
APERIODIC FRACTIONAL OBSTACLE PROBLEMS

MATTEO FOCARDI

Abstract. We determine the asymptotic behaviour of (bilateral) obstacle problems for fractional

energies in rather general aperiodic settings via Γ-convergence arguments. As further developments

we consider obstacles with random sizes and shapes located on points of standard lattices, and the

case of random homothetics obstacles centered on random Delone sets of points.

Obstacle problems for non-local energies occur in several physical phenomenona, for which our

results provide a description of the first order asympotitc behaviour.

1. Introduction

Non-local energies and operators have been actively investigated over recent years. They arise in

problems from different fields, the most celebrated being Signorini’s problem in contact mechanics:

finding the equilibria of an elastic body partially laying on a surface and acted upon part of its

boundary by unilateral shear forces (see [43], [31]). In the anti-plane setting the elastic energy can be

then expressed in terms of the seminorm of a H1/2 function, or equivalently as the boundary trace

energy of a W 1,2 displacement.

As further examples we mention applications in elasticity, for instance in phase field theories for

dislocations (see [34] and the references therein); in heat transfer for optimal control of temperature

across a surface [33], [6]; in equilibrium statistical mechanics to model free energies of Ising spin

systems with Kac potentials on lattices (see [2] and the references therein); in fluid dynamics to

describe flows through semi-permeable membranes [30]; in financial mathematics in pricing models

for American options [4]; and in probability in the theory of Markov processes (see [10], [11] and the

references therein).

Many efforts have been done to extend the existing theories for (fully non-linear) second order elliptic

equations to non-local equations. Regularity has been developed for integro-differential operators

[10], [11], [22], and for obstacle problems for the fractional laplacian (see [20], [44] and the references

therein). Periodic homogenization has been studied for a quite general class of non-linear, non-local

uniformly elliptic equations [41] and for obstacle problems for the fractional laplacian [19], [32].
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In this paper we determine the homogenization limit for bilateral obstacle problems involving frac-

tional type energies. In doing that we employ a variational approach by following De Giorgi’s Γ-

convergence theory. Many contributions in literature are related to the analogous problem for ener-

gies defined in ordinary Sobolev spaces or equivalently for local elliptic operators. The setting just

mentioned will be referred to in the sequel as the local case in contrast to the non-local framework

object of our analysis. Starting from the seminal papers by Marchenko and Khruslov [37], Rauch and

Taylor [39], [40], and Cioranescu and Murat [24] there has been an outgrowing interest on this kind of

problems with different approaches (see the books [7], [15], [16], [23], [28] and the references therein

on this subject). We limit ourselves to stress that Γ-convergence theory was successfully applied to

tackle the problem and to solve it in great generality (see [29], [26], [27]).

Let us briefly resume the contents of this paper in a model case (for all the details and the precise

assumptions see section 3). With fixed a bounded set T , and a discrete and homogeneous distribution

of points Λ = {xi}i∈Zn (see Definition 2.2), define for all j ∈ N the obstacle set Tj ⊆ Rn by

Tj = ∪i∈Zn
(
εj xi + ε

n/(n−sp)
j T

)
, where (εj)j∈N is a positive infinitesimal sequence. Given a bounded,

open and connected subset U of Rn, n ≥ 2, with Lipschitz regular boundary we consider the functionals

Fj : Lp(U)→ [0,+∞] given by

Fj(u) :=
ˆ
U×U

|u(x)− u(y)|p

|x− y|n+sp
dxdy if u ∈W s,p(U), ũ = 0 caps,p q.e. on Tj ∩ U

and +∞ otherwise. Here, W s,p(U) is the Sobolev-Slobodeckij space for s ∈ (0, 1), p ∈ (1,+∞) and

sp ∈ (1, n), caps,p is the related variational (p, s)-capacity, and ũ denotes the precise representative of

u ∈W s,p(U) which is defined except on a caps,p-negligible set (see subsections 2.4 and 2.5).

In Theorem 3.3 we show that the asymptotic behaviour of the sequence (Fj)j∈N is described in

terms of Γ(Lp(U))-convergence by the functional F : Lp(U)→ [0,+∞] defined by

F(u) =
ˆ
U×U

|u(x)− u(y)|p

|x− y|n+sp
dxdy + θ caps,p(T )

ˆ
U

|u(x)|pβ(x) dx

if u ∈ W s,p(U), +∞ otherwise in Lp(U). The quantities θ and β represent respectively the limit

density and the limit normalized distribution of the set of points εjΛ and can be explicitely calculated

in some cases (see (3.1) and (3.3) for the exact definitions, Remark 3.2 for further comments, and

Examples 3.5-3.7 where some cases are discussed in details).

Adding zero boundary conditions, Γ-convergence then implies the convergence for minimizers and

minimum values of (Fj)j∈N to the respective quantities of F . More generally, we can study the

asymptotic behaviour of anisotropic variations of the Gagliardo seminorm (see subsection 3.4).

We remark that it is not our aim to establish a general abstract theory as Dal Maso did in the local

case [26],[27] (see [9] for related results in random settings), nor to consider the most general framework

for homogenization as the one proposed by Nguetseng in the linear, local and non degenerate case

[38]; but rather we aim at giving explicit constructive results for a sufficiently broad class of fractional

energies and non-periodic obstacles.
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The main novelty of the paper is that we extend the asymptotic analysis of obstacle probelms for local

energies to non-local ones. In doing that we use intrinsic arguments and give a self-contained proof.

We avoid extension techniques with which the original problem is transformed into a homogenization

problem at the boundary by rewriting fractional seminorms as trace energies for local (but degenerate)

functionals in one dimension higher (see [25], [19], [32]). This is the well known harmonic extension

procedure for H1/2 functions; more recently it was proved to hold true also for the fractional laplacian,

corresponding to p = 2 and s ∈ (0, 1) above, by Caffarelli and Silvestre [21]. Because of our approach,

we are able to deal with non-local energies which can not be included in the previous frameworks.

Generalizations are likely to be done in several directions, the most immediate being the choice of the

obstacle condition. For, we have confined ourselves to the basic bilateral zero obstacle condition in

the scalar case only for the sake of simplicity, improvements to vector valued problems and unilateral

obstacles seem to be at hand (see [5], [32]).

Our analysis do not need the usual periodicity or almost periodicity assumptions for the distribution

of obstacles. We deal with aperiodic settings defined after Delone set of points (see subsection 2.3),

the set Λ introduced above. No regularity or simmetry conditions are imposed on Λ, only two simple

geometric properties are assumed: discreteness and homogeneity. They turn out to be physically rea-

sonable conditions; as a matter of fact Delone sets have been introduced in n-dimensional mathematical

cristallography to model many non-periodic structures such as quasicrystals (see [42]). Essentially,

these assumptions guarantee that points in Λ can neither cluster nor be scattered away.

Furthermore, we show that with minor changes the same tools are suited also to deal with some

random settings. In particular, we deal with obstacles with random sizes and shapes located on points

of a standard lattice in Rn, a setting introduced by Caffarelli and Mellet [18], [19]; and consider also

homothetics random copies of a given obstacle located on random lattices following Blanc, Le Bris

and Lions [13], [14] (for more details see section 4).

As a byproduct, our approach yields also an intrinsic proof of the results first obtained by [19]

that avoids the extension techniques in [21]. A different proof using Γ-convergence methods, but still

relying on those extension techniques, was given by the author in [32].

The key tools of our analysis are Lemmas 3.8 and 3.9 below. By means of these results we reduce

the Γ-limit process to families of functions which are constants on suitable annuli surrounding the

obstacle sets. Lemma 3.9 is the counterpart in the current non-local framework of the joining lemma

in varying domains for gradient energies on standard Sobolev spaces proven by Ansini and Braides

[5]. It is a variant of an idea by De Giorgi in the setting of varying domains, on the way of matching

boundary conditions by increasing the energy only up to a small error. As in the local case the proofs

of Lemmas 3.8 and 3.9 exploit De Giorgi’s slicing/averaging principle and the fact that Poincaré-

Wirtinger inequalities are qualitatively invariant under families of biLipschitz mappings with equi-

bounded Lipschitz constants.
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Despite this, the non-local behaviour of fractional energies introduces several additional difficulties

into the problem: Lemmas 3.8 and 3.9 do not follow from routine modifications of the arguments used

in the local case. New ideas have to be worked out mainly to control the long-range interaction terms.

A major role in doing that is played by the counting arguments in Proposition 2.5, Hardy inequality

(see Theorem 2.8), and the estimates on singular kernels in Lemma A.1.

The paper is organized as follows. In section 2 we list the necessary prerequisites on Γ-convergence,

Sobolev-Slobodeckij spaces and variational capacities giving precise references for those not proved.

Section 3 is devoted to the exact statement and the proof of the homogenization result for deterministic

distribution of obstacles. To avoid unnecessary generality we deal with the model case of fractional

seminorms. Generalizations to anisotropic kernels are postponed to subsection 3.4. The ideas of

section 3 are then used in section 4 to deal with the two different random settings mentioned before.

Finally, we give the proof of an elementary technical result, though instrumental for us, in Appendix A.

2. Preliminaries and Notations

2.1. Basic Notations. We use standard notations for Lebesgue and Hausdorff measures, and for

Lebesgue and Sobolev function spaces.

The Euclidean norm in Rn is denoted by | · |, the maximum one by | · |∞. Br(x) stands for the

Euclidean ball in Rn with centre x and radius r > 0, and we write simply Br in case x = 0. As usual

ωn := Ln(B1).

Given a set E ⊂ Rn its complement will be indifferently denoted by Ec or Rn \ E. Its interior

and closure are denoted by int(E) and E, respectively. Given two sets E ⊂⊂ F in Rn, a cut-off

function between E and F is any ϕ ∈ Lip(Rn, [0, 1]) such that ϕ|E ≡ 1, ϕ|Rn\F ≡ 0, and Lip(ϕ) ≤
1/dist(E, ∂F ).

Given an open set A ⊆ Rn the collections of its open, Borel subsets are denoted by A(A), B(A),

respectively. The diagonal set in Rn×Rn is denoted by ∆, and for every δ > 0 its open δ-neighborhood

by ∆δ := {(x, y) ∈ Rn ×Rn : |x− y| < δ}. Accordingly, for any set E ⊆ Rn and for any δ > 0

Eδ := {x ∈ Rn : dist(x,E) < δ}, E−δ := {x ∈ E : dist(x, ∂E) > δ}. (2.1)

In the following U will always be an open and connected subset of Rn whose boundary is Lipschitz

regular.

In several computations below the letter c generically denotes a positive constant. We assume

this convention since it is not essential to distinguish from one specific constant to another, leaving

understood that the constant may change from line to line. The parameters on which each constant

c depends will be explicitely highlighted.
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2.2. Γ-convergence. We recall the notion of Γ-convergence introduced by De Giorgi in a generic

metric space (X, d) endowed with the topology induced by d (see [28],[15]). A sequence of func-

tionals Fj : X → [0,+∞] Γ-converges to a functional F : X → [0,+∞] in u ∈ X, in short

F (u) = Γ- limj Fj(u), if the following two conditions hold:

(i) (liminf inequality) ∀ (uj)j∈N converging to u in X, we have lim infj Fj(uj) ≥ F (u);

(ii) (limsup inequality) ∃ (uj)j∈N converging to u in X such that lim supj Fj(uj) ≤ F (u).

We say that Fj Γ-converges to F (or F= Γ-limjFj) if F (u) = Γ- limj Fj(u) ∀u ∈ X. We may also

define the lower and upper Γ-limits as

Γ- lim sup
j

Fj(u) = inf{lim sup
j

Fj(uj) : uj → u},

Γ- lim inf
j

Fj(u) = inf{lim inf
j

Fj(uj) : uj → u},

respectively, so that conditions (i) and (ii) are equivalent to Γ-limsupjFj(u) = Γ-liminfjFj(u) = F (u).

Moreover, the functions Γ-limsupjFj and Γ-liminfjFj are lower semicontinuous.

One of the main reasons for the introduction of this notion is explained by the following fundamental

theorem (see [28, Theorem 7.8]).

Theorem 2.1. Let F = Γ-limj Fj, and assume there exists a compact set K ⊂ X such that infX Fj =

infK Fj for all j. Then there exists minX F = limj infX Fj. Moreover, if (uj)j∈N is a converging

sequence such that limj Fj(uj) = limj infX Fj then its limit is a minimum point for F .

2.3. Non-periodic tilings. In the ensuing sections we will deal with a general framework extending

the usual periodic setting. The partition of Rn we consider is obtained via the Voronöı tessellation

related to a fixed Delone set of points Λ. We refer to the by now classical book of M. Senechal [42]

for all the relevant results.

Definition 2.2. A point set Λ ⊂ Rn is a Delone (or Delaunay) set if it satisfies

(i) Discreteness: there exists r > 0 such that for all x, y ∈ Λ, x 6= y, |x− y| ≥ 2r;

(ii) Homogeneity or Relative Density: there exists R > 0 such that Λ∩BR(x) 6= ∅ for all x ∈ Rn.

It is then easy to show that Λ is countably infinite. Hence, from now on we use the notation

Λ = {xi}i∈Zn . By the very definition the quantities

rΛ :=
1
2

inf{|x− y| : x, y ∈ Λ, x 6= y}, RΛ := inf{R > 0 : Λ ∩BR(x) 6= ∅ ∀x ∈ Rn} (2.2)

are finite and strictly positive; RΛ is called the covering radius of Λ.

