AHLFORS REGULARITY IN CARNOT-CARATHEODORY SPACES
LUCA CAPOGNA AND NICOLA GAROFALO

ABSTRACT. We study the relationship between the geometry of C? hypersurfaces in a Carnot-
Carathéodory space and the Ahlfors regularity of the corresponding perimeter measure. In
addition, we find a sharp geometric condition on the nature of the characteristic set which
implies the 1-Ahlfors regularity. As a corollary, we have that all C? hypersurfaces in a Carnot-
Carathéodory space of rank two (or less) are 1—Ahlfors regular. In particular, in the notation
used by David and Semmes [DS2], in a Carnot group of step 2 with homogeneous dimension @,
all C*! hypersurfaces are (Ahlfors) regular of dimension @Q — 1.

1. Introduction.

A Borel measure p, on a complete metric space (S, d) is said to be s—Ahlfors regular, if there

exist two positive constants s and C, such that
(1.1) c'r® < p(B(z,r) < Cr*,

for all z € X and 0 < r < diam(X). Here B(z,r) denotes the metric ball centered at z and
with radius » > 0. If a complete metric space admits a s—Ahlfors regular measure, then the
s—dimensional Hausdorff measure is s—Ahlfors regular as well, see [DS2], Lemma 1.6. David and
Semmes call such spaces: (Ahlfors) regular of dimension s. As an important example consider
S = 00 a Lipschitz hypersurface (boundary of an open set Q C R"), and let d be the Euclidean
distance. If we denote by P(f2;-) the perimeter measure in the sense of De Giorgi (see [DG1],
[DG2]) relative to €, then P(€;-) is (n — 1)—Ahlfors regular (see for instance [AFP]).

The main goal of this paper is to establish the Ahlfors regularity of the intrinsic perimeter for
hypersurfaces in a class of metric spaces known as Carnot- Carathéodory (CC) spaces. We recall
that a CC space is a Riemannian manifold (M", g) endowed with a distance d different from
the Riemannian one dgr generated by the metric tensor g. Such distance d is the control metric
associated with a given subbundle HM™ of the tangent bundle TM"™. If X = {X1,...,X,,,} is a
smooth distribution of vector fields (locally) describing HM™, then the basic assumption is that
X satisfy Hormander’s finite rank condition [H]

(1.2) rank Lie[X1,...Xn] = n.

Condition (1.2) is equivalent to saying that at every point z € M™, the vector fields X7, ..., X,
and their iterated brackets [X;, X;], [[X;, X;], Xk],..., up to a certain order r € N, span the
tangent space T, M" (in the rest of the paper we will refer to such spaces also as CC spaces
of rank 7). Under such hypothesis the theorem of Chow-Rashevsky [Ch], [Ra] guarantees, if
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M™ is connected, that for any z,y € M™ there exists at least one absolutely continuous path
connecting z to y whose tangent vector +'(t) lies in H,;)M", for every ¢ at which »'(t) exists.
Minimizing on the lengths of all such paths, one obtains the CC distance d(z,y). The class
of CC spaces encompasses of course all Riemannian manifolds. Less trivial examples include
Euclidean R" with a system of C™ vector fields satisfying (1.2), but also the Gromov-Hausdorff
limit of some sequences of Riemannian manifolds, see [Gro]. Moreover, tangent spaces of CC
spaces are themselves CC spaces endowed with a special nonabelian structure. They are graded
nilpotent Lie groups, also known as Carnot groups, or quotient spaces of Carnot groups.

Given a CC space we will denote by B(z,r) = {y € M" | d(z,y) < r} the open ball centered
at z with radius r in the control metric d. If vy indicates the volume form on M™, attached to
the metric tensor g, we let |E| = [ g dvg denote the ordinary Lebesgue measure of the measurable
set E C M™. We recall that the Lebesgue measure |B(z,r)| of the CC balls was studied in a
fundamental paper by Nagel, Stein and Wainger [NSW]. Their main result states that for every
bounded set K C M™ there exist C, R, > 0, depending on K such that for every z € K and

r < R, one has
(1.3) C Az,r) < |B(z,r)| < C71 A(z,r) .
Here, the Nagel-Stein-Wainger polynomial

(1.4) Az,r) = Y lar(@)] v,

is defined as follows: For every x € M™ denote by Y1, ..., Y] the collection of the X;’s and of those
commutators which are needed to generate T, M™. A “degree” is assigned to each Y;, namely
the corresponding order of the commutator. If I = (i1, ...,4,),1 < ¢; <, is a n-tuple of integers,
one defines d(I) = 37 ; deg(Y};), and ar(z) = det (Yj,, ..., Yi,)-

As one can easily infer from (1.4), apart from special CC structures (for instance Carnot
groups), the Lebesgue measure is not s—Ahlfors regular, for any choice of s, in the sense of
(1.1). This observation leads us to introduce a slightly different notion of Ahlfors regularity:
given a CC space (M™, g,d) denote by B the class of Borel measures on it.

Definition 1.1. Given s > 0, a measure p € B will be called an upper s-Ahlfors measure with
respect to the CC distance if there exist M, R, > 0, such that for x € M™, 0 <r < R, one has
Be,)|

TAS
We will say that p is a lower s-Ahlfors measure, if for some M, R, > 0 one has instead for x

(1.5) u(B(z,r)) < M

and r as above
1 |B($’ T)' .
TnS
When u is both an upper and lower s-Ahlfors measure, then we say that it is a s-Ahlfors measure
on M™ with respect to the CC distance.

(1.6) w(B(z,r)) = M~

Next, we recall the definition of perimeter measure in a CC space, see [CDG1] and [GN1]).
Let M™ be a CC space with respect to a given subbundle HM"™ C TM™ which we assume
generated by a system of smooth vector fields X = {Xi,..., X;,}. Given an open set & C M",
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we denote by F(Q) the set of all vector fields ¢ € CL(Q, HM™) such that |¢| < 1. If f € L}(9),
then the X-variation of f is defined by

CEF(Q)

Varx(f;2) = sup /Qf ZX;CJ' dvg .
j=1

Given a measurable set £ C R* we define the X-perimeter of E with respect to €2 as
Px(E,Q) = Varx(xg; ),

where x g denotes the characteristic function of E. We also refer the reader to the papers [BM]
and [FSS1] where related definitions of variation and perimeter were independently set forth.
In the Euclidean geometry, if €2 is a smooth set then the perimeter is equivalent to the surface
measure. The situation is quite different in the CC case. Let Q = {z € M"| ¢(z) < 0}, where ¢ :
M™ — Ris a C! function. The horizontal gradient of ¢ is given by X¢ = X1¢X1 +...+ X, d X
Define a new measure supported on 92 by letting for every Borel set £ C M™

(1.7) we) [ xgdo,

where 0 = H,, 1|09, and as before H,_; indicates the (n — 1)-dimensional Hausdorff measure
on M" constructed with the Riemannian distance dg. A key fact, see Theorem 5.8 in [DGN1],
is the existence of C' = C(€2) > 0 such that for every g € 92 and r > 0 one has

(1.8) C u(B(z,r) < Px(%B(z,r) < O u(B(z,r)) .

It is clear that when M™ = R" if X = {%,..., %} is the standard basis of R", then
d(z,y) = |z — y|, and dp = |Dé|do is equivalent to do. In the sub-Riemannian case, however,
the angle function | X ¢| vanishes on a subset of 02, the so-called characteristic set of 02. The
existence of characteristic points makes controlling the measure du, and thereby Px(;-), a very
delicate task.

In this paper we will study the interplay between the geometry of a minimally smooth hy-
persurface S = 92 C M™ in a CC space and the s—Ahlfors regularity of its perimeter measure
Px(9;-). We will, in fact, mainly focus on the following 1—Ahlfors regularity
|B(z, R)|

R )
due to the relevance of this property in the study of boundary value problems and in geometric

(1.9) v~ BEBL b B r) < M

measure theory. In a general Carnot group one should not expect such property. In fact, the
restriction of the vector fields X1, ..., X;;, to the boundary of a smooth domain gives rise to a
general CC metric on such space, and the Nagel-Stein-Wainger estimates (1.3), (1.4) show that
the best one can hope for is some kind of s—Ahlfors regularity, where the exponent s = s(z)
is an integer-valued function defined on the boundary of the domain. In order to describe the
function s(z) we introduce the notion of type. Henceforth, to distinguish the model setting of a
Carnot group G from that of a general CC manifold M"™, we will indicate points in G with the
letters g, g,, etc., whereas points in M™ will be denoted by z, z,, etc. With this in mind, if G is

a Carnot group, and

(1.10) Q = {9€G |¢(g) <0}
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is a C! bounded domain in G, then we define the type of a point g, € 052 as the smallest order
of commutators which are transversal to the 9 at g,, see Definition 3.1. We stress that this
definition depends only on the first order Taylor polynomial at g, € 92 of the defining function
¢. It will be helpful to the reader to keep in mind the following example. If G has step r, with
Lie algebra g = V1 © ... ® V., let m; = dim(V}) and denote by &; = (Tjmy, - Tjm;), § = 1,7,
the projection of the exponential coordinates onto the j-th layer of the Lie algebra of g, see
Section 2.1. For a fixed j € {1,...,r} consider the “hyperplane” passing through the group
identity e

(1.11) Hj == {37j,ms = 0} ,

where s € {1,...,m;} is fixed. An elementary calculation shows that the point e is of type j.
Thus for instance for any of the m; hyperplanes II; the identity is of type 1, and therefore it is
non-characteristic (one can easily recognize that, in fact, such hyperplanes do not possess any

characteristic point). This example shows that the type of a point can be any integer ranging
from 1 to the step r of the group.

Having introduced the notion of type in a Carnot group, we now state in this setting our main
results regarding the Ahlfors regularity of the perimeter measure. The reason for starting with
this situation is twofold. First, the Ahlfors estimates in Carnot groups are more precise than
those in a general CC manifold. Secondly, the analysis of this special situation constitutes the

backbone of the general case.

Theorem 1.2. Let G be a Carnot group. Consider a bounded, open set Q as in (1.10), with ¢ €
CHYQ). For every g, € 0N, there exist M = M (G, X,9,g,) > 0 and R, = R,(G, X,9Q,g,) > 0
depending continuously on g,, such that for for any 0 < R < R, one has

|B(g0, R)|

(1.12) Px(Q: B(9o, R) < M =00

with

t —1, if g, is characteristi
(1.13) s(go) = ype(go) b zf go 1S cnarac er'zs 'zc ,
1, if go is non-characteristic .
Furthermore, if ¢ € C?(G), there exist M = M(G,X,Q,g,) >0 and R, = R,(G,X,Q,g,) > 0

as above such that if g, € 02 is of type < 2, then we also have

(1.14) Pr(: Blgo, ) > mt P B

for 0 < R < R,.

More in general, we prove that Theorem 1.2 continues to be valid in a CC space M™, when
the subbundle H M™ is generated by a system of free vector fields, see Theorems 6.10 and 6.8.
If Q is a domain whose boundary points are all of type < 2, then (1.13) gives s(g,) = 1 on 91.
We thus obtain the following important corollary of Theorem 1.2.

Corollary 1.3. Let Q be a C? domain in a Carnot group G. If every point g, € 0 is of type
< 2, then the perimeter Px();-) is a 1—Ahlfors measure.
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In particular, the measure P(€2;-) is doubling, i.e., we have for any g, € 02 and 0 < R < R, /2,
Px(Q; B(g,,2R)) < C; Px(9;B(g,,R)) , with C; = 29 M2,

Hereafter, the number @) will denote the so-called homogeneous dimension of the group G,
see (2.10). Regarding the sharpness of our assumptions, we recall that in the Heisenberg group
H", for any 0 < a < 1 there exist C'® domains for which the lower 1-Ahlfors regularity of
Px(€;+) in Theorem 1.2 is not true, see Section 7.4 in [DGN2]. In Theorem 4.10 we show an
alternative approach to the lower Ahlfors regularity which yields the 1—Ahlfors regularity for
CY! hypersurfaces in Carnot groups of step two. Our results are also sharp in terms of the “type
condition”. In fact, in section 5 we construct an example of a C°° domain of type 3 in a Carnot
group of step 3 for which the upper 1—Ahlfors regularity of the X-perimeter fails.

