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1. Introduction

The study of shape optimization problems for the eigenvalues of an el-
liptic operator is a fascinating field that has strong relations with several
applications as for instance the stability of vibrating bodies, the propaga-
tion of waves in composite media, the thermic insulation of conductors. In
its mathematical formulation the problem consists in taking an elliptic op-
erator (the Laplacian −∆ for instance) and considering its eigenvalues λk

as functions of the domain Ω where the problem is solved; we have then the
sequence

0 < λ1(Ω) ≤ λ2(Ω) ≤ · · · ≤ λk(Ω) ≤ λk+1(Ω) ≤ . . .

where each λk(Ω) is counted with its multiplicity. Given a function Φ :
RN → [0, +∞] we consider the optimization problem

min
{

Φ
(
λ(Ω)

)
: Ω ⊂ D, |Ω| ≤ m

}
(1.1)

where λ(Ω) stands for the sequence
(
λk(Ω)

)
k∈N, the design region D is fixed,

and m > 0. The generic question we try to answer is: does problem (1.1)
have a solution?

In Section 2 we survey the existence of optimal solutions for problem (1.1)
when Dirichlet conditions are imposed on the free boundary ∂Ω. We shall
see that problem (1.1) is well posed in the following situations:
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• when the competing domains Ω are subjected to some suitable geo-
metrical restrictions;

• when the cost function Φ satisfies some suitable monotonicity as-
sumptions;

• in some very special cases, like for instance the one where Φ depends
only on the low part of the spectrum (e.g. on the first two eigenvalues
λ1(Ω) and λ2(Ω)).

Most of the classical isoperimetric problems of the literature fit into these
general frames.

In Section 3 we consider the same problem for the case of Neumann
conditions on the free boundary ∂Ω; we denote by µk(Ω) the eigenvalues
in this case. Due to the failure of the compact embedding H1(Ω) ↪→  L2(Ω)
for non smooth sets and to the lack of monotonicity

Ω1 ⊂ Ω2 ⇒ µk(Ω2) ≤ µk(Ω1)

(which, on the contrary, holds in the Dirichlet case), the question of the
existence of optimal solutions is much more delicate, and up to now only
very few results are available. In fact, proving the existence of a solution for
such shape optimization problems is related to the well understanding of the
behavior of the Neumann spectrum on highly oscillating boundaries. This
is a challenging question and it is largely open (see [15] for recent advances
in this direction). We present some open problems and conjectures, par-
tially supported by some numerical computations. In some particular cases
of highly oscillating boundaries, these computations allow us to formally
identify the problems with the limit spectra.

2. Dirichlet eigenvalues

In this section we deal with optimization problems for functionals involv-
ing the eigenvalues of elliptic operators when a Dirichlet condition is imposed
on the free boundary.

2.1. Eigenvalues in Hilbert spaces. We start by recalling some basic
facts about eigenvalues of operators in Hilbert spaces. If H is a Hilbert
space and R : H → H is a bounded linear operator which is compact, self-
adjoint and nonnegative, the spectrum of R consists only on eigenvalues,
which can be ordered (counting their multiplicities):

0 ≤ · · · ≤ Λn+1(R) ≤ Λn(R) ≤ · · · ≤ Λ1(R).

For every integer n, the eigenvalue Λn(R) is given by the formula

Λn(R) = min
φ1,...,φn−1∈H

max
|φ| = 1

(φ, φ1) = · · · = (φ, φn−1) = 0

|Rφ|,
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where (·, ·) is the scalar product of H and | · | is the corresponding norm.
According to the Courant-Fischer theorem, for every integer n the following
equality holds:

Λn(R) = max
E∈Sn

min
φ∈E,|φ|=1

|Rφ|,

where Sn denotes the family of all subspaces of H of dimension n. Moreover,
the Rayleigh min-max formula provides the following equivalent formulation:

Λn(R) = min
φ1,...,φn−1∈H

max
|φ| = 1

(φ, φ1) = · · · = (φ, φn−1) = 0

(Rφ, φ)
|φ|2

.

We recall the following general results from [19, Corollaries XI.9.3 and
XI.9.4].

Theorem 2.1. Let R1, R2 be compact, self-adjoint and non-negative opera-
tors on H. For every m,n ≥ 1 we have

(1) Λm+n−1(R1 + R2) ≤ Λm(R1) + Λn(R2),
(2) Λm+n−1(R1R2) ≤ Λm(R1)Λn(R2)
(3) |Λn(R1)− Λn(R2)| ≤ |R1 −R2|L(H)

where |R|L(H) denotes the usual operator norm

|R|L(H) = sup{|Rφ| : |φ| ≤ 1}.