Definition 2.3. Let Λ ⊂ Rn be a Delone set, the Voronöı cell of a point xi ∈ Λ is the set of points

V i := {y ∈ Rn : |y − xi| ≤ |y − xk|, for all i 6= k}.

The Voronöı tessellation induced by Λ is the partition of Rn given by {V i}i∈Zn .
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In the following proposition we collect several interesting properties of Voronöı tessellations (see [42,

Propositions 2.7, 5.2]).

Proposition 2.4. Let Λ ⊂ Rn be a Delone set and {V i}i∈Zn its induced Voronöı tessellation, then

(i) the V i’s are convex polytopes fitting together along whole faces, and have no interior points

in common;

(ii) if V i and V k share a vertex z, then xi and xk lie on ∂Bρ(z) with Λ ∩Bρ(z) = ∅, ρ ≤ RΛ.

Hence, {V i}i∈Zn is a tiling, i.e. the V i’s are closed, have no interior points in common and ∪iV i =

Rn. More precisely,

(iii) {V i}i∈Zn is a normal tiling: for each tile V i we have BrΛ(xi) ⊆ V i ⊆ BRΛ(xi);

(iv) {V i}i∈Zn is a locally finite tiling: #(Λ ∩Bρ(x)) < +∞ for all x ∈ Rn, ρ > 0.

Further properties that will be repeatedly used in our analysis are summarized below. We omit

their proofs since they are justified by elementary counting arguments. For any A ∈ A(Rn) we set

IΛ(A) := {i ∈ Zn : V i ⊆ A}, IΛ(A) := {i ∈ Zn : V i ∩ ∂A 6= ∅}. (2.3)

Proposition 2.5. Let Λ ⊂ Rn be a Delone set and {V i}i∈Zn its induced Voronöı tessellation. Then,

ωnr
n
Λ#(IΛ(A)) ≤ Ln(A), ωnr

n
Λ#(IΛ(A)) ≤ (∂A)RΛ , Ln

(
A \ ∪IΛ(A)V

i
)
≤ (∂A)RΛ . (2.4)

In particular, there exists a constant c = c(n) > 0 such that for every i ∈ Zn, m ∈ N it holds

#{k ∈ IΛ(A) : mrΛ < |xi − xk|∞ ≤ (m+ 1)rΛ} ≤ cmn−1. (2.5)

2.4. Sobolev-Slobodeckij spaces. Let A ⊆ Rn be any bounded open Lipschitz set, p ∈ (1,+∞),

s ∈ (0, 1) and ps ∈ (1, n), by W s,p(A) we denote the usual Sobolev-Slobodeckij space, or Besov space

Bsp,p(A). The space is Banach if equipped with the norm ‖u‖W s,p(A) = ‖u‖Lp(A) + |u|W s,p(A), where

|u|pW s,p(A) :=
ˆ
A×A

|u(x)− u(y)|p

|x− y|n+sp
dxdy .

We will use several properties of fractional Sobolev spaces, giving precise references for those employed

in the sequel in the respective places mainly referring to [1] and [45].

In the indicated ranges for the parameters p, s it turns out that W s,p is a reflexive space (see [45,

Thm 4.8.2]), Sobolev embedding and Sobolev-Gagliardo-Nirenberg inequality hold (see [1, Chapter

V]), and traces are well defined (see (2.9) below). We remark that the restriction on s are necessary,

since otherwise W s,p(A) contains only constant functions if s ≥ 1, while for ps < 1 traces are not well

defined (see also (2.9) below). The exclusion of the other cases is related to capacitary issues (see

subsection 2.5).

Poincarè-Wirtinger and Poincarè inequalities in fractional Sobolev spaces are instrumental tools in

the sequel. Thus, we state explicitely those results in the form we need. Their proof clearly follows

from the usual argument by contradiction once W s,p is reflexive and is endowed with a trace operator.
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Theorem 2.6. Let n ≥ 1, p ∈ (1,+∞), and s ∈ (0, 1). Let A ⊂ Rn be a bounded, connected open

set, and O any measurable subset of A with Ln(O) > 0. Then for any function u ∈W s,p(A),

‖u− uO‖pLp(A) ≤ cPW |u|
p
W s,p(A), (2.6)

for a constant cPW = cPW (n, p, s, O,A). Moreover, for any u ∈W s,p
0 (U) we have

‖u‖pLp(A) ≤ cP |u|
p
W s,p(A), (2.7)

for a constant cP = cP (n, p, s, A).

Remark 2.7. Let (Φt)t∈T be a family of biLipschitz maps on A with supT (Lip(Φt) + Lip(Φ−1
t )) <

+∞, then a simple change of variables implies that the constants cPW (n, p, s,Φt(O),Φt(A)) and

cP (n, p, s,Φt(A)) are uniformly-bounded in t. In particular, a scaling argument and Hölder inequality

yield for any z ∈ Rn and r > 0 and for some c = c(n, p, s, O,A) > 0

‖u− uz+rO‖pLp(z+rA) ≤ c r
sp|u|pW s,p(z+rA). (2.8)

A similar conclusion holds for Poincaré inequality (2.7).

Next, we recall the fractional version of Hardy inequality (see [45, Theorem 4.3.2/1, Remark 2 pp.

319-320] and [46] for further comments). To this aim we introduce the space Ŵ s,p(B1) := {u ∈
W s,p(Rn) : sptu ⊂ B1}. It is clear that C∞0 (B1) is dense in Ŵ s,p(B1) for any p ∈ (1,+∞) and that

Ŵ s,p(B1) ⊆W s,p
0 (B1). The latter inclusion is strict if s− 1/p ∈ N, and more precisely it holds

W s,p
0 (B1) =

Ŵ
s,p(B1) if s > 1/p− 1, s− 1/p /∈ N

W s,p(B1) if s ∈ (0, 1/p].
(2.9)

Theorem 2.8. There exists a constant c = c(n, p, s) such that for every u ∈ Ŵ s,p(B1) we have
ˆ
B1

|u(x)|p

dist(x, ∂B1)sp
dx ≤ c

(
|u|pW s,p(B1) + ‖u‖pLp(B1)

)
.

Remark 2.9. The usual scaling argument, Poincaré inequality (2.7) and Theorem 2.8 then yield
ˆ
Br

|u(x)|p

dist(x, ∂Br)sp
dx ≤ c |u|pW s,p(Br) (2.10)

for every r > 0 and u ∈ Ŵ s,p(Br), for a constant c = c(n, p, s) independent from r.

2.5. Fractional capacities. We recall the notion of variational capacity for fractional Sobolev spaces

and prove some properties relevant in the developments below. Those properties, straightforward in

the local case, require more work in the non-local one. Let p ∈ (1,+∞) and s ∈ (0, 1) be given as

before, for any set T ⊆ Rn define

caps,p(T ) := inf
{A∈A(Rn):A⊇T}

inf
{
|u|pW s,p(Rn) : u ∈W s,p(Rn), u ≥ 1Ln a.e. on A

}
, (2.11)
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with the usual convention inf ∅ = +∞. The set function in (2.11) turns out to be a Choquet capacity

(see [1, Chapter V]). Recall that a property holds caps,p quasi everywhere, in short caps,p q.e. on A, if

it holds up to a set of caps,p zero. In particular, any function u in W s,p(A), A ∈ A(Rn), has a precise

representative ũ defined caps,p q.e. and the following formula holds (see [1, Proposition 5.3])

caps,p(T ) := inf
{
|w|pW s,p(Rn) : w ∈W s,p(Rn), w̃ ≥ 1 q.e. on T

}
. (2.12)

Coercivity of the fractional norm is ensured only in the Lp
∗
(Rn) topology, p∗ := np/(n − sp) is the

Sobolev exponent relative to p and s (see [1, Chapter V]). Thus, a minimizer for the capacitary problem

exists in the homogeneous space Ẇ s,p(Rn) = {u ∈ Lp
∗
(Rn) : |u|W s,p(Rn) < +∞}. Uniqueness is

guaranteed by the strict convexity of the fractional energy, thus the minimizer of (2.11), (2.12) will

be denoted by uT and called the capacitary potential for T .

Remark 2.10. If ps > n points have positive capacity and W s,p is embedded into C0. In this case

it is well known that the homogenized obstacle problem turns out to be trivial, this is the reason why

we required ps < n. The borderline case ps = n deserves an analysis similar to that we will perform

but different in some details, so that its study is not dealt with in this paper (see for instance [24] and

[17] in the local framework).

Let us prove that set inclusion induces an ordering among capacitary potentials. As a byproduct

we also show that admissible functions in the capacitary problem can be taken with values in [0, 1].

Lemma 2.11. If T ⊆ F , then 0 ≤ uT ≤ uF ≤ 1 Ln a.e. on Rn.

Proof. First, take note that for all u, v ∈ L1
loc(Rn) we have

|(u ∨ v)(x)− (u ∨ v)(y)| ≤ |u(x)− u(y)| ∨ |v(x)− v(y)|,
|(u ∧ v)(x)− (u ∧ v)(y)| ≤ |u(x)− u(y)| ∨ |v(x)− v(y)|.

(2.13)

In particular, uniqueness of the capacitary potential uT and by choosing v ≡ 0 in (2.13)1 and v ≡ 1

in (2.13)2 imply that 0 ≤ uT ≤ 1 Ln a.e. on Rn for any subset T ⊂ Rn.

Moreover, (2.13) yields that uT ∨ uF and uT ∧ uF ∈ Ẇ s,p(Rn). Set UT = {uT ≤ uF } and

UF = {uF < uT }, and assume by contradiction that Ln(UF ) > 0. By taking uT ∨ uF as test function

in the minimum problem caps,p(F ) and recalling the strict minimality of uF , we infer |uF |pW s,p(Rn) <

|uT ∨ uF |pW s,p(Rn). An easy computation then leads to

|uF |pW s,p(UF ) + 2
ˆ
UT×UF

|uF (x)− uF (y)|
|x− y|n+sp

dxdy < |uT |pW s,p(UF ) + 2
ˆ
UT×UF

|uT (x)− uF (y)|
|x− y|n+sp

dxdy.

The latter inequality can be used to estimate the fractional norm of uT ∧ uF as follows

|uT ∧ uF |pW s,p(Rn) < |u
T |pW s,p(Rn) (2.14)

+2
ˆ
UT×UF

|uT (x)− uF (y)|p + |uF (x)− uT (y)|p − |uT (x)− uT (y)|p − |uF (x)− uF (y)|p

|x− y|n+sp
dxdy.
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We claim that the second term on the rhs in (2.14) is non-positive, this would imply that the strict

inequality sign holds above, which in turn would give a contradiction since uT ∧ uF is a test function

for the capacitary problem related to T .

To conclude consider the auxiliary function ψ(s, t) := |s−uT (y)|p+ |uT (x)− t|p−|s− t|p−|uT (y)−
uT (x)|p and the set H := {(s, t) : s ≥ uT (x), t < uT (y)}. Elementary calculations yield that

maxH ψ ≤ 0. Take note that the numerator of the integrand of the second term in the rhs of (2.14)

equals to ψ(uF (x), uF (y)) and uF (x) ≥ uT (x) Ln a.e. x ∈ UT , and uF (y) < uT (y) Ln a.e. y ∈ UF .

In the sequel we are interested into relative capacities, for which we introduce two different notions.

The first one is useful in the Γ-liminf inequality, the second in the Γ-limsup inequality, respectively.

For every 0 < r ≤ R set

caps,p(T,BR; r) := inf
{
|w|pW s,p(BR) : w ∈W s,p(Rn), w = 0 on Rn \Br, w̃ ≥ 1 q.e. on T

}
,

and

Cs,p(T,BR) := inf
{
|w|pW s,p(Rn) : w ∈W s,p(Rn), w = 0 on Rn \BR, w̃ ≥ 1 q.e. on T

}
.

To prove the convergence of relative capacities to the global one we introduce some notation to simplify

the calculations below: for any Ln-measurable function w and any Ln×n-measurable set E ⊆ U × U
consider the locality defect of the W s,p seminorm

Ds,p(w,E) :=
ˆ
E

|w(x)− w(y)|p

|x− y|n+sp
dxdy .

The terminology is justified since given two disjoint subdomains A,B ⊆ U , it holds

|w|pW s,p(A∪B) = |w|pW s,p(A) + |w|pW s,p(B) + 2Ds,p(w,A×B). (2.15)

In particular, Ds,p(w,A×A) = |w|pW s,p(A).

We are now in a position to prove the claimed converge result for relative capacities. Actually, we

show uniform convergence for families of equi-bounded sets. A different argument yielding pointwise

convergence will be exploited in the generalizations of subsection 3.4 (see Lemma 3.12). The latter

is sufficient for the proof of Theorem 3.3; the advantage of the approach below is that it can be

carried over straightforward to the case of obstacles with random sizes and shapes for which uniform

convergence is necessary (see subsection 4.1).

