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Abstract. We study a quasistatic evolution problem for Cam-Clay plasticity under a
special loading program which leads to spatially homogeneous solutions. Under some

initial conditions, the solutions exhibit a softening behaviour and time discontinuities.

The behavior of the solutions at the jump times is studied by a viscous approximation.
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1. Introduction

The modified Cam-Clay model has been introduced in the engineering literature on soil
mechanics as a conceptual tool to understand the irreversible deformations experienced by
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fine grained soils (clays) upon loading [10, 9, 8, 11]. One of the interesting features of
this model is that, depending on the loading conditions, the stress-strain response may
exhibit a hardening or a softening behaviour. Furthermore, it is an important example
of nonassociative plasticity, for which a satisfactory mathematical theory is only partially
developed [7].

We restrict our attention to the spatially homogeneous case in dimension n , with no
volume forces. The system is driven by a time-dependent affine boundary condition w(t, x),
whose symmetrized spatial gradient Ew(t, x) is independent of the space variable x and
is denoted by ξ(t). In this situation, the displacement u(t, x) coincides with w(t, x) and
the unknowns are the elastic part e(t) and the plastic part p(t) appearing in the additive
decomposition of the strain Eu(t, x) = e(t) + p(t), as well as a scalar internal variable z(t),
which describes the time evolving yield surface. The stress σ(t) is determined by the elastic
part of the strain through the usual relation σ(t) = Ce(t), where C is the tensor of elastic
moduli.

One ingredient of the model is a closed convex cone K ⊂ Mn×n
sym×[0,+∞), where Mn×n

sym

is the space of symmetric n×n matrices. It is assumed that K contains the half-line
{0}×[0,+∞). The stress is constrained by the inclusion σ(t) ∈ K(z(t)), where for every
ζ ∈ [0,+∞) we define K(ζ) := {σ ∈Mn×n

sym : (σ, ζ) ∈ K} . The interior of K(ζ) is the elastic
domain corresponding to the value ζ of the internal variable, while its boundary ∂K(ζ)
is the yield surface. In the typical applications, ∂K(ζ) is a suitable ellipsoid in the space
Mn×n
sym .
The other ingredients of the model are the evolution laws for p(t) and z(t), resulting in

the system 
e(t) + p(t) = ξ(t) , σ(t) = Ce(t) ∈ K(z(t)) ,

ṗ(t) ∈ NK(z(t))(σ(t)) ,

ż(t) = tr(σ(t)) tr(ṗ(t)) ,

(1.1)

where NK(ζ)(σ) denotes the normal cone to K(ζ) at σ . The nonassociative nature of the
problem is due to the fact that the equation for ż in (1.1) does not depend on K . In view
of the hypotheses on K , we have the monotonicity condition ζ1 < ζ2 ⇒ K(ζ1) ⊂ K(ζ2).
Therefore, if ż(t) > 0, the set K(z(t)) expands leading to a hardening response. On the
contrary, if ż(t) < 0, the set K(z(t) shrinks leading to a softening response. In the usual
applications we have tr(σ) ≤ 0 for every σ ∈ K(ζ), which reflects the compressive conditions
typical of soil mechanics. Therefore, by the third line in (1.1), the hardening or softening
behaviour is determined only by the sign of tr(ṗ). An energetic approach to a class of rate-
independent plasticity problems which present only a softening behaviour has been proposed
in [3].

To deal with the instabilities of the softening regime, we propose a viscosity approximation
to (1.1), [4, 2]. Denoting the minimal distance projection of σ onto K(ζ) by πK(ζ)(σ), for
every ε > 0 we consider the unconstrained system

eε(t) + pε(t) = ξ(t) , σε(t) = Ceε(t) ,
ṗε(t) = Nε

K(zε(t))
(σε(t)) ,

żε(t) = tr(πK(zε(t))(σε(t))) tr(ṗε(t)) ,

(1.2)

where Nε
K(ζ)(σ) := 1

ε (σ − πK(ζ)(σ)) is the usual approximation of the normal to K(ζ). A
viscosity solution (e(t), p(t), σ(t), z(t)) to (1.1) is defined as a left continuous map which,
for almost every time t , is the pointwise limit of a sequence (eε(t), pε(t), σε(t), zε(t)) of
solutions of (1.2).

In this paper we study in detail the case where Ce = e for every e ∈ Mn×n
sym , so that

σ(t) = e(t) and σε(t) = eε(t). Moreover, we assume that K(ζ) is the closed ball centered
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at − 1
nζI with radius 1√

n
ζ , namely,

K(ζ) = {σ ∈Mn×n
sym : |σ + 1

nζI| ≤
1√
n
ζ} (1.3)

where I is the identity matrix in Mn×n
sym . The fact that all the elements in the interior of

K(ζ) are negative definite reflects the fact that the material can only sustain compressive
stresses.

Given a constant a0 > 0, and a matrix e0 ∈ Mn×n
sym with tr(e0) = 0 and |e0| = 1, we

consider the special loading path

ξ(t) = −a0
1
nI + t 1√

n
e0 , (1.4)

and the initial conditions eε(0) = e(0) = −a0
1
nI and zε(0) = z(0) = z0 . Then eε(t) and

e(t) have the form

eε(t) = − 1
nxε(t)I + 1√

n
yε(t)e0 and e(t) = − 1

nx(t)I + 1√
n
y(t)e0 ,

for suitable scalar function xε(t), yε(t), x(t), y(t) satisfying xε(0) = x(0) = a0 and yε(0) =
y(0) = 0, while the constraint σ(t) ∈ K(z(t)) becomes√

(x(t)− z(t))2 + y(t)2 ≤ z(t) .

Since the initial condition must satisfy this constraint, we assume that 0 ≤ a0 ≤ 2z0 .
Then the solution is given by

xε(t) = x(t) = a0 , yε(t) = y(t) = t , zε(t) = z(t) = z0 (1.5)

in the interval [0, t0] , where t0 satisfies
√

(a0 − z0)2 + t20 = z0 . This corresponds to the
elastic regime (see Fig. 1.1).

x

y

Θ0

z0a0

t0

!x!t",y!t""

Figure 1.1. The elastic regime. The thick line segment is the trajectory
of (x(t), y(t)) in the time interval [0, t0] . The circle represents the yield
surface in the (x, y) plane, which remains constant in this time interval.
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After time t0 the solution exhibits a plastic behaviour. To study the solution for t > t0
we introduce polar coordinates{

xε(t)− zε(t) = ρε(t) cos θε(t) ,

yε(t) = ρε(t) sin θε(t) ,

{
x(t)− z(t) = ρ(t) cos θ(t) ,

y(t) = ρ(t) sin θ(t) ,
(1.6)

with ρε(t) > 0 and ρ(t) > 0 and we consider the angle θ0 ∈ [0, π] (see Fig. 1.1) such that

a0 = z0 + z0 cos θ0 and t0 = z0 sin θ0 . (1.7)

To study the instabilities due to softening, it is convenient to introduce a fast time s := 1
ε t .

By contrast, the standard time t will be called slow time. In certain time intervals the
problem has no singularities and the evolution can be studied using the slow time. The limit
system in this case is called the system of the slow dynamics and is studied in Section 3.
It is used to describe the limit behaviour in the hardening regime (Subsection 5.1) and in
some cases of softening (Subsections 5.2 and 5.3).

In the softening regime, singular behavior may occur, which requires the use of the fast
time s . The corresponding limit system is called the system of the fast dynamics and is
studied in Section 6. It is formally obtained by rescaling time in (1.2) according to s = t

ε
and is used to determine the transfer map at a jump point t1 ≥ t0 , defined as the map

(ρ(t1−), θ(t1−), z(t1−)) 7→ (ρ(t1+), θ(t1+), z(t1+))

where + and − refer to left and right limit, respectively (see Fig. 1.2). More precisely,
the right limit (ρ(t1+), θ(t1+), z(t1+)) is given by the asymptotic value for s → +∞ of
the solution (ρf(s), θf(s), zf(s)) of the system of the fast dynamics (6.30) whose limit as
s→ −∞ is given by (ρ(t1−), θ(t1−), z(t1−)).
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Figure 1.2. Transfer map in the (θ, ρ) plane. The solid rectilinear grid is
transformed into the dotted curvilinear grid, the solid thick line is trans-
formed into the dashed thick line, and the dotted line remains fixed.
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The behaviour of the system in the plastic regime depends on the initial condition (θ0, z0)
at time t0 given in (1.7). If 0 ≤ θ0 < π

2 , then we are in the hardening regime. The
viscosity solution (ρ(t), θ(t), z(t)) is continuous in time, is the uniform limit of the viscosity
approximations (ρε(t), θε(t), zε(t)) on compact sets, and satisfies

ρ(t) = z(t) for t ∈ [t0,+∞) ,

ρ̇(t) > 0 and θ̇(t) > 0 for t ∈ [t0,+∞) ,
lim

t→+∞
ρ(t) < +∞ and lim

t→+∞
θ(t) = π

2 .

If π
2 < θ0 ≤ π , then we are in the softening regime and the viscosity solution (ρ(t), θ(t), z(t))

may be discontinuous at a time t1 ≥ t0 depending on the initial conditions (θ0, z0). The
jump at the discontinuity time is determined by the transfer map considered above and
satisfies the inequalities 0 < ρ(t1+) = z(t1+) < ρ(t1−) = z(t1−) and π

2 < θ(t1+) < θ(t1−).
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Figure 1.3. Phase diagram in the (θ, ρ) plane. Dark grey region (including
the thick line): initial data (θ0, z0) of the plastic regime with continuous
evolution. Light grey region: initial data with discontinuity time t1 > t0 .
White region: initial data with discontinuity time t1 = t0 .

Three possible behaviours occur, according to the phase diagram illustrated in Fig. 1.3.
A crucial role is played by the separation line z = zs(θ), whose explicit formula is given
by (3.4), by the critical line z = rc(θ), described in (3.6), and by the critical point (zc, θc)
where the two lines meet, given explicitly in (3.3) and (3.5).

(a) If either π
2 < θ0 ≤ θc and z0 ≤ zs(θ0), or θc ≤ θ0 ≤ π and z0 ≤ rc(θ0), then

the viscosity solution (ρ(t), θ(t), z(t)) is continuous in time (see Fig. 1.4-1.6), is the
uniform limit of the viscosity approximations (ρε(t), θε(t), zε(t)) on every compact
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subset of [t0,+∞), and satisfies

ρ(t) = z(t) for t ∈ [t0,+∞) ,

ρ̇(t) < 0 and θ̇(t) < 0 for t ∈ [t0,+∞) ,
lim

t→+∞
ρ(t) > 0 and lim

t→+∞
θ(t) = π

2 .

(b) If either π
2 < θ0 ≤ θc and z0 > zs(θ0), or θc < θ0 < π and z0 ≥ zs(θ0),

then the viscosity solution (ρ(t), θ(t), z(t)) is discontinuous at t = t0 . Moreover
the solution (ρ(t), θ(t), z(t)) is the uniform limit of the viscosity approximations
(ρε(t), θε(t), zε(t)) on every compact subset of (t0,+∞). It satisfies

ρ(t) = z(t) for t ∈ (t0,+∞) ,

ρ̇(t) < 0 and θ̇(t) < 0 for t ∈ (t0,+∞) ,
lim

t→+∞
ρ(t) > 0 and lim

t→+∞
θ(t) = π

2 .

Finally, the viscosity approximations (ρε(t), θε(t), zε(t)) are uniformly close to a
rescaled version of (ρf(s), θf(s), zf(s)) in a suitable right neighbourhood of t0 .

(c) If θc < θ0 ≤ π and rc(θ0) < z0 < zs(θ0), then the viscosity solution (ρ(t), θ(t), z(t))
is discontinuous at a time t1 > t0 (see Fig. 1.4-1.6). Moreover the solution (ρ(t), θ(t), z(t))
is the uniform limit of the viscosity approximations (ρε(t), θε(t), zε(t)) on every com-
pact subset of [t0, t1) ∪ (t1,+∞). It satisfies

ρ(t) = z(t) for t ∈ [t0, t1) ∪ (t1,+∞) ,

ρ̇(t) < 0 and θ̇(t) < 0 for t ∈ [t0, t1) ∪ (t1,+∞) ,
lim

t→+∞
ρ(t) > 0 and lim

t→+∞
θ(t) = π

2 .

Finally, the viscosity approximations (ρε(t), θε(t), zε(t)) are uniformly close to a
rescaled version of (ρf(s), θf(s), zf(s)) in a suitable right neighbourhood of t1 .

Further details on the mechanical interpretation of the behaviour of the solutions are
given in Section 8 using Cartesian coordinates (x(t), y(t), see Fig. 8.1-8.3.

Extensions to general K and general loading conditions in the spatially uniform case,
and extensions to non spatially uniform solutions will be considered in other forthcoming
papers.

2. Formulation of the problem and general results

Let K be a closed convex cone in Mn×n
sym×[0,+∞). For every ζ ∈ [0,+∞) we define

K(ζ) := {σ ∈Mn×n
sym : (σ, ζ) ∈ K} .

Each set K(ζ) is closed and convex, and we have

K(ζ) = ζ K(1) for every ζ ∈ [0,+∞) . (2.1)

We assume that K(1) is bounded and that 0 ∈ K(1), hence

0 ∈ K(ζ) for every ζ ∈ [0,+∞) , (2.2)

and
|σ| ≤MKζ for every (σ, ζ) ∈ K (2.3)

for a suitable constant MK < +∞ .
For every closed convex set C ⊂ Mn×n

sym let πC : Mn×n
sym → C be the minimal distance

projection onto C . It follows from (2.1) that

πK(ζ)(σ) = ζπK(1)( 1
ζσ) (2.4)

for every ζ > 0 and every σ ∈Mn×n
sym .
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Figure 1.4. Trajectories in the (θ, ρ) plane for θ0 = 9
10π and 12 different

values of z0 < zs(θ0). Solid lines: trajectories of (θ(t), ρ(t)) = (θ(t), z(t))
(slow dynamics). Dashed lines: trajectories of (θf(s), ρf(s)) (fast dynam-
ics). Dotted lines: trajectories of (θf(s), zf(s)) (fast dynamics).

The following result will be used to prove the existence of a solution to the system (1.2)
governing the viscous approximation of the original problem (1.1).

Lemma 2.1. The map (σ, ζ) 7→ πK(ζ)(σ) from Mn×n
sym×[0,+∞) into Mn×n

sym satisfies the
Lipschitz estimate

|πK(ζ2)(σ2)− πK(ζ1)(σ1)| ≤ |σ2 − σ1|+ 2MK |ζ2 − ζ1| (2.5)

for every (σ1, ζ1), (σ2, ζ2) ∈Mn×n
sym×[0,+∞) .

Proof. It is enough to prove the estimate for (σ1, ζ1), (σ2, ζ2) ∈ Mn×n
sym×[0,+∞) with 0 <

ζ1 ≤ ζ2 . Since πK(ζ2) has Lipschitz constant 1 on Mn×n
sym , from (2.3) and (2.4) we obtain

|πK(ζ2)(σ2)− πK(ζ1)(σ1)| ≤ |πK(ζ2)(σ2)− πK(ζ2)(σ1)|+ |πK(ζ2)(σ1)− πK(ζ1)(σ1)| ≤
≤ |σ2 − σ1|+

∣∣ζ2πK(1)( 1
ζ2
σ1)− ζ1πK(1)( 1

ζ1
σ1)
∣∣ ≤

≤ |σ2 − σ1|+MK |ζ2 − ζ1|+ ζ1
∣∣πK(1)( 1

ζ2
σ1)− πK(1)

(
1
ζ1
σ1)
∣∣ .

To prove (2.5) it is enough to show that

ζ1
∣∣πK(1)( 1

ζ2
σ1)− πK(1)( 1

ζ1
σ1)
∣∣ ≤MK |ζ2 − ζ1| . (2.6)

As 0 < ζ1 ≤ ζ2 , we have

πK(1)

(
1
ζ1
σ1− ζ2−ζ1ζ1

πK(1)( 1
ζ2
σ1)
)

= πK(1)

(
1
ζ2
σ1+ ζ2−ζ1

ζ1

( 1
ζ2
σ1−πK(1)( 1

ζ2
σ1)
))

= πK(1)( 1
ζ2
σ1) .
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Figure 1.5. Graph of ρ(t) in the plastic regime t > t0 for a0 = 2 and 8
different values of t0 and z0 .

Since πK(1) has Lipschitz constant 1 on Mn×n
sym , we obtain∣∣πK(1)( 1

ζ2
σ1)− πK(1)(

1
ζ1
σ1)
∣∣ ≤ ζ2−ζ1

ζ1

∣∣πK(1)( 1
ζ2
σ1)
∣∣ ≤MK

ζ2−ζ1
ζ1

,

which gives (2.6). �

Let us fix ξ ∈W 1,1
loc ([0,+∞); Mn×n

sym ). For every ε > 0 system (1.2) is equivalent to{
εėε(t) = εξ̇(t)− Ceε(t) + πK(zε(t))(Ceε(t)) ,
εżε(t) = tr(πK(zε(t))(Ceε(t))) tr(Ceε(t)− πK(zε(t))(Ceε(t))) .

(2.7)

Lemma 2.2. For every ε > 0 and for every initial condition eε(0) = e0 and zε(0) = z0 ≥ 0
system (2.7) has a unique solution defined for every t ∈ [0,+∞) .

Proof. As the right-hand sides are locally Lipschitz with respect to e and z by Lemma 2.1, it
is enough to prove that for every T > 0 there is a constant MT > 0 such that |eε(t)| ≤MT
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Figure 1.6. Graph of θ(t) in the plastic regime t > t0 for a0 = 2 and 8
different values of t0 and z0 .

and |zε(t)| ≤ MT for every t ∈ [0, T ] . Since 0 ∈ K(ζ) for every ζ ∈ R by (2.2), we
have |Ceε(t)− πK(zε(t))(Ceε(t))| ≤ |Ceε(t)| ≤ βC|eε(t)| and |πK(zε(t))(Ceε(t))| ≤ |Ceε(t)| ≤
βC|eε(t)| for every t ∈ [0,+∞). Therefore, given T > 0, from the first equation in (2.7) we
have

|eε(t)| ≤ AT +
βC

ε

∫ t

0

|eε(s)| ds for every t ∈ [0, T ] .

with AT := |e0|+
∫ T
0
|ξ̇(s)| ds . It follows from the Gronwall inequality that

|eε(t)| ≤ AT exp(T βC/ε) for every t ∈ [0, T ] .

Then the second equation in (2.7) allows easily to obtain a constant MT > 0 such that
|zε(t)| ≤MT for every t ∈ [0, T ] . �

Lemma 2.3. For every ε > 0 , e0 ∈ Mn×n
sym , and z0 > 0 the solution (eε, zε) of (2.7) with

initial condition eε(0) = e0 and zε(0) = z0 satisfies zε(t) > 0 for every t ∈ [0,+∞) .

Proof. Suppose by contradiction that there exists t0 ∈ (0,+∞) such that zε(t0) = 0. Let
e∗ε be the solution of the Cauchy problem{

εė∗ε(t) = εξ̇(t)− Ce∗ε(t) ,
e∗ε(t0) = eε(t0) ,

(2.8)

and let z∗ε := 0. Then (e∗ε, z
∗
ε ) would be a solution to (2.7) with e∗ε(t0) = eε(t0) and

z∗ε (t0) = zε(t0). Since the right-hand side of (2.7) is locally Lipschitz with respect to e and
z by Lemma 2.1, by uniqueness we would have zε(t) = z∗ε (t) = 0 for every t ∈ [0,+∞),
which contradicts the assumption zε(0) = z0 > 0. �
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For the rest of the paper we assume that Cξ = ξ for every ξ ∈ Mn×n
sym and that K(ζ) is

the closed ball centered at − 1
nζI with radius 1√

n
ζ , namely,

K(ζ) = {σ ∈Mn×n
sym : |σ + 1

nζI| ≤
1√
n
ζ} , (2.9)

where I is the identity matrix in Mn×n
sym . In this case σε(t) = eε(t) and equation (2.7)

simplifies to {
εėε(t) = εξ̇(t)− eε(t) + πK(zε(t))(eε(t)) ,

εżε(t) = tr(πK(zε(t))(eε(t))) tr(eε(t)− πK(zε(t))(eε(t))) .
(2.10)

Moreover the projection onto K(ζ) is explicitly given by

πK(ζ)(σ) = − 1
nζI +

σ + 1
nζI

max{|σ + 1
nζI|,

1√
n
ζ}

1√
n
ζ .

Let us fix e0 ∈Mn×n
sym with tr(e0) = 0 with |e0| = 1. In the rest of the paper we consider

ξ(t) of the form
ξ(t) = − 1

na(t)I + 1√
n
b(t)e0 , (2.11)

with a and b in W 1,1
loc ([0,∞)). In this case σε(t) and eε(t) take the form

σε(t) = eε(t) = − 1
nxε(t)I + 1√

n
yε(t)e0 , (2.12)

where the absolute values of the scalars 1√
n
xε(t) and 1√

n
yε(t) represent the norms of the

spherical and deviatoric components of the stress, respectively. Moreover (2.10) is equivalent
to the system

εẋε(t) = εȧ(t)− (xε(t)− zε(t)) +
zε(t) (xε(t)− zε(t))

uε(t)
,

εẏε(t) = εḃ(t)− yε(t) +
zε(t) yε(t)
uε(t)

,

εżε(t) =
(
zε(t) +

zε(t) (xε(t)− zε(t))
uε(t)

)(
xε(t)− zε(t)−

zε(t) (xε(t)− zε(t))
uε(t)

)
,

(2.13)

where
uε(t) := max{zε(t),

√
(xε(t)− zε(t))2 + yε(t)2} .

The corresponding viscosity solution (e(t), p(t), σ(t), z(t)) will be given by

σ(t) = e(t) = − 1
nx(t)I + 1√

n
y(t)e0 and p(t) = 1

n (a(t)− x(t))I + 1√
n

(b(t)− y(t))e0 ,

where x(t), y(t), and z(t) are left continuous with respect to t and xε(t)→ x(t), yε(t)→
y(t), and zε(t)→ z(t) for a.e. t ∈ [0,+∞).

