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Abstract. We study the local Lipschitz–continuity of the value function v as-
sociated with a Bolza Problem in presence of a Lagrangian L(x, q), convex and
uniformly superlinear in q, but only Borel–measurable in x. Under these assump-
tions, the associated integral functional is not lower semicontinuous with respect
to the suitable topology which assures the existence of minimizers, so all results
known in literature fail to apply. Yet, the Lipschitz regularity of v does not de-
pend on the existence of minimizers. In fact, it is enough to control the derivatives
of quasi–minimal curves, but the problem is non–trivial due to the general growth
conditions assumed here on L(x, ·). We propose a new approach, based on suit-
able reparameterization arguments, to obtain suitable a priori estimates on the
Lipschitz constants of quasi–minimizers. As a consequence of our analysis, we
derive the Lipschitz–continuity of v and a compactness result for value functions
associated with sequences of locally equi–bounded discontinuous Lagrangians.

1. Introduction

1.1. Description of the problem and main results. A typical issue in Partial
Differential Equations is that of proving the local Lipschitz–continuity in (0, +∞)×
RN of the value function

v(t, x) := inf
{

u(γ(0)) +
∫ t

0
L(s, γ(s), γ̇(s)) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(t) = x

}

associated with a Lagrangian L : [0, +∞)×RN×RN → (−∞, +∞] and to a possibly
discontinuous initial cost u : RN → (−∞,+∞]. This is an important step when one
is interested to show that v is a solution, in a suitable generalized sense, of the
equation

∂tu + H(x, Du) = 0 in (0,+∞)× RN , (1)
where H is the Hamiltonian associated with L through the Fenchel transform. When
L is continuous, it is well known that v is a solution of (1) in the viscosity sense
(see e.g. [3, 4, 26]). For discontinuous (and autonomous) Lagrangians, a PDE
interpretation of the value function has been provided by Dal Maso and Frankowska
in [18, 19]. By making use of the so called contingent derivatives, the authors prove
that v satisfies the Hamilton–Jacobi equation in a suitable generalized sense, and
characterize it as the unique solution of the associated Cauchy problem with initial
datum u when the latter is lower semicontinuous.

The study of discontinuous Hamilton–Jacobi equations is a field of growing atten-
tion both from a theoretical viewpoint as well as for the applications, see [6, 8, 10,
11, 12, 28, 30, 33]. It is related to the study of geodesic distances, of some discon-
tinuous control problems, of combustion phenomena in nonhomogeneous media and
of geometric optic propagation in presence of layers, see [5, 23, 27]. The analysis we
will develop here supplies the tools to prove representation formulas for generalized
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solutions of time–dependent measurable Hamilton–Jacobi equations in the spirit of
[12]. This issue will be discussed in the forthcoming paper [9].

The Lipschitz–continuity of v is strictly related to the regularity of solutions to
the Bolza Problem

min
{

u(γ(0)) +
∫ t

0
L(s, γ(s), γ̇(s)) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(t) = x

}
, (2)

and to the possibility of finding some a priori estimates on the Lipschitz constants of
minimizers. Clearly, any solution of (2) is also a Lagrangian minimizer with respect
to its boundary conditions.

The study of regularity properties of Lagrangian minimizers is a classical topic in
the Calculus of Variations. The first results were obtained by Tonelli in the late 20’s
[35, 36] for real–valued smooth Lagrangians L(s, x, q), coercive and strictly convex
in q. More recently, Tonelli’s results have been generalized by Clarke and Vinter [17]
to the case of measurable, locally bounded integrands L(s, x, q), locally Lipschitz in
x, convex and uniformly superlinear in q. By using the tools of non–smooth analysis,
the classical Euler–Lagrange necessary condition becomes a differential inclusion.

The autonomous case has been widely studied. The results of [17] have been
extended by Ambrosio, Ascenzi and Buttazzo in [2] to the case of a locally bounded
Lagrangian L(x, q), lower semicontinuous in x, convex and uniformly superlinear in
q. In [18], Dal Maso and Frankowska succeeded to prove the same results without
assuming neither semicontinuity in x nor convexity in q. They also obtain some
uniform estimates on the Lipschitz constant of the minimizers, which are used to
prove that the associated value function v is locally Lipschitz in (0,+∞) × RN ,
provided problem (2) admits solutions for every (t, x) ∈ (0, +∞)× RN .

Here we will be concerned with the case of a Borel–measurable Lagrangian L :
RN ×RN → R, locally bounded with respect to (x, q), convex and uniformly super-
linear in q. The growth conditions assumed on L can be restated in the following
equivalent form:

α(|q|) ≤ L(x, q) ≤ β(x, |q|) for every (x, q) ∈ RN × RN ,

where α(·) and β(x, ·) are superlinear functions from [0, +∞) to R, with β locally
bounded on RN × [0, +∞) (cf. Lemma 2.3). The model example of Lagrangians
included in this class are the ones of the form

L(x, q) = F (q) + n(x)

with F (·) convex and superlinear, and n(·) Borel–measurable and bounded.
The main result we prove is the local Lipschitz–continuity of the value function v in

(0, +∞)×RN . Several Lipschitz–regularity results for the value function associated
with a discontinuous Lagrangian, depending on the continuity properties enjoyed by
the initial cost, are given in Section 4. Moreover, a compactness result holding for
sequences of value functions is derived in Section 4.2 as a consequence of what proved
in [20] (cf. Theorem 3.19). This kind of result essentially relies on the fact that all
the Lipschitz estimates we provide do not depend explicitly on the Lagrangian, but
only on the way L(x, q) grows when |q| → +∞, i.e. on the functions α,β.

We remark that all results of the paper hold, with the obvious changes of notation,
if RN is replaced by a connected smooth Riemannian manifoldM without boundary.
Proofs can be rephrased by using local coordinates. When M is compact, some
additional information on the Lipschitz continuity of the value function is deduced.
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With respect to the literature quoted above, the key new point consists in deal-
ing with a case when the minimizers of the Bolza problem do not exist in general.
This gives rise to serious technical difficulties, since all arguments known in litera-
ture exploit the existence of minimizers to derive an information on their Lipschitz
constants, and this in turn gives the desired regularity of v via a rather standard ar-
gument. The same reasoning however works as soon as we provide suitable integral
estimates on the derivatives of quasi–optimal curves for v(t, x),(1) depending with
some uniformity with respect to (t, x) ∈ (0, +∞)×RN . The problem is however non–
trivial due to the general growth conditions assumed here on L(x, ·), in particular
to the fact that functions α(·), β(x, ·) may have different growths for |q| → +∞.

The novelty of our approach relies on an unusual way of employing the DuBois–
Raymond condition, which motivates the introduction of a distinguished family of
Lipschitz curves parameterized in a special way (cf. Definition 3.12). The core of
our arguments consists in proving that, in the formula defining v(t, x), it is not
restrictive to consider only curves belonging to this family (see Section 3). Once
this is established, it is rather easy to obtain the a priori estimates on the Lipschitz
constants of quasi–optimal curves for v(t, x) that are needed to derive the desired
regularity of the value function.

The analysis outlined above is carried out through suitable reparameterization
techniques which use in an essential way the fact that L is autonomous and convex
in q. The argument on which they are based was originally introduced in [22] and
subsequently developed in [21] in the case of a continuous Lagrangian, but its use for
the kind of problems studied herein seems new. A substantial effort is furthermore
made to extend the techniques to the measurable setting and to gather the necessary
information needed in the case at issue.

We end this discussion by mentioning that a possible alternative way to attack
the problem would be to find a relaxed formulation of (2) in order to apply the
results of [18]. The difficulty here is proving that the relaxation of the functional
γ 7→ ∫ t

0 L(γ, γ̇) ds admits an integral representation on W 1,1
(
[0, t],RN

)
. The results

proved in [1] assure that this approach actually works if the Lagrangian enjoys the
following growth conditions in q:

|q|p ≤ L(x, q) ≤ Λ (1 + |q|p) for every (x, q) ∈ RN × RN ,

for some p > 1 and Λ > 0. To extend such results to the more general cases here
considered, we would encounter difficulties similar to the ones previously described.
As a matter of fact, a technical adaptation of the arguments here employed allows
us to generalize the results of [1] to a wider class of abstract and integral functionals
of autonomous type, that includes in particular the ones considered in this paper.
This issue is specifically studied in [20].

1.2. Strategy of the proof. To study the problem, we find convenient to introduce
the function

S(y, x, t) := inf
{∫ t

0
L(γ, γ̇) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(0) = y, γ(t) = x

}
. (3)

1Namely, curves that realize the value v(t, x) in (2), up to an addition of a suitably small positive
constant.
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defined for every (y, x, t) ∈ RN × RN × (0,+∞), and to express v in the following
equivalent form:

v(t, x) = inf
y∈RN

(
u(y) + S(y, x, t)

)
for every (t, x) ∈ (0,+∞)× RN .

