set of exceptional points. This exceptional set is not negligible,
but the function uT must be constant on some sets enclosing most of such points, so that
uτT can be defined as that constant in the interior of the translation of those enclosing sets.
Proposition 8 allows to quantify this process. In the sequel, c will be used to denote possibly
different positive constants depending only on n,N and Σ, and on the constant C in the
hypothesis on the energy F (uT , TQν).

Given η > 0 and τ ∈ Tnη , we set (omitting the dependence on η) σ as the unique element
in P−1(τ) ∩ TNη and IT = TQν ∩ B(σ). Thanks to Proposition 8, for any γ ∈ Zn we have
# (B(σ) ∩ (RηQν + γ)) ≤ K; then, since TQν ⊂ (T +Rη)Qν , it follows that

# (IT \ (T −Rη)Qν) ≤ cTn−1

Rn−1
η

. (27)

We set JT = IT ∩ (T −Rη)Qν ; Proposition 8 ensures that there exist r0 > 0 depending only
on n,N and Σ, and a family ST of indices such that JT =

⋃
s∈ST J

s
T and

1. #JsT ≤ K for any s ∈ ST ;

2. the set UsT =
⋃
α∈JsT

(r0RηQ+ α) is connected for any s ∈ ST ;

3. if s, s′ ∈ ST with s 6= s′ then UsT ∩ Us
′

T = ∅.

11



Conditions 1–3 above express the fact that points in JT can be decomposed into “clusters”
of at most K elements, at a distance of order Rη. Moreover, we can assume r0 < 1/2, so
that for η small enough we have

(r0RηQ+ α) ∩ ((T + 2)Qν \ (T − 2)Qν) = ∅

for any α ∈ JT .

Setting S̃T =
{
s ∈ ST : F (uT , UsT ) ≥ r0Rη − 1

2

}
, the hypothesis on F (uT , TQν) gives

#S̃T ≤
2CTn−1

r0Rη − 3
. (28)

Then, fixed s ∈ ST \ S̃T , we define

C0 =
⋃
α∈JsT

(Q+ α)

Ck =
⋃
α∈JsT

((2k + 1)Q+ α) \
⋃
α∈JsT

((2k − 1)Q+ α) for k = 1, . . . ,
[
r0Rη − 1

2

]
.

Since F (uT , UsT ) <
r0Rη − 1

2
, there exists an index k(s) such that F (uT , Ck(s)) = 0;

denoting the connected components of Ck(s) by Cmk(s), with m = 1, ...,Mk(s), we can write

Cmk(s) =
⋃

α∈Γm
k(s)

((2k(s) + 1)Q+ α) \
⋃

α∈Γm
k(s)

((2k(s)− 1)Q+ α),

where the sets Γmk(s) are disjoint and
Mk(s)⋃
m=1

Γmk(s) = JsT (see Fig. 5). Then, for any m =

1, ...,Mk(s), uT is constant on Σ∩ P−1(Cmk(s) ∩Zn). We denote this constant value by us,mT .

Now, we can construct uτT . For any s ∈ ST \ S̃T , we define uτT in Σ ∩ P−1(UsT + τ) by
setting

uτT (i) =

 us,mT if P (i)− τ ∈
⋃

α∈Γm
k(s)

((2k(s) + 1)Q+ α), m = 1, . . . ,Mk(s)

uT (i− σ) otherwise in Σ ∩ P−1(UsT + τ);

it follows that
F (uτT , U

s
T + τ) ≤ F (uT , UsT ). (29)

For s ∈ S̃T , the function uτT is given by

uτT (i) =
{

1 if P (i)− τ ∈ B(σ)
uT (i− σ) otherwise in Σ ∩ P−1(UsT + τ).

12
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Figure 5: Construction of functions close to exceptional points

Finally, we set

uτT (i) =
{
vν(P (i)− τ) if P (i)− τ ∈ IT \ JT
uT (i− σ) otherwise in Σ.

Note that P (uτT )(α) = vν(α − τ) for α ∈ Zn \ (TQν + τ). Recalling (27), (28) and (29) we
get

F (uτT , TQν + τ) ≤ F (uT , TQν) + c#(IT \ JT ) + cK#S̃T
≤ F (uT , TQν) +

c

Rη
Tn−1,

as desired.