Passing to polar coordinates through (1.6), system (2.13) becomes

ε ρ̇ε(t) = ε (ȧ(t) cos θε(t) + ḃ(t) sin θε(t))−
− (ρε(t)− zε(t))+

(
zε(t) (1 + cos θε(t)) cos2 θε(t) + 1

)
,

ε ρε(t) θ̇ε(t) = −ε (ȧ(t) sin θε(t)− ḃ(t) cos θε(t)) +

+ (ρε(t)− zε(t))+zε(t) (1 + cos θε(t)) cos θε(t) sin θε(t) ,

ε żε(t) = (ρε(t)− zε(t))+zε(t) (1 + cos θε(t)) cos θε(t) ,

(2.14)

where (·)+ denotes the positive part. The polar coordinates of a viscosity solution are
denoted by (ρ(t), θ(t), z(t)). They are continuous from the left and (ρε(t), θε(t), zε(t)) →
(ρ(t), θ(t), z(t)) for a.e. t ∈ [0,+∞).

Let us fix a0 and z0 , with 0 ≤ a0 ≤ 2 z0 and z0 > 0. In the rest of the paper we study
the special (strain controlled) loading path

a(t) := a0 and b(t) := t , (2.15)
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and the initial conditions

xε(0) = a0 , yε(0) = 0 , zε(0) = z0 . (2.16)

2.1. The elastic regime. The solution of (2.13) with loading path (2.15) and initial condi-
tions (2.16) remains in the elastic regime in an interval [0, t0] , where t0 :=

√
z2
0 − (a0 − z0)2

is the only positive number such that√
(a0 − z0)2 + t20 = z0 . (2.17)

More precisely we have

xε(t) = a0 , yε(t) = t , zε(t) = z0 (2.18)

for every t ∈ [0, t0] . Indeed in this interval the functions defined by (2.18) satisfy the
inequality

√
(xε − zε)2 + y2

ε ≤ zε , so that the system reduces to
εẋε(t) = εȧ(t) ,

εẏε(t) = εḃ(t) ,

εżε(t) = 0 ,

(2.19)

which is trivially satisfied by (2.15) and (2.18). Therefore the viscosity solution satisfies

x(t) = a0 , y(t) = t , z(t) = z0 (2.20)

for every t ∈ [0, t0] .

2.2. The inelastic regime. After time t0 the solution exhibits a plastic behaviour. To
study the solution for t > t0 we use (2.14), which in case (2.15) becomes

ε ρ̇ε(t) = ε sin θε(t)− (ρε(t)− zε(t))+
(
zε(t) (1 + cos θε(t)) cos2 θε(t) + 1

)
,

ε ρε(t) θ̇ε(t) = ε cos θε(t) + (ρε(t)− zε(t))+zε(t) (1 + cos θε(t)) cos θε(t) sin θε(t) ,

ε żε(t) = (ρε(t)− zε(t))+zε(t) (1 + cos θε(t)) cos θε(t) .
(2.21)

By (2.17), there exists a unique θ0 ∈ (0, π) such that

z0 cos θ0 = a0 − z0 , z0 sin θ0 = t0 . (2.22)

By elementary geometric considerations we have

0 ≤ a0 < z0 =⇒ π
2 < θ0 ≤ π and z0 < a0 ≤ 2 z0 =⇒ 0 ≤ θ0 < π

2 . (2.23)

By (2.17), (2.18), and (2.22) we have

ρε(t0) = z0 , θε(t0) = θ0 , zε(t0) = z0 . (2.24)

Subtracting the third equation from the first one in (2.21) we obtain the following differential
equation for the difference ρε(t)− zε(t):

ε (ρ̇ε(t)− żε(t)) = ε sin θε(t)− (ρε(t)− zε(t))+wε(t) , (2.25)

where
wε(t) := zε(t) (1 + cos θε(t))2 cos θε(t) + 1 . (2.26)

From (2.21) for every t ∈ [t0,+∞) we obtain

ε ρε(t) ẇε(t) = −ε zε(t)(1 + cos θε(t)) (1 + 3 cos θε(t)) cos θε(t) sin θε(t)−
− (ρε(t)− zε(t)) zε(t)(1 + cos θε(t))3 cos θε(t) vε(t) ,

(2.27)

where
vε(t) := zε(t)(1 + cos θε(t)− 3 cos2 θε(t))− (ρε(t)− zε(t)) cos θε(t) .

If a0 = z0 , then θ0 = π
2 and, in this case,

ρε(t) := z0 + ε
(
1− exp(− t−t0ε )

)
, θε(t) := π

2 , zε(t) := z0 (2.28)
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is the explicit solution of (2.21) with initial conditions (2.24). Then the viscosity solution
obtained by taking the limit as ε→ 0 satisfies

ρ(t) = z0 , θ(t) = π
2 , z(t) = z0 for every t ∈ [t0,+∞) . (2.29)

Lemma 2.4. If θ0 6= π
2 , then θε(t) 6= π

2 for every t ∈ [t0,+∞) .

Proof. Suppose θ0 6= π
2 and suppose that there exists τ ∈ [t0,+∞) such that θε(τ) = π

2 .
Let ρτε be the solution of the Cauchy problem{

ε ρ̇τε (t) = ε− (ρτε (t)− zε(τ))+ ,

ρτε (τ) = ρε(τ) .

Then the triple
ρτε (t) , θτε (t) := π

2 , zτε (t) := zε(τ)
would be a solution of (2.21) which satisfies the Cauchy condition

ρτε (τ) := ρε(τ) , θτε (τ) := θε(τ) , zτε (τ) := zε(τ) .

By uniqueness we must have θε(t) = θτε (t) = π
2 for every t , which contradicts the fact that

θε(t0) = θ0 6= π
2 . This concludes the proof of (2.4). �

Lemma 2.5. If 0 ≤ θ0 <
π
2 , then 0 < θε(t) < π

2 for every t ∈ (t0,+∞) . If π
2 < θ0 ≤ π ,

then π
2 < θε(t) < π for every t ∈ (t0,+∞) .

Proof. Assume 0 ≤ θ0 <
π
2 . From the second equation in (5.12) it follows that θ̇ε(t0) > 0.

Therefore the inequalities 0 < θε(t) < π
2 are satisfied in a right neighbourhood of t0 . If they

do not hold for every t ∈ [t0,+∞), by Lemma 2.4 we can consider the first τ ∈ (t0,+∞)
such that θε(τ) = 0. Then θ̇ε(τ) ≤ 0. As 0 < θε(t) < π

2 for every t ∈ [t0, τ) by Lemma 2.4,
from the second equation in (2.21) we obtain ρε(t) θ̇ε(t) ≥ cos θε(t) > 0 for every t ∈ [t0, τ ]
and ρε(τ) θ̇ε(τ) = 1. As ρε(t0) = z0 > 0, by continuity we have θ̇ε(t) > 0 for every
t ∈ [t0, τ ] . This contradicts the inequality θ̇ε(τ) ≤ 0, and concludes the proof of the first
implication. The second one is proved in the same way. �

Lemma 2.6. We have ρε(t) > zε(t) for every t ∈ (t0,+∞) .

Proof. We deduce from (2.25) that, if ρε(t) = zε(t) for some t ∈ [t0,+∞), then ρ̇ε(t) −
żε(t) = sin θε(t) > 0, where the inequality follows from (2.28) and Lemma 2.5. Since
ρε(t0) = zε(t0), we conclude that ρε(t) > zε(t) for every t ∈ (t0,+∞). �

Lemma 2.7. For every t ∈ (t0,+∞) the following properties hold:

ρε(t) > 0 , (2.30)

0 ≤ θ0 < π
2 =⇒ θ̇ε(t) > 0 and 0 < θ0 < θε(t) < π

2 , (2.31)
π
2 < θ0 ≤ π =⇒ θ̇ε(t) < 0 and π

2 < θε(t) < θ0 < π, (2.32)
0 ≤ θ0 < π

2 =⇒ żε(t) > 0 and zε(t) > z0 , (2.33)
π
2 < θ0 ≤ π =⇒ żε(t) < 0 and 0 < zε(t) < z0 . (2.34)

Proof. By Lemma 2.5 from the second equation in (2.21) and from (2.24) we obtain (2.31),
(2.32), and (2.30). Implications (2.33) and (2.34) can be obtained from Lemmas 2.3, 2.5,
and 2.6, using the third equation in (2.21). �

Lemma 2.8. Assume π
2 < θ0 < π . Then then ρε(t) ≤ ρε(s) + ε whenever t0 ≤ s ≤ t .

Proof. Let us fix s ≥ t0 and η > 0. If the inequality

ρε(t) ≤ ρε(s) + (1 + η) ε (2.35)

is not satisfied for every t ≥ s , let τ be the first time after s with ρε(τ) = ρε(s) + (1 + η)ε .
Then ρ̇ε(τ) ≥ 0. From the first equation in (2.21) we obtain ε ρ̇ε(τ) ≤ ε− (ρε(τ)− zε(τ)).
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By (2.34) and by the definition of τ we have ε ρ̇ε(τ) ≤ ε− (ρε(s) + (1 +η) ε−zε(s)), so that
Lemma 2.6 gives ε ρ̇ε(τ) ≤ −η ε , which contradicts the inequality ρ̇ε(τ) ≥ 0. This proves
that (2.35) holds for every t ≥ s . The conclusion can be obtained by taking the limit as
η → 0. �

3. The slow dynamics

In this section we study in detail the behaviour of the solutions to the system of the slow
dynamics.

3.1. The trajectory of the slow dynamics. In this subsection we study the equation

r′(θ) = r(θ)
r(θ) (1 + cos θ) sin θ
r(θ) (1 + cos θ)2 + 1

, (3.1)

that describes the trajectories followed along the slow dynamics.

Lemma 3.1. Every solution of (3.1) with r(θ∗) > 0 for some θ∗ ∈ [0, π] is defined for every
θ ∈ [0, π] and satisfies r(θ) > 0 for every θ ∈ [0, π] and r′(θ) > 0 for every θ ∈ (0, π) .

Proof. Since the null function is a solution of the equation, if r(θ) is a solution of (3.1) and
r(θ∗) > 0 for some θ∗ , then r(θ) > 0 for every θ by uniqueness. Therefore, the right-hand
side of (3.1) is positive for θ ∈ (0, π), which implies that r′(θ) > 0 on this interval.

To prove the global existence in the whole interval [0, π] , it is not restrictive to assume
θ∗ ∈ (0, π). The positivity and monotonicity of r(θ) imply that [0, θ∗] is contained in the
maximal domain of existence of r(θ). To study the problem for θ > θ∗ we consider the
inequalities

0 < ρ
ρ (1 + cos θ) sin θ
ρ (1 + cos θ)2 + 1

<
ρ sin θ

1 + cos θ
for every ρ > 0 and every θ ∈ (0, π). Using an elementary comparison argument we deduce
that the maximal domain of existence of r(θ) contains [θ∗, π) and

r(θ) ≤ r(θ∗)1 + cos θ∗

1 + cos θ
for every θ∗ ≤ θ < π.

By (3.1) this inequality yields

r′(θ) ≤ r(θ) r(θ∗)(1 + cos θ∗) for every θ ∈ [θ∗, π),

and this implies that π belongs to the maximal domain of existence of r(θ). �

Let λc be the unique negative solution of the equation 1 + λ− 3λ2 = 0, i.e.,

λc := −1
6

(
√

13− 1) ' −0.43425 . . . , (3.2)

and let
θc := arccosλc ' 2.0200 . . . . (3.3)

We consider the function zs : [π2 , π]→ [ 274 ,+∞] defined by

zs(θ) := − 1
(1 + cos θ)2 cos θ

for θ ∈ (π2 , π) , zs(π2 ) := zs(π) := +∞ , (3.4)

and we define
zc := zs(θc) = 61

18 + 19
18

√
13 ' 7.1947 . . . . (3.5)

We shall see that the graph of zs plays the role of separation line between initial data leading
to the slow dynamics and those leading to the fast dynamics.

Finally, let

rc(θ) be the solution of (3.1) with Cauchy condition rc(θc) = zc . (3.6)

Lemma 3.2. We have rc(θc) = zs(θc) and rc(θ) < zs(θ) for every θ ∈ [π2 , θc) ∪ (θc, π] .
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Proof. By direct computation for every θ ∈ (π2 , π) we obtain

z′s(θ) = − (1 + 3 cos θ) sin θ
(1 + cos θ)3 cos2 θ

,

zs(θ)
zs(θ) (1 + cos θ) sin θ
zs(θ) (1 + cos θ)2 + 1

= − sin θ
(1 + cos θ)3 cos θ(1− cos θ)

,

so that in the interval (π2 , π) the inequality

z′s(θ) > zs(θ)
zs(θ) (1 + cos θ) sin θ
zs(θ) (1 + cos θ)2 + 1

= − sin θ
(1 + cos θ)3 cos θ(1− cos θ)

(3.7)

is equivalent to
1 + cos θ − 3 cos2 θ > 0 .

Therefore (3.7) is satisfied θ < θc , and the opposite inequality holds for θ > θc . Since
rc(θc) = zs(θc) by (3.6), the inequality rc(θ) < zs(θ) for θ 6= θc follows from a comparison
argument. �

Lemma 3.3. Assume that

θc < θ0 ≤ π and rc(θ0) ≤ z0 < zs(θ0) . (3.8)

Let r0(θ) be the solution of (3.1) with Cauchy condition r0(θ0) = z0 . Then there exists
θ1 ∈ [θc, θ0) such that

r0(θ1) = zs(θ1) and r0(θ) < zs(θ) for θ ∈ (θ1, θ0] . (3.9)

If z0 > rc(θ0) , then θ1 > θc ; if z0 = rc(θ0) , then θ1 = θc .

Proof. Since r0(θ0) = z0 ≥ rc(θ0), by comparison we have r0(θ) ≥ rc(θ) for every θ ∈ (0, π).
In particular r0(θc) ≥ rc(θc) = zs(θc) and r0(θ0) = z0 < zs(θ0). Then (3.9) is satisfied by
the greatest point θ1 of [θc, θ0) such that r0(θ1) = zs(θ1). If z0 > rc(θ0), then r0(θ) > rc(θ)
by comparison, and θ1 > θc by Lemma 3.2. If z0 = rc(θ0), then r0(θ) = rc(θ) by uniqueness,
and θ1 = θc by Lemma 3.2. �

Lemma 3.4. Assume one of the following conditions:
π
2 < θ2 ≤ θc and z2 ≤ zs(θ2) , (3.10)
θc < θ2 < π and z2 < rc(θ2) . (3.11)

Let r2(θ) be the solution of (3.1) with Cauchy condition r2(θ2) = z2 . Then

r2(θ) < zs(θ) for θ ∈ (π2 , θ2) . (3.12)

Proof. Assume (3.10). Then (3.7) holds for every θ ∈ (π2 , θ2) and r2(θ2) = z2 ≤ zs(θ2), so
that (3.12) follows from a comparison argument.

Assume (3.11). Since r2(θ2) = z2 < rc(θ2), by uniqueness we have r(θ) < rc(θ) for every
θ ∈ R . In particular we have r2(θ) < rc(θ) ≤ zs(θ) for every θ ∈ (π2 , θ2). �

3.2. The system of the slow dynamics. In this subsection we study the system
ρ̇sl(t) =

ρsl(t) (1 + cos θsl(t)) cos θsl(t) sin θsl(t)
ρsl(t) (1 + cos θsl(t))2 cos θsl(t) + 1

,

θ̇sl(t) =
ρsl(t) (1 + cos θsl(t))2 cos θsl(t) + cos θsl(t)
ρsl(t)

(
ρsl(t) (1 + cos θsl(t))2 cos θsl(t) + 1

) , (3.13)

that will be satisfied during the slow dynamics. Let θc and zc be the constants defined in
(3.3) and (3.6), and let zs(θ) and rc(θ) be the functions defined in (3.4) and (3.6).
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Lemma 3.5. Assume 0 ≤ θ0 <
π
2 and let (ρsl0 , θ

sl
0 ) be the solution of (3.13) with Cauchy

conditions
ρsl0 (t0) = z0 and θsl0 (t0) = θ0 . (3.14)

Then (ρsl0 , θ
sl
0 ) is defined on [t0,+∞) and

ρ̇sl0 (t) > 0 and θ̇sl0 (t) > 0 for t ∈ (t0,+∞) , (3.15)

lim
t→+∞

ρsl0 (t) < +∞ and lim
t→+∞

θsl0 (t) = π
2 . (3.16)

Proof. Let r0(θ) be the solution of (3.1) with Cauchy condition r0(θ0) = z0 , which is defined
for every θ ∈ [0, π) by Lemma 3.1. Let us consider the solution θ[(t) of the autonomous
equation

θ̇[(t) =
r0(θ[(t)) (1 + cos θ[(t))2 cos θ[(t) + cos θ[(t)

r0(θ[(t))
(
r0(θ[(t)) (1 + cos θ[(t))2 cos θ[(t) + 1

) (3.17)

with Cauchy condition θ[(t0) = θ0 . We observe that the right-hand side of (3.17) is positive
on [θ0, π2 ) and vanishes for θ = π

2 . Then the theory of autonomous equations guarantees
that θ[(t) is defined for every t ∈ [t0,+∞), θ̇[(t) > 0 for every t ∈ [t0,+∞), and θ[(t)→ π

2
as t→ +∞ .

Let ρ[(t) := r0(θ[(t)) for every t ∈ [t0,+∞). Then (ρ[(t), θ[(t)) is a solution of (3.13)
defined on [t0,+∞). Since it satisfies the Cauchy conditions (3.14), by uniqueness we have
(ρsl0 (t), θsl0 (t)) = (ρ[(t), θ[(t)) for every t ∈ [t0,+∞). This implies that θ̇sl0 (t) > 0 for
every t ∈ [t0,+∞), and that θsl0 (t) → π

2 and ρsl0 (t) → r0(π2 ) < +∞ as t → +∞ . Since
r′0(θ) > 0 for every θ ∈ (0, π) by Lemma 3.1, we obtain ρ̇sl0 (t) = r′0(θ[(t)) θ̇[(t) > 0 for every
t ∈ (t0,+∞). �

Lemma 3.6. Assume (3.8) and let (ρsl0 , θ
sl
0 ) be the solution of (3.13) with Cauchy conditions

(3.14). Then there exist t1 ∈ (t0,+∞) , z1 ∈ (0, z0) , and θ1 ∈ [θc, θ0) , such that (ρsl0 , θ
sl
0 )

is defined on [t0, t1) and

lim
t→t1

ρsl0 (t) = z1 , lim
t→t1

θsl0 (t) = θ1 , z1 = zs(θ1) , (3.18)

lim
t→t1

ρ̇sl0 (t) = −∞ , lim
t→t1

θ̇sl0 (t) = −∞ , (3.19)

ρ̇sl0 (t) < 0 and θ̇sl2 (t) < 0 for t ∈ [t0, t1) , (3.20)

ρsl0 (t) < zs(θsl0 (t)) for every t ∈ [t0, t1) . (3.21)

If z0 > rc(θ0) , then θ1 > θc ; if z0 = rc(θ0) , then θ1 = θc and z1 = zc .

Proof. Let r0(θ) and θ1 be as in Lemma 3.3, and let z1 := zs(θ1). Let us consider the
solution θ[(t) of the autonomous equation (3.17) with Cauchy condition θ[(t0) = θ0 . By
(3.9) the right-hand side of (3.17) is negative on (θ1, θ0) and tends to −∞ for θ → θ1 . Then
the theory of autonomous equations guarantees that there exists t1 > t0 such that θ[(t) is
defined for every t ∈ [t0, t1), θ̇[(t) < 0 for every t ∈ [t0, t1), and θ[(t)→ θ1 as t→ t1 .

Let ρ[(t) := r0(θ[(t)) for every t ∈ [t0, t1). Then (ρ[(t), θ[(t)) is a solution of (3.13)
defined on [t0, t1). Since it satisfies the Cauchy conditions (3.14), by uniqueness we have
(ρsl0 (t), θsl0 (t)) = (ρ[(t), θ[(t)) for every t ∈ [t0, t1). This implies that θ̇sl0 (t) > 0 for every
t ∈ [t0, t1), and that θsl0 (t)→ θ1 and ρsl0 (t)→ r0(θ1) = z1 as t→ t1 , where the last equality
follows from (3.9) and from the definition of z1 . Since r′0(θ) > 0 for every θ ∈ (0, π) by
Lemma 3.1, we obtain ρ̇sl0 (t) = r′0(θ[(t)) θ̇[(t) < 0 for every t ∈ (t0, t1). Inequality (3.21)
follows from (3.9).

Finally, Lemma 3.3 guarantees that, if z0 > rc(θ0), then θ1 > θc , and if z0 = rc(θ0),
then θ1 = θc , and hence hence z1 = zs(θc) = zc . �
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Lemma 3.7. Assume (3.10) or (3.11), let t1 ≥ t0 , and let tk1 → t1 . Then there exists a
unique solution (ρsl2 , θ

sl
2 ) of (3.13) defined on (t1,+∞) such that

ρsl2 (tk1)→ z2 and θsl2 (tk1)→ θ2 . (3.22)

Moreover

lim
t→t1

ρsl2 (t) = z2 and lim
t→t1

θsl2 (t) = θ2 , (3.23)

ρ̇sl2 (t) < 0 and θ̇sl2 (t) < 0 for t ∈ (t1,+∞) , (3.24)

lim
t→+∞

ρsl2 (t) > 0 and lim
t→+∞

θsl2 (t) = π
2 , (3.25)

ρsl2 (t) < zs(θsl2 (t)) for every t ∈ (t1,+∞) . (3.26)

Proof. Let r2(θ) be as in Lemma 3.4. By (3.12) we have

r2(θ) (1 + cos θ)2 cos θ + 1 > 0 for every θ ∈ [π2 , θ2) . (3.27)

Let us consider the autonomous equation

θ̇](t) =
r2(θ](t)) (1 + cos θ](t))2 cos θ](t) + cos θ](t)

r2(θ](t))
(
r2(θ](t)) (1 + cos θ](t))2 cos θ](t) + 1

) . (3.28)

Since the right-hand side of this equation is negative on (π2 , π) and vanishes at π
2 , the

theory of autonomous equations guarantees that there exists a unique solution θ](t) of
(3.28) defined for every t ∈ (t1,+∞) and such that θ](t)→ θ2 as t→ t1 . Moreover θ](t) is
defined for every t ∈ (t1,+∞), θ̇](t) < 0, π

2 < θ](t) < π , and θ](t) → π
2 as t → +∞ . Let

ρ](t) := r2(θ](t)) for every t ∈ (t1,+∞). From (3.1) and (3.28) it follows that (ρ](t), θ](t))
is a solution of (3.13) defined on (t1,+∞) and satisfies (3.23). Moreover ρ̇](t), 0 for every
t ∈ (t1,+∞) and ρ](t) = r2(θ](t)) → r2(π2 ) > 0 as t → +∞ . Since π

2 < θ](t) < θ2 and
ρ](t) := r2(θ](t)), by (3.27) we have ρ](t)

(
1 + cos θ](t)

)2 cos θ](t) + 1 > 0 for every t > t1 ,
which proves (3.26).