To conclude, it is enough to prove that S is locally Lipschitz in RN ×RN × (0, +∞).
This would immediately follow from [18] if we were able to prove that minimizing
curves for S(y, x, t) exist for every (y, x, t) ∈ RN×RN×(0, +∞). Unfortunately, this
need not be true in our case. In fact, the superlinearity of L(x, ·) and the Dunford–
Pettis Theorem (see [7, Chapter 2]) actually imply that every minimizing sequence
for S(y, x, t) admits a subsequence uniformly converging to some limit curve, but
the lack of continuity of L does not guarantee that the associated integral functional
is lower semicontinuous for the convergence at issue (classical results by Olech [29]
and Ioffe [25] assure that this is true if the Lagrangian is lower semicontinuous in x
and convex in q), so the standard direct method of the Calculus of Variations fails
to apply (see [7]).

Yet, existence of minimizers is not necessary to derive the desired regularity for
S. Indeed, a fairly standard argument (see, for instance, [18, Proof of Theorem 4.4])
shows that S is locally Lipschitz as soon as we provide some a priori estimates on
the Lipschitz constants of quasi–minimizers for S(y, x, t), with some uniformity with
respect to (y, x, t) ∈ RN ×RN × (0, +∞).(2) When the existence of a minimizer γ is
postulated, as in [18], or assured by the assumptions made on L, as in [2], this can
be deduced from the fact that γ satisfies the DuBois–Raymond necessary condition,
namely there exists a constant a ∈ R such that

L(γ(s), γ̇(s)) = 〈γ̇(s), p〉 − a for every p ∈ ∂qL(γ(s), γ̇(s)) (4)

for almost every s ∈ [0, t]. Using the superlinearity of L(x, ·), it is then easy to
show that a is locally bounded with respect to (y, x, t) and this provides the desired
control on the Lipschitz constant of γ.

Even if this reasoning cannot be applied in our case, we however notice that con-
dition (4), which is crucial to get the desired estimates, provides just an information
on the parameterization of the curve: when γ is action–minimizing, its parameteri-
zation must obey to an optimality condition.

The idea we develop here is to separate the issue of parameterization from that of
minimizing the action. This is achieved by first considering a minimization problem
with fixed support: we fix a Lipschitz curve γ : [0, `] → RN parameterized by
arc–length, the support, and we try to solve the following problem

min
{∫ t

0
L(ξ, ξ̇) ds : ξ ∈ [γ]t

}
(5)

for every t > 0, where [γ]t denotes the family of absolutely continuous curves ξ :
[0, t] → RN obtained through a reparameterization of γ.(3) Here, the crucial remark

2An ε–minimizer for S(y, x, t) is a curve γ ∈ W 1,1
(
[0, t],RN

)
with γ(0) = y, γ(t) = x such that

∫ t

0

L(γ(s), γ̇(s)) ds < S(y, x, t) + ε.

We say that γ is a quasi–minimizer or it is quasi–optimal for S(y, x, t) if it is an ε–minimizer with
ε > 0 suitably small.

3That is, ξ = γ◦ϕ on [0, t] for some absolutely continuous map ϕ : [0, t] → [0, `] surjective and
non–decreasing (cf. Definition 3.9).
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is the following: any solution of (5) satisfies (4) for some a ∈ R; conversely, any
ξ ∈ [γ]t satisfying (4) for some a ∈ R is a solution to (5) (cf. proof of Theorem 3.15).

However, existence of minimizers of (5) is not clear. A possible way to tackle the
problem might be to apply the standard direct methods to

min
{G(ψ) : ψ ∈ W 1,∞([0, `],R), ψ(0) = 0, ψ(`) = t

}
,

where G is defined as

G(ψ) :=
∫ `

0
g(s, ψ′(s)) ds

and

g(s, u) :=





L

(
γ(s),

γ̇(s)
u

)
u if u > 0

lim inf
v→0+

L

(
γ(s),

γ̇(s)
v

)
v if u ≤ 0.

The functional G enjoys some nice properties, such as convexity and sequential
lower semicontinuity with respect to the uniform convergence of equi–Lipschitz func-
tions, but the lack of coercivity makes this approach non–trivial.

The idea exploited here is different. First, we introduce the notion of a–Lagrangian
parameterization (cf. Definition 3.12), which amounts to requiring that the curve
satisfies (4). Then we consider the multifunction Tγ(·) defined on R by

Tγ(a) := {t > 0 : [γ][(a, t) is non empty } for every a ∈ R,

where [γ][(a, t) denotes the subset of [γ]t consisting of a–Lagrangian bi–Lipschitz
reparameterizations of γ, and we remark that, by what previously observed, the
relation t ∈ Tγ(a) implies that problem (5) admits a solution in [γ][(a, t). Our
attention is then addressed to establish the relevant properties of the multifunction
Tγ(·), with particular interest to its range

⋃
a∈R Tγ(a) (see Proposition 3.13). When

this coincides with (0, +∞), we conclude that problem (5) is solvable for every
t > 0. In particular, (5) has a minimizer belonging to [γ][(a, t) for some a ∈ R, and
its Lipschitz constant can be estimated by some κa ∈ R depending on a and on the
kind of growth conditions assumed on L only. However, our analysis reveals that the
range of Tγ(·) may actually be a bounded interval of the form (0, T ). In this instance,
a solution to (5) exists if t ≤ T . For t > T , the minimum in (5) is only an infimum,
in general; nevertheless, we are able to prove that this value can be obtained by
minimizing the action over the family of κcγ–Lipschitzian reparameterizations of
γ, where κcγ is a positive constant that can be estimated in terms of the growth
conditions assumed on L (see Theorem 3.15).

This information is used to get the sought a priori estimates on the Lipschitz
constants of quasi–minimizers (see Lemma 3.2): since any absolutely continuous
curve from [0, t] to RN belongs to [γ]t for a suitable choice of the Lipschitz curve
γ : [0, `] → RN (cf. Lemma 3.11), a quasi–minimizer for S(y, x, t) can be always as-
sumed to be κa–Lipschitz continuous, for some a ∈ R. By using the superlinearity of
L(x, ·), the constant a is last estimated with some uniformity with respect to (y, x, t).
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1.3. Plan of the article. Section 2 contains the main notation and assumptions,
together with some well known propositions that will be needed in the rest of the
paper.

The properties of the function S are studied in Section 3. In Section 3.1 some
preliminary results are collected. The definition of a–Lagrangian reparameteriza-
tion and the reparameterization arguments are presented in Section 3.2. Here, the
main properties of the multifunction Tγ(·) are established and used to study an
action–minimization problem with fixed support. The information gathered are
then exploited to derive the sought a priori estimates on the Lipschitz constants of
quasi–minimizers (cf. Lemma 3.2), which is all we need to prove Theorem 3.1. To
simplify the exposition, the Lagrangian L is initially assumed locally bounded in q,
uniformly with respect to x. The consequent extension to the case of Lagrangians
locally bounded in (x, q) is easily derived in Section 3.3 via a localization argument
(see Theorem 3.17). Here a sequential compactness result for locally equi–bounded
discontinuous Lagrangians, established in [20], is recalled for later use.

The main results of the paper are derived in Section 4 as a simple application of
the preceding analysis. Section 4.1 contains several Lipschitz–regularity results for
the value function associated with a discontinuous Lagrangian, depending on the
continuity properties assumed on the initial cost. An extension to the case when
RN is replaced by a compact and connected smooth Riemannian manifold M with-
out boundary is also provided. Last, Section 4.2 contains a compactness result for
the value functions associated with sequences of locally equi–bounded discontinuous
Lagrangians.

2. Notation and standing assumptions

We write below a list of symbols used throughout this paper.

N an integer number
Br(x) the open ball in RN of radius r centered at x
Br the open ball in RN of radius r centered at 0
SN−1 the (N − 1)–dimensional unitary sphere of RN

Hk k–dimensional Hausdorff measure
〈 ·, ·〉 the scalar product in RN

[u] the integer part of u ∈ R
R+ the set of nonnegative real numbers
P(R+) the family of subsets of R+

UC(RN ) the space of uniformly continuous real functions on RN

Lip(RN ) the space of Lipschitz–continuous real functions on RN

Given a subset U of Rk, we denote by U its closure. We furthermore say that U is
compactly contained in a subset V of Rk if U is compact and contained in V . If E is
a Lebesgue measurable subset of Rk, we denote by |E| its k–dimensional Lebesgue
measure, and we say that E is negligible whenever |E| = 0. The characteristic
function of E is denoted by χE . We say that a property holds almost everywhere
(a.e. for short) on Rk if it holds up to a negligible subset of Rk. The Euclidean norm
of u ∈ Rk is denoted by |u|.