Returning to Theorem 1.2, it should be obvious from its statement that there is a marked
discrepancy between upper and lower Ahlfors regularity of the X-perimeter. The latter is subtler
than the former, as one has to control the zeroes of the angle function | X ¢|, where ¢ is as in
(1.10). What complicates matters even further is the fact that while the upper Ahlfors regularity
is influenced only by the type of the base point g, € 0f2, and the latter notion depends in turn
only on the first-order term in the Taylor expansion of ¢ at g,, the lower Ahlfors regularity not
only depends on the type of g,, but possibly also on terms of order two or higher in the Taylor
expansion. To make this precise we mention that in Section 4 we show that if II C G is any
“hyperplane” passing through the group identity e € G, and €2 denotes one of the two half-spaces
with boundary II, then there exists a constant M > 0 such that the 1-Ahlfors estimate (1.9)
holds at g = e for any R > 0. Since as we saw above for the hyperplanes II; in (1.11) the type
of the identity can be any integer ranging from 1 to the step of the group, it is clear that the
lower Ahlfors estimates cannot depend only on the first-order terms in the Taylor expansion of
¢. As a consequence of these remarks, the lower estimates cannot hold with the same exponent
s(+) as in the upper ones in (1.13).

Having discussed the model setting of Carnot groups, we now turn to that of a general CC
manifold M". As we mentioned, our focus is on the 1-Ahlfors regularity of the X-perimeter
measure on a hypersurface, a detailed study of the lower s—Ahlfors regularity being deferred to
a forthcoming study. Given a CC manifold with generating distribution { X7, ..., X;,, }, consider
a C! domain Q = {z € M™ | ¢(z) < 0}. We say that a point =, € 9Q is of type < 2
if either there exists j, € {1,...,m} such that X; ¢(z,) # 0, i.e., z, is non-characteristic, or
there exist indices 4,,j, € {1,...,m} such that [X; , X, |¢(z,) # 0. We say that Q is of type
< 2 if every point z, € 9Q is of type < 2. It is important to stress that when M™ is a
CC space of rank r < 2, then every C' domain is automatically of type < 2. Let in fact
X ={Xi,..., X;n} be a collection of vector fields as in (1.2), and suppose that for some z, € Q2
one has X;p(z,) = 0, for every i = 1,...,m. If we also had [X;, X;]¢(z,) =0 for i,j =1,...,m,
then we would conclude for the Riemannian gradient V¢(z,) that it does not belong to the
span{X;¢(z,), [ Xi, X;]p(z0) | 1,5 = 1,...,m}. But this contradicts the fact that the vector fields
X; and their first commutators generate the tangent space R™.

Having made this point we can now state our main results. We begin with the upper Ahlfors

regularity of the perimeter measure.



6 LUCA CAPOGNA AND NICOLA GAROFALO

Theorem 1.4. Let (M™,d) be a CC space and consider a bounded C*' domain Q C M™. For
every point , € 0 of type < 2 there exist M = M(Q,z,) > 0 and R, = R,(Q,z,) > 0,
depending continuously on x,, such that for any 0 < r < R, one has

B(z,,
(1.15) Py(@: B(agr)) < M Bln)l

r

We actually establish a slightly stronger estimate, namely: If Q = {z € M"| ¢(z) < 0}, and
o denotes the surface measure on 0f2, then

(1.16) ( sup \X¢|) o(Blesr)now) < Bl
B

Zo,m)NON r

for any 0 <7 < R,.

A compactness argument and the analysis of special examples yields the following global

version of the theorem.

Theorem 1.5. Let (M™,d) be a CC space and consider a bounded CY' domain Q C M™ of
type < 2. There exist M = M(Q) > 0 and R, = R,(Q) > 0 such that for any z, € 0 and
0 < r < R,, one has that (1.15) holds with the uniform constants M and R,. Moreover, there
exist CC spaces (M™,d) and smooth bounded domains Q C M™ with points of type 3 or higher,
for which (1.15) does not hold.

In the next theorem we generalize the second part of Theorem 1.2 to arbitrary sub-Riemannian

manifolds.

Theorem 1.6. Let (M",d) be a CC space and consider a bounded C? domain Q2 C M™. For
every point T, € 0Q of type < 2 there exist M = M(Q,z,) > 0 and R, = R,(Q,z,) > 0
depending continuously on x,, such that for any 0 < r < R,, one has

o, T)|

(1.17) Px(Q; B(zo,r)) > M ! |B(T

A compactness argument then yields the global version.

Theorem 1.7. Let (M™,d) be a CC space and consider a bounded C? domain Q C M™ of
type < 2. There exist M = M(Q) > 0 and R, = R,(R2) > 0 such that for any z, € 0Q and
0 <7 < Ry, one has that (1.17) holds with the uniform constants M and R,.

Corollary 1.8. The X -perimeter measure Px(€;-) of a C? domain of type < 2 in a CC space
is a 1-Ahlfors measure. In particular, such property holds generically for C? domains in a CC
manifold of rank 2.

Define Ay = {z, € 00| type(z,) < 2}. Notice that the closed set 92\ Ag, is essentially

the set where the Ahlfors estimates fail. Such set is small in the following sense:

(1.18) H, 1(0Q\ Ag) = 0.
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When M" is a Carnot group the following stronger information is available
(1.19) HOL(60\ Ag) = 0.

Here we denote by H, the s-dimensional Hausdorff measure constructed with the Riemannian
distance di of M™, and with the notation H* we indicate instead the s-dimensional Hausdorff
measure constructed with the CC distance d. Equation (1.18) is essentially due to Derrid]
[De]. Although he actually proved that the complement of the characteristic set has zero H,, 1-
dimensional measure for C*® domains, his ideas can be adapted to cover the case of C? domains.

Equation (1.19) instead, follows from the recent work of Magnani [Ma).

Theorems 1.2, Corollary 1.3, 1.5 and 1.7 find numerous applications to the development
of function spaces and potential theory on lower dimensional manifolds in CC spaces [DGN1],
[DGN2], Dirichlet and Neumann problems for sub-Laplacians [CGN1], [CGN2], [CGN3], [DGNZ2],
[DGN3], geometric measure theory in CC spaces [DGN4], [DGNS5).

The paper is structured as follows. After recalling a few preliminary results and definitions
in Section 2, we prove Theorem 1.2 in Sections 3 and 4. The sharpness of the type condition is
established with examples in Section 5. In Section 6 we implement a technique of Rothschild
and Stein [RS] in which a system of free Héormander vector fields can be approximated locally
by a nilpotent Lie algebra. The perimeter estimates for free Hormander vector fields will then
follow from the results in sections 3 and 4, and from the study of the higher order error term in
the Rothschild-Stein approximation. In section 7, we complete the proof of Theorems 1.4 and
1.6, using another fundamental technique introduced in [RS], the lifting of a general system
X1,...; Xp of Hormander vector fields to a system Xi,..., X, of free vector fields. Finally,
in section 8 we analyze the connection between the 1-Ahlfors regularity of the X-perimeter
and boundary value problems for sub-Laplacians. We show that the former property implies the
regularity of the relevant domain with respect to the Dirichlet problem. This fact, combined with
some examples of Hansen and Hueber [HH], gives another (indirect) proof of the impossibility

of the 1-Ahlfors estimates when the domain is of type > 3.

Regarding previous results on this subject, we mention that when M" is the Heisenberg group,
the upper 1-Ahlfors regularity of Px(2;:) was established in [DGN1]. The same result was
subsequently generalized to Carnot groups of step 2 in [CGN2]. The lower 1-Ahlfors regularity
for C? domains in Carnot groups of step 2 has been recently established in [DGN2].

We also recall that for C*° domains in a CC space, Monti and Morbidelli [MM1] have recently
proved the 1—Ahlfors regularity of the ordinary surface measure do away from characteristic
points. The approach in [MM1], however, substantially differs from ours and fails to work in a
neighborhood of characteristic points. For other regularity results in this vein, see [MM2], and
[MM3].

Acknowledgements: We are grateful to D. Danielli, J. Heinonen, D.M. Nhieu, S. Semmes and

J. Shatah for valuable comments regarding this paper.
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2. Carnot-Carathéodory spaces

In this section we recall the definition of CC manifolds and of their tangent spaces, the class
of Carnot groups. The relation between CC spaces and Carnot groups is described in a series
of papers by Rothschild and Stein [RS], Folland [F], Nagel, Stein and Wainger [NSW]|, and
Sanchez-Calle [SC]. One should also see [Mi], [F], [FS], [FSC], [Str], [P], [Be], [Gro], and [Mon].

Let (M",g) be a smooth Riemannian manifold, with n > 3, with volume form dv,. Denote
by dr the Riemannian distance on M™, and by |E| = | g dvg the standard Lebesgue measure
of a measurable set E C M"™. We consider a given subbundle HM"™ C TM"™ of the tangent
bundle. Let X = {X,..., X;n} be a system of C* vector fields which locally generate HM",

and consider the system of differential equations
m

(2.1) Yo=Y u) X
j=1

where the control u = (uy, ..., Uy,) is assumed to belong to L!([a, b], R™). If the path « : [a,b] —
M™ solves the above system and if y(a) = z, 7(b) = y, then one says that the control u steers

the system from the state = to the state y. The length of 7y is defined by

b
I(y) = / Vu @ F o+ wn@? dt .

Next, for z € M™ and v € T, M"™ we let

hy(v) = inf {||ul]* = u? + ... + v, | w1 X1 (2) + oo + up X (z) = 0} .

If v lies outside H;M™, then one lets h,(v) = 4+00. In this way, on each section H,M"™ of
the subbundle HM™ C TM™ we have defined a quadratic form h;. The sub-Riemannian metric
associated with the subbundle HM™ is given by the assignment z — h,. We set

Wllae = Vha(v),

and define the horizontal length of an absolutely continuous path 7 : [a,b] — M™ as

b
lu(y) = / Y Ol dt

An absolutely continuous path «y is called horizontal (or controlled), if it satisfies (2.1) for a
measurable control u(t) = (u1 (%), ..., um (t)). Given an open set 2 C M™, and two points z,y € €,
we denote by Hq(z,y) the collection (possibly empty) of all horizontal paths v : [a,b] — € joining
T to y.

The accessibility Theorem of Chow-Rashevsky [Ch], [Ra] states that if at every z € M™ the
system X = {X1, ..., X;,} which locally describes HM™ satisfies the finite rank condition (1.2),
then if Q@ C M™ is connected one has Hq(z,y) # @ for every z,y € Q. This basic result allows

to define the Carnot-Carathéodory (or control) distance between x and y as

do(z,y) = inf {lu(v) | v € Halz,y)} -

When Q = M", we write d(z,y) instead of dyn(z,y). It is clear that d(z,y) < dao(z,y),
z,y € €, for every connected open set @ C M". In [NSW] it was proved that for every
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connected 2 CC M™ there exist C, e > 0 such that
(2.2) C dr(z,y) <do(z,y) <C!dgr(z,y), z,y € Q.

This gives in particular

d(z,y) < CVdgr(z,y)°, z,y €Q,
and therefore
i:(M",dg) — (M",d) is continuous.

It is easy to see that also the continuity of the opposite inclusion holds [GN1], hence the
Riemannian and the metric topologies are compatible.

The study of the Lebesgue measure of CC balls B(z,r) was undertaken by Nagel, Stein and

Wainger in their seminal paper [NSW]. We have already recalled in the introduction their

fundamental contribution (1.3).

2.1. Carnot groups. Next, we describe in detail a special subclass of CC spaces which plays
a basic role in the development of the general theory. A Carnot group of step r is a connected,

simply connected Lie group G whose Lie algebra g admits a stratification
g=Via..0V,
which is r-nilpotent, i.e.,
VL, Vil = Vi, j=Leur—1, [Vl = {0}, j=1..r.

