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Abstract

A famous result of Denise Chenais [8] (1975) says that if Ωn is a sequence of extension

domains in RN that converges to Ω for the characteristic functions topology, then the weak

solutions un for the problem −∆un + un = f in Ωn

∂
∂ν

un = 0 on ∂Ωn
(0.1)

converge strongly to the solution u of the same problem in Ω. It is also proved in [8] using

the method of Calderón that an ε-cone condition is sufficient to obtain uniform extension

domains. In this paper we establish this result in a metric space framework, replacing the

classical Sobolev space H1(Ω) by the Newtonian space N1,2(Ω). Moreover, using the latest

results about extension domains contained in [2], and which rely on the technics of P. Jones,

we give weaker conditions on the domains for still getting stability for the Neumann problem.

Finally we prove that the Neumann problem is stable for a sequence of quasiballs with uniform

distortion constant that converge in a certain measure sense. The latter result gives a new

existence theorem for some shape optimisation problems under quasiconformal variations.
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Introduction

In this paper we focus on the following question. If Ωn is a sequence of domains that converges

to Ω (in a certain sense), is it true that the solutions un of the Neumann problem−∆un + un = f in Ωn
∂
∂νun = 0 on ∂Ωn

(0.2)

converge to the solution u of the same Neumann Problem in Ω ? This question related to shape

optimisation problems and domain identification problem was studied in the past for both Dirichlet

and Neumann boundary conditions. The Dirichlet problem was in particular investigated a lot

and some results involving capacity conditions are close to be optimal (see for instance [5]). On the

other hand, the Neumann problem seems more difficult and only a few works have been done in

dimension greater than 2 (see [6, 8, 10, 17] and the references therein) and the classical “Neumann

Sieve” (see [11, 25]) shows that in general the convergence cannot be true without topological

constraints on the sequence of domains.

In a famous paper of Denise Chenais [8] (1975), it is shown that if Ωn ⊂ RN is a sequence

of extension domains that converge to Ω for the characteristic functions topology, then the weak

solutions un for the problem (0.2) converge strongly to the solution u of the same problem in Ω,

more precisely, χΩnun strongly converges to χΩu in L2(RN ) and χΩn∇un strongly converges to

χΩ∇u in L2(Ω,RN ). It is also proved in [8] using the method of Calderón that an uniform ε-cone

condition is sufficient to obtain extension domains. It is worth mentioning that this condition

implies a Lipschitz regularity on the boundary of the domain.

In the first part of the present paper (Sections 1 to 4) we extend the result of Chenais in two

different directions. First, we place ourselves into a metric space framework replacing the classical

Sobolev space H1(Ω) by the Newtonian space N1,2(Ω) (Section 1). In Section 2 we give a possible

definition of Problem (0.2) in this setting while in Section 3 we prove that, as for the Euclidean

case, the stability is equivalent to a convergence of Newtonian spaces in the sense of Mosco.

Then we improve in Section 4 the ε-cone condition involving the latest results about extension
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domains contained in [2]. Indeed, in [18], Peter Jones introduced a class of domains called (ε, δ)-

flat domains, that are in particular weaker than Lipschitz domains, and he proved that they are

extension domains. This result was then declined in different contexts in the last 20 years (see [2]

and the references therein) and the particular case of Newtonian spaces was considered in [2] with

sophisticated geometrical conditions on the domains. This allows us to state some new stability

results under geometrical conditions on the boundaries of the domains (see Theorem 24).

In the second part of the paper (Section 5) we prove a new stability result along a larger class

of domains than the one of extension domains. Indeed, we prove that the stability holds along

a sequence of quasiconformal perturbations of a fixed domain, that converges for the Hausdorff

metric and in a certain measure sense (see Theorem 34). This stability result, proved here in

a general metric space framework, is interesting even for the Euclidean case. It also implies an

existence theorem for a class of shape optimisation problems under quasiconformal variations with

Neumann boundary condition (Theorem 35).

1 Notation and preliminaries

We always assume that (X, d, µ) is a metric measure space, where µ is a Borel regular measure,

that is, µ is an outer measure on a metric space (X, d) such that all Borel sets are µ−measurable

and for each set A ⊂ X there exists a Borel set B such that A ⊂ B and µ(A) = µ(B).

Definition 1. We say that a measure µ on X is doubling if there is a positive constant Cµ such

that

0 < µ(B(x, 2r)) ≤ Cµ µ(B(x, r)) <∞,

for each x ∈ X and r > 0. Here B(x, r) denotes the open ball of center x and radius r > 0.

Whenever we work in the Euclidean setting, that is X := RN , we will assume µ to be the

N−dimensional Lebesgue measure which will be denoted by L N . Observe that L N is always a

doubling measure with any choice of distance coming from a norm on RN .

We say that (X, d, µ) is a Q-regular space if there exists a constant C0 such that for every ball

B(x, r) contained in X,

C−1
0 rQ ≤ µ(B(x, r)) ≤ C0r

Q.

In the following we will place ourselves in the context of Sobolev spaces defined in metric

measure spaces. The reader is encouraged to consult the overview article [12] by Haj lasz for an

introduction to Sobolev spaces in metric measure spaces. It should be pointed out here, that if

the space supports a p−Poincaré inequality, 1 < p < ∞ (see definition 3), all the approaches to

Sobolev spaces described in [12] are equivalent (see Theorem 1.0.6 in [19]).

For the record, we recall here the definition of Newtonian Spaces, introduced by Shanmu-

galingam [26]. Its definition is based on the notion of p−weak upper gradients .
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Definition 2. Let p ≥ 1. A non-negative Borel function g on X is a p−weak upper gradient of an

extended real-valued function u on X, if it holds

|u(γ(a))− u(γ(b))| ≤
∫
γ

g

except for a curve family with zero p−modulus (see for example [15] for the definition of the

p−modulus of a curve family). By a curve γ we mean a continuous mapping γ : [a, b]→ X. The

image of a curve will be denoted by |γ| = γ([a, b])

Among the set of all p−weak upper gradients of a function u, there is a smallest member in

the Lp−norm, called the minimal weak upper gradient . The minimal weak upper gradient ρu is

unique up to a set of measure zero and ρu ≤ g a.e. for all p−weak upper gradients g of u.

Definition 3. Let 1 ≤ p <∞. We say that (X, d, µ) supports a weak (1, p)−Poincaré inequality

if there exist constants Cp > 0 and λ ≥ 1 such that for every Borel measurable function u : X → R
and every upper gradient g : X → [0,∞] of u, the pair (u, g) satisfies the inequality∫

B(x,r)
|u− uB(x,r)| dµ ≤ Cp r

(∫
B(x,λr)

gpdµ
)1/p

,

for each B(x, r) ⊂ X.

Here for arbitrary A ⊂ X with 0 < µ(A) <∞ we write

uA =
∫
A
u =

1
µ(A)

∫
A

u dµ.

If the space is Q−regular, then a (1, p)−Poincaré inequality implies the a priori stronger in-

equality where one replaces (for all balls) the averaged L1−norm on the left by the averaged Lq−
norm for some q > p; we could so speak about (q, p)−Poincaré inequalities.

Theorem 4. [13, Theorem 1] Suppose that X is Q-regular and that (u, g) satisfies a (1, p)-

Poincaré inequality for some 1 ≤ p ≤ Q. Then (u, g) satisfies a weak (q, p)−Poincaré inequality

for 1 ≤ q < pQ/(Q− p). In the special case p = Q, the right-hand term is ∞.

In the special case q = 1 we simply write weak p−Poincaré inequality.

The Poincaré inequality creates a link between the measure, the metric and the gradient and

it provides a way to pass from the infinitesimal information which gives the gradient to larger

scales. Metric spaces with doubling measure and Poincaré inequality admit first order differential

calculus akin to that in Euclidean spaces.

Let Ñ1,p(X, d, µ), where 1 ≤ p <∞, be the class of all Lp integrable Borel functions on X for

which there exists a p−weak upper gradient in Lp. For u ∈ Ñ1,p(X, d, µ) we define

‖u‖Ñ1,p = ‖u‖Lp + inf
g
‖g‖Lp ,

where the infimum is taken over all p−weak upper gradients g of u. Now, we define in Ñ1,p an

equivalence relation by u ∼ v if and only if ‖u− v‖Ñ1,p = 0.
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Definition 5. The Newtonian space N1,p(X, d, µ) is defined as the quotient Ñ1,p(X, d, µ)/ ∼ and

it is equipped with the norm ‖u‖N1,p = ‖u‖Ñ1,p .

Let us mention that the space (N1,p(X), ‖ · ‖N1,p) is a Banach space (see Theorem 3.7 in [26]).

In the sequel we will need the following technical Lemma.

Lemma 6. [26, 2.3.3] Let p > 1 and let {uk}k≥0 be a sequence of functions in Lp(X) with upper

gradients {gk}k≥0 in Lp(X) such that uk weakly converges to u in Lp and gk weakly converges to

g in Lp. Then g is an upper gradient for u.