Given a measurable vector–valued function f : E → Rm, we write ‖f‖∞ to mean
6



(∑k
i=1 ‖fi‖L∞(E)

)1/2
, where fi and ‖fi‖L∞(E) denote the i-th component of f and

the L∞-norm of fi, respectively.
Let X ⊆ Rk and B(X) the family of all Borel subsets of X. A multifunction Γ

from X to compact subsets of R is said to be Borel–measurable (cf. [14]) if

{x ∈ X : Γ(x) ∩ U 6= ∅ } ∈ B for every open set U ⊆ R.

We say that Γ is upper semicontinuous at x if, for any ε > 0, there exists δ > 0 such
that

Γ(z) ⊆ Γ(x) + (−ε, ε) for all z ∈ Bδ(x) ∩X.
When k = 1, we say that Γ is non–decreasing on X if

supΓ(x) ≤ inf Γ(y) for every x, y ∈ X with x < y.

We say that Γ is non–increasing on X if the multifunction −Γ(·) is non–decreasing
on X.

For a function g : Rk → (−∞, +∞], we denote by dom(g) its effective domain;
i.e., the subset of Rk where g is finite valued. We will say that g is superlinear if

lim
|x|→+∞

g(x)
|x| = +∞.

For a convex function f from Rk to R, we will denote by ∂f(x) the subdifferential
of f at x, defined as

∂f(x) := {p ∈ Rk : f(y) ≥ f(x) + 〈p, y − x〉 for every y ∈ Rk }.
The set ∂f(x) is closed and convex, and the multifunction x 7→ ∂f(x) is upper
semicontinuous on Rk. We furthermore have (see [31]):

Proposition 2.1. Let f : Rk → R be convex. Then f is locally Lipschitz in Rk.
More precisely, for every x0 ∈ Rk and r, δ > 0, we have

|f(x)− f(y)| ≤ |x− y| 2
δ

sup
Br+δ(x0)

f for every x, y ∈ Br(x0).

In particular, ∂f(x) ⊂ (2 sup
Br+1

f) B1 for every x ∈ Br.

Given a function f : Rk → R, we define its conjugate f∗ : Rk → (−∞, +∞] as
follows:

f∗(x) := sup
y∈Rk

{〈x, y〉 − f(y) } for every x ∈ Rk.

We record for later use the following well known facts (cf. [31, Theorem 23.5])

Proposition 2.2. Let f : Rk → R be superlinear and convex. Then f∗ is locally
bounded and convex on Rk. Moreover,

f(x) = f∗∗(x) := sup
y∈Rk

{〈x, y〉 − f∗(y) } for every x ∈ Rk.

The following conditions on x, x∗ ∈ Rk are equivalent to each other:
(i) f(x) + f∗(x∗) ≤ 〈x, x∗〉;
(ii) f(x) + f∗(x∗) = 〈x, x∗〉;
(iii) x∗ ∈ ∂f(x);
(iv) x ∈ ∂f∗(x∗).
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By a modulus we mean a nondecreasing function from R+ to R+, vanishing and
continuous at 0.

We denote by W 1,1
(
[0, t],RN

)
the space of absolutely continuous curves from the

interval [0, t] to RN . We recall that a curve γ : [a, b] → RN is said to be parameterized
by arc–length if |γ̇(s)| = 1 for almost every s ∈ (a, b).

Throughout the paper, α, β will always denote two functions from R+ to R+ that
are convex, non–decreasing and superlinear, namely

lim
h→+∞

α(h)
h

= lim
h→+∞

β(h)
h

= +∞.

We will denote by L a function from RN × RN to R such to satisfy the following
assumptions:

(L1) L is Borel–measurable on RN × RN ,

(L2) α (|q|) ≤ L(x, q) ≤ β (|q|) for all (x, q) ∈ RN × RN ,

(L3) L(x, ·) is convex for every x ∈ RN .

Up to adding a constant to it, it is not restrictive, by (L2), to assume that L is
positive. This will be systematically done in the sequel. We also point out that the
second inequality in (L2) is equivalent to requiring that

sup {L(x, q) : (x, q) ∈ RN ×BR } < +∞ for any R > 0.

In fact, the following holds.

Lemma 2.3. Let U be an open subset of Rk and L : U × Rk → R+ such that

sup {L(x, q) : x ∈ U, |q| ≤ n } < +∞ for every n ∈ N.

Then there exists a function β : R+ → R+, convex and non–decreasing, such that

L(x, q) ≤ β(|q|) for every (x, q) ∈ U × Rk.

Proof. Set

an := sup {L(x, q) : x ∈ U, |q| ≤ n } for each n ∈ N,

and

f(h) :=
∞∑

n=1

an χ[n−1,n)(h) for every h ≥ 0.

As L(x, q) ≤ f(|q|) for every (x, q) ∈ U×Rk, it will be enough to prove the statement
for f . For each n ∈ N, choose mn := max{2an/(n− 1), an − an−1} and set

β(h) := sup
n∈N

{ an+1 + mn+1(h− n) } for every h ≥ 0.

By definition, each map h 7→ an+1 + mn+1(h − n) is greater or equal than f on
[n− 1, n) and less than 0 on [0, n/2), hence

f(h) ≤ β(h) < +∞ for every h ≥ 0.

The remainder of the assertion follows as β is the supremum of a family of convex
and increasing functions. ¤
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To any L satisfying assumptions (L1)–(L3), we associate the function S(y, x, t)
defined through (3), for every (y, x, t) ∈ RN × RN × (0, +∞). It is easy to check
that the function S enjoys the following inequalities

t α

( |y − x|
t

)
≤ S(y, x, t) ≤ t β

( |y − x|
t

)
on RN × RN × (0, +∞). (6)

Later on in the paper, condition (L2) will be relaxed to cover the case of a Lagrangian
L locally bounded with respect to (x, q), i.e. such that

sup {L(x, q) : (x, q) ∈ BR ×BR } < +∞ for any R > 0.

By Lemma 2.3, this amounts to replacing condition (L2) with the following one:

(L2 ′) α (|q|) ≤ L(x, q) ≤ βn (|q|) for all (x, q) ∈ Bn × RN and n ∈ N,

where (βn)n∈N is a family of convex, non–decreasing and superlinear functions from
R+ to R+.

3. The Key Results

The goal of the analysis we are about to present is that of proving the local Lip-
schitz continuity of the function S associated via (3) with a Lagrangian satisfying
assumptions (L1), (L2), (L3). As previously noticed, condition (L2) amounts to
requiring that the function L(x, ·) is superlinear and locally bounded on RN , uni-
formly with respect to x. This growth condition will be relaxed at the end of this
section in order to consider the case of Lagrangians locally bounded with respect to
(x, q). The precise statement of the result that we will establish is the following.

Theorem 3.1. Let L : RN × RN → R+ be an autonomous Lagrangian satisfying
conditions (L1)–(L3). Then the associated function S defined through (3) is locally
Lipschitz in RN × RN × (0,+∞). More precisely, for every M > 0 there exists
K = K(M,α, β) such that

S is K–Lipschitz continuous in CM ,

where CM := {(y, x, t) ∈ RN × RN × (0,+∞) : |x− y| < M t }.

Theorem 3.1 can be proved via a rather standard argument as soon as we derive
some a a priori estimates on the Lipschitz constant of quasi–optimal curves param-
eterized in [0, t] and connecting y to x, for every (y, t, x) ∈ CM . This information
can be derived from the following Lemma:

Lemma 3.2. Let x, y ∈ RN and t > 0 such that S(y, x, t) < M t. Then there exists
a constant κ = κ(M, α, β) such that

S(y, x, t) = inf
{∫ t

0
L(ξ, ξ̇) ds : ξ(0) = y, ξ(t) = x, ‖ξ̇‖∞ ≤ κ

}
.
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The proof of Lemma 3.2 is quite delicate and relies on a careful analysis on the
role played by reparameterizations. It will be carried out in the next two subsec-
tions. Before that, let us show how Lemma 3.2 can be used to prove Theorem 3.1.

Proof of Theorem 3.1. For a fixed M > 0, choose (y1, t1, x1) and (y2, t2, x2) in
CM , and set

h := |t1 − t2|+ |x1 − x2|+ |y1 − y2|, s0 :=
t1 − t2

2
+ h.