To prove the uniqueness, let (ρsl(t), θsl(t)) be a solution of (3.13) satisfying (3.22). By
uniqueness we have θsl(t) 6= π

2 for every t . As ρsl(t) (1 + cos θsl(t))2 cos θsl(t) + 1 > 0
and cos θsl(t) < 0 for t near t1 , we deduce from the second equation in (3.13) that π

2 <

θsl(t) < θ2 and θ̇sl(t) < 0 for every t ∈ (t1,+∞). It follows that there exists r(θ) such that
ρsl(t) = r(θsl(t)) for every t ∈ (t1,+∞) and that r(θ) satisfies (3.1). Since r(θsl(tk1))→ z2
by (3.22), we conclude that r(θ) = r2(θ) in a left neighbourhood of θ2 . This implies
that θsl(t) satisfies (3.28). By (3.22) θsl and θ] satisfy the same Cauchy condition at t1 ,
therefore θsl = θ] in a right neighbourhood of t1 . Since ρsl(t) = r(θsl(t)), r(θ) = r2(θ),
and ρ](t) := r2(θ](t)), we conclude that ρsl(t) = ρ](t) in a right neighbourhood of t1 . The
equality is extended to all t ∈ (t1,+∞) by uniqueness. �

4. Behaviour near the separation line

In this section we prove two technical lemmas which describe the behaviour of the solu-
tions of the system near the points (zs(θ), θ, zs(θ)), π

2 < θ ≤ θc , which correspond to the
separation line z = zs(θ) defined by (3.4).

4.1. Behaviour near the critical point. In this subsection we study the behaviour of
the system (2.21) near the point (zc, θc, zc), where θc and zc are the constants defined in
(3.3) and (3.5). Let wε(t) be the function defined in (2.26).

Lemma 4.1. Let κ ≥ 1 , let t1 ∈ [t0,+∞) , and let τδ be a sequence in [t0,+∞) . Assume
that

|τδ − t1| ≤ δ , (4.1)
|ρε(τδ)− zc|+ |θε(τδ)− θc|+ |zε(τδ)− zc| ≤ δ , (4.2)
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for ε small enough. Then there exist three constants β1 > 0 , β2 > 0 , and δ0 ∈ (0, 1) ,
a sequence εδ in (0,+∞) , defined for δ ∈ (0, δ0) , and a double sequence τ δε in [t0,+∞) ,
defined for δ ∈ (0, δ0) and ε ∈ (0, εδ) , such that

t1 − δ ≤ τδ ≤ τ δε ≤ t1 + β1 δ , (4.3)

wε(τ δε ) ≥ 0 , (4.4)

θε(τ δε ) ≤ θc − κ δ , (4.5)

sup
τδ≤t≤τδε

(
|ρε(t)− zc|+ |θε(t)− θc|+ |zε(t)− zc|

)
≤ β2

√
δ , (4.6)

for every δ ∈ (0, δ0) and every ε ∈ (0, εδ) .

Proof. We begin by observing that 1 + cos θc− 3 cos2 θc = 0 and 1 + 3 cos θc < 0. Let us fix
four constants a0 , b0 , c0 , d0 such that

0 < a0 < (1 + cos θc)(1 + 3 cos θc) cos θc sin θc < 1 ,
0 < b0 < −(1 + cos θc) cos θc sin θc < 1 ,

0 < c0 < (1 + cos θc)3 cos2 θc < 1 ,
0 < d0 < −zc(1 + cos θc)3 cos θc .

By continuity there exists η > 0 such that

η < 1
2 (θc − π

2 ) < 1
2 <

1
2 zc ,

−ρ < z2(1 + cos θ)3 cos θ (1 + cos θ − 3 cos2 θ) < ρ ,

a0 ρ < z(1 + cos θ)(1 + 3 cos θ) cos θ sin θ < ρ ,

b0 ρ < −z(1 + cos θ) cos θ sin θ < ρ ,

c0 ρ < z(1 + cos θ)3 cos2 θ < ρ.

d0 ρ < −z2(1 + cos θ)3 cos θ ,

(4.7)

for |θ − θc| ≤ η , |ρ− zc| ≤ η , and |z − zc| ≤ η .
Since the result has to be proved only for sufficiently small δ , we may also assume that

δ < 1
8 , δ < η , 2 δ < κ . (4.8)

We define

tδε := inf{t ∈ (τδ,+∞) : θε(t) < θc − κ δ} , (4.9)
αδ,ηε := inf{t ∈ (τδ,+∞) : |ρε(t)− zc|+ |θε(t)− θc|+ |zε(t)− zc| > η} , (4.10)

sδ,ηε := min{tδε, αδ,ηε } , (4.11)

From (4.7) we obtain that

−ρε(t) < zε(t)2(1+cos θε(t))3cos θε(t)(1+cos θε(t)−3 cos2 θε(t)) < ρε(t) , (4.12)
a0 ρε(t) < zε(t) (1 + cos θε(t) (1 + 3 cos θε(t)) cos θε(t) sin θε(t) < ρε(t) , (4.13)

b0 ρε(t) < −zε(t) (1 + cos θε(t)) cos θε(t) sin θε(t) < ρε(t) , (4.14)
c0 ρε(t) < zε(t) (1 + cos θε(t))3 cos2 θε(t) < ρε(t) , (4.15)

d0 ρε(t) < −zε(t)2(1 + cos θε(t))3 cos θε(t) (4.16)

for every t ∈ [τδ, αδ,ηε ] . Therefore (2.27) and (4.7) give

εẇε(t) ≤ −εa0 + (ρε(t)−zε(t)) + (ρε(t)−zε(t))2 ≤ −εa0 + 2(ρε(t)−zε(t)) , (4.17)
εẇε(t) ≥ −ε− (ρε(t)−zε(t)) + c0(ρε(t)−zε(t))2 ≥ −ε− (ρε(t)−zε(t)) , (4.18)

for every t ∈ [τδ, αδ,ηε ] .
Using the second equation in (2.21) we deduce from (4.14) that

ε θ̇ε(t) ≤ −b0 (ρε(t)− zε(t)) for every t ∈ [τδ, αδ,ηε ] .
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From (4.17) and (4.18) we obtain

−1 + 1
b0
θ̇ε(t) ≤ ẇε(t) ≤ −a0 − 2

b0
θ̇ε(t) for every t ∈ [τδ, αδ,ηε ] .

Integrating we get

wε(t)− wε(τδ) ≥ −(t− τδ) + 1
b0

(θε(t)− θε(τδ)) ,
wε(t)− wε(τδ) ≤ −a0(t− τδ)− 2

b0
(θε(t)− θε(τδ)) ,

(4.19)

for every t ∈ [τδ, αδ,ηε ] .
Since zc (1 + cos θc)2 cos θc + 1 = 0, an elementary estimate of the first derivatives leads

to the inequality |z (1 + cos θ)2 cos θ+ 1| ≤ |z− zc|+ 8 |θ− θc| for |z− zc| < 1
2 , so that (4.2)

and (4.8) give
|wε(τδ)| ≤ 8 δ (4.20)

for ε small enough. By (2.32), (4.2), and (4.9) we have

θc − κ δ ≤ θε(t) ≤ θε(τδ) ≤ θc + δ ≤ θc + κ δ (4.21)

for every t ∈ [τδ, tδε] , so that (4.19) gives

wε(t) ≥ −8 δ − (t− τδ)− 2κ
b0
δ , (4.22)

wε(t) ≤ 8 δ − a0(t− τδ) + 4κ
b0
δ , (4.23)

for every t ∈ [τδ, sδ,ηε ] .
Let

τ̂δ := τδ + κ1 δ , where κ1 := 9
a0

+ 4κ
a0b0

. (4.24)

Let us show, that
sδ,ηε ≤ τ̂δ + 2δ. (4.25)

Suppose, by contradiction, that τ̂δ + 2δ < sδ,ηε . Then by (4.23) we have wε(t) ≤ −δ for
every t ∈ [τ̂δ, sδ,ηε ] . Hence, (2.25) and (2.31) imply

ε(ρ̇ε(t)− żε(t)) ≥ ε sin θ0 + δ(ρε(t)− zε(t)) for every t ∈ [τ̂δ, sδ,ηε ] .

By comparison with the solution of the equation we obtain

ρε(t)− zε(t) ≥ ε
δ sin θ0

(
exp( δε (t− τ̂δ))− 1

)
for every t ∈ [τ̂δ, sδ,ηε ] . (4.26)

In particular, we have

ρε(t)− zε(t) ≥ ε
δ sin θ0

(
exp( δ

2

ε )− 1
)

for every t ∈ [τ̂δ + δ, sδ,ηε ] ,

so that (4.18) gives

ẇε(t) ≥ −1+ 1
δ sin θ0

(
exp( δ

2

ε )−1
)[
−1+c0 εδ sin θ0

(
exp( δ

2

ε )−1
)]

for every t ∈ [τ̂δ + δ, sδ,ηε ] .

For ε small enough we have −1 + c0
ε
δ sin θ0

(
exp( δ

2

ε )− 1
)
> 1, hence

ẇε(t) ≥ −1 + sin θ0
(

exp( δ
2

ε )− 1
)

for every t ∈ [τ̂δ + δ, sδ,ηε ] .

Integrating, we obtain

wε(t) ≥ wε(τ̂δ + δ)− (t− τ̂ δ − δ) + sin θ0
(

exp( δ
2

ε )− 1
)
(t− τ̂δ − δ) , (4.27)

for every t ∈ [τ̂δ+δ, sδ,ηε ] . By using (4.22) we get wε(τ̂δ+δ) ≥ −κ2 δ , with κ2 := 9+κ1 + 2κ
b0

,
so that (4.27) gives

wε(t) ≥ −κ2 δ +
[
− 1 + sin θ0

(
exp( δ

2

ε )− 1
)]

(t− τ̂δ − δ)

for every t ∈ [τ̂δ + δ, sδ,ηε ] . Using (4.23) for t = τ̂δ + 2δ , we obtain

sin θ0
(

exp( δ
2

ε )− 1
)
≤ 9 + κ2 + 4κ

b0
,
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which leads to a contradiction for ε small enough. This concludes the proof of (4.25), which,
together with (4.24), gives

sδ,ηε ≤ τδ + (κ1 + 2) δ . (4.28)
From (4.21) we have

|θε(t)− θc| ≤ κ δ for every t ∈ [τδ, sδ,ηε ] . (4.29)

From (4.22), (4.23), (4.28) if follows that

|wε(t)| ≤ κ3 δ for every t ∈ [τδ, sδ,ηε ] , (4.30)

where κ3 := κ1 + 3 + 4κ
b0

. Since the function

(ω, θ) 7→ ω − 1
(1 + cos θ)2 cos θ

is Lipschitz continuous in R×[θc − η, θc + η] and takes the value zc at (0, θc) by the very
definition of zc (see (3.6)), there exists a constant L ≥ 1 such that

|zε(t)− zc| ≤ L(|wε(t)|+ |θε(t)− θc|) for every t ∈ [τδ, αδ,ηε ] . (4.31)

By (4.29), (4.30), and (4.31) we have

|zε(t)− zc| ≤ κ4 δ for every t ∈ [τδ, sδ,ηε ] . (4.32)

where κ4 := L (κ3 + κ).
By Lemmas 2.6 and 2.8 we have

zε(t) ≤ ρε(t) ≤ ρε(τδ) + ε for every t ∈ [τδ,+∞) ,

so that for ε small enough (4.2) and (4.32) give

zc − κ4 δ ≤ ρε(t) ≤ zc + δ + ε ≤ zc + 2δ for every t ∈ [τδ, sδ,ηε ] ,

which implies
|ρε(t)− zc| ≤ κ4 δ for every t ∈ [τδ, sδ,ηε ] , (4.33)

Taking into account (4.10) and (4.11), if

κ4 δ < η , (4.34)

from (4.29), (4.32), and (4.33) we obtain sδ,ηε < αδ,ηε , hence

sδ,ηε = tδε . (4.35)

Therefore (4.28) yields
tδε ≤ τδ + (κ1 + 2) δ , (4.36)

which implies
θε(tδε) ≤ θc − κ δ . (4.37)

By (2.32) and (2.32)
we have

π
2 < θε(t) ≤ θc − κ δ for every t ∈ [tδε,+∞) . (4.38)

Since the function θ 7→ 1 + cos θ−3 cos2 θ is concave on [π2 , θc] , vanishes at θc , and takes
the value 1 at π

2 , using the inequality θc − π
2 <

1
2 we obtain we have

1 + cos θ − 3 cos2 θ ≥ 2 (θc − θ) for every θ ∈ [π2 , θc] . (4.39)

It follows from (4.38) that

1 + cos θε(t)− 3 cos2 θε(t) ≥ 2 (θc − θε(t)) ≥ 2κ δ for every t ∈ [tδε,+∞) . (4.40)

Let us define

τ δε := inf{t ∈ (tδε,+∞) : wε(t) > 0} , (4.41)
σδ,ηε := min{τ δε , αδ,ηε } . (4.42)
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From (2.27), (4.13), and (4.16) we obtain

ε ẇε(t) ≥ −ε+ 2 d0 κ δ (ρε(t)− zε(t)) for every t ∈ [tδε, σ
δ,η
ε ] . (4.43)

Since wε(t) ≤ 0 for every t ∈ [tδε, τ
δ
ε ] , using (2.25) and (2.32) we get

ρ̇ε(t)− żε(t) ≥ sin θ0 for every t ∈ [tδε, σ
δ,η
ε ] ,

hence

ρε(t)− zε(t) ≥ ρε(tδε)− zε(tδε) + sin θ0 (t− tδε) ≥ sin θ0 (t− tδε) for every t ∈ [tδε, σ
δ,η
ε ] ,

where the last inequality follows from Lemma 2.6. Using (4.43) we obtain

ε ẇε(t) ≥ −ε+ 2 d0 κ sin θ0 δ (t− tδε) for every t ∈ [tδε, σ
δ,η
ε ] ,

which gives

wε(t) ≥ wε(tδε)− (t− tδε) + κ5
δ
ε (t− tδε)2 for every t ∈ [tδε, σ

δ,η
ε ] ,

with κ5 := d0 κ sin θ0 . Using (4.30) we obtain

wε(t) ≥ −κ3 δ − (t− tδε) + κ5
δ
ε (t− tδε)2 for every t ∈ [tδε, σ

δ,η
ε ] ,

hence
wε(t) ≥ −κ3 δ − 2

κ5

ε
δ + κ5

2
δ
ε (t− tδε)2 for every t ∈ [tδε, σ

δ,η
ε ] . (4.44)

Since wε(t) ≤ 0 for every t ∈ [tδε, σ
δ,η
ε ] , this implies

(σδ,ηε − tδε)2 ≤ 2κ3
κ5

ε+ 4
κ2
5 δ

2 ε
2 ,

so that
σδ,ηε − tδε ≤ δ (4.45)

for ε small enough.
Using the second equation in (2.21) we deduce from (4.7) and (4.14) that

ε θ̇ε(t) ≥ − 2
zc
ε− (ρε(t)− zε(t)) for every t ∈ [τδ, αδ,ηε ] .

From (2.27), (4.13), (4.16), and (4.40) we obtain

ε ẇε(t) ≥ −ε+ 2 d0 (θc − θε(t)) (ρε(t)− zε(t)) for every t ∈ [tδε, α
δ,η
ε ] .

As |θc − θε(t)| < η for every t ∈ [τδ, αδ,ηε ] , from the last two inequalities we obtain

ẇε(t) ≥ −1− 2 d0 (θc − θε(t)) θ̇ε(t)− 2 d0
zc

η for every t ∈ [ tδε, α
δ,η
ε ] .

Let ϕε(t) := (θc − θε(t))2 . The previous inequality gives

ẇε(t) ≥ −a1 + d0 ϕ̇ε(t)− 2 d0
zc

η for every t ∈ [ tδε, α
δ,η
ε ] ,

so that

wε(t)− wε(tδε) ≥ −a1(t− tδε) + d0 (ϕε(t)− ϕε(tδε))− 2 d0
zc

η (t− tδε) for every t ∈ [ tδε, α
δ,η
ε ] .

Since wε(t) ≤ 0 for every t ∈ [tδε, τ
δ
ε ] , the previous inequality, together with (4.30), (4.35),

(4.45), and (4.37) gives

ϕε(t) ≤ κ6 δ for every t ∈ [tδε, σ
δ,η
ε ] ,

with κ2
6 := κ2 + 1

d0
(κ3 + a1 + 2 d0

zc
η). It follows that

|θε(t)− θc| ≤ κ6

√
δ for every t ∈ [tδε, σ

δ,η
ε ] . (4.46)

Since wε(t) ≤ 0 for every t ∈ [tδε, τ
δ
ε ] , for ε small enough we obtain from (4.44)

|wε(t)| ≤ (κ3 + 1) δ for every t ∈ [tδε, σ
δ,η
ε ] . (4.47)

These inequalities, together with (4.8) and (4.31), imply that

|zε(t)− zc| ≤ κ7

√
δ for every t ∈ [tδε, σ

δ,η
ε ] . (4.48)

where κ7 := L (κ3 + κ6 + 1).
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By Lemmas 2.6 and 2.8 we have

zε(t) ≤ ρε(t) ≤ ρε(τ δε ) + ε for every t ∈ [τ δε ,+∞) ,

so that for ε small enough (4.54) and (4.48) give

zc − κ7

√
δ ≤ ρε(t) ≤ zc + δ + ε ≤ zc + 2δ for every t ∈ [tδε, σ

δ,η
ε ] ,

which implies
|ρε(t)− zc| ≤ κ7

√
δ for every t ∈ [tδε, σ

δ,η
ε ] . (4.49)

There exists δ0 > 0 such that for every δ ∈ (0, δ0) inequalities (4.8) and (4.34) are
satisfied and

κ7

√
δ < η .

It follows from (4.46), (4.48), and (4.49) that σδ,ηε < αδ,ηε for ε small enough, hence

σδ,ηε = τ δε , (4.50)

which implies wε(τ δε ) ≥ 0. This proves (4.4) for ε small enough.
Inequality (4.5) follows from (4.38). If δ ∈ (0, δ0) we have (4.35) and (4.50) for ε small

enough, so that (4.3) follows from (4.28) and (4.45), with β1 := κ1 + 3, while (4.6) follows
from (4.29), (4.32), (4.33), (4.46), (4.48), and (4.49), with β2 := 3κ4 + 3κ7 . �

4.2. Behaviour near the left branch of the separation line. The following lemma will
be used to study the behaviour of the system when π

2 < θ0 ≤ θc and z0 = zs(θ0), where
zs(θ) is the function defined in (3.4). Note that (4.53) is always satisfied when θ1 < θc and
δ is small.

Lemma 4.2. Let t1 ≥ t0 , π
2 < θ1 ≤ θc , z1 = zs(θ1) , κ1 > 0 , and δ0 ∈ (0, 1) . For every

δ ∈ (0, δ0) let εδ ∈ (0,+∞) , and for every ε ∈ (0, εδ) let τ δε ∈ [t0,+∞) . Assume that for
every δ ∈ (0, δ0) and every ε ∈ (0, εδ)

|τ δε − t1| ≤ δ , (4.51)

wε(τ δε ) ≥ 0 , (4.52)

θε(τ δε ) ≤ θc − κ1 δ , (4.53)

|ρε(τ δε )− z1|+ |θε(τ δε )− θ1|+ |zε(τ δε )− z1| ≤
√
δ . (4.54)

Then there exist δ1 > 0 , a sequence ε̂δ ∈ (0,+∞) , defined for δ ∈ (0, δ1) , a double sequence
tδε ∈ [t0,+∞) , defined for δ ∈ (0, δ1) and ε ∈ (0, ε̂δ) , and two constants γ1 > 0 and γ2 > 0 ,
such that

t1 − δ ≤ τ δε ≤ tδε ≤ t1 + 2 δ , (4.55)

wε(tδε) ≥ δ2 , (4.56)

|ρε(tδε)− zε(tδε)| ≤ γ1
1
δ2 ε , (4.57)

sup
τδε≤t≤tδε

(
|ρε(t)− z1|+ |θε(t)− θ1|+ |zε(t)− z1|

)
≤ γ2

√
δ , (4.58)

for every δ ∈ (0, δ1) and every ε ∈ (0, ε̂δ) .

Proof. Since z1 = zs(θ1), we have z1 (1 + cos θ1)2 cos θ1 + 1 = 0. An elementary estimate
of the first derivatives leads to the inequality |z (1 + cos θ)2 cos θ + 1| ≤ |z − z1|+ 8 |θ − θ1|
for |z − z1| < 1

2 , so that (4.54) gives

|wε(τ δε )| ≤ 8
√
δ (4.59)

for ε small enough. By (2.32), (2.32) , and (4.53) we have
π
2 < θε(t) ≤ θc − κ1 δ for every t ∈ [τ δε ,+∞) . (4.60)

It follows from (4.46) that

1 + cos θε(t)− 3 cos2 θε(t) ≥ 2 (θc − θε(t)) ≥ 2κ1 δ for every t ∈ [τ δε ,+∞) . (4.61)
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Let us define
d0 := − 1

2z1(1 + cos θ1)3 cos θ1 . (4.62)

Since

z1 (1 + cos θ1)3 cos θ1 (1 + cos θ1 − 3 cos2 θ1) < z1 ,

−(1 + cos θ1) cos θ1 sin θ1 < 1 ,
0 < d0 < −z1(1 + cos θ1)3 cos θ1 ,

by continuity there exists η > 0 such that

2 η < z1 and 2 η < θ1 − π
2 , (4.63)

z (1 + cos θ)3 cos θ
[
z (1 + cos θ − 3 cos2 θ)− (ρ− z) cos θ

]
< z1 ρ (4.64)

−z(1 + cos θ) cos θ sin θ < ρ , (4.65)
d0 ρ < −z2(1 + cos θ)3 cos θ , (4.66)

for |θ − θ1| ≤ η , |ρ− z1| ≤ η , and |z − z1| ≤ η . Moreover,

−2ρ ≤ z (1 + cos θ) (1 + 3 cos θ) cos θ sin θ ≤ 2ρ (4.67)

for every 0 < z ≤ ρ and every θ ∈ [π2 , π] .
We set

λ := 3 + 4z1 and γ1 := 6
d0κ1

. (4.68)

Since the result has to be proved only for sufficiently small δ , we may also assume that

δ < 1
λ <

1
3 , δ < η < 1

2z1 , δ < γ1 , δ < d0κ1 sin θ0
2 . (4.69)

For every ε > 0 and δ > 0 we define

τ̃ δε := inf{t ∈ (τ δε ,+∞) : wε(t) > δ2} , (4.70)
t̃δε := inf{t ∈ (τ̃ δε ,+∞) : wε(t) > wε(τ δε ) + λ δ2} , (4.71)
tδε := inf{t ∈ (τ̃ δε ,+∞) : ρε(t)− zε(t) < γ1

1
δ2 ε} , (4.72)

αδ,ηε := inf{t ∈ (τ δε ,+∞) : |ρε(t)− z1|+ |θε(t)− θ1|+ |zε(t)− z1| > η} , (4.73)
σ̃δ,ηε := min{τ̃ δε , αδ,ηε } , s̃δε := min{t̃δε, tδε, τ δε + δ2} , s̃δ,ηε := min{s̃δε, αδ,ηε } . (4.74)

Since zε(t) ≤ ρε(t) for every t ∈ [t0,+∞) by Lemma 2.6, from (4.67) we obtain that

−2 ρε(t) ≤ zε(t) (1 + cos θε(t) (1 + 3 cos θε(t)) cos θε(t) sin θε(t) ≤ 2 ρε(t) (4.75)

for every t ∈ [t0,+∞). By (4.65) and (4.66) we have

−zε(t) (1 + cos θε(t)) cos θε(t) sin θε(t) < ρε(t) , (4.76)
d0 ρε(t) < −zε(t)2(1 + cos θε(t))3 cos θε(t) , (4.77)

for every t ∈ [τ δε , α
δ,η
ε ] . From (2.27). (4.61), (4.75) and (4.77) we obtain

εẇε(t) ≥ −2ε+ 2d0 (θc − θε(t)) (ρε(t)− zε(t)) ≥ −2ε+ 2d0κ1δ (ρε(t)− zε(t)) (4.78)

for every t ∈ [τ δε , α
δ,η
ε ] .