2.2. Eigenvalues of elliptic operators. We are interested in the study of
optimization problems for functions of eigenvalues of some elliptic operators.
For simplicity we consider here the Laplace operator −∆, even if several
conclusions can be extended to elliptic operators of a more general form.
More precisely, we consider a bounded Lipschitz domain D of RN and, for
every quasi-open subset Ω of D, the elliptic operator −∆ defined on the
Sobolev space H1

0 (Ω) of functions of H1
0 (D) which vanish quasi-everywhere

on D \ Ω. The equation

−∆u = f in Ω u ∈ H1
0 (Ω), (2.1)

intended in its weak form∫
Ω
∇u∇φdx =

∫
Ω

fφ dx ∀φ ∈ H1
0 (Ω),

then provides the resolvent operator RΩ which associates to every f ∈ L2(Ω)
the unique solution u. Since D is bounded, the Sobolev spaces H1

0 (Ω) are
compactly embedded into L2(Ω); consequently, RΩ is well defined, compact,
non-negative and self-adjoint. We define the eigenvalues λk(Ω) of the elliptic
operator −∆ on H1

0 (Ω) by setting

λk(Ω) =
1

Λk(RΩ)
.

In this way, for every n ≥ 1 there exists u ∈ H1
0 (Ω) \ {0} such that

−∆u = λn(Ω)u.
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Moreover, the Rayleigh formula can be used, and we obtain

λn(Ω) = max
φ1,...,φn−1∈L2(Ω)

min
φ ∈ H1

0 (Ω) \ {0}
(φ, φ1) = · · · = (φ, φn−1) = 0

∫
Ω
|∇φ|2 dx∫
Ω

φ2 dx

= min
E∈Sn

max
φ∈E\{0}

∫
Ω
|∇φ|2 dx∫
Ω

φ2 dx

.

Here (·, ·) is the scalar product in L2(D) and Sn denotes the family of sub-
spaces of H1

0 (Ω) of dimension n. As a direct consequence of the Rayleigh
formula we obtain the following monotonicity result for the Dirichlet eigen-
values λn(Ω).

Proposition 2.2. Let Ω1, Ω2 be two open (or quasi-open) sets of finite
Lebesgue measure. If Ω2 ⊂ Ω1, then for every n ≥ 1, λn(Ω1) ≤ λn(Ω2).

At this stage we have obtained the eigenvalues

0 < λ1(Ω) ≤ · · · ≤ λn(Ω) ≤ λn+1(Ω) ≤ · · · → +∞,

and we denote by λ(Ω) the sequence
(
λn(Ω)

)
n∈N. Since D is bounded,

all eigenvalues λk(Ω) are bounded from below by λ1(D). Therefore, by
Theorem 2.1, we have that λ(Ωn) → λ(Ω) (i.e. λk(Ωn) → λk(Ω) for every
k ∈ N) as soon as the resolvent operators RΩn → RΩ in the operator norm
of L(L2(D)). In other words, we have that λ(Ωn) → λ(Ω) whenever the
domains Ωn and Ω satisfy the condition:

fn → f weakly in L2(D) ⇒ uΩn(fn) → uΩ(f) in L2(D)

being uΩn(fn) and uΩ(f) the solutions of (2.1) with Ωn, fn and Ω, f respec-
tively.

Remark 2.3. It is possible to show (see for instance [7] and references
therein) that, in order to obtain the convergence of the resolvent operators
in the operator norm of L(L2(D)), it is enough to have the convergence of
the solutions above only when fn = f = 1.

Remark 2.4. It is important to stress that the convergence Ωn → Ω defined
above is not compact; in other words it is possible to construct sequences
(Ωn)n∈N of (smooth) subsets of D such that the corresponding solutions
uΩn(f) converge to some function u(f) which is not of the form uΩ(f) for
any subset Ω of D. This is the essential reason why in general the shape
optimization problems with Dirichlet conditions on the free boundary do
not have a solution. A relaxation procedure is then needed to study the
asymptotic behaviour of minimizing sequences, and the characterisation of
the relaxed problems involves the study of equations like (2.1) with a lower
order term which contains a measure of capacitary type. We do not want to
detail here this delicate field, and we refer the interested reader to the book
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[7] and to the several papers quoted therein. Just notice that the knowledge
of the relaxed form is crucial for the most part of numerical methods of
identifying optimal shapes.

2.3. The optimization problem. Given a function Φ : RN → [0, +∞] we
consider the optimization problem

min
{

Φ
(
λ(Ω)

)
: Ω ⊂ D, |Ω| ≤ m

}
(2.2)

where λ(Ω) is the spectrum defined above and |Ω| denotes the Lebesgue mea-
sure of Ω. In particular, we may consider optimization problems involving
only the first k eigenvalues:

min
{

Φ
(
λ1(Ω), . . . , λk(Ω)

)
: Ω ⊂ D, |Ω| ≤ m

}
where Φ : Rk → [0, +∞]. Some special cases of the problem above are well
known in the literature. For instance see [1, 2] for a detailed presentation of
the results below:

• if Φ(λ) = λ1 and D is large enough (to contain a ball of volume
m) then the optimal domain Ω for the problem (2.2) is any ball of
volume m;

• if Φ(λ) = λ2 and D is large enough (to contain two disjoint balls of
volume m/2 each) then the optimal domain Ω for the problem (2.2)
is any array of two disjoint balls of volume m/2 each;

• if Φ(λ) = λ1/λ2 and D is large enough (to contain a ball of volume
m) then the optimal domain Ω for the problem (2.2) is any ball of
volume m.

We stress that numerical computations (see for instance [22, 27]) give a proof
to the fact that the optimal solution of problem (2.2) is not always an array
of disjoint balls. This is the case for Φ(λ) = λ5 or Φ(λ) = λ6.