Since CM is convex, it suffices to prove the statement locally, namely for small values
of h. Choose h < t2/2 so that s0 < t1/2. Fix ε > 0 and let γ1 ∈ W 1,1

(
[0, t1],RN

)
be an ε–minimizer connecting y1 to x1. As S(y1, x1, t1) < t1 β(M), by Lemma 3.2
we can assume ‖γ̇‖∞ ≤ κ for some constant κ = κ(M,α, β). Choose u1, v1 ∈ RN so
that

γ1(s0) = y2 + hu1, γ1(t1 − s0) = x2 + hv1,

and note that |u1|, |v1| < 1 + 2κ. Define a curve γ2 : [0, t2] → RN connecting y2 to
x2 by setting:

γ2(s) :=





y2 + su1 if s ∈ [0, h],

γ1(s0 + s− h) if s ∈ [h, t2 − h]

x2 + (t2 − s)v1 if s ∈ [t2 − h, t2]

Recalling that L is positive, we get

S(y2, x2, t2)− S(y1, x1, t1) ≤
∫ t2

0
L(γ2, γ̇2) ds−

∫ t1

0
L(γ1, γ̇1) ds + ε

≤
∫ h

0
L(γ2, u1) ds +

∫ t2

t2−h
L(γ2, u2) ds + ε ≤ 2β(1 + 2κ)h + ε,

so, setting K̃ := 2β(1 + 2κ), we obtain

S(y2, x2, t2)− S(y1, x1, t1) ≤ K̃ (|t1 − t2|+ |x1 − x2|+ |y1 − y2|) + ε.

As ε is arbitrary, the conclusion follows at once by interchanging the roles of (y1, t1, x1)
and (y2, t2, x2) and by setting K :=

√
2N + 1 K̃. ¤

3.1. Preliminary tools. Let H : RN × RN → R be the Hamiltonian associated
with L through the Fenchel transform, namely

H(x, p) := max
q∈RN

{〈p, q〉 − L(x, q)} .

The function H is Borel–measurable, and H(x, ·) is convex and superlinear for every
x ∈ RN . For every a ∈ R, set

σa(x, q) := max{〈q, p〉 : H(x, p) ≤ a} for every q ∈ RN , a ∈ R,

where we agree that σa(x, q) = −∞ whenever a < −L(x, 0) = minRN H(x, ·).
Proposition 3.3. For any a ∈ R, the following properties hold:

(i) σa(x, λ q) = λσa(x, q) for every (x, q) ∈ RN × RN and λ > 0;

(ii) L(x, q) ≥ σa(x, q)− a for every (x, q) ∈ RN × RN .
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Proof. Assertion (i) is clear by definition. To prove (ii), we recall that L is the
Fenchel transform of H (cf. Proposition 2.2), hence

L(x, q) = max
p∈RN

{〈p, q〉 −H(x, p) } ≥ max
H(x,p)≤a

{〈p, q〉 −H(x, p) } = σa(x, q)− a, (7)

as claimed. ¤

For any (x, q) ∈ RN × RN and a ∈ R, we set

Λa(x, q) := {λ ∈ [0,+∞) : L(x, λ q) = σa(x, λ q)− a }, (8)

and
λ a(x, q) := inf Λa(x, q), λa(x, q) := sup Λa(x, q).

We agree that λ a(x, q) = λ a(x, q) = 0 whenever Λa(x, q) = ∅, that is, when a <
−L(x, 0).

We define the following functions:

α∗(u) := max
λ∈R

{uλ− α(|λ|) } , β∗(u) := max
λ∈R

{uλ− β(|λ|) } for every u ∈ R,

and we remark that they are convex and superlinear as α(| · |) and β(| · |) are so. For
every a ∈ R, set

Ra := max {|u| : β∗(u) ≤ a } (9)
and

κa := 2max {α∗(u) : |u| ≤ Ra + 1 } . (10)

The following compactness result holds.

Lemma 3.4. Let a ∈ R. Then

Λa(x, q) ⊆ [0, κa] for every (x, q) ∈ RN × SN−1.

Proof. From the definition of α∗ and β∗ we obtain

β∗ (|p|) ≤ H(x, p) ≤ α∗ (|p|) for all (x, p) ∈ RN × RN , (11)

in particular

{p ∈ RN : H(x, p) ≤ a } ⊆ BRa for every x ∈ RN . (12)

Pick up (x, q) ∈ RN×SN−1. From (7) and Proposition 2.2 we derive that λ ∈ Λa(x, q)
if and only if λ q ∈ ∂pH(x, p) for some H(x, p) ≤ a. In particular

Λa(x, q) ⊆ {|v| : v ∈ ∂pH(x, p) for some p ∈ BRa

}
,

and the conclusion follows at once in view of (11) and of Proposition 2.1. ¤

We now fix (x, q) ∈ RN×SN−1 and we examine the properties of the multifunction
a 7→ Λa(x, q). Proposition 2.2 yields that

L(x, λ q) = 〈p, λ q〉 −H(x, p) for any p ∈ ∂qL(x, λ q), (13)

for any given λ ∈ R. In view of Proposition 3.3–(ii), we infer that λ ∈ Λa(x, q) if
and only if a ∈ H(x, ∂qL(x, λ q)).

We start by considering the set–valued map A(λ) := H(x, ∂qL(x, λ q)) on [0, +∞),
which is the inverse of a 7→ Λa(x, q), in the sense of set–valued analysis (see [32,
Chapter 5]). Indeed, note that

Λa(x, q) = {λ ∈ [0, +∞) : a ∈ H(x, ∂qL(x, λ q)) }. (14)
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Proposition 3.5. Let A(·) as above. The following facts hold.
(i) For any λ ∈ R

A(λ) = [a(λ), a(λ)] for some −L(x, 0) ≤ a(λ) ≤ a(λ) < +∞.

Moreover

A(0) = {−L(x, 0) }, lim
λ→+∞

a(λ) = +∞.

(ii) The set–valued map A(·) is upper semicontinuous on [0,+∞). In particular,
a(·) is lower semicontinuous and a(·) is upper semicontinuous on [0,+∞).

(iii) The set–valued map λ 7→ A(λ) is non–decreasing on [0, +∞).

(iv)
⋃

λ≥0

A(λ) = [−L(x, 0),+∞).

Proof. The function f(λ) := L(x, λ q) is convex and superlinear, hence its conjugate
f∗ is so. We claim that A(λ) = f∗(∂f(λ)) for every λ ≥ 0. Indeed, by Proposition
2.2 we know that

f∗(∂f(λ)) = λ ∂f(λ)− f(λ) for any λ ≥ 0.

By classical result of non–smooth analysis (cf. [16, Theorem 2.3.10]), we also know
that ∂f(λ) = 〈∂qL(x, λ q), q〉, hence the above equality becomes

f∗(∂f(λ)) = 〈∂qL(x, λ q), λ q〉 − L(x, λ q) for any λ ≥ 0,

and the right–hand side term coincides with A(λ) by (13), as claimed.
Let us now prove the above stated properties of A(·). As f is convex, its subdif-

ferential ∂f(λ) is a compact interval of R, so the same is true for A(λ). The equality
A(0) = {−L(x, 0)} is an immediate consequence of (13), while the other assertion
follows by superlinearity of f∗ and f . That proves (i). The upper semicontinuity of
A(·) comes from the fact that the multifunction λ 7→ ∂f(λ) is upper semicontinuous
and f∗ is continuous. The remainder of (ii) follows from that by definition of a(·),
a(·).

Let us prove (iii). Since f∗ and f are convex, the multimappings u 7→ ∂f∗(u) and
λ 7→ ∂f(λ) are non–decreasing on R. By superlinearity, we get in particular

⋃

λ≥0

∂f(λ) = [u(0), +∞) with u(0) ∈ ∂f(0).

By duality (cf. Proposition 2.2), 0 ∈ ∂f∗(u(0)), so the monotonicity of ∂f∗(·) yields
that f∗ is non–decreasing on [u(0), +∞).

Item (iv) comes from (ii) and (iii). ¤
Example 3.6. Take a Lagrangian of the form L(x, q) = F (q) + n(x) for every
(x, q) ∈ RN ×RN , with F (·) convex and superlinear, and n(·) Borel–measurable and
bounded. We have

A(λ) = F ∗ (∂F (λ q))− n(x) for every λ ≥ 0,

for any fixed (x, q) ∈ RN × SN−1. When for instance F (q) = |q|2/2, it reduces to

A(λ) = |λ q|2/2− n(x).

We use this information to prove a result that will be crucial for our future analysis.
12



Proposition 3.7. Let (x, q) ∈ RN × SN−1. The following facts hold.

(i) For any a ≥ −L(x, 0), we have

Λa(x, q) = [λ a(x, q), λa(x, q)] for some 0 ≤ λ a(x, q) ≤ λa(x, q) < +∞.

Moreover,

λ−L(x,0)(x, q) = 0, lim
a→+∞λ a(x, q) = +∞.

(ii) The set–valued map a 7→ Λa(x, q) is upper semicontinuous and non–decreasing
on [−L(x, 0),+∞).

(iii) λ a(x, q) = supb<a λ b(x, q) for any a > −L(x, 0)

and

λ a(x, q) = infb>a λ b(x, q) for any a ≥ −L(x, 0).

(iv) λ a(x, q) ≥ a + L(x, 0)
2Ra

for any a > −L(x, 0), with Ra defined by (9).