Now, we focus our attention in the exponent p = 2. In this case, the energy integral,

E1(u) =
∫
X

ρu
2dµ, u ∈ N1,2(X) (1.1)

defines a Dirichlet energy form (for more information about Dirichlet forms in the context of

metric measure spaces we refer to the reader to [21]). This energy form is in general not bilinear

since the pallelogram rule fails, that is, ρu+v
2 + ρu−v

2 6= 2(ρu2 + ρv
2). However, in this case an

equivalent bilinear Dirichlet form on N1,2(X) can be constructed using Cheeger’s differentiation

theory. Cheeger in [7] gave an alternative definition of Sobolev spaces which leads to the same

space (see [26, 4.10]). Cheeger’s definition yields the notion of partial derivatives in the following

theorem.

Theorem 7. [7, 4.38] Let X be a metric space that supports a doubling Borel measure µ which is

non-trivial and finite on balls and suppose that X supports a weak p-Poincaré inequality for some

1 ≤ p < ∞. Then there exists a countable collection (Xα,xα) of measurable sets Xα ⊂ X and

Lipschitz coordinates

xα = (x1
α, . . . , x

N(α)
α ) : X −→ RN(α) where 0 ≤ N(α) <∞

such that:

(1) X =
⋃
αXα and µ

(
X \

⋃
αXα

)
= 0.

(2) There exists N ≥ 0 such that N(α) ≤ N for each (Xα,xα).

(3) If u : X → R is Lipschitz, then there exists a unique measurable bounded vector valued

function such that duα : Xα −→ RN(α)

lim
y→x
y 6=x

|u(y)− u(x)− duα(x) · (xα(y)− xα(x))|
d(y, x)

= 0

for µ−a.e. x ∈ Xα.

We can assume that the sets Xα are pairwise disjoint and extend duα by zero outside Xα. Now

we put Du =
∑
α du

α, regarding duα(x) as vectors in RN and the differential mapping D : u→ Du

is linear.
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The previous theorem establishes a version of Rademacher’s theorem for Lipschitz functions

in the context of metric measure spaces. Cheeger constructs a finite-dimensional vector bundle

F over X (the generalized cotangent bundle) and the differential operator D which takes N1,2(X)

into the L2−sections of F. The pointwise norms ‖ · ‖x on the fibers of F is defined so that the

identity ‖Du(x)‖x = ρu(x) holds almost everywhere. Thus the Dirichlet form of (1.1) can be

rewritten

E2(u) =
∫
X

‖Du‖2. (1.2)

Since the fibers of F are uniformly finite-dimensional, they can be uniformly renormed with equiv-

alent inner product norms ‖| · |‖x = 〈·, ·〉1/2x , so that for all u ∈ N1,2(X) we have ‖|Du|‖x ≤ ρu(x)

for µ−almost every x ∈ X. Then,

E(u) =
∫
X

‖|Du|‖2, u ∈ N1,2(X)

defines a new Dirichlet form which is equivalent to (1.2) on N1,2(X). The usual polarization

technique yields the bilinear form

E(u, v) =
∫
〈Du,Dv〉 dµ.

On that way, N1,2(X) becomes a Hilbert space with the inner product

〈u, v〉N1,2(Ω) :=
∫
X

Du ·Dv dµ+
∫
X

uv dµ.

The following Lemma will be also useful in the sequel.

Lemma 8. Let (X,µ) be a measurable space and let un : X → R, φn : X → R be two sequences

of measurable functions such that un is uniformly bounded in L2(X,µ), un weakly converges to u,

and φn strongly converges to φ in L2(X,µ). Then∫
X

un(x)φn(x) dµ(x)→
∫
X

u(x)φ(x) dµ(x).

Proof. We have that∫
X

unφn dµ =
∫
X

(un − u)φdµ+
∫
X

(un − u)(φn − φ) dµ+
∫
X

uφn dµ. (1.3)

By the weak convergence of un we know that
∫
X

(un − u)φdµ→ 0 and by the strong convergence

of φn we also have
∫
X
uφndµ→

∫
X
uφdµ. So it is enough to prove that∫
X

(un − u)(φn − φ) dµ→ 0.

But since un is uniformly bounded in L2(X) we have that∫
X

(un − u)(φn − φ) dµ ≤ ‖un − u‖L2‖φn − φ‖L2 ≤ C‖φn − φ‖L2

and we conclude using the strong convergence of φn.

Throughout this paper constants are labeled C, and the value of C might change even from

line to lime.
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2 The Neumann Problem on metric spaces

In this section we want to give a weak sense to the equation−∆u+ u = f in Ω
∂u
∂ν = 0 on ∂Ω

(2.1)

in a general metric space framework. In [1] it has already been studied a generalized Dirichlet

problem for p-harmonic functions under the conditions that the measure on the space is doubling

and supports a Poincaré inequality. In the wake of [1], we will use the next definition.

Definition 9. Let Ω be an open subspace of X and let L be a bounded linear form on L2(Ω)×
L2(Ω,RN ). A function u : X → [−∞,∞] is said to solve the Neumann problem associated to L if

u ∈ N1,2(Ω) and for all φ ∈ N1,2(Ω),∫
Ω

Du ·Dφdµ+
∫

Ω

uφ dµ = L̄(φ) (∗)

where L̄ : φ 7→ L(φ,Dφ).

Actually Problem (2.1) corresponds to the case L̄(φ) :=
∫

Ω
φf . Observe that when L is a

bounded linear form on L2(Ω) × L2(Ω,RN ), then it induces a bounded linear form on N1,2(Ω).

Since N1,2(Ω) is a Hilbert space endowed with the scalar product

〈u, v〉N1,2(Ω) :=
∫

Ω

Du ·Dv dµ+
∫

Ω

uv dµ,

we deduce by Lax-Milgram Theorem that for any bounded linear form L on L2(Ω) × L2(Ω,RN )

there exists a unique solution u ∈ N1,2(Ω) satisfying equation (∗). This solution can be obtained

by minimizing the energy

J(v) :=
1
2
〈v, v〉N1,2(Ω) − L̄(v).

For every L and Ω we will denote uLΩ this solution. For the special case when L̄(u) =
∫

Ω
uf we

will also denote ufΩ.

Applying (∗) with φ = uLΩ we get the identity

‖uLΩ‖2N1,2(Ω) '
(∫

Ω

|DuLΩ|2 dµ+
∫

Ω

|uLΩ|2 dµ
)

= L̄(uLΩ)

which implies in particular

‖uLΩ‖N1,2(Ω) ≤ C‖L‖, (2.2)

where ‖L‖ is the norm of L as bounded operator on L2(Ω)× L2(Ω,RN ).

3 Mosco-convergence and γ-convergence

In this section, we will study the relationship between stability for the Neumann problem described

in the previous section and Mosco-convergence, a classical notion of convergence introduced by
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Mosco [24] related to variational problems and very close to Γ-convergence for functionals. We

refer to [3, 9, 17] for some surveys about the subject.

Let Ω be a domain of X and p ≥ 1. For every u ∈ N1,p(Ω) we denote

û := (uχΩ, DuχΩ) ∈ Lp(X)× Lp(X,RN )

and we introduce the closed linear subspace BpΩ of Lp(X)× Lp(X,RN )

BpΩ := {û;u ∈ N1,p(Ω)},

which is a closed subspace of the Banach space Lp(X)× Lp(X,RN ). When p = 2 we will simply

denote BΩ.

Definition 10. Let {Ωn}n∈N and Ω be some domains contained in X. We say that the sequence

Ωn γ-converges to Ω and we denote

Ωn
γ→ Ω

if for every bounded linear form L on L2(X)×L2(X,RN ) we have that ûLΩn
strongly converges in

L2(X)× L2(X,RN ) to ûLΩ.

Remark 11. To be coherent with Definition 9, when considering uLΩn
, the linear form L has to

be understood as the canonical linear form on L2(Ωn) × L2(Ωn,RN ) induced by the given linear

form on L2(X)× L2(X,RN ) by the formula

L(u, v) = L(χΩn
u, χΩn

v)

where u and v lie in L2(Ωn) × L2(Ωn,RN ). Sometimes in the proofs, the characteristic function

χΩn
will be omitted.

If Ωn γ-converges to Ω we will also say that the Neumann problem is stable. It is well known

that in the Euclidean case, γ-convergence of Ωn is equivalent to Mosco-convergence of BΩn
.

Definition 12 (Mosco convergence). Let B be a Banach space and let {Bk} be a sequence of

closed subspaces of B. Set

limBk := {x ∈ B;x = strong − lim yk, yk ∈ Bk, for k large}. (3.1)

limBk := {x ∈ B;x = weak − lim ykn
, ykn

∈ Bkn
, kn → +∞} (3.2)

We say that {Bk} converges to B∞ (a subspace of B) in the sense of Mosco , if

limBk = limBk = B∞.

The subspaces limBk and limBk are called the weak-limsup and the strong-liminf of the se-

quence Bk in the sense of Mosco. Note that we always have limBk ⊆ limBk.