Figure 1. Numerical plot of the optimal sets for λ5 and λ6.

2.4. Existence under geometrical constraints. As stated in Remark
2.4, in general, without further restrictions on the class of admissible do-
mains, or additional assumptions on the cost functionals, the optimization
problem (2.2) does not admit a solution. In fact, a minimizing sequence
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for problem (2.2) always exists, and one may try to understand what is the
“geometrical” behaviour of this sequence. The non existence issue is related
to appearance of high oscillations and small holes during the minimization
process. A particular attention has to be given in the case D = RN , where
phenomena of concentration-compactness, dichotomy and vanishing type
may appear.

In this subsection we list some classes of domains which, due to some
geometrical constraints that are imposed, are compact for the convergence of
resolvent operators. The compactness is obtained (see [7] for further details
and references) by showing that, under suitable geometrical constraints, the
convergence of resolvent operators is equivalent to the so called Hausdorff
complementary convergence

Ωn → Ω in Hc ⇐⇒ D \ Ωn → D \ Ω in the Hausdorff sense.

As it is well known, the Hc convergence is compact on the family of open
subsets of D. The classes of domains in which the convergence of resolvent
operators is equivalent to the Hc-convergence are the following (from the
strongest constraints to the weakest ones).

• The class Aconvex of all open convex subsets of D.

• The class Aunif cone of all open subsets of D satisfying a uniform
exterior cone property (see Chenais [18]), i.e. such that for every
point x0 on the boundary of every Ω ∈ Aunif cone there is a closed
cone, with uniform height and opening, and with vertex in x0, lying
in the complement of Ω.

• The class Aunif flat cone of open subsets of D satisfying a uniform flat
cone condition (see Bucur, Zolésio [12]), i.e. as above, but with the
weaker requirement that the cone may be flat, that is of dimension
N − 1.

• The class Acap density of all open subsets of D satisfying a uniform
capacitary density condition (see [12]), i.e. such that there exist
c, r > 0 such that for every Ω ∈ Acap density, and for every x ∈ ∂Ω,
we have

∀t ∈ (0, r)
cap(Bx,t \ Ω, Bx,2t)

cap(Bx,t, Bx,2t)
≥ c,

where Bx,s denotes the ball of radius s centered at x.

• The class Aunif Wiener of all open subsets of D satisfying a uniform
Wiener condition (see [13]), i.e. such that for every Ω ∈ Aunif Wiener

and for every point x ∈ ∂Ω∫ R

r

cap(Bx,t \ Ω, Bx,2t)
cap(Bx,t, Bx,2t)

dt

t
≥ g(r, R, x) for every 0 < r < R < 1

where g : (0, 1) × (0, 1) × D → R+ is fixed, such that for every
R ∈ (0, 1) it is limr→0 g(r, R, x) = +∞ locally uniformly on x.
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Another interesting class, which is only of topological type and is not con-
tained in any of the previous ones, was given by Šverák [25] and consists in
the following.

• For N = 2, the class of all open subsets Ω of D for which the number
of connected components of D \ Ω is uniformly bounded.

As said above, the following inclusions can be established:

Aconvex ⊂ Aunif cone ⊂ Aunif flat cone ⊂ Acap density ⊂ Aunif Wiener.

Putting together the previous results we obtain the following existence the-
orem.

Theorem 2.5. Let A be one of the classes above and let Φ : RN → [0, +∞]
be a lower semicontinuous function, in the sense that

Φ(λ∞) ≤ lim inf
n→+∞

Φ(λn) whenever λn,k → λ∞,k for every k ∈ N. (2.3)

Then the optimization problem

min
{

Φ
(
λ(Ω)

)
: Ω ∈ A, |Ω| ≤ m

}
(2.4)

admits a solution.

2.5. Existence under monotonicity assumptions. In this subsection
we consider the optimization problem (2.2) without any further geometrical
restrictions on the domains. This is the natural frame in which the classical
isoperimetric problems are considered. In this case, in order to provide the
existence of an optimal domain, some monotonicity conditions on the cost
functional have to be assumed.

Definition 2.6. We say that a function Φ : RN → [0, +∞] is monotone
nondecreasing if

λk ≤ νk for every k ∈ N ⇒ Φ(λ) ≤ Φ(ν). (2.5)

By using the monotonicity of Dirichlet eigenvalues seen in Proposition
2.2 it is possible to obtain the following existence result (first obtained by
Buttazzo and Dal Maso in [16]).

Theorem 2.7. Let Φ : RN → [0, +∞] be a function which is lower semi-
continuous in the sense of (2.3) and monotone in the sense of (2.5). Then
the optimization problem (2.2) admits a solution.

