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AbstractIn this paper we obtain some non-existence results for the Klein{Gordon equationcoupled with the electrostatic �eld. The method relies on the deduction of somesuitable Poho�zaev identity which provides necessary conditions to get existenceof nontrivial solutions. The case of Maxwell-Schr�odinger type coupled equationsis also considered.1991 Mathematics Subject Classi�cation. 35B40, 35B45, 35J55.Key words. Klein-Gordon-Maxwell system, Schr�odinger-Maxwell system, non-existence, bound states.
1 Introduction
This paper deals with non-existence results of nontrivial solutions for some semi-linear elliptic systems in R3. Such problems have been motivated by substantialresearches generated in recent years concerning certain kinds of solitary chargedwaves in nonlinear equations of Klein{Gordon or Schr�odinger type.�Supported by M.I.U.R. project: Metodi variazionali ed Equazioni Di�erenziali Nonlineari
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308 T. D'Aprile, D. Mugnai
More precisely, let us �rst consider the following system:

��u+ [m2 � (! + e�)2]u = f(u) in R3; (1.1)
���+ e2u2� = �e!u2 in R3; (1.2)

wherem; !; e > 0, u; � : R3 ! R, f : R! R. Such system has been �rst introducedin [2] as a model describing solitary waves for the nonlinear stationary Klein{Gordonequation in the three-dimensional space interacting with the electrostatic �eld. Herem and e are the mass and the charge of the particle respectively, while ! denotes thephase. The unknowns of the system are the �eld u associated to the particle and theelectric potential �. The presence of the nonlinear term simulates the interactionbetween many particles or external nonlinear perturbations.Suppose that f is a continuous function such that f(0) = 0. (1.1) and (1.2) arethe Euler-Lagrange equations corresponding to the functional
S(u; �) = 12

Z
R3

�jruj2 � jr�j2 + [m2 � (! + e�)2]u2� dx� Z
R3
F (u) dx;

where
F (t) = Z t

0 f(s)ds t 2 R:
For physical reasons, we are led to consider solutions with bounded energy (bound
states), i.e. we want the functional S to be �nite. Hence we require u 2 H1 (i.e.u; jruj 2 L2(R3)), � 2 D1 (i.e. jr�j 2 L2(R3)) and F (u) 2 L1(R3).Some existence results for the system (1.1)-(1.2) have been proved in the casef(u) = jujp�2u. In [2] the authors �nd in�nitely many radially symmetric solutionshaving bounded energy for 4 < p < 6; in [10] the range p 2 (2; 4] is also covered.Motivated by these works, a natural question arises: what happens in the absenceof the nonlinear term or if the exponent p varies in di�erent ranges?In this paper we examine both cases, considering respectively f � 0 and f(u) =jujp�2u with p 2 (0; 2] [ [6;+1), and we exhibit a negative answer: the unique
bound state solution is the trivial one (for more general nonlinear functions f , seeTheorem 1.2 below).In order to state the precise result, we �rst consider the case f � 0, which leadsto the following system:

��u+ [m2 � (! + e�)2]u = 0 in R3; (1.3)
���+ e2u2� = �e!u2 in R3: (1.4)

Note that in this case the system describes linear charged Klein{Gordon �elds inthe presence of the electrostatic �eld; we point out that equations (1.3)-(1.4) have arelevant physical signi�cance, since they describe a system of isolated charged parti-cles in absence of mutual interactions and without external nonlinear perturbations.However, the nature of the problem is still nonlinear, but the nonlinearity is merelyinternal to the system, being given only by the coupling, i.e. by the interaction ofthe particle with its own electrostatic �eld.We can now state a �rst result:
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Theorem 1.1 Assume m; !; e > 0 and let (u; �) be a solution of the system (1.3)-(1.4) such that u 2 H1 and � 2 D1. Then u = � = 0:

Concerning the general system (1.1)-(1.2), another consequence of the methodemployed to prove Theorem 1.1 is the following further nonexistence result.
Theorem 1.2 Let f : R! R be a continuous function such that f(0) = 0. Assumem; !; e > 0 and either

i) f(s)s+ 2(m2 � !2)s2 � 6F (s) for every s 2 R,
or

ii) 2F (s) � f(s)s for every s 2 R.
Let (u; �) be a solution of the system (1.1)-(1.2) such that u 2 H1, � 2 D1 andF (u); f(u)u 2 L1(R3). Then u = � = 0:

If f(s) = jsjp�2s we immediately get the following corollary.
Corollary 1.1 Assume m; !; e > 0 and either

i) p � 6 and m � !,
or

ii) p � 2.
Let (u; �) be a solution of the system (1.1)-(1.2) with f(s) = jsjp�2s such thatu 2 H1 \ Lp(R3) and � 2 D1. Then u = � = 0:
Remark 1.1 We point out that the nonexistence result in the critical case p = 6was already obtained in [6]. Note that if p = 6, according to Sobolev embeddings,the requirement u 2 Lp(R3) in corollary 1.1 can be omitted. Moreover, if p = 2Theorem 1.2 can be reduced to Theorem 1.1.

In view of the previous results, the presence of a nonzero nonlinear externalperturbation term with a superlinear and subcritical growth seems to be neces-sary to get nontrivial solitary Klein{Gordon charged waves interacting with theirelectrostatic �eld. In the spirit of the method developed in [4]-[5], the idea of theproof is based on a suitable Poho�zaev identity ([17]) for the system (1.1)-(1.2) whichprovides necessary conditions for the existence of nontrivial solutions.Stationary states of nonlinear Schr�odinger equations lead to similar problems.Indeed, in [1] the authors proved that the following system of Maxwell-Schr�odingerequations
� ~22m�u+ !u+ e�u� f(u) = 0 in R3 (1.5)

��� = 4�eu2 in R3 (1.6)
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actually describes a charged wave interacting with its own electrostatic �eld. Asbefore, u is the wave associated to the particle, m, e and ! are the mass, the chargeand the phase of the wave respectively, while ~ is the Planck 's constant.Concerning equations (1.5)-(1.6) with f(u) = jujp�2u, the existence of a non-trivial radial solution was proved in [7] under the restriction 4 < p < 6 and in [10]for 4 � p < 6, while in [12] the existence of a non-radially symmetric solution wasestablished for 2 < p < 6.We point out that the system (1.5)-(1.6) has attracted considerable attentionin recent years: the eigenvalue problem with f = 0 has been studied in [1] (in thecase in which the charged particle lies in a bounded space region 
) and in [8] (inthe presence of an external nonzero potential). Furthermore in the papers [9] and[11] the authors deal with the semiclassical limit for the system (1.5)-(1.6), andthey �nd a family of nontrivial solutions exhibiting a concentration behavior when~! 0+.In the second part of the paper we prove the following nonexistence results forthe system (1.5)-(1.6).
Theorem 1.3 Let f : R ! R be a continuous function with f(0) = 0. Assumem; !; e > 0 and either

i) f(s)s+ 2!s2 � 6F (s) for every s 2 R,
or

ii) 2F (s) � f(s)s for every s 2 R.
Let (u; �) be a solution of the system (1.5)-(1.6) such that u 2 H1, � 2 D1 andF (u); f(u)u 2 L1. Then u = � = 0:

Clearly we have the following corollary.
Corollary 1.2 Assume m; !; e > 0 and either p � 6 or p � 2. Let (u; �) be a
solution of the system (1.5)-(1.6) with f(s) = jsjp�2s, such that u 2 H1 \ Lp(R3)
and � 2 D1. Then u = � = 0:

As already observed in Remark 1.1, if p = 6, according to Sobolev embeddings,the requirement u 2 Lp(R3) in corollary 1.2 can be omitted.Finally we recall that similar physical models of Maxwell-Dirac and Klein-Gordon-Born-Infeld systems have been studied respectively in [14] and [13], [16].Moreover in [3] the authors obtain the existence of topological solitary waves inter-acting with electromagnetic �elds.Let us now brie
y outline the organization of the contents of this paper. Insection 2 we analyze the variational structure of the system (1.3)-(1.4) and we showthat its solutions correspond to the critical points of a C1 functional on the spaceH1. Section 3 is devoted to prove the non-existence Theorems 1.1 and 1.2. Finallyin section 4 we develop the same arguments to get non-existence results for theMaxwell{Schr�odinger type problems (1.5)-(1.6).
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NOTATIONS

