QUASISTATIC EVOLUTION FOR CAM-CLAY PLASTICITY:

EXAMPLES OF SPATIALLY HOMOGENEOUS SOLUTIONS
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ABSTRACT. We study a quasistatic evolution problem for Cam-Clay plasticity under a
special loading program which leads to spatially homogeneous solutions. Under some
initial conditions, the solutions exhibit a softening behaviour and time discontinuities.
The behavior of the solutions at the jump times is studied by a viscous approximation.
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The modified Cam-Clay model has been introduced in the engineering literature on soil
mechanics as a conceptual tool to understand the irreversible deformations experienced by
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fine grained soils (clays) upon loading [10, 9, 8, 11]. Omne of the interesting features of
this model is that, depending on the loading conditions, the stress-strain response may
exhibit a hardening or a softening behaviour. Furthermore, it is an important example
of nonassociative plasticity, for which a satisfactory mathematical theory is only partially
developed [7].

We restrict our attention to the spatially homogeneous case in dimension n, with no
volume forces. The system is driven by a time-dependent affine boundary condition w(t, z),
whose symmetrized spatial gradient Fw(t,z) is independent of the space variable x and
is denoted by £(¢). In this situation, the displacement w(t,x) coincides with w(t,x) and
the unknowns are the elastic part e(t) and the plastic part p(¢) appearing in the additive
decomposition of the strain Fu(t,x) = e(t) + p(t), as well as a scalar internal variable z(¢),
which describes the time evolving yield surface. The stress o(t) is determined by the elastic
part of the strain through the usual relation o(t) = Ce(t), where C is the tensor of elastic
moduli.

One ingredient of the model is a closed convex cone K C M %[0, 4+00), where Mg
is the space of symmetric nxn matrices. It is assumed that K contains the half-line
{0}x[0,4+00). The stress is constrained by the inclusion o(t) € K(z(t)), where for every
¢ €[0,400) we define K (¢) := {0 € Mg : (0,() € K}. The interior of K(() is the elastic
domain corresponding to the value ¢ of the internal variable, while its boundary 9K (¢)
is the yield surface. In the typical applications, 0K (() is a suitable ellipsoid in the space

‘The other ingredients of the model are the evolution laws for p(t) and z(t), resulting in
the system

e(t) +p(t) =&(t),  o(t)=Ce(t) € K(2(1)),
B(t) € Nz (o(t)), (1.1)
(t) = tr(o(t) tr(p(t))

where N (¢)(0) denotes the normal cone to K(¢) at o. The nonassociative nature of the
problem is due to the fact that the equation for Z in (1.1) does not depend on K. In view
of the hypotheses on K, we have the monotonicity condition (3 < (o = K({1) € K({2).
Therefore, if 2(t) > 0, the set K(z(t)) expands leading to a hardening response. On the
contrary, if Z(t) < 0, the set K(z(t) shrinks leading to a softening response. In the usual
applications we have tr(o) < 0 for every o € K((), which reflects the compressive conditions
typical of soil mechanics. Therefore, by the third line in (1.1), the hardening or softening
behaviour is determined only by the sign of tr(p). An energetic approach to a class of rate-
independent plasticity problems which present only a softening behaviour has been proposed
in [3].

To deal with the instabilities of the softening regime, we propose a viscosity approximation
o (1.1), [4, 2]. Denoting the minimal distance projection of o onto K(¢) by 7 ()(o), for
every £ > 0 we consider the unconstrained system

€e (t) + Pe (t> = f(t) ) O¢ (t) = Ce. (t) s
Pe(t) = Nic(. 1y (0e(1)) 5
Ze(t) = tr(Ti (2. ) (0= (1)) tr(Pe (1))

where Ni( (o) := 1(0 — mk()(0)) is the usual approximation of the normal to K(¢). A

(1.2)

viscosity solution (e(t),p(t),o(t),z(t)) to (1.1) is defined as a left continuous map which,
for almost every time t, is the pointwise limit of a sequence (e.(t),p:(t),o:(t),z:(t)) of
solutions of (1.2).

In this paper we study in detail the case where Ce = e for every e € M7, so that

o(t) = e(t) and o.(t) = e.(t). Moreover, we assume that K(¢) is the closed ball centered
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at —%C[ with radius ﬁg, namely,

K(¢) ={o e Mgy o+ 3¢ < =¢} (1.3)

where [ is the identity matrix in Mg 7. The fact that all the elements in the interior of

K(¢) are negative definite reflects the fact that the material can only sustain compressive
stresses.

Given a constant ap > 0, and a matrix eg € M with tr(ep) = 0 and |eg| = 1, we
consider the special loading path
§(t) = —ao; I +tzeo (1.4)

and the initial conditions e.(0) = e(0) = —ag11 and 2.(0) = 2(0) = 2. Then e.(t) and
e(t) have the form

ec(t) = —%xg(t)l + ﬁyg(t)eo and e(t) = —%x(t)[ + ﬁy(t)eo,

for suitable scalar function x.(t), ye(¢t), z(t),y(t) satisfying z.(0) = 2(0) = ap and y.(0) =
y(0) = 0, while the constraint o(t) € K(z(t)) becomes

V(@) = 2()? + y(8)? < =(1).

Since the initial condition must satisfy this constraint, we assume that 0 < ag < 2z.
Then the solution is given by

vt =alt)=a0,  w®)=yl)=t, ()= =) =20 (L.5)

in the interval [0,%o], where to satisfies \/(ap — 20)% + 1% = 2zo. This corresponds to the
elastic regime (see Fig. 1.1).

for-——-=--=-mmmmmmmmmm e

(x(1), (1))

F1GURE 1.1. The elastic regime. The thick line segment is the trajectory
of (z(t),y(t)) in the time interval [0,%p]. The circle represents the yield
surface in the (z,y) plane, which remains constant in this time interval.
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After time ty the solution exhibits a plastic behaviour. To study the solution for ¢ > tg
we introduce polar coordinates

{xe(t) — 2:(t) = pe(t) cos B.(t) {x(t) — 2(t) = p(t) cos O(t) ,
Y=(t) = pe(t) sin (1), y(t) = p(t)sin0(t),
with pe(t) > 0 and p(t) > 0 and we consider the angle 6y € [0, 7| (see Fig. 1.1) such that

(1.6)

ap = zg +20cosfy and ty = zpsinby. (1.7)

To study the instabilities due to softening, it is convenient to introduce a fast time s := %t.
By contrast, the standard time ¢ will be called slow time. In certain time intervals the
problem has no singularities and the evolution can be studied using the slow time. The limit
system in this case is called the system of the slow dynamics and is studied in Section 3.
It is used to describe the limit behaviour in the hardening regime (Subsection 5.1) and in
some cases of softening (Subsections 5.2 and 5.3).

In the softening regime, singular behavior may occur, which requires the use of the fast
time s. The corresponding limit system is called the system of the fast dynamics and is
studied in Section 6. It is formally obtained by rescaling time in (1.2) according to s = é
and is used to determine the transfer map at a jump point ¢; > tg, defined as the map

(p(t1 =), 0(t1 =), 2(t1=)) = (p(t1+), 0t +), 2(t1 1))

where + and — refer to left and right limit, respectively (see Fig. 1.2). More precisely,
the right limit (p(t1+) (t1+) z(t1+)) is given by the asymptotic value for s — +oo of
the solution (p#(s),0%(s), 2/(s)) of the system of the fast dynamics (6.30) whose limit as
s — oo is given by (p(t1-), B(t1-), 2(t1 ).

3 Ixn 4n
5 10 5
115
7= 2z,0)
410
(2e,0c)
x 3x Ix ix
2 5 10 5

FIGURE 1.2. Transfer map in the (6, p) plane. The solid rectilinear grid is
transformed into the dotted curvilinear grid, the solid thick line is trans-
formed into the dashed thick line, and the dotted line remains fixed.
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The behaviour of the system in the plastic regime depends on the initial condition (g, zo)
at time to given in (1.7). If 0 < 6y < 7, then we are in the hardening regime. The
viscosity solution (p(t),8(t), z(t)) is continuous in time, is the uniform limit of the viscosity
approximations (pe(t), 0:(t), z-(t)) on compact sets, and satisfies

p(t) = z(t) for t € [ty,+00),
pt) >0 and 6(t) >0 for te [ty,+00),
tL1+moo p(t) < 400 and tilglooﬂ(t) =7Z.
If § <6y <, then we are in the softening regime and the viscosity solution (p(t),0(t), z(t))
may be discontinuous at a time ¢; > to depending on the initial conditions (6p, z9). The

jump at the discontinuity time is determined by the transfer map considered above and
satisfies the inequalities 0 < p(t14) = 2(t1+) < p(t1—) = 2(t1—) and § < O(t1+) < O(t1—).

s 3n In 4n 9rn
2 5 10 5 10 n
15¢
10+
(2, 6,)
5 5
z 3z 1x 4n 91 T
2 5 10 5 10

FIGURE 1.3. Phase diagram in the (6, p) plane. Dark grey region (including
the thick line): initial data (g, zp) of the plastic regime with continuous
evolution. Light grey region: initial data with discontinuity time ¢; > #g.
White region: initial data with discontinuity time ¢; = tq.

Three possible behaviours occur, according to the phase diagram illustrated in Fig. 1.3.
A crucial role is played by the separation line z = z4(#), whose explicit formula is given
by (3.4), by the critical line z = r.(), described in (3.6), and by the critical point (z.,0.)
where the two lines meet, given explicitly in (3.3) and (3.5).

(a) If either § < 6y < 0. and 2o < 24(0p), or 0. < 0y < 7 and zy < 7rc(0), then
the viscosity solution (p(t),0(¢), z(t)) is continuous in time (see Fig. 1.4-1.6), is the
uniform limit of the viscosity approximations (p¢(t),8:(t),2:(t)) on every compact
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subset of [tg,+00), and satisfies
p(t) = z(t) for t € [ty,+00),
pt) <0 and O(t) <0 for te [ty,+00),
tl}I-Eloo p(t) >0 and tl}inoo o(t)=7%.

(b) If either § < 6y < 6. and 20 > zs(0), or 6. < 6 < 7 and 20 > z(6o),
then the viscosity solution (p(t),0(t),2(t)) is discontinuous at t = to. Moreover
the solution (p(t),0(t), z(t)) is the uniform limit of the viscosity approximations

(pe(t),0:(t), z-(t)) on every compact subset of ({9, +00). It satisfies
p(t) =z(t) for te€ (to,+00),
p(t) <0 and O(t) <0 for t€ (tg,400),
lim p(t) >0 and tligrnoo o(t) =7 .

t——+oo
Finally, the viscosity approximations (pc(t),0:(t),2:(t)) are uniformly close to a
rescaled version of (p/(s),67(s), z/(s)) in a suitable right neighbourhood of ;.
(c¢) If 0. < 0y <7 and r.(00) < 20 < z5(6p), then the viscosity solution (p(t),(t), z(t))
is discontinuous at a time ¢, > ¢y (see Fig. 1.4-1.6). Moreover the solution (p(t),0(t), z(t))
is the uniform limit of the viscosity approximations (p¢(t), 0c(t), z=(t)) on every com-
pact subset of [t,t1) U (t1,+00). It satisfies

p(t) = z(t) for t € [to,t1) U (t1,+00),
p(t) <0 and O(t) <0 for tE€ [to,t1)U (t1,400),
lim p(t) >0 and lim 60(t) = 7.

t——+oo t——+oo
Finally, the viscosity approximations (pc(t),0:(t),2:(t)) are uniformly close to a
rescaled version of (p/(s),67%(s), z/(s)) in a suitable right neighbourhood of ¢; .
Further details on the mechanical interpretation of the behaviour of the solutions are
given in Section 8 using Cartesian coordinates (x(t),y(t), see Fig. 8.1-8.3.
Extensions to general K and general loading conditions in the spatially uniform case,
and extensions to non spatially uniform solutions will be considered in other forthcoming
papers.

2. FORMULATION OF THE PROBLEM AND GENERAL RESULTS

Let K be a closed convex cone in M2X"x[0,+00). For every ¢ € [0, +00) we define

sym

K(C) = {o € M2 (0,0) € K}
Each set K () is closed and convex, and we have

K()=C(K(1) for every ¢ € [0, +00). (2.1)

We assume that K (1) is bounded and that 0 € K (1), hence

0e K(¢) for every ¢ € [0,400), (2.2)
and

lo| < Mk( for every (0,() € K (2.3)

for a suitable constant Mx < +0o.
For every closed convex set C' C M0 let mo: MZh — C be the minimal distance

projection onto C'. It follows from (2.1) that
T (0)(0) = (1) (20) (2.4)

nxn
sym *°

for every ¢ > 0 and every o0 € M
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FIGURE 1.4. Trajectories in the (6, p) plane for 6y = 19—077 and 12 different

values of zg < z5(fp). Solid lines: trajectories of (8(t), p(t)) = (0(t), z(t))
(slow dynamics). Dashed lines: trajectories of (64(s), p/(s)) (fast dynam-
ics). Dotted lines: trajectories of (67(s), 2/(s)) (fast dynamics).

The following result will be used to prove the existence of a solution to the system (1.2)
governing the viscous approximation of the original problem (1.1).

Lemma 2.1. The map (0,¢) — mg(c)(0) from My;ix([0,+o00) into Myjh satisfies the
Lipschitz estimate

1Tk () (02) = Tr()(01)] < oo — 01| + 2MK|Ca — (1 (2.5)
for every (o1,¢1), (02, ¢2) € Mgy x[0, +00).

Proof. Tt is enough to prove the estimate for (o1,(1), (02,(2) € M2X"x[0,+00) with 0 <

sym

¢1 < (2. Since mg(c,) has Lipschitz constant 1 on M7 X", from (2.3) and (2.4) we obtain

sym
1Tr(02)(02) = T (¢) (01)] S [T (¢2)(02) = (o) (1) + [Tr(o) (01) — Tr (1) (01)] <
<l|oz —o1]+ ‘CQWK(l)(éal) - ClWK(l)(C%Ul)’ <
<|og — o1+ Mk|C — G|+ C1’7TK(1)(%201) - WK(l)(C%Ul)‘ .
To prove (2.5) it is enough to show that
C1|7TK(1)(<%01)*WK(1)(<%01)| < Mg|G — G- (2.6)

As 0 < (4 < (o, we have

_ _ 1
TK(1) (%101—{2041 7TK(1)(%201)) = TK(1) (éaﬁ-@(fl (601—771((1)(%201))) = Tr)(50o1) -
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FIGURE 1.5. Graph of p(t) in the plastic regime t >ty for ap = 2 and 8
different values of t5 and zg.

nxn

sym » We obtain

Since g (1) has Lipschitz constant 1 on M

1 _ _
|7TK(1)(é0'1) - 7TK(1)(*01)’ < CQCICI ‘WK(l)(C%Ul)‘ < MKLCICI ;

G
which gives (2.6). O

Let us fix £ € W, ([0, +00); MZX%). For every € > 0 system (1.2) is equivalent to

{Eée (t) = 5é(t) — Ce. (t) + ﬂ'K(zE(t))((Cea (t)) ,
eze(t) = tr(Tr (o (1)) (Cec (1)) tr(Cec () — Tre (2. (1)) (Cee (1)) -

Lemma 2.2. For every € > 0 and for every initial condition e-(0) = ep and z:(0) = zp > 0
system (2.7) has a unique solution defined for every t € [0, +00).

(2.7)

Proof. As the right-hand sides are locally Lipschitz with respect to e and z by Lemma 2.1, it
is enough to prove that for every T > 0 there is a constant Mr > 0 such that |ec(t)| < My
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FIGURE 1.6. Graph of 6(t) in the plastic regime t > ¢y for ap = 2 and 8
different values of #5 and zg.

and |z.(t)] < Mg for every t € [0,T]. Since 0 € K(¢) for every ¢ € R by (2.2), we
have |Ceg(t) — (2. (1)) (Cec(t))] < [Cec(t)] < Beles(t)] and [Tk (.. (1)) (Cee(t))] < [Cee(t)] <
Bcles(t)| for every ¢ € [0,+00). Therefore, given T > 0, from the first equation in (2.7) w
have

@

t
e.(t §AT—i-ﬁ¥C e.(s)|ds for every t € [0,T].
€ Jo

with Ap :=|eo| + fOT |£(s)| ds. Tt follows from the Gronwall inequality that
le<(t)] < Arexp(T Bc/e) for every t € [0,T].

Then the second equation in (2.7) allows easily to obtain a constant Mz > 0 such that
|2 (t)] < My for every t € [0,T]. O

Lemma 2.3. For every € >0, eg € MIZX", and zp > 0 the solution (ec,z:) of (2.7) with

sym ’

initial condition e.(0) = eg and z.(0) = zg satisfies z.(t) > 0 for every t € [0,+00).