In particular, every function Φ : Rk → [0, +∞], which is lower semicon-
tinuous and monotone nondecreasing in each of its variables (λ1, . . . , λk),
provides a minimization problem which admits an optimal solution. For
instance, if k ∈ N

Φ(λ) = λk , Φ(λ) =
k∑

i=1

λi , Φ(λ) =
k∑

i=1

λ2
i

give three examples of well posed optimization problems of the form (2.2),
for every m > 0 and every design region D.
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2.6. The case of the first two eigenvalues. In this subsection we con-
sider the very special case of optimization problems involving only the first
two eigenvalues of the Laplace operator. In other words, we deal with min-
imization problems of the form

min
{

Φ
(
(λ1(Ω), λ2(Ω)

)
: Ω ⊂ D, |Ω| ≤ m

}
(2.6)

It is convenient to introduce the spot function s : {Ω ⊂ D} → R2 defined by

s(Ω) =
(
λ1(Ω), λ2(Ω)

)
and its image

E =
{

(x, y) ∈ R2 : (x, y) = s(Ω) for some Ω ⊂ D, |Ω| ≤ m
}
.

The optimization problem (2.6) can be then rewritten in the form

min
{

Φ(x, y) : (x, y) ∈ E
}
.

It becomes then crucial to know whether the set E is closed or not in R2.
The following result has been proved in [8].

Theorem 2.8. Let m > 0 and assume that D is large enough to contain
a ball of volume 2N−1m. Then the set E above is closed in R2. As a con-
sequence, the optimization problem (2.6) admits a solution for every lower
semicontinuous function Φ : R2 → [0, +∞].

We stress that in the theorem above, due to the very special form of the
cost functional, no monotonicity assumptions are required. For instance,
we may obtain the existence of an optimal domain which minimizes the
quantity

λ2
1(Ω) + λ2

2(Ω)
λ1(Ω) + λ2(Ω)

.

The numerical study of the set E, in the case N = 2, has been performed
by Wolf and Keller in [27] where the following picture for E is obtained (see
Figure 2).

2.7. Further remarks and open problems. In the subsections above
we have considered optimization problems for the Dirichlet eigenvalues of
the Laplace operator, and we have seen that in several cases an optimal
domain exists. However, some open questions remain, if some of the previous
assumptions fail. Here we list some of them; a more complete list of open
problems related to eigenvalues optimization can be found for instance in
[1].

• A first important issue deals with the regularity of optimal shapes.
It would be interesting to investigate about the regularity of the
optimal domains of problems like (2.2). In fact, the general result
of Theorem 2.7 only provides optimal domains which are quasi-open
subsets of D. In the case when Φ(λ) = λ1, by using variational
methods, it is known (see for instance [20]) that the minimizers are
in fact open sets. Under the additional constraint of convexity for the
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E

λ 1

λ 2

0

Figure 2. The set E.

competing domains, a C1-regularity result for the optimal domains
can be proved (see [6]).

• A second question is related to the fact that the design region D
is assumed to be bounded. If we drop this condition, most of the
existence results obtained above fail. However, in [10] it is proved
that the problem

min
{
λk(Ω) : Ω ⊂ RN , |Ω| = m

}
has a solution for k = 3. In two dimensions, the disk is suspected to
be the solution (see [1]); up to now, as far as we know, this is still
a conjecture. The existence of an optimal domain for the problem
above in the case k ≥ 4 is not solved. Roughly speaking, if one proves
the existence of bounded minimizers for the cases k = 3, . . . ,M ,
then it is possible to obtain the existence of a minimizer (bounded
or unbounded) for the case k = M + 1.

• Concerning Theorem 2.8, there are many other questions which can
be raised. Is the set E convex? Is E still closed if the pair (λ1, λ2)
is replaced by (λi, λj), or more generally if we consider the set

EK =
{

(λi(Ω))i∈K : Ω ⊂ D, |Ω| ≤ m
}

where K is a given subset of positive integers? Are the sets Ω on
the boundary of E smooth? When are they convex? If the design
region is a general open set D, is the set E still closed? Or if the
Laplace operator is replaced by another elliptic operator of the form

L = −∂i(aij∂j) + bi∂i + c ?
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• For every k ≥ 2 prove (or disprove) that if Ω∗ is a solution of

min
{
λk(Ω) : Ω ⊂ RN , |Ω| ≤ m

}
,

then λk(Ω∗) = λk−1(Ω∗), i.e. on the optimal domain, the k-th eigen-
value is not simple, and equals the one of lower order. This happens
for k = 2 and in view on the conjectured optimum for λ3, this should
also hold when k = 3. Moreover, the numerical computations of
Oudet [22] for several values of k support the conjecture.

• The clamped plate. Rayleigh conjectured that the ball minimizes
the first eigenvalue of the clamped plate Γ1(Ω) among all domains
of prescribed measure. For a bounded open set Ω, Γ1(Ω) is defined
by

Γ1(Ω) = min
u∈H2

0 (Ω)u 6=0

∫
Ω |∆u|2dx∫
Ω |u|2dx

.

The minimizer u of the Rayleigh quotient above satisfies the equation
∆2u = Γ1(Ω) u in Ω

u = 0 ∂Ω
∂u
∂n = 0 ∂Ω.

This problem was solved in dimension 2 by Nadirashvili [21] and
in dimension 3 by Ashbaugh and Benguria [3], but is still open for
N ≥ 4. For a more detailed description of the problem we refer the
reader to [1, 2].

• The buckling load of a clamped plate. Consider a uniform
compressive force acting on the normal direction on every point of
the boundary of a plate (in the two dimensional space). The crit-
ical buckling load is related to the following eigenvalue of the bi-
Laplacian operator with Dirichlet boundary conditions:

Λ1(Ω) = min
u∈H2

0 (Ω)u 6=0

∫
Ω |∆u|2dx∫
Ω |∇u|2dx

.