Proof. We recall that Λa(x, q) = {λ ≥ 0 : a ∈ A(λ) } . The monotonicity and coer-
civity property of the set–valued map a 7→ Λa(x, q) is a consequence of Proposition
3.5, while the equality λ−L(x,0)(x, q) = 0 is apparent by definition (8). In particular,
Λa(x, q) is a bounded interval for any a ≥ −L(x, 0).

To prove the upper semicontinuity of a 7→ Λa(x, q), we need to show that, for
each pair of sequences (an)n and (λn)n such that an → a ∈ R, λn → λ ∈ R and
λn ∈ Λan(x, q) for every n ∈ N, we have λ ∈ Λa(x, q). That easily follows by the
upper semicontinuity of A(·) (in fact, it is equivalent, cf. [32, Theorem 5.7]). In
particular, this implies that Λa(x, q) is closed for any a ≥ −L(x, 0).

Assertion (iii) immediately follows from the monotone and semicontinuous char-
acter of the map a 7→ Λa(x, q).

Let us prove (iv). Choose a > −L(x, 0) and set λ := λ a(x, q). By Proposition
3.3–(ii) we get

σa(x, λq) = L(x, λq) + a ≥ σ−L(x,0)(x, λq) + a + L(x, 0),

hence, by (12),

a + L(x, 0) ≤ λ
(
σa(x, q)− σ−L(x,0)(x, q)

) ≤ λ
(
Ra + R−L(x,0)

) |q|,
and the statement follows as R−L(x,0) < Ra by definition. ¤

Example 3.8. Let L(x, q) := |q|2/2 + n(x) for every (x, q) ∈ RN × RN , with n(·)
Borel–measurable and bounded. For any fixed (x, q) ∈ RN × SN−1, we have

Λa(x, q) =
{

1
|q|

√
2 (a + n(x))

}
for every a ≥ −n(x).
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3.2. Optimal reparameterizations. Let us now consider a Lipschitz curve γ de-
fined on a bounded interval J := [0, `].

Definition 3.9. A curve ξ defined on a bounded interval [0, t] is said to be a repa-
rameterization of γ if there exists an absolutely continuous map ϕ : [0, t] → [0, `],
surjective and non–decreasing, such that

ξ = γ◦ϕ on [0, t].

We furthermore say that ξ is a (bi–)Lipschitz reparameterization of γ if ϕ is a (bi–)
Lipschitz homeomorphism.

Remark 3.10. For reasons that will be clear soon, we want to allow a reparameter-
ization to stop at a point for some time. This accounts for the choice of the unusual
definition given above.

We introduce the following notation:

[γ]t := {ξ ∈ W 1,1
(
[0, t],RN

)
: ξ is a reparameterization of γ }

[γ][t := {ξ ∈ W 1,1
(
[0, t],RN

)
: ξ is a bi–Lipschitz reparameterization of γ }.

The following lemma comes from classical results of analysis in metric spaces (see
e.g. [24, Section VII.2]). We give a proof for the reader’s convenience.

Lemma 3.11. Let ξ ∈ W 1,1
(
[0, t],RN

)
. Then there exists a Lipschitz curve γ,

defined on a bounded interval [0, `], such that ξ ∈ [γ]t. We can furthermore assume
that γ is parameterized by arc–length.

Proof. Let ϕ(s) :=
∫ s
0 |ξ̇(ς)| dς for every s ∈ [0, t], and set ` := ϕ(t). Clearly, the

map ϕ : [0, t] → [0, `] is absolutely continuous, surjective and non–decreasing. We
claim that the statement holds true with γ(s) := ξ(ϕ−1(s)) for every s ∈ [0, `].
Indeed, it is easy to see that γ is well defined. Pick now a pair of points a, b in
[0, `] with a < b. By the monotone character of ϕ we have ϕ−1(a) = [A−, A+],
ϕ−1(b) = [B−, B+] for some A− ≤ A+ < B− ≤ B+. Moreover

|γ(b)− γ(a)| ≤ H1
(
γ([a, b])

)
= H1

(
ξ([A−, B+])

)
=

∫ B+

A−
|ξ̇(ς)| dς = b− a,

which yields that γ is 1–Lipschitz continuous. From the fact that
∫ `
0 |γ̇(ς)|dς =

H1
(
γ([0, `])

)
= `, we finally get that γ is parameterized by arc–length. ¤

A further step in the analysis is carried out by picking up some special reparam-
eterizations of the curve γ.

Definition 3.12. A curve ξ defined on a bounded interval [0, t] is said to have an
a–Lagrangian parameterization if

L(ξ(s), ξ̇(s)) = σa(ξ(s), ξ̇(s))− a for a.e. s ∈ [0, t], a ∈ R.

For any a ∈ R and t > 0, we define

[γ](a, t) := {ξ ∈ [γ]t : ξ has an a–Lagrangian parameterization },
[γ][(a, t) := {ξ ∈ [γ][t : ξ has an a–Lagrangian parameterization }.
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Now assume γ is parameterized by arc–length, and let

cγ := ess sups∈J − L (γ(s), 0)

We define a multifunction Tγ : (cγ ,+∞) → P(R+) by setting

Tγ(a) := {t > 0 : [γ][(a, t) is non–empty }.
The properties of the multifunction Tγ(·) are stated below.

Proposition 3.13. Let γ and T (·) := Tγ(·) as above. The following facts hold.
(i) For any a > cγ, T (a) is a compact interval in (0, +∞), namely

T (a) := [T (a), T (a)] for some T (a) ≥ T (a) > 0.

(ii) The multifunction T (·) is non–decreasing and upper semicontinuous on (cγ , +∞).
Moreover infa>cγ T (a) = 0.

(iii) Let T (cγ) := supa>cγ
T (a). If T (cγ) is finite, then [γ](cγ , T (cγ)) 6= ∅.

In particular, for any 0 < t ≤ T (cγ) with t < +∞, there exists a ≥ cγ such that
γ admits an a–Lagrangian Lipschitz reparameterization on [0, t].

We first prove an auxiliary lemma.

Lemma 3.14. Let γ : [0, `] → RN be a Lipschitz curve parameterized by arc–length
and a ∈ R. The following facts hold true.

(i) For every t > 0 and ξ ∈ [γ]t, the map σa(ξ(·), ξ̇(·)) is Lebesgue–measurable
on [0, t], and

∫ t

0
σa(ξ(s), ξ̇(s)) ds =

∫ `

0
σa(γ(s), γ̇(s)) ds. (15)

(ii) The maps λ a(γ(·), γ̇(·)), λ a(γ(·), γ̇(·)) are Lebesgue–measurable on [0, `].

Proof. Take t > 0 and ξ ∈ [γ]t. Since the map s 7→ (ξ(s), ξ̇(s)) is Lebesgue
measurable, in order to prove (i) it is enough to show that the function σa is Borel–
measurable on RN × RN . To this aim, let (pn)n and (λn)n be two dense sequences
in RN and (0, +∞), respectively. The Borel–measurable character of σa follows at
once by noticing that

σa(x, q) = inf
k

(
sup

n

{〈pn, q〉ϑEk
n
(x)

})
for every (x, q) ∈ RN × RN ,

where Ek
n := {x ∈ RN : H(x, pn) ≤ a + 1/k } and ϑEk

n
(·) denotes the function

identically 1 on Ek
n and −∞ elsewhere. Equality (15) is a consequence of the fact

that σa(x, ·) is positively 1–homogeneous.
Let us prove (ii). Since the map s 7→ (γ(s), γ̇(s)) takes values in RN × SN−1 for

a.e. s ∈ [0, `], it suffices to show that the functions λ a, λ a are Borel–measurable
on RN × SN−1. Let us show the statement for λ a. For each n ∈ N, set

Fn := {(x, q) ∈ RN × SN−1 : H(x, ∂qL(x, λn q)) ∩ (−∞, a) 6= ∅},
which is Borel measurable for the multifunction (x, q) 7→ H(x, ∂qL(x, λn q)) is so.
The assertion follows by noticing that λ a(x, q) = supn λn χFn

(x, q) on RN × SN−1,
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in view of (14) and of Proposition 3.7. The analogous statement for λa can be
proved in a similar way. ¤

Proof of Proposition 3.13. (i) Fix a > cγ , and set

λ a(ς) := λ a(γ(ς), γ̇(ς)), λ a(ς) := λ a(γ(ς), γ̇(ς)) for a.e. ς ∈ [0, `].

Let

T (a) :=
∫ `

0

1
λ a(ς)

dς, T (a) :=
∫ `

0

1
λ a(ς)

dς.