Lemma 2.12. For all ρ > 0 it holds

lim
r→+∞

sup
T⊆Bρ

|Cs,p(T,Br)− caps,p(T )| = 0. (2.16)

Moreover, there exists a constant c = c(n, s, p) such that for all 0 < ρ < r < R

sup
T⊆Bρ

(
caps,p(T )− caps,p(T,BR; r)

)
≤ c rsp

(R− r)sp
Cs,p(Bρ, Br). (2.17)
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In addition, if R(r)/r → +∞ as r → +∞ we have

lim
r→+∞

sup
T⊆Bρ

|caps,p(T )− caps,p(T,BR(r); r)| = 0. (2.18)

Proof. It is clear from the very definitions that (0,+∞) 3 r → Cs,p(T,Br) is monotone decreasing,

and moreover that caps,p(T,BR; r) ≤ Cs,p(T,Br), caps,p(T ) ≤ Cs,p(T,Br).
Let us first prove (2.16). To this aim take uT , uBρ ∈ Ẇ s,p(Rn) the capacitary potentials of T

and Bρ, respectively; by Lemma 2.11 we have 0 ≤ uT ≤ uBρ ≤ 1 Ln a.e. on Rn. In addition, uBρ

is radially symmetric and decreasing (to zero) since the fractional norm is stricly convex, rotation

invariant and decreasing under radial rearrangements (for the last result see [3, Section 9]).

With fixed δ > 0 consider the Lipschitz map ψδ(t) := t−δ
1−δ ∨ 0, Lip(ψδ) ≤ (1 − δ)−1, and set

wδ(x) := ψδ(uT (x)). Up to Ln negligible sets, {wδ > 0} = {uT > δ} ⊆ {uBρ > δ} ⊆ BRδ , for some

Rδ → +∞ as δ → 0+. Then wδ ∈W s,p(Rn) with

|wδ|pW s,p(Rn) ≤
1

(1− δ)p
|uT |pW s,p(Rn) =

1
(1− δ)p

caps,p(T ), ‖wδ‖Lp(Rn) ≤
1

1− δ
‖uT ‖Lp(BRδ ).

Moreover, w̃δ ≥ 1 q.e. on T . Since caps,p(·) is an increasing set function, we infer

0 ≤ Cs,p(T,Rδ)− caps,p(T ) ≤
(

1
(1− δ)p

− 1
)

caps,p(T ) ≤
(

1
(1− δ)p

− 1
)

caps,p(Bρ).

In conclusion, (2.16) follows from the monotonicity properties of r → Cs,p(T,Br).

To prove (2.17) take note that any admissible function u for the minimum problem defining caps,p(T,BR; r)

is admissible for the one defining caps,p(T ), too. Furthermore, for some constant c = c(n, s, p) it holds

caps,p(T ) ≤ |u|pW s,p(Rn)

(2.15)
= |u|pW s,p(BR) + |u|pW s,p(BcR) + 2Ds,p(u,BR ×BcR)

u|Bcr=0
= |u|pW s,p(BR) + 2

ˆ
Br

dx

ˆ
BcR

|u(x)|p

|x− y|n+sp
dy

(ii) Lemma A.1

≤ |u|pW s,p(BR) + c

ˆ
Br

|u(x)|p

distsp(x, ∂BR)
dx

≤ |u|pW s,p(BR) +
c

(R− r)sp

ˆ
Br

|u(x)|pdx ≤ |u|pW s,p(BR) +
c rsp

(R− r)sp
|u|pW s,p(Br).

In the last inequality we used the scaled version of Poincarè inequality (2.7) as follows from Remark 2.7.

By passing to the infimum on the admissible test functions we infer

caps,p(T )− caps,p(T,BR; r) ≤ c rsp

(R− r)sp
caps,p(T,BR; r) ≤ c rsp

(R− r)sp
Cs,p(T,Br).

We deduce statement (2.17) since Cs,p(·, Br) is a monotone increasing set function.

Eventually, (2.18) follows at once from (2.16), (2.17), and the fact that caps,p(T,BR; r) ≤ Cs,p(T,Br).

Remark 2.13. Clearly estimate (2.17) blows up for r = R. In such a case by using Hardy inequality

one can only prove that caps,p(T ) ≤ (1 + c)caps,p(T,BR, R) for some c = c(n, s, p) > 0.
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Remark 2.14. If ξr is a (1/r)-minimizer for Cs,p(T,Br) and R(r)/r → +∞ as r → +∞, then

lim
r→+∞

Ds,p(ξr, BR(r) ×BcR(r)) = 0.

Indeed, being ξr admissible for the problem defining caps,p(T,BR; r), for all r < R, with

caps,p(T,BR; r) ≤ |ξr|pW s,p(BR) ≤ |ξr|
p
W s,p(Rn) ≤ Cs,p(T,Br) +

1
r
,

from (2.18) we conclude.

3. Deterministic Setting

3.1. Statement of the Main Result. Consider Delone sets Λj = {xij}i∈Zn , and let Rj := RΛj ,

Ij(A) := IΛj (A), Ij(A) := IΛj (A), for all A ∈ A(U) (see (2.3) for the definition of Ij , Ij). Fix

rj ∈ (0, rΛj ], and assume that the rj ’s and Λj ’s are such that

lim
j
rj = 0, (1 ≤) lim sup

j
(Rj/rj) < +∞, (3.1)

lim
j

#Ij(U) rnj = θ ∈ (0,+∞), (3.2)

µj :=
1

#Ij(U)

∑
i∈Ij(U)

δxi
j
→ µ := βLn U w∗-Cb(U), (3.3)

for some β ∈ L1(U, [0,+∞]) with ‖β‖L1(U) = 1.

Remark 3.1. Condition (3.2) implies that rj ∼ rΛj since lim supj #Ij(U) rnΛj < +∞ by (2.4)1 and

lim infj #Ij(U) rnΛj > 0 by (2.4)2 (see also Remark 3.4).

Remark 3.2. It is well known that the w∗-Cb(U) convergence of (µj)j∈N to µ in (3.3) can be restated

as

µj(A)→ µ(A) for all A ∈ A(U) with µ(U ∩ ∂A) = 0. (3.4)

Proposition 2.5 and conditions (3.1), (3.2) imply that assumption (3.3) is always satisfied up to sub-

sequences. First, let us show that any w∗-C0
0 (U) cluster point of the probability measures (µj)j∈N is

absolutely continuous w.r.to Ln U . For, let µj converge to µ w∗-C0
0 (U), then since Brj (x

i
j) ⊆ V i

j ,

for every ϕ ∈ C0
0 (U) and δ > 0 uniform continuity yields for j sufficiently bigˆ

U

ϕdµj =
1

#Ij(U)

∑
Ij(U)

ϕ(xij) ≤
1

#Ij(U)

∑
Ij(U)

 
V i
j

ϕdx+ δ ≤ 1
ωnrnj #Ij(U)

ˆ
U

|ϕ| dx+ δ.

By taking as test functions ±ϕ and first letting j → +∞ and then δ → 0+ we infer∣∣∣∣ˆ
U

ϕdµ

∣∣∣∣ ≤ 1
ωnθ

ˆ
U

|ϕ| dx.

The latter inequality implies µ � Ln U . Actually, since V i
j ⊆ BRj (x

i
j) arguing as above it follows

β ∈ L∞(U) with (lim infj rj/Rj)n ≤ ωnθβ(x) ≤ 1 for Ln a.e. x ∈ U .

Furthermore, take A′, A ∈ A(U) such that A′ ⊂⊂ A ⊂⊂ U , then for j sufficiently big we have
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µj(A) =
#{i ∈ Ij(U) : xij ∈ A}

#Ij(U)
≥ #Ij(A′) + #Ij(A′)

#Ij(U)

= 1− #Ij(U \A′)
#Ij(U)

(2.4)1,(2.4)2
≥ 1− Ln(U \A′)(

rΛj
RΛj

)n
Ln(U)− (∂U)RΛj

.

Hence, equi-tightness of (µj)j∈N follows from

lim inf
j

µj(A) ≥ 1− lim sup
j

(
RΛj

rΛj

)n Ln(U \A′)
Ln(U)

.

Thus, Prokhorov theorem gives the w∗-Cb(U) compactness in (3.3) up to subsequences.

With fixed a bounded set T , for all j ∈ N define the obstacle set Tj ⊆ Rn by Tj = ∪i∈ZnT i
j where

T i
j := xij + λjT, and λj := r

n/(n−sp)
j . (3.5)

Take note that T i
j ⊆ V i

j for all i ∈ Zn and j ∈ N.

Consider the functionals Fj : Lp(U)→ [0,+∞] defined by

Fj(u) =

|u|
p
W s,p(U) if u ∈W s,p(U), ũ = 0 caps,p q.e. on Tj ∩ U

+∞ otherwise.
(3.6)

Theorem 3.3. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary; and assume

that (3.1)-(3.3) are satisfied.

The sequence (Fj)j∈N Γ-converges in the Lp(U) topology to F : Lp(U)→ [0,+∞] defined by

F(u) = |u|pW s,p(U) + θ caps,p(T )
ˆ
U

|u(x)|pβ(x) dx (3.7)

if u ∈W s,p(U), +∞ otherwise in Lp(U).

Remark 3.4. If θ ∈ {0,+∞} simple comparison arguments show that the conclusions of Theorem 3.3

still hold true, though the Γ-limit is trivial in both cases.

Let us show some examples of sets of points included in the framework above. In the sequel (εj)j∈N

will always denote a positive infinitesimal sequence.

Example 3.5. Given a Delone set of points Λ in Rn let Λj := εjΛ, then rΛj = εjrΛ and RΛj = εjRΛ.

If rj ∼ rΛj assumptions (3.2) and (3.3) hold true up to the extraction of a subsequence according to

Remark 3.2, respectively. Several ways of generating Delone sets of points are discussed in [42].

More explicit examples can be obtained as follows (see Examples 4.9, 4.10 for the stochastic versions).

Example 3.6. Let Φ : Rn → Rn be a diffeomorphism satisfying

‖∇Φ‖L∞(Rn) ≤M, and inf
Rn

det∇Φ ≥ ν > 0.
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Then the smallest eigenvalue of ∇tΦ∇Φ is greater than νM1−n, and thus for all x, y ∈ Rn

νM1−n|x− y| ≤ |Φ(x)− Φ(y)| ≤M |x− y|.

Set Λj = {Φ(εji)}i∈Zn , then (νM1−n/2)εj ≤ rΛj ≤ RΛj ≤ Mεj. An easy computation and (3.4)

yield the w∗-Cb(U) convergence of the measures µj in (3.3) to µ = βLn U with

β(x) =
(ˆ

U

det∇Φ−1(x) dx
)−1

det∇Φ−1(x).

Eventually, if rj ∈ (0, rΛj ] with rj/εj → γ > 0 we have θ = γn
´
U

det∇Φ−1(x) dx.

Example 3.7. Let Φ be a diffeomorphism as in the previous example, and set Λj = {εjΦ(i)}i∈Zn .

As before, we have (νM1−d/2)εj ≤ rΛj ≤ RΛj ≤ Mεj, by using (3.4) it can be checked that if

(det∇Φ−1)(·/εj)j∈N converge to g weakly ∗ in L∞loc(Rn), the measures µj in (3.3) converge w∗-Cb(U)

to µ = βLn U with

β(x) =
(ˆ

U

g(x) dx
)−1

g(x).

By choosing rj ∈ (0, rΛj ] with rj/εj → γ > 0, we have θ = γn
´
U
g(x) dx.

3.2. Technical Lemmas. To prove Theorem 3.3 we establish two technical results which are instru-

mental for our strategy. Roughly speaking we show that the Γ-limit can be computed on sequences of

functions matching the values of their limit on suitable annuli surrounding the obstacle sets. To give

a proof as much clear as possible we first work in an unscaled setting in Lemma 3.8, and then turn

to the framework of interest in Lemma 3.9. The method of proof is elementary and based on a clever

slicing and averaging argument, looking for those zones where the energy does not concentrate. The

relevant property we prove is that the energetic error of the construction we perform is estimated by

a local term: a measure.

Lemma 3.8. Let Λ be a Delone set of points. For any m ∈ N, m ≥ 2, ρ ∈ (0, rΛ/2) and i ∈ IΛ(U)

let A′i = xi +Bρ/m \Bρ/m2 , Ai = xi +Bρ \Bρ/m3 , and ϕi(·) = ϕ(·−xi), where ϕ is a cut-off function

between Bρ/m \Bρ/m2 and Bρ \Bρ/m3 .

Then there exists a constant c = c(n, p, s) > 0 such that for any function u ∈ W s,p(U), and any

#IΛ(U)-tuple of vectors {zi}i∈IΛ(U), zi ∈ Rn, the function

w(x) =
∑

i∈IΛ(U)

ϕi(x)zi +

1−
∑

i∈IΛ(U)

ϕi(x)

u(x)

belongs to W s,p(U), u = zi on A′i and w = u on U \ A, with A := ∪i∈IΛ(U)Ai; in addition for every

measurable set E ⊆ U × U it holds

|Ds,p(w,E)−Ds,p(u,E)| ≤ c

Ds,p(u, U ×A) +m2pρ−sp
∑

i∈IΛ(U)

ˆ
Ai

|u(y)− zi|p dy

 . (3.8)
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Proof. By construction w = u on U \A and u = zi on A′i for each i.

To prove that w ∈W s,p(U) and estimate (3.8) in case E = U × U we use (2.15) to get

|w|pW s,p(U) = |u|p
W s,p(U\A)

+ |w|pW s,p(A) + 2Ds,p(w,A× (U \A)). (3.9)

In order to control the last two terms on the rhs above we will use two different splitting of the

oscillation w(x)− w(y) corresponding roughly to short range and long range interactions estimates.