Here we give an alternative definition of Mosco-convergence which is equivalent to the previous

one in the case Bk = Bpk. We will use both definitions indistinctly.
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Definition 13. (Mosco-convergence). Let Ωk and Ω be open subsets of X and let BpΩk
and BpΩ

be the corresponding subspaces of Lp(X)× Lp(X,RN ). We say that BpΩk
converges to BpΩ in the

sense of Mosco if the following two properties hold:

(M1) For every u ∈ N1,p(Ω), there exists a sequence uk ∈ N1,p(Ωk) such that ukχΩk
converges to

uχΩ strongly in Lp(X) and DukχΩk
converges to DuχΩ strongly in Lp(X,RN ).

(M2) If hk is a sequence of indices converging to∞, uhk
is a sequence such that uhk

∈ N1,p(Ωhk
) for

every k, and uhk
χΩhk

converges weakly in Lp(X) to a function φ, while Duhk
χΩhk

converges

weakly in Lp(X,RN ) to a function ψ, then there exists u ∈ N1,p(Ω) such that φ = uχΩ and

ψ = DuχΩ µ−a.e. in X.

As we shall see in the following, the link between Mosco convergence and γ-convergence still

holds in metric spaces. The proof rely on the same argument that the standard proof in RN (see

for instance Proposition 3.7.10 in [17]) and we write here the full details for the convenience of

the reader.

Proposition 14. Let Ωn ⊆ X where (X, d, µ) is a metric measure space such that the embedding

N1,2(X) ↪→ L2(X) is compact. Then Ωn γ-converges to Ω if and only if BΩn converges to BΩ in

the sense of Mosco.

Proof. First, let us prove that Mosco-convergence implies γ-convergence. Indeed, assume that BΩn

Mosco-converges to BΩ and let un := uLΩn
be a sequence of solutions for equation (∗) associated to

a given linear form L. By (2.2) we know that the sequence ûn is uniformly bounded in L2(X)×
L2(X,RN ) and so, we can extract a subsequence ûnk

of ûn such that unk
weakly converges to a

function ϕ and Dunk
weakly converges to another function ψ. Now, Mosco-convergence (condition

M2) implies that (ϕ,ψ) ∈ BΩ. In other words there exists u ∈ N1,2(Ω) such that (ϕ,ψ) = û.

Now for all φ ∈ N1,2(Ω), by the strong-liminf property (M1) we know that there exists a

sequence of functions φn ∈ N1,2(Ωn) such that φ̂n strongly converges to φ̂ in L2(X)×L2(X,RN ).

Then, applying Lemma 8 we can pass to the limit, strongly in φnk
and weakly in unk

in the

following identity ∫
X

Dunk
·Dφnk

dµ+
∫
X

unk
φnk

dµ = L(φnk
, Dφnk

), (3.3)

to obtain that the function u = uLΩ, is the solution of (∗) in Ω. Moreover, since L is a bounded

operator on L2 for the strong topology, it is bounded also for the weak topology (because of the

Riesz representation theorem). We deduce, taking unk
as a test function in (3.3) that∫

X

|Dunk
|2 dµ+

∫
X

|unk
|2 dµ = L(unk

, Dunk
)→ L(u,Du) =

∫
X

|Du|2 dµ+
∫
X

|u|2 dµ,

which implies the strong convergence of unk
to u and Dunk

to Du. Consequently, from the

uniqueness of solution u for equation (∗) we deduce that u is the unique point in the adherence of

{un} and so the whole sequence un converges strongly to u.
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On the other hand, let us prove that γ-convergence implies Mosco-convergence. We begin by

checking the strong-liminf property, namely that BΩ ⊆ limBΩn
, which is also condition (M1). For

a given u ∈ N1,2(Ω) we define the bounded linear form L on L2(X)× L2(X,RN ) by

L(v, w) :=
∫

Ω

uv dµ+
∫

Ω

Du · w dµ.

It is clear that, with this choice of linear form L, u is the solution of (∗) in Ω . Now if un is the

solution of (∗) in Ωn, by γ-convergence we know that ûn strongly converges to û which proves the

strong-liminf property.

Now, let nk be a sequence of indices converging to ∞ and let ûk be a sequence in BΩnk
that

weakly converges in L2(X)× L2(X,RN ) to (u, v). We have to prove that (u, v) = ŵ for a certain

w ∈ N1,2(Ω). First, we consider the linear form

L(ϕ,ψ) :=
∫

Ω

uϕ+ v · ψ dµ, (3.4)

and we denote wk the solution of (∗) in Ωnk
associated to L. By hypothesis, Ωnk

γ→ Ω and so ŵk
strongly converges in L2(X) × L2(X × RN ) to ŵ, where w is the solution of (∗) in Ω. Thus, all

we have to prove is that (u, v) = ŵ. Indeed, by (∗) we get∫
Ωk

Dwk · (Dwk −Duk) dµ+
∫

Ωk

wk(wk − uk) dµ = L(wk − uk, Dwk −Duk)

and taking the limit strongly in wk, weakly in wk − uk (i.e. applying Lemma 8), we obtain

(extending Duk by 0 out of Ωnk
) that∫

Ω

Dw · (Dw − v) dµ+
∫

Ω

w(w − u) dµ = L(w − u,Dw − v),

which implies u = w and Dw = v, by definition of L (see (3.4)).

4 Stability for extension domains

In order to study some stability with respect to a variation of the domain, the family of domains

of X has to be endowed with a suitable topology. In this section, following Chenais [8], we choose

the topology of characteristic functions.

Definition 15. Let Ωn be a sequence of domains in X. We say that Ωn converges to the domain

Ω for the characteristic functions topology if the sequence of characteristic functions χΩn strongly

converges in L2(X) to the characteristic function χΩ.

We now give the definition of N1,2-extension domain.

Definition 16. Let Ω ⊆ X. We say that Ω is an N1,2-extension domain if there is a constant

C > 0 and a bounded linear operator

E : N1,2(Ω)→ N1,2(X)
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such that E(u) = u in Ω and

‖E(u)‖N1,2(X) ≤ C‖u‖N1,2(Ω).

In the next paragraph we will give more information about extension domains, including suf-

ficient geometrical conditions on the boundary of a domain that implies the extension property.

Before that, let us prove the following stability result.

Theorem 17. Let (X, d, µ) be a metric measure space such that the embedding N1,2(X) ↪→ L2(X)

is compact. Let Ω ⊆ X and Ωn ⊆ X (n ∈ N) be some N1,2-extension domains (with same constant

C) such that Ωn converges to Ω for the characteristic functions topology. Then Ωn γ-converges to

Ω.

Proof. This result is contained in [8] for the Euclidean case (see also Theorem 3.7.3 in [17]). There

is no deep changes in metric spaces but let us write here the entire proof for sake of completeness.

For all n we denote ũn := En(un) ∈ N1,2(X) where En is the extension operator in Ωn. By

(2.2) we know that

‖ũn‖N1,2(X) ≤ C‖un‖N1,2(Ωn) ≤ C‖L‖

thus we can extract a subsequence (not relabeled) that weakly converges in N1,2(X) to a function

u ∈ N1,2(X). By the compact embedding of N1,2(X) into L2(X) we may also assume that ũn
strongly converges to u in L2(X). We claim that χΩu is the solution of (∗) in Ω. Indeed, for every

φ ∈ N1,2(X) we have that χΩn
φ ∈ N1,2(Ωn) and since un is a solution of (∗) in Ωn we can write∫

Ωn

Dun ·Dφdµ+
∫

Ωn

unφdµ = L(χΩnφ, χΩnDφ),

which implies ∫
X

χΩnDũn ·Dφdµ+
∫
X

χΩn ũnφdµ = L(χΩnφ, χΩnDφ). (4.1)

Now up to a subsequence, χΩn converges to χΩ µ a.e. in X and is uniformly bounded, so χΩnφ→
χΩφ and χΩnDφ → χΩDφ in L2(X). Next, applying Lemma 8 and passing to the limit in (4.1)

we obtain ∫
Ω

Du ·Dφdµ+
∫

Ω

uφ dµ = L(χΩφ, χΩDφ),

for all φ ∈ N1,2(X). In fact, it is true also for all φ ∈ N1,2(Ω) because Ω is an extension domain.

This proves that the restriction of u to Ω satisfies (∗). It remains to prove that χΩn
Dun strongly

converges in L2(X) to χΩDu and this is a consequence of the fact that, since L is continuous for

the weak topology of N1,2(X),

lim
n→+∞

∫
Ωn

|Dun|2 dµ+
∫

Ωn

|un|2 dµ = lim
n→+∞

L(χΩnun, χΩnDu)

= L(χΩu, χΩDu)

=
∫

Ω

|Du|2 dµ+
∫

Ω

|u|2 dµ

so the prove is now complete.
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4.1 N1,2− extension domains.