Proof. Suppose by contradiction that there exists tp € (0,+00) such that z.(tg) = 0. Let
er be the solution of the Cauchy problem

{eé: (t) = €&(t) — CeX(t),
ex(to) = ec(to)

and let z¥ := 0. Then (ef,z!) would be a solution to (2.7) with eX(ty) = e.(to) and

(2.8)

£r”~e
22 (to) = ze(to). Since the right-hand side of (2.7) is locally Lipschitz with respect to e and
z by Lemma 2.1, by uniqueness we would have z.(t) = 2Z(t) = 0 for every t € [0,400),
which contradicts the assumption z.(0) = zp > 0. O
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For the rest of the paper we assume that C§ = ¢ for every £ € M7 and that K Q) is
the closed ball centered at —%CI with radius ﬁ( , namely,

K(¢)={o e ML o+ L¢I| <

sym

L, (2.9)

where [ is the identity matrix in M. In this case o.(t) = e-(t) and equation (2.7)
simplifies to
{aés(t) = e(t) — ec(t) + Tr(eo ey (ec(t)) (210
eze(t) = tr(Tr (o ) (€ (1)) trlec(t) — iz 1)) (e<(1))) -
Moreover the projection onto K(¢) is explicitly given by
+ Ler
0 o)=—-L¢I 7

Let us fix eg € M ;7 with tr(eg) = 0 with |eg| = 1. In the rest of the paper we consider
&(t) of the form

§(t) = —za(t)] + =b(t)eo, (2.11)
with a and b in Wllocl([O 00)). In this case o-(t) and e.(t) take the form
oo(t) = ec(t) = —La () + fyg( )eo s (2.12)

where the absolute values of the scalars ﬁxg( ) and ﬁyg( ) represent the norms of the

spherical and deviatoric components of the stress, respectively. Moreover (2.10) is equivalent
to the system

ze(t) (z=(t) — 2:(1))
ue(t) ’

et (t) = ea(t) — (zo(t) — z(t)) +
ci(t) = eb(t) — y(t) + Z?(yﬂ(t) 7

eault) = (so(t) + L2 (1) — g - 2O LD =)

(2.13)

where

ue (t) = max{z:(t), /(2= (t) — 2(1))? + y=(8)2} -
The corresponding viscosity solution (e(t),p(t),o(t), z(t)) will be given by
oft) = et) = —La()T + Ly(t)en and p(t) = L(alt) — () + L (6(2) — y(B))eo,
where z(t), y(t), and z(t) are left continuous with respect to ¢ and x.(t) — z(t), y(t) —
y(t), and z.(t) — z(t) for a.e. t € [0,+00).
Passing to polar coordinates through (1.6),
€ pe(t) = € (a(t) cos B (t) 4 b(t) sin O.(t)) —
— (pe(t) — z(t))" (z (t) (1 + cos0(t)) cos® 0-(t) + 1),
€ po(1) B.(t) = —= (a(t) sin 6.(t) — b(t) cos (1)) + (2.14)
+ (pe(t) — z(1)) T2 (1) (1 + cos O.(t)) cos O (t) sin 0. (t) ,
€ 20(8) = (po(t) — 22(£)) 22(t) (1 + cos (1)) cos (1)

where (-)T denotes the positive part. The polar coordinates of a viscosity solution are
denoted by (p(t),0(t),2(t)). They are continuous from the left and (p.(t),0:(t), z:(t)) —
(p(t),0(t), 2(t)) for a.e. t € [0,+00).

Let us fix ag and zg, with 0 < ag < 22y and 2y > 0. In the rest of the paper we study
the special (strain controlled) loading path

a(t) := ag and b(t) :=t, (2.15)

system (2.13) becomes
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and the initial conditions

z:(0) = agp , y:(0) =0, ze(0) = 2p. (2.16)
2.1. The elastic regime. The solution of (2.13) with loading path (2.15) and initial condi-
tions (2.16) remains in the elastic regime in an interval [0, to], where to := /23 — (ap — 20)?

is the only positive number such that

A/ (ao — Zo) + tO =20. (217)

z:(t) = aop, ye(t) = t, ze(t) = 2o (2.18)
for every t € [0,tp]. Indeed in this interval the functions defined by (2.18) satisfy the
inequality +/(x. — 2:)? + y2 < 2, so that the system reduces to

More precisely we have

et (t) = ea(t),
ey (t) = eb(t), (2.19)
€Ze(t) =0,
which is trivially satisfied by (2.15) and (2.18). Therefore the viscosity solution satisfies
z(t)=ao, ylt)=t, z(t)==z (2.20)
for every ¢ € [0, to].

2.2. The inelastic regime. After time t¢; the solution exhibits a plastic behaviour. To
study the solution for ¢ >ty we use (2.14), which in case (2.15) becomes

€ pe(t) = esinb-(t) — (p=(t) — 2z (t)) " (2:(t) (1 + cos - (t)) cos® 0-(t) + 1) ,
£ pe(t) 0-(t) = ecos0(t) + (p=(t) — ze(t)) T2 (t) (1 4 cos O(t)) cos O (t) sin O (t) ,
e2:(t) = (pe(t) — 2o (t)) T 2e(t) (1 + cos O(t)) cos O (t) .
(2.21)
By (2.17), there exists a unique 6y € (0,7) such that

zocosbBy = ag — zg , zpsinfy =ty . (2.22)
By elementary geometric considerations we have
0<ay<z = F<bO<m and z0<ap<2z = 0<6<7F. (223)
By (2.17), (2.18), and (2.22) we have
pe(to) = 20, 0=(to) = o, 2ze(to) = 20- (2.24)

Subtracting the third equation from the first one in (2.21) we obtain the following differential
equation for the difference p.(t) — z:(t):
e (pe(t) — 2:(t)) = esin 0 (t) — (pe(t) — 2e(t) Twe (1), (2.25)
where
we(t) := 2. (t) (1 + cos O (t))* cos - (t) + 1. (2.26)
From (2.21) for every ¢ € [tg, +00) we obtain
€ pe(t) we(t) = —€ 2 () (1 4 cos 0:(t)) (1 4+ 3cos O (t)) cos O (t) sin O (t) — (2.27)
— (pe(t) — 2(t)) 2o () (1 + cos O(t))3 cos O (t) v (t), '

where
v (t) := 2o (t)(1 + cos 0= (t) — 3cos® O (t)) — (p(t) — z-(t)) cos O (1) .
If agp = 2, then 6y = Z and, in this case,

pe(t) := 20 +£(1 — exp(—=22)) 0-(t) := 7, ze(t) == 2o (2.28)
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is the explicit solution of (2.21) with initial conditions (2.24). Then the viscosity solution
obtained by taking the limit as ¢ — 0 satisfies

p(t) = 2o, 0(t) =%, 2(t) = 2o for every t € [tg, +00) . (2.29)
Lemma 2.4. If 0y # T, then 0.(t) # 5 for every t € [tg, +00).

s

Proof. Suppose 6y # % and suppose that there exists 7 € [tg, +00) such that 0.(7) = 7.
Let pI be the solution of the Cauchy problem

{epm =~ (PI(t) = z(7)",
pZ(7) = pe(7) .
Then the triple

Lty I =F.  2(1)=z(r)
would be a solution of (2.21) which satisfies the Cauchy condition

pi(1) = pe(r),  O01(7):=0:(7),  2I(7):=z(7).
By uniqueness we must have 0.(t) = 07 (t) = 5 for every t, which contradicts the fact that
0-(to) = 6o # 5. This concludes the proof of (2.4). O

Lemma 2.5. If 0 <0y < T, then 0 < 0.(t) < 5 for every t € (to,+00). If 5 <6y <,
then 5 < 0.(t) <m for every t € (to,+00).

Proof. Assume 0 < 6y < 5. From the second equation in (5.12) it follows that f-(to) > 0.
Therefore the inequalities 0 < 6.(t) < § are satisfied in a right neighbourhood of #y. If they
do not hold for every ¢ € [tg, +00), by Lemma 2.4 we can consider the first 7 € (¢g, +00)
such that 0.(7) = 0. Then 6.(7) < 0. As 0 < 0.(t) < 5 for every t € [to,7) by Lemma 2.4,
from the second equation in (2.21) we obtain p.(t)0-(t) > cos.(t) > 0 for every t € [to,T]
and p.(7)0.(1) = 1. As p.(ty) = 2z > 0, by continuity we have 0.(t) > 0 for every
t € [tg,7]. This contradicts the inequality 96(7) < 0, and concludes the proof of the first
implication. The second one is proved in the same way. O

Lemma 2.6. We have pc(t) > z:(t) for every t € (tg, +00).

Proof. We deduce from (2.25) that, if p.(t) = z:(¢) for some ¢ € [to, +0), then p.(t) —
Z:(t) = sinf.(t) > 0, where the inequality follows from (2.28) and Lemma 2.5. Since

pe(to) = ze(to), we conclude that pc(t) > 2-(t) for every t € (tg, +00). O
Lemma 2.7. For every t € (tg,+00) the following properties hold:

pe(t) >0, (2.30)

0<f<Z = 0.()>0 and 0<f<0-(t) <%, (2.31)

T<f<m = 0.()<0 and I <0.(t)<by<m, (2.32)

0<by<f = 2(t)>0 and =2(t)> 2, (2.33)

F<b<m = Z(1)<0 and 0<z(t)<z. (2.34)

Proof. By Lemma 2.5 from the second equation in (2.21) and from (2.24) we obtain (2.31),
(2.32), and (2.30). Implications (2.33) and (2.34) can be obtained from Lemmas 2.3, 2.5,
and 2.6, using the third equation in (2.21). O

Lemma 2.8. Assume § < 0y < 7. Then then p.(t) < p:(s) +¢& whenever to < s <t.
Proof. Let us fix s > tg and n > 0. If the inequality

pe(t) < pe(s) +(1+mn)e (2.35)
is not satisfied for every t > s, let 7 be the first time after s with p.(7) = p:(s) + (1 +n)e.
Then p.(7) > 0. From the first equation in (2.21) we obtain € p.(7) < € — (p=(7) — 2¢(7)).
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By (2.34) and by the definition of 7 we have ¢ p.(1) < e— (p-(s)+ (1+n) e —2:(s)), so that
Lemma 2.6 gives € p.(7) < —ne, which contradicts the inequality p.(7) > 0. This proves
that (2.35) holds for every ¢ > s. The conclusion can be obtained by taking the limit as
n—0. O

3. THE SLOW DYNAMICS

In this section we study in detail the behaviour of the solutions to the system of the slow
dynamics.
3.1. The trajectory of the slow dynamics. In this subsection we study the equation

fogn 7(0) (1 + cosf) sinf
r(9) =r(6) r(0) (1+cos0)2 41"~

that describes the trajectories followed along the slow dynamics.

(3.1)

Lemma 3.1. Every solution of (3.1) with r(0*) > 0 for some 6* € [0, 7] is defined for every
6 € [0, 7] and satisfies r(8) > 0 for every 6 € [0,7] and ' (0) > 0 for every 6 € (0, ).

Proof. Since the null function is a solution of the equation, if () is a solution of (3.1) and
r(6*) > 0 for some 6*, then r(0) > 0 for every 6 by uniqueness. Therefore, the right-hand
side of (3.1) is positive for 6 € (0,7), which implies that r'(6) > 0 on this interval.

To prove the global existence in the whole interval [0, 7], it is not restrictive to assume
6* € (0,7). The positivity and monotonicity of 7(#) imply that [0,6*] is contained in the
maximal domain of existence of r(6). To study the problem for § > 6* we consider the
inequalities

p (1 4+ cosf) sinf p siné
p,o(lJrcosﬁ)2 +1 < 1+ cosf
for every p > 0 and every 6 € (0,7). Using an elementary comparison argument we deduce
that the maximal domain of existence of r(6) contains [6*,7) and

1+ cos@*
1+ cosf

0<

r(0) < r(6%) for every 6 <60 < .
By (3.1) this inequality yields
r'(0) < r(0) r(0*)(1+ cos@*) for every 6 € [0*, ),
and this implies that = belongs to the maximal domain of existence of 7(8). O

Let \. be the unique negative solution of the equation 1+ X —3X%2 =0, i.e.,

1
Ao i= —E(m — 1)~ —0.43425... , (3.2)
and let
0. := arccos A\, ~ 2.0200... . (3.3)
We consider the function z: [, 7] — [2L, +00] defined by
1
) =—————F—— forfe(s,n), (%) = zg = , 4
2(0) (1+ cos )2 cosb or 0 € (3,m) 26(3) 1= 2o(m) = +oo (3-4)
and we define
zei=25(0c) = Sk + BV13 ~7.1947. .. . (3.5)

We shall see that the graph of z5 plays the role of separation line between initial data leading
to the slow dynamics and those leading to the fast dynamics.
Finally, let

rc(0) be the solution of (3.1) with Cauchy condition r.(6.) = z. . (3.6)
Lemma 3.2. We have r.(0.) = zs(0.) and r.(0) < z5(0) for every 6 € [5,0.) U (6., 7].
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Proof. By direct computation for every 6 € (5, 7) we obtain

(14 3cosf)sind
(14 cos)3cos26’

20(0) = —

S

; (9)23(0) (1+cosf) sinf sin @
N 2(0) (14 cos0)2+1 (1 +cosf)3cosf(1 —cosb)’
so that in the interval (5, 7) the inequality
2(0) > 25(9)25(0) (1+ cos) sinf _ sin @ 3.7)

25(0) (1 4+ cos0)?2 +1 (14 cos#)3cosf(1 — cosh)

is equivalent to
1+cosf —3cos’0>0.

Therefore (3.7) is satisfied 6§ < 6., and the opposite inequality holds for 8 > 6.. Since
re(0.) = z5(0.) by (3.6), the inequality r.(6) < zs(0) for 6 # 6. follows from a comparison
argument. O

Lemma 3.3. Assume that
0. <bp<m and r.(0) <z < zs(6p). (3.8)

Let 19(0) be the solution of (3.1) with Cauchy condition ro(6y) = zo. Then there exists
01 € [0, 00) such that

ro(01) = z5(01) and ro(0) < z5(0) for 6 € (61,60]. (3.9)
If z0 > r.(00), then 61 > 0.; if z0 =1.(6p), then 61 =0..
Proof. Since 19(0o) = zo > rc(fo), by comparison we have r¢(6) > r.(0) for every 6 € (0, ).
In particular ro(0.) > r.(0.) = z5(6.) and rq(fg) = z0 < 25(fp). Then (3.9) is satisfied by
the greatest point 6 of [0, 00) such that ro(01) = z5(01). If zg > r.(0y), then r4(8) > r.(0)

by comparison, and 6; > 0. by Lemma 3.2. If zg = r.(6p), then r¢(0) = r.(0) by uniqueness,
and 6; = 6. by Lemma 3.2. O

Lemma 3.4. Assume one of the following conditions:

5 <02<0. and 2z < z(02), (3.10)

0. <Oy <m and z9<r.0:). (3.11)
Let r5(0) be the solution of (3.1) with Cauchy condition ra(02) = zo. Then

ra(0) < zs(0) for 0€(F,02). (3.12)

Proof. Assume (3.10). Then (3.7) holds for every 6 € (F,62) and ro(62) = 22 < 24(62), so
that (3.12) follows from a comparison argument.

Assume (3.11). Since 72(02) = 22 < r.(62), by uniqueness we have r(6) < r.(0) for every
¢ € R. In particular we have () < r.(6) < z5(0) for every 0 € (F,0-). O

3.2. The system of the slow dynamics. In this subsection we study the system
) = pSl(tl) (14 cos 0°L(t)) cos °!(t) sin 6!(t) 7
P (t) (1 + cos 05 (t))2 cos 5L (t) + 1
6o1(t) = psll (t) (1 4 cos 6°L(t))? cos 5L (t) + cos 6 (t) ’
pt(t) (poH(t) (1 + cos 05L(t))? cos 6 (t) + 1)

that will be satisfied during the slow dynamics. Let 6. and z. be the constants defined in
(3.3) and (3.6), and let z5(6) and r.(f) be the functions defined in (3.4) and (3.6).

(3.13)
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Lemma 3.5. Assume 0 < 0y < % and let (p§,05") be the solution of (3.13) with Cauchy
conditions

pgl (to) =20 and GSI (to) = 90 . (314)
Then (pgl, 05") is defined on [to, +00) and
plt) >0 and O5(t) >0 for te (ty,+00), (3.15)
. sl . sl _ T
tll+moo po (t) < +o00  and tl}g-noo Oy (t) =73 . (3.16)

Proof. Let 19(6) be the solution of (3.1) with Cauchy condition r¢(6y) = zg, which is defined
for every 6 € [0,7) by Lemma 3.1. Let us consider the solution 6,(¢) of the autonomous
equation

70(0,(t)) (1 + cos 6, (t))? cos 0, (t) + cos 6, (t)
r0(6,(1)) (7'0(9b<t)) (1+ cos6,(t))?cosb,(t) + 1)
with Cauchy condition 6,(ty) = 6y. We observe that the right-hand side of (3.17) is positive

on [0, 5) and vanishes for § = 7. Then the theory of autonomous equations guarantees

Z.
that 6,(t) is defined for every t € [tg, +00), 6,(t) > 0 for every t € [to, +00), and 6,(t) — 3
as t — +o00.

Let py(t) := ro(6,(t)) for every t € [to,+00). Then (p,(t),0,(t)) is a solution of (3.13)
defined on [tg,+00). Since it satisfies the Cauchy conditions (3.14), by uniqueness we have
(pt(1), 051 (t)) = (py(t),0,(t)) for every t € [to,+00). This implies that §g'(t) > 0 for
every t € [to,+00), and that 65'(t) — % and p§(t) — ro(3) < 400 as t — +o0. Since
() > 0 for every 6 € (0,7) by Lemma 3.1, we obtain pg'(t) = r4(6,(t)) 6,(t) > 0 for every
te (to, +OO) . [l

0, (t) =

(3.17)

Lemma 3.6. Assume (3.8) and let (p§l,05!) be the solution of (3.13) with Cauchy conditions
(3.14). Then there exist t; € (to,+00), 21 € (0,2), and 0; € [0.,00), such that (p§,05")
is defined on [tg,t1) and

lim pgl(t) = 21, lim 65! (t) = 6, z1 = z5(01), (3.18)
t—t1 t—t1
lim pgl(t) = —o0, lim 65'(t) = —o0, (3.19)
t—t, t—ty
pilt) <0 and 63L(t) <0 for t€ [to,t1), (3.20)
pil(t) < z5(B1(t))  for every t € [to,t1). (3.21)

If z9 > r.(00), then 01 > 0.; if zo =1.(00), then 61 =0, and z, = z..

Proof. Let 19(0) and 67 be as in Lemma 3.3, and let 21 := 24(61). Let us consider the
solution 6,(t) of the autonomous equation (3.17) with Cauchy condition 6,(tg) = 6y. By
(3.9) the right-hand side of (3.17) is negative on (61, 6p) and tends to —oo for § — 6;. Then
the theory of autonomous equations guarantees that there exists t; > ¢y such that 6,(t) is
defined for every t € [to,t1), 6,(t) < 0 for every t € [to,t1), and 6,(t) — 6 as t — t;.

Let py(t) := ro(6,(t)) for every t € [to,t1). Then (p,(t),6,(t)) is a solution of (3.13)
defined on [tg,#1). Since it satisfies the Cauchy conditions (3.14), by uniqueness we have
(pel(t), 051 (1)) = (p»(t),0,(t)) for every t € [to,t1). This implies that 65'(t) > 0 for every
t € [to,t1), and that 651(t) — 0, and pgl(t) — 70(61) = 21 as t — t;, where the last equality
follows from (3.9) and from the definition of z;. Since r{(f) > 0 for every 6 € (0,7) by
Lemma 3.1, we obtain pg(t) = 75(6,(t)) 6,(t) < 0 for every t € (to,t1). Inequality (3.21)
follows from (3.9).