Since wε(t) ≤ δ2 for every t ∈ [τ δε , τ̃
δ
ε ) by (4.70), from (2.25) and (2.32) we obtain that

ε (ρ̇ε(t)− żε(t)) ≥ ε sin θ0 − δ2(ρε(t)− zε(t)) for every t ∈ [τ δε , τ̃
δ
ε ) .

By comparison we have

ρε(t)− zε(t) ≥ ε sin θ0
δ2

[
1− exp

(
− δ2

ε (t− τ δε )
)]

for every t ∈ [τ δε , τ̃
δ
ε ) ,

so that (4.78) gives

ẇε(t) ≥ −2 + 2d0κ1 sin θ0
δ

[
1− exp

(
− δ2

ε (t− τ δε )
)]

for every t ∈ [τ δε , σ̃
δ,η
ε ) . (4.79)
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By (4.69) we have −2 + 2d0κ1 sin θ1
δ > 2. Integrating (4.79) and using the definition of τ̃ δε

and (4.52) we obtain

δ2 ≥ wε(t) ≥ 2(t− τ δε )− 2d0 κ1 sin θ0
δ3 ε for every t ∈ [τ δε , σ̃

δ,η
ε ) . (4.80)

This inequality implies

σ̃δ,ηε − τ δε ≤ 1
2δ

2 + d0κ1 sin θ0
δ3 ε ≤ 2

3δ
2 , (4.81)

for ε small enough.
Using the second equation in (2.21) we deduce from (4.69) and (4.76) that

ε θ̇ε(t) ≥ − 2
z1
ε− (ρε(t)− zε(t)) for every t ∈ [τ δε , α

δ,η
ε ] .

As |θc − θε(t)| < π
2 for every t ∈ [t0,+∞) by (2.32) , from (4.78) we obtain

ẇε(t) ≥ −2− 2 d0 (θc − θε(t)) θ̇ε(t)− 2 d0 π
z1
≥ −2− 2 d0 (θ1 − θε(t)) θ̇ε(t)− 2 d0 π

z1

for every t ∈ [τ δε , α
δ,η
ε ] , where the last inequality follows from the inequalities θ̇ε(t) < 0 and

θc ≥ θ1 . Let ϕε(t) := (θ1 − θε(t))2 . The previous inequality gives

ẇε(t) ≥ −2 + d0ϕ̇ε(t)− 2 d0 π
z1

for every t ∈ [τ δε , α
δ,η
ε ] ,

so that
wε(t)− wε(τ δε ) ≥ −2(t− τ δε ) + d0(ϕε(t)− ϕε(τ δε ))− 2 d0 π

z1
(t− τ δε )

for every t ∈ [τ δε , α
δ,η
ε ] . By (4.71) and (4.74) we have wε(t) − wε(τ δε ) ≤ λ δ2 for every

t ∈ [τ δε , s̃
δ,η
ε ] and s̃δ,ηε − τ δε ≤ δ2 . Therefore the previous inequality, together with (4.54),

gives
ϕε(t) ≤ κ2

2 δ
2 for every t ∈ [τ δε , s̃

δ,η
ε ] ,

with κ2
2 := 1 + (λ+2

d0
+ 2π

z1
). It follows that

|θε(t)− θ1| ≤ κ2

√
δ for every t ∈ [τ δε , s̃

δ,η
ε ] . (4.82)

Since the function
(ω, θ) 7→ ω − 1

(1 + cos θ)2 cos θ
is Lipschitz continuous in R×[θ1−η, θ1+η] and takes the value z1 at (0, θ1) by the hypothesis
z1 = zs(θ1), there exists a constant L ≥ 1 such that

|zε(t)− z1| ≤ L(|wε(t)|+ |θε(t)− θ1|) for every t ∈ [τ δε , α
δ,η
ε ] . (4.83)

Since for ε small enough

|wε(t)| ≤ 9
√
δ for every t ∈ [τ δε , s̃

δ,η
ε ] (4.84)

by (4.59), (4.69), (4.73), and (4.74), from (4.82) we obtain

|zε(t)− z1| ≤ L (9 + κ2)
√
δ for every t ∈ [τ δε , s̃

δ,η
ε ] . (4.85)

By Lemmas 2.6 and 2.8 we have

zε(t) ≤ ρε(t) ≤ ρε(τ δε ) + ε for every t ∈ [τ δε ,+∞) ,

so that for ε small enough (4.54) and (4.85) give

z1 − L (9 + κ2)
√
δ ≤ ρε(t) ≤ z1 + δ + ε ≤ z1 + 2δ for every t ∈ [τ δε , s̃

δ,η
ε ] ,

which implies
|ρε(t)− z1| ≤ L (9 + κ2)

√
δ for every t ∈ [τ δε , s̃

δ,η
ε ] . (4.86)

Let γ2 := κ2 + 18L + 2Lκ2 . We choose δ1 ∈ (0, δ0) such that for every δ ∈ (0, δ1)
inequalities (4.69) are satisfied and γ2

√
δ < η . Taking into account (4.73), from (4.83),

(4.85), and (4.86) for every δ ∈ (0, δ1) we obtain s̃δ,ηε < αδ,ηε for ε small enough, hence

s̃δ,ηε = s̃δε < αδ,ηε . (4.87)
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By (4.74) and (4.81) we have σ̃δ,ηε ≤ s̃δε < αδ,ηε , hence σ̃δ,ηε = τ̃ δε and

τ̃ δε ≤ s̃δε ≤ τ δε + 2
3δ

2 . (4.88)

By the definition of τ̃ δε this implies that

wε(τ̃ δε ) ≥ δ2 and wε(τ̃ δε ) ≥ wε(τ δε ) . (4.89)

By (4.69), (4.73), and (4.78) we have ẇε(t) ≥ 9
δ for every t ∈ [τ̃ δε , s̃

δ
ε] , so that by (4.89)

λ δ2 ≥ wε(t)− wε(τ δε ) ≥ wε(t)− wε(τ̃ δε ) ≥ 9
δ (t− τ̃ δε ) for every t ∈ [τ̃ δε , s̃

δ
ε] . (4.90)

By (4.69) this implies s̃δε − τ̃ δε ≤ 1
3δ

2 , which, together with (4.88), gives

s̃δε ≤ τ δε + δ2 , (4.91)

Let us prove that
tδε < s̃δε (4.92)

for ε small enough. We argue by contradiction. If tδε ≥ s̃δε , then (4.91) and the definition
of s̃δε imply that s̃δε = t̃δε and t̃δε ≤ τ̃ δε + δ2 . Recalling (4.53) we obtain

wε(t̃δε) = wε(τ δε ) + λ δ2 ≥ λ δ2 .
Let σδε be the last time in [τ δε , t̃

δ
ε] such that wε(σδε) = ωδε := wε(τ δε ) + δ2 and let σ̂δε be

the first time in [σδε , t
η
δ ] such that wε(σ̂δε) = ω̂δε := wε(τ δε ) + 2δ2 . Let us prove that for ε

small enough there exists t̂δε ∈ [σδε , σ̂
δ
ε ] such that

ρε(t̂δε)− zε(t̂δε) <
√
ε . (4.93)

We argue by contradiction. If ρε(t)− zε(t) ≥
√
ε for every t ∈ [σδε , σ̂

δ
ε ] , for ε small enough

from (4.78) we obtain

ẇε(t) ≥ −2 + 2d0κ1δ
1√
ε
≥ d0κ1δ

1√
ε

for every t ∈ [σδε , σ̂
δ
ε ] , (4.94)

so that wε is increasing on [σδε , σ̂
δ
ε ] . Therefore there exists a function uε : [ωδε , ω̂

δ
ε ]→ [σδε , σ̂

δ
ε ]

such that
ρε(t)− zε(t) = uε(wε(t)) for every t ∈ [σδε , σ̂

δ
ε ] . (4.95)

By (2.25) we have

ε(ρ̇ε(t)− żε(t)) ≤ ε− (ρε(t)− zε(t))wε(t) for every t ∈ [σδε , t̃
δ
ε] . (4.96)

From (4.94) and (4.96) we obtain

u′ε(ω) ≤ 1
d0κ1δ

√
ε− 1

d0κ1

1√
ε
uε(ω)ω for every ω ∈ [ωδε , ω̂

δ
ε ]

By comparison with the solution of the equation we obtain

uε(ω) ≤ (ρε(σδε)− zε(σδε)) exp
(
− 1

2d0κ1

1√
ε
(ω − ωδε)2

)
+

+ 1
d0κ1δ

√
ε

∫ ω−ωδε

0

exp
(
− 1

2d0κ1

1√
ε
((ω − ωδε)2 − s2)

)
ds

for every ω ∈ [ωδε , ω̂
δ
ε ] . For ω = ω̂δε we obtain from (4.58) and (4.95)

ρε(σ̂δε)− zε(σ̂δε) = uε(ω̂δε) ≤ γ3δ exp
(
− δ2

2d0κ1

1√
ε

)
+ 1

d0κ1

√
ε µε ,

with µε → 0 as ε → 0. Since the right-hand side of this inequality is less than
√
ε for ε

small enough, we have contradicted the assumption ρε(t)−zε(t) ≥
√
ε for every t ∈ [σδε , σ̂

δ
ε ] .

This concludes the proof of (4.93).
As wε(t) ≥ δ2 for every t ∈ [σδε , t̃

δ
ε] , from (2.25) we obtain

ε(ρ̇ε(t)− żε(t)) ≤ ε− δ2(ρε(t)− zε(t)) for every t ∈ [σδε , t̃
δ
ε] .

By comparison with the solution of the equation we get

ρε(t)− zε(t) ≤ ε
δ2 + (ρε(t̂δε)− zε(t̂δε)) exp

(
− δ2

ε (t− t̂δε)
)

for every t ∈ [t̂δε, t̃
δ
ε] .
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By (4.93) we have ρε(t̂δε)− zε(t̂δε) <
√
ε , so that

ρε(t)− zε(t) < ε
δ2 +

√
ε exp

(
− δ2

ε (t− t̂δε)
)

for every t ∈ [t̂δε, t̃
δ
ε] . (4.97)

By (4.64) we have

zε(t)(1+cos θε(t))3cos θε(t)
[
zε(t)(1+cos θε(t)−3 cos2 θε(t))−(ρε(t)−zε(t)) cos θε(t)

]
< z1ρε(t) ,

for every t ∈ [τ δε , α
δ,η
ε ] , so that (2.27) and (4.75) imply

ε ẇε(t) ≤ 2ε+ z1(ρε(t)− zε(t)) for every t ∈ [τ δε , α
δ,η
ε ] .

By (4.97) this yields

ε ẇε(t) ≤ 2 ε+ z1
ε
δ2 + z1

√
ε exp

(
− δ2

ε (t− t̂δε)
)

for every t ∈ [t̂δε, t̃
δ
ε] .

Since wε(t̂δε) ≤ wε(τ δε ) + 2δ2 , integrating we obtain

wε(t)−wε(τ δε )−2δ2 ≤ (2 + z1
δ2 ) (t− t̂δε) + z1

δ2

√
ε
[
1− exp

(
− δ2

ε (t− t̂δε)
)]

for every t ∈ [t̂δε, t̃
δ
ε] .

Taking t = t̃δε we find that

(λ− 2)δ2 ≤ (2 + z1
δ2 ) (t̃δε − t̂δε) + z1

δ2

√
ε ≤ (2 + z1

δ2 ) (t̃δε − t̂δε) + δ2

for ε small enough. Since 2 δ2 < z1 by (4.69), the previous inequality gives (λ − 3) δ2 ≤
2 z1
δ2 (t̃δε − t̂δε) for ε small enough, hence t̃δε − t̂δε ≥ λ−3

2 z1
δ4 . If we apply (4.97) with t = t̃δε we

obtain
ρε(t̃δε)− zε(t̃δε) < ε

δ +
√
ε exp(− 2 δ6

ε ) ,

which gives ρε(t̃δε) − zε(t̃δε) < ε
δ for ε small enough. By the definition of tδε this implies

tδε < t̃δε , which violates our hypothesis tδε ≥ t̃δε and concludes the proof of (4.92).
From (4.89), (4.90) and (4.92) we obtain wε(tδε) ≥ δ2 , which proves (4.56). Inequalities

(4.55) follow from (4.51), (4.69), (4.91), and (4.92). Inequality (4.57) follows from the
definition of tεδ , and (4.58) follows from (4.83), (4.85), and (4.86). �

5. Continuous evolution

In this section we consider two cases where the viscosity solution (ρ, θ, z) is continuous.
In the first case 0 ≤ θ0 < π

2 and the system exhibits a hardening behaviour by (2.33).
In the second case π

2 < θ0 ≤ π , so that we have a softening behaviour by (2.34), and we
consider an additional condition on z0 which implies that the viscosity solution (ρ, θ, z) is
continuous. We begin by stating the result in the case of hardening, that will be proved in
the next subsection.

Theorem 5.1. Assume that 0 ≤ θ0 <
π
2 and let (ρsl0 , θ

sl
0 ) be defined as in Lemma 3.5.

Then

ρ(t) = z(t) = ρsl0 (t) and θ(t) = θsl0 (t) for every t ∈ [t0,+∞) . (5.1)

Moreover
sup

t0≤t≤τ

(
|ρε(t)− ρ(t)|+ |θε(t)− θ(t)|+ |zε(t)− z(t)|

)
→ 0 (5.2)

for every τ ∈ (t0,+∞) .

We now state the result in the case of softening with continuous evolution, that will be
proved in Subsection 5.3. Let θc be the constant defined in (3.3), and let zs(θ) and rc(θ)
be the functions defined in (3.4) and (3.6).

Theorem 5.2. Assume one of the following conditions:
π
2 < θ0 ≤ θc and z0 ≤ zs(θ0) , (5.3)
θc < θ0 < π and z0 < rc(θ0) . (5.4)
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Let (ρsl2 , θ
sl
2 ) be defined as in Lemma 3.7 with t1 = t0 , θ2 = θ0 , and z2 = z0 . Then

ρ(t) = z(t) = ρsl2 (t) and θ(t) = θsl2 (t) for every t ∈ [t0,+∞) . (5.5)

Assume that
θc < θ0 < π and z0 = rc(θ0) . (5.6)

Let (ρsl0 , θ
sl
0 ) and t1 be defined as in Lemma 3.6, and let (ρsl2 , θ

sl
2 ) be defined as in Lemma 3.7

with θ2 = θc and z2 = zc . Then

ρ(t) = z(t) =


ρsl0 (t) if t ∈ [t0, t1) ,
zc if t = t1 ,

ρsl2 (t) if t ∈ (t1,+∞) ,
θ(t) =


θsl0 (t) if t ∈ [t0, t1) ,
θc if t = t1 ,

θsl2 (t) if t ∈ (t1,+∞) .
(5.7)

In both cases we have

sup
t0≤t≤τ

(
|ρε(t)− ρ(t)|+ |θε(t)− θ(t)|+ |zε(t)− z(t)|

)
→ 0 (5.8)

for every τ ∈ (t0,+∞) .

In the proof we shall use the following general result on continuous dependence on a
parameter, whose proof can be found in [6] and [5] (see also [1]).

Theorem 5.3. Let fε and f0 be Carathéodory functions defined on [a, b]×Rm with values
in Rm , let tε , t0 ∈ [a, b] , and let xε , x0 ∈ Rm . Assume that there exist two constants
L > 0 and M > 0 such that

|fε(t, x2)− fε(t, x1)| ≤ L |x2 − x1| ,
|fε(t, x)| ≤M ,

for every ε > 0 , every t ∈ [a, b] , and every x , x1 , x2 ∈ Rm . Let yε(t) and y0(t) be the
solutions of the Cauchy problems{

ẏε(t) = fε(t, y(t)) ,
yε(tε) = xε ,

{
ẏ0(t) = fε(t, y(t)) ,
yε(t0) = x0 .

If tε → t0 , xε → x0 , and for every x ∈ Rm∫ t

a

fε(s, x) ds→
∫ t

a

f(s, x) ds uniformy for t ∈ [a, b] ,

then yε(t)→ y0(t) uniformly for t ∈ [a, b] .

5.1. Hardening. In this subsection we prove Theorem 5.1 about the hardening regime.

Proof. By Lemma 2.5 we deduce from (2.25) that

ε(ρ̇ε(t)− żε(t)) ≤ ε− (ρε(t)− zε(t))+ for every t ∈ [t0,+∞) .

As ρε(t0)− zε(t0) = 0, by comparison we obtain that

ρε(t)− zε(t) ≤ ε(1− e−
1
ε (t−t0)) ≤ ε for every t ∈ [t0,+∞) . (5.9)

Let us define
ψε(t) := 1

ε (ρε(t)− zε(t)) . (5.10)

By Lemma 2.6 and (5.9) we have

0 ≤ ψε(t) ≤ 1 for every t ∈ [t0,+∞) . (5.11)

Passing to a subsequence, we may assume that ψε ⇀ ψ weakly∗ in L∞([t0,+∞)), with
0 ≤ ψ ≤ 1 a.e. on [t0,+∞).
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From (2.21) we obtain
ρ̇ε(t) = sin θε(t)− ψε(t)

(
zε(t) (1 + cos θε(t)) cos2 θε(t) + 1

)
,

ρε(t) θ̇ε(t) = cos θε(t) + ψε(t) zε(t) (1 + cos θε(t)) cos θε(t) sin θε(t) ,
żε(t) = ψε(t) zε(t) (1 + cos θε(t)) cos θε(t) .

(5.12)

By Lemma 2.6 and (2.33) we have ρε(t) ≥ zε(t) ≥ z0 for every [t0,+∞). Therefore we
can apply Theorem 5.3 and we obtain that ρε → ρ , θε → θ , and zε → z uniformly on
compact subsets of [t0,+∞), where (ρ, θ, z) is the solution of the Cauchy problem

ρ̇(t) = sin θ(t)− ψ(t)
(
z(t) (1 + cos θ(t)) cos2 θ(t) + 1

)
,

ρ(t) θ̇(t) = cos θ(t) + ψ(t) z(t) (1 + cos θ(t)) cos θ(t) sin θ(t) ,
ż(t) = ψ(t) z(t) (1 + cos θ(t)) cos θ(t) ,
ρ(t0) = z0 , θ(t0) = θ0 , z(t0) = z0 .

(5.13)

By (2.31), passing to the limit we obtain we have hence

0 < θ0 ≤ θ(t) ≤ π
2 for every t ∈ [t0,+∞) . (5.14)

By Lemma 2.6 and (5.9) ρε− zε → 0 strongly in L∞([t0,+∞)), hence ρ(t) = z(t) for every
t ∈ [t0,+∞). From the first and third equations in (5.13) we obtain

sin θ(t) = ψ(t)
(
z(t) (1 + cos θ(t))2 cos θ(t) + 1

)
for a.e. t ∈ [t0,+∞) .

By (5.14) we have sin θ(t) > 0 for every t ∈ [t0,+∞), hence

ψ(t) =
sin θ(t)

ρ(t) (1 + cos θ(t))2 cos θ(t) + 1
for a.e. t ∈ [t0,+∞) . (5.15)

It follows that (ρ, θ) satisfies the system of the slow dynamics (3.13) in [t0,+∞) with
initial conditions (3.14), therefore (ρ(t), θ(t)) = (ρsl0 (t), θsl0 (t)) for every t ∈ [t0,+∞). Since
the limit does not depend on the subsequence, we obtain (5.2). �

5.2. Convergence to the slow dynamics. In this subsection we prove a general result on
the convergence of the solutions of (2.21) to the solutions of the system of the slow dynamics.
Let zs(θ) be the function defined in (3.4).

Lemma 5.4. Assume that

t0 ≤ t∗ < τ < +∞ , π
2 < θ∗ ≤ π , 0 < z∗ < zs(θ∗) . (5.16)

Let (ρsl∗ , θ
sl
∗ ) be the solution of (3.13) with Cauchy conditions

ρsl∗ (t∗) = z∗ and θsl∗ (t∗) = θ∗ , (5.17)

and let t∗ε be a sequence in [t0,+∞) . Assume that

ρsl∗ (t) < zs(θsl∗ (t)) for every t ∈ [t∗, τ ] , (5.18)
t∗ε → t∗ , ρε(t∗ε)→ z∗ , θε(t∗ε)→ θ∗ , zε(t∗ε)→ z∗ , (5.19)

0 ≤ ρε(t∗ε)− zε(t∗ε) ≤ κ ε , (5.20)

for some κ ≥ 0 independent of ε . Then

sup
t∗ε≤t≤τ

(
|ρε(t)− ρsl∗ (t)|+ |θε(t)− θsl∗ (t)|+ |zε(t)− ρsl∗ (t)|

)
→ 0 . (5.21)

Proof. For every α ∈ R and η > 0 we define qηα : R→ R as the minimum distance projection
into the interval [α− η, α+ η] , i.e.,

qηα(β) :=


α− η , if β < α− η ,
β , if α− η ≤ β ≤ α+ η ,

α+ η , if β > α+ η .