It is well known that uniform domains are extension domains for the Sobolev spaces W 1,p(Ω) in

Euclidean spaces. This fact was first proved by P. Jones in [18] for a wide class of domains called

(ε, δ)−domains, and domains which satisfy a ε−cone condition are a particular case. In [2] we can

find some geometric conditions for a domain Ω to be an extension domain for N1,2.

Definition 18. A domain Ω ⊂ X is A−uniform , A ≥ 1, if for every pair of points x, y ∈ Ω there

is a curve γ in Ω connecting x and y such that `(γ) ≤ Ad(x, y) and for all z ∈ γ,

dist(z,X \ Ω) ≥ 1
A

min{`(γx,z), `(γy,z)}.

Here, γx,z and γy,z denotes a subcurve connecting x to z and y to z respectively.

In [2, 5.9] it is proved that if µ supports a weak 2−Poincaré inequality on X, then every

uniform domain is an N1,2− extension domain.

Definition 19. We say that Ω satisfies the corkscrew condition if there exists ε > 0 such that for

all x ∈ Ω and 0 < r ≤ diam(Ω), the set B(x, r) ∩ Ω contains a ball of radius εr.

It is well known that uniform domains satisfy the corkscrew condition (see [2, 4.2]). There

are many geometric conditions equivalent to the corkscrew condition. In the following, we will

mention the more remarkable ones:

Definition 20. Let β > 0. We say that Ω satisfies the local β−shell condition if for every x ∈ Ω

and 0 < t ≤ r ≤ diam(Ω) there exists a positive constant C such that the shell

St = {y ∈ B(x, r) ∩ Ω : d(y, ∂Ω) ≤ t}

satisfies

µ(St) ≤ C
( t
r

)β
µ(B(x, r) ∩ Ω).

Definition 21. Let 0 < ε < 1 and 0 < δ ≤ 1. We say that Ω satisfies the (ε, δ)−measure density

condition if for every x ∈ Ω and for each 0 < r ≤ diam(Ω),

µ({y ∈ B(x, r) ∩ Ω : d(y, ∂Ω) > εr}) ≥ δµ(B(x, r) ∩ Ω).

Theorem 22. [2, 2.8] Let µ be a doubling measure on Ω or in X. Then the following are

equivalent:

(1) Ω satisfies the corkscrew condition.

(2) Ω satisfies the local β−shell condition for some β > 0.

(3) Ω satisfies the (ε, δ)−measure density condition for some ε > 0 and δ > 0.

Now, we can state an extension of a result from Jones [18] to the setting of metric spaces

equipped with a doubling measure and supporting a weak 2−Poincaré inequality.
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Theorem 23. [2, 5.6] Let µ be a doubling measure and X supporting a weak 2−Poincaré in-

equality. Suppose that Ω ⊂ X is a domain such that µ(∂Ω) = 0, Ω satisfies one of the condition in

Theorem 22 and that for some α > 0, the measure given by the density dν(y) := (d(y, ∂Ω))αdµ(y)

supports a weak 2−Poincaré inequality on Ω. Then, Ω is an N1,2−extension domain, and more-

over the following local estimates for the extension operator hold: for bounded Ω there exist λ > 0

and C > 0 such that for all balls B with radius at most diamΩ and a centre in Ω

‖E(u)‖L2(B) ≤ C‖u‖L2(Ω∩λB) and ‖DE(u)‖L2(B) ≤ C‖Du‖L2(Ω∩λB). (4.2)

If Ω is unbounded, (4.2) holds for balls with radius at most R, and C depends on R.

A straightforward consequence of Theorem 23 together with Theorem 17 is the following.

Theorem 24. Let (X, d, µ) be a metric measure space, and let Ωn ⊆ X be a sequence of domains

satisfying the conditions of Theorem 23. Suppose also that the sequence Ωn converges to a domain

Ω for the characteristic function topology. Then Ωn γ-converges to Ω.

Remark 25. For instance the class of δ-Reifenberg-flat domains in RN , that are considered in

[22] and also in [23] in a more general setting, satisfies any of the conditions in Theorem 22.

5 Stability under quasiconformal deformations

In [4] it is proved (in particular) that any sequence of connected and simply connected domains in

R2 that converges for the complementary Hausdorff distance is stable for the Neumann problem.

This suggests that the regularity of the boundary of the domains is not determinant for having

γ-convergence. In other words the stability might be true for a larger class of domains than the

one of extension domains.

In this last section we will prove that the Neumann problem is stable for a sequence of a certain

classes of quasiballs defined in a general metric space. A quasiball is defined as being the image

of the unit ball by a quasiconformal mapping, so this result could be understood as an extension

in higher dimensions of the aforementioned result about simply connected domains in R2 (image

of the unit disk by a conformal mapping). In R2 one can prove that if Ωk is a sequence of simply

connected domains that converges for the complementary Hausdorff distance, then the sequence

of conformal representations gk of Ωk converges itself to a conformal mapping g which represents

the limit domain (see [4] 3.1.). In the case of quasiconformal mappings we have less rigidity and

one cannot expect such a convergence in general. However, we will see in this section that if we

assume in addition that the mappings converge in L1 to the identity map, then the stability still

holds (see Theorem 34).

Quasiconformal mappings are commonly understood to be homeomorphisms that transforms

infinitesimall balls into infinitesimall ellipsoids of bounded eccentricity. This requirement makes

sense in any metric space. Let f : X → Y be a homeomorphism between metric spaces (X, dX)
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and (Y, dY ) and define for each r > 0 and x ∈ X

Lf (x, r) := sup{dY (f(x), f(y)); dX(x, y) ≤ r}

lf (x, r) := inf{dY (f(x), f(y)); dX(x, y) ≥ r}

and

Hf (x, r) :=
Lf (x, r)
lf (x, r)

.

Observe that the ratio Hf (x, r) measures the eccentricity of the image of the ball B(x, r) under

f , and we always have Hf (x, r) ≥ 1.

Definition 26. We say that the homeomorphism f : X → Y is

K-quasiconformal if lim sup
r→0

Hf (x, r) ≤ K ∀x ∈ X ;

K-quasisymmetric if Hf (x, r) ≤ K ∀x ∈ X, ∀B(x, r) ⊆ X.

Actually, this definition of quasisymmetric mapping is not exactly the one that could be com-

monly found in the literature, but if the space X is doubling and pathwise connected, then our

definition is equivalent to the classical one due to a result of Väisälä (see Lemma 4.6 in [15] or [28,

2.9]).

Observe that if f is K-quasisymmetric then f−1 is also K-quasisymmetric. It is also clear from

the definitions that every K-quasisymmetric mapping is a K-quasiconformal mapping. It turns

out that for a large class of metric spaces the converse is also true.

It was proven by Heinonen and Koskela [14] (see also [20]) that under the following conditions:
(i) X and Y are Q-regular spaces with Q > 1

(ii) X is proper and quasiconvex

(iii) Y is locally linearly connected

(iv) f : X → Y is a quasiconformal mapping that maps bounded sets to bounded sets

if X supports a Q−Poincaré inequality then f is quasisymmetric. If in addition, X supports a

p−Poincaré inequality for some 1 ≤ p < Q, then f is not only quasisymmetric but also absolutely

continuous, and the pullback measure is A∞-related to µ.

Recall that a measure σ is said to be A∞-related to µ if for each ε > 0 there exists δ > 0 such

that

µ(E) < δµ(B) implies σ(E) < εσ(B),

whenever E is a measurable subset of a ball B.

Standard assumptions : In the sequel, we will say that (X, d, µ, f) satisfies the standard

assumptions with constants (Q,K, p) when X is a Q-regular and complete metric measure space

(thus is separable and locally compact) that admits a p-Poincaré inequality for some p < Q and

f : X → X is a K-quasisymmetric map between two bounded domains. We also assume that the
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pull-back measure µf of µ by f is A∞-related to µ, and that Jf (the Radon-Nikodym derivative of

µf with respect to µ) satisfies a reverse Hölder condition. This means that for every ball B ⊂ X(∫
B
J1+ε
f

)
≤ C

(∫
B
Jf

)1+ε

(5.1)

with ε defined by p = 1 + ε−1.

Example 27. (X, d, µ, f) satisfies the standard assumptions when (i)-(iv) hold and X supports

a p-Poincaré inequality for some p < Q. By Theorem 1.0.1 in [19], if X is in addition complete,

we automatically have a weak p−Poincaré inequality, for some 1 ≤ p < Q.

Remark 28. It follows from the Hölder inequality that if a space admits a p−Poincaré inequality,

it admits a q−Poincaré inequality for each q ≥ p. Thus, even if we can choose ε as small as we

want in (5.1), the estimate which gives more information is the one with p = 1 + ε−1.

Remark 29. It follows from the quasisymmetry of f and Q-regularity of X that (5.1) still holds

when the ball B is replaced by the pre-image of a ball by f .

In [16] (Theorem 9.10) it is proved that quasiconformal mappings between metric spaces of

locally Q−bounded geometry (see Definition 9.1 in [16]) preserve the Newtonian-Sobolev space

N1,Q. More precisely, if f : X → Y is a quasiconformal homeomorphism between metric spaces

of locally Q−bounded geometry then

u ∈ N1,Q
loc (X)⇒ u ◦ f−1 ∈ N1,Q

loc (Y ).