By these assumptions one immediately sees that any basis of the horizontal layer Vi satisfies
the finite rank condition (1.2). A trivial example of (an abelian) Carnot group is G = R", whose
Lie algebra admits the trivial stratification g = V; = R". The simplest non-abelian example is
the Heisenberg group H", already described in the introduction, whose Lie algebra is given by
bp=Vi®V,,, withV; =C", b, =R

We assume that a scalar product < -,- > is given on g for which the Vj's are mutually
orthogonal. Let m; : g — V; denote the projection onto the j-th layer of g. Since the exponential
map ezp : g — G is a global analytic diffeomorphism [V], we can define analytic maps §; : G —
Vi, j =1,..,r, by letting & = m; o exp~!. As a rule, we will use letters g,g',g", g, for points
in G, whereas we will reserve the letters &, &', £",&,,n, for elements of the Lie algebra g. We let

m; =dim Vj, j = 1,...,7, and denote by
n =m; + ... + my

the topological dimension of G. The notation {Xj 1,..., Xjm,}, 7 = 1,...,r, will indicate a fixed
orthonormal basis of the j —th layer V;. For g € G, the projection of the ezponential coordinates

of g onto the layer V;, j = 1,...,7, are defined as follows
(2.3) zjs(9) = <&(9), X, >, s=1,..,mj.
The vector &(g) € V}, j =1, ...,r, will be routinely identified with the point

(wj,l(g)a"'a‘rj,mj(g)) € R .
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It will be easier to have a separate notation for the horizontal layer V;. For simplicity, we set

m = mq, and let

(2.4) X ={Xy, ., Xnn} = X115 s X} -
We indicate with

(2.5) zi(g) = < &l(g),Xi >, i=1,...,m,

the projections of the exponential coordinates of g onto Vi. Whenever convenient, we will

identify g € G with its exponential coordinates

(2.6) z(g) def (1(9), -+ 2m (9), 2,1(9); s T2.m5 () s Zr.1(G) 5 ey Trm, (9)) € R,

and we will ordinarily drop in the latter the dependence on g, i.e., we will write g = (z1, ..., Zr.m, )-
Each element of the layer V; is assigned the formal degree j. Accordingly, one defines dilations

on g by the rule
A)\f = )\fl + ... + )\rfr,

provided that £ = & + ... + &, € g. Using the exponential mapping exp : g — G, these dilations
are then tansferred to the group
x(g9) = exp o Ay oexp' g.

We will denote by

(2.7) Ly, (9) = 909, Ry, (9) = 9 90,

respectively, the left- and right-translations on G' by an element g, € G. We continue to denote
by X the corresponding system of left-invariant vector fields on G defined by

X](g) = (Lg)*(XJ) ’ .7: 17"'7m ;

where (Lg), denotes the differential of L,. The system X defines a basis for the so-called
horizontal subbundle HG of the tangent bundle T'G. If we keep in mind that the integral curve
of X; passing through g = exp(¢) is given by exp({) exp(tX;), then given a function v : G — R,

the action of X; on u is specified by the equation

(2.8) Xju(g) = %1_1)% ulg ezp (t)ij)) — ulg) = % u(g exp (th))|t:0 )

A similar formula holds for any left-invariant vector field. We now recall the Baker-Campbell-

Hausdorff formula, see, e.g., sec.2.15 in [V],

29 eople) cantn) = esp(e4n+ g el + {66l - In el +) |

where the dots indicate commutators of order four and higher. Using (2.9) we can express (2.8)

using the coordinates (2.6), obtaining the following lemma.
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Lemma 2.1. For eachi=1,...,m, and g = (21,..., Tr.m, ), we have

a T

m;

0

X = Xi(g9) = 8—x, + ZZ b;,i($1,---,$j—1,m(j_1)) ('910—;5
j=2 s=1 ’
0 e )
= — + b3 (&1, i) —
oz, ]2_2; (61, &5-1) 92,4

where each b} ; is a homogeneous polynomial of weighted degree j — 1.

By weighted degree we mean that, as previously mentioned, the layer V;, j = 1,...,r, in the
stratification of g is assigned the formal degree j. Correspondingly, each homogeneous monomial
£11657...&0, with multi-indices o = (@j1,..., @jm;),j = 1,...,7, is said to have weighted degree
k if

r r mj
Sl = 35 ag) = k.
Jj=1 7j=1 s=1

Throughout the paper we will indicate by dg the bi-invariant Haar measure on G obtained

by lifting via the exponential map exp the Lebesgue measure on g. One easily checks that
(2.10) (dodr)(g) = APdg, where Q = > jdim(V}).
j=1

The number @, called the homogeneous dimension of G, plays an important role in the
analysis of Carnot groups. In the non-abelian case r > 1, one clearly has @ > n.

We denote by d(g,g’') the CC distance on G associated with the system X. It is well-known
that d(g,g’) is equivalent to the gauge pseudo-metric p(g,g') on G, i.e., there exists a constant
C = C(G) > 0 such that

(2.11) Cplg,g') < d(g,g") < C7 ' plg,g), 9.9 €G,

see [NSW], [VSC]. The pseudo-distance p(g, ¢') is defined as follows. Let |-| denote the Euclidean
distance to the origin on g. For £ =& +---+ &, € g, & € V;, one lets

2r!

r
(2.12) Elg = | D_lg P ; lgle = lexp ' glg, g€G,

j=1
and defines
(2.13) p(9.9) = 97 dle.

Both d and p are invariant under left-translations

(2.14) d(Le(g'), Lg(g")) = dlg',9") , p(Lg(g'); Lg(g")) = plg',g") -
and dilations
(2.15) d(dx(9'):0x(¢") = Ad(g',g") p(0x(g');0x(9") = Apld'g") -

Denoting with
(2.16) B(g,R) = {¢'€ G |d(¢',9) < R}, By(9,R) ={g' € G| p(g',9) < R},
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respectively the CC ball and the gauge pseudo-ball centered at g with radius R, by (2.15) and

a rescaling one easily recognizes that there exist w = w(G) > 0, and a = a(G) > 0 such that
@17)  |B@R| = @R |B@R)| = a R, geGR>0.

The first equation in (2.17) shows, in particular, that for a Carnot group the Nagel-Stein-
Wainger polynomial in (1.4) is simply the monomial wR®.

2.2. Free Lie algebras and groups. In section four we will work with special systems X =
{X1,..., X} of vector fields of Hormander type, for which both the X;’s and their commutators
satisfy the minimal amount of relations. Such systems give rise to CC metrics for which the
formula (1.4) is greatly simplified. More importantly, the corresponding CC geometry is locally
well approximated by particular stratified Lie algebras.

Definition 2.2. A free Lie algebra g, s is a nilpotent Lie algebra of step s having m generators,

but otherwise as few relations among the commutators as possible.

The precise definition of such algebra, as quotients of the infinite dimensional free Lie algebra

on m generators is given in detail in [RS], Example 4, page 256.

Definition 2.3. Denote by ny,, the dimension (as a vector space) of the free nilpotent Lie
algebra gy, s. Let X1,..., Xy, be a set of smooth vector fields defined in an open neighborhood of
a point x, € M™, and let ng be the dimension of the space generated by all commutators of the
X, ’s of length < s evaluated at the point x,. We shall say that X1, ..., X;,, are free up to step r

if for any 1 < s <1 we have ny s = n,.

Remark 2.4. We observe that if the vector fields X1, ..., X, are free up to step v in an open
set Q C M™, then commutators of different lengths are linearly independent, while commutators
of the same length may be linearly dependent only because of anti-symmetry, or of the Jacobi
identity. Consequently, any n—tuple Y;,,...,Y; of commutators which is a basis for R*, must

have the same cumulative degree

n r
Q=) diy=> j(tm;—rmj-1) -
k=1 j=1

This simple observation implies that for any K CC M™ there exists R(K) > 0, such that for
any ¢ € K, and 0 < r < R(K), the polynomial in the right-hand side of (1.4) is actually a

monomial
Am,r) = 19 as(@) ,
I

and

219 %S @

From this point on, we will denote by Y1,...,Yy, the generators of the Lie algebra gpm, s.

< Cy.
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Consider X7, ..., X;; smooth vectors field in M™ which are free up to step r in the open set
QC M", and let £ € Q. For each k € N, 1 < k <, choose {X};}, commutators of length &
with X;; = X; such that the system {X};}, k =1,...,r, i = 1,...,m;, evaluated at ¢ is a basis
of R". Then we can define a system of coordinates (canonical coordinates) associated to { X ;},

based at the point &, as follows

(2.19) (uk,j) <> exp(Buy ;jXp ;) - €

where exp(-) - & : TeM™ — M™ denotes the exponential map based at &.

Remark 2.5. By virtue of Theorems 1-7 in [NSW], we know that there exist R, > 0, and
one particular collection of commutators {Xy;}, the one corresponding to the largest of the
monomials on the right hand side of (1.4), for which the boz-like set, that in canonical coordinates

(uik) is expressed by
(2.20) Boxz(d) = {up; €R, k=1,...,7 |ug,| < oY,

is equivalent to the metric ball B(,d) for any 0 < 6 < R,. Since we are considering vectors
fields which are free up to step r at &, then all monomials in the right hand side of (1.4) are of
the same degree, hence they are locally equivalent and give rise to equivalent sets of coordinates.
Consequently we can state that for any compact set K CC €, there exist constants C1,Co > 0
such that

(2.21) Boz(C10) C B(&,8) C Box(Cq9) ,
forany £ € K, and 0 < 6 < R,.

Following Rothschild and Stein [RS], pg. 273, we want to approximate the free vector fields
X1, ..., Xm with left-invariant vector fields {Y;}, k& = 1,...,m generating the free nilpotent Lie
algebra g,, . Let Gy, » denote the Lie group associated to gy, . For bk =1,...,7 and i = 1, ..., my,
denote by {Y} ;} a basis of the space V, in the stratification g, , = V1 @ ... ® V;, and by y;; the
corresponding exponential coordinates in the group G, ;. We indicate by Y1 ; =Y;, 1 = 1,...,m
the algebra generators. If & denotes the multi-index {k, i}, then its degree is defined to be |a| = k.

Our arguments will depend crucially upon the following fundamental result (see [RS], Theorem
5, page 273).

Theorem 2.6. Let X1, ..., X, be a system of smooth vector fields in M™ such that
(i) X1,..., Xm satisfy (1.2) with rank .
(ii) X1, ..., Xpm are free up to step r at £ € M™.
There exists a neighborhood V' of £, and a neighborhood U of the identity in Gy, ., such that:
(A) Let n = exp(BujxXji) - £, denote the canonical coordinate chart n — wujj, for V centered
at&. The map 0 :V xV — U C Gy, defined by

(2.22) O¢(n) = 0(¢,m) = exp(Zu;kYr)

1s a diffeomorphism onto its image.
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(B) In the coordinate system given by ¢ one can write
(2.23) X, =Y, +R;, i=1,....m

where R; is a vector field of local degree less or equal than zero, depending smoothly on &, i.e.

for any smooth f,
X, (1(00D) = (57 + Raf) 060
More in general, if a denotes the multi-index {k,i}, then we have
Xo =Ya+ Ra,

with Ro a vector fields of degree less or equal than |a| — 1.

Let us recall that a vector field on a Carnot group G has local degree less or equal than d € N
if, after taking the Taylor expansion at the origin of its coefficients, each term so obtained is an
homogeneous operator of degree less or equal than d. More explicitly, denote by {y4}, @ = (k, 1),
the exponential coordinates in Gy, associated to the vector fields Y} ;. We say that the vector
field R; has degree less or equal than d € N if for any N € N, and any multi-index o = (k, 1)
one can find a function g, ; y € C®°(G), with growth g, n(y) = O(|Jy||") such that

T

(2.24) Ri=». > (poz,i,N(y)aya + ga,i,N(y)aya>a

=1 |a|=l
in a neighborhood of the origin. In (2.23), the functions p,; n(y) depend on N and are homo-
geneous group polynomials (see [FS]) of degree less or equal than N and greater or equal than
|a| — d. The notation 9, indicates a first order derivative along one of the group coordinates
whose formal degree is |a|. In other words, modulo lower order terms, the operator R; has order
o] — deg(pag.y) < o] — (o] —d) = d.