� Lp � Lp(R3) (1 � p < +1) is the usual Lebesgue space endowed with thenorm kukpp :=
Z
R3
jujp dx;

� H1 � H1(R3) denotes the usual Sobolev space endowed with the norm
kuk2H1 := Z

R3

�jruj2 + juj2� dx;
� D1 � D1(R3) is the completion of C10 (R3;R) with respect to the norm

kuk2D1 := Z
R3
jruj2 dx;

� we will use the symbol C for denoting positive constants depending only onthe functional spaces. The value of C is allowed to change from line to lineand also in the same formula.
2 The Variational setting for the system of Klein-

Gordon-Maxwell equations
In this section we will prove some preliminary results concerning the variationalstructure for the system (1.3)-(1.4).First we recall the following continuous embeddings:

H1 ,! Lp 8 p 2 [2; 6] and D1 ,! L6: (2.7)
We need the following auxiliary Lemma.

Lemma 2.1 For any u 2 H1 and for any h 2 D�1 there exists a unique solution� := (�� u2)�1[h] 2 D1 of the equation

��� u2� = h;
(being D�1 the dual space of D1). Moreover, for every u 2 H1 and for everyh; k 2 D�1, hh; (�� u2)�1[k]i = hk; (�� u2)�1[h]i; (2.8)
where h�; �i denotes the duality pairing between D�1 and D1.
Proof. The proof concerning the existence part is a straightforward application ofLax{Milgram Lemma. Indeed, if u 2 H1, then by H�older's inequality and (2.7),Z

R3
u2�2 dx � Ckuk23k�k26 � Ckuk23k�k2D1 ;
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and thus (R jr�j2+R u2�2)1=2 is a norm in D1 equivalent to k�kD1 . The remainingpart is an easy computation. 2

A fundamental tool in our analysis will be the following Proposition.
Proposition 2.1 For every u 2 H1, there exists a unique � = �u 2 D1 which
solves (1:4), and �!e � �u � 0 in R3: (2.9)
Moreover, the map � : u 2 H1 �! �u 2 D1 is of class C1 and for every u; v 2 H1

��0[u]�[v] = 2e��� e2u2��1�(! + e�u)uv�: (2.10)
Proof. The existence and uniqueness part follows from Lemma 2.1, since u2 2L6=5 � D�1. See also [2] and [10].Fixed u 2 H1, if we multiply (1.4) by (! + e�u)� � �minf! + e�u; 0g, whichis an admissible test function, we get

�eZ
�u��!=e

jr�uj2 dx� eZ
�u��!=e

(! + e�u)2u2 dx = 0;
which implies �u � �!

e . Next use ��u�+ = maxf�u; 0g as a test function in (1.4)to get Z
�u�0 jr�uj2 dx+ e Z

�u�0(! + e�u)�uu2 dx = 0;
by which, since ! + e�u � 0, ��u�+ � 0.For the last part, consider the map T : H1 �D1 ! D1 of class C1

T (u; �) = e��1[(! + e�)u2]� �:
Note that T is well de�ned, since by (2.7) u2; u2� 2 L6=5 � D�1. It is obvious that(u; �) solves (1.4) if and only if T (u; �) = 0.Now, for every (u; �) 2 H1 �D1 we compute

@T@� (u; �) : D1 ! D1;  7! e2��1[u2 ]�  
and @T@u (u; �) : H1 ! D1; v 7! 2e��1[(! + e�)uv]:
It immediately follows that @T

@� (u; �) is invertible for every (u; �) 2 H1 �D1 and
�@T@� (u; �)

��1 = �e2u2 ��)�1 ��:
Then the C1 regularity of the map � follows from the implicit function theorem,and, for every u 2 H1, �0[u] : H1 ! D1 is given by (2.10). 2
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Now let us consider the functional J : H1 �! R de�ned as

J(u) = 12
Z
R3
jruj2 dx+ m2 � !22

Z
R3
u2 dx� e!2

Z
R3
u2�u dx: (2.11)

The next lemma establishes the variational nature of the system (1.3)-(1.4).
Lemma 2.2 The following statements are equivalent:

i) (u; �) 2 H1 �D1 is a solution of the system (1.3)-(1.4);
ii) u 2 H1 is a critical point of J and � = �u.