(5.22)
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Since the inequality in (5.18) is strict, from (3.4) we obtain

ρsl∗ (t) (1 + cos θsl∗ (t))2 cos θsl∗ (t) + 1 > 0 for every t ∈ [t∗, τ ] .

By continuity there exists η > 0 such that

qη
ρsl∗ (t)

(ρ) (1 + cos qη
θsl∗ (t)

(θ))2 cos qη
θsl∗ (t)

(θ) + 1 ≥ η (5.23)

for every t ∈ [t∗, τ ] , θ ∈ R , ρ ∈ R . Since (z∗, π2 ) is a constant solution of (3.13), we have
π
2 < θsl∗ (t) < 3

2π for every t ∈ [t∗, τ ] . Therefore the second equation in (3.13) implies that
θsl∗ (t) < 0, hence π

2 < θsl∗ (t) ≤ θ∗ < π for every t ∈ [t∗, τ ] . We deduce that, if η is small
enough, we have

sin qη
θsl∗ (t)

(θ) ≥ η for every t ∈ [t∗, τ ]and every θ ∈ R . (5.24)

Since ρsl∗ (t) > 0 for every t ∈ [t∗, τ ] , we may assume that

ρsl∗ (t) ≥ 2η for every t ∈ [t∗, τ ] . (5.25)

Finally, we may also assume that
κ η < 1 , (5.26)

where κ is the constant in (5.20).
Let us fix η satisfying (5.23)-(5.26), and let (ρηε(t), θηε (t), zηε (t)), t ∈ [t∗ε, τ ] , be the solu-

tions of the systems

ε ρ̇ηε(t) = ε sin θ̃ηε (t)−
− (ρηε(t)− zηε (t))+

(
z̃ηε (t) (1 + cos θ̃ηε (t)) cos2 θ̃ηε (t) + 1

)
,

ε max{ρηε(t), η} θ̇ηε (t) = ε cos θ̃ηε (t) +

+ (ρηε(t)− zηε (t))+z̃ηε (t) (1 + cos θ̃ηε (t)) cos θ̃ηε (t) sin θ̃ηε (t) ,

ε żηε (t) = (ρηε(t)− zηε (t))+z̃ηε (t) (1 + cos θ̃ηε (t)) cos θ̃ηε (t) ,

(5.27)

with Cauchy conditions

ρηε(t∗ε) = ρε(t∗ε) , θηε (t∗ε) = θε(t∗ε) , zηε (t∗ε) = zε(t∗ε) , (5.28)

where θ̃ηε (t) := qη
θsl∗ (t)

(θηε (t)) and z̃ηε (t) := qη
ρsl∗ (t)

(zηε (t)). By subtracting the third equation
from the first one in (5.27) we get

ε (ρ̇ηε(t)− żηε (t)) = ε sin θ̃ηε (t)−
− (ρηε(t)− zηε (t))+

(
z̃ηε (t) (1 + cos θ̃ηε (t))2 cos θ̃ηε (t) + 1

)
.

(5.29)

Therefore we deduce from (5.23) that

ε(ρ̇ηε(t)− żηε (t)) ≤ ε− η(ρηε(t)− zηε (t))+ for every t ∈ [t∗, τ ] .

As 0 ≤ ρηε(t∗ε)− zηε (t∗ε) ≤ κ ε by (5.20) and (5.28), by comparison we obtain that

ρηε(t)− zηε (t) ≤ (κ ε− ε
η ) exp

(
− η

ε (t− t∗ε)
)

+ ε
η ≤

ε
η for every t ∈ [t∗ε, τ ] , (5.30)

where the last inequality follows from (5.26). Let us prove that

ρηε(t)− zηε (t) > 0 for every t ∈ [t∗, τ ] . (5.31)

If not, let τ be the first time in (t∗, τ ] such that ρηε(τ) − zηε (τ) = 0. Clearly we have
ρ̇ηε(τ) − żηε (τ) ≤ 0. By (5.24) and (5.29) we have ρ̇ηε(τ) − żηε (τ) = sin θ̃ηε (τ) > 0, which
contradicts the inequality ρ̇ηε(τ)− żηε (τ) ≤ 0 and concludes the proof of (5.31).

Let us define
ψηε (t) := 1

ε (ρηε(t)− zηε (t)) . (5.32)
By (5.30) and (5.31) we have

0 ≤ ψηε (t) ≤ 1
η for every t ∈ [t∗, τ ] . (5.33)
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Passing to a subsequence, we may assume that ψηε ⇀ ψη weakly∗ in L∞([t∗, τ ]) as ε→ 0,
with 0 ≤ ψη ≤ 1

η a.e. on [t∗, τ ] . From (5.27) we obtain
ρ̇ηε(t) = sin θ̃ηε (t)− ψηε (t)

(
z̃ηε (t) (1 + cos θ̃ηε (t)) cos2 θ̃ηε (t) + 1

)
,

max{ρηε(t), η} θ̇ηε (t) = cos θ̃ηε (t) + ψηε (t) z̃ηε (t) (1 + cos θ̃ηε (t)) cos θ̃ηε (t) sin θ̃ηε (t) ,

żηε (t) = ψηε (t) z̃ηε (t) (1 + cos θ̃ηε (t)) cos θ̃ηε (t) .

(5.34)

We can regard (5.34) as a sequence of systems whose right-hand sides are given by

F ηε (t, ρ, θ, z) := sin qη
θsl∗ (t)

(θ)− ψηε (t)
(
qη
ρsl∗ (t)

(z) (1 + cos qη
θsl∗ (t)

(θ)) cos2 qη
θsl∗ (t)

(θ) + 1
)
,

Gηε(t, ρ, θ, z) := cos qη
θsl∗ (t)

(θ) + ψηε (t) qη
ρsl∗ (t)

(z)(1+cos qη
θsl∗ (t)

(θ)) cos qη
θsl∗ (t)

(θ) sin qη
θsl∗ (t)

(θ) ,

Hη
ε (t, ρ, θ, z) := ψηε (t) qη

ρsl∗ (t)
(z) (1 + cos qη

θsl∗ (t)
(θ)) cos qη

θsl∗ (t)
(θ) .

By Theorem 5.3 we have ρηε → ρη , θηε → θη , and zηε → zη uniformly on [t∗, τ ] , where
(ρη, θη, zη) is the solution of the system

ρ̇η(t) = sin θ̃η(t)− ψη(t)
(
z̃η(t) (1 + cos θ̃η(t)) cos2 θ̃η(t) + 1

)
,

max{ρη(t), η} θ̇η(t) = cos θ̃η(t) + ψη(t) z̃η(t) (1 + cos θ̃η(t)) cos θ̃η(t) sin θ̃η(t) ,

żη(t) = ψη(t) z̃η(t) (1 + cos θ̃η(t)) cos θ̃η(t) ,

(5.35)

with θ̃η(t) := qη
θsl∗ (t)

(θη(t)) and z̃η(t) := qη
ρsl∗ (t)

(zη(t)). Moreover

ρη(t∗) = z∗ , θη(t∗) = θ∗ , zη(t∗) = z∗ .

By (5.30) and (5.31) ρηε − zηε → 0 strongly in L∞([t∗, τ ]) as ε→ 0, hence ρη(t) = zη(t)
for every t ∈ [t∗, τ ] . From the first and third equations in (5.35) we obtain

sin θ̃η(t) = ψη(t)
(
ρ̃η(t) (1 + cos θ̃η(t))2 cos θ̃η(t) + 1

)
for a.e. t ∈ [t∗, τ ] ,

hence

ψη(t) =
sin θ̃η(t)

ρ̃η(t) (1 + cos θ̃η(t))2 cos θ̃η(t) + 1
for a.e. t ∈ [t∗, τ ] .

It follows that (ρη, θη) satisfies the system
ρ̇η(t) =

ρ̃η(t)
(
1 + cos θ̃η(t)

)
cos θ̃η(t) sin θ̃η(t)

ρ̃η(t)
(
1 + cos θ̃η(t)

)2 cos θ̃η(t) + 1
,

max{ρη(t), η} θ̇η(t) =
ρ̃η(t) (1 + cos θ̃η(t))2 cos θ̃η(t) + cos θ̃η(t)

ρ̃η(t) (1 + cos θ̃η(t))2 cos θ̃η(t) + 1
,

(5.36)

with Cauchy conditions
ρη(t∗) = z∗ and θη(t∗) = θ∗ . (5.37)

By (5.25) we have max{ρsl∗ (t), η} = ρsl∗ (t) in a neighbourhood of [t∗, τ ] . Moreover, by
(5.22) we have qη

ρsl∗ (t)
(ρsl∗ (t)) = ρsl∗ (t) and qη

θsl∗ (t)
(θsl∗ (t)) = θsl∗ (t) in a neighbourhood of

[t∗, τ ] . Since (ρsl∗ , θ
sl
∗ ) is the solution of (3.13) with Cauchy conditions (5.17), it satisfies

also (5.36) with Cauchy conditions (5.37). By uniqueness we have ρη(t) = ρsl∗ (t) and
θη(t) = θsl∗ (t) in a neighbourhood of [t∗, τ ] .

Since the limit does not depend on the subsequence, we conclude that ρηε → ρsl∗ , θηε → θsl∗ ,
and zηε → ρsl∗ uniformly in a neighbourhood of [t∗, τ ] as ε → 0. Then for ε small enough
we have θ̃ηε (t) := qη

θsl∗ (t)
(θηε (t)) = θηε (t) and z̃ηε (t) := qη

ρsl∗ (t)
(zηε (t)) = zηε (t), and, recalling

(5.26), max{ρηε(t), η} = ρηε(t) in a neighbourhood of [t∗, τ ] . From (5.27) we deduce that
(ρηε , θ

η
ε , z

η
ε ) satisfies (2.21) in a neighbourhood of [t∗, τ ] for ε small enough. Since, by (5.28),

(ρηε , θ
η
ε , z

η
ε ) and (ρε, θε, zε) satisfy the same Cauchy condition at t∗ε , by uniqueness we have

that (ρηε , θ
η
ε , z

η
ε ) = (ρε, θε, zε) on [t∗, τ ] for ε small enough. It follows that ρε → ρsl∗ ,
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θε → θsl∗ , and zε → ρsl∗ uniformly in a neighbourhood of [t∗, τ ] as ε→ 0. As t∗ε → t∗ , this
concludes the proof of (5.21). �

5.3. Softening with continuous evolution. In this subsection we prove Theorem 5.2
describing the softening regime with a continuous evolution.

Proof. Let us fix τ ∈ (t0,+∞). Assume either π
2 < θ0 ≤ θc and z0 < zs(θ0), or θc < θ0 < π

and z0 < rc(θ0). Then we can apply Lemma 5.4 with t∗ = t0 , θ∗ = θ0 , z∗ = z0 , t∗ε = t0 , and
κ = 0, since (5.18) is a consequence of (3.26). Therefore (5.5) and (5.8) follow from (5.21).

Assume π
2 < θ0 < θc and z0 = zs(θ0). To deal with the behaviour of the solutions

near t0 we apply Lemma 4.2 with t1 = t0 , θ1 = θ0 , z1 = z0 = zs(θ0), κ1 = 1, τ δε = t0 , and
0 < δ0 < θc − θ0 . Let δ1 , γ1 , γ2 , and tδε be the constants and the double sequence given
by Lemma 4.2, and let δk be a decreasing sequence in (0, δ1) converging to 0. For every k
we have

|tδkε − t0| ≤ 2 δk , (5.38)

wε(tδkε ) ≥ δ2k (5.39)

|ρε(tδkε )− zε(tδkε )| ≤ γ1
1
δ2k
ε , (5.40)

sup
t0≤t≤tδε

(
|ρε(t)− z0|+ |θε(t)− θ0|+ |zε(t)− z0|

)
≤ γ2

√
δk , (5.41)

for ε small enough. Using a diagonal argument and (5.40), we may assume that for every
k there exist three constants tδk0 , θδk0 , and zδk0 such that

tδkε → tδk0 , ρε(tδkε )→ zδk0 , θε(tδkε )→ θδk0 , zε(tδkε )→ zδk0 , (5.42)

as ε→ 0 along a suitable sequence independent of k . By (5.38), (5.39), and (5.41) for every
k we have

|tδk0 − t0| ≤ 2 δk , (5.43)

zδk0 (1 + cos θδk0 )2 cos θδk0 + 1 ≥ δ2k , (5.44)

|θδk0 − θ0|+ |z
δk
0 − z0| ≤ γ2

√
δk . (5.45)

Inequality (5.44) implies that zδk0 < zs(θδk0 ).
Let (ρslδk , θ

sl
δk

) be the solution of (3.13) with Cauchy conditions

ρslδk(tδk0 ) = zδk0 and θslδk(tδk0 ) = θδk0 . (5.46)

By (3.26) and (5.44) we have

ρslδk(t) < zs(θslδk(t)) for every t ∈ [tδk0 , τ ] . (5.47)

We can apply Lemma 5.4 with t∗ = tδk0 , z∗ = zδk0 , θ∗ = θδk0 , (ρsl∗ , θ
sl
∗ ) = (ρslδk , θ

sl
δk

), t∗ε = tδkε ,
and κ = γ1

1
δ2k

. Indeed, (5.17) follows from (5.46), (5.18) from (5.47), (5.19) from (5.42),
and (5.20) from (5.40). We conlude that for every k

sup
t
δk
0 ≤t≤τ

(
|ρε(t)− ρslδk(t)|+ |θε(t)− θslδk(t)|+ |zε(t)− ρslδk(t)|

)
→ 0 . (5.48)

as ε→ 0 along a sequence satisfying (5.42).
We deduce from (5.48) that ρslδk(t) = ρslδh(t) and θslδk(t) = θslδh(t) for every t ∈ [tδk0 , τ ] ∩

[tδh0 , τ ] . Let τ0 := infk tδk0 . Then there exists a solution (ρsl, θsl) of (3.13) in (τ0, τ ] such
that ρsl(t) = ρslδk(t) and θsl(t) = θslδk(t) for every t ∈ [tδk0 , τ ] . Since tδk0 → t0 as k →∞ by
(5.43), while ρsl(tδk0 ) → z0 and θsl(tδk0 ) → θ0 by (5.45) and (5.46), the uniqueness result
proved in Lemma 3.7 implies that (ρsl, θsl) = (ρsl0 , θ

sl
0 ) on (t0, τ ] , hence ρslδk(t) = ρsl0 (t) and

θslδk(t) = θsl0 (t) for every t ∈ [tδk0 , τ ] . As the limit does not depend on the sequence satisfying
(5.42), the limit in (5.48) holds as ε→ 0.
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Since

|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)| ≤
≤ |ρε(t)− z0|+ |θε(t)− θ0|+ |zε(t)− z0|+ 2 |z0 − ρsl0 (t)|+ |θ0 − θsl0 (t)| ,

it follows from (3.23) and (5.41) that there exists a sequence ωk → 0 such that

sup
t0<t≤t

δk
0

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
≤ ωk .

By (5.48) we have

lim sup
ε→0

sup
t0<t≤τ

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
≤ ωk ,

which gives (5.8) as k →∞ .
Assume that θc < θ0 < π and z0 = rc(θ0), and let (ρsl0 , θ

sl
0 ) and t1 be defined as in

Lemma 3.6. Let us fix a decreasing sequence δk → 0. Since ρsl0 (t)→ zc and θsl0 (t)→ θc as
t→ t1 by Lemma 3.6, there exists a sequence τ δk such that

t1 − δk < τ δk < t1 , |ρsl0 (τ δk)− zc| < 1
6δk , |θsl0 (τ δk)− θc| < 1

6δk . (5.49)

We can apply Lemma 5.4 with t∗ = t0 , θ∗ = θ0 , z∗ = z0 , τ = τ δk , t∗ε = t0 , and κ = 0.
Indeed, z0 = rc(θ0) < zs(θ0) by Lemma 3.2, and (5.18) follows from (3.20). By (5.21) we
have

sup
t0≤t≤τδk

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
≤ 1

2δk (5.50)

for ε small enough. By (5.49) and (5.50) we have also

|ρε(τ δk)− zc|+ |θε(τ δk)− θc|+ |zε(τ δk)− zc| ≤ δk

for ε small enough. Then we can apply Lemma 4.1 with κ = 1, and we obtain a constant
β ≥ 1 and, for every k , a sequence τ δkε in [t0,+∞), such that

t1 − δk ≤ τδk ≤ τ δkε ≤ t1 + β δk , (5.51)

wε(τ δkε ) ≥ 0 , (5.52)

θε(τ δkε ) ≤ θc − δk , (5.53)

sup
τδk≤t≤τδkε

(
|ρε(t)− zc|+ |θε(t)− θc|+ |zε(t)− zc|

)
≤
√
β
√
δk , (5.54)

for ε small enough.
We now apply Lemma 4.2 with κ1 = 1

β and obtain two constants γ1 > 0 and γ2 > 0,
and, for every k , a new sequence tδkε in [t0,+∞), such that

t1 − δk ≤ τ δk ≤ tδkε ≤ t1 + 2β δk , (5.55)

wε(tδkε ) ≥ 1
β2 δ

2
k , (5.56)

|ρε(tδkε )− zε(tδkε )| ≤ γ1
β2

1
δ2k
ε , (5.57)

sup
τ
δk
ε ≤t≤t

δk
ε

(
|ρε(t)− zc|+ |θε(t)− θc|+ |zε(t)− zc|

)
≤ γ2

√
β
√
δk , (5.58)

for ε small enough.
Using a diagonal argument and (5.40), we may assume that for every k there exist three

constants tδk1 , θδk1 , and zδk1 such that

tδkε → tδk1 , ρε(tδkε )→ zδk1 , θε(tδkε )→ θδk1 , zε(tδkε )→ zδk1 , (5.59)
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as ε→ 0 along a suitable sequence independent of k . By (5.55), (5.57), and (5.58) for every
k we have

|tδk1 − t1| ≤ 2β δk , (5.60)

zδk1 (1 + cos θδk1 )2 cos θδk1 + 1 ≥ 1
β2 δ

2
k , (5.61)

|θδk1 − θc|+ |z
δk
1 − zc| ≤ γ2

√
β
√
δk . (5.62)

Inequality (5.44) implies that zδk0 < zs(θδk0 ).
Let (ρslδk , θ

sl
δk

) be the solution of (3.13) with Cauchy conditions

ρslδk(tδk1 ) = zδk1 and θslδk(tδk1 ) = θδk1 . (5.63)

By (3.26) and (5.44) we have

ρslδk(t) < zs(θslδk(t)) for every t ∈ [tδk1 , τ ] . (5.64)

We can apply Lemma 5.4 with t∗ = tδk1 , z∗ = zδk1 , θ∗ = θδk1 , tε∗ = tδkε , (ρsl∗ , θ
sl
∗ ) = (ρslδk , θ

sl
δk

),
and κ = γ1

β2
1
δ2k

. Indeed, (5.17) follows from (5.63), (5.18) from (5.64), (5.19) from (5.59),
and (5.20) from (5.57). We conclude that for every k

sup
t
δk
ε ≤t≤τ

(
|ρε(t)− ρslδk(t)|+ |θε(t)− θslδk(t)|+ |zε(t)− ρslδk(t)|

)
→ 0 . (5.65)

as ε→ 0 along a sequence satisfying (5.59)
We deduce from (5.65) that ρslδk(t) = ρslδh(t) and θslδk(t) = θslδh(t) for every t ∈ [tδk1 , τ ] ∩

[tδh1 , τ ] . Let τ1 := infk tδk1 . Then there exists a solution (ρsl, θsl) of (3.13) in (τ1, τ ] such
that ρsl(t) = ρslδk(t) and θsl(t) = θslδk(t) for every t ∈ [tδk1 , τ ] . Let (ρsl2 , θ

sl
2 ) be defined as in

Lemma 3.7 with θ2 = θc and z2 = zc . Since tδk1 → t1 as k →∞ by (5.55), while ρsl(tδk1 )→
zc and θsl(tδk1 ) → θc by (5.62) and (5.63), the uniqueness result proved in Lemma 3.7
implies that (ρsl, θsl) = (ρsl2 , θ

sl
2 ) on (t1, τ ] , hence ρslδk(t) = ρsl2 (t) and θslδk(t) = θsl2 (t) for

every t ∈ [tδk1 , τ ] . As the limit does not depend on the sequence satisfying (5.59), the limit
in (5.65) holds as ε→ 0.

From (5.50), (5.51), and (5.65) we obtain (5.7), except for t ∈ (t1 − δk, t1 + 2β δk). As
k →∞ we obtain (5.7) on [t0,+∞).

Since

|ρε(t)− ρ(t)|+ |θε(t)− θ(t)|+ |zε(t)− z(t)| ≤
≤ |ρε(t)− zc|+ |θε(t)− θc|+ |zε(t)− zc|+ 2 |zc − ρ(t)|+ |θc − θ(t)| ,

it follows from (3.18), (3.23), (5.54), and (5.58) that there exists a sequence ωk → 0 such
that

sup
τδk<t≤tδkε

(
|ρε(t)− ρ(t)|+ |θε(t)− θ(t)|+ |zε(t)− z(t)|

)
≤ ωk .

By (5.50), and (5.65) we have

lim sup
ε→0

sup
t0≤t≤τ

(
|ρε(t)− ρ(t)|+ |θε(t)− θ(t)|+ |zε(t)− z(t)|

)
≤ ωk ,

which gives (5.8) as k →∞ .
Assume that θ = θc and z0 = zc , and let (ρsl2 , θ

sl
2 ) be defined as in Lemma 3.7 with

t1 = t0 , θ2 = θc , and z2 = zc . then we can apply Lemma (4.1) with κ = 1, t1 = τ δ = t0 .
Given a decreasing sequence δk → 0, we obtain a constant β ≥ 1 and, for every k , a
sequence τ δkε in [t0,+∞) which satisfies (5.51)-(5.54) for ε small enough. Then the proof
can be concluded as in the previous case, replacing t1 by t0 . �
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6. The fast dynamics

In this section we study in detail the behaviour of the solutions to the system of the fast
dynamics.

6.1. The trajectory of the fast dynamics. In this subsection we study the system
%′(z) = − cosϑ(z)− 1

z(1 + cosϑ(z)) cosϑ(z)
,

ϑ′(z) =
sinϑ(z)
%(z)

,
(6.1)

that describes the trajectories followed along the fast dynamics. Using Cartesian coordinates,
we consider the functions

x(z) := z + %(z) cosϑ(z) and y(z) := %(z) sinϑ(z) , (6.2)

and (6.1) is equivalent to 
x′(z) = − 1

z(1 + cosϑ(z))
,

y′(z) = − tanϑ(z)
z(1 + cosϑ(z))

,
(6.3)

where

cosϑ(z) =
x(z)− z√

(x(z)− z)2 + y(z)2
and tanϑ(z) =

y(z)
x(z)− z

.