Let us notice that if (i)-(iii) hold and X supports a Q-Poincaré inequality, then X is of locally

Q−bounded geometry (see Section 5 in [15]).

In order to prove the main stability result of this section, we will need some technical lemmas.

The first Lemma controls the difference |uB − (u ◦ f−1)B | provided that the set of points that are

mapped far away by f−1 has small measure compared to the radius of B.

Lemma 30. Assume that (X, d, µ, f) satisfies the standard assumptions with constants (Q,K, p)

and that f maps Ω1 → Ω2, where Ω1 and Ω2 are two bounded domains of X such that Ω1∩Ω2 6= ∅.
Assume in addition that

µ
(
{y ∈ Ω2 : d(y, f−1(y)) ≥ 1

100
r}
)
≤ δrQ (5.2)

for a positive constant δ ≤ (2C0)−1100−Q, and a given radius r > 0. Then for all u ∈ N1,p(Ω1)

and for all ball B := B(x, r) ⊆ Ω1 ∩ Ω2 such that B(x, λ4Kr) ⊆ Ω1 one has that

f−1(B) ⊆ B(x, 4Kr) (5.3)

and

|uB − (u ◦ f−1)B | ≤ Cr
(∫

B(x,λ4Kr)
ρpu

) 1
p

(5.4)

where C depends on p, K and the doubling constant of µ.
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Proof. Let x ∈ X and B = B(x, r) and let us denote E := f−1(B). We claim that

B
(
z,

1
4K

r
)
⊆ E ⊆ B(x, 4Kr) (5.5)

for some point z ∈ X. Let us begin with the first inclusion. We consider the set Σ := {y ∈
Ω2; : d(y, f−1(y)) ≥ 1

100r} and we take a point z1 ∈ B(x, τr)\Σ with τ := (2δC0)
1
Q . Such a point

always exists because µ(B(x, τr)) ≥ C−1
0 τQrQ = 2δrQ > µ(Σ). In particular, d(z1, f

−1(z1)) ≤ r
100

thus f−1(z1) ∈ B(x, (τ + 1
100 )r) ⊆ B(x, 11

100r) by definition of τ and because by assumption

δ ≤ (2C0)−1100−Q. Now take a point y ∈ B such that d(x, y) = 1
2r. By a similar argument one

can choose a point z2 in B(y, τr)\Σ such that f−1(z2) ∈ B(y, 11
100r). In particular we have that

d(f−1(z1), f−1(z2)) ≥ r

2
− 22

100
r ≥ r

4

and

d(z1, z2) ≤ r

2
+

22
100

r ≤ 3
2
r,

which implies that Lf−1

(
z1,

3
2r
)
≥ r

4 . Since

Lf−1

(
z1,

3
2
r
)
/lf−1

(
z1,

3
2
r
)

= H
(
x,

3
2
r
)
≤ K,

we deduce that

lf−1(z1,
3
2
r) ≥ r

4K
.

This proves that f−1(B(z1,
3
2r)) contains a ball of radius at least r

4K and so, there exists a z such

that

B
(
z,

1
4K

r
)
⊆ f−1

(
B
(
z1,

3
4
r
))
⊆ f−1(B).

Now let us prove the second inclusion in (5.5). We keep the same point z1 ∈ B(x, τr)\K and

following the previous argument, we find a point z2 lying in B(y, τr)\Σ where this time y is chosen

satisfying d(x, y) = 2r. By construction we get

d(f−1(z1), f−1(z2)) ≤ 2r +
22
100

r =
222
100

r

and

d(z1, z2) ≥ 2r − 22
100

r =
178
100

r.

These two estimates implies lf−1(z1,
178
100r) ≤

222
100r. Therefore Lf−1(z1,

178
100r) ≤ K 222

100r and so we

deduce that there exists a point z′ such that

f−1(B) ⊆ f−1
(
B
(

(z1,
178
100

r
))
⊆ B

(
z′,

222
100

Kr
)
⊆ B(x, 4Kr),

and claim (5.5) is proved.

Now let us denote B0 := B(x, 4Kr). Observe that if g is an upper gradient for u, then for any

constant a > 0, g is still an upper gradient for u + a. In addition (u + a) ◦ f−1 = u ◦ f−1 + a.

Therefore, to prove (5.4) we can assume without loss of generality that∫
B0

u dµ = 0. (5.6)
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By Theorem 4, we get in particular that(∫
B0

|u|p dµ
) 1

p

≤ Cr
(∫

λB0

gp dµ
) 1

p

. (5.7)

Our aim now is to estimate

|uB − (u ◦ f−1)B | ≤ |uB |+ |(u ◦ f−1)B |.

Using p−Poincaré inequality and minding that uB0 = 0 we get

|uB | = |uB − uB0 |

≤ µ(B0)
µ(B)

∫
B0

|u− uB0 | dµ

≤ Cr

(∫
λB0

gp dµ
) 1

p

.

So we are left to estimate |(u ◦ f−1)B |. Let µf be the pull-back measure of µ by f , that is,

µf (E) = µ(f−1(E)),

for any Borel set E of X. Recall that under our assumptions we know that µf is absolutely

continuous with respect to µ and we have

µf = Jfµ.

Recall also that by definition of ε we have p′ = ε + 1 where p′ is the conjugate of p. From the

reverse Hölder’s inequality satisfied by Jf it follows

|(u ◦ f−1)B | ≤
1

µ(B)

∫
E

|u|Jf dµ

≤
(

1
µ(B)

∫
E

|u|p
) 1

p
(

1
µ(B)

∫
E

Jε+1
f dµ

) 1
ε+1

≤
(
µ(B0)
µ(B)

) 1
p
(∫

B0

|u|p
) 1

p
(
µ(E)
µ(B)

) 1
ε+1
(∫

E
Jε+1
f dµ

) 1
ε+1

≤ C(ε,K, µ)r
(∫

λB0

gp
) 1

p
∫
E
Jf dµ (5.8)

≤ Cr

(∫
λB0

gp
) 1

p

.

Let us observe that in inequality (5.8) we have used (5.7), (5.1) and Remark 29. The proof of the

lemma is now complete.

Our stability result (Theorem 34) will rely on a “key lemma” that allows us to compare two

functions defined in different domains, and say that they are close in the Newtonian space norm

when the domains are close enough for a suitable topology. We will need some classical Whitney

type coverings and we refer for instance to [1] for a proof of the following Lemma.
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Lemma 31. Let Ω ⊆ X be an open set such that ∂Ω is not empty, and let us define for ε > 0 the

sets

Vε := {x ∈ Ω; 0 < d(x,Ωc) ≤ ε} ⊆ Ω.

Then for any constant λ,K ≥ 1 there exists a countable family of balls {Bi}i∈I of center xi and

radius ri satisfying
(i) Vε ⊆ ∪i∈IBi ⊆ V 9

8 ε

(ii) ri100λK ≤ d(xi,Ωc) ≤ ri200λK for all i ∈ I,

(iii) the balls in the family { 1
2Bi}i∈I are pairwise disjoint,

(iv) if Bj ∩Bj 6= ∅ then ri ≤ 4rj, and

(v)
∑
i∈I χ10Bi(x) ≤M where M depends only on the doubling constant of µ.

By standard technics there exists a partition of unity {ϕi}i∈I associated to {Bi}i∈I and satis-

fying
(i)

∑
i∈I ϕi(x) = 1 on Vε,

(ii) supp(ϕi) ⊂ 2Bi for all i ∈ I,

(iii) 0 ≤ ϕi ≤ 1 for all i ∈ I, and

(iv) ϕi is C/ri-Lipschitz for all i ∈ I.

From this partition of unity on Vε ⊆ Ω we would like to obtain a partition of unity on all Ω.

To this aim, let us define

ψ(x) := l(d(x,Ωc)/ε)

where l is a C−Lipschitz function equal to 0 in [0, 1/2], equal to 1 in [1,+∞) and l′(x) ≤ C.

Observe that by construction ψ is C/ε-Lipschitz, equal to 0 on Vε/2 and ψ +
∑
i∈I ϕi > 0 on Ω.

Now, we define

θi :=
ϕi

ψ +
∑
i∈I ϕi

for i ∈ I and ψ0 :=
ψ

ψ +
∑
i∈I ϕi

for i ∈ I.

We now have a partition of unity in Ω, and the following properties are easily checked:

(i) ψ0 +
∑
i∈I θi = 1 on Ω.

(ii) supp(θi) ⊂ 2Bi for all i ∈ I.

(iii) supp(ψ0) ⊂ Ω\Vε/2.

(iv) ψ0 is C/ε-Lipschitz.

(v) ψ0 = 1 on Ω\Vε.

We will need also the following result.