Such quantities are well defined, positive real values, thanks to Proposition 3.7-(iv)
and to the measurable character of λ a(·), λ a(·). To show that they belong to T (a),
we will prove the existence of two curves γ

a
, γa, defined on

(
0, T (a)

)
and

(
0, T (a)

)
,

respectively, which are a–Lagrangian bi–Lipschitz reparameterizations of γ. To this
aim, let us define

f
a
(s) :=

∫ s

0

1
λ a(ς)

dς, fa(s) :=
∫ s

0

1
λ a(ς)

dς for any s ∈ [0, `],

and set
ϕ

a
:= (f

a
)−1, ϕa :=

(
fa

)−1
,

defined on
(
0, T (a)

)
and

(
0, T (a)

)
, respectively. As

ϕ̇
a
(τ) = λ a(ϕ a

(τ)), ϕ̇a(τ) = λa(ϕa(τ)) for a.e. τ ,

we immediately derive that ϕ
a

and ϕa are order–preserving bi–Lipschitz diffeomor-
phisms. Let us set

γ
a

:= γ ◦ϕ
a

on
(
0, T (a)

)
, γa := γ ◦ϕa on

(
0, T (a)

)
.

Since
γ̇

a
(·) := λ a(ϕ a

(·)) γ̇(ϕ
a
(·)) a.e. on

(
0, T (a)

)

and
γ̇a(·) := λ a(ϕa(·)) γ̇(ϕa(·)) a.e. on

(
0, T (a)

)
,

we conclude that the curves γ
a

and γa has an a–Lagrangian parameterization by
the very definition of λa and λ a.

In order to prove that [T (a), T (a)] ⊆ T (a), we will show that

δ T (a) + (1− δ) T (a) ∈ T (a) for any δ ∈ (0, 1). (16)

Fix δ ∈ (0, 1), and set

δ(ς) :=
δ λ a(ς)

δ λ a(ς) + (1− δ) λ a(ς)
, λ(ς) := δ(ς) λ a(ς) + (1− δ(ς))λ a(ς)

for almost every ς ∈ [0, `], and

f(s) :=
∫ s

0

1
λ(ς)

dς for s ∈ [0, `], ϕ := f−1 on [0, f(`)].

Since δ(ς) ∈ [0, 1] for almost every ς ∈ [0, `], we get that λa(ς) ∈ Λa(γ(ς), γ̇(ς)) for
almost every ς ∈ [0, `], in particular ϕ is an order–preserving bi–Lipschitz diffeo-
morphism. Arguing as above, we see that the curve γa := γ ◦ϕ is an a–Lagrangian
bi–Lipschitz reparameterization of γ on

(
0, f(`)

)
, so f(`) ∈ T (a). Now it is easy to
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check, by definition of δ(·), that f(`) = δ T (a) + (1− δ) T (a). That proves (16) as
δ was arbitrarily chosen in (0, 1).

Let us now prove that T (a) ⊆ [T (a), T (a)]. Let T ∈ T (a) and γ̃ := γ ◦ϕ be
an a–Lagrangian reparameterization of γ for some order–preserving bi–Lipschitz
diffeomorphism ϕ : [0, T ] → [0, `]. Then

ϕ̇(τ) ∈ Λa (γ(ϕ(τ)), γ̇(ϕ(τ))) for a.e. τ ∈ (0, T ).

Let f := ϕ−1. We have

T = f(`) =
∫ `

0
ḟ(ς) dς =

∫ `

0

1
ϕ̇(f(ς))

dς,

and since ϕ̇(f(ς)) ∈ Λa(γ(ς), γ̇(ς)) = [λ a(ς), λa(ς)] for a.e. ς ∈ [0, `], we clearly get
T ∈ [T (a), T (a)].

(ii) Let b > a > cγ . Then λ b(ς) ≥ λa(ς) for almost every ς ∈ [0, `], hence
T (b) ≤ T (a). That proves that T (·) is a non–increasing multifunction. To prove
that T (·) is u.s.c. on (cγ , +∞), it will be enough to show that

T (a) = sup
b>a

T (b), T (a) = inf
b<a

T (b) for any a > cγ .

This actually follows as a simple application of the Monotone Convergence Theorem
and by the monotonicity poperties of λ a, λa (cf. Proposition 3.7-(iii)). The last
assertion holds by definition of T (a) since supa>cγ

λa(ς) = +∞ for almost every
ς ∈ [0, `].

(iii) Let T (cγ) be finite. Arguing as in (i), we may find a non–increasing sequence
of Borel–measurable maps λn : [0, `] → [0,+∞) such that, for each n ∈ N,

Tn =
∫ `

0

1
λn(ς)

dς and λn(ς) ∈ Λcγ+1/n(γ(ς), γ̇(ς)) for a.e. ς ∈ [0, `],

with supn Tn = T (cγ). Set

λ(ς) = inf
n

λn(ς) for every ς ∈ [0, `].

Then λ(·) is measurable and λ(ς) ∈ Λcγ (γ(ς), γ̇(ς)) for almost every ς ∈ [0, `]. More-
over the Monotone Convergence Theorem yields

T (cγ) = sup
n∈N

Tn = sup
n∈N

∫ `

0

1
λn(ς)

dς =
∫ `

0

1
λ(ς)

dς,

in particular the map

f(s) :=
∫ s

0

1
λ(ς)

dς

is increasing and absolutely continuous on [0, `]. A cγ–Lagrangian Lipschitz repara-
metrization of γ defined on [0, T (cγ)] can be now obtained by setting γ̃ := γ ◦ϕ with
ϕ := (f)−1 on [0, T (cγ)].

Last, the fact that the multifunction is upper semicontinuous, monotone and
convex–set–valued implies that

⋃
a>cγ

T (a) =
(
0, T (cγ)

)

and this is enough to obtain the remainder of the statement. ¤
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We now seek for an optimal reparameterization of γ on the interval [0, t], for
any given t ∈ (0, +∞). Such a reparameterization does not exist in general, as we
will see. In any case, however, we are able to derive an estimate on the Lipschitz
constants of quasi–optimal reparameterizations. This is a crucial step for our study.

Theorem 3.15. Let γ : [0, `] → RN be a Lipschitz curve parameterized by arc–
length. Then, for every t ∈ (0, +∞), there exists a ≥ cγ such that

inf
ξ∈[γ]t

∫ t

0
L(ξ, ξ̇) ds = inf

ξ∈[γ]t

{∫ t

0
L(ξ, ξ̇) ds : ‖ξ̇‖∞ ≤ κa

}
=

∫ `

0
σa(γ, γ̇) ds− a t,

with κa given by (10). The above infimum is a minimum whenever t ≤ T γ(cγ),
and is in particular attained by some curve belonging to [γ][(a, t) with a > cγ when
t < T γ(cγ).

Proof. By Proposition 3.3 and Lemma 3.14, we get
∫ t

0
L(ξ, ξ̇) ds ≥

∫ t

0

(
σa(ξ, ξ̇)− a

)
ds =

∫ `

0
σa(γ, γ̇) ds− a t (17)

for any a ≥ cγ and ξ ∈ [γ]t, and (17) is an equality whenever ξ ∈ [γ](a, t). The
assertion for t ≤ T γ(cγ) hence follows in force of Proposition 3.13 and Lemma 3.4.

Let us now assume t > T γ(cγ) and set h := t − T γ(cγ). Let ξ ∈ [γ](cγ , T γ(cγ)).
By definition of cγ , there exists, for each n ∈ N, sn ∈

(
0, T γ(cγ)

)
such that

cγ + L(ξ(sn), 0) <
1
n

.

To ease notation, we will write cn in place of −L(ξ(sn), 0). We define

ξn(s) :=





ξ(s) if s ∈ (0, sn]

ξ(sn) if s ∈ [sn, sn + h]

ξ(s− h) if s ∈ [sn + h, t).

We have
∫ t

0
L(ξn, ξ̇n) ds =

∫ T γ(cγ)

0
L(ξ, ξ̇) ds− h cn =

∫ T γ(cγ)

0
σcγ (ξ, ξ̇) ds− T γ(cγ) cγ

−h cn =
∫ `

0
σcγ (γ, γ̇) ds− cγ t + h

(
cγ − cn

)
<

∫ `

0
σcγ (γ, γ̇) ds− cγ t +

h

n
.