Remark 10. The same argument as above shows that, given τ ∈ Tnη and a function u ∈ A
satisfying F (u, TQν + τ) ≤ CTn−1 and the boundary condition (Pu)(α) = vν(α − τ) for
α ∈ Zn \ (TQν + τ), we can construct a function ũ ∈ A such that Pũ = vν in Zn \ TQν and

F (ũ, TQν) ≤ F (u, TQν + τ) +
c

Rη
Tn−1,

where Rη is given by Proposition 8.

13



Proof of Proposition 3. We consider S >> T and the n-cube SQν . With fixed η > 0,
let Lη be the inclusion length given by the relative density of Tnη , and denote by Qνk with

k = 1, . . . ,
[

S
T+2Lη

]n−1 disjoint cubes with two faces orthogonal to ν and side length T +2Lη
included in SQν ∩

{
|〈x, ν〉| < T

2 + Lη
}

.
The relative density ensures that for any k there exists a translation vector τkη ∈ Tnη such

that TQν + τkη ⊂ Qνk.

Following Proposition 9, given uT , for any translation vector τkη we define uk = u
τkη
T . We

then define uS as

uS(i) =
{
uk(i) if P (i) ∈ TQν + τkη
vν(P (i)) if P (i) ∈ SQν \

⋃
k(TQν + τkη ).

(30)

In Fig. 6 we picture the construction of uS by representing the corresponding projections
P (uS) (gray and white regions corresponding to ±1, the 0 zones being negligible).

S

T2L

Qk


T


k

Figure 6: Representation of the construction of uS

The contributions to F (uS , SQν) outside the union of the squares Qνk can be easily
estimated by c(T + 2Lη)n−1Sn−2 since there we have uS(i) = vν(P (i)).

Hence, the function uS : Σ∩P−1(SQν)→ {−1,+1} defined in (30) satisfies the boundary
condition PuS = vν in SQν \ SQν and thanks to Proposition 9

F (uS , SQν) ≤
[

S

T + 2Lη

]n−1(
F (uT , TQν) + c

Tn−1

Rη
+ cLn−1

η

)
+c(T + 2Lη)n−1Sn−2.

14



Thus, taking the upper limit as S → +∞,

lim sup
S→+∞

1
Sn−1

F (uS , SQν) ≤ 1
(T + 2Lη)n−1

(
F (uT , TQν) + c

Tn−1

Rη
+ cLn−1

η

)
≤ 1

Tn−1

(
F (uT , TQν) + c

Tn−1

Rη
+ cLn−1

η

)
and, taking the lower limit as T → +∞,

lim sup
S→+∞

1
Sn−1

F (uS , SQν) ≤ lim inf
T→+∞

1
Tn−1

F (uT , TQν) +
c

Rη
.

Now, for a given r > 0, let urT : Σ → {−1,+1} satisfy PurT = vν in Zn \ TQν and be such
that

F (urT , TQν) ≤ gT (ν) + r.

Then urT satisfies the hypothesis of Proposition 9, and

lim sup
S→+∞

1
Sn−1

gS(ν) ≤ lim inf
T→+∞

1
Tn−1

gT (ν) +
c

Rη

Letting η → 0, since Rη → +∞ by Proposition 8, we have

lim sup
S→+∞

1
Sn−1

gS(ν) ≤ lim inf
T→+∞

1
Tn−1

gT (ν)

and we conclude that the limit ϕ(ν) = lim
T→+∞

1
Tn−1

gT (ν) exists.

5 Homogenization of quasicrystalline lattices

In this Section we prove Theorem 4 by showing separately a lower and an upper bound.

5.1 Lower bound

Let A be a set of finite perimeter in Rn and let {uε} be a sequence of admissible functions
such that uε → A, where the convergence is as in (12). It is not restrictive to assume that
there exists the limit lim

ε→0+
Fε(uε) and that it is finite.

We define the measures

µε = εn−1
∑
α∈Zn

δα#{{i, j} ∈ N({P−1(α) ∩ Σ}) : uε(i) 6= uε(j)}

+εn−1
∑

{α,β}∈N(Zn)

δα+β
2

#{{i, j} ∈ N(Σ) : i ∈ P−1(α), j ∈ P−1(β), uε(i) 6= uε(j)},

where for E ⊂ Zn (or ZN ) we set N(E) = {{α, β} : α, β ∈ E, |α − β| = 1}. In this way,
µε(Rn) = Fε(uε), so that the sequence {µε} is bounded, and, up to subsequences, we can
assume µε

∗
⇀ µ.