Finally, Lemma 3.3 guarantees that, if 2o > r.(6p), then 6; > 6., and if 2o = r.(6p),
then 67 = 0., and hence hence z; = z,(6.) = z.. O
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Lemma 3.7. Assume (3.10) or (3.11), let t; > to, and let t¥ — t;. Then there exists a
unique solution (p3!,05)) of (3.13) defined on (t1,+o00) such that

psl(th) — 2o and 05 (th) — 6. (3.22)
Moreover
tlg?l psi(t) =z and tlirg 03l (t) = 0y, (3.23)
p3lt) <0 and 03'(t) <0 for te (t;,+00), (3.24)
tligrnoo psl(t) >0 and tligrnoo 03l (t) = 5 (3.25)
psl(t) < zs(031(t))  for every t € (t1,+00). (3.26)

Proof. Let r3(f) be as in Lemma 3.4. By (3.12) we have
r2(0) (1 4 cosf)?cosf +1 > 0 for every 0 € [7,0) . (3.27)

Let us consider the autonomous equation

T2(0()) (1 4 cos 04(t))? cos Oy (t) + cos by (t)

04(t) = : 3.28
A = 500,0) (r2800) (1 + cosB,(0)? cosbi1) + 1) )
Since the right-hand side of this equation is negative on (7,7) and vanishes at 7, the

theory of autonomous equations guarantees that there exists a unique solution 64(t) of
(3.28) defined for every t € (t1,+00) and such that 64(t) — 62 as t — t;. Moreover 6y(¢) is
defined for every t € (1, +00), 04(t) <0, 5 <04(t) <m,and 64(t) — 5 as t — +oo. Let
pi(t) :==1r2(04(t)) for every t € (t1,+00). From (3.1) and (3.28) it follows that (py(t),6(t))
is a solution of (3.13) defined on (ti,400) and satisfies (3.23). Moreover p;(t),0 for every
t € (t1,+00) and py(t) = ro(0y(t)) — r2(5) > 0 as t — +oo. Since § < Oy(t) < 2 and
ps(t) == ra(0;(t)), by (3.27) we have py(t) (1 + cos 4911(75))2 cosy(t) +1 > 0 for every ¢t >y,
which proves (3.26).

To prove the uniqueness, let (p*!(t),0°(t)) be a solution of (3.13) satisfying (3.22). By
uniqueness we have 6°'(t) # Z for every t. As p®(t) (1 + cos6°!(t))*>cos6°'(t) +1 > 0
and cos@%!(t) < 0 for t near t;, we deduce from the second equation in (3.13) that % <
05!(t) < By and 6°'(t) < 0 for every t € (t,+00). It follows that there exists r(6) such that
ps(t) = 7(6°L(t)) for every t € (t1,+00) and that r(0) satisfies (3.1). Since r(0%'(t¥)) — 2o
by (3.22), we conclude that () = ro(f) in a left neighbourhood of #y. This implies
that 6°(t) satisfies (3.28). By (3.22) 6! and 6y satisfy the same Cauchy condition at ¢,
therefore %' = ¢y in a right neighbourhood of t;. Since p*!(t) = 7(0°(t)), r(0) = r2(0),
and py(t) := r2(0y(t)), we conclude that p*!(t) = p4(t) in a right neighbourhood of #;. The
equality is extended to all t € (¢;,+00) by uniqueness. O

4. BEHAVIOUR NEAR THE SEPARATION LINE

In this section we prove two technical lemmas which describe the behaviour of the solu-
tions of the system near the points (24(0),0,25(0)), 5 < 0 < 6., which correspond to the
separation line z = z4(0) defined by (3.4).

4.1. Behaviour near the critical point. In this subsection we study the behaviour of
the system (2.21) near the point (z., 0., z.), where 6. and z. are the constants defined in
(3.3) and (3.5). Let we(t) be the function defined in (2.26).

Lemma 4.1. Let k > 1, let t1 € [tg,+00), and let 75 be a sequence in [tg, +00). Assume
that

|76 —t1] <0, (4.1)
1Pe(75) = ze| +10=(75) = Oc| + |2:(75) — 2| <0, (4.2)
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for € small enough. Then there exist three constants 1 > 0, B2 > 0, and §y € (0,1),

a sequence g5 in (0,+00), defined for 6 € (0,8), and a double sequence 10 in [tg, +00),

defined for § € (0,00) and € € (0,e5), such that
th—6<7m <70 <t + 56,
we(r?) >0,
0-(70) < 6. — k6,
sup  (|pe(t) = ze| + 10-(t) = O] + |22 (t) — 2]) < B2V3,

Ts<t<t$
for every § € (0,00) and every e € (0,¢&5).
Proof. We begin by observing that 1+ cosf, —3cos?6, =0 and 1+ 3cosf. < 0. Let us fix
four constants ag, by, cg, dg such that
0<agp<(l4+cosf.)(1+3cosb,.)cosb.sinf. <1,
0<byp<—(14cosb.)cosb.sinf,. <1,
0<co<(l+cosh.)3cos?f. <1,
0 <dy < —2c(1+cosf.)>cos .
By continuity there exists 1 > 0 such that
n<30c—%)<3<3z,
—p < 22(1 4 cos6)? cosf (1 + cos — 3cos?0) < p,
agp < z(1+cosB)(1+ 3cosf)cosfsinf < p,
bopp < —z(1+ cosB)cosfsind < p,
cop < z(1+ cos)3cos? 6 < p.
dop < —2%(1 + cos )3 cos b,

for |0 —0.| <mn, |p— 2z <n,and |z —z.| <.
Since the result has to be proved only for sufficiently small §, we may also assume that

5<%, o<n, 26 < K. (4.8)
We define
t0 == inf{t € (75, +00) : 0-(t) < 0. — K 5}, (4.9)
M = 1inf{t € (15, 4+00) : |pe(t) — ze| + |0 (t) — Oc| + |2:(t) — 2| > 0}, (4.10)
s9 := min{t, o} (4.11)

From (4.7) we obtain that

—pe(t) < 2e(t)?(1+cos 0 (t))3cos O () (1+cos O (t) —3 cos? 0-(t)) < pe(t), (4.12)
ag pe(t) < z:(t) (1 + cos 0:(¢) (1 + 3cosb.(t)) cosb:(t) sinbe(t) < p:(t), (4.13)
bo pe(t) < —2e(t) (1 + cosbe(t)) cos O (t) sin b () < pe(t), (4.14)
co pe(t) < ze(t) (1 + cos b (t))3 cos® 0, (t) < pe(t), ( )
do pe(t) < —2:(t)%(1 + cos 0 (t))3 cos O (t) (4.16)

for every t € [r5,a2"]. Therefore (2.27) and (4.7) give
e (t) < —eag + (pe(t)—2:(t)) + (p(t) —2:(t))? < —eao + 2(pe(t) —2(1)) (4.17)
cie(t) > —¢ — (pelt)— (1)) + colpe () —2o(1)” > —¢ — (pe()—2(0) . (418)

for every t € [15,a%7].
Using the second equation in (2.21) we deduce from (4.14) that

eég(t) < —bg (pe(t) — z:(t)) for every t € [75, ag’"].
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From (4.17) and (4.18) we obtain

-1+ %95@) < (t) < —ag — %és(t) for every t € [r5,a%7].

e

Integrating we get

wot) = we(rs) = —(t - Ta>)+ 1 (0e(t) = 0:(75) (4.19)
b

g 96
we(t) — we(15) < —ap(t —75) — %(95(t> —0:(75)) ,

for every t € [r5,ad"].

Since 2. (1 + cosf,.)?cosf. +1 =0, an elementary estimate of the first derivatives leads
to the inequality |z (1+cos@)?cosd+1| < |z —zc|+8(0 — 0| for |z —z| < &, so that (4.2)
and (4.8) give

lwe(75)] < 84 (4.20)
for € small enough. By (2.32), (4.2), and (4.9) we have
0. — k8 <0(t) <O(15)<0.+5<6b.4+ Ko (4.21)
for every t € [75,t2], so that (4.19) gives
we(t) > 86 — (t —75) — 354, (4.22)
we(t) < 85—a0(t—75)+%—:5, (4.23)
for every t € [r5,527].
Let
Tsi=Ts+ K10, where K1 i= a% + atgo . (4.24)
Let us show, that
s < 75 4 26. (4.25)

Suppose, by contradiction, that 75 + 2§ < s2”. Then by (4.23) we have w.(t) < —¢ for
every t € [75,557]. Hence, (2.25) and (2.31) imply

e(pe(t) — 2:(t)) > esinby + 6(p.(t) — z.(t)) for every t € [7s,s27].
By comparison with the solution of the equation we obtain

pe(t) — 2:(t) > Ssinby(exp(S(t — 75)) — 1) for every t € [f5,s27]. (4.26)
In particular, we have

pe(t) — ze(t) > & sin Ho(exp(§) —1) for every t € [75 + 4,527,
so that (4.18) gives
We(t) > —1+%sin Qo(exp(g)—l) [—1+cos sin@o(exp(g)—l)] for every t € [75 + 8,5%7].
For ¢ small enough we have —1 + co5 sin HO(exp(g) — 1) > 1, hence
we(t) > —1 +sin Go(exp(g) —1) for every t € [f5 +4,827].

Integrating, we obtain

we(t) > we (75 +8) — (t — 70 = 8) + sin b (exp(E) — 1) (t — 75 — 8) (4.27)

for every t € [5+0, s27]. By using (4.22) we get w(75+6) > —ko §, with Ky = 9+/€1+%—'§,
so that (4.27) gives

we(t) > —ka § + [— 1+ Sin90(exp(§) _ 1)](t — 75— 6)
for every t € [#5 + §,55"]. Using (4.23) for t = 75 + 25, we obtain

sinﬂo(exp(g) —1) <94k + i—:,
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which leads to a contradiction for & small enough. This concludes the proof of (4.25), which,
together with (4.24), gives

s¥ < 15+ (k1 +2)0. (4.28)
From (4.21) we have
0-(t) — .| < wd for every t € [15,527]. (4.29)
From (4.22), (4.23), (4.28) if follows that
lw(t)| < k38 for every t € [r5,557], (4.30)

where k3 := k1 +3 + ‘i—:. Since the function
w—1
(14 cos#)?cosd

is Lipschitz continuous in Rx[f. — 1, 0. + n] and takes the value z. at (0,6.) by the very
definition of z. (see (3.6)), there exists a constant L > 1 such that

(w,0) —

|2 () — ze| < L|we(t)| + 10:(t) — 6.|) for every t € [r5,a2"]. (4.31)
By (4.29), (4.30), and (4.31) we have
2o (t) — 2| < kg8 for every t € [r5,557]. (4.32)

where ky := L (k3 + k).
By Lemmas 2.6 and 2.8 we have

2e(t) < pe(t) < pe(7s5) + & for every t € [15,+00),
so that for ¢ small enough (4.2) and (4.32) give
Ze — K0 < pe(t) < 2o+ 046 < 2.4+25 for every t € [15,557],

which implies

pe(t) — z¢| < kad  for every t € [15,527], (4.33)
Taking into account (4.10) and (4.11), if
Kad <7, (4.34)
from (4.29), (4.32), and (4.33) we obtain 57 < a2, hence
s0m =12 (4.35)
Therefore (4.28) yields
<75+ (k1 +2)0, (4.36)
which implies
0-(t2) < 6. — k9. (4.37)
By (2.32) and (2.32)
we have
5 <0(t)<0.— K0 for every t € [t2, +00) . (4.38)

Since the function 6 — 1+ cosf — 3 cos? § is concave on [5,0c], vanishes at 0., and takes

the value 1 at 7, using the inequality 0. — § < % we obtain we have

1+ cosf —3cos?f >2 (0. —0) for every 0 € [F,0.] . (4.39)
It follows from (4.38) that
14 cos0(t) — 3cos® 0. (t) > 2(0. — 0:(t)) > 2K d for every t € [t°, 400). (4.40)
Let us define
73 = inf{t € (2, +00) : w.(t) > 0}, (4.41)

0% := min{rd, a®"} . (4.42)
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From (2.27), (4.13), and (4.16) we obtain
e (t) > —e+2do k6 (p(t) — 2:(t)) for every t € [t2,527]. (4.43)

Since w.(t) < 0 for every t € [t2,79], using (2.25) and (2.32) we get
pe(t) — 2.(t) > sinfy for every t € [t°

e En]

hence
pe(t) — 2o (t) > pe(t2) — 2. (t0) +sin g (t — t0) > sinfy (t — 1) for every t € [t2,0%7],
where the last inequality follows from Lemma 2.6. Using (4.43) we obtain

e (t) > —e+2dok siny 5 (t —t°) for every t € [t

£ 5 77]
which gives
we(t) > we(td) — (¢ —2) + k5 S (¢ —2)?  for every t € [t2,007],

with k5 := dg k sinfy. Using (4.30) we obtain
we(t) > —k3d — (t —10) + k5 L (t —12)?  for every ¢ € [t2,007],

hence
we(t) > —kgd — % S+ g (t —t2)* for every t € [t2, 52", (4.44)
Since w.(t) <0 for every t € [t9,027], this implies
(0-2777 - tg) = % e+ H§452 52,
so that
o0 -2 <6 (4.45)

for £ small enough.
Using the second equation in (2.21) we deduce from (4.7) and (4.14) that

£0.(t) > —ZQ—C e — (pe(t) — 2z:(t)) for every t € [15,a2"].
From (2.27), (4.13), (4.16), and (4.40) we obtain
g (t) > —e +2do (0. — 0(t)) (pe(t) — 2(t)) for every t € [t2, ad"].
As |0. — 0-(t)| < n for every t € [15,a2"], from the last two inequalities we obtain
e (t) > =1 —=2do (B — 0-(t)) 6=(t) — 22 for every ¢ € [ t2,ad"].

Let @ (t) := (0. — 0-(t))?. The previous inequahty gives
We(t) > —a1 + do ¢ (t) — 2d° n for every t € [t2,ad"],
so that

Welt) = we(t%) > —ar(t — 12) + do (pe(t) — pe(t2)) — 22 5 (£ — £2) for every ¢ € [ £2,a7].

Since w.(t) < 0 for every t € [tJ,77], the previous inequality, together with (4.30), (4.35),
(4.45), and (4.37) gives

@ (t) < kgd for every t € [t2,0%7],
with &2 1= k% + dl (ks + a1 + 2d0 7n). It follows that

|6 (t) — 6, | < ke V6 forevery t € [t,0%7]. (4.46)
Since w.(t) < 0 for every t € [t2,79], for ¢ small enough we obtain from (4.44)

lw-(t)| < (k3 +1)§ for every t € [t2,527]. (4.47)
These inequalities, together with (4.8) and (4.31), imply that

2. (t) — zo| < k7VE  for every t € [, 0%7]. (4.48)

where k7 := L (k3 + kg +1).
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By Lemmas 2.6 and 2.8 we have

2:(t) < po(t) < pe(10) + & for every t € [0, +00),

so that for ¢ small enough (4.54) and (4.48) give
Ze — K7V < pe(t) <ze+0+e<z2.+20 foreveryte [t‘S 05’”] ,

egr-e
which implies
|pe(t) — ze| < K7V for every t € [0, 0%7]. (4.49)
There exists dg > 0 such that for every 6 € (0,dp) inequalities (4.8) and (4.34) are
satisfied and
Ky \/5 <n.
It follows from (4.46), (4.48), and (4.49) that 02" < a" for ¢ small enough, hence

o =719, (4.50)

which implies w, (%) > 0. This proves (4.4) for ¢ small enough.

Inequality (4.5) follows from (4.38). If 6 € (0,d09) we have (4.35) and (4.50) for ¢ small
enough, so that (4.3) follows from (4.28) and (4.45), with (1 := k1 + 3, while (4.6) follows
from (4.29), (4.32), (4.33), (4.46), (4.48), and (4.49), with S := 34 + 3 sir. O

4.2. Behaviour near the left branch of the separation line. The following lemma will
be used to study the behaviour of the system when § < 6y < 6. and 2o = 25(6p), where
zs(0) is the function defined in (3.4). Note that (4.53) is always satisfied when 6; < 6. and
0 is small.

Lemma 4.2. Let t; > tg, 5 <01 < 0., 21 = 25(01), k1 >0, and & € (0,1). For every

5 € (0,00) let g5 € (0,400), and for every € € (0,e5) let 70 € [tg, +00). Assume that for
every 0 € (0,0¢) and every € € (0,¢5)

70 —ta] <6, (4.51)

we(rl) >0, (4.52)

0-(r2) < 0. — k13, (4.53)

9= (12) = 21|+ 0(72) = 01| + |2(72) — 21| < V3. (4.54)

Then there exist 61 > 0, a sequence €5 € (0,+00), defined for 6 € (0,01), a double sequence
0 € [tg, +00), defined for 6 € (0,61) and € € (0,5), and two constants v1 >0 and 2 > 0,
such that

t—0< 70 <t <t +26, (4.55)

we(t2) > 6%, (4.56)

|p=(t2) = ()| < 71 g €4 (4.57)

Tgiggtg (Ipe(t) = 21| + [6=(t) — 1] + |2=(t) — 21]) < 72V6, (4.58)

for every § € (0,61) and every e € (0,&5).