Lemma 32. Let Ω ⊂ X be an open set. Then, for any q ≥ p and for any u ∈ N1,q(Ω) one has

‖uψ0 +
∑
i∈I

uBiθi‖N1,q(A) ≤ C‖u‖N1,q(W (A)),

where W (A) := A ∪
⋃
i∈I;2Bi∩A6=∅ 10λBi, for any Borel set A ⊂ Ω .

Proof. The proof relies on the classical Whitney argument. The adaptation in a metric space
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framework is inspired in the proof of Theorem 5.6. in [2]. Set

f(x) := u(x)ψ0(x) +
∑
i∈I

uBiθi(x)

and let us first control the Lq−norm of f . We denote IA := {i ∈ I : ∃y ∈ A : θi(y) 6= 0} and for

any x ∈ Ω we denote Ix := {i ∈ I; θi(x) 6= 0}. Using the fact that ]Ix ≤ C and applying Fubini’s

theorem, we obtain the following chain of inequalities:

‖
∑
i∈I

uBi
θi‖qLq(A) =

∫
A

∣∣∑
i∈Ix

uBi
θi(x)

∣∣qdµ
≤ C

∫
A

∑
i∈Ix

|uBi |qdµ

≤ C
∑
IA

|uBi
|q
∫
supp(θi)

dµ

≤ C
∑
IA

|uBi |qµ(Bi)

≤ C
∑
IA

∫
Bi

|u|q dµ

≤ C

∫
W (A)

|u|q dµ. (5.9)

Therefore, since ψ0 ≤ 1 and A ⊆W (A),

‖f‖Lq(A) ≤ ‖uψ0‖Lq(A) + C‖
∑
i∈I

uBiθi‖Lq(W (A)) ≤ C‖u‖Lq(W (A)).

Now we have to control the gradient of f . For this purpose we need first to find a suitable

upper gradient for f . Let γ be a curve connecting two points x and y. Up to split γ into parts we

may assume that |γ| ⊆ 2Bi0 for some i0 ∈ I, or |γ| ⊆ Ω\ ∪i∈I 2Bi. In the latter case we have that

f = u and so, for any upper gradient g of u one has

|f(x)− f(y)| ≤
∫
γ

g.

Consequently, it is enough to consider the first case when |γ| ⊆ 2Bi0 for some i0 ∈ I. First, we

can add and subtract the constant u10Bi0
and use that ψ0 +

∑
i∈I θi(x) = 1 to write f(x)− f(y)

in the following fashion:

f(x)−f(y) = (u(x)− u10Bi0
)(ψ0(x)− ψ0(y))︸ ︷︷ ︸
(?)

+ψ0(y)(u(x)−u(y))+
∑
i∈I

(uBi
− u10Bi0

)(θi(x)− θi(y))︸ ︷︷ ︸
(??)

.

First, let us estimate (??). We have that∣∣∑
i∈I

(uBi
− u10Bi0

)(θi(x)− θi(y))
∣∣ ≤ ∑

i∈I
|uBi

− u10Bi0
||θi(x)− θi(y)|

≤ Cd(x, y)
∑

i∈Ix∪Iy

|uBi − u10Bi0
| 1
ri

≤ Cd(x, y)
1
ri0

∑
i∈Ix∪Iy

|uBi
− u10Bi0

|. (5.10)
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We use now q-Poincaré inequality (which holds since q ≥ p) to obtain that for all i ∈ Ix ∪ Iy, that

is, for all i ∈ I with 2Bi ∩Bi0 6= ∅ (and such balls Bi are contained in 10Bi0),

|uBi
− u10Bi0

| ≤ Cri0
(∫

10λBi0

gq
) 1

q

.

This last estimate together with the fact that ]{i ∈ I; 2Bi ∩Bi0 6= ∅} ≤ C yields∣∣∑
i∈I

(uBi − u10Bi0
)(θi(x)− θi(y))

∣∣ ≤ Cd(x, y)
(∫

10λBi0

gq
) 1

q

(??).

On the other hand since ψ0 is either C/ri0-Lipschitz either equal to 0 in Bi0 we have that

|u(x)− u10Bi0
||ψ0(x)− ψ0(y)| ≤ Cd(x, y)

1
ri0
|u(x)− u10Bi0

| (?).

Keeping in mind that |ψ0(y)| ≤ 1, all together we have proved

|f(x)− f(y)| ≤ |u(x)− u(y)|+ Cd(x, y)
[(∫

10λBi0

gq
) 1

q

+
1
ri0
|u(x)− u10Bi0

|
]
. (5.11)

From those last estimates, up to a new choice of constant C, we claim that the function

G(x) := Cg(x) + C
∑

i∈I;x∈Bi

[(∫
10λBi

gq
) 1

q

+
1
ri
|u(x)− u10Bi

|
]

(5.12)

is an upper gradient for f .

Indeed, for any couple of points x and y belonging to Ω, and for any curve γ connecting x to

y we can split γ into a finite number of parts γk in such a way that γk is connected, γk ⊂ 2Bk for

some k ∈ I, and γ0 ⊂ Ω\ ∪i∈I 2Bi. Let xk and yk be the two endpoints of γk, for each k. First

observe that for any k and for any z ∈ γk it holds

|u(xk)− u10Bk
| ≤ |u(z)− u10Bk

|+
∫
γk

g.

Thus ∑
k

d(xk, yk)
rk

|u(xk)− u10Bk
| ≤

∑
k

d(xk, yk)
rk

(
|u(z)− u10Bk

|+
∫
γk

g

)
≤ C

∫
γ

g +
∑
k

d(xk, yk)
rk

inf
z∈γk

|u(z)− u10Bk
|. (5.13)

We deduce that

|f(x)− f(y)| ≤ |f(x0)− f(y0)|+
∑
k

|f(xk)− f(yk)|

(5.11)

≤
∫
γ0

g + C
∑
k

|u(xk)− u(yk)|+ d(xk, yk)
[(∫

10λBk

gq
) 1

q

+
1
rk
|u(xk)− u10Bk

|
]

≤ C

∫
γ

g + C
∑
k

∫
γk

g + C
∑
k

`(γk)
[(∫

10λBk

gq
) 1

q

+
1
rk

inf
z∈γk

|u(z)− u10Bk
|
]

≤ C

∫
γ

g + C
∑
k

∫
γk

 ∑
i∈I;z∈Bi

[(∫
10λBi

gq
) 1

q

+
1
ri
|u(z)− u10Bi

|
] dH1(z)

≤
∫
γ

G(z)dH1(z).
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In the penultimate inequality we have used that for every z ∈ Bk,

1
rk
|u(z)− u10Bk

| ≤
∑

i∈I;z∈Bi

1
ri
|u(z)− u10Bi |

and

(
∫

10λBk

gq)
1
q ≤

∑
i∈I;z∈Bi

(
∫

5λBi

gq)
1
q .

We have then proved that G(x) defined in (5.12) is an upper gradient for f . Now to finish the

proof of the Lemma, it suffices to control the Lq−norm of G. We have that

‖G‖Lq(A) ≤ C‖g‖Lq(A) + C‖
∑
i∈Ix

∫
10λBi

gq‖Lq(A) + ‖
∑

i∈I;x∈Bi

1
ri
|u(x)− u10Bi

|‖Lq(A).

On one hand, as for (5.9), we get

‖C
∑
i∈Ix

∫
10λBi

gq‖qLq(A) ≤ C

∫
A

∑
i∈Ix

(∫
10λBi

gq
)q

dµ(x)

≤ C
∑
IA

(∫
10λBi

gq
)q ∫

supp(θi)

dµ(x)

≤ C
∑
IA

(∫
10λBi

gq
)q

µ(Bi)

≤ C
∑
IA

∫
10λBi

gq dµ

≤ C

∫
W (A)

gq dµ. (5.14)

On the other hand, using Theorem 4 and Fubini’s theorem we obtain

‖C
∑
i∈Ix

1
ri
|u(x)− u10Bi |‖

q
Lq(A) ≤ C

∫
A

∑
i∈Ix

1
rqi
|u(x)− u10Bi |qdµ(x)

≤ C
∑
IA

1
rqi

∫
10Bi

|u(x)− u10Bi
|qdµ(x)

≤ C
∑
IA

∫
10λBi

gq(x)dµ(x)

≤ C

∫
W (A)

gq(x) dµ(x), (5.15)

which finishes the proof of the lemma.

We will denote dH the Hausdorff distance between two non empty closed sets A,B of X defined

by

dH(A,B) := sup
x∈A

d(x,B) + sup
x∈B

d(x,A),

and dcH will denote the complementary Hausdorff distance between two open sets

dcH(Ω1,Ω2) := dH(Ωc1,Ω
c
2).