First decompose further the seminorm of w on A in (3.9) as follows,

|w|pW s,p(A) =
∑

i∈IΛ(U)

ˆ
Ai×Ai

. . . dxdy +
∑

{(i,k): i6=k}

ˆ
Ai×Ak

. . . dxdy =: I1 + I2. (3.10)

Next we deal with I1: since ϕl ≡ 0 on Ai for l 6= i and 0 ≤ ϕi ≤ 1 we have

I1 =
∑

i∈IΛ(U)

ˆ
Ai×Ai

|(1− ϕi(x))u(x)− (1− ϕi(y))u(y) + (ϕi(x)− ϕi(y))zi|p

|x− y|n+sp
dxdy

±(1−ϕi(x))u(y)

≤ 2p−1
∑

i∈IΛ(U)

(
|u|pW s,p(Ai)

+
ˆ
Ai×Ai

|(ϕi(y)− ϕi(x))(u(y)− zi)|p

|x− y|n+sp
dxdy

)
.

Take note that Lip(ϕi) ≤ 2m2/ρ for all i ∈ IΛ(U), then Fubini theorem and (i) in Lemma A.1 applied

with ν = n+ (s− 1)p and O = Ai imply

I1 ≤ 2p−1
∑

i∈IΛ(U)

(
|u|pW s,p(Ai)

+
(

2m2

ρ

)p ˆ
Ai×Ai

|u(y)− zi|p

|x− y|n+(s−1)p
dxdy

)

≤ c
∑

i∈IΛ(U)

(
|u|pW s,p(Ai)

+m2pρ−sp
ˆ
Ai

|u(y)− zi|pdy
)
. (3.11)

To estimate I2 we rewrite w as follows

w(x)− w(y) = u(x)− u(y) +
∑

l∈IΛ(U)

ϕl(x)(zl − u(x)) +
∑

l∈IΛ(U)

ϕl(y)(u(y)− zl). (3.12)

With the help of (3.12) and since ϕl ≡ 0 on A \Al we infer

I2 =
∑

{(i,k): i6=k}

ˆ
Ai×Ak

|u(x)− u(y) + ϕi(x)(zi − u(x)) + ϕk(y)(u(y)− zk)|p

|x− y|n+sp
dxdy.

Thus, we can bound each summand in I2 as follows
ˆ
Ai×Ak

|w(x)− w(y)|p

|x− y|n+sp
dxdy ≤ 3p−1Ds,p(u,Ai ×Ak) (3.13)

+3p−1

ˆ
Ai

dx

ˆ
Ak

|ϕi(x)(u(x)− zi)|p

|x− y|n+sp
dy + 3p−1

ˆ
Ak

dy

ˆ
Ai

|ϕk(y)(u(y)− zk)|p

|x− y|n+sp
dx.

Further, take note that for every fixed (i, k), with i 6= k, if x ∈ Ai and y ∈ Ak we have |x − y| ≥
dist(Ai, Ak) ≥ |xi − xk| − rΛ, and then |x − y| ≥ |xi − xk|/2 since |xi − xk| ≥ 2rΛ. Hence, being
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Ln(Ak) ≤ ωnρ
n for all k ∈ Zn, from (2.5) and the choice ρ ∈ (0, rΛ/2) it follows for some constant

c = c(n) > 0 ∑
{k: k6=i}

ˆ
Ak

1
|x− y|n+sp

dy ≤ c
∑
{k: k6=i}

ρn

|xi − xk|n+sp
(3.14)

≤ c
∑
h≥1

∑
{k6=i, hrΛ<|xi−xk|∞≤(h+1)rΛ}

ρn

(hrΛ)n+sp
≤ c

ρsp

∑
h≥1

1
h1+sp

.

By summing up on (i, k), i 6= k, Fubini theorem, (3.13) and (3.14) imply for some c = c(n, p, s) > 0

I2 ≤ 3p−1Ds,p(u,∪i(Ai × ∪k6=iAk)) +
c

ρsp

∑
i∈IΛ(U)

ˆ
Ai

|u(x)− zi|pdx, (3.15)

We turn now to the locality defect term in (3.9). We use again equality (3.12) and notice that ϕi ≡ 0

on U \Ai to infer

Ds,p(w,A× (U \A)) ≤ 2p−1Ds,p(u,A× (U \A)) + 2p−1

ˆ
A×(U\A)

∣∣∣∑IΛ(U) ϕi(x)(u(x)− zi)
∣∣∣p

|x− y|n+sp
dxdy

= 2p−1Ds,p(u,A× (U \A)) + 2p−1
∑

i∈IΛ(U)

ˆ
Ai×(U\A)

|ϕi(x)(u(x)− zi)|p

|x− y|n+sp
dxdy. (3.16)

We fix i ∈ Zn and define ∆′i = (Ai × (U \ A)) ∩∆ρ, then by using |ϕi(x) − ϕi(y)| ≤ 2m2|x − y|/ρ,

with ϕi(y) = 0 for y ∈ U \A, Fubini theorem and a direct integration yieldˆ
∆′i

|ϕi(x)(u(x)− zi)|p

|x− y|n+sp
dxdy ≤ (2m2)pρ−p

ˆ
∆′i

|u(x)− zi|p

|x− y|n+(s−1)p
dxdy (3.17)

≤ (2m2)pρ−p
ˆ
Ai

dx

ˆ
Bρ(x)

|u(x)− zi|p

|x− y|n+(s−1)p
dy =

nωn(2m2)p

p(1− s)
ρ−sp

ˆ
Ai

|u(x)− zi|pdx.

Let now ∆′′i = (Ai × (U \A)) \∆ρ, then we argue as above using |ϕi(x)− ϕi(y)| ≤ 1 to get again by

a direct integrationˆ
∆′′i

|ϕi(x)(u(x)− zi)|p

|x− y|n+sp
dxdy ≤

ˆ
∆′′i

|u(x)− zi|p

|x− y|n+sp
dxdy

≤
ˆ
Ai

dx

ˆ
Rn\Bρ(x)

|u(x)− zi|p

|x− y|n+sp
dy =

nωn
sp

ρ−sp
ˆ
Ai

|u(x)− zi|pdx. (3.18)

By taking into account (3.16)-(3.18) we deduce

Ds,p(w,A× (U \A)) ≤ 2p−1Ds,p(u,A× (U \A)) + cm2pρ−sp
∑

i∈IΛ(U)

ˆ
Ai

|u(x)− zi|pdx. (3.19)

By collecting (3.9), (3.11), (3.15), and (3.19) we infer w ∈W s,p(U) and estimate (3.8) for U × U .

For any measurable subset E in U × U , being w = u on U \A, we have

|Ds,p(w,E)−Ds,p(u,E)| = |Ds,p(w,E ∩ (U ×A))−Ds,p(u,E ∩ (U ×A))|

≤ |w|pW s,p(A) +Ds,p(w, (U \A)×A) +Ds,p(u, U ×A).

Eventually, (3.8) follows at once by taking into account (3.10)-(3.19).
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By scaling Lemma 3.8 we establish a joining lemma for fractional type energies.

Before starting the proof we fix some notation: having fixed m ∈ N and set Ij := IΛj (U), for all

i ∈ Ij and h ∈ N let

Bi,h
j = {x ∈ Rn : |x− xij | < m−3hrj}, Ci,h

j := {x ∈ Rn : m−3h−2rj < |x− xij | < m−3h−1rj}.

Clearly, we have Ci,h
j ⊂ Bi,h

j \Bi,h+1

j ⊂ V i
j .

Lemma 3.9. Let (uj)j∈N be converging to u in Lp(U) with supj |uj |W s,p(U) < +∞. With fixed m,

N ∈ N, for every j ∈ N there exists hj ∈ {1, . . . , N} and a function wj ∈W s,p(U) such that

wj ≡ uj on U \ ∪i∈Ij (B
i,hj
j \Bi,hj+1

j ), (3.20)

wj(x) ≡ (uj)
C

i,hj
j

on C
i,hj
j , (3.21)

for some c = c(n, p, s,m) > 0 it holds for every measurable set E in U × U

|Ds,p(uj , E)−Ds,p(wj , E)| ≤ c

N
|uj |pW s,p(U), (3.22)

and the sequences (wj)j∈N, (ζj)j∈N, with ζj :=
∑

i∈Ij(U)(uj)Ci,hj
j

χV i
j

, converge to u in Lp(U).

In addition, if uj ∈ L∞(U)

‖wj‖L∞(U) ≤ ‖uj‖L∞(U). (3.23)

Proof. Given m, N ∈ N, then for every j ∈ N and h ∈ {1, . . . , N} fixed, apply Lemma 3.8 with

(A′)hi := Ci,h
j , Ahi := Bi,h

j \ Bi,h+1

j , zi = (uj)Ci,h
j

, i ∈ Ij . Take note that ρ = m−3hrj . If wi,hj
denotes the resulting function and Ah = ∪i∈IjAhi , then for some constant c = c(n, p, s) and for any

measurable set E in U × U by (3.8) it holds

|Ds,p(uj , E)−Ds,p(wj , E)| ≤ cDs,p(uj , U ×Ah) + cm2p

(
m3h

rj

)ps ∑
i∈Ij

ˆ
Ahi

|uj − (uj)Ci,h
j
|pdx.

This estimate, together with the scaled Poincarè-Wirtinger inequality (2.8) with r = m−3hrj , gives

|Ds,p(uj , E)−Ds,p(wj , E)| ≤ c
(
Ds,p(uj , U ×Ah) + |uj |pW s,p(Ah)

)
≤ cDs,p(uj , U ×Ah), (3.24)

fro some c = c(n, p, s,m) > 0. By summing up and averaging on h, being the Ah’s disjoint, we find

hj ∈ {1, . . . , N} such that

Ds,p(uj , U ×Ahj ) ≤
1
N
Ds,p(uj , U × ∪hAh). (3.25)

Set wj := w
i,hj
j , then (3.20) and (3.21) are satisfied by construction, and moreover (3.24) and (3.25)

imply (3.22).

To prove that (wj)j∈N converges to u in Lp(U) we use (2.8), with r = m−3hrj , and the very

definition of wj as convex combination of uj and the mean value (uj)
C
i,hj
j

on B
i,hj
j \Bi,hj+1

j to get

‖uj − wj‖pLp(U) = ‖uj − wj‖pLp(Ahj )
=
∑
i∈Ij

‖uj − wj‖p
Lp(B

i,hj
j \B

i,hj+1
j )
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≤
∑
i∈Ij

‖uj − (uj)
C
i,hj
j

‖p
Lp(B

i,hj
j \B

i,hj+1
j )

≤ c
( rj
m3hj

)ps ∑
i∈Ij

|uj |p
W s,p(B

i,hj
j \B

i,hj+1
j )

≤ crpsj |uj |
p
W s,p(U),

where c = c(n, p, s,m) > 0.

Eventually, let us show the convergence of (ζj)j∈N to u in Lp(U). To this aim we prove that

(ζj − uj)j∈N is infinitesimal in Lp(U). Fix any number M with supj Rj/rj < M < +∞ (see (3.1)),

we claim that for some constant c = c(n, p, s,m,M,N) > 0 we have∑
i∈Ij

‖uj − (uj)
C

i,hj
j

‖p
Lp(V i

j )
≤ c rspj |uj |

p
W s,p(U). (3.26)

Given this for granted the conclusion is a straightforward consequence of the definition of ζj , of (3.26),

of (2.4)3 and of the equi-integrability of (|uj |p)j∈N, i.e.

‖ζj − uj‖pLp(U) =
∑
i∈Ij

‖uj − (uj)
C

i,hj
j

‖p
Lp(V i

j )
+ ‖uj‖pLp(U\∪IjV

i
j )
.

To prove (3.26) we use (2.8) and the fact that the balls BMrj (x
i
j) have (uniformly) finite overlapping.

More precisely, the inclusions V i
j ⊆ BRj (x

i
j) ⊆ BMrj (x

i
j) and (2.8) applied with r = rj give for some

c = c(n, p, s,m,M,N) > 0

‖uj − (uj)
C

i,hj
j

‖p
Lp(V i

j )
≤ ‖uj − (uj)

C
i,hj
j

‖p
Lp(BMrj (xi

j))
≤ c rpsj |uj |

p
W s,p(BMrj (xi

j))
.

Moreover, since Λj is a Delone set and by definition rj ≤ rΛj , an elementary counting argument

implies supi∈Zn #{k ∈ Zn : BMrj (x
i
j) ∩BMrj (x

k
j) 6= ∅} ≤ (2M + 1)n for all j ∈ N.

Finally, (3.23) follows by construction.

3.3. Proof of the Γ-convergence. We establish the Γ-convergence result in Theorem 3.3. It will

be a consequence of Propositions 3.10, 3.11, below. We start with the lower bound inequality.

Proposition 3.10. For every uj → u in Lp(U) we have

lim inf
j

Fj(uj) ≥ F(u).