Proof. Since z; = z4(01), we have 21 (1 + cosf1)?cosf; +1 = 0. An elementary estimate
of the first derivatives leads to the inequality |z (14 cosf)?cos® + 1| < |z — 21| + 8|0 — 64]
for |z — 21| < §, so that (4.54) gives

jwe(r2)| < 8v3 (4.59)
for € small enough. By (2.32), (2.32) , and (4.53) we have
5 <0(t) <O0.— k16 for every t € [0, +00). (4.60)

It follows from (4.46) that
14 cos0(t) — 3cos? 0.(t) > 2 (0. — 0:(t)) > 2K, for every t € [19, +00). (4.61)
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Let us define
do = —%21(1 + cosf;)> cos b . (4.62)
Since
21 (14 cos )3 cosy (1 +cos —3cos? 1) < 21,
—(1+ cosf)cosbysinf <1,
0 <dy < —21(1+cosb;)3cosby,

by continuity there exists 1 > 0 such that

2n<z and 2n<6, -3, (4.63)
z(1+cos)3 cosf [z (14 cos —3cos?0) — (p— z) cosf] < z1p (4.64)
—2(1 4 cos @) cosfsind < p, (4.65)
dop < —22(1+ cos ) cos @, (4.66)
for |6 — 01| <mn, |p— 21| <7, and |z — z1| < n. Moreover,
—2p < z(14cosf)(1+3cos)cosfsinf < 2p (4.67)
for every 0 < z < p and every 0 € [F,7].
We set
Ai=3+4z  and  yi= g5 (4.68)
Since the result has to be proved only for sufficiently small §, we may also assume that
s<i<i, d<n<in, S<m, §<domsinb (4.69)

For every € > 0 and 6 > 0 we define

= inf{t € (77, +00) : w.(t) > 6%}, (4.70)
0 :=1inf{t € (70, +00) : w.(t) > w(78) + A2}, (4.71)
t0 = inf{t € (72,400) : pe(t) — z:(t) < V132 €}, (4.72)
B = inf{ € (74, 400) :pe(t) a1l + 1060 ] 1)~ > ), (4T
GO := min{7%, ad"} 50 := min{#, 2,70 + 6%}, 597 .= min{3%, a%"} . (4.74)

Since z:(t) < pe(t) for every t € [tg, +o0) by Lemma 2.6, from (4.67) we obtain that
—2p:(t) < ze(t) (1 + cosb:(t) (1 + 3cosb(t)) cosb.(t) sinb(t) < 2p.(t) (4.75)

for every ¢ € [tg,+00). By (4.65) and (4.66) we have

—2:(t) (1 4 cos 0:(t)) cos O (t) sin O (t) < pe(t), (4.76)
do p=(t) < —2:(t)*(1 + cos 0 (1)) cos 0 (1) , (4.77)

for every t € [t2,a%"]. From (2.27). (4.61), (4.75) and (4.77) we obtain
ew(t) > —2e 4+ 2dg (0. — 0:(1)) (pe(t) — 2:(t)) > —2e + 2dpk10 (pe(t) — 2:(1)) (4.78)

for every t € [12,ad"].
Since we(t) < 52 for every t € [72,77) by (4.70), from (2.25) and (2.32) we obtain that
£ (pe(t) — 2:(t)) > esinby — 62(p-(t) — 2.(t)) for every t € [12,70).

egr'e

By comparison we have
p=(t) — 2:(t) > e 8o [1 — exp( — g(t - Tf))] for every t € [79,7°%),
so that (4.78) gives

We(t) > —2 + 2domsinfo [1 _ exp(— g(t - rﬁ))] for every t € [r9,557). (4.79)
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By (4.69) we have —2 + w > 2. Integrating (4.79) and using the definition of 7°
and (4.52) we obtain

6% > w.(t) > 2(t — 10) — 2orrsinbo o for every t € [72,507). (4.80)
This inequality implies
GO — 70 < 167 4 domaginbo o < 252 (4.81)

for € small enough.
Using the second equation in (2.21) we deduce from (4.69) and (4.76) that

£0.(t) > —% e — (pe(t) — z(t)) for every t € [12,a%"].
As |0, —0.(t)| < % for every t € [to,+00) by (2.32) , from (4.78) we obtain
We(t) = =2 = 2do (0 — 0=(1)) (1) — 22T > =2 — 24y (61 — 0.(1)) 0-(t) — 2%™

for every t € [r%,a%"], where the last inequality follows from the inequalities .(t) < 0 and
6. > 6,. Let gas( ) := (01 — 0-(t))*. The previous inequality gives

We(t) > =2+ dope(t) — 2‘1‘;” for every t € [r2,a"],

so that
we(t) —we(r2) = =2(t = 72) + do(pe(t) — e (70)) — 2T (¢ — 72)
for every t € [r2,a%"]. By (4.71) and (4.74) we have w.(t) — w.(1?) < A6? for every
t € [r2,55] and 3" — 72 < §2. Therefore the previous inequality, together with (4.54),
gives
@ (t) < K362 for every t € [1°0,5%7],

with 3 :=1+ (>‘+2 + 2 ). It follows that
10-(t) — 01] < KkaV/3  for every t € [72,557]. (4.82)

Since the function
w—1
(1+ cosh)?cosb
is Lipschitz continuous in Rx[6; —n, 61 +7] and takes the value z; at (0,6;) by the hypothesis
z1 = z5(01), there exists a constant L > 1 such that

(w,0) —

|2e(t) — 21| < L{|we(t)| + |0(¢) — 01]) for every t € [72,a2"]. (4.83)
Since for £ small enough
lwe(t)| <9VE  for every t € [r9,5%7] (4.84)
by (4.59), (4.69), (4.73), and (4.74), from (4.82) we obtain
|2 (t) — 21| < L (94 k2)V3  for every t € [72,527]. (4.85)

By Lemmas 2.6 and 2.8 we have
2:(t) < pe(t) < pe(10) + ¢ for every t € [0, +00),
so that for ¢ small enough (4.54) and (4.85) give
—L(94 r)VE < p(t)<z1+0+e< 2 +25 foreveryte[r2 5,
which implies
|pe(t) — z1| < L(9+ ko)V3 for every t € [10,557]. (4.86)
Let v9 := ko + 18 L + 2 L ky. We choose 61 € (0,dp) such that for every § € (0,d1)

inequalities (4.69) are satisfied and 72V < 7. Taking into account (4.73), from (4.83),
(4.85), and (4.86) for every & € (0,8;) we obtain §%" < a2 for ¢ small enough, hence

50 =355 < adn. (4.87)
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By (4.74) and (4.81) we have 62" < 3% < 2", hence 527 = 7 and
< <4 252 (4.88)
By the definition of 7° this implies that
we(7°) > 6% and  w.(7%) > w. (7). (4.89)
By (4.69), (4.73), and (4.78) we have . (t) > 2 for every t € [7? so that by (4.89)

67 E]

N62 > we(t) — we(10) > we(t) — we (70) > g(t—Tg) for every t € [72,59]. (4.90)
By (4.69) this implies 8 — 70 < %52, which, together with (4.88), gives
8 <1482, (4.91)
Let us prove that
0 < & (4.92)

for ¢ small enough. We argue by contradiction. If t5 > 32, then (4.91) and the definition
of 3 imply that 3 = and 0 < 7° + §2. Recalling (4.53) we obtain
we (1) = we(72) + X062 > N 62,
Let o be the last time in [72,#%] such that w.(0?) = w? := w.(7?) + 6% and let 6% be
the first time in [02,¢]] such that ws(&‘;) @0 1= we(T0) + 262, Let us prove that for €
small enough there exists 0 € [09,5°] such that

ps(t(s) - Zs(té) <Ve. (4.93)
We argue by contradiction. If p.(t) — z.(t) > /g for every t € [02,52], for & small enough
from (4.78) we obtain

we(t) > -2+ 2d0/-115 - > d0ﬁ15 for every t € [0°,5°], (4.94)

so that w. is increasing on [0, 52]. Therefore there exists a function w.: WS, %] — [07,67]
such that

pe(t) — 2ze(t) = uc(we(t)) for every t € [09,67]. (4.95)

By (2.25) we have

e(pe(t) — 2:(t)) < e — (po(t) — 2o (t)) we(t) for every t € [00,19]. (4.96)
From (4.94) and (4.96) we obtain

U (w) < L 5\[ dom ug(w)w for every w € [w?,d)g}

By comparison with the solution of the equation we obtain

Ua(w) < (,05(0' ) - Za( 5)) exp( - Qdom \[(w w6)2) +

+d0n 5f/ exp 2don1f((‘*’ w)? — )) ds

for every w € [w?,&?%]. For w = &% we obtain from (4.58) and (4.95)

~ ~ 2
Ps(Ug) - Za(Ug) = U (@ ) < 'ygéexp( 2(1‘1—’“%) + dol»ql\@/’LEv

with p. — 0 as € — 0. Since the right-hand side of this inequality is less than \f for e
small enough, we have contradicted the assumption p.(t) —2.(t) > /¢ for every ¢ € [0?,5?].
This concludes the proof of (4. 93)

As we(t) > 82 for every t € [02,#], from (2.25) we obtain

e(pe(t) = 2:(t)) <€ = 8%(p:(t) — 22(t)) for every t € [07,2].

By comparison with the solution of the equation we get

pe(t) — 2(t) < & + (p=(i0) — 2 (i) exp(— L (¢ — #2)) for every ¢ € [2,7%].
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By (4.93) we have p.(£9) — z.(£%) < /g, so that
pe(t) — z(t) < & +Veexp(— E(t — ) for every t € [£2,#]. (4.97)

By (4.64) we have
2 (1) (14cos 0. (1)) >cos 0. (t) [ 22 (£) (1+cos O (t)—3 cos® bz (t))—(pe (t)—22 (1)) cos b= ()] < z1pe(t),
for every t € [t2,a97], so that (2.27) and (4.75) imply

e (t) < 26+ 21 (pe(t) — 2:(1)) for every t € [r2,a"].
By (4.97) this yields
ew:(t) <26+ 215 +21veexp( — g(t — 1)) for every ¢ € [£2,77].
Since w, (£2) < w.(79) 4+ 262, integrating we obtain
we (t) —we (19) —20% < (2+ ) (t — %)+ /e [1—exp(— %(tff‘g))} for every t € [£2,19].
Taking ¢ = 2 we find that
(A= 2)07 < (24 38) (1L~ 1) + HVE < (24 32) (L — ) + &2

for & small enough. Since 2% < 2z; by (4.69), the previous inequality gives (A — 3) % <

251 (12 — 12) for & small enough, hence 9 — {9 > ’;—;13 5. If we apply (4.97) with t =2 we
obtain

peli?) — 22(E2) < § + VEexp(=2F),
which gives p.(12) — z(#2) < £ for € small enough. By the definition of ¢ this implies
t9 < 12, which violates our hypothesis t> > #% and concludes the proof of (4.92).
From (4.89), (4.90) and (4.92) we obtain w.(t’) > §2, which proves (4.56). Inequalities
(4.55) follow from (4.51), (4.69), (4.91), and (4.92). Inequality (4.57) follows from the
definition of ¢5, and (4.58) follows from (4.83), (4.85), and (4.86). O

5. CONTINUOUS EVOLUTION

In this section we consider two cases where the viscosity solution (p, 6, z) is continuous.
In the first case 0 < 6y < 7 and the system exhibits a hardening behaviour by (2.33).
In the second case § < #y < m, so that we have a softening behaviour by (2.34), and we
consider an additional condition on zy which implies that the viscosity solution (p, 0, z) is
continuous. We begin by stating the result in the case of hardening, that will be proved in

the next subsection.

Theorem 5.1. Assume that 0 < 6y < Z and let (p',0§') be defined as in Lemma 3.5.
Then

p(t) = z(t) = pg(t) and  O(t) = 65 (t) for every t € [to, +00). (5.1)
Moreover
sup (lp=(t) = p(&)] +10(t) — O(8)] + [2(t) — 2(1)]) — 0 (5.2)

for every T € (tg, +00).

We now state the result in the case of softening with continuous evolution, that will be
proved in Subsection 5.3. Let 0. be the constant defined in (3.3), and let z,(6) and r.(9)
be the functions defined in (3.4) and (3.6).

Theorem 5.2. Assume one of the following conditions:

g <Op<0. and zy< 23(00), (53)
O.<bp<m and 2z <r(b). (5.4)
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Let (p3!,05") be defined as in Lemma 3.7 with t; =ty, 02 = 0y, and 22 = zo. Then
p(t) = z(t) = p3L(t) and  O(t) = 63(t) for every t € [tg, +00). (5.5)
Assume that
0. < by <m and zy=rc(0). (5.6)

Let (p&', 05%) and t, be defined as in Lemma 3.6, and let (p3!, 05) be defined as in Lemma 3.7
with 0o = 0. and z9 = z.. Then

pi(t) ift € fto,tr), 05 (t) it € [to, 1),
p(t) =2(t) =X z ift =1y, 0(t) =< 0, ift=ty, (5.7)
pst(t) ift € (t1,+00), O3L(t) ift € (t1,+0o0).
In both cases we have
sup (Ip< () = p()] + 10 (t) — O(t)| + |22 (t) — 2(t)]) — 0 (5.8)

for every T € (tg, +0).

In the proof we shall use the following general result on continuous dependence on a
parameter, whose proof can be found in [6] and [5] (see also [1]).

Theorem 5.3. Let f. and fo be Carathéodory functions defined on [a,b]xR™ with values
in R™, let t., to € [a,b], and let x., xg € R™. Assume that there exist two constants
L >0 and M > 0 such that

|f8(t7x2) - fs(t,l'l)l S L|J}2 —l'1|,
|fe(t, z)| < M,

for every € > 0, every t € [a,b], and every x, x1, xo € R™. Let y.(t) and yo(t) be the
solutions of the Cauchy problems

Ue(t) = fe(ty(t)), Yo(t) = fe(t,y(1)),
ye(tﬁ) = Te, ya(to) =20 -

If t. — tg, e — xg, and for every x € R™

t t
/ fe(s,x)ds — / f(s,x)ds uniformy for t € [a,b],
then y-(t) — yo(t) uniformly for t € [a,b].
5.1. Hardening. In this subsection we prove Theorem 5.1 about the hardening regime.
Proof. By Lemma 2.5 we deduce from (2.25) that
e(p=(t) — 2e(t)) < e — (pe(t) — z(t))"  for every ¢ € [to, +00).

As pc(to) — z:(tg) = 0, by comparison we obtain that

pe(t) — 2z (t) <e(1— e_é(t_to)) <e  forevery t € [tg, +00). (5.9)
Let us define
be(t) = 2(p=(t) = 2(1)) - (5.10)
By Lemma 2.6 and (5.9) we have
0<%(t)<1 for every ¢t € [tg, +00) . (5.11)

Passing to a subsequence, we may assume that . — ¢ weakly* in L>([to, +00)), with
0<% <1 a.e. on [ty,+00).
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From (2.21) we obtain
pe(t) = sin0.(t) — e (t) (2= (t) (1 + cos 0. (t)) cos® () + 1),
pe(t) 0-(t) = cos 0. (t) + = (t) ze(t) (1 + cos (t)) cos O () sin O (t) , (5.12)
Ze(t) = Ye(t) z:(t) (1 + cos 0(t)) cos Oc(t) .
(

By Lemma 2.6 and (2.33) we have p.(t) > z.(t) > zo for every [tg,+00). Therefore we
can apply Theorem 5.3 and we obtain that p. — p, 6. — 6, and 2. — 2z uniformly on
compact subsets of [tg, +00), where (p, 6, z) is the solution of the Cauchy problem

p(t) = sinf(t) — ¥(t) (2(t) (1 + cosO(t)) cos® O(t) + 1),

p(t) B(t) = cos O(t) + b(t) z(t) (1 + cos B(t)) cos O(t) sin O(t) , (5.13)
2(t) = (t) 2(t) (1 + cos O(t)) cos 6(t),
p(to) = 20, 6(to) = 6o , z(to) = 20
By (2.31), passing to the limit we obtain we have hence
0<by<O0(t)< 7% for every t € [tg, +00) . (5.14)

By Lemma 2.6 and (5.9) p. — z. — 0 strongly in L*°([tg, +00)), hence p(t) = z(t) for every
t € [to, +00). From the first and third equations in (5.13) we obtain

sinf(t) = ¥(t) (2(t) (1 + cos 6(t))? cos O(t) + 1) for a.e. t € [tg, +00).
By (5.14) we have sinf(t) > 0 for every ¢ € [ty, +00), hence
B sin 0(t)
vt = p(t) (1 + cosB(t))?cosb(t) + 1

It follows that (p, ) satisfies the system of the slow dynamics (3.13) in [tg, +00) with
initial conditions (3.14), therefore (p(t),0(t)) = (pg'(t), 05 (t)) for every t € [to, +00). Since
the limit does not depend on the subsequence, we obtain (5.2). (]

for a.e. t € [tg, +00). (5.15)

5.2. Convergence to the slow dynamics. In this subsection we prove a general result on
the convergence of the solutions of (2.21) to the solutions of the system of the slow dynamics.
Let z5(6) be the function defined in (3.4).