2.3. The lifting theorem of Rothschild and Stein. Up to now we have seen how to locally
approximate a system of free vector fields with its “tangent” Carnot group. Since not all systems
of Hérmander type are free (for instance consider 0, and zdy in R?), then there is need of some
additional work in order to use the approximation scheme in the most general setting.

One of the main building blocks in the proof of Theorem 1.5 in section five is the Rothschild-
Stein lifting theorem (see [RS], Theorem 4).

Theorem 2.7. Let X1,..., X, be a system of smooth vector fields in M™, satisfying (1.2) in
an open set U C M"™. For any & € U there exists a connected open neighborhood of the origin
V C R*~™", and smooth functions Ay (z,t), with x € M™ and t = (tny1,....t5) €V, defined in a
neighborhood U of € = (£,0) € U x V, such that the vector fields X1, ..., X, given by

m
X=Xk + Y dulz,t)dy,
I=m+1

are free up to step v at every point in U.
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Let us denote by B((z,s), R) the Carnot-Carathéodory balls associated to the lifted vector
fields X1, ..., X;n. Let 71 and 7y denote the projections of U x V onto U and V respectively,

m(z,t) = =z, mo(z,t) = t.

The following lemma sums up some basic results from [RS], Lemma 3.1.

Lemma 2.8. One has that m : B((z,t),R) — B(z,R) and moreover, this map is onto. If
2,y €U and t,s € V then d(z,y) < d((z,s), (y,t))

The next estimate is crucial for our purposes, for its proof see [NSW], Lemma 3.2, and [SC],

Theorem 4 and Lemma 7.

Lemma 2.9. Let E CC U be a compact set, and v € C®(V). There is a constant C =
C(E,X,v) > 0 such that if z € E and y € B(z, R), then

01|B ((z,0),

\BacR ‘/XBzo (y,s) v(s)ds B LE,O),R)|'

1B((
<Y B@, B)

Essentially this lemma says that even if the sets B((z,0), R) are not the product of balls in
R™ and R", in terms of volume of sections they behave like such. We remark explicitly that the

integral in the above formula simply represents the Lebesgue measure of the set
(2.25) o Bl(2.0). 1) 0 () x V)
in the projection onto the second factor. Lemma 2.9 implies that if y;,y2 € B(z, R), then

o (B 0.8) 0 (e} x V) \

(B0, 0 (< V) ‘ <

(2.26) <

(72 (B0 B 0 () x 1)

i.e., the expression (2.25) is almost constant in y. Note that in (2.26) the symbol | - | denotes
Lebesgue measure in different spaces.

3. Upper Ahlfors regularity of the perimeter measure in Carnot groups

In this section we prove the geometric estimates in Theorems 1.5 and 1.2 when the CC space
is a Carnot group G. These results will then be used as a fundamental step in the proof of
the general case. We begin with the upper Ahlfors estimates, Theorems 3.2, and 3.3. Sharper
versions of this theorem will be stated at the end of the section. In Section 5 we show that the
hypothesis of the theorem are optimal. In the second part of the section we establish the lower

Ahlfors estimates for the perimeter measure.
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Definition 3.1. Let G be a Carnot group of step r with homogeneous dimension Q). Consider
a bounded, open set Q = {g € G | $(g) < 0}, where $ € CH1(G) is a defining function for Q.
For any g, € 092, we define the “type” of g, to be the smallest j = 1,...,r such that there exists
s =1,...,mj for which X;¢(g,) # 0. We will denote by type(g,) the type of go, and if for every
go € 02 we have that type(g,) < k € N then we will say that Q has type < k.

Clearly, every domain with empty characteristic set has type 1. In a group of step two, every
C' domain has type < 2.

One of the main results of this section is a pointwise version of the upper Ahlfors estimates.

Theorem 3.2. Let G be a Carnot group of step r with homogeneous dimension Q. Consider
a bounded, open set Q2 = {g € G | ¢(g) < 0}, where ¢ € CYL(Q) is a defining function for
Q. For every g, € 09, there exist M = M(G,X,Q,9,) > 0 and R, = R,(G,X,Q,g,) > 0
depending continuously on g,, such that, for for any 0 < R < R,, one has

(3.1) ( sup |X¢>|> o(B(go, R)NOQ) < M RO™*,
B(go,R)NOQ

with

type(go) — 1, if go is characteristic,
o =
1, if go 1s not characteristic.

The local estimates (3.1) allow us to prove global type estimates corresponding to uniform
choices of a: For domains of type < 2 we can choose a = 1, while for any domain we have the
worst possible choice o = r — 1.

Theorem 3.3. Let G be a Carnot group of step r with homogeneous dimension Q. Consider a
bounded, open set

Q = {geG | ¢(g) <0},

where ¢ € CYY(G) is a defining function for Q. There exist M = M(G,X,Q) >0 and R, =
R,(G,X,Q) > 0 such that, for any g, € 0N, and every 0 < R < R, one has with a =r — 1

(32) ( sup |X</>I> o(B(go, R)N8Q) < M R,
B(go,R)NOQ

(33) Px(; (B(go, R)) < M R9™™.
Furthermore, if Q is of type < 2, then we can take a =1 in (3.2).

Remark 3.4. As a corollary of the previous theorem, if Q is of type < 2, then the perimeter

measure Px (§2;-) is an upper 1-Ahlfors measure with respect to the CC balls, i.e., we have
(3-4) Px (2 B(go, R)) < M RO,

for every g, € 092, and any 0 < R < R,.
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Proof of Theorem 3.3. We begin by observing that we only need to prove (3.2), since (3.3)
follows trivially from (3.2), (1.7), and from (1.8). One has in fact

Px(90,R) < O u(B(goR) = O~ / X | do
B(go,R)NON

< c! sup | X¢|| o(B(go,R)NON) < C~' M R,
B(go,R)NOQ

This being said, we stress that thanks to Theorem 3.2 we can assume that the following

pointwise version of (3.2) hold: given any g, € 09, there exist C(G, X, , g,), R(G, X,,g,) > 0

such that for all 0 < R < R(G, X, Q, g,) one has
(3.5) ( sup |X¢\) 7(B(go, R) N 09) < C(G,X,0,9,) RI™* .
B(go,R)NOQ
Here « is either r — 1 or @ = 1 if the domain is of type < 2. Now we show how the global

estimate can be proved starting from (3.5) in a standard fashion. By the compactness of 92, we
can find g; € 00, C; = C(G, X,Q,g;) >0, and R; = R(G, X,9Q,g;) >0, j =1,...,p, such that

p
o0 c |J Blgj,Rj)non,
7j=1

and for which for any j € {1,...,p}, (3.5) holds in B(g;,R;) N 0Q for 0 < R < Rj, with
constant Cj. Let R, = min{R,/2,...,R,/2} > 0, C = max{Ci,...,C,} > 0. If g, € 09Q, then
9o € B(gj, R;) for some j € {1,...,p}, and one has

B(g,, R) N 02 C B(gj,2R) N 09, forany 0<R<R,.
We would conclude with M = 2¢—2C

( Sup |X¢I) o(B(go, R) N 69)

B(go,R)NON

< ( sup |X¢|> o(B(g;,2R)N89Q) < Cj (2R)9~* < M R,
B(g;,2R)00Q

thus completing the proof. O

We now turn our attention to the proof of Theorem 3.2. We will accomplish it in two steps.
In the first step, we reformulate the local estimate (3.1) in terms of the Lie algebra g, and show
that the problem can be reduced to a model case in which 0f2 is an arbitrary hyperplane in g.

In the second step, we prove the estimate for the model case and for the remainder.

Proof of Theorem 3.2: Step One. Let g, € G and consider the group automorphism
L,-1: G — G, see (2.7). Since L -1 is an isometry (2.14), we have L -1(B(go, R)) = Ble, R),
where e denotes the group identity. Moreover, Lg;1 is a smooth map, hence in particular it
is locally Lipschitz. Consequently, for every R, > 0 there exists C = C(G, X, Q, g0, R,) > 0,
depending on the Lipschitz norm of L o1 inB (go, Ro) N 0N, such that for any 0 < R < R, one

has

(3.6) o(B(go,R) N 99Q) < C o(L,-1(B(go, R) N0Q)) .
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Since 0 is compact, the constant C in (3.6) can be chosen independently of g, € 09, and
if we let R, < min(diam(Q), 1), we can simply write C = C(G, X,Q). If we let = L,-1(%),
then (3.6) can be rewritten for some constant C = C(G, X,Q) > 0

(3.7) o(B(go, R) N 0N) < C o(B(e,R) NON) .
Now, observe that

Q= {geG|dy) <0},

where ¢ = ¢ o ngl. By the left-invariance of the vector fields X1, ..., X,, we have |X¢| =
| X | o L,-1. In particular,
(3.8) sup |X¢| = sup |X|.
B(g0,R)NOQ B(e,R)NON
In view of (3.7) and (3.8) we obtain

(3.9) ( sup |X¢|> 0(B(go,R)N0Q) < C ( sup |Xg5|> o(B(e,R) N o) .

B(g0,R)NOQ B(e,R)NAQ

Inequality (3.9) allows us to assume that g, = e in (3.1), which we will do hereafter. Moreover,
with a slight abuse of notation we will denote Q and </,7> by Q and ¢, respectively. In addition,
thanks to (2.11), it is clear that in (3.9) we can replace the metric balls with gauge pseudo-balls
defined in (2.16). Without further mention, we will work with the latter from this moment on.

At this point it is convenient to work with the exponential coordinates (2.6) in the Lie algebra
g, rather than dealing directly with the group G. We thus set D = exp™'(2) C g. Observing
that the Riemannian Hausdorff measure H,,_1 in GG, the Haar measure dg in G, and the gauge
pseudo-metric, are all obtained by pushing forward via the exponential mapping corresponding
measures and pseudo-metric in g, with another slight abuse of notation we will denote by H,,_1
the (Euclidean) (n — 1)-dimensional Hausdorff measure in g and set o = H,_1|0D. We will
continue to indicate with ¢ the pull-back (¢ o exp). In this notation ¢ is a defining function for
D. The notation B(§, R) C g will indicate the Lie algebra gauge pseudo-balls of radius R and
center £ € g defined by means of | - |5 in (2.12).

With these reductions, we have converted the proof of (3.1) into the task of establishing the
existence of C, = Cy(g, X, D,0) > 0 and R, = R,(g, X, D,0) > 0, such that for 0 < R < R,

(3.10) ( sup |X</>|> o(B(0,R)NdD) < C R9™“.
B(0,R)

Our next reduction consists in substituting the quantity o(B(0, R)N9dD) in the left-hand side
of (3.10), with o(B(0,R) NII), where IT = To0D C g denotes the tangent plane at the origin
0 € 0D. We note that when we write o(B(0, R) N II), the measure o denotes the restriction
of H,_1 to II, while for o(B(0, R) N 0D), o denotes the restriction of H,_; to dD. It seems
preferable to allow for this slight ambiguity rather than adopting a more cumbersome notation.
We observe next that the defining function of II is given by 7(£) =< V¢(0),& >, € € g. By the
hypothesis ¢ € C%!, and by Taylor’s theorem, one can write

(3.11) $(§) = 7(&) + H(E) ,
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with H = O(|¢]?) (we recall here that | - | denotes the Euclidean norm on g), with £ € B(0, R,),

and for sufficiently small R,. Consequently, we obtain
(3.12) V(€)= V(0) + O(6),
where O(€) = {0;,5(6)}, § = 1,..,7, s = 1,...,m; and 0;4(€) = O(|¢]). In view of (3.12) and

Lemma 2.1 we can compute the horizontal gradient of ¢ as follows

X;p(€) =< Xi, VH(€) >= < X;,Vp(0) + O >

T

Z Z b;,i(gla -‘w&j—l) (6iﬂ- + O,s(§)> .
758

j=1s=1

(3.13)

Here, for simplicity, we have let bf ; = Ois-

Observe that the Euclidean metric on g, the gauge pseudo-metric and the Hausdorff measure
are all invariant with respect to the action of the orthogonal group O(R™:) on V;. By a change of
coordinates, performing a rotation inside each layer V;, we can assume without loss of generality
that there exist real numbers ay, ..., a,, such that the equation of the hyperplane II is given by

(3.14) w(€) = Zaj zj1 = 0.
7j=1

We will denote by N the set of indices j = 1,...,r such that a; # 0, and by NC the set of
indices for which a; = 0. Note that if the point g, is non-characteristic, then a; # 0, while in
general, the smallest index in A is simply the type of g, € 9Q. We choose R, small enough such
that

(3.15) 105,58 < jrréij\rfllajl, €] < R, ,

and note that R, will depend on the choice of the base point g, in the statement of the theorem.
In view of (3.13) and (3.15) we obtain

Xi(e)] < ZZ|b§-,s(fl,...,£j_1)\(ajasl T 0-,5@))

j=1s=1

(3.16) < 2 ) D G el DD D 1B (6 &o1)] 105,58

JEN s=1 JENC s=1
< I + () .