Proof. Fix N ∈ N, δ > 0, and set m = b1/δc ∈ N, b·c denoting the integer part function. Consider

the sequence (wj)j∈N provided by Lemma 3.9. We do not highlight its dependence on δ, N for the

sake of notational convenience. We remark that whatever the choice of δ and N is, we have that

(wj)j∈N converges to u in Lp(U) and that for some c = c(n, p, s, δ) it holds(
1 +

c

N

)
lim inf

j
Fj(uj) ≥ lim inf

j
Fj(wj). (3.27)

Furthermore, we note that for j sufficiently big ∪i∈Ij (V i
j × V i

j ) ⊆ ∆δ, and thus

lim inf
j

Fj(wj) ≥ lim inf
j

ˆ
U×U\∆δ

|wj(x)− wj(y)|p

|x− y|n+sp
dx dy +

∑
i∈Ij

|wj |pW s,p(V i
j )
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≥
ˆ
U×U\∆δ

|u(x)− u(y)|p

|x− y|n+sp
dx dy + lim inf

j

∑
i∈Ij

|wj |pW s,p(V i
j )
, (3.28)

thanks to Fatou lemma. We claim that

lim inf
j

∑
i∈Ij

|wj |pW s,p(V i
j )
≥ θ (caps,p(T )− εδ)

ˆ
U

|u(x)|pβ(x)dx, (3.29)

with εδ > 0 infinitesimal as δ → 0+. Given this for granted, by (3.27) inequality (3.28) rewrites as(
1 +

c

N

)
lim inf

j
Fj(uj) ≥

ˆ
U×U\∆δ

|u(x)− u(y)|p

|x− y|n+sp
dx dy+ θ (caps,p(T )− εδ)

ˆ
U

|u(x)|pβ(x)dx. (3.30)

The thesis then follows by passing to the limit first as N → +∞ and then as δ → 0+ in (3.30).

To conclude we are left with proving (3.29). We keep the notation of Lemma 3.9, and further set

Bi
j := {x ∈ Rn : |x− xij | < m−(3hj+1)rj}, for all i ∈ Ij . Take note that Bi

j ⊆ V i
j . We have

|wj |pW s,p(V i
j )
≥ inf

{
|w|p

W s,p(Bi
j)

: w ∈W s,p(Rn), w = (uj)
C

i,hj
j

on C
i,hj
j , w̃ = 0 q.e. on T i

j

}
(3.31)

= inf
{
|w|p

W s,p(Bi
j)

: w ∈W s,p(Rn), w = 0 on C
i,hj
j , w̃ = (uj)

C
i,hj
j

q.e. on T i
j

}
= |(uj)

C
i,hj
j

|pcaps,p
(
T i
j , B

i
j ;

rj
m3hj+2

)
= λn−psj |(uj)

C
i,hj
j

|pcaps,p

(
T,B rj

m
3hj+1

λj

;
rj

m3hj+2λj

)
.

The last equality is justified by an elementary translation and scaling argument. Thanks to (2.17) in

Lemma 2.12, by recalling that hj ∈ {1, . . . , N}, we get the following estimate

caps,p

(
T,B rj

m
3hj+1

λj

;
rj

m3hj+2λj

)
≥ caps,p(T )− c

(m− 1)sp
Cs,p

(
B1, B rj

m
3hj+2

λj

)
.

Hence, if A ∈ A(U) is such that A ⊂⊂ U , for j sufficiently big we infer

∑
i∈Ij

|wj |pW s,p(V i
j )
≥

(
caps,p(T )− c

(m− 1)sp
Cs,p

(
B1, B rj

m
3hj+2

λj

))ˆ
A

|ζj(x)|pΨj(x)dx,

where Ψj(x) :=
∑

i∈Ij λ
n−sp
j (Ln(V i

j ))−1χV i
j
(x) and ζj is defined in Lemma 3.9. Take note that by

(2.4)2 we have ∣∣∣∣ˆ
A′

Ψj(x)dx− λn−spj #(Ij(A′))
∣∣∣∣ ≤ λn−spj #(Ij(A′)) ≤ ω−1

n Ln((∂A′)Rj )

for any A′ ∈ A(U). Testing the inequality above for all cubes in U with sides parallel to the coordinate

axes, centers and vertices with rational coordinates yields Ψj → θ β weak∗ L∞(U) by (3.2) and (3.3).

By taking this into account, the thesis follows at once by the convergence of relative capacities

to the global one proved in (2.16) of Lemma 2.12, the strong convergence of (ζj)j∈N to u in Lp(U)

established in Lemma 3.9, and eventually by letting A increase to U .
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In the next proposition we prove that the lower bound established in Proposition 3.10 is attained. In

doing that the main difficulty is to show that the inequalities in (3.28) are optimal. Due to the insight

provided by Proposition 3.10 we show that the capacitary contribution is concentrated along the

diagonal set ∆ and is due to short range interactions. Instead, long range interactions are responsible

for the non-local term in the limit.

Proposition 3.11. For every u ∈ Lp(U) there exists a sequence (uj)j∈N such that uj → u in Lp(U)

and

lim sup
j

Fj(uj) ≤ F(u).

Proof. We may assume u ∈ W 1,∞(U) by a standard density argument and the lower semicontinuity

of Γ- lim supFj .
With fixed N ∈ N, let ξN ∈ W s,p(Rn) be such that ξN = 0 on Rn \ BN , ξ̃N ≥ 1 caps,p q.e. on T

and |ξN |pW s,p(Rn) ≤ Cs,p(T,BN ) + 1/N , and let ζ ∈ C∞0 (BN ) be any function such that ζ ≡ 1 on BrΛ ,

(Lipζ)p ≤ 2 and 0 ≤ ζ ≤ 1.

Let (wj)j∈N be the sequence obtained from u by applying Lemma 3.9 with m = 2. We keep the

notation introduced there and further set

Bi
j := {x ∈ Rn : |x− xij | < 2−3hjrj}, uij := u

C
i,hj
j

for every i ∈ Ij ,

B̂i
j := BNλj (x

i
j) ∩ U for every i ∈ Ij , Ij := IΛj (U),

Uj := U \
((
∪IjBi

j

)
∪
(
∪Ij B̂

i
j

))
.

Then, recalling that λj = r
n/(n−sp)
j , define

uj(x) :=


wj(x) Uj(

1− ξN
(
x−xi

j

λj

))
uij Bi

j , i ∈ Ij(
1− ζ

(
x−xi

j

λj

))
wj(x) B̂i

j , i ∈ Ij .

(3.32)

For the sake of notational simplicity we have not highlighted the dependence of the sequence (uj)j∈N

on the parameter N ∈ N. Clearly, (uj)j∈N converges strongly to u in Lp(U), and moreover it satisfies

the obstacle condition by construction. The rest of the proof is devoted to show that uj ∈ W s,p(U)

with

lim sup
j
Fj(uj) ≤ F(u) + εδ + εN ,

where εδ → 0+ as δ → 0+ and εN → 0+ as N → +∞.

A first reduction can be done by computing the energy of uj only on a neighborhood of the diagonal

∆. Indeed, Lebesgue dominated convergence and the stated convergence of (uj)j∈N to u in Lp(U)

imply

lim
j
Ds,p(uj , (U × U) \∆δ) = Ds,p(u, (U × U) \∆δ).
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In addition, since uj ≡ wj on Uj by (3.22) in Lemma 3.9 we have for some constant c = c(n, p, s)

lim sup
j
Ds,p(uj , (Uj×Uj)∩∆δ) ≤ lim sup

j
Ds,p(wj , (U×U)∩∆δ) ≤

(
1 +

c

N

)
Ds,p(u, (U×U)∩∆δ) = εδ.

(3.33)

The conclusion then follows provided we show that

lim sup
j

(
Ds,p(uj , (U × (U \ U j)) ∩∆δ) +Ds,p(uj , ((U \ U j)× Uj) ∩∆δ)

)
≤ θ caps,p(T )

ˆ
U

|u(x)|pβ(x)dx+ εN + εδ. (3.34)

In order to prove this we introduce the following splitting of the left hand side above:

Ds,p(uj , (U × (U \ U j)) ∩∆δ) ≤
∑
i∈Ij

|uj |pW s,p(Bi
j)

+
∑

{(i,k)∈I2
j : 0<|xi

j−xk
j |<δ}

Ds,p(uj , Bi
j ×Bk

j )

+2
∑
i∈Ij

Ds,p(uj , (Bi
j × Uj) ∩∆δ) +

∑
(i,k)∈I 2

j

Ds,p(uj , B̂i
j × B̂k

j )

+2
∑
i∈Ij

Ds,p(uj , (B̂i
j × Uj) ∩∆δ) + 2

∑
(i,k)∈Ij×Ij

Ds,p
(
uj , (Bi

j × B̂k
j ) ∩∆δ

)
=: I1

j + . . .+ I6
j .

Next we estimate separately each term Ihj , h ∈ {1, . . . , 6}. Since the computations below are quite

involved, we divide our argument into several steps to provide a proof as clear as possible. Take

note that all the constants c appearing in the rest of the proof depend only on n, p, s, hence this

dependence will no longer be indicated.

Step 1. Estimate of I1
j :

lim sup
j

I1
j ≤ θ (caps,p(T ) + εN )

ˆ
U

|u(x)|pβ(x)dx. (3.35)

A change of variables yields

I1
j = λn−spj

∑
i∈Ij

|uij |p|ξN |
p

W s,p(λ−1
j (Bi

j−xi
j))

≤
(
Cs,p(T,BN ) +

1
N

)∑
i∈Ij

rnj |uij |p =
(
Cs,p(T,BN ) +

1
N

)ˆ
U

|ζj(x)|pΨj(x)dx,

where Ψj(x) =
∑

i∈Ij λ
n−sp
j (Ln(V i

j ))−1χV i
j
(x) and ζj is defined in Lemma 3.9. Arguing as in Propo-

sition 3.10 and by Lemma 2.12 we conclude (3.35).

Step 2. Estimate of I2
j :

lim sup
j

I2
j ≤ εδ. (3.36)

Take note that by the very definition of uj in (3.32) for any (x, y) ∈ Bi
j × Bk

j , i 6= k and i, k ∈ Ij ,
we get

uj(x)− uj(y) =
(
uij − ukj

)
− ξN

(
λ−1
j (x− xij)

)
uij + ξN

(
λ−1
j (y − xkj)

)
ukj .
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Hence, we can bound I2
j as follows

I2
j ≤ 3p−1

∑
i∈Ij

∑
{k∈Ij : 0<|xi

j−xk
j |<δ}

ˆ
Bi
j×Bk

j

|uij − ukj |p

|x− y|n+sp
dxdy

+3p‖u‖pL∞(U)

∑
i∈Ij

∑
{k∈Ij : 0<|xi

j−xk
j |<δ}

ˆ
Bi
j×Bk

j

|ξN (λ−1
j (x− xij))|p

|x− y|n+sp
dxdy =: I2,1

j + I2,2
j .

Since |xij − xkj |/2 ≤ |x − y| ≤ 2|xij − xkj | for any (x, y) ∈ Bi
j × Bk

j , i, k ∈ Ij with i 6= k, we infer

|uij − ukj | ≤ 2Lip(u)|xij − xkj | being u ∈ Lip(U), and so we deduce
ˆ
Bi
j×Bk

j

|uij − ukj |p

|x− y|n+sp
dxdy ≤ cLipp(u)

r2n
j

|xij − xkj |n+(s−1)p
. (3.37)

To go on further we notice that for every fixed i ∈ Ij we have

{k ∈ Ij : 0 < |xij − xkj |∞ < δ} ⊆ ∪bδ/rjch=2 {k ∈ Ij : hrj ≤ |xij − xkj |∞ < (h+ 1)rj},

where btc denotes the integer part of t. The latter inclusion together with (2.4)1, (2.5) and (3.37)

entail

I2,1
j ≤ cLipp(u)

∑
i∈Ij

bδ/rjc∑
h=2

∑
{k∈Ij :hrj≤|xi

j−xk
j |∞<(h+1)rj}

r
n−(s−1)p
j

hn+(s−1)p

(2.4)1,(2.5)

≤ cLipp(u)
bδ/rjc∑
h=2

r
−(s−1)p
j

h1+(s−1)p
≤ cLipp(u)δ(1−s)p. (3.38)

In the last inequality we used that
∑M
h=2 h

−(1+γ) ≤ (M−γ)/(−γ), for any γ < 0 and M ∈ N.

To deal with I2,2
j we use a similar argument. Indeed, for every i ∈ Ij we have∑

{k∈Ij : k6=i}

ˆ
Bk
j

1
|x− y|n+sp

dy ≤ c
∑

{k∈Ij : k6=i}

rnj
|xij − xkj |n+sp

(2.5)

≤ c

rspj

∑
h≥1

1
h1+sp

.

Thus, being ξN (λ−1
j (· − xij)) supported in Bi

j , a change of variables yields

I2,2
j ≤ c ‖u‖pL∞(U)2

Nnλnj r
−n−sp
j ‖ξN‖pLp(BN ) = c ‖u‖pL∞(U)2

Nnr
(sp)2

n−sp
j ‖ξN‖pLp(BN ). (3.39)

Clearly, (3.38) and (3.39) imply (3.36).

Step 3. Estimate of I3
j :

lim sup
j

I3
j ≤ εδ + εN . (3.40)

Being uj ≡ wj on Uj and spt(ξN (λ−1
j (· − xij))) ⊆ Bi

j , we find

I3
j ≤ c ‖u‖

p
L∞(U)

∑
i∈Ij

Ds,p(ξN (λ−1
j (· − xij)), B

i
j × (U \Bi

j ))

+c
∑
i∈Ij

ˆ
Bi
j×Uj

|wj(x)− uij |p

|x− y|n+sp
dxdy + c

∑
i∈Ij

ˆ
(Bi
j×Uj)∩∆δ

|wj(y)− wj(x)|p

|x− y|n+sp
dxdy
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=: I3,1
j + I3,2

j + I3,3
j .