15



We want to prove that the inequality

dµ

dHn−1 ∂∗A
(x0) ≥ ϕ(νA(x0)) (31)

holds for Hn−1-a.a. x0 ∈ ∂∗A.

With fixed x0 ∈ ∂∗A we set ν = νA(x0), and consider as above %Qν + x0 as any cube in
Rn with centre x0, side length % and two faces orthogonal to ν. Note that, for almost every
%, µ(%Qν + x0) = limε→0 µε(%Qν + x0).

By the Besicovitch differentiation theorem it follows that Hn−1-almost every x0 ∈ ∂∗A
is a Lebesgue point for µ with respect to Hn−1 ∂∗A. Hence, for Hn−1-a.a. x0 ∈ ∂∗A there
exists the limit

dµ

dHn−1 ∂∗A
(x0) = lim

%→0

µ(%Qν + x0)
Hn−1((%Qν + x0) ∩ ∂∗A)

.

For Hn−1-a.a. x0 ∈ ∂∗A we have
A− x0

%
→ {x : 〈x, ν〉 ≥ 0} as %→ 0.

We may therefore assume that x0 ∈ ∂∗A satisfies the properties above.
Since µ is finite it is also possible to choose an infinitesimal sequence %ε such that

dµ

dHn−1 ∂∗A
(x0) = lim inf

ε→0

µε(%εQν + x0)
Hn−1((%εQν + x0) ∩ ∂∗A)

,

satisfying the asymptotic conditions Tε =
%ε
ε
→ +∞ and, setting xε =

x0

ε

1
Tnε

∫
TεQν+xε

|vε(εx)− vν (x− xε)| dx = o(1)ε→0. (32)

Then we get

lim inf
ε→0

µε(%εQν + x0)
Hn−1((%εQν + x0) ∩ ∂∗A)

= lim inf
ε→0

Fε(uε, %εQν + x0)
%n−1
ε

= lim inf
ε→0

F (wε, TεQν + xε)
Tn−1
ε

where wε(i) = uε(εi) in Σ so that Pwε(α) = vε(εα).
The relative density of the set of translations Tnη ensures that fixed η > 0 there exists

τε ∈ Tnη such that (Tε − 2Lη)Qν + τε ⊂ TεQν + xε. Note that∫
(Tε−2Lη)Qν+τε

|vν (x− xε)− vν (x− τε)| dx = O(Tn−1
ε )ε→0.

We set T̃ε = Tε − 2Lη; from (32) we get

1
Tnε

∫
eTεQν+τε

|vε(εx)− vν (x− τε)| dx = o(1)ε→0. (33)

16



Now, we fix δ ∈ (0, 1/4) and define

Qν(m, ε) = (T̃ε − 2(δT̃ε + 3m
√
n))Qν + τε, m = 0, . . . , Nε =

[
δT̃ε
3
√
n

]
.

Moreover, we set C(m, ε) = Qν(m−1, ε)\Qν(m, ε). The definition of Qν(m, ε) is envisaged
so that the cube Qν(m, ε) is well separated from the exterior of Qν(m−1, ε) (see also Fig. 7).

Then there exists m(ε) ∈ {1, . . . , Nε} such that∣∣∣{x ∈ T̃εQν + τε : Pwε(x) 6= vν(x− τε)
}∣∣∣

≥
Nε∑
m=1

# {α ∈ Zn : Q+ α ⊂ C(m, ε) and Pwε(α) 6= vν(α− τε)}

≥ #{α ∈ Zn : Q+ α ⊂ C(m(ε), ε) and Pwε(α) 6= vν(α− τε)}Nε

so that recalling (33) we get

#{α ∈ Zn : Q+ α ⊂ C(m(ε), ε) and Pwε(α) 6= vν(α− τε)} = o(T̃n−1
ε )ε→0. (34)

Now we define w̃ε : Σ→ {−1,+1} as

w̃ε(i) =
{
wε(i) if (Q+ P (i)) ∩Qν(m(ε) + 1, ε) 6= ∅
vν(P (i)− τε) otherwise

(see Fig. 7).