Remark 3.5. We want to point out an incorrect statement in [CGN2|, namely equation (3.3)
in that paper, in which only part I of (3.16) appears, and not the remainder. To see that this
is not true in general, we consider the Heisenberg group H' and the function ¢(z,y,t) =t + xt.

In this particular example we can compute explicitly
1
(X" =12+ 2(" +y") (1 +2)" +1y(1+2)

while

1
(X7]? = Z($2+y2)'
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Hence, it is not true that | X ¢| < C|Xn| in the ball B(0, R). Since in [CGN2] the setting is that
of a step two Carnot group, then the additional term is easily estimated and the results in that

paper continue to hold.

If we parametrize 0D near the origin as the graph of a C! function defined on the tangent
plane II = Ty0D, then it is easy to see that there exist constants C; = Ci(g,X,D) > 0,
R; = Ry(g,X, D) > 0, such that for all 0 < R < R; we have

(3.17) o(B(0,R)NTI) < o(B(0,R)NdD) < C; o(B(0,R) NTI) .

From (3.16), (3.17), we obtain the existence of constants Cy = Ca(g,X,D) > 0, Ry =
Ry(g, X, D) > 0 (these constants also depend on the choice of the base point g, in the statement
of the theorem), such that

(3.18) ( sup |X¢>\> o(B(0,R)NdD) < (Cy ( sup [I—I—II](f)) o(B(0, R) N1I),
B(0,R)NOD B(0,R)

for any 0 < R < Ry.
Our final reduction consists in replacing the gauge pseudo-ball B(0, R) C g with a simpler
set, the anisotropic "box” centered at 0 € g of radius R, see (2.20). The latter is given by

(3.19) Box(R) ={{=&1+...+& eV oV, =g [ <R, j=1,.r}.

In view of the ”ball-box” theorem quoted earlier in (2.21) (Thrm. 3 in [NSW]), it is possible
to find a constant C(G) > 1 such that for any R > 0
(3.20) Box(C™'R) C B(0,R) C Box(CR).

The inclusion (3.20) allows to further simplify the right-hand side of (3.18) by replacing the
gauge pseudo-ball B(0, R) with Box(CR). This substitution yields constants C = C(G, X,Q, g,) >
0, and R(G, X,,g,) > 0 such that

(3.21) ( sup |X¢|> 0(B(go, R)NON) < C ( sup [+ II]) o(Box(CR) NII),
B(go,R)NAN Box(CR)
for any 0 < R < R(G, X,9Q,¢g,).
Proof of Theorem 3.2: Step Two. The rest of the proof is dedicated to proving the estimate
(3.22) ( sup [I+II]) o(Box(R)NII) < C RO >,
Box(Rr)
for R suitably small. Estimate (3.22), coupled with (3.21), will yield (3.10), and therefore (3.1),

thus establishing the theorem. We will obtain (3.22) as a corollary of the following two lemmas.

Lemma 3.6. With the notation established above, we have

( sup I) o(Boz(R)NT) < C RO,
Box(Rr)

for R suitably small.
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Proof. Using (3.16) and Lemma 2.1 we obtain

(3.23) sup I < Cg Z|aj| R
Box(R) JeEN

By an isometric linear map, we can transform
r .
Box(R)NIT = {(z1,1,-.,Zrm,) €E G~ RXj=1 | Zajmj’l =0, || < RL,j=1,..,1},
=1
into the set
<Hj€NC(—RjaRj)mj) x (erN(—RkaRk)mk_l> xS

Here, we have denoted by || the number of elements in A, and by {N1, ..., Ny} the elements

themselves. We have let
S = {s=(s1,-»5n)) € RN Z an;s; =0, |sj| < RNij=1,.,|N}.
NGeN

Consequently,
o(Box(R)NI) <  CRXjeneI™ REjenitmi=) p . (S)
-2
(3.24) = CRYR I Hy_(S) .

Next, we estimate from above the quantity in the right-hand side of (3.24). Now, it is not
easy to compute Hr—1(5) exactly. However the following simple argument produces the bound
(3.26), which will suffice for our purposes. We recall that if

DI {3 = (81,...,3"/\/‘) | Z aNij = 0}
JEN
is a hyperplane in RV, and U represents the projection of a portion A C 3 onto the coordinate

hyperplane {s; = 0}, then the (|A'| — 1)-dimensional measure of A is given by

V 2 jen 4]
(3.25) Hp1(A) = ———— Hy(U) -

o]
We now apply (3.25) with A = S to reach the crucial conclusion that H|y/_;(S) is bounded

from above by any of the quantities
V ZjGN a? S g
W R {i#N;GEN} ; M EN .

In fact, REAi#Nigent) g the H|yr—; measure of the projection onto {s; = 0} of the box
{Is;] < RNi,j =1,...,|N|} € R¥'. Consequently, we have

/3 on a2 |
(3.26) H y-1(S) < min % REG#NnieNY N e N
N

Using (3.26) we can now complete the first part of the estimate (3.22). Let 4, be the index of

the minimum element in the above expression, so that
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. io
|a| < R.’
lai,| = R
Note that i, depends on R, however this dependence will have no effect on the constant C in
the estimate (3.22). By (3.23), (3.24), (3.26), and (3.27) we conclude

(3.27) ieN .

(3.28) ( sup I) o(Box(R) N1I)
Box(r)
j
<o [yare {y ol 2
JEN EN |
2 ho ) 1 1
<CG) [D R (% + D &
JEN JEN
< C(G) [ a? R
JEN

O

This establishes the first part of (3.22). We now turn our attention to the proof of the second

part of the estimate.

Lemma 3.7. With the notation established above, we have for R suitably small,

R~ko*2 if k, > 1, (characteristic point)

IT| o(Boz(R)NI) < C R9™* .
( o ) o(Boz(R) )< { RIo if ko =1, (non-characteristic point)

Box(Rr)
where k, = min N and j, = min NC.

Once again we point out that k, is nothing else but the type of the point g, € 9 in the

statement of the theorem.

Proof of Lemma 3.7. Note that for ¢ € Box(R), the Euclidean norm of ¢ is less than R, see
(3.19). From Lemma 2.1 and (3.16), we have

(3-29) 1) = > S0 50 0550 < ¢ Y RT'R.
JENC s=1 JENC

In view of the latter and of (3.24) and (3.26) we obtain

< sup II) oc(Box(R)NII) < C (Zke/\fc Rk_1R>RZj€Nijj RXjen i(m;—1) Hn-1(5)
Box(R)

IN

lan;]

2 .
C(ZkeNc Rk—1R> RQ R_Zjej\fj min {7\'2]6‘,\[07 RZ{J‘;&/\/’i,jeN}] ’ Afz EN}

o [RN:

(3.30) < CRQ—l(ZkeNC Rk+1> min {—FVZJGN“? Me/\/}.
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If k, = 1, then the point g, is not characteristic, and consequently j, > 1. In this case, from
(3.29) we infer

: Y jen 4 > en @2
( sup H) o(Box(R)NI) <  CRY 'R min \/? \/?

Box(r) lai|R 77 |aMN|R|N|

/ 2
. a“
(3.31) < CMRQ_IR].O

for R sufficiently small (depending on the a;’s). If k, > 1, then g, is a characteristic point and
(3.29) implies

( sup II) o(Box(R) N1II)

Box(r)
2 2
< ort (R? + ... +Rk"+1> min \/m \/m

|ak, [ BFe 777 Jan,, RV
2
. a“
< oY T 2ien ! RR-1R—ko+2,

|a, |
thus completing the proof of the lemma.

O

As we already mentioned, Lemmas 3.6 and 3.7 imply the estimate (3.22), thus concluding the
proof of Theorem 3.2.

The argument in the previous proof yields a sharper geometric estimates than the one stated
in Theorem 3.3 in the case when the domain is an hyperplane.

Theorem 3.8. Let G be a Carnot group of step r with homogeneous dimension Q. Consider a
bounded, open set Q = {g € G | #(g) < 0}, where ¢ € C"(Q) is a defining function for Q,
such that

P(§) =< V§(0),& > +O([¢]).
There exist M = M(G,X,Q) > 0 and R, = R,(G,X,) > 0 such that, for any 0 < R < R,,
one has

(3.32) ( sup |X¢|> o(B(0,R)NdQ) < M R9!.
B(0,R)NAN

To conclude the section, let us observe that Theorem 3.2 yields pointwise estimates in the set
U = { set of points of type < 2}. Such set is open and has full Riemannian (n — 1)—dimensional
Hausdorff measure in 9. The open condition follows trivially from Q being C' and observing
that

2 myg

U = {g € 99 such that Z Z |Xk,j¢’(9)| # 0} .

k=1j=1
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Since U contains the set of non-characteristic points, then the fact that 9Q\U has zero surface
measure is a consequence of a result of Derridj [De]. Note that even if Derridj’s original argument
was stated for smooth domains, it extends with no changes, to the case where the domain is
only C2. In fact, once we use a C? diffeomorphism to “flatten” a portion of the boundary, the
push forward of the smooth vector fields in the Lie algebra become C' vector fields and using

Lemmata 1 and 2 in [De] we arrive at the desired estimate.

4. Lower Ahlfors regularity of the perimeter measure in Carnot groups

Having proved that the measure u of a C! hypersurface of type less or equal than 2 is an
upper 1-Ahlfors measure, we now turn our attention to the more delicate question of the lower
1-Ahlfors regularity.

Theorem 4.1. Let G be a Carnot group of step r with homogeneous dimension Q. Consider a
bounded, open set @ ={g € G | ¢(g) <0}, where ¢ is a defining function for Q.

(i) If p € CYYHG) and g, € 09 is non-characteristic then there exist M = M(G, X,9,g,) > 0
and R, = Ry(G, X,,g,) > 0 depending continuously on go, such that, for any 0 < R < R,,

one has

(4.1) 1(B(go, R)) > M~ RO

(ii) If ¢ € C*(G) and g, € 0N is of type 2, then there exist M = M(G,X,Q,g,) > 0 and
R, = R,(G,X,Q,g,) > 0 depending continuously on g,, such that, for any 0 < R < R,, estimate
(4.1) still holds.