Note that by a change of variables the integral I3,1
j rewrites as

I3,1
j ≤ c ‖u‖pL∞(U)λ

n−sp
j r−nj Ds,p

(
ξN , B rj

8
hj λj

×

(
Rn \B rj

8
hj λj

))
= εN , (3.41)

by Remark 2.14. To deal with the term I3,2
j we first integrate out y and then use Hardy inequality:

I3,2
j ≤ c

∑
i∈Ij

ˆ
Bi
j

|wj(x)− uij |p

distsp(x, ∂Bi
j )
dx ≤ c

∑
i∈Ij

|wj |pW s,p(Bi
j)
≤ cDs,p(wj , (U × U) ∩∆δ)

(3.33)
= εδ. (3.42)

Finally, for what I3,3
j is concerned we have

I3,3
j ≤ cDs,p(wj , (U × U) ∩∆δ)

(3.33)
= εδ. (3.43)

By collecting (3.41)-(3.43) we infer (3.40).

Step 4. Estimate of I4
j :

lim sup
j

I4
j ≤ εδ. (3.44)

The very definition of uj in (3.32) gives for any (x, y) ∈ B̂i
j × B̂k

j , i, k ∈ Ij

uj(x)− uj(y) =
(
1− ζ

(
λ−1
j (x− xij)

))
wj(x)−

(
1− ζ

(
λ−1
j (y − xkj)

))
wj(y)

=
(
1− ζ

(
λ−1
j (x− xij)

))
(wj(x)− wj(y)) +

(
ζ
(
λ−1
j (x− xij)

)
− ζ

(
λ−1
j (y − xkj)

))
wj(y).

Distinguishing the couples of the form (i, i), i ∈ Ij , from the others we bound I4
j as follows

I4
j ≤ cDs,p(wj , (U × U) ∩∆δ) + c ‖u‖pL∞(U)

∑
i∈Ij

∣∣ζ (λ−1
j (· − xij)

)∣∣p
W s,p(B̂i

j)

+c ‖u‖pL∞(U)

∑
{(i,k)∈I 2

j : i6=k}

ˆ
B̂i
j×B̂k

j

|ζ(λ−1
j (x− xij))− ζ(λ−1

j (y − xkj))|p

|x− y|n+sp
dxdy := I4,1

j + I4,2
j + I4,3

j .

A change of variables and (2.4)2 yield

I4,1
j + I4,2

j ≤ cDs,p(wj , (U × U) ∩∆δ) + cLn
(
(∂U)Rj

)
|ζ|pW s,p(BN )

(3.33)

≤ εδ + c Ln
(
(∂U)Rj

)
. (3.45)

To deal with the term I4,3
j first note that

I4,3
j ≤ c ‖u‖pL∞(U)

∑
i∈Ij

ˆ
B̂i
j×(U\B̂i

j)

|ζ(λ−1
j (x− xij))|p

|x− y|n+sp
dxdy,

then integrate out y, scale back the x variable, and finally use Hardy inequality taking into account

that ζ ∈ C∞c (BN ):

I4,3
j ≤ c ‖u‖pL∞(U)

∑
i∈Ij

ˆ
B̂i
j

|ζ(λ−1
j (x− xij))|p

distsp(x, ∂B̂i
j )

dx = c ‖u‖pL∞(U)λ
n−sp
j

∑
i∈Ij

ˆ
BN

|ζ(x)|p

distsp(x, ∂BN )
dx

≤ c ‖u‖pL∞(U)λ
n−sp
j #(Ij)|ζ|pW s,p(BN ) ≤ c‖u‖

p
L∞(U)L

n
(
(∂U)Rj

)
|ζ|pW s,p(BN ) (3.46)
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by (2.4)2. In conclusion, (3.45) and (3.46) give (3.44).

Step 5. Estimate of I5
j :

lim sup
j

I5
j ≤ εδ. (3.47)

The computations are similar to the previous step once one notices that for any (x, y) ∈ B̂i
j × Uj ,

i ∈ Ij , it holds

uj(x)− uj(y) =
(
1− ζ

(
λ−1
j (x− xij)

))
wj(x)− wj(y) = (wj(x)− wj(y))− ζ

(
λ−1
j (x− xkj)

)
wj(x).

Hence, we bound I5
j by the sum of two terms, the first analogous to I4,1

j and the second to I4,3
j . Thus,

(3.47) follows.

Step 6. Estimate of I6
j :

lim sup
j

I6
j ≤ εδ. (3.48)

For (x, y) ∈ Bi
j × B̂k

j , i ∈ Ij and k ∈ Ij , we write

uj(x)− uj(y) =
(
1− ξN

(
λ−1
j (x− xij)

))
(uij − wj(x))

+
(
1− ξN

(
λ−1
j (x− xij)

))
wj(x)−

(
1− ζ

(
λ−1
j (y − xij)

))
wj(y).

Thus, we infer

I6
j ≤ c

∑
(i,k)∈Ij×Ij

ˆ
Bi
j×B̂k

j

|wj(x)− uij |p

|x− y|n+sp
dxdy+c ‖u‖pL∞(U)

∑
(i,k)∈Ij×Ij

ˆ
Bi
j×B̂k

j

|ζ(λ−1
j (y − xkj))|p

|x− y|n+sp
dxdy

+ c ‖u‖pL∞(U)

∑
(i,k)∈Ij×Ij : 0<|xi

j−xk
j |<δ}

ˆ
Bi
j×B̂k

j

|ξN (λ−1
j (x− xij))|p

|x− y|n+sp
dxdy := I6,1

j + I6,2
j + I6,3

j .

Clearly, I6,1
j can be estimated as I3,2

j , I6,2
j as I4,3

j , and I6,3
j as I2,2

j . In conclusion, (3.48) follows.

Step 7: Conclusion. By collecting Step 1 - Step 6 we infer

lim sup
j
Fj(uj) ≤ F(u) + εδ + εN ,

with the two terms on the rhs above infinitesimal as δ → 0+ and as N → +∞, respectively.

3.4. Generalizations. Anisotropic and homogeneous variations of the fractional semi-norm can be

treated essentially in the same way. Consider a Ln-measurable kernel K : Rn \ {0} → (0,+∞) such

that for all z ∈ Rn \ {0} and for some constant α ≥ 1 it holds

K(tz) = t−(n+sp)K(z) t > 0, α−1|z|−(n+sp) ≤ K(z) ≤ α|z|−(n+sp). (3.49)

Define K : W s,p(Rn)×A(Rn)→ [0,+∞) as

K(u,A) :=
ˆ
A×A

K(x− y)|u(x)− u(y)|p dxdy, (3.50)
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dropping the dependence on the set of integration in case A = Rn. All the relevant quantities

introduced in the preceding sections have analogous counterparts simply replacing the kernel |·|−(n+sp)

with K. For instance, the locality defect associated to the energy K is given by

DK(u,E) :=
ˆ
E

K(x− y)|u(x)− u(y)|pdxdy,

for any E ⊆ U × U Ln×n-measurable. We point out that in general, DK(u,A× B) 6= DK(u,B × A),

A and B being measurable subsets of Rn. Nevertheless, a splitting formula similar to (2.15) holds.

The only relevant changes are in the proof of Lemma 2.12 in which we exploited the invariance of

the kernel | · |−(n+sp) under rotations to establish (2.16). As already noticed before the statement of

Lemma 2.12, and as it turns out from the proof of Propositions 3.10, 3.11, in the current deterministic

setting it is sufficient to prove pointwise convergence of the relative capacities to infer the lower

bound estimate. This is the content of the next lemma. The argument below does not give uniform

convergence.

Lemma 3.12. Let r > 0 and define for every T ⊂ Rn

CK(T,Br) := inf {K(w) : w ∈W s,p(Rn), w = 0 on Rn \Br, w̃ ≥ 1 q.e. on T} .

Then

lim
r→+∞

CK(T,Br) = capK(T ). (3.51)

Moreover, there exists a constant c = c(n, s, p, α) such that for all 0 < r < R

capK(T )− capK(T,BR; r) ≤ c rsp

(R− r)sp
CK(T,Br), (3.52)

where capK(T,BR; r) := inf {K(w,BR) : w ∈W s,p(Rn), w = 0 on Rn \Br, w̃ ≥ 1 q.e. on T}.

Proof. Estimate (3.52) can be derived as we did for (2.17) thanks to (3.49)2.

It is clear that capK(T ) ≤ CK(T,Br) ≤ CK(T,BR) for all 0 < R < r, so that

lim
r→+∞

CK(T,Br) ≥ capK(T ).

Fix r > 0 such that T ⊆ Br/2 and let u ∈W s,p(Rn) be such that 0 ≤ u ≤ 1 Ln a.e. on Rn, ũ ≥ 1 q.e.

on T . Given ϕr a cut-off function between Br/2 and B3r/4 set wr := ϕru. By construction wr = u on

Br/2, wr ≡ 0 on Rn \B3r/4 and w̃r ≥ 1 q.e. on T . We claim that wr ∈W s,p(Rn) with

K(wr, Br) ≤ K(u,Br/2) (3.53)

+c(n, p, s, α)

(
DK(u,Br/2 × (Br \Br/2)) +DK(u, (Br \Br/2)×Br/2) + r−ps

ˆ
Br\Br/2

|u|pdx

)
.

To this aim we bound the energy of wr on Br by

K(wr, Br) ≤ K(u,Br/2) +DK(wr, Br/2 × (Br \Br/2)) +DK(wr, (Br \Br/2)×Br/2). (3.54)
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We estimate the first of the two locality defect terms in (3.54), the argument for the second being

analogous. In doing that we can follow the argument used in Lemma 3.8 for the locality defect term

(see (3.17)-(3.19)). Then, by (3.49)2 and since 0 ≤ ϕr ≤ 1, we infer

DK(wr, Br/2 × (Br \Br/2))

±ϕr(x)u(y)

≤ 2p
(
DK(u,Br/2 × (Br \Br/2) + α

ˆ
Br/2×(Br\Br/2)

|(ϕr(x)− ϕr(y))u(y)|p

|x− y|n+sp
dxdy

)

≤ c(n, p, s, α)

(
DK(u,Br/2 × (Br \Br/2) + r−ps

ˆ
Br\Br/2

|u|pdy

)
.

Formula (3.53) then follows at once.

Furthermore, since wr = 0 on Bc3r/4, (3.49)2 and (A.2) in Lemma A.1 yield

DK(wr, Br × (Rn \Br)) ≤ c(n, p, s)α r−ps
ˆ
Br

|u|pdx,

and thus we conclude wr ∈W s,p(Rn).

Eventually, since limr DK(u,Rn×(Rn\Br/2)) = limr DK(u, (Rn\Br/2)×Rn) = 0 and u ∈ Lp(Rn),

from (3.53) we conclude

lim
r
CK(T,Br) ≤ lim sup

r
K(wr, Br) ≤ K(u).

Taking the infimum on all admissible functions u we conclude.

With fixed U ∈ A(Rn), consider Kj : Lp(U)→ [0,+∞] given by

Kj(u) =

K(u, U) if u ∈W s,p(U), ũ = 0 caps,p q.e. on Tj ∩ U

+∞ otherwise.
(3.55)

Theorem 3.13. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary.

Then the sequence (Kj)j∈N Γ-converges in the Lp(U) topology to K : Lp(U)→ [0,+∞] defined by

K (u) = K(u) + θ capK(T )
ˆ
U

|u(x)|pβ(x) dx (3.56)

if u ∈W s,p(U), +∞ otherwise in Lp(U), where

capK(T ) := inf {K(w) : w ∈W s,p(Rn), w̃ ≥ 1 q.e. on T} .

Proof. The proof is the same of Theorem 3.3 a part from the necessary changes to the various technical

lemmas preceding Theorem 3.3. We indicate how these preliminaries must be appropriately restated.

We have shown the (pointwise) convergence of relative capacities in Lemma 3.12. Changing the

relevant quantities according to the substitution of the kernel | · |−(n+sp) with K, Lemmas 3.8 and 3.9

have analogous statements since the splitting formula (2.15) does.

In the proof of Proposition 3.10 we use the homogeneity of the kernel K (see (3.49)1) for the scaling

argument in (3.31) leading to the analogue of formula (3.29). This is the reason why we ask for (3.49)1.
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Proposition 3.11 needs few changes: in the definition of uj choose ξN to be a (1/N)-minimizer

of CK(T,BN ), the estimate of I1
j follows straightforward. For what the terms Ihj , h ∈ {2, . . . , 6} are

concerned it suffices to take note that by condition (3.49)2 the locality defect satisfies α−1Ds,p(u,E) ≤
DK(u,E) ≤ αDs,p(u,E). Hence, we can follow exactly Steps 2-6 to conclude.

Remark 3.14. Dropping the homogeneity assumption (3.49)1 on the kernel K the Γ-limit might not

exist. This fact had already been noticed in the local case (see [5]). Though, in such a framework

abstract integral representation and compactness arguments for local functional imply Γ-convergence

up to subsequences.

4. Random Settings

In this section we extend our analysis to two different random settings. First, we deal with obstacles

having random sizes and shapes located on points of a periodic lattice as introduced by Caffarelli

and Mellet [18], [19] (see also [32]). In particular, we provide a self-contained proof of the results in

[19], [32] avoiding extension techniques. Second, we consider random homothetics copies of a given

obstacle set placed on random Delone sets of points following the approach by Blanc, Le Bris and

Lions to define the energy of microscopic stochastic lattices [13] and to study some variants of the

usual stochastic homogenization theory [14].