Taking (17) into account, we derive
∫ `

0
σcγ (γ, γ̇) ds− cγ t ≤

∫ t

0
L(ξn, ξ̇n) ds <

∫ `

0
σcγ (γ, γ̇) ds− cγ t +

h

n
,

and we conclude letting n → +∞. ¤

Remark 3.16. If in Theorem 3.15 the Lagrangian is assumed lower semicontinuous
in x, we can furthermore say that, for every t > 0,

inf
ξ∈[γ]t

∫ t

0
L(ξ, ξ̇) ds = min

{∫ t

0
L(ξ, ξ̇) ds : ξ ∈ [γ](a, t)

}
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for some constant a ≥ cγ . This can be proved by considering, in place of Tγ(·), the
set–valued map defined as

T ∗γ (a) := {t > 0 : [γ](a, t) is non–empty }
for every a ≥ c∗γ := sups∈J −L (γ(s), 0). The multifunction T ∗γ (·) agrees with Tγ(·)
on (c∗γ ,+∞). Indeed, the inequality

λ a(γ(s), γ̇(s)) ≥ a− c∗γ
2Ra

for a.e. s ∈ [0, `],

which holds true by Proposition 3.7, implies that [γ](a, t) = [γ][(a, t) for every
a > c∗γ and t > 0 (cf. the argument showing that T (a) ⊆ [T (a), T (a)] in the proof
of Proposition 3.13). On the other hand, we always have

T ∗γ (c∗γ) = [T γ(c∗γ), +∞) (18)

when T (c∗γ) is finite, and that is enough to get the statement in view of (17).
To prove (18), let ξ be a curve belonging to [γ](c∗γ , T (c∗γ)) (which does exist in

force of Proposition 3.13) and take s0 ∈ [0, T γ(c∗γ)] such that L(ξ(s0), 0) = −c∗γ .
Such an s0 always exists by the upper semicontinuity of −L(γ(·), 0) on [0, `]. For
every h > 0, define ξh : [0, T (c∗γ) + h] → RN as

ξh(s) :=





ξ(s) if s ∈ [0, s0]

ξ(s0) if s ∈ [s0, s0 + h]

ξ(s− h) if s ∈ [s0 + h, T γ(c∗γ) + h].

It is easily seen that ξh is a c∗γ–Lagrangian reparameterization of γ. This shows that

T γ(c∗γ) + h ∈ T ∗γ (c∗γ) for every h > 0,

as claimed.

With the aid of the results obtained so far, we can now prove Lemma 3.2.

Proof of Lemma 3.2 Choose n ∈ N such that M/α(n) < 1/2 and set

A = A(n) := max{α∗(u) : |u| ≤ 2β(n + 1) },
where α∗(u) := maxλ∈R{λu−α(|λ|) }. We claim that the statement holds true with
κ := κA defined according to (10).

Indeed, pick a curve ξ ∈ W 1,1
(
[0, t],RN

)
such that

∫ t

0
L(ξ, ξ̇) ds < M t,

and let γ : [0, `] → RN be a Lipschitz curve, parameterized by arc–length, such
that ξ ∈ [γ]t, according to Lemma 3.11. In view of Theorem 3.15, up to choosing a
different ξ in [γ]t without increasing the action, we can always assume that either
‖ξ̇‖∞ ≤ κcγ , or ξ ∈ [γ][(a, t) for some a > cγ . In the first case, we note that

cγ ≤ α∗(0),

for −L(x, 0) ≤ −α(0) ≤ α∗(0) for every x ∈ RN . The claim follows by definition of
κA as α∗(0) ≤ A.
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Let us instead assume that ξ belongs to [γ][(a, t) for some a > cγ . In particular,
|ξ̇(s)| 6= 0 almost everywhere on [0, t]. Set J := {s ∈ [0, t] : 0 < |ξ̇(s)| < n }. We
have

M t >

∫ t

0
L(ξ, ξ̇) ds ≥

∫ t

0
α(|ξ̇|) ds ≥ α(n)

∣∣[0, t] \ J
∣∣,

hence |J | > t/2. Pick up a differentiability point s ∈ J for ξ. By the fact that ξ has
an a–Lagrangian parameterization we derive that

a ∈ H
(
ξ(s), ∂qL(ξ(s), ξ̇(s) )

)
,

in particular a ≤ A by Proposition 2.1. As |ξ̇(s)| ∈ Λa(ξ(s), ξ̇(s)/|ξ̇(s)|) for a.e.
s ∈ [0, t], the claim follows in force of Lemma 3.4 since κa ≤ κA by definition
(10). ¤

3.3. Further extensions. Let us now consider a Lagrangian L : RN × RN → R+

which satisfies, in place of (L2), condition (L2 ′) for some family (βn)n∈N of convex,
non–decreasing and superlinear functions from R+ to R+; i.e., which is uniformly
superlinear in q, and locally bounded in RN ×RN . It is easy to generalize Theorem
3.1 as follows.

Theorem 3.17. Let L : RN × RN → R+ be an autonomous Lagrangian satisfying
conditions (L1), (L2 ′),(L3). Then the associated function S defined through (3) is
locally Lipschitz in RN × RN × (0,+∞). More precisely, for every M, r > 0 there
exist a constant K = K

(
M, r, α, (βn)n

)
such that

S is K–Lipschitz continuous in CM (r),

where CM (r) := {(y, t, x) ∈ Br ×Br × (0, r) : |x− y| < M t }.

Proof. For every n ∈ N, let us denote by Sn the function associated with the
Lagrangian Ln(x, q) := L(x, q)χBn

(x) + βn(|q|)χRN\Bn
(x) through (3). We claim

that, for every M, r > 0, there exists an index k = k
(
M, r, α, (βn)n

)
such that

S = Sk on CM (r). (19)

Clearly, that is enough to conclude in force of Theorem 3.1.
Let us fix M, r > 0. We first notice that

S(y, x, t) < r βm (M) for any (y, t, x) ∈ CM (r), (20)

where m := [r] + 1. Let γ be a curve in W 1,1
(
[0, t],RN

)
connecting y to x such to

be quasi–optimal for S(y, x, t). By (20), it is not restrictive to assume that
∫ t

0
L(γ, γ̇) ds < r βm (M) ,

in particular ∫ t

0
|γ̇|ds < r

(
α1 + βm(M)

)
,

with α1 > 0 such that α(|q|) ≥ |q| − α1 for any q ∈ RN . As γ has end–points lying
in Br, we deduce that γ is entirely contained in the open ball Bk with

k :=
[
r
(
1 + α1 + βm(M)

)]
+ 1.
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Thus

S(y, x, t) = inf
{∫ t

0
L(γ, γ̇) ds : γ(0) = y, γ(t) = x, γ([0, t]) ⊂ Bk

}

for every (y, t, x) ∈ CM (r), and claim (19) follows at once as L coincide with Lk on
Bk × RN . ¤

Remark 3.18. Theorem 3.17 still holds if, in place of condition (L3), L satisfies
the following weaker convexity assumption:

(L3)′ for every for every t1 < t2 in R and γ ∈ W 1,∞(
(t1, t2),RN

)

λ 7→ L(γ(s), λ γ̇(s)) is convex on R for a.e. s ∈ (t1, t2).

The reparameterization techniques and the approach described above can be in fact
adapted to this setting. The lack of convexity of L in q give raise to some technical
difficulties. For instance, it is no longer true that L is the Fenchel transform of H.
These obstructions can be overcome by computing the Fenchel transform of L along
straight lines of any fixed direction, and by accordingly modifying the definition of
σa. For the details, see [20].

We conclude this section by recording a result proved in [20] that we will need
later. Let us denote by L = L(

α, (βn)n

)
the family of Lagrangians satisfying assump-

tions (L1), (L2)′, (L3)′, where α and βn, n ∈ N, are fixed convex, non–decreasing
and superlinear functions from R+ to R+. Let Σ = Σ

(
α, (βn)n

)
be the space of func-

tions S on RN × RN × (0, +∞) associated through (3) with Lagrangians belonging
to L. We endow Σ with the metric induced by the uniform convergence on compact
subset of RN × RN × (0, +∞). The following result holds (see [20]):

Theorem 3.19. The space of functions Σ is compact; i.e., every sequence (Sk)k in
Σ admits as subsequence which converges to some element S of Σ, locally uniformly
in RN × RN × (0,+∞).

Remark 3.20. The Lagrangian L associated with the limit function S trough (3)
can be obtained by ”differentiation” as follows:

L(x, q) = lim
h→0+

S(x, x + hq, h)
h

for every (x, q) ∈ RN × RN . (21)

As proved in [20], L is continuous in q for every x, and convex for almost every
x. However, the convexity of L(x, ·) for every x ∈ RN is not assured, even if the
approximating functions Sk are associated with Lagrangians convex in q.

4. Main Theorems

4.1. Lipschitz regularity of the value function. We now use the information
gathered so far to prove some regularity properties of the value function v : (0, +∞)×
RN → R defined as

v(t, x) := inf
{

u(γ(0)) +
∫ t

0
L(γ, γ̇) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(t) = x

}
, (22)

21



where u : RN → (−∞, +∞], u 6≡ +∞, and L is a Lagrangian satisfying assumptions
(L1)–(L3). The above formula can be equivalently restated as

v(t, x) = inf
y∈RN

(
u(y) + Sy(t, x)

)
, (23)

where Sy(t, x) stands for the function S(y, x, t) associated with L through (3). In
what follows, the notation g+ will denote the positive part of a function g : Rk →
[−∞,+∞], namely g+(x) := max{g(x), 0} for every x ∈ RN .