Lemma 5.4. Assume that

to <t <7< 400, T <O, <7, 0<z<z(0i). (5.16)
Let (p2!,02Y) be the solution of (3.13) with Cauchy conditions
pil(ty) = 2. and 03(t.) = 0., (5.17)
and let t& be a sequence in [ty,+00). Assume that
psl(t) < 25(03L(t))  for every t € [t., 7], (5.18)
t— ta, pe(t) — 2z, O (t%) — 0., ze(t5) — za, (5.19)
0 < pe(tr) — z(t5) < ke, (5.20)
for some k > 0 independent of €. Then
S (1)~ PO+ 100 = 020 + |0 - o) — 0. 21

Proof. For every a € R and 1 > 0 we define ¢7: R — R as the minimum distance projection
into the interval [ —n,a + 1], i.e
a—n, ff<a-—mn,
aa(B) == {8, fa-n<pf<a+tn, (5.22)
a+n, iftg>a+n.
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Since the inequality in (5.18) is strict, from (3.4) we obtain
pl(t) (14 cos 02L(t))? cos 05 (t) + 1 > 0 for every t € [t.,7].
By continuity there exists 1 > 0 such that
() (14 €08 Gy (6)) cosl  (0) + 12 1 (5.23)

for every t € [t., 7], 0 € R, p € R. Since (z., §) is a constant solution of (3.13), we have
2 < 05(t) < 2n for every t € [t.,7]. Therefore the second equation in (3.13) implies that
05'(t) < 0, hence I < 65(t) < 0, < for every ¢t € [t,,7]. We deduce that, if 7 is small
enough, we have

sin q;’il(t)(Q) > for every ¢ € [t., T]and every 0 € R. (5.24)

Since psl(t) > 0 for every t € [t., 7], we may assume that
psl(t) > 2n for every t € [t.,T]. (5.25)
Finally, we may also assume that
km <1, (5.26)

where k is the constant in (5.20).
Let us fix n satisfying (5.23)-(5.26), and let (p2(¢),07(t), z2(t)), t € [t%, 7], be the solu-
tions of the systems

ep!(t) = esin07(t) —

= (p2(t) = 22(t)
e masc{p2(8),} 62(¢) = = cos 07(2) + (5.27)

+ (p2(t) — 22(£))T 22 () (1 4 cos B2 (t)) cos 67 () sin 62 (t),
e 20(t) = (pl(t) — 22(t) " 22(t) (1 + cos B2(1)) cos 62(1),
with Cauchy conditions

pl(t2) = pe(t2),  O2(t2) = 0:(t2),  21(t) = z(t2), (5.28)

where 07(t) := qgsl(t)( 7(t)) and ZI(t) := qzil(t)(zg(t)). By subtracting the third equation
from the first one in (5.27) we get

e (pL(t) — 22(t)) = esinG2(t) -

)T (Z2(t) (14 cos 07(t)) cos® 07(t) + 1),

() — OV (4 eosBi (0 osi(t) +1) . )
Therefore we deduce from (5.23) that
S(1(E) — (D) < = —nlph() — 22@)F for every ¢ € [t,7].
As 0 < pl(t%) — 22(t%) < ke by (5.20) and (5.28), by comparison we obtain that
pl(t) — 22(t) < (ke — ﬁexp(—?(t—tj)) +5<+ for every ¢ € [tZ, 7], (5.30)

where the last inequality follows from (5.26). Let us prove that
pl(t) —22(t) >0 for every t € [t.,T]. (5.31)
If not, let 7 be the first time in (t.,7] such that p?(r) — 22(7) = 0. Clearly we have
pI(r) — 21(r) < 0. By (5.24) and (5.29) we have p7(7) — 27(7r) = sinf?(7) > 0, which
contradicts the inequality p?(7) — 22(7) < 0 and concludes the proof of (5.31).
Let us define

Y2(t) = Z(p2(t) — 22(t)) - (5.32)
By (5.30) and (5.31) we have

0<ylt) < for every t € [t.,7]. (5.33)

1
n
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Passing to a subsequence, we may assume that ¢7 — ¢" weakly* in L*([t,,7]) as € — 0,

with 0 <" < % a.e. on [ts, 7]. From (5.27) we obtain
P (t) = sin 07(t) — 7 (t) (Z2(t) (1 + cos 07(t)) cos? 07 (t) + 1),
max{p?(t),n}02(t) = cos 07 (t) + 2 (¢t) Z2(t) (1 + cos 07 (t)) cos 07 (t) sin 7 (t), (5.34)
Z0() = Y2(t) 22(t) (1 + cos 02(1)) cos G (t)

We can regard (5.34) as a sequence of systems whose right-hand sides are given by
F2(t,p.6,2) = sinqlly ) (6) = ¥2(8) (1) (2) (L4 08 Gl ) (6)) o8 gl (6) + 1)
G2(t,p,0,z) ;= cos q;’i,,(t)(ﬁ) + P2 (¢) qz-:"(t) (2)(1+cos qg:,(t)(ﬁ)) cos q;’il(t)(ﬁ) sin qg:,(t)(e) ,
HI(t,p,6,2) = 02(t) ¢ 1) (2) (L + 08 @l ) (6)) €05 gl (6)

By Theorem 5.3 we have p!! — p", 07 — 0", and 27 — 2" uniformly on [t., 7], where
(p",0M, 2") is the solution of the system

pU(t) = sin07(t) — (t) (27(t) (1 + cos 0"(t)) cos? 07(t) + 1),
max{p"(t),n} 0"(t) = cos 0" (t) + " (t) £7(t) (1 + cos 67 (t)) cos 67 (t) sin 87 (t) , (5.35)
21(t) = () Z27(¢) (1 + cos 07 (t)) cos 07(t)
with 07(t) == g0, (07(1)) and 27(t) := ¢ () (2"(¢)) . Moreover
PM(te) = 24 s 0"(ty) = 04, 2M(ty) = 24 .
By (5.30) and (5.31) p7 — 27 — 0 strongly in L*([t, 7]) as € — 0, hence p"(t) = 2"(t)
for every t € [t.,7]. From the first and third equations in (5.35) we obtain
sin 07 (t) = ¢"(t) (p"(t) (1 + cos 67(t))% cos 6" (t) + 1) for a.e. t € [tu, 7],
hence _
sin 07 (t
¥(e) = - 279
p1(t) (14 cos01(t))? cos 07(t) + 1
It follows that (p",6") satisfies the system
p(t) (1 + cos 07(t)) cos07(t) sin 67(t)

for a.e. t € [ty,7].

pit) = 5 0 (+))2 cos 7
p7(t) (1 + cos07(t))" cos 9~(t) +1 ~ ~ (5.36)
I sy P7(t) (1 + cos 07(t))? cos 0" (t) + cos 0" (t)
{e"(0)my 67(1) P7(t) (14 cos 7(t))2 cos 6 (t) + 1
with Cauchy conditions
pl(ty) = zo and 67(t,) =6.. (5.37)

By (5.25) we have max{ps'(t),n} = p5!(t) in a neighbourhood of [t.,7]. Moreover, by
(5.22) we have qgsl(t)(pil(t)) = pl(t) and qgsl(t)(ﬂil(t)) = 0%(t) in a neighbourhood of
[t«,]. Since (p2!,05!) is the solution of (3.13) with Cauchy conditions (5.17), it satisfies
also (5.36) with Cauchy conditions (5.37). By uniqueness we have p"(t) = p5'(t) and
07 (t) = 621(t) in a neighbourhood of [t.,7].

Since the limit does not depend on the subsequence, we conclude that p?! — p3t, 97 — g3t

and 27 — p5! uniformly in a neighbourhood of [t., 7] as € — 0. Then for € small enough

we have 07(t) := qgsl(t)(Gg(t)) = 0"(t) and Z'(t) := qgsl(t)(zg(t)) = 20(t), and, recalling
(5.26), max{pZ(t),n} = p2(t) in a neighbourhood of [t.,7]. From (5.27) we deduce that
(p2,07, 21) satisfies (2.21) in a neighbourhood of [t., 7] for € small enough. Since, by (5.28),

gr7erN~e
(p2,07,21) and (pe, 0., z.) satisfy the same Cauchy condition at ¢}, by uniqueness we have

g7r~e

that (p?,07,27) = (pe,0c,2:.) on [t.,7] for ¢ small enough. It follows that p. — p2!,
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0. — 03!, and z. — p2! uniformly in a neighbourhood of [t.,7] as € — 0. As t* — t,, this
concludes the proof of (5.21). O

5.3. Softening with continuous evolution. In this subsection we prove Theorem 5.2
describing the softening regime with a continuous evolution.

Proof. Let us fix 7 € (tg, +00). Assume either § < 0y < 0. and 2zp < z5(6p), or 0. <Oy <
and zg < r.(0p). Then we can apply Lemma 5.4 with ¢, = to, 0. = 0y, 2. = 20, t¥ = 1o, and
k =0, since (5.18) is a consequence of (3.26). Therefore (5.5) and (5.8) follow from (5.21).

Assume § < 6y < 0. and zp = z5(6p). To deal with the behaviour of the solutions
near to we apply Lemma 4.2 with t; = to, 01 = 6y, 21 = 20 = 25(00), k1 = 1, 70 = t, and
0<dg<B.—6y. Let 61, 71, 72, and t‘g be the constants and the double sequence given
by Lemma 4.2, and let ), be a decreasing sequence in (0,6;) converging to 0. For every k

we have

|12 —to| <26, (5.38)

we (1) > 67 (5.39)

o (82%) — 2e(t) < v 5z € (5.40)

sup (1= (t) — 20| + 10=(t) — o + |2 (t) — 20]) < 721/3, (5.41)

to<t<td

for ¢ small enough. Using a diagonal argument and (5.40), we may assume that for every
k there exist three constants tgk , Hgk , and zg" such that

08—ty pe(tl) — 20t 0(40) = 65", (1) — =, (5.42)

as € — 0 along a suitable sequence independent of k. By (5.38), (5.39), and (5.41) for every
k we have

|tor — to| <24, (5.43)
20 (1 4 cos B3F)% cos 03F +1 > 62, (5.44)
\93" - 90| + |ng - Zol < ’}/Qm. (545)

Inequality (5.44) implies that z0¢ < z,(63").
Let (pgi,egi) be the solution of (3.13) with Cauchy conditions

pi(tor) = 20" and 631 (5") = 63" . (5.46)
By (3.26) and (5.44) we have
piL(t) < 2z5(05 (1)) for every t € [ty*, 7]. (5.47)

We can apply Lemma 5.4 with ¢, = tg’“, 2y = zg’“ , 0, = 93’“, (pst,03h) = (pgi,Qgi), tr =tk
and Kk =7 5%. Indeed, (5.17) follows from (5.46), (5.18) from (5.47), (5.19) from (5.42),
k
and (5.20) from (5.40). We conlude that for every k
sup  (|pe () — pay, (8)] + 10=(t) — 05, (£)] + |z=(t) — 5, ()]) — 0. (5.48)
tok<t<r
as € — 0 along a sequence satisfying (5.42).

We deduce from (5.48) that p3! (t) = psl (t) and 65! (t) = 65! (t) for every t € [t3%, 7] N
[tgh,T]. Let ¢ := infy tgk. Then there exists a solution (p*!,0°!) of (3.13) in (79, 7] such
that p*(t) = p3! (t) and 0°'(t) = 65! (t) for every t € [tg’“,r]. Since tg"' — 1ty as kK — oo by
(5.43), while p*'(t3") — 2z and 6°'(t*) — 6y by (5.45) and (5.46), the uniqueness result
proved in Lemma 3.7 implies that (p*!,0°!) = (pgl, 05') on (to, 7], hence pgi (t) = pgl(t) and
05! (t) = 05! (t) for every t € [tg’“ ,7]. As the limit does not depend on the sequence satisfying
(5.42), the limit in (5.48) holds as € — 0.
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Since
[p<(t) — P! ()] + 10 (t) — 05 (£)] + |22 () — p§! (t)] <
< |p=(t) = 2ol + 10 (t) — Oo| + 22 (t) — 20| + 2|20 — p§' ()] + 100 — 05 (1)1,
it follows from (3.23) and (5.41) that there exists a sequence wy — 0 such that

supék (Ip=(t) — pg (t)] + 10(t) — 051 (t)] + |2(t) — p(t)]) < wi -

By (5.48) we have

limsup sup (Ip() — i (1) + 10.08) — B30 + 22(6) — pEl()]) < o
e—=0 to<t<T
which gives (5.8) as k — oo.

Assume that 0. < 0y < 7 and zg = 7.(fy), and let (pg!,05") and t; be defined as in
Lemma 3.6. Let us fix a decreasing sequence d;, — 0. Since pgl(t) — z. and 65 (t) — 0. as
t — t; by Lemma 3.6, there exists a sequence 7% such that

t — 0 < Tk <ty Ipst(T9F) — 2| < 0k, 05 (%) — 0. < 05, - (5.49)
We can apply Lemma 5.4 with ¢, = to, 6, = 0y, 2z, = 29, T = 7%, tf =1tpg, and kK = 0.
Indeed, zg = r.(0p) < z5(0g) by Lemma 3.2, and (5.18) follows from (3.20). By (5.21) we
have

sup (1= () — 5/ (8)] + 10=(t) — 05 (£)] + [2=(t) — o/ (£)]) < 56% (5.50)

to<t<7ok
for € small enough. By (5.49) and (5.50) we have also
1e(7%%) = zel + [0=(77%) = O] + |2e(7"%) — 2¢| < B

for € small enough. Then we can apply Lemma 4.1 with x = 1, and we obtain a constant
B> 1 and, for every k, a sequence 7% in [t, +00), such that

th = 0 < 75, ST <ty + B0, (5.51)

we (1) >0, (5.52)

0-(r2%) < 6. — b, (5.53)

sup (|p5(t) = ze| +10=(t) — Oc| + |2:(t) — ZCD < \/BM7 (5.54)

ok <t<7 R

for € small enough.
We now apply Lemma 4.2 with x; = % and obtain two constants v; > 0 and s > 0,

and, for every k, a new sequence t‘g’“ in [tg, +00), such that

ty — 0 < 7Ok <t <t 4+ 286, (5.55)

we(t2) > 52 67 (5.56)

| (t2) = 2=(t2)] < Hre, (5.57)

sup  (|pe(t) = ze| + |0=(t) — O] + |2:(t) — ze|) < Y2/ BV 0k » (5.58)

k<<l

for € small enough.
Using a diagonal argument and (5.40), we may assume that for every k there exist three
constants t‘f’“, 0‘15"‘, and z‘f"‘ such that

B =10, p(t2) = 2t 0.(12) — O 2 (12) — 2t (5.59)
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as € — 0 along a suitable sequence independent of k. By (5.55), (5.57), and (5.58) for every
k we have

|35 — t1] < 286, (5.60)
20K (1+ cos09)2 cos 0% +1 > é 82, (5.61)
|07 = O] + |23 = ze| < Y2v/BV - (5.62)

Inequality (5.44) implies that z0¢ < z,(63").
Let (pgi,(‘)gi) be the solution of (3.13) with Cauchy conditions

Py (1) =20 and 63 (17") = 603" . (5.63)
By (3.26) and (5.44) we have
pgi (t) < zs(ﬂgi (t)) for everyt e [t?k,T] . (5.64)

We can apply Lemma 5.4 with t, = 5%, 2, = 0%, 0, = 5%, t& = t0x | (ps,051) = (pgi,egi),
and k = %2 . Indeed, (5.17) follows from (5.63), (5.18) from (5.64), (5.19) from (5.59),

62 62
and (5.20) from (5.57). We conclude that for every k
sup - (lpe(t) = 3, (8)] + 10:(t) — 05, (8)] + |22 (8) — 95, (£)]) — 0. (5.65)
tok <t<rt

as € — 0 along a sequence satisfying (5.59)

We deduce from (5.65) that pj! (t) = psl () and 65! (t) = 65! (t) for every t € [t3%, 7] N
[t3",7]. Let 7y := inf, t5*. Then there exists a solution (p*,0!) of (3.13) in (1, 7] such
that p*(t) = p3l (t) and 6°'(t) = 05! (t) for every t € [t55, 7]. Let (pg,05") be defined as in
Lemma 3.7 with 6y = 6, and 2z = z.. Since t3* — t; as k — oo by (5.55), while p(t5*) —
z. and HSl(t(ls’“) — 6. by (5.62) and (5.63), the uniqueness result proved in Lemma 3.7
implies that (p*!,0%") = (p3!,05") on (t1,7], hence pgi (t) = psl(t) and Ggi (t) = 65'(t) for
every t € [t‘i"‘,T]. As the limit does not depend on the sequence satisfying (5.59), the limit
in (5.65) holds as € — 0.

From (5.50), (5.51), and (5.65) we obtain (5.7), except for ¢ € (t; — O, t1 +230;). As
k — oo we obtain (5.7) on [tg, +00).

Since

lpe(t) — p()] +10-(t) — O()] + |2=(t) — 2(¢)| <
< pe(t) = ze| + 10 (t) — Oc| + |2 (t) — 2zc| + 2[2c — p(t)] + 0 — O(2)]
(

it follows from (3.18), (3.23),
that

5.54), and (5.58) that there exists a sequence wp — 0 such

sup  (Ip:(t) = p(t)] + 16.(8) = O] + z:(8) — 2(1)]) < w.

Ok <t <tk

By (5.50), and (5.65) we have

limsup sup (p=(t) — p(t)] + 10:(t) — O(8)| + |22(t) — (1)) < ..
e—=0 to<t<T

which gives (5.8) as k — c0.

Assume that 0 = 0. and zy = 2., and let (p3',05') be defined as in Lemma 3.7 with
t; =tg, 03 = 0., and 2y = z.. then we can apply Lemma (4.1) with x = 1, t; = 70 = t,.
Given a decreasing sequence d; — 0, we obtain a constant 8 > 1 and, for every k, a
sequence 7% in [tg, +00) which satisfies (5.51)-(5.54) for & small enough. Then the proof
can be concluded as in the previous case, replacing t; by tg. O
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6. THE FAST DYNAMICS

In this section we study in detail the behaviour of the solutions to the system of the fast
dynamics.

6.1. The trajectory of the fast dynamics. In this subsection we study the system

/ = —cosv(z) — !
0'(2) = 0(2) 2(1+ cos9(2)) cosV(z)’
V'(2) =

sin ¥(z) (6.1)
o(z)

that describes the trajectories followed along the fast dynamics. Using Cartesian coordinates,

we consider the functions

x(z) := z+ 0(2) cos¥(z) and y(z) := o(z) sind(z), (6.2)

and (6.1) is equivalent to

Y1) =~ e 3
Sy i) |
z(1+ cosd(z))’
where
x(z) — 2

cos¥(z) = and tand(z) = )

V(x(2) — 2)% +y(2)2

Let us fix 21 > 0 and § < 60; <7 and consider the Cauchy conditions

o(z1) =2z and I(z1) =61, (6.4)
that in Cartesian coordinates become
x(z1) = 21 (1 4 cos 6y) and y(z1) = 21 sin 6 . (6.5)

Let 6. be the constant defined in (3.3), and let z4(f) and r.(0) be the functions defined in
(3.4) and (3.6).
Lemma 6.1. Let z; >0 and § <0 < 7. Assume one of the following two conditions:
z1 > 25(01), (6.6)
21 =25(01) and 601 >6,. (6.7)

Then there ezists zo € (0,21) such that (6.1) with Cauchy condition (6.4) has a solution
(0,9) defined in (22, 21] such that

0(z2) = 29 and o(z) >z for z € (z2,21) . (6.8)
Let 05 := ¥(z2). Then we have

FT<0<V(z)<br <7 for z € (z2,21), (6.9)
0'(2) >0 and ¥(z)>0 for z € (22,21), (6.10)
2 > 21 = 0y < 0., (6.11)

0 (22) >1 and 29 < z5(02). (6.12)

Proof. Let us consider the solution (g, ?) of (6.1) with Cauchy condition (6.4) on its maximal
left interval of existence (ze,21]. By the singularities of the right-hand side we have that
z, 0(z), cos¥(z), and 1+ cos¥¥(z) cannot vanish for z € (z.,21] so that z. > 0 and
% <9(z) <« for every z € (ze,21]. Then (6.1) implies (6.10), which gives (6.9).
Let us define
0. := lim 9(z) = iilf 9(z) >

3
pe := lim p(z) = inf p(z) >0.