This time, the minimizer u of the Rayleigh quotient above satisfies
the equation 

∆2u = −Λ1(Ω) ∆u in Ω
u = 0 ∂Ω

∂u
∂n = 0 ∂Ω.

Pólya and Szegö conjectured in 1950 that the solution of the prob-
lem

min
|Ω|=m

Λ1(Ω)

is the ball (see [1] for a detailed presentation of the problem). This
problem is still open despite a series of partial results. We notice the
idea of Willms and Weinberger [26] which, roughly speaking, gives
a solution to the problem provided that one proves that a smooth
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simply connected set solves the problem. The existence in the simply
connected class was proved in [4], but the regularity of the optimum
is still unknown.

3. Neumann eigenvalues

For every bounded open set Ω such that the injection H1(Ω) ↪→ L2(Ω)
is compact the resolvent operator associated to the Neumann Laplacian fits
into the general frame of Subsection 2.1. Then the spectrum of the Neumann
Laplacian consists only on eigenvalues:

0 = µ1(Ω) ≤ µ2(Ω) ≤ · · · ≤ µk(Ω) ≤ . . . → +∞.

In this case, for every k ∈ N, there exists uk ∈ H1(Ω) \ {0} such that, in the
weak variational sense, {

−4 uk = µk(Ω)uk in Ω
∂uk
∂n = 0 on ∂Ω,

(3.1)

i.e. for every φ ∈ H1(Ω)∫
Ω
∇uk∇φdx = µk(Ω)

∫
Ω

uφdx.

3.1. Existence results. Let Φ : Rk
+ 7→ R and let Uad be the family of

smooth open subsets of a bounded design region D with prescribed measure.
The smoothness is required for the compactness of the injection H1(Ω) ↪→
L2(Ω). The generic shape optimization problem we consider in this section
is

max
Ω∈Uad

Φ(µ1(Ω), . . . , µk(Ω)). (3.2)

Formally, we prefer in this section to write the generic shape optimization
problem as a maximization problem, since the natural problem for the k-th
eigenvalue µk is the maximization over domains of prescribed measure. On
the contrary, the minimum of µk(Ω) in Uad is zero: in fact, to see this, is is
enough to take an admissible set with k connected components. If we take
the subclass of Uad made by connected sets, the infimum is still zero, being
every set approached by cracked membranes with a “dense” crack.

As examples of optimal shapes, we refer to Weinberger [24] and Szegö [23]
for the following results:

(1) The ball is the unique solution of

max{µ2(Ω) : Ω ⊆ RN , Ω smooth , |Ω| = m}. (3.3)

(2) The ball is the unique solution of

min{ 1
µ2(Ω)

+
1

µ3(Ω)
: Ω ⊆ R2, Ω simply connected and smooth , |Ω| = m}.

(3.4)
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The proof of these result relies on direct comparison between an arbitrary
open set and the ball of the same measure. The reader is referred to [1] for
a list of open problems with isoperimetric inequalities for eigenvalues of the
Neumann Laplacian.

In order to prove the existence of a solution for the shape optimization
problems involving the Neumann eigenvalues, we have in mind the direct
methods of the calculus of variations, which rely on the continuity of the
spectrum for particular geometric perturbations. Contrary to the case of
Dirichlet boundary conditions, the behavior of the eigenvalues of the Neu-
mann Laplacian for non-smooth variations of the boundary of the geometric
domain is (almost) uncontrollable. Several facts can explain this phenom-
enon, the most important being the one that for a non-smooth domain Ω,
the injection H1(Ω) ↪→ L2(Ω) may not be compact. Consequently, on a
perturbed domain the spectrum of the Neumann-Laplacian may not con-
sist only on eigenvalues and a small geometric perturbation of a smooth
boundary may produce a large essential spectrum.

For shape optimization problems it is convenient to introduce the follow-
ing relaxed values which can be defined on arbitrary open sets. Let Ω be a
bounded open set. We define

µk(Ω) = inf
E∈Sk(Ω)

sup
φ∈E\{0}

∫
Ω
|∇φ|2dx∫
Ω

φ2dx

, (3.5)

where Sk(Ω) is the family of all linear spaces of H1(Ω) of dimension k. Of
course, if Ω is smooth enough, then µk(Ω) coincides with the kth eigenvalue
of the Neumann Laplacian. If Ω is not smooth, e.g. with an infinite num-
ber of connected components, then µk(Ω) = 0. Nevertheless, for a shape
optimization problem where the k-th eigenvalue has to be maximized, such
domains are ruled out by maximizing sequences.

In order to solve the shape optimization problem (3.2) for eigenvalues the
following steps may be considered:

(1) consider problem (3.2) on smooth domains;
(2) replace the eigenvalues by the relaxed values and relax the problem

to non-smooth domains;
(3) prove the existence of the optimal shape for the relaxed shape opti-

mization problem;
(4) prove the regularity of an optimal shape, and recover true eigenvalues

for the optimal shape.