We are now ready to prove the analogue of the so-called “key lemma” in [23] which leads to

the desired γ-convergence result.
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Lemma 33. For any constants K, Q and C0 there exists ε0 and c such that the following holds. Let

Ω1,Ω2 be two bounded domains in X. Assume that (X, d, µ, f) satisfies the standard assumptions

with f : Ω1 → Ω2. Assume in addition that∫
Ω2

d(f−1(x), x) dµ+ dcH(Ω1,Ω2) ≤ ε (5.16)

for some ε ∈ (0, 1) satisfying ε < min(10−10diam(Ω1), ε0). Then for every u ∈ N1,Q(Ω1), there

exists ũ ∈ N1,Q(Ω2) such that u = ũ in Ωε (defined below) and

‖ũ‖N1,Q(Ω2) ≤ ‖u‖N1,Q(Ω1) + C‖u‖N1,Q(f−1(Λε)), (5.17)

where

Λε := {x ∈ Ω2; d(x,Ωc2) ≤ cε
1

1+Q } and Ωε := {x ∈ Ω2; d(x,Ωc2) ≥ cε
1

1+Q }.

If in addition f is bi-Lipschitz, then for every q ≥ p and for every u ∈ N1,q(Ω1) there exists

ũ ∈ N1,q(Ω2) such that u = ũ in Ωε and (5.17) holds with N1,q instead of N1,Q.

Proof. Let ε ∈ (0, 1) and let u ∈ N1,Q(Ω1). Observe that Ω2 ⊆ Λε ∪ Ωε and by (5.16), together

with the fact that ε < 1, we have Ωε ⊂ Ω1 ∩ Ω2. On the other hand, recall that since f is

K-quasisymmetric, v := u ◦ f−1 ∈ N1,Q(Ω2) and for any Borel set A ⊆ Ω2 we have that

‖v‖N1,Q(A) ≤ C‖u‖N1,Q(f−1(A)). (5.18)

If in addition f is bi-Lipschitz and u ∈ N1,q, then (5.18) holds with N1,q instead of N1,Q. So

roughly speaking, our aim is to keep ũ = u in Ωε and set ũ = v in Λε. A Whitney decomposition

is the appropriate tool for glueing the two functions.

Indeed, let {Bi}i∈I be the Whitney decomposition given by Lemma 31 associated to

Λ′ε := {x; d(x,Ωc2) ≥ r(ε)}

where r(ε) = c
10ε

1
Q+1 and where c will be defined later depending on C0,K, λ and Q. Let ψ0 and

{θi}i∈I be the associated partition of unity such that ψ0 +
∑
i∈I θi = 1 on Ω2 and where the sum

is locally finite. Then we define

ũ := uψ0 +
∑
i∈I

vBiθi (5.19)

where, as usual,

vBi
:=

1
µ(Bi)

∫
Bi

v(x)dx.

By construction of ψ0 we have u = ũ in Ωε. It remains to prove (5.17), which will follow from

Lemma 32 and Lemma 30.

Let us first control the LQ−norm of ũ. Using Lemma 32 and (5.18) we get

‖ũ‖LQ(Ω2) ≤ ‖uψ0‖LQ(Ω2) + ‖
∑
i∈I

vBiθi‖LQ(Ω2)

≤ ‖u‖LQ(Ω1) + C‖v‖LQ(Λε)

≤ ‖u‖LQ(Ω1) + C‖u‖LQ(f−1(Λε)).
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Now we have to control the norm of the gradient of u. Let us first observe that if we split I

into I1 ∪ I2 with

I1 := {i ∈ I; supp(ψ0) ∩ 2Bi 6= 0} , I2 := I\I1,

and if we set

A1 :=
⋃
i∈I1

2Bi and A2 :=
⋃
i∈I2

2Bi,

then

‖ũ‖N1,Q(Ω2) ≤ ‖ũ‖N1,Q(Ωε) + ‖ũ‖N1,Q(A1) + ‖ũ‖N1,Q(A2).

On the other hand, observe that ũ = u on Ωε, and ũ(x) =
∑
i∈I vBiθi(x) on A2. Therefore, if we

apply Lemma 32 to v and then (5.18) we obtain

‖ũ‖N1,Q(Ω2) ≤ ‖u‖N1,Q(Ωε) + ‖ũ‖N1,Q(A1) + C‖u‖N1,Q(f−1(A2)).

Thus, since f−1(A2) ⊂ f−1(Λε), all we have to prove is that

‖ũ‖N1,Q(A1) ≤ ‖u‖N1,Q(f−1(Λε)). (5.20)

For this purpose, we have to find a suitable upper gradient for ũ in A1 and control its norm. Let

γ be a curve connecting two points x and y of A1. We argue as in the proof of Lemma 32. Up

to split γ into parts we may assume that |γ| ⊆ Bi0 for some i0 ∈ I1. In the latter situation we

can add and subtract the constant v10Bi0
and use that ψ0 +

∑
i∈I θi(x) = 1 to write (after some

computations)

f(x)−f(y) = (u(x)− v10Bi0
)(ψ0(x)− ψ0(y))︸ ︷︷ ︸
(♦)

+ψ0(y)(u(x)−u(y))+
∑
i∈I

(vBi
− v10Bi0

)(θi(x)− θi(y))︸ ︷︷ ︸
(♦♦)

.

First, let us control the term (♦), which stand actually for the key point of the proof. Recall first

that there exists a constant a ≥ 1 depending on K,λ and Q such that the radius of 10Bi0 denoted

ri0 satisfies

a−1r(ε) ≤ ri0 ≤ ar(ε).

Now, using (5.16) and Tchebychev’s inequality we obtain that

µ({z ∈ Ω2; d(z, f−1(z)) ≥ 1
100

ri0}) ≤ µ({z ∈ Ω2; d(z, f−1(z)) ≥ 1
100a

r(ε)})

≤ 100a
r(ε)

∫
Ω2

d(z, f−1(z)) dµ

≤ 100a
r(ε)

ε. (5.21)

Now if δ := (2C0)−1100−Q (the constant of Lemma 30), we can define r(ε) in such a way that

100a
r(ε)

ε = δ

(
r(ε)
a

)Q
⇒ r(ε) =

(
100aQ+1

δ

) 1
Q+1

ε
1

Q+1 ,

(which gives at the same time the definition of constant c) and now (5.21) becomes

µ({z ∈ Ω2; d(z, f−1(z)) ≥ 1
100

ri0}) ≤ δ
(
r(ε)
a

)Q
≤ δrQi0 .
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Subsequently, we can apply Lemma 30 with B := 10Bi0to prove the following estimate

|u(x)− v10Bi0
| ≤ |u(x)− u10Bi0

|+ |u10Bi0
− v10Bi0

|

≤ |u(x)− u10Bi0
|+ Cri0

(∫
50KλBi0

gQdz

) 1
Q

. (5.22)

Since ψ0 is C/ri0-Lipschitz and d(x, y) ≤ 2ri0 ,

|u(x)− v10Bi0 ||ψ0(x)− ψ0(y)| ≤ C|u(x)− u10Bi0
|+ Cri0

(∫
50KλBi0

gQdz
) 1

Q

. (5.23)

Let us control now the term (♦♦). First, let us denote B′i0 := 50KλBi0 (note that by (ii) in the

definition of the balls Bi, we have that B′i0 is still contained in Ω2). Now, since for every i ∈ I
with Bi ∩ Bi0 6= ∅ the radius of Bi is Cri0 , we can estimate |vBi − v10Bi0

| applying Lemma 30

again in the following way

|vBi
− v10Bi0

| ≤ |vBi
− uBi

|+ |uBi
− u10Bi0

|+ |u10Bi0
− v10Bi0

|

≤ Cri0

(∫
B′i0

gQdz

) 1
Q

. (5.24)

Then,∣∣∑
i∈I

(vBi
− v10Bi0

)(θi(x)− θi(y))
∣∣ ≤ ∑

i∈I
|vBi
− v10Bi0

||θi(x)− θi(y)|

≤ Cd(x, y)
∑

i∈I;2Bi∩Bi0 6=∅

|vBi − v10Bi0
| 1
ri

≤ Cd(x, y)
1
ri0

∑
i∈I;2Bi∩Bi0 6=∅

|vBi
− v10Bi0

|

≤ Cd(x, y)
(∫

B′i0

gQ
) 1

Q

.

All together we have proved that

|f(x)− f(y)| ≤ |u(x)− u(y)|+ Cd(x, y)
(∫

B′i0

gQ
) 1

Q

+ |u(x)− u10Bi0
|. (5.25)

Now, as in the proof of Lemma 32 (the details this time are omitted), we deduce from (5.25) that

G(x) := Cg + C
∑

i∈I;x∈Bi

[(∫
B′i0

gQ
) 1

Q

+ |u(x)− uBi
|

]

is an upper gradient for f in A1. Now to finish the proof of the Lemma, it suffices to control the

LQ−norm of G, which is the same computation as for (5.14) and (5.15) so we omit the proof here

again. We get

‖G‖LQ(A1) ≤ C
∫
W (A1)

gQ dµ,

where W (A1) := A1 ∪
⋃
i∈I;2Bi∩A1 6=∅ 50KλBi. Since W (A1) ⊂ Λε the proof of the Lemma

is complete for the case when f is K-quasisymmetric. Now if f is bi-Lipschitz all the above

arguments work with q ≥ p instead of Q which proves the lemma in its full generality.
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We are now in a position to prove the following stability result.