Z—Ze Z>2Ze

)
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If z. = 0, from the first equation in (6.1) we would have ¢'(z) > 5= for every z € (0, z1],
and this contradicts the fact that the limit p. is finite. Therefore z, > 0.

We now show that p. < z.. If not, we would have p. > z. > 0, and hence 6. > 7,
otherwise the solution could be continued by solving a new Cauchy problem at z.. By the
second equation in (6.1) we have ¥/(z) — p% as z — z.. Thus the first equation in (6.1)
gives ‘

1 S Pe
2z1]cosI(2)| T 4z1]z — ze|’

d(z) >

for z near z., which contradicts again the finiteness of p.. This proves that p. < z.
It is convenient to introduce the function w: [z, z1] — R defined by

w(z) := 2 (14 cos¥(z))?cos¥(z) + 1. (6.13)
It follows from (6.1) that

/ _ w(z)
gz 1= z(1+cosd(z))cosV(z) (6.14)

Using (6.1) we obtain

w'(2)o(z) (1 —&—00519(2)) 0(2) cos¥(z) — z (1 —cos?(z))(1 4+ 3cos¥(z)) =
o(z) cos ( ) — 2 (1+2cosV(z) — 3cos? ¥(z)).

If (6.6) holds, then ¢'(z1) < 1, so that p(z) > z for all z < z; close to z;. If, instead,
(6.7) holds, then w’(z1) has the same sign as —1 — cos; + 3 cos? f;, which is positive by
(6.7). Therefore w'(z1) > 0 and w(z1) = 0, hence w(z) < 0 for all z < z; close to z;. From
(6.14) we deduce that ¢'(z) < 1, and hence g(z) > z for all z < z; close to z;.

On the other hand the inequality p. < z. gives o(z) < z for all z > 2, close to z..
Therefore there exists the greatest point zy in (z.,z1) such that p(z2) = 2z2. Condition
(6.8) is clearly satisfied, and implies

(6.15)

0'(z2) >1. (6.16)
By (6.6), (6.7), (6.16), and (6.14) we have
w(z1) <0 and  w(z2) >0. (6.17)

Since cosfs > cosfy by (6.9) and (6.10), if cosf; > A. we have also cosfy > A., where
Ac is the constant defined in (3.2). Therefore to prove (6.11) we may assume

cosf; < A\, and Z9 > %, (6.18)
and we want to prove that cosfs > A.. We argue by contradiction, assuming (6.18) and
costy <A < —3%, (6.19)
Since w'(22) (1 + cosfly)™2 = —1 — cosfa + 3 cos? O by (6.15), inequality (6.19) gives
w'(22) > 0. (6.20)
As w'(21) (14 cosfy)™2 = —1 — cos by + 3cos? §; by (6.15), we have also
W'(z1) > 0. (6.21)

By (6.17) there exists a minimum point z,, of w in (22,2;] and a maximum point zps in
[22, zm). By (6.21) we have
W(zm) =0, (6.22)
and by (6.20) we have
W(zm)=0 and  Ww’(zm) <0. (6.23)
We want to prove that
cosV(zp) > —5 . (6.24)
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As ¢ is increasing by (6.10), this inequality is trivial if cos6; > —1%, SO wWe may assume
that

—1<costh <—3. (6.25)
To prove (6.24) we argue by contradiction and assume that cosd(z,,) < —35. Let 1 :=

1+cosfy, sothat 0 <7 < 5 and sin¢; = /2 —n,/5. By (6.3) and (6.9) we have x'(z) <0
and y'(z) > 0, so that, by (62)
o(z)cosV(z) > z1in—z and p(z) sind(z) < z1/2 —ny/n for every z € [z2,21]. (6.26)

This implies 2o > 21 and 0(2)? < (z — 21m)? + 22(2 — n)n < 2% + 2237, hence
2

,9(22) <1+ 2%77 for every z € [z2, 1] . (6.27)
Since cos ¥(2m) < —+5, by (6.15) and (6.22) the polynomial P, (X) := 0(2m)A — 2 (1+2X—
3A?%) has a zero in the interval (=1, —3%]. As P, (0) = =2, < 0, this implies P, (—-%) <0,
hence o(zm,) > %zm > 32z,. By (6.27) we obtain z,, < %zl\/ﬁ As —1+4+1n = cosf; <
cos¥(z) < cosV(zy) < —1f for every z € [zm,21], we have 0 < sind(z) < &
2 € [#m, 21]. Since the function A — —A(1+A) is increasing in [—1, —3], from (6.6) we obtain
that 1 < z1n%(1 —1n) < z1m(1 + cos¥(2)) and 1 < z1n*(1 —n) < —21m(1 + cosV(2)) cos ¥(z)
for every z € [z, 2z1]. By (6.3) we have

for every

z
2y for every z € [z, 1] -
z

NN

¥(z)= -2y and  y(2) <
z
Integrating we obtain

x(z1) — x(z1v/M) = zinlog /i and  y(z1) —y(z1v/n) < —521mlog /1.
As x(z1) = z1m and y(21) = 21v/2 — /7, we deduce from (6.2) that

0(z14/1M) cosV(z14/n) < —21 (\/ﬁ— n—i—nlog\/ﬁ) ,
o(z1/M) sind(z14/n) > 21 (\/2 —nyn+ %nlog \/ﬁ) .
As ilog > = log\lﬁ —2 we have /1] —n + nlog\/n > 0 and /2 — 17 +
27]10g\f > 0 for every n € (0, 10] so that
o(z1y/M)* > 24 ((\/ﬁ—n+nlog\/ﬁ)2 +(V2=nyn+ %HIOg\/ﬁ)Q) >
> 23 (1= i) + 2/log /il + 2 =+ V2, /fijlog /1) =
> 2in (3 — 2/ + 5/nlog /) = 280 (55 — 2/n) >
> 2’177(110 2100\/») > 100 2177(17\/>)2 — 100 2(\/> 77)

==]. Therefore (6. 26) implies that cos® ¥(z1/7) < 155 As 2 < 214/7], We

which contradicts our assumption cos¥(z,,) < —1%,

for every n € (0, 15
have cos¥(zp,) > cos(z1/1) >
and concludes the proof of (6.24).
Let Apy:=cos®(xpr). As 29 < zpr < 2z, we have
—Tgo <Ay < —%. (628)

Since w'(zpr) = 0 by (6.23), using (6.1) and the equality

10’

Y AM
p(zmr) (T =2m) (14 3Mn) ’
that can be deduced from (6.15), we obtain

1 1
L3 L s = (14 Aa) (24 63 + T2 — 303,
1-2Aum ZM

w”(zn) o(zar)
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By (6.18), (6.23), and (6.28) we have
(14 Aar) (246X + TAY, = 3A%,) + 55 (14 3Ay) < 0. (6.29)

Let us considerer the polynomial P(A) := (1 4+ A)(2 4+ 6X + 7TA% — 3A3) + & (1 + 3)) =
22 4+ TN+ 1307 + 4X% — 3X* and its derivative P/(A) = T 4 26X 4+ 12A% — 123 =
2(2+3A)(19 + 30A — 18X?). Since P’(A) vanishes at —2, —£(3v/7—5), and (3V7+5), we
deduce that P()) has two local minima on [— 15, —1] at the points —15 and —%(3v/7—5).
By direct computation we see that P(—%(3v7 —5)) = 2923 — 21/7 > 52839 _ p(_ L) 5o
that P(A) > 0 for every A € [—{5,—3]. This contradicts (6.29) and concludes the proof of
the implication (6.11).

Let us prove that (6.12). By (6.14) it is enough to prove that ¢'(z2) > 1. We argue by
contradiction, taking (6.16) into account. If ¢'(22) = 1, by (6.14) we have w(z3) = 0, hence

1
S >
2 (1+ cosBy)?cosby —

&8

Since, by (6.15), w'(z2) (1+cosfz)~2 = —1—cos s+ 3 cos? B, by (6.11) we have w’(z2) < 0.
As w(z2) = 0, this implies w(z) < 0 for every z > z3 close to 22, so that by (6.14) ¢'(z) < 1,
hence p(z) < z for every z > 2y close to 2z, which contradicts (6.8). O

6.2. The system of the fast dynamics. In this subsection we study the solutions
(p%(s),0/(s),2%(s)) of the system of the fast dynamics

#(5) = —(p7(5) = 21(5)) (=/(5) (1 + cos () cos? 0/(s) + 1),
pl(5) 67(s) = (p'(s) — 27(s)) 2/(s) (1 4 cos 67(s)) cos 67(s) sin 0/(s) , (6.30)
#(s) = (pf(s) — 2%(s)) 2/(s5) (1 + cos 67(s)) cos 6/(s),

under the additional condition pf(s) > 27(s) > 0. In Cartesian coordinates this system is
written as

UE
il(s) = —(zf(s) — 27(s)) (1 prS;>
2I(s
P (1 ) pfgsi) (6.31)
2f(s) — 27(s)) 21(s s
) (Zf(S) L @) pf(S())) ( ))(xf(é‘) —Zf(s))(l B pfgs;)’

where p/(s) := \/(zf(s) — 24(s))2 + y/(s)2.
Let 6. be the constant defined in (3.3), and let z5(6) be the function defined in (3.4).

Lemma 6.2. Let z1 > 0 and § < 6, < m. Assume (6.6) or (6.7). Then there exists a
solution of (6.30) such that

lim pl(s) = 21, lim 07(s) = 0, lim (s) =2, (6.32)
pl(s) > 2/(s) for every s € R. (6.33)

The solution satisfying (6.32) and (6.33) is unique up to time translations, i.c., all such
solutions have the form (pf(s — s0),0%(s — s0),2/(s — s0)) for some sy € R. Moreover
pl(s) = 0(24(s)) and 0/(s) = V(2/(s)) for every s € R, where (p,9) is the solution of (6.1)
with Cauchy conditions (6.4). Finally,

pl(s) <0, 0(s)<0, 2(s)<0 foreveryscR, (6.34)
hgl pl(s) = 22, hIJP 0/(s) = 6y, lirf 2/(s) = 2y, (6.35)

where zo and 02 are defined as in Lemma 6.1.
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Proof. Let (0,9) be the solution of (6.1) with Cauchy conditions (6.4), and let z/(s) be a
solution of the autonomous equation

#(s) = (0(27(s)) — 27(s)) 2/(5) (1 + cos ¥(2/(5s))) cos ¥(27(s)) , (6.36)

with 2z < 2f(s) < z; for some s. By Lemma 6.1 we have (o(z) — z) 2 (1 + cos¥(z) < 0 for
every z € [zq, z1], with equality only at z = 25 and z = z;. Then the theory of autonomous
equations implies that z/(s) is defined for every s € R and satisfies

lim z/(s) =z, lim 2/(s) =2, 2/(s)<0 foreveryscR. (6.37)

§— —00 s— 400

Let us define
pl(s) = 0(27(s)) and 6/(s) := 9(2(s)). (6.38)

By (6.1) and (6.36) (p/(s),0/(s), 2/(s)) is a solution of (6.30). Since o(z1) = z; and 9(z;) =
01 by (6.4), condition (6.32) follows from (6.37). Since 2o < 2%(s) < 2 for every s € R,
inequality (6.33) follows from (6.8). Finally, (6.34) and (6.35) follow from (6.10), (6.37), and
(6.38).

Suppose that (p.(s),0.(s), z«(s)) is another solution of (6.30) satisfying (6.32) and (6.33).
By uniqueness it is easy to see that 0.(s) # 5 and 0.(s) # 7 for every s € R. Recalling
(6.32), we deduce that § < 6.(s) < 7, so that (6.33) and the third equation in (6.30) imply
that 0,(s) < 0 for every s € R. Then z(s) — 2 < z; as s — 400. Since 0,(s) is
decreasing, there exist two functions g. and ¥., defined on (22°,21), such that

Px(8) := 04(24(8)) and 0.(s) := 9.(24(8)). (6.39)

It follows from (6.30) that (g.,9.) satisfy (6.1) on (25°,21), and we deduce from (6.32) that
0+(2) = z1 and V.(z) — 01 as z — z1. By (6.4) (o,7) satisfies the same Cauchy conditions
at zp. By uniqueness we have (g.,9.) = (0,9) on (max{zz,2°},21). Therefore (6.30)
and (6.39) imply that z.(s) is a solution of (6.36) and 23 < z.(s) < z; for s large enough
(recall (6.32) and the monotonicity of z.(s)). Then the theory of autonomous equations
ensures that there exists so € R such that z,.(s) = z/(s — s9) for s large enough. Since
(0x,9.) = (0,9) near z;, by (6.39) we have p.(s) = p/(s — sp) and 0,(s) = 6%(s — sg) for
s large enough. These equalities are extended to every s € R by the uniqueness of the
solutions of a Cauchy problem for (6.30). O

7. DISCONTINUOUS EVOLUTION

In this subsection we consider the case where § < 6y < m and the viscosity solution
(p,0,2) has a discontinuity at a time ¢; > ¢y determined by the initial conditions. This
solution follows the slow dynamics in (tg,t1], has a jump at time ¢;, governed by the
system of the fast dynamics, and finally follows again the slow dynamics (¢1,+00) with
initial conditions at ¢; determined by the end point of the trajectory of the fast dynamics.

Let 6. be the constant defined in (3.3), and let z5(8) and r.(f) be the functions defined

in (3.4) and (3.6). The first theorem deals with the case t; > ¢.
Theorem 7.1. Assume
0. <bg<m and r.(0p) < z0 < z5(bp), (7.1)

and let (p§l,05!) and t1, 21, and 6, be defined as in Lemma 3.6. Let (pf,07,27), 2o, and
02 be defined as in Lemma 6.2, and let (p3!,05) be defined as in Lemma 8.7. Then

=2(t) = Py (t) ift € fto,ta], _J sy ift e [to,ta],
plt) = 2(t) = {pgl(t) ift € (t;,+00), o) = {egl(t) ift € (t1,4+00). (7.2)
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Moreover there exist three sequences of real numbers tL, 71, and s. such that for every

T > t1 we have

to < th <7} and lim ! = lim 7} = #;, (7.3)
e—0 e—0
sup (|pe(t) = p5' ()] + 0= () — 5" ()| + 2= (t) — p (t)]) — O, (7.4)
toStSt;
s (1) = O+ 10:(0) — 010)| + |zo(0) ~ o)) —0. (75)
sup (Ip=(t) = p5'(£)] + 10(t) — 05 ()| + |22 (t) — p3' ()]) — 0, (7.6)
where

pg(t) = pf(%t —8:), Hg(t) = Gf(ét — S¢), zg(t) = zf(ét — S¢). (7.7)

We now consider the case in which the discontinuity time is tg.

Theorem 7.2. Let 29 >0 and § < 6y < 7. Assume one of the following two conditions:

zo > z5(6o) (7.8)
20 = 25(6p) and 6y >0.. (7.9)

Let (pf,07,27), 25, 0y be defined as in Lemma 6.2 with z; = zy and 0, = 6y, and let
(ps!, 05 be defined as in Lemma 3.7 with t; =to Then

p(t) =z(t) = pgl(t) and 0(t) = Hgl(t) for every t € (to, +00). (7.10)

Moreover there exist two sequences of real numbers 7} and s. such that for every T > tg
we have

to <7l  and lim Tt =tg, (7.11)
_sup (Io=(t) = pL(O)] + 16(t) — 62(1)] + |2 (t) — 2L(1)]) — 0, (7.12)
sup (o= (t) = 3 (8)] + 16=(t) = 65" ()] + |22 () — p5'(1)]) — O, (7.13)

where pf, 07, and 2! are defined in (7.7).
The proof of both theorems will be given in Subsection 7.4.

7.1. Transition to the fast dynamics. We now describe the behaviour of the system in
a small time interval [7.,tl] where p.(t) — 2.(t) passes from a size of order ¢ to a size of
order ¢!~ with a € (0, %) After t! the system will be governed by the fast dynamics.
Let 6. be the constant defined in (3.3), and let z5(f) and w.(¢) be the functions defined in
(3.4) and (2.26).

Lemma 7.3. Let z; >0 and 3 < 01 < . Assume (6.6) or (6.7). Let ty € [tg,+00), let
a € (0, %) , and let 7. be a sequence in [tg,+00) such that

Te = t1, pe(Te) =21, O(1c) =01, z(7c) — 21. (7.14)

Then there exists a sequence tl in [tg,+00) such that
. <tl and t!—t, (7.15)
we(tl) < —e, (7.16)
pe(ts) — ze(t2) 2 '™, (7.17)
(7.18)

sup  (|p=(t) — 21| + [0=(t) — 61] + |2 (t) — z1]) — 0.
T <t<tl
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Proof. As z1 > z4(61), we have z1(1 4+ cosfq)?cosf; +1 < 0, so that (7.14) gives
limsup we(7:) < 0. (7.19)

e—0
Under the assumption (6.6) we have 21(1 + cosfy)?cosfy + 1 < 0. Therefore there exists
1 > 0 such that
2(14cosB)?cosh+1< —p for |6 —61] <2n and |z — 2| <27. (7.20)

If, instead, (6.7) holds, then we have cosf; < cosf. = Ac < —1 by (3.2) and (3.3). This
implies that (14 cosf;) (1 + 3cosf;)cosfysinf; > 0 and (1 + cos®y)3 cosby (1 + cosb; —
3cos? 1) > 0. Therefore there exists 0 < < 1z such that

z(1+cos)(1+3cosd)cosfsing >np,
2 (1+ cos0)3 cos [z (1+ cosf —3cos?0) — (p— z) cosb] >np,

for |p— 21| <21, [0 —01] <27, and [z — 21| < 2.
In both cases (6.6) and (6.7) we define

(7.21)

tl = inf{t € (1., +00) : w(t) < —¢}, (7.22)
tli=inf{t € (£}, +0) : pe(t) — 2z (t) > 7}, (7.23)
01 = I {t € (rey +00) < [pelt) — 21| + 10.(6) — a] + |=et) < =] <20} (7:29)
51 := min{t},a}, 87 :=min{t}, a?}. ( )
By (7.14) for € small enough we have
pe(re) — 2| <m, |0c(1e) =61 <m,  |ze(7e) — 2| <7 (7.26)
If (6.7) holds, by (7.21) for € small enough we have
2e(t)(1 4 cos 0. (t)(1 + 3cos 0:(t)) cos O (t) sin O (t) > np(t),
2e(t) (1 4 cos 0. (t))? cos 0. (t) [z (t) (1 + cos b (t) — 3cos? O(t)) —
= (pe(t) = 2:(t)) cos Oc(t)] > (1)

for every t € [., ). Therefore, using Lemma 2.6 and (2.27), for € small enough we obtain

ewe(t) < —en—n(pe(t) —2:(t)) < —ne for every ¢ € [7.,a]]. (7.27)

This implies
we(t) < we (1) —n(t —12) for every t € [r,al], (7.28)

which gives
0 <37 —7 < max{we(r.),0} (7.29)

for € small enough. Recalling (7.27), we have
we(t) < —¢ for every ¢ € (87, a7]. (7.30)

If (6.6) holds, for & small enough we have w.(7.) < —e by (7.20) and (7.26), so that
51 =71 = 7.. In this case (7.30) follows directly from (7.20) and (7.24) for € < 7, while
(7.29) is trivial.