Continuity of the Neumann eigenvalues for geometric convergence of the
domains is not well understood. We refer the reader to [15] for recent fine
results into this direction. Roughly speaking, if no geometrical constraints
are imposed on the competing domains, the continuity of eigenvalues with
respect to the convergence of domains can not be expected. Nevertheless,
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we can give the following weaker result (whose proof can be found in [7,
Theorem 7.4.7]).

Theorem 3.1. Let D be a bounded design region in RN and let Ωn, Ω ⊆ D
such that

∀ϕ ∈ H1(Ω), ∃ϕn ∈ H1(Ωn)

(1Ωnϕn, 1Ωn∇ϕn) −→ (1Ωϕ, 1Ω∇ϕ) strongly in L2(D)× L2(D, RN ). (3.6)

Then, for every k ∈ N∗, we have

µk(Ω) ≥ lim sup
n→∞

µk(Ωn). (3.7)

This result allows us to prove the following. The family Aconvex is de-
fined in Section 2 and Aε cone stands for the family of all open subsets of D
satisfying an ε-cone condition (see [18]).

Theorem 3.2. Let D be a bounded open set and let Φ : Rk
+ 7→ R be an upper

semicontinuous function which is nondecreasing in each variable. Then, the
problem

max
Ω∈Uad

Φ(µ1(Ω), . . . , µk(Ω)) (3.8)

has at least one solution for Uad being either Aconvex or Aε cone.

Proof. The existence of a solution is a direct consequence of Theorem 3.1 and
of the result of Chenais [18] on the existence of uniformly bounded extension
operators from H1(Ω) to H1(D). Indeed, consider a maximizing sequence
(Ωn)n either in the class of convex sets or in the class of sets satisfying a
uniform cone condition. Up to extracting a subsequence, one can assume
that Ωn converges in the Hausdorff complementary topology to an open set
Ω. In order to verify (3.6) for every ϕ ∈ H1(Ω) one can define ϕn = Pnϕ|Ωn ,
where Pn : H1(Ωn) → H1(D) is the extension operator with norm bounded
by a constant depending only on D and on the cone. Then property (3.6)
follows, and Ω turns out to be a maximizer for problem (3.8). �

If in Theorem 3.2 one drops the geometric conditions, it is not clear that a
maximizing sequence will satisfy (3.6). For the Neumann problem, we recall
the following result [11], where Ol(D) denotes the class of all open subsets
Ω of D such that Ωc has at most l connected components.

Theorem 3.3. Let N = 2 and {Ωn}n∈N ∈ Ol(D) be such that Ωn
Hc

−→ Ω.
Then condition (3.6) is satisfied if and only if |Ωn| → |Ω|.

Theorem 3.3 cannot be applied directly for proving existence of solutions
for problem (3.8) in Ol(D). In fact Ol(D) is compact for the Hc-topology,
but a priori there is no argument ensuring that for a maximizing sequence
one gets the condition |Ωn| → |Ω|.
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Theorem 3.4. Let D ⊆ R2 be a bounded design region, c, l, M positive
constants, and let us denote

Uad = {Ω : Ω ∈ Ol(D), |Ω| = c, H1(∂Ω) ≤ M}.

Then problem (3.8) has at least one solution.

Proof. The proof relies on Theorem 3.3 under the observation that if Ωn ∈
Ol(D) is such that H1(∂Ωn) ≤ M and the number of connected components
of ∂Ωn is uniformly bounded, then Ωn

Hc

→ Ω implies that |Ωn| → |Ω| (see for
instance [17]).

Let us consider a maximizing sequence (Ωn). A priori, if ]Ωc ≤ l, it is
not true that ]∂Ω is finite. Nevertheless, if the number of the connected
components of Ω is less than or equal to k then the number of the connected
components of ∂Ω is less than or equal to k + l − 1. Note that, unless the
functional F is trivial, it is enough to search the maximum only among
domains Ω which have less than k connected components. Indeed, if ]Ω = k
then µ1(Ω) = · · · = µk(Ω) = 0, hence F is maximal on such a set.

Up to a subsequence we can assume that Ωn
Hc

−→ Ω. Since ](∂Ωn) ≤
k + l − 1 we get that H1(∂Ω) ≤ M . The properties of the Hc-convergence
for sets with uniformly bounded perimeter give (see [14]) Ω ∈ Uad. Theorems
3.1 and 3.3 give that µi(Ω) ≥ lim supn→∞ µi(Ωn). We conclude the proof
by using the upper semicontinuity and the monotonicity of F . �

Remark 3.5. For problems (3.3) and (3.4) existence of the solution holds
into the class Ol(D) with l = 1 without imposing any additional constraint
on the competing shapes. It is natural to conjecture the following:

Conjecture 3.6. For N = 2, problem (3.8) has a solution in Ol(D), for
every l ∈ N.

Note that the proof of Theorem 3.4 could be adapted to Conjecture 3.6
provided that the maximizing sequence does not lose measure, i.e. |Ωn| →
|Ω|. Somehow, one should rule out the possibility of losing measure by using
the fact that the sequence is maximizing for the shape functional F . Losing
measure is related to highly oscillating boundaries. Roughly speaking, one
may think that every loop of an oscillation introduces small eigenvalues and
consequently rules out this set from the maximizing sequence.