Proof. By (2.10), for every u; v 2 H1 we have
J 0(u)[v] =Z

R3
ru � rv dx+ (m2 � !2) Z

R3
uv dx� e! Z

R3
uv�u dx

� e2! Z
R3
u2��� e2u2��1�(! + e�u)uv� dx

= Z
R3
ru � rv dx+ (m2 � !2) Z

R3
uv dx� e! Z

R3
uv�u dx

� eZ
R3

��� e2u2��1[e!u2](! + e�u)uv dx
by (2.8). On the other hand, in any case we know that �� � e2u2��1[!eu2] = �u,by which

J 0(u)[v] =Z
R3
ru � rv dx+ (m2 � !2) Z

R3
uv dx� eZ

R3
(2! + e�u)�uuv dx

and the thesis follows. 2

3 Nonexistence results for the system of Klein{
Gordon{Maxwell equations

In this Section we prove Theorems 1.1 and 1.2 as a corollary of a suitable Poho�zaev{type identity for the systems (1.1)-(1.2) and (1.3)-(1.4).First we establish the following identities.
Lemma 3.1 Let u; � 2 H2

loc(RN ) and a; b � 0. Then, for every R > 0, the
following identities hold:Z

BR
��u(x � ru) dx =2�N2

Z
BR

jruj2 dx� 1R
Z
@BR

jx � ruj2 d�
+ R2

Z
@BR

jruj2 d�; (3.12)
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Z
BR

(a+ b�)�u(x � ru) dx = �Z
BR

�a2 + b��u2(x � r�) dx
� N2

Z
BR

(a+ b�)�u2 dx+ R2
Z
@BR

(a+ b�)�u2 d�; (3.13)
Z
BR

g(u)(x � ru) dx = �N Z
BR

G(u) dx+R Z
@BR

G(u) d�; (3.14)
where g : R! R is a continuous function such that g(0) = 0 and G(s) = R s0 g(t) dt:
Proof. The proof of (3.14) can be found in [4, Proof of Proposition 1, pg. 320].Concerning (3.12), �x i, j = 1; : : : ; N and, integrating by parts on a ball BR, wecomputeZ

BR
uxjuxixjxi dx = 12

Z
BR

�juxj j2�xixi dx
= �12

Z
BR

juxj j2 dx+ 12
Z
@BR

juxj j2 jxij2jxj d�:
(3.15)

Therefore, denoting by �ij the Kroneker symbols,
�Z

BR
uxjxjuxixi dx = Z

BR
uxjuxixjxi dx+

Z
BR

uxjuxi�ij dx
� Z

@BR
uxjuxi xixjjxj d� = �12

Z
BR

juxj j2 dx+
Z
BR

uxjuxi�ij dx
+ 12

Z
@BR

juxj j2 jxij2jxj d� �
Z
@BR

uxjuxi xixjjxj d�:
Summing up for i; j = 1; : : : ; N , (3.12) follows.In order to prove (3.13), �x i = 1; : : : ; N and, integrating by parts, compute

2Z
BR

(a+ b�)�uuxixi dx = Z
BR

(a+ b�)��u2�xixi dx
= �Z

BR
(a+ 2b�)�xiu2xidx�

Z
BR

(a+ b�)�u2dx+Z
@BR

(a+ b�)�u2 x2ijxjd�:
Summing up for i = 1; : : : ; N , we get the thesis. 2

Now we are able to prove Theorem 1.1.
Proof of Theorem 1.1. Let (u; �) 2 H1 �D1 be a solution to (1.3)-(1.4).First let us remark that, if m � !, the proof is straightforward: indeed, if wemultiply equation (1.3) by u and integrate by parts, we obtainZ