A standard compactness theorem, like the one presented in the previous section yields the

global estimates

Theorem 4.2. Let G be a Carnot group of step r with homogeneous dimension Q. Consider
a bounded, open set 2 = {g € G | $(g) <0}, where ¢ € C*(G) is a defining function for Q,
and assume that Q is of type less or equal than two (if Q is of type one, then the C*' regularity
suffices). The Borel measure p defined in (1.7) is a lower 1-Ahlfors measure with respect to the
CC balls, i.e., there exist M = M(G,X,Q) > 0 and R, = R,(G, X,Q) > 0 such that, for any
go € 090, and 0 < R < R,, one has

(4.2) 1(B(go, R)) > M~ RO,

In particular, combining (3.4) with (4.2) we conclude that p is a 1-Ahlfors measure.
In order to prove the theorem we need two preliminary results,

Lemma 4.3. Let n,r € N, n <r, and consider a multi-index

I = {di,...d,} € N" |
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with 1 < dj <7, dij <djp1. Set N =37, d;i. Cosider a n—tuple (a1, ...,a,) of non-zero real
numbers and for R > 0 define the portion of hyperplane

n
Sr = {(s1,..-;8n) € R" such that Zaisi =0, and |s;| < R%, fori=1,..,n }.
i=1
There ezists R, = Ry(a;,d;,n,r) such that if 0 < R < R,, then
a’
(4.3) H,_1(Sg) > +————= RN"% |
where H,_1 denotes the n — 1 dimensional Hausdorff measure in R".

Proof of Lemma 4.3. As in the proof of Theorem 3.3, from (3.25) we have that for any 7 =

1,..,n,
" a2
J=1"1

(4.4) anl(SR) = |a| Hn—l("ri(SR)) ;
2

where 7;(Sg) represents the projection of Sg C R" onto the coordinate hyperplane {s; = 0}.
We claim that there exists R, as in the statement of the theorem, such that for 0 < R < R,,

the projection 71 (Sg) is as large as possible, i.e.

(4.5) H,_1(m(Sg)) = RN .

To verify this statement we choose any point

(52, ..., 5n) € R*™! with |s;] < R%, for i =2,...,n.
Define

n
a;
§1 = — — S4.
=2 U
A simple computation shows that

n n
— L ay| - ‘ ’
1=2 =2

|as |

Hence, for R, small enough and 0 < R < R, we have |s;| < R%, and consequently (s, ..., s,,) €
Sgr. This shows that (so,...,s,) € m1(Sgr) and proves (4.5). O

The lemma above is a key step in the proof of the following

Theorem 4.4. Let G be a Carnot group of step r with homogeneous dimension Q. Consider a

bounded, open set

Q= {geqG | ¢(9) <0},

where ¢ € CYYHQ) is a defining function for Q. Let g, € 0 be of type ko. There exists
R, = Ry(g0, G, X, Q) >0, and C = C(g0, G, X, Q) > 0, such that for 0 < R < R, we have

(4.6) o(B(ge, R) N 0N) > CRI %o,
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2
V2jen 95

The constant can be chosen to be C = ]
0

Remark 4.5. Notice that this theorem, together with the argument in (3.29) implies that in any
Carnot group G and for any CY' domain Q C G, there ezists a constant C = C(Q,G) > 0,
such that

(4.7 C~1RO-typelg0) < o(B(go, R) N 8D) < C RO~ type(go),
for R sufficiently small depending on go,¢ and G.

Proof of Theorem 4.4. We will use the notations and the reductions introduced in the proof of
Theorem 3.3. In particular, it is clear that in order to prove (4.6) it suffices to show that there
exist C = C(go,9,X,D,0) >0, and R, = Ry(go,9,X,D,0) > 0, such that for any 0 < R < R,,
one has

(4.8) o(Box(R) NII) > C RP %o
In view of the argument between (3.23) and (3.24), the estimate (4.8) will immediately follow
from
o({(~R,R)™ ' x .. x (~R",R")™ ' x §}) =  REien¢I™i REien =V (8)
(4.9) >  C R9Y |

where S is defined as in the proof of Theorem 3.3.
At this point we use Lemma 4.3 substituting n = |N|, N = I, and d; = N;. Estimate (4.3)
yields

Soen e |
(4.10) H|N|—1(S) > ﬁ RZjeN,j;ékOJ.

|ak0|

The conclusion now follows immediately from (4.9) and (4.10), in fact

H,A(Blgn R)N09) = H,—y(Box(R) NTI)(1 + |O(R))
> H,_1(Box(R) NTI)
RE]'GN'C jmj RZleN l(ml_l)H‘A”_l(S)

/ 2
) as ) .
%JET I REjencimi RYien Umi=1) REjen izko .
ako
DFPINT:
JEN Y

|a’k0|

v

(4.11) RY™ho,

v

The proof of Theorem 4.4 and estimate (4.3) allow us to prove easily the following
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Corollary 4.6. In the hypothesis of Theorem 4.4, with ko = 2 we have that
(4.12)
H bim(g)—m1 —1 [“ﬂBow(R) ﬂﬂ)] > ORZien®. 21 REen Ui REieniz2l = CRI™ 2,

where w1 : g = Vo @ ... & V. denotes the orthogonal projection onto the complement of Vi.

We are now ready for the proof of the main result of this section

Proof of Theorem J.1. We will use the notations and the reductions introduced in the proof
of Theorem 3.3. In particular, it is clear that in order to prove (4.1) it suffices to show that if
the origin is in dD and we denote by II the tangent space to the boundary at the origin, then
there exist C = C(g, X, ) > 0, and R, = R,(g, X, ) > 0 which will depend continuously on
the choice of g, in the statement of the theorem, and such that for any 0 < R < R,, one has

(4.13) / |X¢| do >C RO .
Box(R)nn1

and consequently,

X¢| do = X¢|(1+ 0([¢))d
/Box(R)maD| o do /Bo)((R)OH' $l(1+ O(l¢)))do

> Cl/ | X ¢| do
Box(r)nI

> Cy RQil.
The proof is divided in two parts: In the first part we will study the case when the origin is

of type one, i.e. it is a non-characteristic point.

Type one: If the origin is not characteristic then a; # 0, and kg = 1. Since the non-
characteristic hypothesis is an open condition, then it holds in a neighborhood of the point
in question, giving us local uniform control on |a;| (from here on a; will be part of the constants

that we use in the estimates). The key (elementary) observation is that

(4.14) 0<C™l< sup |X7<C,
IINBoz(R)

where C' = C(a1,G) > 0.
In view of (3.23), (3.24), and (4.14) the estimate (4.13) will immediately follow from

(4.15) o(Box(R)NI) > C R .

This is an immediate consequence of Theorem 4.4.

Type two: Here we need to assume that ¢ € C? in a neighborhood of 99Q. Repeating the
argument in (3.11)-(3.13) we obtain

(4.16) P(&) = (&) + H,
with H = o(|£]?), and for ¢ € B(0, R,), and for sufficiently small R,. Consequently we obtain
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(4.17) V(&) = Ve(0) +a(¢),

where 6(§) = {ox;(&)}, k =1,...,r, j = 1,...,my and o ;(§) = o(|¢]). In view of (4.17) and
Lemma 2.1, we can compute the horizontal gradient of ¢ as follows

Xip(§) =< Xi, Vop(£) >= < X, Ve(0) +0>

(4.18) = Zzbil(&,---,ﬁk—l)(% +0kl(§)>-
k=11=1 ’

Here, for simplicity, we have let bi,l = 0.
Repeating the argument in Lemma 3.7, with the new regularity hypothesis ¢ € C?, and

knowing that the origin is of type two, we obtain

Lemma 4.7. In the notation established above, for every e > 0 we can choose R, = Ry(€, g, X, Q) >
0 such that if 0 < R < R,, one has

(4.19) ( sup Zzbil(&’ ...,fk_l)okl(£)|> O'(BO.TE(R) N H) < € RQil

|
Box(R) k=1 1=1

Consequently, the estimate (4.13) is reduced to the proof of

(4.20) / Xnldo > C RO
Box(r)n1

In fact, if (4.20) holds, then from (4.18), and (4.19) we would obtain

(4.21) / IX¢| do > C / Xnldo — eR? 1> CRO .
Box(r)nnt Box(r)nn1

We now proceed with the proof of (4.20). Since the origin is of type two, then we have

ﬂ'(f) = 7T(£2, -"557") = Z a’k&k,la

keN
and for ¢ € Box(R) N1I, it follows that
[Xim(©) = 1) bl
keN
> [bhaaal = D bhiaxl
kEN, k>2
(4.22) > |bhias|— Y, CRFL.
kEN, k>2

The crucial observation now is that béyl depends only on &1, and not on the higher order

coordinates.
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Remark 4.8. Because of the definition of Carnot group, we know that there exists at least one
1=1,...,m1, and one l =1,...,mg such that bl2’i # 0. Without loss of generality we can assume
that b%}i #£ 0 for some i. In fact, if that is not the case and bl2°,i # 0 for some lyg # 1, then we will
change the definition of ay by rotating the Vo component of I1 onto the direction ly. The rest of
the proof will follow with trivial changes.

On the other hand, since 7 does not depend on &1, we have that

Box(R) N1II = (—R, R)™ x m (Box(R) N1I),

where m; : g — Vo @ ... ® V. denotes the orthogonal projection onto the complement of V3.
Corollary 4.6 yields

(4.23) Hgim(g)—m1—1 |:7r1(Box(R) N H)] > CRY ™2,

Estimate (4.22) allows us to infer

my
Xrldo > / < b as| — CRk_l) do
/Box(R)mHl | Zz_; Box(r)n1t | 2! 2| Z

keEN, k>2
mi1 7/ Z ieN a2-
arguing as in (3.29) > <Z/ |b§7ia2|da> - #( Z CRkl) RO2
i=1 J Box(r)nII |az|

keN, k>2
From (4.23) we infer

mi
b . asldo
Z /Box(R)nH| 2,102]

=1
mi1
>C (szew, i#17M5 RYaen Umi=1) Y ien 122! ) > / |b% 1 ag|déy y...dE
i—1 Y (—R,R)™ ’

mi
(424) >CRO™72)° / |6 az|dér 1 ...d€1m,
i—1 Y (—R,R)™

Since b} ; is a non-zero polynomial of order one in {1, ¢ = 1,...,m1, we can write p(€) = b5 4 az,
and set

Co = d¢ > 0.
Gl

Now make a change of variables ¢’ = R¢ and obtain

/ p(€)|dE = Cy R™ 1.
(-R,R)™

Consequently

mi
(4.25) > /( | ) as|d€11...dE1my > Cp R™ L,
i=1 7 (- RR)™

At this point the conclusion follows from (4.22), (4.24), (4.24), and (4.25).
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Remark 4.9. An elementary modification of the argument above yields that (4.20) holds for
arbitrary points, regardless of the type of the center of the surface ball. In particular, we have
that for every hyperplane m C g passing through the origin and for every 0 < R < Ry,

(4.26) C1R9™1 > / |Xn|do > Cy RO!

Box(r)n

for some choice of the positive constants Ry, C1, and Cy depending on w. Note that this does not
implies that the perimeter measure of hyperplanes is 1— Ahlfors-regular, at least for Carnot groups
of step higher than three. In fact, when we translate an hyperplane so that a fized boundary point
goes to the origin, unless the group law is an affine transformation of g the defining function of
the translated domain will not be linear anymore. For Carnot groups of step two, the estimate
above indeed implies that the perimeter measure of hyperplanes are 1—Ahlfors reqular. In a
certain sense, estimate (4.26) shows the effect of higher order data (like for instance curvature)

on the Ahlfors estimates in the Carnot group setting.

We conclude this section by giving an alternative, more indirect approach to the lower Ahlfors
regularity in a Carnot group of step 2. Using the relative isoperimetric inequality established
in [GN1] and the geometric properties for minimally smooth domains obtained in [CG], we are
able to establish the lower 1-Ahlfors reagularity for C1'' domains. We emphasize that such
smoothness is sharp, since in Section 7.2 of [DGN2] it was proved that in the Heisenberg group
H" for every a € (0,1) there exists a bounded C** domain whose perimeter measure fails to be

lower 1-Ahlfors regular.

Theorem 4.10. Let G be a Carnot group of step two, and let Q C G be a C*' domain. There
ezist constants C = C(Q,G) > 0 and R, = R,(Q2, G) > 0 such that

PX(Q’B(gaR)) Z CRQ_17

for every 0 < R < R, and for all g € 0N).