Theorem 34. Let (Q,K, p) be some given constants and let fk : Ωk → Ω be a sequence of

K-quasisymmetric mappings into a fixed domain Ω ⊆ X satisfying µ(∂Ω) = 0 and such that

(X, d, µ, fk) satisfies the standard assumptions with constants (Q,K, p). Assume in addition that∫
Ω

d(f−1
k (x), x) dµ −→ 0 and Ωk

dc
H−→ Ω. (5.26)

Then BQΩk
→ BQΩ in the sense of Mosco. In addition, if the sequence of functions fk are bi-Lipschitz

(with same constants) then BqΩk
→ BqΩ for all q ≥ p.

Proof. We begin by proving condition (M1). Let u ∈ N1,Q(Ω) and for k ∈ N big enough we define

uk := ũk the function given by Lemma 33 with Ω and Ωk. We already know that uk ∈ N1,Q(Ωk).

Therefore, all we have to prove is that (ukχΩk
, DukχΩk

) converges strongly to (uχΩ, DuχΩ) in

LQ(X)× LQ(X,RN ).

We denote

Λε := {y ∈ Ω; d(y, ∂Ω) ≤ cε
1

1+Q },

and we also define

εk =
∫

Ω

d(x, f−1
k (x)) dµ(x) + 200λKdH(Ωck,Ω

c) and Λk := f−1
k (Λεk

).

Let us first prove that

µ(Λk)→ 0 when k → +∞. (5.27)

Indeed, let η be any small constant. For k big enough we have that∫
Ω

d(x, f−1
k (x)) dµ(x) ≤ η

and so, if we denote

Aη := {y ∈ Ω; d(y, f−1
k (y)) ≥ √η},

we obtain by applying Tchebychev’s inequality that

µ(Aη) ≤ 1
√
η

∫
Ω

d(x, f−1
k (x)) dµ(x) ≤ √η.

Now observe that

f−1
k (Λεk

)\Aη ⊆ Λεk+
√
η.

Therefore,

µ(f−1
k (Λεk

)) ≤ µ(f−1
k (Λεk

) ∩Aη) + µ(f−1
k (Λεk

)\Aη)

≤ µ(Aη) + µ(Λεk+
√
η)

≤ √
η + µ(Λεk+

√
η)

which implies

0 ≤ lim sup
k→+∞

µ(Λk) ≤ √η + µ(Λ√η). (5.28)
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Since η is arbitrary, if we let η → 0 in (5.28), we deduce (5.27).

Now applying Lemma 33 we can write(∫
X

|ukχΩk
− uχΩ|Qdµ

) 1
Q

=
(∫

Λk

|ukχΩk
− uχΩ|Qdµ

) 1
Q

≤ C‖u‖LQ(Λk),

which tends to zero when k → +∞ because of (5.27). For the gradients, a similar argument can

be done, that is,(∫
X

|DukχΩk
−DuχΩ|Qdµ

) 1
Q

=
(∫

Λk

|DukχΩk
−DuχΩ|Qdµ

) 1
Q

≤ C‖Du‖LQ(Λk),

which tends to 0 as k tends to infinity. Thus (M1) is proved.

Let us now prove (M2). Let hk be a sequence of indices converging to ∞, uk is a sequence

such that uk ∈ N1,Q(Ωhk
) for every k, and ukχΩhk

converges weakly in LQ(X) to a function φ,

while DukχΩhk
converges weakly in LQ(X,RN ) to a function ψ. Let ϕ ∈ LQ(X) be compactly

supported in Ω. By the weak convergence we have that


∫

Ω
ukχΩhk

ϕdµ
k→+∞−−−−−→

∫
Ω
φϕdµ∫

Ω
〈DukχΩhk

, ϕ〉dµ k→+∞−−−−−→
∫

Ω
ψϕdµ.

(5.29)

On the other hand, since Ωhk
converges to Ω for the complementary Hausdorff distance, for k

large enough the function χΩhk
is equal to 1 everywhere on the support of φ. Thus (5.29) shows

that uk converges to φ weakly in LQ(Ω) and Duk converges to ψ weakly in LQ(Ω). By Lemma 6

we conclude that ψ is an upper gradient for φ. Moreover since ψ ∈ LQ(X,RN ), we deduce that

φ|Ω ∈ N1,Q(Ω). To conclude, all we have to show is that ϕ = ψ = 0 in Ωc. To see this, we use

a similar argument as above by defining a function ϕ compactly supported in Ωc. By the weak

convergence, and because Ωk converges to Ω for the complementary Hausdorff distance, we deduce

that
∫

Ω
φϕ dx = 0. This holds for any function ϕ compactly supported in Ωc. Since φ ∈ LQ(X) we

conclude that φ = 0 a.e. in Ωc. In a similar way we obtain that ψ = 0 in Ωc and since µ(∂Ω) = 0

we have that φ = φχΩ and ψ = ψχΩ µ-a.e. All together we have proved that BQΩk
converges to

BQΩ in the sense of Mosco.

If fk are bi-Lipschitz the proof works in the same way replacing Q by q ≥ p and the proof of

the Lemma is now complete.

5.1 An example

We would like to emphasize the fact that for some sequences of domains, Theorem 34 applies

whereas Theorem 17 not. For instance, let us define

Ωt := {(x, y) ∈ R2; |x| ≤ 1 and 0 < y < (2−
√
|x|)t}
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Ωt

6

?

2t

Observe that for t ∈ (0, 1), Ωt is never an extension domain for W 1,2(Ωt) thus we cannot apply

Theorem 17 to prove some γ-convergence results for Ωt. On the other hand for a fixed t0 > 0, one

can consider the bi-Lipschitz mappings gt : Ωt → Ωt0 defined by

gt : (x, y) 7→ (x,
t0
t
y).

It is easily seen that ∫
Ω

d(x, g−1
t (x)) dx ≤ L 2(Ωt)

∣∣1− t0
t

∣∣ t→t0−→ 0.

Therefore, by applying Theorem 34, the γ-convergence of Ωt to Ωt0 holds when t→ t0 .

5.2 Application for shape optimisation problems

In this last paragraph we use Theorem 34 to prove an existence result for a class of Shape opti-

misation problems (with Neumann boundary conditions) under quasiconformal deformations. We

found it more concrete to fit this application in RN , but one could get a similar result in more

general metric spaces without substantial changes.

We say that Ωk γp-converges to Ω if BpΩk
→ BpΩ in the sense of Mosco. Let A be a class of

domains in RN , and let F be a functional defined on A. We say that F is lower-semicontinuous

with respect to γp-convergence , if

F (Ω) ≤ lim inf
k→+∞

F (Ωk)

whenever Ωk is a sequence of domains that γp-converges to Ω. A classical example is the eigenvalue

problem. If F (Ω) := λ1(Ω) where λ1 is the first eigenvalue of the Laplacian in Ω (with Neumann

boundary conditions), then it is well known that λ1(Ω) is lower semicontinuous with respect to

γ2-convergence. We refer to [3, 5, 17] for other examples of lower-semicontinuous functionals.

Let Ω0 ⊂ RN be a fixed bounded domain. We denote A(Ω0) the familly of quasiconformal

maps g : Ω0 → g(Ω0) satisfying :

(i) g(Ω0) is contained in a fixed ball,

(ii) g lies in W 1,p with norm less than C and with p > N , and

(iii) the distortion constant of g is less than K.

A consequence of our stability result is the following existence theorem for minimizers of such

functionals.

Theorem 35. For any lower-semicontinuous functional F with respect to γN -convergence, there

exists a minimizer for the problem

min
g∈A(Ω0)

F (g(Ω0)). (5.30)
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Proof. Let Ωk := gk(Ω0) be a minimizing sequence for the problem (5.30). Since Ωk is contained

in a fixed ball, after passing to a subsequence if necessary we may assume that there exists a

domain Ω such that dH(Ωck,Ω
c)→ 0. On the other hand, since the functions gk are equibounded

in W 1,p with p > N , by the Sobolev embedding they are equicontinuous and equibounded in L∞.

Therefore, one can extract a subsequence of gk that converges uniformly on every compact subset

of Ω0 to a function g. By classical results on quasiconformal maps (see [27]), we deduce that the

limit g is a K-quasiconformal homeomorphism. This allows us to consider gk ◦ g−1 that converges

in L1 to Id on Ω. Indeed,∫
g(Ω0)

‖gk ◦ g−1(x)− x‖ dL N =
∫

Ω0

‖gk(x)− g(x)‖Jg(x) dL N ≤ ‖g − gk‖∞L N (Ω)→ 0.

Then applying Theorem 34 we deduce that BNΩk
→ BNΩ in the sense of Mosco. And since

F (Ω) ≤ lim inf
k→+∞

F (Ωk)

we conclude that Ω is a minimizer for the problem (5.30).

Remark 36. A similar result could be obtained with bi-Lipschitz mappings instead of quasi-

conformal mappings replacing γN−convergence assumption by γp-convergence with any p ≥ 1.
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