In the next subsection, we exhibit some situations where this kind of phe-
nomena is observed and precisely described by accurate numerical computa-
tions. Into a typical situation of “losing measure” sequence one intuitively
observes an accumulation of the spectrum below a precise value depend-
ing on the shape. Although the behaviour of the spectrum is in general
unknown, these computations give a precise hint for identification of the
degenerate bilinear form which has among its critical values the limits of
the eigenvalues on the competing shapes.
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In the following subsection we study numerically the behavior of the Neu-
mann spectrum on some particular situations of sequences of domains “los-
ing measure”.

3.2. Asymptotic behavior in domains with multiple cracks. We in-
troduce a numerical method for the approximation of eigenpairs of the Neu-
mann Laplace operator in domains with cracks which lose mass asymptoti-
cally (see [5] for details concerning this method). The method is based on
a mixed variational formulation which allows us to set the problem in the
entire domain (including the cracks) and to express the crack conditions as
purely functional constraints which is easier to handle from the computa-
tional point of view. Moreover, this formulation permits to extend in an
easy way the main approximation results of the spectral theory to the case
of non Lipschitz domains.

3.2.1. Geometric setting and variational formulation. Let Ω be a bounded
domain of R2 with smooth boundary Γ, and (γi)i, 1 ≤ i ≤ I a given number
of Lipschitz continuous curves in Ω without self-intersections, such that Ωγ =
Ω \

⋃I
i=1 γi is connected. We assume that there exists a finite family Ωj ,

1 ≤ j ≤ J of pairwise disjoint Lipschitz open subsets of Ω, and a set of zero
Lebesgue measure Σ not intersecting any of the Ωj such that

Ω =
J⋃

j=1

Ωj ∪ Σ,

I⋃
i=1

γi ⊂ Σ. (3.9)

For every i, 1 ≤ i ≤ I, γi is supposed to be a part of the boundary of two
subdomains Ωj1(i) and Ωj2(i).

Due to the compactness of the injection H1(Ωγ) ⊂ L2(Ωγ), the spectral
theory of compact operators summarized in Section 2.1 can be applied. The
spectrum consists only on eigenvalues which can be ordered into an increas-
ing sequence (for the convenience we denote here µ0 = 0)

0 = µ0 ≤ µ1 ≤ µ2 ≤ · · · ≤ µn ≤ . . . ,

each µi, being isolated and of finite multiplicity.
We will denote L2

0(Ωγ) the space of functions in L2(Ωγ) whose integral
vanishes. We introduce the space

H(div , Ω) =
{
q ∈ L2(Ω)2, div q ∈ L2(Ω)

}
,

and denote

X = {q ∈ H(div , Ω),∀ϕ ∈ H1(Ω \ γ)
∫

Ω
q∇ϕdx +

∫
Ω

div qϕdx = 0}.

The equality
∫
Ω q∇ϕdx+

∫
Ω div qϕdx = 0 for every ϕ ∈ H1(Ω\γ) represents

an integral form of the Dirichlet conditions q · n = 0 on Γ and q · ni = 0 on
γi (see [5]).

Thus, we are led to a new view point of the mixed variational formulation
of the eigenvalue problem which will allows us to work in the entire domain
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Ω = Ωγ ∪ γ. The conditions q · n±i = 0 on γi are replaced by only one
condition q · ni = 0 (on one side of the crack).

In order to derive the mixed variational formulation of the problem, we
set in D′

(Ωγ)
p = grad u, in Ωγ . (3.10)

Consequently the mixed variational formulation reads: find µ ∈ R, such that
there exists a solution (p, u) ∈ X× L2

0(Ω) of
∫
Ω pq dx +

∫
Ω u div q dx = 0, ∀q ∈ X,∫

Ω div p v dx + µ
∫
Ω u v dx = 0, ∀v ∈ L2

0(Ω).
(3.11)

The main advantage of these formulation is that the new admissible solutions
are defined in the entire domain Ω = Ωγ ∪ γ and the restrictions imposed
on the cracks are expressed as internal constraints prescribed on the given
subset

⋃
i γi of Ω while the cracks γi, 1 ≤ i ≤ I are removed as “geometrical

constraints” and transformed into purely functional one. This is suitable
from both practical and approximation points of view.

It is proven in [5] that if µ, (u,p) is an eigenpair for (3.11) then µ, and
the restrictions of (u,p) to the domain Ωγ is an eigenpair of the initial
problem and conversely. Moreover, replacing µu by a source term f in the
second line of (3.11), we obtain an associated source problem. Therefore,
denoting by T , the operators T : L2

0(Ω) −→ L2
0(Ω), defined by Tf = u and

S : L2
0(Ω) −→ X defined by Sf = p where (p, u) defined by the source

problem are well defined. We get that T is self-adjoint and compact, and
the following theorem holds.

Theorem 3.7. The triplet (p, u, µ) is an eigensolution of problem (3.11) if
and only if µTu = u, p = grad u (i.e. p = S(µu)).

Remark 3.8. In order to build an efficient discretization, we transform
the problem (3.11) to have an unconstrained formulation. This is done by
expressing the conditions on the cracks via Lagrange multipliers.