Theorem 4.1. Let v be defined by (22) for some L : RN × RN → R+ satisfying
conditions (L1)–(L3). If u 6≡ +∞ and u is bounded from below, then v(t, x) is locally
Lipschitz in (0, +∞)× RN , and

lim
t→0+

‖ (v(t, ·)− u)+ ‖L∞(dom u) = 0. (24)

In particular, lim
t→0+

v(t, x) ≤ u(x) for every x ∈ RN . Moreover

(i) if u is either bounded or in UC(RN ), then, for any t0 > 0, there exists a
constant Kt0 = K(t0, u, α, β) such that

v(t, x) is Kt0–Lipschitz in [t0, +∞)× RN ;

(ii) if u ∈ Lip(RN ), then there exists a constant K = K(u, α, β) such that

v(t, x) is K–Lipschitz in [0, +∞)× RN .

Proof. Pick a point x0 ∈ dom(u) and plug y = x0 in the expression at the right–
hand side of (23). We get

v(t, x) ≤ u(x0) + t β

( |x− x0|
t

)
. (25)

Any y ∈ RN which is t–optimal for v(t, x) satisfies

u(y) + Sy(t, x) ≤ u(x0) + t

(
β

( |x− x0|
t

)
+ 1

)
,

and that yields, for y 6= x,

α
( |x−y|

t

)

|x−y|
t

≤ u(x0)− u(y)
|x− y| +

(
β

( |x− x0|
t

)
+ 1

)
t

|x− y| . (26)

When (t, x) varies in an open set U compactly contained in (0, +∞)×RN , inequality
(26) is certainly false if (y, t, x) 6∈ CM for a suitably large M = M(U, ‖(−u)+‖∞, α, β).
Hence

v(t, x) = inf
y

{
u(y) + Sy(t, x) : (y, t, x) ∈ CM

}
for every (t, x) ∈ U,

and the assertion follows as v is the infimum of a family of equi–Lipschitz functions,
in force of Theorem 3.1. Inequality (25) with x0 = x immediately gives (24) whenever
x ∈ dom(u).

Items (i) and (ii) can be proved analogously by putting x in place of x0 in (26)
and by choosing as U the sets (t0,+∞)× RN and (0,+∞)× RN , respectively. For
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the case u ∈ UC(RN ), we also make use of the fact that, for any such u, there exists
ε > 0 such that

|u(x)− u(y)| < |x− y|
ε

for every x, y ∈ RN with |x− y| > ε.

¤
Let us now assume that the Lagrangian L satisfies, in place of (L2), condition

(L2′) for some family (βn)n∈N of convex, non–decreasing and superlinear functions
from R+ to R+. We provide the following generalization of Theorem 4.1.

Theorem 4.2. Let v be defined by (22) for some L : RN × RN → R+ satisfying
conditions (L1), (L2 ′),(L3). If u 6≡ +∞ and u is bounded from below, then

lim
t→0+

‖ (v(t, ·)− u)+ ‖L∞(Br∩dom u) = 0 for every r > 0.

In particular, lim
t→0+

v(t, x) ≤ u(x) for every x ∈ RN . Moreover, v(t, x) is locally

Lipschitz in (0, +∞)×RN . More precisely, for every open set U compactly contained
in (0, +∞)× RN , there exists a constant K = K

(
U, u, α, (βn)n

)
such that

v(t, x) is K–Lipschitz in U.

The proof is omitted, for it can be easily recovered by arguing as above and by
using Theorem 3.17 in place of Theorem 3.1.

Last, we want to point out that all results of this paper can be easily extended
to the case when RN is replaced by a connected smooth Riemannian manifold M
without boundary. In this case, the Lagrangian L is defined on the tangent bundle
TM of M and satisfies assumptions (L1), (L2) or (L2 ′), (L3), with TM, ‖ · ‖x and
M in place of RN×RN , | · | and RN , respectively. (4) When M is compact, Theorem
4.1 can be partially improved as follows.

Proposition 4.3. Let M be a compact and connected smooth Riemannian mani-
fold without boundary, and L : TM → R+ an autonomous Lagrangian satisfying
conditions (L1)–(L3), with TM, ‖ · ‖x and M in place of RN × RN , | · | and RN ,
respectively. Let v be defined by (22) with u 6≡ +∞ and bounded from below. Then,
for any t0 > 0, there exists a constant Kt0 = K(t0, α, β) such that

v(t, x) is Kt0–Lipschitz in [t0, +∞)×M.

Remark 4.4. The point is that the constant Kt0 appearing above is independent
of the initial cost u, provided v is a well defined real function on (0, +∞)×M. This
is actually guaranteed by the conditions u 6≡ +∞ and inf

M
u > −∞.

Proof. Let us denote by δM the distance on M induced by its Riemannian metric.
For any M > 0, set

CM := {(y, x, t) ∈M×M× (0, +∞) : δM(x, y) < M t }.
Since M is compact, for any t0 > 0 there exists Mt0 , depending on t0 and on the
diameter of M only, such that M×M× [t0, +∞) ⊂ CMt0

. Hence

v(t, x) = inf
y

{
u(y) + Sy(t, x) : (y, x, t) ∈ CMt0

}
for any (t, x) ∈ [t0,+∞)×M,

4 ‖ · ‖x denotes the Riemannian norm on TxM, for every x ∈M.
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and the assertion follows as v is the infimum of a family of equi–Lipschitz functions,
in force of Theorem 3.1. ¤

4.2. A compactness result for value functions. Let L = L(
α, (βn)n) be defined

as in Section 3.3, and let (Lk)k be a sequence of Lagrangians belonging to L and
convex in q. For each k ∈ N, let

vk(t, x) := inf
{

uk(γ(0)) +
∫ t

0
Lk(γ(s), γ̇(s)) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(t) = x

}

for every (t, x) ∈ (0, +∞)×RN , where uk is a function from RN to (−∞, +∞] with
uk 6≡ +∞. With the aid of Theorem 3.19, we can prove the following result.

Theorem 4.5. Let (vk)k defined as above, and suppose one of the following condi-
tions holds:

(a) the functions uk are equi–bounded from below on RN ;
(b) the functions uk are equi–uniformly continuous on RN .

Then, up to subsequences, (vk)k locally uniformly converges on (0, +∞)×RN to the
function v defined as

v(t, x) := inf
{

u∗(γ(0)) +
∫ t

0
L(γ(s), γ̇(s)) ds : γ ∈ W 1,1

(
[0, t],RN

)
, γ(t) = x

}
,

where L is a Lagrangian belonging to L and u∗ is the function defined as

u∗(x) := inf
{

lim inf
k

uk(xk) : xk → x

}
for every x ∈ RN .

Proof. Let us denote by Sk the function associated with Lk through (3). By
Theorem 3.19 we know that, up to subsequences, Sk converge to S, locally uniformly
on RN × RN × (0,+∞). Let L be the element of L derived from S through (21).
For every M, r > 0, the functions Sk are equi–Lipschitz continuous. Moreover, for
every open set U compactly contained in (0, +∞) × RN there exists a constant M
independent of k such that

vk(t, x) = inf
y

{
uk(y) + Sk(y, x, t) : (y, t, x) ∈ CM (r)

}
for every (t, x) ∈ U,

where r is sufficiently large positive number such that U ⊂ (0, r)×Br. To see this,
argue as in the proof of Theorem 4.1 and note that M can be estimated in terms
of supk ‖(−uk)+‖∞ or of the continuity modulus shared by the functions (uk)k. In
particular, the functions vk are equi–Lipschitz continuous on U . By Ascoli–Arzelà
Theorem, the proof then reduces to show that

lim
k

vk(t, x) = v(t, x) for every (t, x) ∈ U .

Let us first prove that

v(t, x) ≥ lim sup
k

vk(t, x) for every (t, x) ∈ U . (27)

Chose y ∈ RN and let yk → y such that uk(yk) converge to u∗(y). We have

u∗(y) + S(y, x, t) = lim
k

uk(yk) + Sk(yk, x, t) ≥ lim sup
k

vk(t, x),
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and (27) follows by taking the infimum of the above inequality for all y ∈ RN .
Next, let us prove that

lim inf
k

vk(t, x) ≥ v(t, x) for every (t, x) ∈ U . (28)

For each k ∈ N, take yk such that (yk, t, x) ∈ CM (r) and

vk(t, x) +
1
k
≥ uk(yk) + Sk(yk, x, t).

By possibly considering a subsequence, we can assume that (yk)k converges to some
point y ∈ RN . We infer that

lim inf
k

vk(t, x) ≥ lim inf
k

uk(yk) + S(y, x, t) ≥ u∗(y) + S(y, x, t)

and (28) follows. ¤
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