R3
jruj2 dx+ Z

R3
[m2 � (! + e�)2]u2 dx = 0

and then u � 0 by (2.9), since m2 � (! + e�)2 � m2 � !2 � 0.
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For the general case, let us recall that u; � 2 H2

loc(R3) by standard regularityresults; then equations (1.3)-(1.4) are veri�ed a.e. in R3. Set 
 = m2 � !2 andmultiply (1.3) by x �ru; integrating on BR and using Lemma 3.1 with g(s) = s, wededuce
� 12

Z
BR

jruj2 dx� 32

Z
BR

u2 dx+ e Z
BR

(! + e�)u2(x � r�) dx
+ 32e

Z
BR

(2! + e�)�u2 dx = 1R
Z
@BR

jx � ruj2 d�
� R2

Z
@BR

jruj2 d� � 
2 R
Z
@BR

u2 d� + R2 e
Z
@BR

(2! + e�)�u2 d�:
(3.16)

Now multiply (1.4) by x � r�; integrating on BR and using again Lemma 3.1, weachieve
eZ

BR
(! + e�)u2(x � r�) dx = Z

BR
��(x � r�) dx

= 12
Z
BR

jr�j2 dx+ 1R
Z
@BR

jx � r�j2 d� � R2
Z
@BR

jr�j2 d�: (3.17)

Combining (3.16) and (3.17) we obtain
� 12

Z
BR

�jruj2 � jr�j2� dx� 32

Z
BR

u2 dx+ 32e
Z
BR

(2! + e�)�u2 dx
= 1R

Z
@BR

�jx � ruj2 � jx � r�j2� d� � R2
Z
@BR

�jruj2 � jr�j2� d�
� 
2 R

Z
@BR

u2 d� + R2 e
Z
@BR

(2! + e�)�u2d�:
(3.18)

Following the idea in [4], we will show that the right hand side in (3.18) convergesto zero for a suitable sequence Rn ! +1: First note how, assuming this, the thesiseasily follows. Indeed, considering the identity (3.18) with R = Rn and lettingn!1, we obtain
�Z

R3

�jruj2 � jr�j2� dx� 3
Z
R3
u2 dx+ 3e Z

R3
(2! + e�)�u2 dx = 0: (3.19)

On the other hand, by (1.3) and (1.4) we deduce respectively

 Z

R3
juj2 dx = �Z

R3
jruj2dx+ eZ

R3
(2! + e�)�u2 dx; (3.20)

Z
R3
jr�j2 dx = �eZ

R3
(! + e�)�u2dx: (3.21)

Inserting (3.20) and (3.21) in (3.19), we get
2Z

R3
jruj2 dx� eZ

R3
(! + e�)�u2 dx = 0: (3.22)



316 T. D'Aprile, D. Mugnai
By (2.9) (! + e�)� � 0; then u = 0 and, consequently, � = 0:Thus it remains to prove that the right hand side of (3.18) goes to zero for asuitable Rn ! +1: To this aim �rst note that jx�ruj � Rjruj and jx�r�j � Rjr�jon @BR, and, by Proposition 2.1, j(2!+e�)�ju2 � 2!2e u2 in R3. Hence it is su�cientto prove that if � 2 L1 \H1

loc(R3), then
Rn

Z
@BRn

j�j d� ! 0
for a suitable Rn !1: Otherwise there would exist c; R0 > 0 such thatZ

@BR
j�j d� � cR for R � R0;

and this leads to a contradiction, sinceZ
R3
j�j dx = Z +1

0 dR Z
@BR

j�jd� � c Z +1
R0

dRR = +1:
2

Remark 3.1 We recall that the solutions of the system (1.3)-(1.4) are the couples(u; �u), where u is a critical point for the functional J de�ned in (2.11) and �uhas been de�ned in Proposition 2.1. We point out that the non-existence result ofTheorem 1.1 could be obtained directly for the solutions u which are local minimumpoint for J . Indeed, if u is a local minimum point of J , for � > 0 consider thefunctions u�(x) = �u(�x):
It is easy to show that �u�(x); �u(�x)� solves equation (1.4), hence by the uniquenessgiven in Proposition 2.1, we immediately get

�u�(x) = �u(�x):
Now set au(�) = J(u�): Taking into account of (2.11), an easy computation gives

au(�) = �2
Z
R3
jruj2 dx+ m2 � !22�

Z
R3
u2 dx� e!2�

Z
R3
u2�u dx:

Since � = 1 is a local minimum for au, then, by di�erentiation,Z
R3
jruj2 dx� (m2 � !2) Z

R3
u2 dx+ e! Z

R3
u2�u dx = 0: (3.23)

Substituting (3.20) in (3.23) we obtain (3.22) and we can conclude as in Theorem1.1.The preceding argument ceases to work, however, for generic solutions. Indeed,if u is a local minimum point for J , then � = 1 is obviously a local minimum for au
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as well (and, consequently, a0u(1) = 0). On the contrary, in the generic case, if u iscritical for J , the conclusion that � = 1 is critical for au does not hold in general;to conclude this, one should show that the curve � > 0 7! u� 2 H1 is di�erentiableat � = 1, i.e. d

d�u�(x) = x � ru lies in H1. If some a priori decays on u and ru areknown, we can use them to obtain a simpler proof of the identity (3.22), by makingthe preceding scale-change argument rigorous. However, the proof of Theorem 1.1we gave above relies essentially on the Poho�zaev identity and provides a rigorousproof of the fact that any solution of the system (1.3)-(1.4) satis�es the identity(3.22).
We conclude this section with the proof of the more general non-existence resultgiven by Theorem 1.2.

Proof of Theorem 1.2. By repeating the same proof of Theorem 1.1, we set 
 =m2�!2 and multiply (1.1) by x �ru; integrating on BR and using Lemma 3.1 withg(s) = s and g(s) = f(s), we obtain the analogous of (3.18):
� 12

Z
BR

�jruj2 � jr�j2� dx� 32

Z
BR

u2 dx+ 32e
Z
BR

(2! + e�)�u2 dx
+ 3 Z

BR
F (u) dx

= 1R
Z
@BR

�jx � ruj2 � jx � r�j2� d� � R2
Z
@BR

�jruj2 � jr�j2� d�
� 
2 R

Z
@BR

u2 d� + R2 e
Z
@BR

(2! + e�)�u2d� +R Z
@BR

F (u) d�:

(3.24)

As already done in the proof of Theorem 1.1, we can �nd a sequence Rn ! +1such that the left hand side of (3.24) vanishes. Hence we are reduced to
� 12

Z
R3

�jruj2 � jr�j2� dx� 32

Z
R3
u2 dx+ 32e

Z
R3
(2! + e�)�u2 dx

+ 3 Z
R3
F (u) dx = 0:

By substituting (3.21) we get
�Z

R3
jruj2 dx� 3
 Z

R3
u2 dx+ eZ

R3
(5!+2e�)�u2 dx+6 Z

R3
F (u) dx = 0: (3.25)

From (1.1) we obtainZ
R3
jruj2 dx+
 Z

R3
u2 dx� eZ

R3
(2! + e�)�u2 dx� Z

R3
f(u)u dx = 0: (3.26)

We �rst isolate R jruj2 in (3.26) and substitute it in (3.25) to achieve
�2
 Z

R3
u2 dx+ eZ

R3
(3! + e�)�u2 dx+ Z

R3
(6F (u)� f(u)u) dx = 0: (3.27)
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Since (3! + e�)� � 0 by Proposition 2.1, if 6F (s) � f(s)s � 2
s2 � 0 for every s,then (3.27) gives u = 0.Now we isolate 
 R u2 in (3.26) and and insert it in (3.25). We end up with

2Z
R3
jruj2 dx� eZ

R3
(! + e�)�u2 dx+ 3 Z

R3
(2F (u)� f(u)u) dx = 0: (3.28)

If 2F (s)� f(s)s � 0 for every s, identity (3.28) and again Proposition 2.1 giveu = 0: 2

Remark 3.2 Assume that there exist c1; c2 > 0 and p > 1 such that
jf(s)j � c1jsj+ c2jsjp�1 8 s 2 R;

so that the Nemitsky operator u 2 H1 \ Lp 7! F (u) 2 L1 is of class C1. Then, byrepeating the same proof of Lemma 2.2, we deduce that the solutions of the system(1.1)-(1.2) correspond to the critical points of the C1 functional
~J(u) = 12