The discretization of the final variational problem is based on the finite
elements method, the details and the complete analysis of the discretization
is performed in [5]. In particular, choosing for the approximation spaces, the
lower order Raviart-Thomas element for p, the piecewise constants elements
for u and piecewise constants on the cracks for the Lagrange multipliers, we
obtain the main approximation results.

Theorem 3.9. Assume that µ, (u,p, Λ) is an eigensolution of the con-
tinuous problem, with the algebraic multiplicity m for µ and assume that
u ∈

∏I
i=1 H1(Ωi), p ∈ (H1(Ω))2 and Λ ∈ H

1
2
+s(γ), 0 < s < 1

2 . Let µih,
i = 1, . . . ,m be the eigenvalues associated to µ and obtained from the discrete
problem. Then, the following error estimate holds

|µ− µih| ≤ Ch2s, i = 1, . . . , k, (3.12)

where the constant C depends linearly on (‖u‖H1(Ωi), 1 ≤ i ≤ I, ‖p‖H1(Ω)2).
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3.2.2. Numerical results. We present some numerical results to show the
asymptotic behaviour of the spectrum when the number of cracks increases
(for a given geometry see Figure 3 for example). We also perform some
numerical computations in the case of domains with fingers (see Figure 3)
instead of cracks. For the implementation details we refer the reader to [5].

We also propose a formal limit eigenvalue problem for which, due to the
rectangular geometry of the domains considered here, we are able to perform
analytic computations throughout a standard separation of variables argu-
ment. Indeed, let Ω = ]−1, 1[2 \P denotes the computations domain, where
P is either a union of finite number of vertical cracks (like γ in the previous
section) or the complementary set of a finite union of vertical fingers (see Fig-
ure 3). We denote by ρ the constant density in (−1, 1)× (0, 1), so that ρ = 1
in the case of cracks and set D = (−1, 1)×(−1, 1) and ω = (−1, 1)×(−1, 0),
the part of Ω free from cracks or fingers. Starting from a formal asymptotic
problem (as the number of cracks or fingers goes to +∞) where eigenvalues
are given by critical points of the following Rayleigh quotient

∫
ω |∇u|2dV + ρ

∫
D\ω |∂yu|2 dV∫

ω |u|2dV + ρ
∫
D\ω |u|2 dV

, (3.13)

we obtain the asymptotic values µk as zeros of the equation

2ρ
√

µ tan (
√

µ)
(

1+exp
√

k2π2 − 4µ
)

=
√

k2π2 − 4µ
(

exp
√

k2π2 − 4µ−1
)

(3.14)
The results of these computations agree with the numerical computations

as shown in Tables 1 and 2. In Table 1, we have plugged the eigenvalues up
to 19 in the case of domain with fingers (Figure 3) with asymptotic density
ρ = 1/2. The second line, respectively the third line, represent the values
with 9 fingers, respectively 33 fingers. In the last line we have reported
the values from the analytic computations using the asymptotic formula
(3.14). Note that the analytic results are very close to those given by the
numerical method but in the case with 9 fingers this property deteriorates
rather fast (and becomes quickly divergent from k = 11). In the case with 33
fingers the two computations yield reasonably closer values. This is somehow
expected as the exact computations correspond to a ”limit problem”. In the
case of Table 2, we have reported the eigenvalues up to 19 for a domain
with no cracks (second line), respectively 31 cracks (the third line) and 127
cracks (the fourth line), the last line still corresponds to the analytic values
obtained from (3.14) with density ρ = 1. In this case the analytic values
and the computed ones are closer even with few cracks.
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Figure 3. A domain with many fingers

µ1 µ2 µ3 µ4 µ5 µ6 µ7 µ8 µ9

9 fingers 1.1217 1.7555 1.9523 2.0504 2.1062 2.1387 2.1567 2.1619 2.4104

33 fingers 1.1231 1.7773 1.9846 2.0913 2.1572 2.2021 2.2346 2.2592 2.2785

∞ 1.1265 1.7905 2.0013 2.1099 2.1770 2.2227 2.2559 2.2811 2.3009

µ10 µ11 µ12 µ13 µ14 µ15 µ16 µ17 µ18 µ19

3.7354 9.8693 9.9405 11.4940 15.6515 16.1131 17.9664 18.7367 19.1308 19.3333

2.2941 2.3067 2.3174 2.3262 2.3339 2.3403 2.3461 2.3509 2.3552 2.3588

2.3170 2.3301 2.3506 2.3587 2.3657 2.3719 2.3774 2.3823 2.3867 2.3906
Table 1
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[25] V. ŠVERÁK: On optimal shape design. J. Math. Pures Appl., 72 (1993), 537–551.

[26] B. WILLMS: An isoperimetric inequality for the buckling of a clamped plate, Lec-
ture at the Oberwolfach meeting on “Qualitative properties of PDE” (organized by
H. Berestycki, B. Kawohl, and G. Talenti), Feb. 1995.

[27] S. A. WOLF, J. B. KELLER: Range of the first two eigenvalues of the Laplacian.
Proc. Roy. Soc. Lond., A 447 (1994), 397–412.



OPTIMIZATION PROBLEMS FOR EIGENVALUES OF ELLIPTIC OPERATORS 21

G. Buttazzo
Dipartimento di Matematica
Università di Pisa
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