The proof of Theorem 4.10 will follow immediately from the following two results. The former
is a special case of the general result in Theorem 1.17 in [GN1]. We recall that in every CC

space the metric balls are Poincaré-Sobolev domains.

Theorem 4.11. Let G be a Carnot group with homogeneous dimension Q. There exists a
positive constant C; = C1(G) such that for every set of locally finite X -perimeter Q@ C G one

has
min(|Q N B(g, R)|, |0 N B(g, R)))“@ < €y Px(2,B(g,R))
for all R > 0.

The next result was established in [CG].
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Theorem 4.12. A bounded C1' domain Q in a Carnot group of step two satisfies the exterior
and the interior corkscrew conditions. In particular, there exist positive constants Cy and Ro
such that

min(|2 N B(g, R)|,|2° N B(g, R)|) > Cp R? |
for all g € 092, and every 0 < R < Ry.

It is obvious that Theorem 4.10 follows from Theorems 4.11 and 4.12, and from the fact that
if O C G is bounded and Cb!, then it has locally finite X-perimeter. Using (2.11), the lower
Ahlfors estimate in Theorem 4.10 is easily seen to hold also if we substitute metric balls with

the gauge balls.

5. Counterexample to the 1—Ahlfors estimate for groups of step r > 3

In Theorem 1.2 we have established the 1-Ahlfors regularity of the X-perimeter measure
under the assumption that Q be a C? domain of type < 2. We recall that such hypothesis is
automatically fulfilled when the step of the group is 7 = 2. In this section we show that the type
assumption is optimal, in the sense that we prove the existence of a group G of step 3, and of a
domain 2 C G of type 3 for which the X-perimeter measure fails to be 1—Ahlfors regular. We
remark that additional smoothness does not suffice since in our example the defining function
¢ of Q is of class C*°.

We consider the cycle group G = K3, see ex. 1.1.3 in [CGr], whose Lie algebra is given by
the stratification,

where Vi = span{Xi, X2}, Vo = span{X3}, and V3 = span{X,}, so that m; = 2 and mq =
mg = 1. We assign the commutators

(5.1) [X1,Xo] = X3 (X1, X3] = X4,

all other commutators being assumed trivial. We observe right-away that the homogeneous
dimension of G is
Q =mi +2mg + 3mg = 7.
The group law in G is given by the Baker-Campbell-Hausdorff formula (2.9). In exponential
coordinates, if g = exp(X), ¢’ = exp(X'), where X = 23:1 z; X;, X' = Z?:l 1; X;, we have

o

gog =X + X +2 X, X'l + % {[Xa[XaXI]] - [X,’[X’X,]]}'

A computation based on (5.1) gives (see also ex. 1.2.5 in [CGr])

goyg = (xl—|—y1,a:2+y2,x3+y3+P3,$4+y4+P4> )
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where
1
Py = 5 (z1y2 = 2291) ,
Py, = §(w1y3 — z3y1) + 19\ Y2 — T1y1(T2 + Y2) + 727 ) -
Using (2.8), (2.9) we find that a left invariant basis of the Lie algebra g is given by the vector
fields
0 Ty O T3  T1T2\ O
5.2 X = — - = — - |= —,
(52) ! oz1 2 Oz (2 * 2 ) on
XQ = i —+ ﬂ i :E_% i 5
Ozo 2 Oxs 12 Oxzy
0 I 0
X = - + 32 =2
3 Oz + 2 Oxy’
0
X = 7.
4 6.774

We now consider the smooth function

#(g) = T1m2 + T4,

for which we obviously have

v¢(g) = <$2ax1a071) 7é Oa

and the C* domain Q = {g € G | $(g) < 0}. Using this formula and (5.2) we easily obtain

Z3 Z1T2

(5.3) X¢lg) = (X19(g), X29(9)) = (5”2 (Gt ) m +%> '

We note explicitly that the characteristic set 3 of Q is non-empty, therefore €2 is at least of
type 2. Using (5.3) we see that ¥ = X1 U 39, where 31 and X9 are identified by the equations

¥ o z1 = 0, T3 = 2 29, zge = 0,

221 .’1}1:—12, $3:2$4.
However, (5.1) and the equation for X3 in (5.2) give
Z1
X1, Xalblg) = Xadlg) = o,
and the latter function vanishes on ;. This shows that all points in ¥; are of type 3, and

therefore so is Q. Since the tangent hyperplane at the origin II is given by {z4 = 0}, we easily
find

(5.4) o(Box(R) N II) = 2xR*.
If we choose gr = (R/2,0,0,0) € {¢ = 0} N Box(R), then
5.5) Xl = 5 (1+5)-

In view of (5.3)-(5.5), we conclude that for R sufficiently small the following estimate holds

(5.6) ( sup |X¢|> o(Box(R)NII) > C R®,
Box(R) n {¢=0}
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for some constant C' > 0 independent of R. Since @ = 7, it follows that (3.2) cannot hold with

a=1.

Next, we turn our attention to (3.4), and show that also the estimate

(5.7) Px(©,B(0,R)) = | X¢l(g9)do(g) < C R

/BOX(R) N {¢=0}

fails for our choice of ¢. In fact, we observe that we can parametrize 02 = {¢ = 0} as a graph

Ty = —z179. If we write X¢ = (22 — po, 71 + p1), with pp = (% + Z22), p; = I, we can
estimate

/ X4|(9)do (9)
Box(rR)n{¢=0}

RZ
> / / {y/x%-{—x% — 2 |:1:1p1|+|x2p2|} \/1+x%+w%dw1da:2dx3
—R2 m%+w%<R2
> 2 R? / \/x% + :v%dxldavz
z%+z§<R2
RZ
— 2 sup V|zip1| + |z2p2| / / \/1+ 22 + 22 dz1dzodzs
) —R? z%+$§<R2

(-R,R)2x(—R2,R2
> C, R — L, R?R* > CR".

Since @ = 7 the latter estimate contradicts (5.7). To conclude the section we want to point
out that we also have the estimate

/ X4|(g)do(g)
Box(R)n{¢=0}

< 2 2 2 3 54
< C(R /(_R,R)2 \/ 21 + z5dz1dzy + R2 R )

(5.8) < CR°.

6. Geometric estimates for a system of free vector fields of Hormander type

Our next goal consists in extending the results in the previous section and prove area estimates
for surface Carnot-Caratheodory balls associated to a free system of Hormander vector fields.
Our proof rests principally on the computations in the group case, and on the Rothschild-Stein
approximation Theorem 2.6, which allows to locally approximate the vector fields Xj,..., X,
with left invariant generators Y1, ...,Y,, of a free Lie algebra.

We will use the notation introduced in Theorem 2.6, and in the preceding paragraphs. More-
over, we will denote by B(z, R) the solid Carnot-Caratheodory balls in R”, and with Bg(y) the
Carnot-Caratheodory balls in Lie groups or in their Lie algebras.

Let Q = {z € M" | ¢(x) < 0} C M™ be a bounded C»! domain, and X, ..., X;;, smooth

vector fields, free up to step r in a neighborhood of 912, and satisfying the Hérmander condition
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(1.2). Choose a positive R; = R1(X,Q,z,) < 1, small enough such that B(z,,2R;) C V, where
V is the neighborhood of @), which is the domain for the coordinate chart

0z,(-) 1 V = U C Gy s
as in Theorem 2.6 (A). For 0 < R < Ry, set A = A(z,, R) = B(z,, R) N 0NQ. Let us adopt the

following notation

(6.1) Y =0,,(Q) C Gy
¢'(z) =¢85 (x)), so that Q' = {y € G, | #'(y) <0}

Definition 6.1. Let X1, ..., X,, smooth vector fields in M™, free up to step r and satisfying the
Hérmander condition (1.2). Let Q = {x € M™ | ¢(z) < 0} C M™ be a bounded C' domain.
Choose any collection {X;}, of commutators of length k with X;1 = X; such that the system
{Xi}, k=1,...,7 evaluated at z, € O is a basis of R". We define the “type” of z, to be the
smallest k = 1,...,7 such that there exists | = 1,...,my for which Xy 1¢(go) # 0. We will denote
by
type(xo)

the type of z,, and if for every z, € 00 we have that type(z,) < s € N then we will say that Q
has type less or equal than s.

Remark 6.2. Note that the definition of “type” of x, is independent of the choice of the
collection {X;}, in view of the definition of free vector fields. An equivalent definition is the
following: We define the “type” of z, to be the smallest kK = 1,...,7 such that there exists a
commutator Z = [X;,, [ Xi,, ..., [ Xy, Xip].-.] of order k such that Z¢(z,) # 0.

We want to rephrase the notion of type in terms of the osculating group G, ;.

Lemma 6.3. Let Q = {z € M" | ¢(z) <0} C M" be a bounded C*' domain, and X1, ..., Xpm
smooth vector fields, free up to step r in a neighborhood of 02, and satisfying the Hormander
condition (1.2). For z, € 05 denote by Gy, , the osculating free group from Theorem 2.6 and by
Yi,....,Ym a left invariant basis of gm . If z, is of type less or equal than two in M™ (according

to Definition 6.1), then the origin is of type less or equal then two in Q' (according to Definition
3.1).

Proof. Notice that for any N > r, and 2 = 1, ..., m, we have

T

(6.2) Rid(0) =D Y pa,i,n(0)8,,4'(0)

1=1 |a|=l
where p,; n are homogeneous group polynomials of order greater or equal than |a| > 1. In

particular, p,; n(0) = 0, and we obtain

(6.3) Ri¢'(0) =0, i=1,..,m.

In case,
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type(z,) = 1
then (2.23) implies

(6.4) X(z,) =Y ¢'(0).

Hence the origin is of type one in Q' C G, ;. Next, we assume

type(z,) = 2
and consider any collection { X} ;} as in Definition 6.1. Recall from Theorem 2.6 that for any

multi-index 8 = (2,1), i = 1, ..., mo we have

Xgé(z,) = Y/ (0) + Rp¢'(0),
where R is a vector field of order less or equal than 1. At this point we observe that modulo

higher order terms (which will vanish at the origin) we must have

T

(6.5) R®(0) = > pasn(0)dy,¢'(0)

=1 |a|=l

with the degree of p, g n greater or equal than |a| — 1. The only term which will not vanish in

this expression are those corresponding to |a| = 1, which lead us to

(6.6) Roi(0) = D Pas.n (0004, #'(0) = 3 ;¥;(0),

la]=1
for the choice of the coefficients c; = p(; ;) g,5(0). Since we are assuming that X¢(z,) = 0 then

in view of (6.4), we also have Y'¢'(0) = 0, and consequently Rz¢’(0) = 0. At this point Theorem
2.6 gives us the equality

Xph(zo) = Yp4'(0),
for any 8 = (2,4), i = 1,...,mg. This implies that the type of the origin in ' is two. O

The argument in the previous proof can be easily generalized to yield

Corollary 6.4. Using the notation in the previous lemma: If z, is of type less or equal than k in
M™ (according to Definition 6.1), then the origin is of type less or equal then k in Q' (according
to Definition 3.1).

One of our main results in this section is the following

Theorem 6.5. Let X1, ..., X, be smooth vector fields in M™, free up to step r and satisfying the
Hérmander condition (1.2). Let Q = {x € M™ | ¢(x) < 0} C M™ be a bounded C1'* domain.
For each point z, in 0 of type less or equal than two, there exists constants C = C(Q, X, xz,) > 0
and R = R(Q, X, 1z,) > 0 depending continuously on z,, such that if 0 < R < R, then
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2EA(zo,R) R
Here we recall that A(ze, R) = B(ze, R)NONY, and || denotes the Lebesgue-Hausdorff measure
of the set.

(6.7) ( sup |X</><w)\> oA R) < C@,X,z,) EC0 T

Theorem 6.6. Let X1, ..., X,;, be smooth vector fields in M™, free up to step r and satisfying the
Hormander condition (1.2). Let Q = {x € M™ | ¢(z) < 0} C M" be a bounded C1 domain,
of type less or equal than two. There ezist constants C = C(Q,X) > 0, and R, = Ro(2,X) >0
such that for any z, € 02 and 0 < R < Ry, one has that (6.7) holds with the uniform constants
C and R,.