Z
R3
jruj2 dx+ m2 � !22

Z
R3
u2 dx� e!2

Z
R3
u2�u dx� Z

R3
F (u) dx:

The non-existence of nontrivial local minima for ~J can be obtained in a simplerway proceeding as in Remark 3.1. Indeed, considering the real function
~a(�) = ~J(u�);

where u�(x) = �u(�x), then imposing ~a0(1) = 0, we immediately arrive at (3.25).The rest follows as above.
4 Nonexistence results for the System of Maxwell-

Schr�odinger equations
As a consequence of the method introduced in the previous section, we are now ableto prove some non-existence results for the system (1.5)-(1.6) of coupled Schr�odinger-Maxwell equations. In this case the variational structure is easier to analyze sincewe have an explicit representation formula for the solution of equation (1.6), asstated in the following Lemma.
Proposition 4.1 For every u 2 H1 there exists a unique � = �u 2 D1 which solves
equation (1.6). Furthermore, �u is given by

�u(x) = eZ
R3

1jx� yju2(y)dy:
As a consequence, the map � : u 2 H1 �! �u 2 D1 is of class C1 and

��[u]�0[v](x) = 2eZ
R3

1jx� yju(y)v(y)dy 8u; v 2 H1:
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Proof. The existence and uniqueness part follows by Lemma 2.1, since u2 2 L6=5 �D�1. The representation formula holds for u 2 C10 (R3) (for example, see [15,Theorem 1, p. 23]); by density it can be extended for any u 2 H1. 2

In view of the previous Proposition, the energy functional associated to (1.5)-(1.6) has the form
I(u) = ~24m

Z
R3
jruj2dx+ !2

Z
R3
u2dx+ e4

Z
R3
u2�u dx�Z

R3
F (u)dx: (4.29)

Lemma 4.1 Assume that there exist c1; c2 > 0 and p > 1 such that

jf(s)j � c1jsj+ c2jsjp�1 8 s 2 R: (4.30)
Then the following statements are equivalent:

i) (u; �) 2 �H1 \ Lp��D1 is a solution of the system (1.3)-(1.4);
ii) u 2 H1 \ Lp is a critical point of I and � = �u.

Proof. By the assumption (4.30), the Nemitsky operator u 2 H1 \Lp 7! F (u) 2 L1is of class C1. Hence, by Proposition 4.1, for every u; v 2 H1
I 0(u)[v] = ~22m

Z
R3
ru � rv dx+ ! Z

R3
uv dx

+ e22
Z
R3
u(x)v(x) dxZ

R3

1jx� yju2(y) dy
+ e22

Z
R3
u2(x) Z

R3

1jx� yju(y)v(y) dy �
Z
R3
f(u)v dx

= ~22m
Z
R3
ru � rv dx+ ! Z

R3
uv dx� e Z

R3
uv�u dx� Z

R3
f(u)v dx

by Fubini-Tonelli's Theorem, and the conclusion follows. 2

We conclude this section with the proof of the non-existence result given byTheorem 1.3.
Proof of Theorem 1.3. For the sake of simplicity, set ~ = 2m = 1. Following theproof of Theorem 1.1, multiplying (1.5) by x � ru, integrating on BR and usingLemma 3.1 with g(s) = s and g(s) = f(s), we obtain:
� 12

Z
BR

jruj2 dx� 32!
Z
BR

u2 dx� e2
Z
BR

u2(x � r�) dx� 32e
Z
BR

�u2 dx
+ 3 Z

BR
F (u) dx = 1R

Z
@BR

jx � ruj2 d� � R2
Z
@BR

jruj2 d�
� !2R

Z
@BR

u2 d� � R2 e
Z
@BR

�u2 d� +R Z
@BR

F (u) d�:
(4.31)
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Now multiply (1.6) by x � r�; integrating on BR and using again Lemma 3.1,we achieve

4�eZ
BR

u2(x � r�) dx = Z
BR

���(x � r�) dx
= �12

Z
BR

jr�j2 dx� 1R
Z
@BR

jx � r�j2 d� + R2
Z
@BR

jr�j2 d�: (4.32)

Combining (4.31) and (4.32) we obtain
� 12

Z
BR

�jruj2 � 18� jr�j2
� dx� 32!