!!! " "

# $" %

# $" % $" %

# &$ &%' %%'

Figure 7: Modification of boundary values

Recalling (34), it follows that w̃ε satisfies the boundary conditions, and by construction

F (w̃ε, T̃εQν + τε) ≤ F (wε, T̃εQν + τε) + o(T̃n−1
ε )ε→0 + cT̃n−1

ε δ.

17



Taking the lim inf as ε→ 0, and the limit for δ → 0, the previous inequality implies

lim inf
ε→0

F (w̃ε, T̃εQν + τε)

T̃n−1
ε

≤ lim inf
ε→0

F (wε, T̃εQν + τε)

T̃n−1
ε

.

Now, Remark 10 ensures that there exists ŵε ∈ A with Pŵε = vν in Zn \ T̃εQν such that

F (ŵε, T̃εQν) ≤ F (w̃ε, T̃εQν + τε) +
c

Rη
T̃n−1
ε ,

and we can conclude

lim inf
ε→0

µε(%εQν + x0)
Hn−1((%εQν + x0) ∩ ∂∗A)

≥ lim inf
ε→0

F (wε, T̃εQν + τε)

T̃n−1
ε

≥ lim inf
ε→0

F (w̃ε, T̃εQν + τε)

T̃n−1
ε

≥ lim inf
ε→0

F (ŵε, T̃εQν)

T̃n−1
ε

− c

Rη
.

Since Rη → +∞ as η → 0, Proposition 3 finally allows to conclude that

lim inf
ε→0

µε(%εQν + x0)
Hn−1((%εQν + x0) ∩ ∂∗A)

≥ ϕ(ν). (35)

5.2 Upper bound

The proof of the upper bound will use a density argument, following the line of the proof of
the upper bound in [11]. We start by proving in Proposition 11 the existence of a recovery
sequence when A is a polyhedral set.

Proposition 11. Let A ⊂ Rn be a polyhedral set. Then there exists a sequence {uε},
uε ∈ Aε such that uε → A as ε→ 0 (where the convergence is given by (12)) and

lim sup
ε→0

Fε(uε) ≤ F0(A) =
∫
∂A

ϕ(ν) dHn−1.

Proof. Fixed r > 0, omitting the dependence on r, for any S > 0 we denote by uνS ∈ A a
function satisfying PuνS = vν in Zn \ SQν and

F (uνS , SQν) < gS(ν) + r. (36)

Our construction is localized close to each (n− 1)-dimensional face of the polyhedral set
A. We start by considering, for x ∈ Rn and ν ∈ Sn−1, the affine space L = {〈x−x, ν〉 = 0}.
Let E be a (n− 1)-dimensional polyhedral subset of L.

Fixed ε > 0 small enough, we denote by Qkε =
√
εQν + xkε , for k = 1, . . . ,Mε, each cube

of a maximal family of disjoint cubes with center in E, two faces orthogonal to ν and side
length

√
ε, such that Qkε ∩ L ⊂ E. Note that

Mε = Hn−1(E)(
√
ε)1−n + o((

√
ε)1−n)ε→0.
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Setting
Eλ = {x+ tν : x ∈ E,−λ < t < λ}

for λ > 0, we can estimate

#
(
εZn ∩ (E2ε

√
n \
⋃
k

Qkε)
)
≤ c
√
ε ε1−n. (37)

For any η > 0, the relative density of Tnη ensures that for any ε > 0 and k there exists
τkε ∈ Tnη (where we omit the dependence on η) such that ε−1xkε ∈ [0, Lη]n + τkε ; hence, for
T large enough

(T − 4Lη)Qν + τkε ⊂ TQν + ε−1xkε

so that, choosing T = 1/
√
ε

(
√
ε− 4εLη)Qν + ετkε ⊂

√
εQν + xkε .