We have not been able to work out a unified approach for the two frameworks described above.

The main issue for this being related to the interplay between the weighted version of the pointwise

ergodic theorem in Theorem 4.2 below and stationarity for random Delone sets of points (see (4.16)).

In both cases we are given a probability space (Ω,P,P) such that the group Zn acts on Ω via

measure-preserving transformations τi : Ω → Ω. The σ-subalgebra of P of the invariant sets of the

τi’s, i.e. O ⊆ Ω such that τiO = O for all i ∈ Zn, is denoted by I . Recall that (τi)i∈Zn is said to be

ergodic if I is trivial, i.e. O ∈ I satisfies either P(O) = 0 or P(O) = 1.

In the sequel we keep the notation introduced in Section 3 highlighting the dependence of relevant

quantities on ω when needed.

4.1. Obstacles with Random sizes and shapes. In this subsection we deal with the case of

obstacles with random sizes and shapes located on points of a lattice. We restrict to the standard cubic

one only for the sake of simplicity (see Remark 4.3 below for extensions). More precisely, let Λj = εjZn

with (εj)j∈N a positive infinitesimal sequence, then we have xij = εji, V i
j = εj(i + [−1/2, 1/2]n),

rΛj = εj/2 and RΛj =
√
nεj/2. In addition, if rj = εj/2 then θ = Ln(U)/2n and β ≡ 1/Ln(U). Thus,

to simplify the presentation we will use the scaling parameter εj instead of rj , and the more intuitive

notation Qi
j for V i

j .

Let us now fix the assumptions on the distribution of obstacles originally introduced by Caffarelli

and Mellet [18], [19]. For all ω ∈ Ω and j ∈ N the obstacle set Tj(ω) ⊆ Rn is given by Tj(ω) :=

∪i∈ZnT i
j (ω), where the sets T i

j (ω) ⊆ Qi
j , satisfy the following conditions:
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(O1). Capacitary Scaling: There exists a process γ : Zn×Ω→ [0,+∞) such that for all i ∈ Zn and

ω ∈ Ω

caps,p(T
i
j (ω)) = εnj γ(i, ω).

Moreover, for some γ0 > 0 we have for all i ∈ Zn and P a.s. ω ∈ Ω

γ(i, ω) ≤ γ0. (4.1)

(O2). Stationarity of the Process: The process γ : Zn ×Ω→ [0,+∞) is stationary w.r.to the family

(τi)i∈Zn , i.e. for all i, k ∈ Zn and ω ∈ Ω

γ(i + k, ω) = γ(i, τkω). (4.2)

(O3). Strong Separation: There exists a positive infinitesimal sequence (δj)j∈N, with δj = o(εj) and

ε
1+ n

n−sp
j = O(δj), such that T i

j (ω) ⊆ xij + δj(Qi
j − xij) for all i ∈ Zn, ω ∈ Ω.

Take note that by (O2) we have γ(i, ω) = γ(0, τ−iω), hence the random variables γ(i, ω) are identically

distributed. The common value of their expectations is denoted by E[γ], i.e.

E[γ] :=
ˆ

Ω

γ(0, ω)dP.

Moreover, E[γ,I ] denotes the conditional expectation of the process, i.e. the unique I -measurable

function in L1(Ω,P) such that for every set O ∈ I
ˆ
O

γ(0, ω)dP =
ˆ
O

E[γ,I ](ω)dP.

In the sequel we analyze the asymptotics of the energies Kj : Lp(U)× Ω→ [0,+∞] given by

Kj(u, ω) =

K(u) if u ∈W s,p(U), ũ = 0 caps,p q.e. on Tj(ω) ∩ U

+∞ otherwise.
(4.3)

where K is the functional in (3.50).

Theorem 4.1. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary, and assume

that the kernel K satisfies (3.49) and is invariant under rotations.

If (O1)-(O3) hold true, then there exists a set Ω′ ⊆ Ω of full probability such that for all ω ∈ Ω′ the

sequence (Kj(·, ω)) Γ-converges in the Lp(U) topology to K : Lp(U)× Ω→ [0,+∞] defined by

K (u, ω) = K(u) + E[γ,I ]
ˆ
U

|u(x)|p dx (4.4)

if u ∈W s,p(U), +∞ otherwise in Lp(U).

If in addition (τi)i∈Zn is ergodic then the Γ-limit is deterministic, i.e. E[γ,I ] = E[γ] P a.s. in Ω.

The proof of Theorem 4.1 builds upon Theorem 3.13 and upon a weighted ergodic theorem estab-

lished in [32, Theorem 4.1]. We give the proof of the latter result for the sake of convenience.
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Theorem 4.2. Let γ be satisfying (O2), then for every bounded open set V ⊂ Rn with Ln(∂V ) = 0

we have P a.s. in Ω

lim
j

1
#Ij(V )

∑
i∈Ij(V )

γ(i, ω) = E[γ,I ], (4.5)

and

Ψj(x, ω) :=
∑

i∈Ij(V )

γ(i, ω)χQi
j
(x)→ E[γ,I ] weak∗ L∞(V ). (4.6)

Proof. Define the operators Ti : L1(Ω,P)→ L1(Ω,P) by Ti(f) := f ◦ τi for every i ∈ Zn. The group

property of (τi)i∈Zn implies that S = {Ti}i∈Zn is a multiparameter semigroup generated by the

commuting isometries Ter for r ∈ {1, . . . , n}, being {e1, . . . , en} the canonical basis of Rn.

We define a process F on bounded Borel sets V of Rn with values in L∞(Ω,P). Set Q1 :=

[−1/2, 1/2]n and let F be as follows

FV (ω) :=
∑

{i∈Zn: i+Q1⊆V }

γ(i, ω),

with the convention that FV (ω) := 0 if the set of summation is empty. It is clear that F is additive,

that is it satisfies

(i) F is stationary: Ti ◦ FV = FV+i for all i ∈ Zn;

(ii) FV1∪V2 = FV1 + FV2 , for disjoint V1, V2;

(iii) the random variables FV are integrable; and

(iv) the spatial constant of the process γ(F ) := inf{j−n
´

Ω
FjQ1dP} ∈ (0,∞).

Indeed, (i) and (iv) follow by (O2) (actually γ(F ) = E[γ]), (ii) by the very definition of F , and (iii)

by the positivity of γ and (4.1). It then follows from [36, Theorem 2] and [36, Remark (b) p.294] that

there exists f ∈ L1(Ω,P) such that for all V ∈ B(Rn) bounded with Ln(∂V ) = 0 and P a.s. in Ω

lim
j→+∞

j−nFjV (ω) = Ln(V )f(ω). (4.7)

Stationarity and boundedness of γ together with (4.7) yield that for any O ∈ I we haveˆ
O

f(ω) dP = lim
j→+∞

j−n
ˆ
O

FjQ1(ω) dP =
ˆ
O

γ(0, ω) dP,

so that the limit f is actually given by E[γ,I ] (see for instance [35, Theorem 2.3 page 203]).

In particular, (4.7) still holds by substituting (j)j∈N with any diverging sequence (aj)j∈N ⊆ N. Take

aj = b1/εjc (btc stands for the integer part of t), then notice that for every δ > 0 and j sufficiently

big we have

a−nj

∣∣∣∣∣∣
∑

i∈Ij(V )

γ(i, ω)− FajV (ω)

∣∣∣∣∣∣ ≤ γ0a
−n
j #

(
Ij(V )4{i ∈ Zn : a−1

j (i +Q1) ⊆ V }
)
≤ γ0Ln((∂V )δ),

here 4 denotes the symmetric difference between the relevant sets. Since εnj #Ij(V ) → Ln(V ) and

ajεj → 1 we infer (4.5).
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Eventually, in order to prove (4.6) consider the family Q of all open cubes in Rn with sides parallel

to the coordinate axes, and with center and vertices having rational coordinates. To show the claimed

weak∗ convergence it suffices to check that P a.s. in Ω it holds

lim
j

ˆ
Ω

Ψj(x, ω)χQ(x) dLn = Ln(Q)E[γ,I ]

for any Q ∈ Q with Q ⊆ V , V as in the statement above. We have

∣∣∣∣ˆ
Q

(Ψj(x, ω)− E[γ,I ])dLn
∣∣∣∣ ≤

∣∣∣∣∣∣εnj
∑

i∈Ij(Q)

γ(i, ω)− Ln(Q)E[γ,I ]

∣∣∣∣∣∣+ 2γ0Ln
(
Q \ ∪i∈Ij(Q)Q

i
j

)
,

and thus (4.5) and the denumerability of Q yield that the rhs above is infinitesimal P a.s. in Ω.

Proof (of Theorem 4.6). We define Ω′ as any subset of full probability in Ω for which Theorem 4.2

holds true for U . Then, we follow the lines of the proof of Theorem 3.13 pointing out only the necessary

changes.

First, we note that by assumption (O3), in particular condition δj = o(εj), we can still apply

Lemma 3.9 in this framework. Hence, to get the lower bound inequality we argue as in Proposition 3.10,

we need only to substitute (3.29) suitably. Formula (3.31) is replaced by

|wj |pW s,p(V i
j )
≥ εnj |(uj)Ci,hj

j

|pcaps,p

(
λ−1
j (T i

j (ω)− xij), B εj

m
3hj+1

λj

;
εj

m3hj+2λj

)
≥ (γ(i, ω)− εm) εnj |(uj)Ci,hj

j

|p,

where εm > 0 is infinitesimal as m → +∞. To infer the last inequality we have taken into account

(O1) and the uniform convergence of the relative capacities established in (2.17) of Lemma 2.12. This

is guaranteed by condition ε
1+ n

n−sp
j = O(δj) in (O3), which ensures that the rescaled obstacle sets

λ−1
j (T i

j (ω)− xij) are equi-bounded.

By summing up all the contributions, by Theorem 4.2 and by recalling that the sequence (ζj)j∈N

defined in Lemma 3.9 converges strongly to u in Lp(U) we infer

lim inf
j

∑
i∈Ij

|wj |pW s,p(V i
j )
≥ lim inf

j

ˆ
A

Ψj(x, ω)|ζj |pdx ≥ (E[γ,I ]− εm)
ˆ
A

|u(x)|pdx,

for all A ∈ A(U) with A ⊂⊂ U . By increasing A to U and by letting m→ +∞ we conclude.

The upper bound inequality is established as in Proposition 3.11 by substituting ξN in the definition

of uj with ξi,Nj , a (1/N)-minimizer of CK(λ−1
j (T i

j (ω) − xij), BN ). The uniform convergence of those

relative capacities is guaranteed by the analogue of (2.16) in Lemma 2.12. This is the reason why we

suppose K to be invariant under rotations.
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The estimate of I1
j then follows straightforward. For what the terms Ihj , h ∈ {2, . . . , 6} are concerned,

take note that since α−1Ds,p(u,E) ≤ DK(u,E) ≤ αDs,p(u,E) (see (3.49)2), we can follow exactly Steps

2-6 to conclude.

Remark 4.3. If Λ is a generic periodic n-dimensional lattice in Rn we can argue analogously. By

definition the points of Λ belong to the orbit of a Z-module generated by n linearly independent vectors,

and the Voronöı cells turn out to be congruent polytopes (see [42, Chapter 2]). Clearly, the obstacle set

Tj(ω) and stationarity for the process γ(·, ω) have to be defined according to the group of translations

associated to vectors in the mentioned Z-module which leave Λ invariant.

4.2. Random Delone set of points. According to Blanc, Le Bris and Lions (see [13], [14]) a random

Delone set is a random variable Λ : Ω→ (Rn)Z
n

satisfying Definition 2.2 P a.s. in Ω. Then, both rΛ

and RΛ : Ω → R turn out to be random variables: rΛ because of its very definition (2.2)1, and RΛ

since it can be characterized as RΛ(·) = supQn dist(x,Λ(·)).
We will deal with sequences Λj : Ω→ (Rn)Z

n

of random Delone sets fulfilling conditions analogous

to (3.1)-(3.3) (see below for relevant examples), that is for P a.e. ω ∈ Ω it holds

lim
j
‖rj‖L∞(Ω,P) = 0, (1 ≤) lim sup

j
‖Rj/rj‖L∞(Ω,P) < +∞, (4.8)

lim
j

#(Λj(ω) ∩ U)rnj (ω) = θ(ω) ∈ (0,+∞), (4.9)

µj(·, ω) :=
1

#(Λj(ω) ∩ U)

∑
i∈Λj(ω)∩U

δxi
j(ω)(·)→ µ(·, ω) := β(·, ω)Ln U w∗-Cb(U), (4.10)

for some B(U)⊗P measurable function β such that β(·, ω) ∈ L1(U, [0,+∞]) and ‖β(·, ω)‖L1(U) = 1.

Remark 4.4. In (4.10) the set of indices Λj(ω) ∩ U susbsitutes Ij(U, ω) to ensure the measurability

of θ, β. For, the measurability of #(Λ(ω) ∩ U) follows easily from that of the random Delone set Λ.