Z
BR

u2 dx� 32e
Z
BR

�u2 dx
+ 3 Z

BR
F (u) dx = 1R

Z
@BR

�jx � ruj2 � 18� jx � r�j2
� d�

� R2
Z
@BR

�jruj2 � 18� jr�j2
� d�

� !2R
Z
@BR

u2 d� � R2 e
Z
@BR

�u2d� +R Z
@BR

F (u) d�:

(4.33)

As already done in the proof of Theorem 1.1, we can �nd a sequence Rn ! +1such that the right hand side of (4.33) vanishes. Hence we are reduced toZ
R3

�jruj2� 18� jr�j2
� dx+3! Z

R3
u2 dx+3eZ

R3
�u2 dx�6Z

R3
F (u) dx = 0: (4.34)

By (1.6), we deduce Z
R3
jr�j2 dx = 4�eZ

R3
�u2 dx:

By substituting in (4.34) we get
�2Z

R3
jruj2 dx� 6! Z

R3
u2 dx� 5eZ

R3
�u2 dx+ 12 Z

R3
F (u) dx = 0: (4.35)

From (1.5) we obtainZ
R3
jruj2 dx+ ! Z

R3
u2 dx+ eZ

R3
�u2 dx� Z

R3
f(u)u dx = 0: (4.36)

We �rst isolate R jruj2 in (4.36) and substitute it in (4.35) to achieve
�4! Z

R3
u2 dx� 3eZ

R3
�u2 dx+ 2 Z

R3
(6F (u)� f(u)u) dx = 0: (4.37)

By Proposition 4.1, � = �u � 0. Thus, if 6F (s) � f(s)s � 2!s2 � 0 for every s,then (4.37) gives u = 0.Now we isolate ! R u2 in (4.36) and we insert it in (4.35). We end up with
4Z

R3
jruj2 dx+ e Z

R3
�u2 dx+ 6 Z

R3
(2F (u)� f(u)u) dx = 0: (4.38)
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If 2F (u) � f(u)u � 0 for every s, identity (4.38) and again Proposition 4.1 giveu = 0: 2

Remark 4.1 Assume that f satis�es (4.30). Then, according to Lemma 4.1, thesolutions of the system (1.5)-(1.6) correspond to the critical points of the C1 func-tional I de�ned in (4.29). The non-existence of nontrivial local minima u for Ican be obtained in a simpler way proceeding as in Remark 3.1 by a scale changeargument. Indeed, consider the real function
b(�) = I(u�);

where u�(x) = u(�x). Then, Lemma 4.1 gives �u�(x) = ��2�u(�x), and imposingb0(1) = 0, we immediately arrive at (4.35). The rest follows as above.
Remark 4.2 By multiplying both members of (1.5) by u and integrating by parts,we immediately obtain that the presence of a nonlinear term is necessary to getexistence of nontrivial solutions for the system (1.5)-(1.6). On the other hand, it iseasy to prove that, for every 2 < p < 6, there exists at least a radially symmetricsolution of (1.5)-(1.6) with f(u) = 
jujp�2u for a suitable 
 > 0. Indeed, it issu�cient to minimize the functional

T (u) = ~24m
Z
R3
jruj2 dx+ !2

Z
R3
uv dx+ e24

Z
R3
u2(x) dxZ

R3

1jx� yju2(y) dy
over the manifold

M := �u 2 H1
r

��� Z
R3
jujpdx = 1�;

where H1
r denotes the subspace of H1 made up of the radially symmetric functions.According to the compact injectionH1

r ,! Lp (see [4, Theorem A.I', pg. 341] or [18])M is a compact manifold, while T is weakly lower semicontinuous on H1
r . Hence weeasily get the existence of a minimizing function. The constraint causes a Lagrangemultiplier to appear and one obtains a positive solution u of � ~22m�u+!u+eu�u =
jujp�2u. However, the Lagrange multiplier 
 cannot be removed by looking for asolution of the form v = �u because of the di�erent features of homogeneity of theterms of T .
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