In both cases (6.6) and (6.7), from (2.25), (2.32), and (7.30) we obtain

pe(t) — 2:(t) > sinfy for every t € (87,a7]. (7.31)

Integrating this inequality we obtain p.(t) — z-(t) > (t — 57) sin by for every ¢ € (87, a’]. As
pe(t) — 22(t) < el for every t € (t1,tl] by (7.23), from (7.25) we obtain
s1— 81 < gh-e' e (7.32)

for £ small enough. From (7.14), (7.19), (7.29), and (7.32) it follows that
s —ty as e—0. (7.33)
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As 0 < 2.(t) < zg for every t € [tg, +00) by (2.34), using the third equation in (2.21) we
obtain
€2:(t) > =220 (pe(t) — 2e(t)) for every ¢ € [7e,a]], (7.34)
so that (7.27) gives for € small enough
e (t) < 5-2:(1) for every ¢ € [1.,a]].
Since w,(t) > —e for every t € (7., 57] by (7.22) and (7.25), we deduce that
—& —we(7e) Swe(t) — we () < 5L (2:(t) — 2:(72)) for every t € (7., 87],
so that for € small enough
2e(t) > zo(7e) — 2% max{w.(7.),0} — ¢ for every t € [, 87]. (7.35)
Since p.(t) — z:(t) < '™« for every t € (57,87 by (7.23) and (7.25), from (7.34) we get
Ze(t) > =229 for every t € (57, s7].
Integrating and using (7.32) we obtain

2e(t) — 2:(80) > =229 (t — 87) > —S?nzgo e!'72  for every t € (37, 57],

which, together with (2.34) and (7.35), gives for £ small enough

ze(Te) — 2% max{we(7:),0} —e — anigo 2 < 2 (1) < ze(T2) for every ¢ € [¢, 7] .
By (7.14) and (7.19) this implies
sup |ze(t) — 21| — 0 ase — 0. (7.36)
TaStSSQ

By Lemmas 2.6 and 2.8 we have z.(t) < p.(t) < pe(7c) + ¢ for every t € [ro,+00).
Therefore (7.14) and (7.36) give

sup |pe(t) — 21| — 0 ase — 0, (7.37)
ngtﬁsg

so that for £ small enough we obtain p.(t) > 1z for every t € [r., s7].

Since, by (7.36), z-(t) < 2z for ¢ small enough, from the second equation in (2.21) we
obtain )

e0.(t) > —Z%s —4(pe(t) — 2z(t)) for every t € [, s7], (7.38)
so that (7.27) gives
we(t) < gés(t) + 25 for every t € [, s7].

Since w,(t) > —e for every t € (7.,57] by (7.22) and (7.25), we deduce that

—€ = we(7e) S we(t) —we(7e) < F(0:(t) — 0(72)) + 55-(t —7)  for every t € (7, 57],

so that by (7.29) for £ small enough we have

0:(t) > 0-(72) — (% + %) max{w.(7:),0} —e for every t € [r, §]]. (7.39)
Since p.(t) — ze(t) < el=® for every t € (37,87 by (7.23) and (7.25), from (7.38) we get
0-(t) > —% —4e7® for every ¢ € (37, s7].

Integrating and using (7.32) we obtain
0c(t) — 0-(57) > —(% 447N (t —§7) > —2THa 120 for every ¢ € (37,57,

= z1 sin Oy €7°¢€

which, together with (2.32) and (7.39), gives for £ small enough

6.(r.) — (3 + 2 ) max{w.(r.), 0} — & — Z5Ha 2120 < g (1) < 6(r.)

21 sin Oy
for every ¢ € [1¢,s!]. By (7.14) and (7.19) this implies
sup |6-(t) — 61| — 0. (7.40)

Te Stﬁsg
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From (7.36), (7.37), and (7.40) we deduce that s? < o for & small enough. By (7.25)
this implies §7 = #! and s7 = t!. Therefore (7.33) gives (7.15), and (7.18) follows from
(7.36), (7.37), and (7 40). Since fl < +00, by (7.22) we have w.(f!) < —¢, so that (7.16)
follows from (7.27). Since t! < +o00, inequality (7.17) follows from the definition of ¢! given
n (7.23). O
7.2. Convergence to the fast dynamics. Assume § < fp < 7, and let

2= i >0.
z tllinoozs(t) >0

€

y (2.34) there exist functions g. and ¥, defined on (z2°, zp] such that
pe(t) = 0c(2:(t)) and 6.(t) = 9.(2:(t)) for every t € [tg, +00). (7.41)
From Lemma 2.6 it follows that
0e(z) >z for every z € (22°, 2p), (7.42)
and from (2.32) it follows that
5 <Ve(z) < by <m forevery z € (22, 20). (7.43)
By (2.32) and (2.34) we have
9.(z) >0 for every z € (22°, 29).

By (2.21) on the intervals (z5,,22) the functions (p.,?.) are solutions to the system

(%) = — cos : o
QE(Z) = 195( ) (1 +COSI95(Z)) cos U, ( ) +€F(2796(2)7198(Z)) ’ (7 44)
oy sind.(2) cos Ve (z) |
V=(z) = 0:(z) 0 Fz00(2),0:(2))

where
F(z,p,0):=(p—2)z(1+cosf)cosb.
Let z; >0 and § < 6; <. Assume (6.6) or (6.7), and let (0,7), 22, 2 be defined as
in Lemma 6.1. Let us fix n > 0 such that 25(1 4 cos61)|cos 62| > n. This implies that

z(1+ cos¥(z))| cos ¥(2)| > n for every z € [z2, 1] . (7.45)
Given « € (0, 3), we consider the auxiliary systems
1 | sin 97 (z)|
n\/ — _ n _ £
(Qe) (Z) COSﬁe (Z> + G”(z,ﬁg(z)) £ an(z, Q?(Z),’&g(Z)) ) (7 46)
sin 97 (z) | cos ¥7(2)| .

W) = ) G ), 00)

where
G"(z,0) := max{z(1 + cos )| cos6]),n},
FI(z,p,0) := G"(z,0) max{p — z,e1 7%} .
Note that all solutions of (7.46) are defined for every z € R.

Lemma 7.4. Let z; >0 and § < 6, <. Assume (6.6) or (6.7). Let a € (0,1), let pl,
0!, and 2} be three sequences such that

pr— 2z, O} —01, 2l—z, (7.47)
2L (1+cos@l)?cosfl +1 <0, pl>zl+el, (7.48)

and let (01,97 be the solution of (7.46) with Cauchy conditions
ol z)=p: and V2(zz)=0;. (7.49)
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Then there exists z5 € (0, z1), depending on 1 in (7.45), but not on €, such that for & small
enough we have

01(2) >z +e'™ for every z € [27,22), (7.50)
Proof. Let us fix 6 > 0. From the second equation in (7.46) we have —=+ < (¢¥7)/(z) < %—I—i
for every z € R, so that for ¢ small enough we have |(97)(2)] <1 + . Recalling (7.49),
by integrating we get [97(z) — 01| < (1+ % )(z — 21 +0) for every z € [zl, z!]. Using (7.47)
for ¢ small enough we obtain

[97(2) — 61 < (1 + %) 26 for every z € [27,2}]. (7.51)

£
Suppose that z; > z,(61), so that
1
—cosf — <1.
€8T z1(1 + cos 6y) cos 01

By continuity there exist §; > 0 such that

1 1
- 0 0 <1 7.52
SVt Gz, 0) G'(z,0) 0) Coost max{z(1 4 cos )| cosb]),n} (7.52)
for |6 — 01| < d; and |z — 21| < 01. Let us fix 6 > 0 with
(1+3)28 <01 (7.53)

Since 2! < 21+ 61 for e small enough by (7.47), using (7.51), (7.52), (7. 53) and the first
equation in (7.46) we deduce that (07)'(z) < 1 for every z € [z}, 22]. As o7(2}) > 2L +el@
by (7.48), after integration we obtain (7.50).

Suppose now that 6. < 61 < 7 and 21 = z,(61). Let us consider the function

w(2) ==z (1 + cos¥7(2))? cos 9" (2) + 1. (7.54)
From (7.46) we obtain

(Wh'(z)=0al(2) ((max{gg(z), n}—z) cos V! (z)—z (1—|—cos 97(2) —3 cos? 192(2))) —
— B2(2) z (1 4 3cos¥2(2)) sind?(z),

where @/!(z) > 0 and (7(z) > 0 for every z € R. Since 0. < 6; < 7, by (3.2) and (3.3)
we have cos#; < cosf. = A\, < —=. This implies that 1 + cosf; — 3cos?6; < 0 and
z1(1+3cosfy)sinf; < 0. As z; > n by (7.45), by continuity there exists §; > 0 such that

(7.55)

Wl

(max{p,n} — 2) cosf — z (1 + cos  — 3cos® ) >0,
z(143cosf)sinf <0,

for |p— 21| < 81, |0 — 61] <01, and |z — 21| < 1. Let us fix § > 0 satisfying (7.53).

From the first equation in (7.46) we have —1 — % < (o1)(z) <1+ % for every 2 € R, so
that for e small enough we have |(07)'(z)] <1+ l Recalling (7.49), by integrating we get
l07(2) — pl| < (1 + )(z — 21 +0) for every z € [zl, z!]. Using (7.47) for e small enough
we obtain |o7(z) — zl\ < 6y for every z € [27, 22].

Since z! < 21+ for € small enough by (7.47), using (7.51), (7.53), (7.55), and (7.56) we
obtain (w?7)(z) > 0 for every z € [z}, z!]. By (7.48), (7.49), and (7.54) we have w?(2}) < 0.
It follows that w?(z) < 0 for every z € [z}, 2}]. This implies

(7.56)

1
—cos¥!(z) — 1 f T2l
cos ¥ (z) (1 + cos 02(2)) cos 0(2) < or every z € [27, 2],
and hence 1
—COS’[??(Z)‘FW < 1 fOr every z e [ZT,Z;}
Therefore the first equation in (7.46) gives (07)(z) < 1 for every z € [27, z1]. As o7(2})

2
2l + 72 by (7.48), after integration we obtain (7.50). O
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Lemma 7.5. Let z; >0 and § < 6, < m. Assume (6.6) or (6.7). Let t; € [to,+00), let
a € (0, %) , and let t! be a sequence in [ty,+00) such that

ot )= 0 =0 ) = (7.57)
we(tl) <0, pe(tl) — 2z (th) > et (7.58)
Let z} = z.(t1), let (0-,9:) be the functions defined in (7.41), and let (o0,9) be the solution
of (6 1) with Cauchy condition (6.4). Then for ¢ small enough there exists z2 € (22°,2L)
such that
0-(22) =22+ and 0.(2) > z+e'"* forze (22,2). (7.59)
Let 02 := 9.(22). Then
22—z and 02— 0,
where zo and 02 are defined as in Lemma 6.1. Moreover
sup  (Joe(z) — o(z)| + |[9:(2) — ¥(2)]) — O ase — 0. (7.60)

22<z<z}
Proof. Let us define
plim po(t), O1i=0.(8)), b= a(tl). (7.61)

We consider the auxiliary system

(") (2) = —cos¥"(2) +

max{z(1 + cos9(z))|cos91(z)|,n}’
- (7.62)
(97 (2) = sin 9"(z) 7

max{g"(z),n}
whose solutions are defined for every z € R. Since 1/F(z,p,0) < */n for every (z,p,0) €
R3, by (7.58) and (7.61) the solutions (o7,97) considered in Lemma 7.4 converge uniformly

on compact subsets of R to the solution (¢",9"7) of (7.62) with Cauchy conditions
0"(z1) =2z and 97(z1) =0;. (7.63)
As ¢'(z2) > 0 by (6.12), there exists z3 € (0,22) such that (p,¢) is defined on [23, 1]
and
o(z) < z for every z € [23, 22) . (7.64)
By (7.45) we may also suppose that
z (14 cos¥(z))|cosV(z)| >n for every z € [23, 21] . (7.65)

Since (p,¥) is a solution of (6.1), inequality (7.65) implies that (p,4) is a solution of (7.62).
Since (p",9") and (p,9) satisfy the same Cauchy conditions at z; by (6.4) and (7.63), we
conclude that (9"7,97) = (p,9) on [23,21]. Therefore (o7,97) converges to (g,?) uniformly
on [z3,21]. By (7.64) and (7.65) for ¢ small enough we have p7(z3) < 23 and

z (1 4+ cos¥!(z))|cos V92 (z)| > n for every z € [25, z1]. (7.66)

Let z} be the constant introduced in Lemma 7.4. Since o7(z) > z + &l=* for every
z € [27,2)), we can consider the greatest point 22 of [23, z}] such that o7(z2) = 22 + &'~
and we have

01(22) =22+l and 01(2) >z +el™ for z € (22,2)). (7.67)

The uniform convergence of (97,97) to (9,9) on [z}, 2}] implies that 22 — 25 and 9¥7(22) —
19(22) = 92 .
From (7.66) and (7.67) we deduce that (o7,97) satisfies (7.44) 1n the interval [22,2}].

Since (g?,97) and (p.,9.) satisfy the same Cauchy conditions at z! by (7.41), (7.49), and

67 €

(7.61), we conclude that (o7,97) = (gc,9:) on [22,z}]. This 1mphes
sup (Jo=(2) — o(2)| + [9=(2) = ¥(2)[) — 0

2 1
22<z<z}



44 G. DAL MASO AND A. DESIMONE

and the convergence 02 := 9.(22) = 97(22) — 5. O
Lemma 7.6. Under the assumptions of Lemma 7.5, let T} be the time such that

z.(1}) = 22, (7.68)
and let n be the constant in (7.45). Then

0<Tg—t;<%€a

for € small enough

Proof. By Lemma 2.6, (2.21), and (7.41) the function z.(¢) is a solution of the autonomous
equation
€2:(t) = (0e(2:(t)) — 2e(t)) 22 (t) (1 + cos Ve (2e(t))) cos Ve (2:(t)) (7.69)
in the interval [t1,+00). Let 21 1= z.(t1). As z.(71) = 22 by (7.68), equation (7.69) gives
2
1

T. — tl = E/Z dz )
¢ F 2 (0e(2) = 2) 2 (1 + cos Ve (2)) cos Ve (2)
so that the conclusion follows from (7.45) and (7.59). O

Lemma 7.7. Under the assumptions of Lemma 7.5, let (p?,07,2%) be defined as in Lemma
6.2, and let 7} be the time introduced in Lemma 7.6. Then for every ¢ > 0 there exists
s € R such that

sup (lp=(t) — pL(t)| + 10=(t) — 01(8)| + |z=(t) — =L(1)]) — 0, (7.70)

tl<t<7}
where pl, 07, and z{ are defined in (7.7).

Proof. Let pl, 0!, and z! be defined as in (7.61). By (7.41) we have p.(t) = 0-(2(t))
and 6. (t) = 9.(z:(t)) for every t € [tg, +00), where (gc, V) satisfies (7.44) and the Cauchy
condition

0-(z}) =p! and I (21) = 6L, (7.71)
Moreover z. satisfies (7.69), so that the function (.(s) := 2.(es) satisfies the equation
Ce(8) = (0:(¢=(5)) = Co(5)) Co(5) (1 + cos Y (C:(s))) cosDe(Co()) (7.72)

for s € [%to, +00). As explained at the end of the proof of Lemma 7.5 we have (o?,97) =
(0:,9¢) on [22,2}]. By (7.68) the function (. satisfies also the equation

Ge(8) = (01(Ce()) = G (5)) Go(8) (1 + cos (G (s))) cos 92 (Ce(s)) (7.73)

for s € [Lt1,17]1].

By (7.57) and (7.61) we have z! — z;, while 22 — 2z, by Lemma 7.5. Since 2z < 27(0) <
z1 by the monotonicity of zf and by (6.32) and (6.35), we have that 22 < zf(O) <zl fore
small enough. By (7.61) and (7.68) we have (.(1t!) = 2! and (.(1r, ) =22 Slnce Ce is
decreasing by (2.34), there exists a unique s € (2t!, 271) such that (.(sc) = zf(O)

Let ¢7 be the maximal solution of (7.73) with Cauchy condition ¢7(0) = 27(0) and let (&
be the solution of (7.72) on (—o0,0] with Cauchy condition (£(0) = z/(0). The theory of
autonomous systems implies that (7 is defined in a neighborhood of the interval [0, +00), is
decreasing, and satisfies (!'(s) — z1 as s — 4o00. Taking into account (7.42) and (7.43), the
theory of autonomous systems guarantees that (& is defined on the whole interval (—oo, 0],

is decreasing, and satisfies (€ (s) — 21 as s — —o0o. By uniqueness we have

C(s)=Cl(s—sc)  forevery s € [Ltl 17]], (7.74)
C(8) =C2(s — se) for every s € [Lto, 171]. (7.75)
In the proof of Lemma 7.5 we have seen that (o7,97) — (p,9) as ¢ — 0 uniformly

on [z5,z0], where (p,9) is the solution of (6.1) with Cauchy conditions (6.4), and da > 0
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satisfies (7.65). Continuing as in the same proof we can construct z7, with z7 — 2z as
€ — 0, such that

o7(21) =20 and @!(z) >z for z € (27,2}).