Setting %ε =
√
ε − 4εLη (again omitting the dependence on η), Proposition 9 ensures that

for each ε > 0 and k = 1, . . . ,Mε there exists ukε ∈ A such that P (ukε)(α) = vν(α − τkε ) in
Zn \ ((%ε/ε)Qν + τkε ) and

F (ukε , (%ε/ε)Qν + τkε ) ≤ F (uν%ε/ε, (%ε/ε)Q
ν) +

c

Rη

(%ε
ε

)n−1

where uν%ε/ε is as in (36) with S = %ε/ε. Defining for each k = 1, . . . ,Mε the function
wkε ∈ Aε as wkε (εi) = ukε(i), it follows that

Fε(wkε , %εQν + ετkε ) = εn−1F (ukε , (%ε/ε)Qν + τkε )

≤ εn−1F (uν%ε/ε, (%ε/ε)Q
ν) +

c

Rη
%n−1
ε

≤ εn−1g%ε/ε(ν) + εn−1r +
c

Rη
%n−1
ε

Now, for a fixed λ >
√
ε, we define wε : εΣ ∩ P−1(Eλ)→ {−1,+1} as

wε(εi) =
{
wkε (εi) if P (εi) ∈ %εQν + ετkε
vνε (P (εi)) otherwise.

(38)

where

vνε (εα) =
{

1 if εα ∈ {x+ tν, x ∈ E, 0 ≤ t < λ}
−1 if εα ∈ {x+ tν, x ∈ E,−λ < t < 0}.

In Fig. 8 we picture the construction of wε by representing the corresponding projections
P (wε).

Since for each k we have

#
(
εZn ∩ E2ε

√
n ∩ (Qkε \ %εQν + ετkε )

)
≤ c(
√
ε)2−n,
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Figure 8: Construction of wε

recalling (37) we have

Fε(wε, Eλ) ≤
∑
k

Fε(wkε , %εQν + ετkε ) + cεn−1 #

(
εZn ∩ (E2ε

√
n \
⋃
k

%εQν + ετkε )

)

≤ Mε

(
εn−1g%ε/ε(ν) + εn−1r +

c

Rη
%n−1
ε

)
+ c
√
ε

≤ Hn−1(E)(
√
ε)n−1(g%ε/ε(ν) + r) +

c

Rη

(
%ε√
ε

)n−1

+ o(1)ε→0

≤ Hn−1(E)
(
ε

%ε

)n−1

(g%ε/ε(ν) + r) +
c

Rη
+ o(1)ε→0

since %ε <
√
ε and lim

ε→0

%ε√
ε

= 1. Then

lim sup
ε→0

Fε(wε, Eλ) ≤ Hn−1(E) lim sup
ε→0

1
(%ε/ε)n−1

g%ε/ε(ν) +
c

Rη

= Hn−1(E) ϕ(ν) +
c

Rη
.

Since Rη → +∞ as η → 0, we conclude

lim sup
ε→0

Fε(wε, Eλ) ≤ Hn−1(E) ϕ(ν). (39)

Now, let A be a polyhedral set in Rn with (n − 1)-dimensional faces E1, . . . , Eq. We
denote by νj the inner normal to Ej and by Ejλ the set {x+ tνj : x ∈ E,−λ < t < λ}.

Let wε,j : εΣ∩P−1(Ejλ)→ {−1,+1} be the function constructed as in the previous step,
by choosing E = Ej , ν = νj and Eλ = Ejλ. Now, we define

uε(εi) =

{
wε,j(εi) if P (εi) ∈ Ej√

ε
\
⋃
k 6=l(E

k√
ε
∩ El√

ε
)

χA∩εZn(P (εi)) otherwise in εΣ.
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With this definition, uε → A in the sense of (12); since
∣∣∣⋃k 6=l(Ek√ε ∩ El√ε)∣∣∣ → 0 as ε → 0,

recalling (39) we get

lim sup
ε→0

Fε(uε) ≤
∑
j

Hn−1(Ej) ϕ(νj) =
∫
∂A

ϕ(ν) dHn−1 = F0(A). (40)

concluding the proof.

To treat the case of a general A, we use a density argument based on the Reshetnjak
Theorem. Given A with finite perimeter in Rn, let {Ak} be a sequence of polyhedral sets
such that |A∆Ak| → 0 and |DχAk |(Rn) → |DχA|(Rn) as k → +∞ (see [3]). The same
proof as [11, Sec. 4.2] shows that the function ϕ is continuous, so that we can apply the
Reshetnjak Theorem (see, e.g., [3, Th. 1.3.2]) to obtain

lim
k→+∞

F0(Ak) = F0(A).

Then, the lower-semicontinuity of the upper Γ-limit allows to conclude the proof.
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