Let us fix z1 > 0 and π
2 < θ1 < π and consider the Cauchy conditions

%(z1) = z1 and ϑ(z1) = θ1 , (6.4)

that in Cartesian coordinates become

x(z1) = z1 (1 + cos θ1) and y(z1) = z1 sin θ1 . (6.5)

Let θc be the constant defined in (3.3), and let zs(θ) and rc(θ) be the functions defined in
(3.4) and (3.6).

Lemma 6.1. Let z1 > 0 and π
2 < θ1 < π . Assume one of the following two conditions:

z1 > zs(θ1) , (6.6)
z1 = zs(θ1) and θ1 > θc . (6.7)

Then there exists z2 ∈ (0, z1) such that (6.1) with Cauchy condition (6.4) has a solution
(%, ϑ) defined in [z2, z1] such that

%(z2) = z2 and %(z) > z for z ∈ (z2, z1) . (6.8)

Let θ2 := ϑ(z2) . Then we have
π
2 < θ2 < ϑ(z) < θ1 < π for z ∈ (z2, z1) , (6.9)

%′(z) > 0 and ϑ′(z) > 0 for z ∈ (z2, z1) , (6.10)
z2 ≥ 27

4 =⇒ θ2 < θc , (6.11)
%′(z2) > 1 and z2 < zs(θ2) . (6.12)

Proof. Let us consider the solution (%, ϑ) of (6.1) with Cauchy condition (6.4) on its maximal
left interval of existence (ze, z1] . By the singularities of the right-hand side we have that
z , %(z), cosϑ(z), and 1 + cosϑ(z) cannot vanish for z ∈ (ze, z1] so that ze ≥ 0 and
π
2 < ϑ(z) < π for every z ∈ (ze, z1] . Then (6.1) implies (6.10), which gives (6.9).

Let us define

θe := lim
z→ze

ϑ(z) = inf
z>ze

ϑ(z) ≥ π
2 ,

ρe := lim
z→ze

%(z) = inf
z>ze

%(z) ≥ 0 .
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If ze = 0, from the first equation in (6.1) we would have %′(z) ≥ 1
2z for every z ∈ (0, z1] ,

and this contradicts the fact that the limit ρe is finite. Therefore ze > 0.
We now show that ρe < ze . If not, we would have ρe ≥ ze > 0, and hence θe >

π
2 ,

otherwise the solution could be continued by solving a new Cauchy problem at ze . By the
second equation in (6.1) we have ϑ′(z) → 1

ρe
as z → ze . Thus the first equation in (6.1)

gives

%′(z) ≥ 1
2z1| cosϑ(z)|

≥ ρe
4z1|z − ze|

,

for z near ze , which contradicts again the finiteness of ρe . This proves that ρe < ze .
It is convenient to introduce the function ω : [ze, z1]→ R defined by

ω(z) := z (1 + cosϑ(z))2 cosϑ(z) + 1 . (6.13)

It follows from (6.1) that

%′(z)− 1 = − ω(z)
z (1 + cosϑ(z)) cosϑ(z)

. (6.14)

Using (6.1) we obtain

ω′(z) %(z) (1 + cosϑ(z))−2 = %(z) cosϑ(z)− z (1− cosϑ(z))(1 + 3 cosϑ(z)) =
= %(z) cosϑ(z)− z (1 + 2 cosϑ(z)− 3 cos2 ϑ(z)) . (6.15)

If (6.6) holds, then %′(z1) < 1, so that %(z) > z for all z < z1 close to z1 . If, instead,
(6.7) holds, then ω′(z1) has the same sign as −1 − cos θ1 + 3 cos2 θ1 , which is positive by
(6.7). Therefore ω′(z1) > 0 and ω(z1) = 0, hence ω(z) < 0 for all z < z1 close to z1 . From
(6.14) we deduce that %′(z) < 1, and hence %(z) > z for all z < z1 close to z1 .

On the other hand the inequality ρe < ze gives %(z) < z for all z > ze close to ze .
Therefore there exists the greatest point z2 in (ze, z1) such that %(z2) = z2 . Condition
(6.8) is clearly satisfied, and implies

%′(z2) ≥ 1 . (6.16)

By (6.6), (6.7), (6.16), and (6.14) we have

ω(z1) ≤ 0 and ω(z2) ≥ 0 . (6.17)

Since cos θ2 > cos θ1 by (6.9) and (6.10), if cos θ1 ≥ λc we have also cos θ2 > λc , where
λc is the constant defined in (3.2). Therefore to prove (6.11) we may assume

cos θ1 ≤ λc and z2 ≥ 27
4 , (6.18)

and we want to prove that cos θ2 > λc . We argue by contradiction, assuming (6.18) and

cos θ2 ≤ λc < − 1
3 , (6.19)

Since ω′(z2) (1 + cos θ2)−2 = −1− cos θ2 + 3 cos2 θ2 by (6.15), inequality (6.19) gives

ω′(z2) ≥ 0 . (6.20)

As ω′(z1) (1 + cos θ1)−2 = −1− cos θ1 + 3 cos2 θ1 by (6.15), we have also

ω′(z1) ≥ 0 . (6.21)

By (6.17) there exists a minimum point zm of ω in (z2, z1] and a maximum point zM in
[z2, zm). By (6.21) we have

ω′(zm) = 0 , (6.22)

and by (6.20) we have
ω′(zM ) = 0 and ω′′(zM ) ≤ 0 . (6.23)

We want to prove that
cosϑ(zm) > − 9

10 . (6.24)
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As ϑ is increasing by (6.10), this inequality is trivial if cos θ1 > − 9
10 , so we may assume

that
−1 < cos θ1 ≤ − 9

10 . (6.25)

To prove (6.24) we argue by contradiction and assume that cosϑ(zm) ≤ − 9
10 . Let η :=

1+cos θ1 , so that 0 < η ≤ 1
10 and sin θ1 =

√
2− η√η . By (6.3) and (6.9) we have x′(z) ≤ 0

and y′(z) ≥ 0, so that, by (6.2),

%(z) cosϑ(z) ≥ z1η − z and %(z) sinϑ(z) ≤ z1
√

2− η√η for every z ∈ [z2, z1] . (6.26)

This implies z2 > z1η and %(z)2 ≤ (z − z1η)2 + z2
1(2− η)η ≤ z2 + 2z2

1η , hence

%(z)2

z2
≤ 1 + 2

z2
1

z2
η for every z ∈ [z2, z1] . (6.27)

Since cosϑ(zm) ≤ − 9
10 , by (6.15) and (6.22) the polynomial Pm(λ) := %(zm)λ−zm(1+2λ−

3λ2) has a zero in the interval (−1,− 9
10 ] . As Pm(0) = −zm < 0, this implies Pm(− 9

10 ) ≤ 0,
hence %(zm) > 323

90 zm > 3zm . By (6.27) we obtain zm ≤ 1
2z1
√
η . As −1 + η = cos θ1 ≤

cosϑ(z) ≤ cosϑ(zm) ≤ − 9
10 for every z ∈ [zm, z1] , we have 0 < sinϑ(z) ≤ 1

2 for every
z ∈ [zm, z1] . Since the function λ 7→ −λ(1+λ) is increasing in [−1,− 1

2 ] , from (6.6) we obtain
that 1 ≤ z1η2(1− η) ≤ z1η(1 + cosϑ(z)) and 1 ≤ z1η2(1− η) ≤ −z1η(1 + cosϑ(z)) cosϑ(z)
for every z ∈ [zm, z1] . By (6.3) we have

x′(z) ≥ −z1
z
η and y′(z) ≤ 1

2
z1
z
η for every z ∈ [zm, z1] .

Integrating we obtain

x(z1)− x(z1
√
η) ≥ z1η log

√
η and y(z1)− y(z1

√
η) ≤ − 1

2z1η log
√
η .

As x(z1) = z1η and y(z1) = z1
√

2− η√η , we deduce from (6.2) that

%(z1
√
η) cosϑ(z1

√
η) ≤ −z1

(√
η − η + η log

√
η
)
,

%(z1
√
η) sinϑ(z1

√
η) ≥ z1

(√
2− η√η + 1

2η log
√
η
)
.

As
√
η log

√
η ≥ 1√

10
log 1√

10
≥ − 5

12 , we have
√
η − η + η log

√
η > 0 and

√
2− η√η +

1
2η log

√
η > 0 for every η ∈ (0, 1

10 ] , so that

%(z1
√
η)2 ≥ z2

1

((√
η − η + η log

√
η
)2 +

(√
2− η√η + 1

2η log
√
η
)2) ≥

≥ z2
1η
(

(1−√η)2 + 2
√
η log

√
η + 2− η +

√
2
√
η log

√
η
)
≥

≥ z2
1η (3− 2

√
η + 7

2

√
η log

√
η) ≥ z2

1η ( 37
24 − 2

√
η) ≥

≥ z2
1η ( 110

81 − 2 100
81

√
η) ≥ 100

81 z2
1η (1−√η)2 = 100

81 z2
1 (
√
η − η)2

for every η ∈ (0, 1
10 ] . Therefore (6.26) implies that cos2 ϑ(z1

√
η) ≤ 81

100 . As zm < z1
√
η , we

have cosϑ(zm) > cosϑ(z1
√
η) ≥ − 9

10 , which contradicts our assumption cosϑ(zm) ≤ − 9
10 ,

and concludes the proof of (6.24).
Let λM := cosϑ(xM ). As z2 ≤ zM < zm we have

− 9
10 < λM < − 1

3 . (6.28)

Since ω′(zM ) = 0 by (6.23), using (6.1) and the equality

zM
ρ(zM )

=
λM

(1− λM )(1 + 3λM )
,

that can be deduced from (6.15), we obtain

ω′′(zM ) %(zM )
1 + 3λM
1− λM

= − 1
zM

(1 + 3λM )− (1 + λM )(2 + 6λM + 7λ2
M − 3λ3

M ) .
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By (6.18), (6.23), and (6.28) we have

(1 + λM )(2 + 6λM + 7λ2
M − 3λ3

M ) + 4
27 (1 + 3λM ) ≤ 0 . (6.29)

Let us considerer the polynomial P (λ) := (1 + λ)(2 + 6λ + 7λ2 − 3λ3) + 4
27 (1 + 3λ) =

58
27 + 76

9 λ + 13λ2 + 4λ3 − 3λ4 and its derivative P ′(λ) = 76
9 + 26λ + 12λ2 − 12λ3 =

2
9 (2 + 3λ)(19 + 30λ− 18λ2). Since P ′(λ) vanishes at − 2

3 , − 1
6 (3
√

7−5), and 1
6 (3
√

7+5), we
deduce that P (λ) has two local minima on [− 1

10 ,−
1
3 ] at the points − 1

10 and − 1
6 (3
√

7− 5).
By direct computation we see that P (− 1

6 (3
√

7− 5)) = 3053
108 −

21
2

√
7 > 52339

270000 = P (− 1
10 ), so

that P (λ) > 0 for every λ ∈ [− 1
10 ,−

1
3 ] . This contradicts (6.29) and concludes the proof of

the implication (6.11).
Let us prove that (6.12). By (6.14) it is enough to prove that %′(z2) > 1. We argue by

contradiction, taking (6.16) into account. If %′(z2) = 1, by (6.14) we have ω(z2) = 0, hence

z2 = − 1
(1 + cos θ2)2 cos θ2

≥ 27
4 .

Since, by (6.15), ω′(z2) (1+cos θ2)−2 = −1−cos θ2 +3 cos2 θ2 , by (6.11) we have ω′(z2) < 0.
As ω(z2) = 0, this implies ω(z) < 0 for every z > z2 close to z2 , so that by (6.14) %′(z) < 1,
hence %(z) < z for every z > z2 close to z2 , which contradicts (6.8). �

6.2. The system of the fast dynamics. In this subsection we study the solutions
(ρf(s), θf(s), zf(s)) of the system of the fast dynamics

ρ̇f(s) = −(ρf(s)− zf(s))
(
zf(s) (1 + cos θf(s)) cos2 θf(s) + 1

)
,

ρf(s) θ̇f(s) = (ρf(s)− zf(s)) zf(s) (1 + cos θf(s)) cos θf(s) sin θf(s) ,
żf(s) = (ρf(s)− zf(s)) zf(s) (1 + cos θf(s)) cos θf(s) ,

(6.30)

under the additional condition ρf(s) > zf(s) > 0. In Cartesian coordinates this system is
written as

ẋf(s) = −(xf (s)− zf(s))
(

1− zf(s)
ρf(s)

)
ẏf(s) = −yf(s)

(
1− zf(s)

ρf(s)

)
żf(s) =

(
zf(s) +

(xf(s)− zf(s)) zf(s)
ρf(s)

)(
xf(s)− zf(s)

)(
1− zf(s)

ρf(s)

)
,

(6.31)

where ρf(s) :=
√

(xf(s)− zf(s))2 + yf(s)2 .
Let θc be the constant defined in (3.3), and let zs(θ) be the function defined in (3.4).

Lemma 6.2. Let z1 > 0 and π
2 < θ1 < π . Assume (6.6) or (6.7). Then there exists a

solution of (6.30) such that

lim
s→−∞

ρf(s) = z1 , lim
s→−∞

θf(s) = θ1 , lim
s→−∞

zf(s) = z1 , (6.32)

ρf(s) > zf(s) for every s ∈ R . (6.33)

The solution satisfying (6.32) and (6.33) is unique up to time translations, i.e., all such
solutions have the form (ρf(s − s0), θf(s − s0), zf(s − s0)) for some s0 ∈ R . Moreover
ρf(s) = %(zf(s)) and θf(s) = ϑ(zf(s)) for every s ∈ R , where (%, ϑ) is the solution of (6.1)
with Cauchy conditions (6.4). Finally,

ρ̇f(s) < 0 , θ̇f(s) < 0 , żf(s) < 0 for every s ∈ R , (6.34)

lim
s→+∞

ρf(s) = z2 , lim
s→+∞

θf(s) = θ2 , lim
s→+∞

zf(s) = z2 , (6.35)

where z2 and θ2 are defined as in Lemma 6.1.
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Proof. Let (%, ϑ) be the solution of (6.1) with Cauchy conditions (6.4), and let zf(s) be a
solution of the autonomous equation

żf(s) = (%(zf(s))− zf(s)) zf(s) (1 + cosϑ(zf(s))) cosϑ(zf(s)) , (6.36)

with z2 < zf(s) < z1 for some s . By Lemma 6.1 we have (%(z)− z) z (1 + cosϑ(z) ≤ 0 for
every z ∈ [z2, z1] , with equality only at z = z2 and z = z1 . Then the theory of autonomous
equations implies that zf(s) is defined for every s ∈ R and satisfies

lim
s→−∞

zf(s) = z1 , lim
s→+∞

zf(s) = z2 , żf(s) < 0 for every s ∈ R . (6.37)

Let us define

ρf(s) := %(zf(s)) and θf(s) := ϑ(zf(s)) . (6.38)

By (6.1) and (6.36) (ρf(s), θf(s), zf(s)) is a solution of (6.30). Since %(z1) = z1 and ϑ(z1) =
θ1 by (6.4), condition (6.32) follows from (6.37). Since z2 < zf(s) < z1 for every s ∈ R ,
inequality (6.33) follows from (6.8). Finally, (6.34) and (6.35) follow from (6.10), (6.37), and
(6.38).

Suppose that (ρ∗(s), θ∗(s), z∗(s)) is another solution of (6.30) satisfying (6.32) and (6.33).
By uniqueness it is easy to see that θ∗(s) 6= π

2 and θ∗(s) 6= π for every s ∈ R . Recalling
(6.32), we deduce that π

2 < θ∗(s) < π , so that (6.33) and the third equation in (6.30) imply
that θ̇∗(s) < 0 for every s ∈ R . Then z∗(s) → z∞∗ < z1 as s → +∞ . Since θ∗(s) is
decreasing, there exist two functions %∗ and ϑ∗ , defined on (z∞∗ , z1), such that

ρ∗(s) := %∗(z∗(s)) and θ∗(s) := ϑ∗(z∗(s)) . (6.39)

It follows from (6.30) that (%∗, ϑ∗) satisfy (6.1) on (z∞∗ , z1), and we deduce from (6.32) that
%∗(z)→ z1 and ϑ∗(z)→ θ1 as z → z1 . By (6.4) (%, ϑ) satisfies the same Cauchy conditions
at z0 . By uniqueness we have (%∗, ϑ∗) = (%, ϑ) on (max{z2, z∞∗ }, z1). Therefore (6.30)
and (6.39) imply that z∗(s) is a solution of (6.36) and z2 < z∗(s) < z1 for s large enough
(recall (6.32) and the monotonicity of z∗(s)). Then the theory of autonomous equations
ensures that there exists s0 ∈ R such that z∗(s) = zf(s − s0) for s large enough. Since
(%∗, ϑ∗) = (%, ϑ) near z1 , by (6.39) we have ρ∗(s) = ρf(s − s0) and θ∗(s) = θf(s − s0) for
s large enough. These equalities are extended to every s ∈ R by the uniqueness of the
solutions of a Cauchy problem for (6.30). �

7. Discontinuous evolution

In this subsection we consider the case where π
2 < θ0 < π and the viscosity solution

(ρ, θ, z) has a discontinuity at a time t1 ≥ t0 determined by the initial conditions. This
solution follows the slow dynamics in (t0, t1] , has a jump at time t1 , governed by the
system of the fast dynamics, and finally follows again the slow dynamics (t1,+∞) with
initial conditions at t1 determined by the end point of the trajectory of the fast dynamics.

Let θc be the constant defined in (3.3), and let zs(θ) and rc(θ) be the functions defined
in (3.4) and (3.6). The first theorem deals with the case t1 > t0 .

Theorem 7.1. Assume

θc < θ0 ≤ π and rc(θ0) < z0 < zs(θ0) , (7.1)

and let (ρsl0 , θ
sl
0 ) and t1 , z1 , and θ1 be defined as in Lemma 3.6. Let (ρf , θf , zf ) , z2 , and

θ2 be defined as in Lemma 6.2, and let (ρsl2 , θ
sl
2 ) be defined as in Lemma 3.7. Then

ρ(t) = z(t) =

{
ρsl0 (t) if t ∈ [t0, t1] ,
ρsl2 (t) if t ∈ (t1,+∞) ,

θ(t) =

{
θsl0 (t) if t ∈ [t0, t1] ,
θsl2 (t) if t ∈ (t1,+∞) .

(7.2)
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Moreover there exist three sequences of real numbers t1ε , τ1
ε , and sε such that for every

τ > t1 we have

t0 < t1ε < τ1
ε and lim

ε→0
t1ε = lim

ε→0
τ1
ε = t1 , (7.3)

sup
t0≤t≤t1ε

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
→ 0 , (7.4)

sup
t1ε≤t≤τ1

ε

(
|ρε(t)− ρfε(t)|+ |θε(t)− θfε(t)|+ |zε(t)− zfε(t)|

)
→ 0 , (7.5)

sup
τ1
ε≤t≤τ

(
|ρε(t)− ρsl2 (t)|+ |θε(t)− θsl2 (t)|+ |zε(t)− ρsl2 (t)|

)
→ 0 , (7.6)

where
ρfε(t) := ρf( 1

ε t− sε) , θfε(t) := θf( 1
ε t− sε) , zfε(t) := zf( 1

ε t− sε) . (7.7)

We now consider the case in which the discontinuity time is t0 .

Theorem 7.2. Let z0 > 0 and π
2 < θ0 < π . Assume one of the following two conditions:

z0 > zs(θ0) , (7.8)
z0 = zs(θ0) and θ0 > θc . (7.9)

Let (ρf , θf , zf ) , z2 , θ2 be defined as in Lemma 6.2 with z1 = z0 and θ1 = θ0 , and let
(ρsl2 , θ

sl
2 ) be defined as in Lemma 3.7 with t1 = t0 Then

ρ(t) = z(t) = ρsl2 (t) and θ(t) = θsl2 (t) for every t ∈ (t0,+∞) . (7.10)

Moreover there exist two sequences of real numbers τ1
ε and sε such that for every τ > t0

we have

t0 < τ1
ε and lim

ε→0
τ1
ε = t0 , (7.11)

sup
t0≤t≤τ1

ε

(
|ρε(t)− ρfε(t)|+ |θε(t)− θfε(t)|+ |zε(t)− zfε(t)|

)
→ 0 , (7.12)

sup
τ1
ε≤t≤τ

(
|ρε(t)− ρsl2 (t)|+ |θε(t)− θsl2 (t)|+ |zε(t)− ρsl2 (t)|

)
→ 0 , (7.13)

where ρfε , θfε , and zfε are defined in (7.7).

The proof of both theorems will be given in Subsection 7.4.

7.1. Transition to the fast dynamics. We now describe the behaviour of the system in
a small time interval [τε, t1ε] where ρε(t) − zε(t) passes from a size of order ε to a size of
order ε1−α with α ∈ (0, 1

2 ). After t1ε the system will be governed by the fast dynamics.
Let θc be the constant defined in (3.3), and let zs(θ) and wε(t) be the functions defined in
(3.4) and (2.26).