Despite this, since 0 ≤ #(Λj(ω) ∩ U)−#Ij(U, ω) ≤ #Ij(U, ω), by (4.8) we have for P a.e. ω ∈ Ω

µj(·, ω)− 1
#Ij(U, ω)

∑
i∈Ij(U,ω)

δxi
j(ω)(·)→ 0 w∗-Cb(U), lim

j
#Ij(U, ω)rnj (ω) = θ(ω). (4.11)

Remark 4.5. Contrary to the deterministic setting we do not know whether conditions (4.9), (4.10)

are satisfied up to the subsequences or not. Nevertheless, in Examples 4.9, 4.10 we show some sets of

points satisfying all the conditions listed above. The only piece of information we extract from (4.8)

is that for a subsequence (not relabeled in what follows) we have the convergence

〈µj(·, ω), ϕ〉Cb(U),P(U) → 〈µ(·, ω), ϕ〉Cb(U),P(U) w∗-L∞(Ω,P) for all ϕ ∈ Cb(U). (4.12)

Thus, condition (4.10) is equivalent to the strong convergence in L1(Ω,P) for all ϕ ∈ Cb(U) of the

(sub)sequences (〈µj(·, ω), ϕ〉Cb(U),P(U)).

To establish (4.12) take note that µj is a Young Measure (see [8]). More precisely, µj : (Ω,P,P)→
P(U), being P(U) the space of probability measures on U , is a measurable map, i.e. µj(A,ω) is



APERIODIC FRACTIONAL OBSTACLE PROBLEMS 31

measurable for all A ∈ B(U). By taking into account the uniform conditon (4.8) and by arguing as

in Remark 3.2 we infer that the family (µj)j∈N is parametrized tight (see [8, Definition 3.3]): given

δ > 0 for a compact set Cδ ⊂ U it holds

(P⊗ µj)(Ω× Cδ) =
ˆ

Ω

µj(Cδ, ω)dP(ω) ≥ 1− δ.

Thus, by parametrized Prohorov theorem (see [8, Theorem 4.8]) (4.12) holds true up to a subsequence.

Finally, in view of Remark 3.2 and (4.8) we note that it is not restrictive to suppose that the limit

measure in (4.10) is absolutely continuous w.r.to Ln U P a.s. in Ω.

We fix a bounded set T ⊂ Rn and define the obstacle set Tj(ω) := ∪i∈ZnT i
j (ω) as the union of

random rescaled and translated copies of T according to (3.5), i.e.

T i
j (ω) := xij(ω) + λj(ω)T, where λj(ω) := rj(ω)n/(n−sp). (4.13)

The asymptotics of the energies Kj : Lp(U)× Ω→ [0,+∞] given by

Kj(u, ω) =

K(u) if u ∈W s,p(U), ũ = 0 caps,p q.e. on Tj(ω) ∩ U

+∞ otherwise.
(4.14)

where K is the functional in (3.50), is a straightforward generalization of Theorem 3.3.

Theorem 4.6. Let U ∈ A(Rn) be bounded and connected with Lipschitz regular boundary.

Assume Λj : Ω → (Rn)Z
n

is a sequence of random Delone sets satisfying (4.8)-(4.10) P a.s. in Ω.

Then, P a.s. in Ω the sequence (Kj(·, ω)) Γ-converges in the Lp(U) topology to K : Lp(U) × Ω →
[0,+∞] defined by

K (u, ω) = K(u) + θ(ω) capK(T )
ˆ
U

|u(x)|pβ(x, ω) dx (4.15)

if u ∈W s,p(U), +∞ otherwise in Lp(U).

To ensure that the Γ-limit is deterministic we introduce a sequential version of stationarity for ran-

dom lattices as defined by Blanc, Le Bris and Lions [13], [14]: there exists a positive and infinitesimal

sequence (δj)j∈N such that for all i ∈ Zn and P a.s. in Ω.

Λj(τiω) = Λj(ω)− iδj . (4.16)

Corollary 4.7. If the assumptions of Theorem 4.6 hold true, if (Λj)j∈N satisfies (4.16), and if the

family (τi)i∈Zn is ergodic, then rΛj is constant P a.s. in Ω for all j ∈ N, and there exists β̂ ∈ L1(U)

such that for P a.e. ω ∈ Ω we have β(·, ω) = β̂ Ln a.e. in U .

In addition, if rj is constant P a.s. in Ω for all j ∈ N, then θ is constant P a.s. in Ω. In particular,

the Γ-limit in (4.15) is deterministic, i.e. P a.s. in Ω the functional in (4.15) takes the form

K (u, ω) = K(u) + θ capK(T )
ˆ
U

|u(x)|pβ̂(x) dx

for every u ∈W s,p(U), +∞ otherwise in Lp(U).
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Proof. We show that rΛj is invariant under the action of (τi)i∈Zn , this suffices to conclude since

ergodicity implies that the only invariant random variables are P a.s. equal to constants. We work

with Ij(A,ω) in place of Λj(ω)∩A, since 0 ≤ #(Λj(ω)∩A)−#Ij(A,ω) ≤ #Ij(A,ω) for all A ∈ A(U)

as already pointed out for A = U in Remark 4.4.

Given any i ∈ Zn, (4.16) yields V k
j (τiω) = V ki

j (ω) − iδj for some ki ∈ Zn, which implies in turn

that rΛj (τiω) = rΛj (ω), and thus rΛj is equal to a constant P a.s. in Ω for every j ∈ N.

In addition, we have also that #Ij(A, τiω) = #Ij(A+iδj , ω) for every A ∈ A(U), then if Ln(∂A) = 0

for any δ > 0 and j sufficiently big it holds #Ij(A−δ, ω) ≤ #Ij(A, τiω) ≤ #Ij(Aδ, ω) (see (2.1) for

the definition of Aδ and A−δ). In particular, we infer

|#Ij(A, τiω)−#Ij(A,ω)| ≤ #(Ij ∪Ij)(Aδ \A,ω) ∨#(Ij ∪Ij)(A \A−δ, ω). (4.17)

If ω ∈ Ω is such that (4.10) holds, for any x0 ∈ U and r ∈ (0,dist(x0, ∂U)) we have by (2.4), (4.11)1

and (4.17)
ˆ
Br(x0)

β(x, τiω)dx = lim
j

#Ij(Br(x0), τiω)
#Ij(U, τiω)

= lim
j

#Ij(Br(x0), ω)
#Ij(U, ω)

=
ˆ
Br(x0)

β(x, ω)dx.

In turn, from the latter equality we infer that if

β̂(x0, ω) := lim sup
r→0+

 
Br(x0)

β(x, ω)dx,

then β̂(x0, ω) = β̂(x0, τiω) for all i ∈ Zn, x0 ∈ U and for P a.e. ω ∈ Ω. Thus, β̂(x0, ω) is P a.s. equal

to a constant for every x0 ∈ U ; Lebesgue-Besicovitch differentiation theorem yields the conclusion.

Eventually, suppose that rj is constant, then (4.17), Ln(∂U) = 0 and (4.8) imply that θ(τiω) = θ(ω)

for all i ∈ Zn. In conclusion, θ is equal to a constant P a.s. in Ω.

We discuss some examples related to sets of points introduced in [13] and [14]. As before, (εj)j∈N

denotes a positive infinitesimal sequence.

Example 4.8. Let us consider ensembles of points which are stationary perturbations of a standard

periodic lattice. More precisely, given a random variable X : (Ω,P,P) → Rn define the family

(Xi)i∈Zn by Xi(ω) := X(τi(ω)). By construction (Xi)i∈Zn is stationary w.r.to (τi)i∈Zn . Let Λ(ω) :=

{xi(ω)}i∈Zn where xi(ω) := i+Xi(ω), and Λj(ω) := εjΛ(ω). A simple computation shows that (4.16)

is satisfied with δj = εj. Moreover, if M := supi ‖Xi−X‖L∞(Ω,P) < 1, then Λ is a random Delone set

with 1−M ≤ rΛ ≤ RΛ ≤ 1 +M P a.s. in Ω. In conclusion, (Λj)j∈N satisfies both (4.8) and (4.16).

We do not know which additional conditions must be imposed on X to ensure (4.9) and (4.10).

Example 4.9. We consider a stochastic diffeomorphism as introduced by Blanc, Le Bris and Lions

[13]; that is a field Φ : Rn×Ω→ Rn such that Φ(·, ω) is a diffeomorphism for P a.e. ω ∈ Ω satisfying

ess-supRn×Ω‖∇Φ(x, ω)‖ ≤M < +∞, and ess-infRn×Ω det∇Φ(x, ω) ≥ ν > 0.
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Recalling Example 3.6 (see also [13, Proposition 4.7]), let Λj(ω) = {Φ(εji, ω)}i∈Zn , then P a.s. in Ω

it holds (νM1−n/2)εj ≤ rΛj (ω) ≤ RΛj (ω) ≤Mεj and

β(x, ω) =
(ˆ

U

det∇Φ−1(x, ω) dx
)−1

det∇Φ−1(x, ω).

By choosing rj such that rj/εj → γ > 0 P a.s. in Ω, we have θ = γn
´
U

det∇Φ−1(x, ·) dx P a.s. in

Ω. In conclusion, Λj are random Delone sets satisfying (4.8)-(4.10).

Example 4.10. Consider as before a stochastic diffeomorphism, and assume in addition Φ to be

stationary w.r.to (τi)i∈Zn , that is for every i ∈ Zn, for a.e. x ∈ Rn and for P a.s. in Ω it holds

Φ(x, τi(ω)) = Φ(x+ i, ω).

Let Λj(ω) = {εjΦ(i, ω)}i∈Zn , we have (νM1−n/2)εj ≤ rΛj (ω) ≤ RΛj (ω) ≤Mεj. Thus Λj are random

Delone sets satisfying (4.8). For what (4.9) and (4.10) are concerned by [12, Lemmas 2.1, 2.2] and

[13, Remark 1.9], P a.s. in Ω it holds

#(Λj(ω) ∩ U)εnj →

(
det

(
E

[ˆ
[0,1]n

∇Φ(x, ·) dx

]))−1

Ln(U).

Then by using (3.4) it follows

1
#(Λj(ω) ∩ U)

∑
i∈Λj(ω)∩U

δxi
j(ω) →

1
Ln(U)

Ln U w∗-Cb(U).

Take also note that Λj satisifes (4.16) with δj ≡ 0. Hence, rΛj is constant by Corollary 4.7, and

moreover if we choose rj ∈ (0, νM1−nεj/2) such that rj/εj → γ > 0, the Γ-limit of the energies in

(4.14) is given by the functional

K (u) = K(u) +
γn capK(T )

det
(
E
[´

[0,1]n
∇Φ(x, ·) dx

]) ˆ
U

|u(x)|p dx.

for u ∈W s,p(U), K (u) ≡ +∞ otherwise in Lp(U).

Eventually, let us remark that stationary diffeomorphisms according to Blanc, Le Bris and Lions

[13] satisfy the weaker condition ∇Φ(x, τiω) = ∇Φ(x + i, ω). The sets of points generated by Φ are

not stationary according to (4.16) in general.

Appendix A.

We prove some elementary bounds on the singular kernels that were crucial in the computations of

subsections 3.2 and 3.3.

Lemma A.1. Let ν > 0, then there exists a positive constant c(n, ν) such that for every measurable

set O ⊂ Rn it holds
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(i) if ν ∈ (0, n) and dist(z,O) = 0ˆ
O

1
|x− z|ν

dx ≤ c(n, ν)(Ln(O))1−ν/n. (A.1)

(ii) if ν ∈ (n,+∞) and dist(z,O) > 0ˆ
O

1
|x− z|ν

dx ≤ c(n, ν) (dist(z,O))n−ν , (A.2)

Proof. The lemma is an easy application of Cavalieri formula.

Let us start with (i). Clearly, we may suppose Ln(O) < +∞ the inequality being trivial otherwise.

Then, by setting s = (Ln(O)/ωn)1/n a direct integration yields1

ˆ
O

|x− z|−νdx =
ˆ +∞

0

Ln({x ∈ O : |x− z| ≤ t−1/ν})dt = ν

ˆ diam(O)

0

Ln({x ∈ O : |x− z| ≤ s})
s1+ν

ds

= ν

(ˆ s

0

+
ˆ diam(O)

s

)
. . . ds ≤ νωn

ˆ s

0

sn−ν−1ds+ νLn(O)
ˆ diam(O)

s

s−ν−1ds

=
ν

n− ν
ων/nn (Ln(O))1−ν/n + Ln(O)

(
−(diam(O))−ν +

(
Ln(O)
ωn

)−ν/n)
≤ c(n, ν)(Ln(O))1−ν/n.

Inequality (A.2) easily follows from a direct integration. More precisely, we haveˆ
O

|x− z|−ν dx ≤
ˆ
Rn\Bdist(z,O)(z)

|x− z|−ν dx =
nωn
ν − n

(dist(z,O))n−ν .
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Their Applications. Collège de France Seminar, vol. II, 98-135, and vol. III, 154-178, Res. Notes in Math. 60 and

70, Pitman, London, 1982 and 1983.

[25] Conca C., Murat F., Timofte C., A generalized strange term in Signorini’s type problems, M2AN Math. Model.

Numer. Anal. 37 (2003), no. 5, 773–805.

[26] Dal Maso G., On the integral representation of certain local functionals, Ricerche Mat. 32 (1983), 85–114.

[27] Dal Maso G., Limits of minimum problems for general integral functionals with unilateral obstacles, Atti Accad.

Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 84 fasc. 2 (1983), 55–61.

[28] Dal Maso G., “An Introduction to Γ-convergence”, Birkhäuser, Boston, 1993.
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