Let us prove that (7 converges to zf uniformly on [sg, +00) for every sy < 0. Let us fix
A > 0. By (6.35) we can find sp € (0,400) such that |2/(s) — 23| < A for any s € [sq, +00).
Since (o7,97) — (0,9) as e — 0 uniformly on [25,20], and z/ satisfies (6.36), we have
g — 2! uniformly in [sg, so] for every sy < 0. For s > sy the monotonicity of (7 gives

C2(s) — 21(s)| < [C0(s) — 22| + |20 — za| + |22 — 27(s)| <
< ((s9) — 20 4 |20 — za| + X < (D (s2) — 27(s2)] 4 2|27 — 22| + 2,

so that
sup [(7(s) — 2/(s)| < sup  |C0(s) — 2/(s)| + 2]z — 2| + 2X.

s0<s s0<s<s2

Since 2! tends to z; and A is arbitrary, the uniform convergence of (7 to 25 on compact
subsets of R implies the uniform convergence on all of [sq, +00).

Let us prove now that (€ converges to z/ uniformly on (co,0]. We first observe that
for every sop < 0 there exists g9 > 0 such that (7(s) = (Z(s) for every s € [s0,0] and
every € € (0,ep). Indeed, by the uniform convergence of (7 to 24 and the properties of zf
listed Lemma 6.2 there exists go such that 22 < (7(s) < 2! for every s € [s9,0] and every

£ € (0,20). As observed in the proof of Lemma 7.5 we have (g7,97) = (o.,9.) on [22,z}].

This implies that on the interval [so, 0] the function ¢” is in fact solution of (7.72). Since it
satisfies the same Cauchy conditions as (&, by uniqueness we have (7(s) = (Z(s) for every
S € [50, 0] .

Let us fix A > 0. By (6.32) we can find sy € (00,0) such that |p/(s) — 21| < A for any
s € (=00, s0]. Since ¢ = (7 on [s¢, 0] for & small enough, we have that (€ — 2/ uniformly
on [sg,0]. For s < sg the monotonicity of (& gives

C2(s) = 27(s)| < 1CO(s) — 21| + |21 — 2/(s)] <
<z = (P (s0) + A < [¢E(s0) — 2(s0)] + 2,

so that

sup ¢ (s) — 2/(s)] < sup [¢F(s) — 2/(s)| + 2.
s<0 50<s<0

Since A is arbitrary, the uniform convergence of (€ to z/ on compact subsets of (—oo,0]
implies the uniform convergence on all of (—c0,0].
By (7.74) and (7.75), the uniform convergence of ¢ and (£ to z/ gives

sup  |¢(s) —zf(s—sg)| —0.

tigsgé‘ral

Ju—

B
Since z(t) = (-(£), this implies

sup |z:(t) — 2I(t)] — 0. (7.76)

tl<t<tl

By Lemma 6.2 we have p/(s) = 0(2%(s)) and 6/(s) = 9(2%(s)) for every s € R. By (2.34)
and (7.68) we have 22 < 2.(t) < 2! for every t € [t1,71]. It follows from (7.60) that

sup (|ps(t) - Q(Zs(t))l + |gs(t) - 19(25(15)”) —0.

tl<t<7l
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Since pl(t) = o(z{(t)) and 0L(t) = I(2{(t)), using (7.76) and the uniform continuity of o
and ¢ we obtain

sup (lp=(t) — pl(t)] + 10-(t) — 0(2)]) <

< s (00— el O)] +10.0)~ 9= 0)) +
s s (Jo(ex(0) - o(EO)] + 900) ~ 9L — 0,
which, together with (7.76), gives (7.70). O

7.3. Transition to the slow dynamics. We now describe the behaviour of the system
in a small time interval [r1,¢.] after which the system is governed by the slow dynamics.
During this transition p.(t) — 2.(t) decreases from the value e~ attained at t = 71, to a
value of order e, attained at t = t¢..

Lemma 7.8. Let T < 0, <7, let 0 < zp < z5(02), let t1 € [to,+00), let a € (0,3), and
let 71 be a sequence in [ty,+00) such that

r =t pe(t)) = 22, 0(7)) = 0a, 2(7)) — 22, (7.77)
pe(T2) — 2o(1)) = el (7.78)
Then there exist a sequence t. in [tg, +00) and a constants 1 > 0 such that
Tl<te and t.—t; ase—0, (7.79)
Pe(te) — ze(te) < ke  for e small enough, (7.80)
rgs<1£t5 (1p=(t) = 22| 4 [6=(t) — O] + |2=(t) — 22)]) = 0 ase —0. (7.81)

Proof. As zy < z4(63), we have 29(1 + cosf)?cosfly +1 > 0. Let x > 0 be such that
29(1 +cosfz)? cosfy +1 > % Under our hypotheses, by continuity there exists > 0, with
n < %, such that

z(1+cosf)?cos@+1>2 for [0 — 6] <mand |z — 2| <7n. (7.82)
We define
te == inf{t € (11, 4+00) : pc(t) — 2:(t) > Ke}, (7.83)
all :=inf{t € (11, +00) : |0-(t) — O] + |2:(t) — 22| > 1}, (7.84)
s := min{t., o} . (7.85)

Since p.(t) — z:(t) > ke for every t € [r1,t.], from (7.82) we obtain
(ze(t)(1 + cos .(t))* cos O (t) + 1)(p=(t) — 2.(t)) > 2¢  for every t € [, 5"].
Therefore (2.25) gives
pe(t) — 2.(t) < —e  for every t € [1},57], (7.86)
which, after integration, yields
sl —rt<elme. (7.87)
By Lemma 2.6, (7.78), and (7.86) we have 0 < p.(t) — 2.(t) < pe(72) — 2.(72) = €17 for
every t € [1,s7]. Since 0 < 2.(t) < 29 by (2.34), from the third equation in (2.21) we have
Z2e(t) > =2z (t)e™ > =229 ¢ for every t € [r1, 7],
which, together with (2.34) and (7.87), implies
2e(T2) > 2c(t) > 2(12) =220 *(t — 71) > 2o(7)) — 22072 for every t € [12,57],
which gives

—2«

|2 (t) — 2a] < |2:(12) — 22| +220€" for every t € [}, s"]. (7.88)
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From the second equation in (2.21) we have
pe()0-(t) < =1 — 2206~ for every t € 11, s7].

Moreover, by Lemma 2.6 we have

pe(t) > ze(t) > 20 —n > 2  for every t € [}, s7]. (7.89)
Thus, recalling (2.32),
0>0.(t)> -2 —4e* for every t € [}, 5], (7.90)

and, integrating and using (7.87), we obtaln
0-(12) 2 0=(t) 2 0=(72) — (£ +4e7)(t —7) 2 0(72) — (£ +4)e'
for every t € [}, s7], which gives
0-(t) — 02| < 10-(12) — 02 + (% +4)et™2*  for every t € [r2,57]. (7.91)

By (7.77) we have |z(7}) — 22| + &' 72 + [0-(7}) — 02 + ( +4)el=2* < g for e small
enough. Therefore (7.88) and (7.91) give s < a for & small enough By (7.85) this implies
s7 = t., so that (7.87) gives t. — 71 < &'~ which concludes the proof of (7.79). Since
t. < 400, inequality (7.80) follows from the definition of t. given in (7.83), while (7.81)
follows from (7.88) and (7.91). O

7.4. Softening with discontinuity. In this subsection we prove Theorems 7.1 and 7.2
describing the softening regime with a discontinuity.

Proof of Theorem 7.1. Let us prove that there exists a sequence 7. in [tg,+00) such that

Te — t1, Pe(Ta) — 21, 95(7-5) — 01, ZE(TE) — %1, (792)
sup (|p=(t) = pg' (8)] + 16=(t) — 65 ()] + 2 (8) — p§' (1)]) — 0. (7.93)

to<t<Te
Let us fix an integer k£ > 0. We can apply Lemma 5.4 with t, =tq, 7 =11 — %, 0. =0y,
Ze = 2o, and t¥ = to. Indeed, (5.18) follows from (3.21). By (5.21) we have
sup  (|p=(t) = p§' ()] + 10-(t) — 65’ (8)| + |2=(t) — p5'()]) — 0.
to<t<t;—4
Let us fix a decreasing sequence aj — 0. There exists a decreasing sequence ¢, — 0 such
that for every e € (0,e;] we have
sup  (|p=(8) = p§! ()] + 16=(8) — 65 (6)] + |2 (£) — o/ (1)]) < @i - (7.94)
to<t<ti—¢
We now define 7, :=t; — % for every ¢ € (egt1,ex]. Then 7. — t; as e — 0, and (7.93)
follows from (7.94). From (7.93) we obtain, in particular,

|pe(Te) — p(s)l(Ts)| +10(7) — GSZ(TEH +[2e(7) — P(S)l(Te)| —0.
Since 7. — t!, this implies (7.92) thanks to (3.18).
Let us fix a € (0, ). By Lemma 7.3 there exists a sequence t! in [ty, +00) which satisfies
(7.15)-(7.18). By (3.18) we have
sup (|pg' (1) — 21 + 165 (1) — 61]) — 0
Te <t <t}
Together with (7.18) and (7.93), this proves (7.4).
By Lemmas 7.6 and 7.7 there exists 71 > t! such that (7.70) holds and 71 — ¢; as ¢ — 0.
This proves (7.5) and concludes the proof of (7.3).
By Lemma 7.8 there exists a sequence ¢. in [tg,+00) which satisfies (7.79)-(7.81). By
(3.23) we have
sup  (|p3'(t) — 22| +105'(t) — 62]) — 0,

T2 <t<t.
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which, together with (7.81), gives
sup  (|p=(t) — p3' ()] + 16 () — 65" (1)] + |2=(t) — p5'(1)]) — 0. (7.95)

Tr<t<t.
We can apply now Lemma 5.4 with t, = t1, 0, = 03, z. = 29, and tf = 71. Indeed,
hypothesis (5.18) follows from (3.26), while (5.19) and (5.20) are satisfied thanks to (7.79)-
(7.81). We deduce that (5.21) holds with p3! = ps!. Together with (7.95), this proves (7.6).

*

Equalities (7.2) follow from (7.3), (7.4), and (7.6). O

Proof of Theorem 7.2. Let us fix a € (0, %) We apply Lemma 7.3 with z; = 29, 01 = 6,
ti, = 7. = to, and we find a sequence t! in [tp,+00) which satisfies (7.15)-(7.18) with
7. = tg. In particular we have

[tz = tal + [pe(t) — 21 + 10 () — O] + [ze(t2) — 21| — 0. (7.96)
By Lemmas 7.6 and 7.7 there exists 71 > ¢! which satisfies (7.11) and (7.70). In particular
we have
e (t2) = pL(t2)| + 10=(t2) — 02(t2)| + |=e(t2) — 2L(t2)] — 0,
which, together with (7.96), gives
pl(t2) — 21l +101(82) — 01| + [L(82) — =] — 0, (7.97)
By (6.32), (6.34), and (7.7) we have
|p2(t) = 21| + 101(8) — 1] + |pL(t) — 21| < [pl(t2) — 21| + [02(22) — 1] + |pL(22) — =1
for every t € (—oo,t!], so that (7.97) gives

sup (Ipl(t) — 21| + |04(t) — 64] + [pL(t) — 21]) — 0.
to<t<tl

Together with (7.18) and (7.70) this proves (7.12).

We apply Lemma 7.8 with ¢; = ¢y and find a sequence t. converging to ¢, which satisfies
(7.79)-(7.81). As in the proof of Theorem 7.1 we obtain (7.95). We can apply now Lemma 5.4
with t, =tg, 0. = 63, z. = 23, and t¥ = t.. Indeed, hypothesis (5.18) follows from (3.26),
while (5.19) and (5.20) are satisfied thanks to (7.79)-(7.81). We deduce that (5.21) holds
with pS! = psl. Together with (7.95), this proves (7.13). Equalities (7.10) follow from
(7.11)-(7.13). O

8. MECHANICAL INTERPRETATION OF THE RESULTS

We conclude the paper with some comments on the mechanical interpretation of our
results. We first recall that the scalar variables z and y are related to the stress by the
formula

o(t) = e(t) = —gz(t)] + F=y(t)eo,

where eg € ML) is a fixed traceless matrix with unit norm. It follows that —x(t) is
the trace of the stress, so that, with the usual sign conventions, % is the pressure. The
scalar ﬁ|y(t)\ is the norm of the deviatoric part of the stress, usually denoted by ¢ in soil
mechanics. For simplicity, in what follows we will call z and y the pressure coefficient and
the deviatoric stress coeflicient.

By (1.6) we have

z(t) = z(t) + p(t) cos O(t) and y(t) = p(t)sinO(t) .

Since p(t) = z(t) for every viscosity solution (Theorems 5.1, 5.2, 7.1, and 7.2), we conclude
that

x(t) = p(t) (1 +cosB(t)) and y(t) = p(t)sinf(t) for every t € [tg, +00).

From the above mentioned theorems and from Lemmas 3.5-3.7 it follows that p(¢) > 0
and § < 0(t) < 7 for every t € [tg,+00). Moreover, 0(t) = 7 only at the initial time
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FIGURE 8.1. Phase diagram in the (x,y) plane. Dark grey region (includ-
ing the thick line): initial data (zg,yo) of the plastic regime producing a
continuous evolution. Light grey region: initial data producing a disconti-
nuity at time t; > tg. White region: initial data producing a discontinuity
at time t; = tg. The dotted line is composed of fixed points and separates
softening behaviour (above the line) from hardening behaviour (below the
line).

t = to for the special loading program corresponding to ag = 0 (i.e., in the absence of a
preconsolidation pressure, see (1.4)) so that o = 0. Using also (2.20) we deduce that

z(t) >0 and y(t) >0 foreveryt € [0,+00).

and that z(t) =0 if and only if ¢ =t; =0 and a9 = 0, while y(¢) = 0 if and only if ¢t = 0.
Plastic behaviour starts at ¢ = tg. The initial data for the plastic regime are given by

xo :=x(to) = 20 (L +cosby) =ag and yo:=y(to) = z0sinfy = tg,

respectively. In Cartesian coordinates the separation line p = z4(6) and the critical line
p = 1c(0) of the (p,0) plane introduced in (3.4) and (3.6) become the parametric curves
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FIGURE 8.2. Trajectories of (x(t),y(t)) in the plastic regime for several
values of the initial data (zg,y0). The evolution for ¢ > t; is obtained
following the trajectory through (zo,y0) in the sense of the arrow. Solid
lines: slow dynamics. Dashed lines: fast dynamics.
points.

Dotted line:

defined by

x5(0) := 25(0) (1 4 cosh)

2(0) :==1.(0) (14 cosb)

and  y,(0) =
The critical point (6., z.) becomes

= z5(0)sinf for 6 € (
and  y.(0)

oL
r.(f)sinf for 6 € [T,
Ze = 2¢ (1 + cosb.)

and y. := z.sinf, .
and is shown in Fig. 8.1.

]

fixed

),

The phase diagram in the (z,y) plane is obtained from Fig. 1.3 by a change of variables

The trajectories of (z(t),y(t)) are shown in Fig. 8.2, while Fig. 8.3 illustrates the be-

haviour of x(t) and y(t) as functions of ¢. Note that, by our choice of the loading program
(1.4), t is proportional to the norm of the imposed deviatoric strain. Moreover, we note



QUASISTATIC EVOLUTION FOR CAM-CLAY PLASTICITY

X,y
15+
p
\70\\
2
EN ) -
%\\ 7 =
2 I
o dzi’ ~ >
A p = P
10+ > I NS
% - —_
N\ = b
N 2, I 8
o 2 —
A = )
% I =
2 X - . ~ ——— 7, =745
\ . =)
Yo I o 20 =6.75
)) [ = <
7 > Zoo = 6.07
\\6 o
5h “J ¢+ Zoo = 5.35
K - v =4.
\\3 P 4 > Zoo 65
£, L= a —~ Zoo = 3.95
I3 I ’ ’ "
. < e 2w =3.25
- 7 7 7 d s oo — I
- ps ’ -, Ra
4 : T =255
PO 4 s s v > - Zoo = 4.
10
%) — N o~ © =~ O <
@ = ) S = 9 o
[Se) <t v ~ 0 = S —_
I Il Il Il I Il 'ﬁ 'ﬁ
° £ e e e = . L

FIGURE 8.3. Deviatoric stress coefficient y(t) and pressure coefficient z(t)
as functions of the imposed deviatoric strain ¢ for ag = 2 and 8 different
values of zy > 2, leading to a softening behaviour. Solid lines: the functions
y(t). Dashed lines: the functions z(t).

that the straight line x = y (critical state line) is composed of fixed points. Each trajectory
x(t),y(t) tends to a fixed point as t — oco. The region below the critical state line is in-
variant, and all solutions therein display a hardening behaviour, namely, z(¢) is increasing.
Moreover, y(t) is increasing. Both of these properties follow from (3.15) and Theorem 5.1.

In the region above the critical state line the trajectories exhibit softening, namely, z(t)
is decreasing. Some trajectories are continuous and follow the system of the slow dynamics.
Other trajectories in this region exhibit a discontinuity, which may occur either at t = ¢,
or at t > tg. They follow the system of the slow dynamics in the intervals of continuity,
and their trajectories follow instantaneously the system of the fast dynamics at the jump
time. These different behaviours are described in Figure 8.1. The monotonicity of z(t)
in the intervals of slow dynamic follows from (3.20), (3.24), and Theorem 5.2. For what
concerns the jump governed by the fast dynamics, we observe that under the assumptions of
Lemma 6.1, the solution (x,y) of (6.3) with Cauchy condition (6.5) satisfies x'(z) < 0 and
y'(z) > 0 for every z € (22,21) in view of (6.9). Finally in the intervals of fast dynamics
described by the solution (zf,y/,27) of (6.31), 27(s) > 0, y¥(s) < 0, and 2/(s) < 0 for
every s € R in view of (6.34).
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