Lemma 7.3. Let z1 > 0 and π
2 < θ1 < π . Assume (6.6) or (6.7). Let t1 ∈ [t0,+∞) , let

α ∈ (0, 1
2 ) , and let τε be a sequence in [t0,+∞) such that

τε → t1 , ρε(τε)→ z1 , θε(τε)→ θ1 , zε(τε)→ z1 . (7.14)

Then there exists a sequence t1ε in [t0,+∞) such that

τε < t1ε and t1ε → t1 , (7.15)
wε(t1ε) ≤ −ε , (7.16)

ρε(t1ε)− zε(t1ε) ≥ ε1−α , (7.17)
sup

τε≤t≤t1ε

(
|ρε(t)− z1|+ |θε(t)− θ1|+ |zε(t)− z1|

)
→ 0 . (7.18)
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Proof. As z1 ≥ zs(θ1), we have z1(1 + cos θ1)2 cos θ1 + 1 ≤ 0, so that (7.14) gives

lim sup
ε→0

wε(τε) ≤ 0 . (7.19)

Under the assumption (6.6) we have z1(1 + cos θ1)2 cos θ1 + 1 < 0. Therefore there exists
η > 0 such that

z(1 + cos θ)2 cos θ + 1 ≤ −η for |θ − θ1| ≤ 2η and |z − z1| ≤ 2η . (7.20)

If, instead, (6.7) holds, then we have cos θ1 < cos θc = λc < − 1
3 by (3.2) and (3.3). This

implies that (1 + cos θ1) (1 + 3 cos θ1) cos θ1 sin θ1 > 0 and (1 + cos θ1)3 cos θ1 (1 + cos θ1 −
3 cos2 θ1) > 0. Therefore there exists 0 < η < 1

4z1 such that

z (1 + cos θ) (1 + 3 cos θ) cos θ sin θ > η ρ ,

z (1 + cos θ)3 cos θ
[
z (1 + cos θ − 3 cos2 θ)− (ρ− z) cos θ

]
> η ρ ,

(7.21)

for |ρ− z1| ≤ 2η , |θ − θ1| ≤ 2η , and |z − z1| ≤ 2η .
In both cases (6.6) and (6.7) we define

t̃1ε := inf{t ∈ (τε,+∞) : wε(t) < −ε} , (7.22)
t1ε := inf{t ∈ (t̃1ε,+∞) : ρε(t)− zε(t) > ε1−α} , (7.23)

αηε := inf{t ∈ (τε,+∞) : |ρε(t)− z1|+ |θε(t)− θ1|+ |zε(t) < z1| < 2η} (7.24)
s̃ηε := min{t̃1ε, αηε} , sηε := min{t1ε, αηε} . (7.25)

By (7.14) for ε small enough we have

|ρε(τε)− z1| < η , |θε(τε)− θ1| < η , |zε(τε)− z1| < η . (7.26)

If (6.7) holds, by (7.21) for ε small enough we have

zε(t)(1 + cos θε(t)(1 + 3 cos θε(t)) cos θε(t) sin θε(t) > ηρε(t) ,
zε(t)(1 + cos θε(t))3 cos θε(t)

[
zε(t)(1 + cos θε(t)− 3 cos2 θε(t))−

− (ρε(t)− zε(t)) cos θε(t)
]
> ηρε(t)

for every t ∈ [τε, αηε ] . Therefore, using Lemma 2.6 and (2.27), for ε small enough we obtain

ε ẇε(t) < −ε η − η (ρε(t)− zε(t)) ≤ −η ε for every t ∈ [τε, αηε ] . (7.27)

This implies
wε(t) ≤ wε(τε)− η(t− τε) for every t ∈ [τε, αηε ] , (7.28)

which gives
0 ≤ s̃ηε − τε ≤ 1

η max{wε(τε), 0} (7.29)

for ε small enough. Recalling (7.27), we have

wε(t) < −ε for every t ∈ (s̃ηε , α
η
ε ] . (7.30)

If (6.6) holds, for ε small enough we have wε(τε) < −ε by (7.20) and (7.26), so that
s̃ηε = τ̃ηε = τε . In this case (7.30) follows directly from (7.20) and (7.24) for ε < η , while
(7.29) is trivial.

In both cases (6.6) and (6.7), from (2.25), (2.32), and (7.30) we obtain

ρ̇ε(t)− żε(t) ≥ sin θ0 for every t ∈ (s̃ηε , α
η
ε ] . (7.31)

Integrating this inequality we obtain ρε(t)− zε(t) ≥ (t− s̃ηε) sin θ0 for every t ∈ (s̃ηε , α
η
ε ] . As

ρε(t)− zε(t) ≤ ε1−α for every t ∈ (t̃1ε, t
1
ε] by (7.23), from (7.25) we obtain

sηε − s̃ηε ≤ 1
sin θ0

ε1−α (7.32)

for ε small enough. From (7.14), (7.19), (7.29), and (7.32) it follows that

sηε → t1 as ε→ 0 . (7.33)
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As 0 < zε(t) ≤ z0 for every t ∈ [t0,+∞) by (2.34), using the third equation in (2.21) we
obtain

ε żε(t) ≥ −2 z0 (ρε(t)− zε(t)) for every t ∈ [τε, αηε ] , (7.34)
so that (7.27) gives for ε small enough

ẇε(t) ≤ η
2z0
żε(t) for every t ∈ [τε, αηε ] .

Since wε(t) ≥ −ε for every t ∈ (τε, s̃ηε ] by (7.22) and (7.25), we deduce that

−ε− wε(τε) ≤ wε(t)− wε(τε) ≤ η
2z0

(zε(t)− zε(τε)) for every t ∈ (τε, s̃ηε ] ,

so that for ε small enough

zε(t) ≥ zε(τε)− 2z0
η max{wε(τε), 0} − ε for every t ∈ [τε, s̃ηε ] . (7.35)

Since ρε(t)− zε(t) ≤ ε1−α for every t ∈ (s̃ηε , s
η
ε ] by (7.23) and (7.25), from (7.34) we get

żε(t) ≥ −2 z0 ε−α for every t ∈ (s̃ηε , s
η
ε ] .

Integrating and using (7.32) we obtain

zε(t)− zε(s̃ηε) ≥ −2 z0 ε−α(t− s̃ηε) ≥ − 2 z0
sin θ0

ε1−2α for every t ∈ (s̃ηε , s
η
ε ] ,

which, together with (2.34) and (7.35), gives for ε small enough

zε(τε)− 2z0
η max{wε(τε), 0} − ε− 2 z0

sin θ0
ε1−2α ≤ zε(t) ≤ zε(τε) for every t ∈ [τε, sηε ] .

By (7.14) and (7.19) this implies

sup
τε≤t≤sηε

|zε(t)− z1| → 0 as ε→ 0 . (7.36)

By Lemmas 2.6 and 2.8 we have zε(t) ≤ ρε(t) ≤ ρε(τε) + ε for every t ∈ [τε,+∞).
Therefore (7.14) and (7.36) give

sup
τε≤t≤sηε

|ρε(t)− z1| → 0 as ε→ 0 , (7.37)

so that for ε small enough we obtain ρε(t) ≥ 1
2z1 for every t ∈ [τε, sηε ] .

Since, by (7.36), zε(t) ≤ 2 z1 for ε small enough, from the second equation in (2.21) we
obtain

ε θ̇ε(t) ≥ − 2
z1
ε− 4 (ρε(t)− zε(t)) for every t ∈ [τε, sηε ] , (7.38)

so that (7.27) gives

ẇε(t) ≤ η
4 θ̇ε(t) + η

2z1
for every t ∈ [τε, sηε ] .

Since wε(t) ≥ −ε for every t ∈ (τε, s̃ηε ] by (7.22) and (7.25), we deduce that

−ε− wε(τε) ≤ wε(t)− wε(τε) ≤ η
4 (θε(t)− θε(τε)) + η

2z1
(t− τε) for every t ∈ (τε, s̃ηε ] ,

so that by (7.29) for ε small enough we have

θε(t) ≥ θε(τε)− ( 4
η + 2

ηz1
) max{wε(τε), 0} − ε for every t ∈ [τε, s̃ηε ] . (7.39)

Since ρε(t)− zε(t) ≤ ε1−α for every t ∈ (s̃ηε , s
η
ε ] by (7.23) and (7.25), from (7.38) we get

θ̇ε(t) ≥ − 2
z1
− 4 ε−α for every t ∈ (s̃ηε , s

η
ε ] .

Integrating and using (7.32) we obtain

θε(t)− θε(s̃ηε) ≥ −( 2
z1

+ 4 ε−α) (t− s̃ηε) ≥ − 2εα+4z1
z1 sin θ0

ε1−2α for every t ∈ (s̃ηε , s
η
ε ] ,

which, together with (2.32) and (7.39), gives for ε small enough

θε(τε)− ( 4
η + 2

ηz1
) max{wε(τε), 0} − ε− 2εα+4z1

z1 sin θ0
ε1−2α ≤ θε(t) ≤ θε(τε)

for every t ∈ [τε, sηε ] . By (7.14) and (7.19) this implies

sup
τε≤t≤sηε

|θε(t)− θ1| → 0 . (7.40)
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From (7.36), (7.37), and (7.40) we deduce that sηε < αηε for ε small enough. By (7.25)
this implies s̃ηε = t̃1ε and sηε = t1ε . Therefore (7.33) gives (7.15), and (7.18) follows from
(7.36), (7.37), and (7.40). Since t̃1ε < +∞ , by (7.22) we have wε(t̃1ε) ≤ −ε , so that (7.16)
follows from (7.27). Since t1ε < +∞ , inequality (7.17) follows from the definition of t1ε given
in (7.23). �

7.2. Convergence to the fast dynamics. Assume π
2 < θ0 ≤ π , and let

z∞ε := lim
t→+∞

zε(t) ≥ 0 .

By (2.34) there exist functions %ε and ϑε defined on (z∞ε , z0] such that

ρε(t) = %ε(zε(t)) and θε(t) = ϑε(zε(t)) for every t ∈ [t0,+∞). (7.41)

From Lemma 2.6 it follows that

%ε(z) > z for every z ∈ (z∞ε , z0), (7.42)

and from (2.32) it follows that
π
2 < ϑε(z) < θ0 < π for every z ∈ (z∞ε , z0). (7.43)

By (2.32) and (2.34) we have

ϑ′ε(z) > 0 for every z ∈ (z∞ε , z0).

By (2.21) on the intervals (zε∞, z
0
ε) the functions (%ε, ϑε) are solutions to the system

%′ε(z) = − cosϑε(z)−
1

z(1 + cosϑε(z)) cosϑε(z)
+ ε

sinϑε(z)
F (z, %ε(z), ϑε(z))

,

ϑ′ε(z) =
sinϑε(z)
%ε(z)

+ ε
cosϑε(z)

%ε(z)F (z, %ε(z), ϑε(z))
,

(7.44)

where
F (z, ρ, θ) := (ρ− z) z (1 + cos θ) cos θ .

Let z1 > 0 and π
2 < θ1 < π . Assume (6.6) or (6.7), and let (%, ϑ), z2 , θ2 be defined as

in Lemma 6.1. Let us fix η > 0 such that z2(1 + cos θ1)| cos θ2| > η . This implies that

z(1 + cosϑ(z))| cosϑ(z)| > η for every z ∈ [z2, z1] . (7.45)

Given α ∈ (0, 1
2 ), we consider the auxiliary systems
(%ηε)′(z) = − cosϑηε(z) +

1
Gη(z, ϑηε(z))

− ε | sinϑηε(z)|
F ηε (z, %ηε(z), ϑηε(z))

,

(ϑηε)′(z) =
sinϑηε(z)

max{%ηε(z), η}
+ ε

| cosϑηε(z)|
F ηε (z, %ηε(z), ϑηε(z))

,

(7.46)

where

Gη(z, θ) := max{z(1 + cos θ)| cos θ|
)
, η} ,

F ηε (z, ρ, θ) := Gη(z, θ) max{ρ− z, ε1−α} .
Note that all solutions of (7.46) are defined for every z ∈ R .

Lemma 7.4. Let z1 > 0 and π
2 < θ1 < π . Assume (6.6) or (6.7). Let α ∈ (0, 1

2 ) , let ρ1
ε ,

θ1ε , and z1
ε be three sequences such that

ρ1
ε → z1 , θ1ε → θ1 , z1

ε → z1 , (7.47)
z1
ε (1 + cos θ1ε)

2 cos θ1ε + 1 < 0 , ρ1
ε ≥ z1

ε + ε1−α , (7.48)

and let (%ηε , ϑ
η
ε) be the solution of (7.46) with Cauchy conditions

%ηε(z1
ε) = ρ1

ε and ϑηε(z1
ε) = θ1ε . (7.49)
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Then there exists z∗1 ∈ (0, z1) , depending on η in (7.45), but not on ε , such that for ε small
enough we have

%ηε(z) > z + ε1−α for every z ∈ [z∗1 , z
1
ε) , (7.50)

Proof. Let us fix δ > 0. From the second equation in (7.46) we have − 1
η ≤ (ϑηε)′(z) ≤ 1

η + εα

η

for every z ∈ R , so that for ε small enough we have |(ϑηε)′(z)| ≤ 1 + 1
η . Recalling (7.49),

by integrating we get |ϑηε(z)− θ1ε | < (1 + 1
η )(z1

ε − z1 + δ) for every z ∈ [z∗1 , z
1
ε ] . Using (7.47)

for ε small enough we obtain

|ϑηε(z)− θ1| < (1 + 1
η ) 2 δ for every z ∈ [z∗1 , z

1
ε ] . (7.51)

Suppose that z1 > zs(θ1), so that

− cos θ1 −
1

z1(1 + cos θ1) cos θ1
< 1 .

By continuity there exist δ1 > 0 such that

− cos θ +
1

Gη(z, θ)
= − cos θ +

1
max{z(1 + cos θ)| cos θ|

)
, η}

< 1 (7.52)

for |θ − θ1| ≤ δ1 and |z − z1| ≤ δ1 . Let us fix δ > 0 with

(1 + 1
η ) 2 δ < δ1 . (7.53)

Since z1
ε < z1 + δ1 for ε small enough by (7.47), using (7.51), (7.52), (7.53), and the first

equation in (7.46) we deduce that (%ηε)′(z) < 1 for every z ∈ [z∗1 , z
1
ε ] . As %ηε(z1

ε) ≥ z1
ε +ε1−α

by (7.48), after integration we obtain (7.50).
Suppose now that θc < θ1 < π and z1 = zs(θ1). Let us consider the function

ωηε (z) := z (1 + cosϑηε(z))2 cosϑηε(z) + 1 . (7.54)

From (7.46) we obtain

(ωηε )′(z)=αηε(z)
((

max{%ηε(z), η}−z
)

cosϑηε(z)−z
(
1+cosϑηε(z)−3 cos2 ϑηε(z)

))
−

− βηε (z) z
(
1 + 3 cosϑηε(z)

)
sinϑηε(z) ,

(7.55)

where αηε(z) ≥ 0 and βηε (z) ≥ 0 for every z ∈ R . Since θc < θ1 < π , by (3.2) and (3.3)
we have cos θ1 < cos θc = λc < − 1

3 . This implies that 1 + cos θ1 − 3 cos2 θ1 < 0 and
z1(1 + 3 cos θ1) sin θ1 < 0. As z1 > η by (7.45), by continuity there exists δ1 > 0 such that(

max{ρ, η} − z
)

cos θ − z (1 + cos θ − 3 cos2 θ) > 0 ,
z (1 + 3 cos θ) sin θ < 0 ,

(7.56)

for |ρ− z1| ≤ δ1 , |θ − θ1| ≤ δ1 , and |z − z1| ≤ δ1 . Let us fix δ > 0 satisfying (7.53).
From the first equation in (7.46) we have −1− εα

η ≤ (%ηε)′(z) ≤ 1 + 1
η for every z ∈ R , so

that for ε small enough we have |(%ηε)′(z)| ≤ 1 + 1
η . Recalling (7.49), by integrating we get

|%ηε(z) − ρ1
ε| < (1 + 1

η )(z0
ε − z1 + δ) for every z ∈ [z∗1 , z

1
ε ] . Using (7.47) for ε small enough

we obtain |%ηε(z)− z1| < δ1 for every z ∈ [z∗1 , z
1
ε ] .

Since z1
ε < z1 +δ1 for ε small enough by (7.47), using (7.51), (7.53), (7.55), and (7.56) we

obtain (ωηε )′(z) ≥ 0 for every z ∈ [z∗1 , z
1
ε ] . By (7.48), (7.49), and (7.54) we have ωηε (z1

ε) < 0.
It follows that ωηε (z) < 0 for every z ∈ [z∗1 , z

1
ε ] . This implies

− cosϑηε(z)− 1
z(1 + cosϑηε(z)) cosϑηε(z)

< 1 for every z ∈ [z∗1 , z
1
ε ] ,

and hence
− cosϑηε(z) +

1
Gη(z, cosϑηε(z))

< 1 for every z ∈ [z∗1 , z
1
ε ] .

Therefore the first equation in (7.46) gives (%ηε)′(z) < 1 for every z ∈ [z∗1 , z
1
ε ] . As %ηε(z1

ε) ≥
z1
ε + ε1−α by (7.48), after integration we obtain (7.50). �
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Lemma 7.5. Let z1 > 0 and π
2 < θ1 < π . Assume (6.6) or (6.7). Let t1 ∈ [t0,+∞) , let

α ∈ (0, 1
2 ) , and let t1ε be a sequence in [t0,+∞) such that

t1ε → t1 , ρε(t1ε)→ z1 , θε(t1ε)→ θ1 , zε(t1ε)→ z1 , (7.57)
wε(t1ε) < 0 , ρε(t1ε)− zε(t1ε) ≥ ε1−α . (7.58)

Let z1
ε := zε(t1ε) , let (%ε, ϑε) be the functions defined in (7.41), and let (%, ϑ) be the solution

of (6.1) with Cauchy condition (6.4). Then for ε small enough there exists z2
ε ∈ (z∞ε , z

1
ε)

such that
%ε(z2

ε) = z2
ε + ε1−α and %ε(z) > z + ε1−α for z ∈ (z2

ε , z
1
ε) . (7.59)

Let θ2ε := ϑε(z2
ε) . Then

z2
ε → z2 and θ2ε → θ2 ,

where z2 and θ2 are defined as in Lemma 6.1. Moreover

sup
z2ε≤z≤z1ε

(
|%ε(z)− %(z)|+ |ϑε(z)− ϑ(z)|

)
→ 0 as ε→ 0 . (7.60)

Proof. Let us define

ρ1
ε := ρε(t1ε) , θ1ε := θε(t1ε) , z1

ε := zε(t1ε) . (7.61)

We consider the auxiliary system
(%η)′(z) = − cosϑη(z) +

1
max{z(1 + cosϑη(z))| cosϑη(z)|, η}

,

(ϑη)′(z) =
sinϑη(z)

max{%η(z), η}
,

(7.62)

whose solutions are defined for every z ∈ R . Since 1/F ηε (z, ρ, θ) ≤ εα/η for every (z, ρ, θ) ∈
R3 , by (7.58) and (7.61) the solutions (%ηε , ϑ

η
ε) considered in Lemma 7.4 converge uniformly

on compact subsets of R to the solution (%η, ϑη) of (7.62) with Cauchy conditions

%η(z1) = z1 and ϑη(z1) = θ1 . (7.63)

As %′(z2) > 0 by (6.12), there exists z∗2 ∈ (0, z2) such that (%, ϑ) is defined on [z∗2 , z1]
and

%(z) < z for every z ∈ [z∗2 , z2) . (7.64)
By (7.45) we may also suppose that

z (1 + cosϑ(z))| cosϑ(z)| > η for every z ∈ [z∗2 , z1] . (7.65)

Since (%, ϑ) is a solution of (6.1), inequality (7.65) implies that (%, ϑ) is a solution of (7.62).
Since (%η, ϑη) and (%, ϑ) satisfy the same Cauchy conditions at z1 by (6.4) and (7.63), we
conclude that (%η, ϑη) = (%, ϑ) on [z∗2 , z1] . Therefore (%ηε , ϑ

η
ε) converges to (%, ϑ) uniformly

on [z∗2 , z1] . By (7.64) and (7.65) for ε small enough we have %ηε(z∗2) < z∗2 and

z (1 + cosϑηε(z))| cosϑηε(z)| > η for every z ∈ [z∗2 , z1] . (7.66)

Let z∗1 be the constant introduced in Lemma 7.4. Since %ηε(z) > z + ε1−α for every
z ∈ [z∗1 , z

1
ε), we can consider the greatest point z2

ε of [z∗2 , z
∗
1 ] such that %ηε(z2

ε) = z2
ε + ε1−α ,

and we have

%ηε(z2
ε) = z2

ε + ε1−α and %ηε(z) > z + ε1−α for z ∈ (z2
ε , z

1
ε) . (7.67)

The uniform convergence of (%ηε , ϑ
η
ε) to (%, ϑ) on [z∗2 , z

∗
1 ] implies that z2

ε → z2 and ϑηε(z2
ε)→

ϑ(z2) = θ2 .
From (7.66) and (7.67) we deduce that (%ηε , ϑ

η
ε) satisfies (7.44) in the interval [z2

ε , z
1
ε ] .

Since (%ηε , ϑ
η
ε) and (%ε, ϑε) satisfy the same Cauchy conditions at z1

ε by (7.41), (7.49), and
(7.61), we conclude that (%ηε , ϑ

η
ε) = (%ε, ϑε) on [z2

ε , z
1
ε ] . This implies

sup
z2ε≤z≤z1ε

(
|%ε(z)− %(z)|+ |ϑε(z)− ϑ(z)|

)
→ 0



44 G. DAL MASO AND A. DESIMONE

and the convergence θ2ε := ϑε(z2
ε) = ϑηε(z2

ε)→ θ2 . �

Lemma 7.6. Under the assumptions of Lemma 7.5, let τ1
ε be the time such that

zε(τ1
ε ) = z2

ε , (7.68)

and let η be the constant in (7.45). Then

0 < τ1
ε − t1ε < 1

η ε
α

for ε small enough

Proof. By Lemma 2.6, (2.21), and (7.41) the function zε(t) is a solution of the autonomous
equation

εżε(t) = (%ε(zε(t))− zε(t)) zε(t) (1 + cosϑε(zε(t))) cosϑε(zε(t)) (7.69)
in the interval [t1,+∞). Let z1

ε := zε(t1ε). As zε(τ1
ε ) = z2

ε by (7.68), equation (7.69) gives

τ1
ε − t1ε = ε

∫ z2ε

z1ε

dz

(%ε(z)− z) z (1 + cosϑε(z)) cosϑε(z)
,

so that the conclusion follows from (7.45) and (7.59). �

Lemma 7.7. Under the assumptions of Lemma 7.5, let (ρf , θf , zf ) be defined as in Lemma
6.2, and let τ1

ε be the time introduced in Lemma 7.6. Then for every ε > 0 there exists
sε ∈ R such that

sup
t1ε≤t≤τ1

ε

(
|ρε(t)− ρfε(t)|+ |θε(t)− θfε(t)|+ |zε(t)− zfε(t)|

)
→ 0 , (7.70)

where ρfε , θfε , and zfε are defined in (7.7).

Proof. Let ρ1
ε , θ1ε , and z1

ε be defined as in (7.61). By (7.41) we have ρε(t) = %ε(zε(t))
and θε(t) = ϑε(zε(t)) for every t ∈ [t0,+∞), where (%ε, ϑε) satisfies (7.44) and the Cauchy
condition

%ε(z1
ε) = ρ1

ε and ϑε(z1
ε) = θ1ε . (7.71)

Moreover zε satisfies (7.69), so that the function ζε(s) := zε(εs) satisfies the equation

ζ̇ε(s) = (%ε(ζε(s))− ζε(s)) ζε(s) (1 + cosϑε(ζε(s))) cosϑε(ζε(s)) (7.72)

for s ∈ [ 1ε t0,+∞). As explained at the end of the proof of Lemma 7.5 we have (%ηε , ϑ
η
ε) =

(%ε, ϑε) on [z2
ε , z

1
ε ] . By (7.68) the function ζε satisfies also the equation

ζ̇ε(s) = (%ηε(ζε(s))− ζε(s)) ζε(s) (1 + cosϑηε(ζε(s))) cosϑηε(ζε(s)) (7.73)

for s ∈ [ 1ε t
1
ε,

1
ετ

1
ε ] .

By (7.57) and (7.61) we have z1
ε → z1 , while z2

ε → z2 by Lemma 7.5. Since z2 < zf(0) <
z1 by the monotonicity of zf and by (6.32) and (6.35), we have that z2

ε < zf(0) < z1
ε for ε

small enough. By (7.61) and (7.68) we have ζε( 1
ε t

1
ε) = z1

ε and ζε( 1
ετ

1
ε ) = z2

ε . Since ζε is
decreasing by (2.34), there exists a unique sε ∈ ( 1

ε t
1
ε,

1
ετ

1
ε ) such that ζε(sε) = zf(0).

Let ζηε be the maximal solution of (7.73) with Cauchy condition ζηε (0) = zf(0) and let ζ	ε
be the solution of (7.72) on (−∞, 0] with Cauchy condition ζ	ε (0) = zf(0). The theory of
autonomous systems implies that ζηε is defined in a neighborhood of the interval [0,+∞), is
decreasing, and satisfies ζηε (s)→ z1 as s→ +∞ . Taking into account (7.42) and (7.43), the
theory of autonomous systems guarantees that ζ	ε is defined on the whole interval (−∞, 0],
is decreasing, and satisfies ζ	ε (s)→ z1 as s→ −∞ . By uniqueness we have

ζε(s) = ζηε (s− sε) for every s ∈ [ 1ε t
1
ε,

1
ετ

1
ε ] , (7.74)

ζε(s) = ζ	ε (s− sε) for every s ∈ [ 1ε t0,
1
ετ

1
ε ] . (7.75)

In the proof of Lemma 7.5 we have seen that (%ηε , ϑ
η
ε) → (%, ϑ) as ε → 0 uniformly

on [z∗2 , z0] , where (%, ϑ) is the solution of (6.1) with Cauchy conditions (6.4), and δ2 > 0
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satisfies (7.65). Continuing as in the same proof we can construct zηε , with zηε → z2 as
ε→ 0, such that

%ηε(zηε ) = zηε and %ηε(z) > z for z ∈ (zηε , z
1
ε).

Let us prove that ζηε converges to zf uniformly on [s0,+∞) for every s0 < 0. Let us fix
λ > 0. By (6.35) we can find s2 ∈ (0,+∞) such that |zf(s)− z2| < λ for any s ∈ [s2,+∞).
Since (%ηε , ϑ

η
ε) → (%, ϑ) as ε → 0 uniformly on [z∗2 , z0] , and zf satisfies (6.36), we have

ζηε → zf uniformly in [s0, s2] for every s0 < 0. For s ≥ s2 the monotonicity of ζηε gives

|ζηε (s)− zf(s)| ≤ |ζηε (s)− zηε |+ |zηε − z2|+ |z2 − zf(s)| ≤
≤ ζηε (s2)− zηε + |zηε − z2|+ λ ≤ |ζηε (s2)− zf(s2)|+ 2|zηε − z2|+ 2λ ,

so that

sup
s0≤s
|ζηε (s)− zf(s)| ≤ sup

s0≤s≤s2
|ζηε (s)− zf(s)|+ 2|zηε − z2|+ 2λ .

Since zηε tends to z2 and λ is arbitrary, the uniform convergence of ζηε to zf on compact
subsets of R implies the uniform convergence on all of [s0,+∞).

Let us prove now that ζ	ε converges to zf uniformly on (∞, 0]. We first observe that
for every s0 < 0 there exists ε0 > 0 such that ζηε (s) = ζ	ε (s) for every s ∈ [s0, 0] and
every ε ∈ (0, ε0). Indeed, by the uniform convergence of ζηε to zf and the properties of zf

listed Lemma 6.2 there exists ε0 such that z2
ε < ζηε (s) < z1

ε for every s ∈ [s0, 0] and every
ε ∈ (0, ε0). As observed in the proof of Lemma 7.5 we have (%ηε , ϑ

η
ε) = (%ε, ϑε) on [z2

ε , z
1
ε ] .

This implies that on the interval [s0, 0] the function ζηε is in fact solution of (7.72). Since it
satisfies the same Cauchy conditions as ζ	ε , by uniqueness we have ζηε (s) = ζ	ε (s) for every
s ∈ [s0, 0].

Let us fix λ > 0. By (6.32) we can find s0 ∈ (∞, 0) such that |ρf(s) − z1| < λ for any
s ∈ (−∞, s0] . Since ζ	ε = ζηε on [s0, 0] for ε small enough, we have that ζ	ε → zf uniformly
on [s0, 0]. For s ≤ s0 the monotonicity of ζ	ε gives

|ζ	ε (s)− zf(s)| ≤ |ζ	ε (s)− z1|+ |z1 − zf(s)| ≤
≤ z1 − ζ	ε (s0) + λ ≤ |ζ	ε (s0)− zf(s0)|+ 2λ ,

so that

sup
s≤0
|ζ	ε (s)− zf(s)| ≤ sup

s0≤s≤0
|ζ	ε (s)− zf(s)|+ 2λ .

Since λ is arbitrary, the uniform convergence of ζ	ε to zf on compact subsets of (−∞, 0]
implies the uniform convergence on all of (−∞, 0].

By (7.74) and (7.75), the uniform convergence of ζηε and ζ	ε to zf gives

sup
1
ε t

1
ε≤s≤

1
ε τ

1
ε

|ζε(s)− zf(s− sε)| → 0 .

Since zε(t) = ζε( tε ), this implies

sup
t1ε≤t≤τ1

ε

|zε(t)− zfε(t)| → 0 . (7.76)

By Lemma 6.2 we have ρf(s) = %(zf(s)) and θf(s) = ϑ(zf(s)) for every s ∈ R . By (2.34)
and (7.68) we have z2

ε ≤ zε(t) ≤ z1
ε for every t ∈ [t1ε, τ

1
ε ] . It follows from (7.60) that

sup
t1ε≤t≤τ1

ε

(
|ρε(t)− %(zε(t))|+ |θε(t)− ϑ(zε(t))|

)
→ 0 .
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Since ρfε(t) = %(zfε(t)) and θfε(t) = ϑ(zfε(t)), using (7.76) and the uniform continuity of %
and ϑ we obtain

sup
t1ε≤t≤τ1

ε

(
|ρε(t)− ρfε(t)|+ |θε(t)− θfε(t)|

)
≤

≤ sup
t1ε≤t≤τ1

ε

(
|ρε(t)− %(zε(t))|+ |θε(t)− ϑ(zε(t))|

)
+

+ sup
t1ε≤t≤τ1

ε

(
|%(zε(t))− %(zfε(t))|+ |ϑ(zε(t))− ϑ(zfε(t)))|

)
→ 0 ,

which, together with (7.76), gives (7.70). �

7.3. Transition to the slow dynamics. We now describe the behaviour of the system
in a small time interval [τ1

ε , tε] after which the system is governed by the slow dynamics.
During this transition ρε(t)− zε(t) decreases from the value ε1−α , attained at t = τ1

ε , to a
value of order ε , attained at t = tε .

Lemma 7.8. Let π
2 < θ2 ≤ π , let 0 < z2 < zs(θ2) , let t1 ∈ [t0,+∞) , let α ∈ (0, 1

2 ) , and
let τ1

ε be a sequence in [t0,+∞) such that

τ1
ε → t1 , ρε(τ1

ε )→ z2 , θε(τ1
ε )→ θ2 , zε(τ1

ε )→ z2 , (7.77)
ρε(τ1

ε )− zε(τ1
ε ) = ε1−α . (7.78)

Then there exist a sequence tε in [t0,+∞) and a constants β1 > 0 such that

τ1
ε < tε and tε → t1 as ε→ 0 , (7.79)

ρε(tε)− zε(tε) ≤ κ ε for ε small enough , (7.80)
sup

τ1
ε≤t≤tε

(
|ρε(t)− z2|+ |θε(t)− θ2|+ |zε(t)− z2)|

)
→ 0 as ε→ 0 . (7.81)

Proof. As z2 < zs(θ2), we have z2(1 + cos θ2)2 cos θ2 + 1 > 0. Let κ > 0 be such that
z2(1 + cos θ2)2 cos θ2 + 1 > 2

κ . Under our hypotheses, by continuity there exists η > 0, with
η < z2

2 , such that

z(1 + cos θ)2 cos θ + 1 ≥ 2
κ for |θ − θ2| < η and |z − z2| < η . (7.82)

We define

tε := inf{t ∈ (τ1
ε ,+∞) : ρε(t)− zε(t) ≥ κε} , (7.83)

αηε := inf{t ∈ (τ1
ε ,+∞) : |θε(t)− θ2|+ |zε(t)− z2| > η} , (7.84)

sηε := min{tε, αηε} . (7.85)

Since ρε(t)− zε(t) ≥ κ ε for every t ∈ [τ1
ε , tε] , from (7.82) we obtain

(zε(t)(1 + cos θε(t))2 cos θε(t) + 1)(ρε(t)− zε(t)) ≥ 2ε for every t ∈ [τ1
ε , s

η
ε ] .

Therefore (2.25) gives

ρ̇ε(t)− żε(t) ≤ −ε for every t ∈ [τ1
ε , s

η
ε ] , (7.86)

which, after integration, yields
sηε − τ1

ε ≤ ε1−α . (7.87)
By Lemma 2.6, (7.78), and (7.86) we have 0 < ρε(t)− zε(t) ≤ ρε(τ1

ε )− zε(τ1
ε ) = ε1−α for

every t ∈ [τ1
ε , s

η
ε ] . Since 0 < zε(t) ≤ z0 by (2.34), from the third equation in (2.21) we have

żε(t) ≥ −2 zε(t) ε−α ≥ −2 z0 ε−α for every t ∈ [τ1
ε , s

η
ε ] ,

which, together with (2.34) and (7.87), implies

zε(τ1
ε ) ≥ zε(t) ≥ zε(τ1

ε )− 2 z0 ε−α(t− τ1
ε ) ≥ zε(τ1

ε )− 2 z0 ε1−2α for every t ∈ [τ1
ε , s

η
ε ] ,

which gives

|zε(t)− z2| ≤ |zε(τ1
ε )− z2|+ 2 z0 ε1−2α for every t ∈ [τ1

ε , s
η
ε ] . (7.88)



QUASISTATIC EVOLUTION FOR CAM-CLAY PLASTICITY 47

From the second equation in (2.21) we have

ρε(t)θ̇ε(t) ≤ −1− 2z0ε−α for every t ∈ [τ1
ε , s

η
ε ] .

Moreover, by Lemma 2.6 we have

ρε(t) > zε(t) ≥ z2 − η > z2
2 for every t ∈ [τ1

ε , s
η
ε ] . (7.89)

Thus, recalling (2.32),

0 ≥ θ̇ε(t) ≥ − 2
z2
− 4 ε−α for every t ∈ [τ1

ε , s
η
ε ] , (7.90)

and, integrating and using (7.87), we obtain

θε(τ1
ε ) ≥ θε(t) ≥ θε(τ1

ε )− ( 2
z2

+ 4 ε−α)(t− τ1
ε ) ≥ θε(τ1

ε )− ( 2
z2

+ 4) ε1−2α

for every t ∈ [τ1
ε , s

η
ε ] , which gives

|θε(t)− θ2| ≤ |θε(τ1
ε )− θ2|+ ( 2

z2
+ 4) ε1−2α for every t ∈ [τ1

ε , s
η
ε ] . (7.91)

By (7.77) we have |zε(τ1
ε ) − z2| + ε1−2α + |θε(τ1

ε ) − θ2| + ( 2
z2

+ 4) ε1−2α < η for ε small
enough. Therefore (7.88) and (7.91) give sηε < αηε for ε small enough. By (7.85) this implies
sηε = tε , so that (7.87) gives tε − τ1

ε ≤ ε1−α , which concludes the proof of (7.79). Since
tε < +∞ , inequality (7.80) follows from the definition of tε given in (7.83), while (7.81)
follows from (7.88) and (7.91). �

7.4. Softening with discontinuity. In this subsection we prove Theorems 7.1 and 7.2
describing the softening regime with a discontinuity.

Proof of Theorem 7.1. Let us prove that there exists a sequence τε in [t0,+∞) such that

τε → t1 , ρε(τε)→ z1, θε(τε)→ θ1, zε(τε)→ z1 , (7.92)

sup
t0≤t≤τε

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
→ 0 . (7.93)

Let us fix an integer k > 0. We can apply Lemma 5.4 with t∗ = t0 , τ = t1− 1
k , θ∗ = θ0 ,

z∗ = z0 , and t∗ε = t0 . Indeed, (5.18) follows from (3.21). By (5.21) we have

sup
t0≤t≤t1− 1

k

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
→ 0 .

Let us fix a decreasing sequence ak → 0. There exists a decreasing sequence εk → 0 such
that for every ε ∈ (0, εk] we have

sup
t0≤t≤t1− 1

k

(
|ρε(t)− ρsl0 (t)|+ |θε(t)− θsl0 (t)|+ |zε(t)− ρsl0 (t)|

)
≤ ak . (7.94)

We now define τε := t1 − 1
k for every ε ∈ (εk+1, εk] . Then τε → t1 as ε → 0, and (7.93)

follows from (7.94). From (7.93) we obtain, in particular,

|ρε(τε)− ρsl0 (τε)|+ |θε(τε)− θsl0 (τε)|+ |zε(τε)− ρsl0 (τε)| → 0 .

Since τε → t1 , this implies (7.92) thanks to (3.18).
Let us fix α ∈ (0, 1

2 ). By Lemma 7.3 there exists a sequence t1ε in [t0,+∞) which satisfies
(7.15)-(7.18). By (3.18) we have

sup
τε≤t≤t1ε

(
|ρsl0 (t)− z1|+ |θsl0 (t)− θ1|

)
→ 0 .

Together with (7.18) and (7.93), this proves (7.4).
By Lemmas 7.6 and 7.7 there exists τ1

ε > t1ε such that (7.70) holds and τ1
ε → t1 as ε→ 0.

This proves (7.5) and concludes the proof of (7.3).
By Lemma 7.8 there exists a sequence tε in [t0,+∞) which satisfies (7.79)-(7.81). By

(3.23) we have
sup

τ1
ε≤t≤tε

(
|ρsl2 (t)− z2|+ |θsl2 (t)− θ2|

)
→ 0 ,
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which, together with (7.81), gives

sup
τ1
ε≤t≤tε

(
|ρε(t)− ρsl2 (t)|+ |θε(t)− θsl2 (t)|+ |zε(t)− ρsl2 (t)|

)
→ 0 . (7.95)

We can apply now Lemma 5.4 with t∗ = t1 , θ∗ = θ2 , z∗ = z2 , and t∗ε = τ1
ε . Indeed,

hypothesis (5.18) follows from (3.26), while (5.19) and (5.20) are satisfied thanks to (7.79)-
(7.81). We deduce that (5.21) holds with ρsl∗ = ρsl2 . Together with (7.95), this proves (7.6).
Equalities (7.2) follow from (7.3), (7.4), and (7.6). �

Proof of Theorem 7.2. Let us fix α ∈ (0, 1
2 ). We apply Lemma 7.3 with z1 = z0 , θ1 = θ0 ,

t1 = τε = t0 , and we find a sequence t1ε in [t0,+∞) which satisfies (7.15)-(7.18) with
τε = t0 . In particular we have

|t1ε − t1|+ |ρε(t1ε)− z1|+ |θε(t1ε)− θ1|+ |zε(t1ε)− z1| → 0 . (7.96)

By Lemmas 7.6 and 7.7 there exists τ1
ε > t1ε which satisfies (7.11) and (7.70). In particular

we have
|ρε(t1ε)− ρfε(t1ε)|+ |θε(t1ε)− θfε(t1ε)|+ |zε(t1ε)− zfε(t1ε)| → 0 ,

which, together with (7.96), gives

|ρfε(t1ε)− z1|+ |θfε(t1ε)− θ1|+ |zfε(t1ε)− z1| → 0 , (7.97)

By (6.32), (6.34), and (7.7) we have

|ρfε(t)− z1|+ |θfε(t)− θ1|+ |ρfε(t)− z1| ≤ |ρfε(t1ε)− z1|+ |θfε(t1ε)− θ1|+ |ρfε(t1ε)− z1|
for every t ∈ (−∞, t1ε] , so that (7.97) gives

sup
t0≤t≤t1ε

(
|ρfε(t)− z1|+ |θfε(t)− θ1|+ |ρfε(t)− z1|

)
→ 0 .

Together with (7.18) and (7.70) this proves (7.12).
We apply Lemma 7.8 with t1 = t0 and find a sequence tε converging to t0 which satisfies

(7.79)-(7.81). As in the proof of Theorem 7.1 we obtain (7.95). We can apply now Lemma 5.4
with t∗ = t0 , θ∗ = θ2 , z∗ = z2 , and t∗ε = tε . Indeed, hypothesis (5.18) follows from (3.26),
while (5.19) and (5.20) are satisfied thanks to (7.79)-(7.81). We deduce that (5.21) holds
with ρsl∗ = ρsl2 . Together with (7.95), this proves (7.13). Equalities (7.10) follow from
(7.11)-(7.13). �

8. Mechanical interpretation of the results

We conclude the paper with some comments on the mechanical interpretation of our
results. We first recall that the scalar variables x and y are related to the stress by the
formula

σ(t) = e(t) = − 1
nx(t)I + 1√

n
y(t)e0 ,

where e0 ∈ Mn×n
sym is a fixed traceless matrix with unit norm. It follows that −x(t) is

the trace of the stress, so that, with the usual sign conventions, x(t)
n is the pressure. The

scalar 1√
n
|y(t)| is the norm of the deviatoric part of the stress, usually denoted by q in soil

mechanics. For simplicity, in what follows we will call x and y the pressure coefficient and
the deviatoric stress coefficient.

By (1.6) we have

x(t) = z(t) + ρ(t) cos θ(t) and y(t) = ρ(t) sin θ(t) .

Since ρ(t) = z(t) for every viscosity solution (Theorems 5.1, 5.2, 7.1, and 7.2), we conclude
that

x(t) = ρ(t) (1 + cos θ(t)) and y(t) = ρ(t) sin θ(t) for every t ∈ [t0,+∞) .

From the above mentioned theorems and from Lemmas 3.5-3.7 it follows that ρ(t) > 0
and π

2 ≤ θ(t) ≤ π for every t ∈ [t0,+∞). Moreover, θ(t) = π only at the initial time
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Figure 8.1. Phase diagram in the (x, y) plane. Dark grey region (includ-
ing the thick line): initial data (x0, y0) of the plastic regime producing a
continuous evolution. Light grey region: initial data producing a disconti-
nuity at time t1 > t0 . White region: initial data producing a discontinuity
at time t1 = t0 . The dotted line is composed of fixed points and separates
softening behaviour (above the line) from hardening behaviour (below the
line).

t = t0 for the special loading program corresponding to a0 = 0 (i.e., in the absence of a
preconsolidation pressure, see (1.4)) so that t0 = 0. Using also (2.20) we deduce that

x(t) ≥ 0 and y(t) ≥ 0 for every t ∈ [0,+∞) .

and that x(t) = 0 if and only if t = t0 = 0 and a0 = 0, while y(t) = 0 if and only if t = 0.
Plastic behaviour starts at t = t0 . The initial data for the plastic regime are given by

x0 := x(t0) = z0 (1 + cos θ0) = a0 and y0 := y(t0) = z0 sin θ0 = t0 ,

respectively. In Cartesian coordinates the separation line ρ = zs(θ) and the critical line
ρ = rc(θ) of the (ρ, θ) plane introduced in (3.4) and (3.6) become the parametric curves
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Figure 8.2. Trajectories of (x(t), y(t)) in the plastic regime for several
values of the initial data (x0, y0). The evolution for t > t0 is obtained
following the trajectory through (x0, y0) in the sense of the arrow. Solid
lines: slow dynamics. Dashed lines: fast dynamics. Dotted line: fixed
points.

defined by

xs(θ) := zs(θ) (1 + cos θ) and ys(θ) := zs(θ) sin θ for θ ∈ (π2 , π) ,
xc(θ) := rc(θ) (1 + cos θ) and yc(θ) := rc(θ) sin θ for θ ∈ [π2 , π] .

The critical point (θc, zc) becomes

xc := zc (1 + cos θc) and yc := zc sin θc .

The phase diagram in the (x, y) plane is obtained from Fig. 1.3 by a change of variables
and is shown in Fig. 8.1.

The trajectories of (x(t), y(t)) are shown in Fig. 8.2, while Fig. 8.3 illustrates the be-
haviour of x(t) and y(t) as functions of t . Note that, by our choice of the loading program
(1.4), t is proportional to the norm of the imposed deviatoric strain. Moreover, we note
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Figure 8.3. Deviatoric stress coefficient y(t) and pressure coefficient x(t)
as functions of the imposed deviatoric strain t for a0 = 2 and 8 different
values of z0 > 2, leading to a softening behaviour. Solid lines: the functions
y(t). Dashed lines: the functions x(t).

that the straight line x = y (critical state line) is composed of fixed points. Each trajectory
x(t), y(t) tends to a fixed point as t → ∞ . The region below the critical state line is in-
variant, and all solutions therein display a hardening behaviour, namely, z(t) is increasing.
Moreover, y(t) is increasing. Both of these properties follow from (3.15) and Theorem 5.1.

In the region above the critical state line the trajectories exhibit softening, namely, z(t)
is decreasing. Some trajectories are continuous and follow the system of the slow dynamics.
Other trajectories in this region exhibit a discontinuity, which may occur either at t = t0
or at t > t0 . They follow the system of the slow dynamics in the intervals of continuity,
and their trajectories follow instantaneously the system of the fast dynamics at the jump
time. These different behaviours are described in Figure 8.1. The monotonicity of z(t)
in the intervals of slow dynamic follows from (3.20), (3.24), and Theorem 5.2. For what
concerns the jump governed by the fast dynamics, we observe that under the assumptions of
Lemma 6.1, the solution (x, y) of (6.3) with Cauchy condition (6.5) satisfies x′(z) < 0 and
y′(z) > 0 for every z ∈ (z2, z1) in view of (6.9). Finally in the intervals of fast dynamics
described by the solution (xf , yf , zf ) of (6.31), ẋf(s) > 0, ẏf(s) < 0, and żf(s) < 0 for
every s ∈ R in view of (6.34).
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