Proof. The idea of the proof is very simple: We rephrase the estimate (6.7) in terms of the
“tangent” free algebra g, via the map 6(-,-) defined in Theorem 2.6 (B) and the exponential
coordinates. At this point, formula (2.23) allows us to divide the problem in two steps. First we
estimate the part corresponding to Y;, using the results from the previous section, and then we
deal with the error term R; in (2.24). This error term is an operator of order less or equal than
zero, hence it does not contribute (modulo higher order perturbations) to the final estimate. In

the following we describe in detail this general idea.

Choose a positive R; = R1(X,Q,x,) < 1, small enough such that B(z,,2R;) C V, where V
is the neighborhood of @), which is the domain for the coordinate chart
02,(-) : V = U C G s
as in Theorem 2.6 (A). For 0 < R < Ry, set A = A(z,, R) = B(z,, R) N 09, and let Q' and ¢’
be as in (6.1).
Since 85, : V — U is a smooth map, then there exists a constant C = C(X,Q,z,) > 0
depending also on the Lipschitz norm of 6., in B(0,2R;) such that

o(A) Co(6z,(A))
(6.8) < Co(0s,(B(xo, R)) N ).

IA

Here we are introducing a slight ambiguity in the notation, in fact in the previous formula,
we have used the same symbol o to denote the surface measure in M™ (on the left hand side)
and the surface measure of Gy, , (on the right hand side). Since it is clear which is which, and
the two measures are bi-lipschitz equivalent, we will continue to use this notation in the interest
of clarity.

Let us observe that since 6 is a diffeomorphism we can choose a constant C > 0 such that we

also have the estimate

(6.9) a(A) > C o (0, (B(z,, R)) N OQ).

Since X7, ..., X, are free up to step 7 € N in a neighborhood of z,, then the argument in

Remark 2.5 allows us to write that for some constants C1,Cy > 0 depending only on 2 we have
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(6.10) Box cir C B(.’L‘o, R) C Box CsR»

where Box g denotes the box-like sets defined in Remark 2.5, and 0 < R < Rp, with a smaller
Ry, if needed. Consequently, 0g(B(z,, R)) C G, will be contained in one of the group “boxes”
Boxcg of size comparable to R defined in (3.19). By virtue of the box-ball theorem (2.21) (see
Theorem 3, [NSW]) we have

(6.11) gxo(B(.’Eo,R)) C BCgR(O) C Gm,r,

for some positive constant C3 depending only on X, and Q. From (6.8)—(6.11) we obtain

(6.12) a(A) < C o(Boxg(0) N0N) < C o(Be,r(0) N oY) = C a(A),
where we have let A’ = B, r(0) N 0Q'. Once again, we also have the reverse inequality
a(A") < Co(A).

In view of Lemma 6.3, we know that ¥ C G, , is a C1! domain of type less or equal than
two. This observation allows us to invoke Theorem 3.3, proved in the previous section, and infer
that there exists Ry = Ra(Y, Gyr) > 0, such that for any 0 < R < Ry one has

(6.13) o(A") sup [Y'| < CROY,
Br(0)

for some positive constant C = C(€, Gy, ,). Choose Ry = min{R;, Ry}. In order to prove

Theorem 6.6, we need to estimate the quantity

(6.14) o(A) sup |X¢| < CU(A')( sup |[Y¢'| + sup Z \Ri¢'|>
B(@o,R) Br(0) Br(0) =1

in the range 0 < R < Ry.

We will prove the following

Lemma 6.7. In the notation established above, there exists R(Y, Gr,,) > 0 such that for any
0 < R< R(Y,Gn,) and for everyi=1,...,m

(6.15) |A'| sup |Ri¢'| < CRO,
Br(0)

for some positive C = C(Q,Gp, r).
The proof of the Theorem follows immediately from Lemma 6.7, (6.13) and (6.14). O

Proof of Lemma 6.7. Following the arguments in (3.9)-(3.21), we make a number of reductions
on the problem. In particular we will assume without loss of generality that the surface portion

A is a portion of the tangent hyper-plane
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Im= {(yik) € Om,r | 7T(y) =0 }a

with 7(y) = 22:1 a;yi1,j, and we will substitute the gauge ball Bg(0) with the box-like set
Boxg(0). Asin (3.11) we write

(6.16) ¢(y) = m(y) + H,

with H = O(|y|?). After such reductions we have that for some positive R(€Y', G, ) < 1, and
C =C(,Gpm,) > 0, if we choose 0 < R < R(, Gpn,r) than

T
a(A") sup |Ri¢'| < CU(BOXR(O)HH){ sup |’R,Z~(Zajy1,j>| + |Ri( H )‘},
Br(0) Boxz(0) j=1
(6.17) < C{I + II},
where we have let
,
(6.18) I = o(Boxg(0)NII) sup |Ri(2ajy17j>|,
Boxg(0) j=1
and
(6.19) IT = o(Boxg(0)NII) sup ’Rz(H)‘
Boxr(0)

Now, we choose any integer N larger than the homogeneous dimension @ = »";_, imn; of the
group G, », and let g, ; y denote the higher order terms in the N—th order Taylor expansion
of R; (see 2.24).

Estimate of I: A direct computation yields

Ri (Zr:lajyl,j> = i > [PaiN (¥) + Gasin 1)1y, (21; ajyl,j)
= iz

=1 |a|=l
,
(6.20) = ( Z [Pai,n + ga,i,N]) a.
=1 “lal=l

Because of the homogeneity of the polynomials p,; n, and the growth condition g, n(y) =

O(ly| év ), we have for any R > 0 suitably small

(6.21) sup Z [|pa,z~,N| + |ga,i,N\] <Gy R, 1=1,.,m
Boxr(0) |a|=l

We also observe that
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.
o(Boxg(0) NII) = 0({(yik) €Omyr | D ajy; =0, and Y |ya/* <R¥, 1=1, ...,r})

j=1 |ar|=l

T
= Cm,rsz—1’<ml—1)a<{h ER|D ahy =0, and |by| <R, 1=1,...,m, })
=1
Rzl;éll REl;érl }

(6.22) < Cypp REim2 Hmi=) min{
ai Ay

Let 7 be the index corresponding to the minimum element in the list appearing in the last
formula, so that we have

ar _RI
(6.23) a_j < TE’ for k=1,...7

From (6.20)-(6.23) it is easy to deduce the following estimate

IBox, (0) N 11| sup |R; (Zagym)

gBuz,(0)

< C’m T'REI 1 lmi—1) sup Z |:( Z [|pa i N| + |ga i NH) RZZ#J l:|
Box,(0) ;=1 L \ o=t
S Umy—1) RZ; 1l
(624) < Cm 'rR =1 t SUP Z Z['pa1N| + |gaZN|]
Box,(0) ;=1 L\ g =

by (621) < Gy REHIM-DREL !
< Cfm,'r'lzEerl = Cm,rRQ-

Estimate of II: Let N > r and recall that g,;n(y) = O(|y|é\7). For every multi-index
a = (k,j), denote by O, = 9, H, and observe that since ¢ € C>! then O, = O(|y|). In view of
the proof of Theorem 4.4 and Remark 4.5 we have

IT < CRY™( |RyH )

(
CRO- ’“0< |Z > PayinOy, H +RN>
(

IN

l1|a|l

CRO ko ZRl > 10a |+RN)

=1 la|=l

< CR% ’fO( ZRZH)

=1
(6.25) < CR9 hot2

IN

Since the type of ' is less or equal than two, then kg < 2 and the lemma is proved. O
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We are now in a position to prove the lower Ahlfors regularity estimates.

Theorem 6.8. Let X1, ..., X,, be smooth vector fields in M™, free up to step r and satisfying the
Hérmander condition (1.2). Let Q = {x € M™ | ¢(z) <0} C M™ be a bounded C? domain. For
each point x, in O of type less or equal than two, there exists constants C = C(Q, X,z,) > 0
and R = R(Q, X, x,) > 0 depending continuously on x,, such that if 0 < R < R, then

| B(20, R)|
T

Here we recall that A(z,, R) = B(z,, R)NON, and |-| denotes the Lebesgue-Hausdorff measure
of the set.

(6.26) /A X o) 2 00, X,20)

The global estimates follow from the previous theorem through a standard compactness ar-

gument.

Theorem 6.9. Let X1,..., X, be smooth vector fields in M™, free up to step r and satisfying
the Hormander condition (1.2). Let Q = {x € M™ | ¢(z) < 0} C M™ be a bounded C? domain,
of type less or equal than two. There exist constants C = C(Q,X) >0, and R, = Ry(Q2,X) >0
such that for any z, € 9N and 0 < R < R,, one has that (6.26) holds with the uniform constants
C and R,.

Proof of Theorem 6.8. We adopt the same notation as in the previous theorem. Using the same
arguments as those in (6.8)—(6.12), we find that there exist constants C = C(X,,z,) > 0 and
Ry = Ry(X,Q,z,) > 0 such that

(6.27) fo P sy 2 [ 5 (i + i)

In view of Theorem 4.2 and Lemma 6.7 we obtain

/A(zO’R) | X ¢(z)|do(z) > C/A,; (\y;gb |+ |Rip |>d0

> C(/ Z |Y;¢'|do — |A'| sup |Ri¢'\>
AT Br(0)
(6.28) > C(RQ—l - RQ>

> CR9 L.

And the proof of the theorem is complete.
O

Note that simple modifications of the arguments in this section’s proofs allow to extend the

estimates in Theorem 1.2 to C1'! domains in CC spaces corresponding to systems of free vector
fields.
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Theorem 6.10. Let Xy, ..., X, be smooth vector fields in M™, free up to step r and satisfying
the Hormander condition (1.2). Let Q = {x € M™ | ¢(x) < 0} C M™ be a bounded C*' domain.
For each point z, in 0%, there exists constants C = C(Q,X,z,) > 0 and R = R(Q, X, z,) >0
depending continuously on x,, such that if 0 < R < R, then

B
(6.29) sup | Xo(@)] | o(Alae R) < C(@ X,z0) 20 L)
2EA(zo,R) Rs(xo)
and consequently
_ |B(z0, R)|
(6.30) Px(;B(zo, R)) < M T Re@o)
with
1 . .
(6.31) s(z,) = type(x,) -1, zf T, 18 chamcte@s?fzc,
1, if T, 1is not characteristic.

7. The case of a general CC space : Proof of Theorems 1.4 and 1.6

In this section we establish the Ahlfors regularity for C? domains of type less or equal than
two, in a general CC space (M",d). We will assume that X7,..., X}, are smooth vector fields
which satisfy (1.2) with step 7 € N at every point of an open subset U C M™. The proof rests
on the Rothschild-Stein Lifting Theorem 2.7 and on Lemma 2.9.

Consider an open, bounded C? set Q@ C U C M™, and assume that there exists a (C?) function
¢ : U — R such that Q = {z € M" | ¢(z) < 0}. Let z, € Q. The condition that the type
of Q is less or equal than two means that either z, is not characteristic or there exist indices

10, Jo = 1,...,m such that
(7.1) [Xi, X;j]é(z0) # 0

Proof of Theorems 1.4 and 1.6. The strategy behind the proof of this result is straightforward.
We lift the vector fields, the domain and the metric. Then we use the results from Theorem
6.6, and Lemma 2.9 to establish the estimate (1.16). Let £ C U be a compact set which
contains 2. We will use E as in Lemma 2.9. At this point we refer to Theorem 2.7, which gives
a neighborhood V' of the origin in R? ™, and the “lifted” vector fields X1, ..., X, in U x V.
Denote by Q@ = Q x V, and 2, = (z,,0) € 8Q. Choose R; = R;(X,Q,z,) > 0 small enough so
that B((z,,0),R) C E x V. For 0 < R < Ry, set A = A((z,,0),R) = B((,,0), R) N Q. Let
d(z,t) = P(x), so that Q = {$ < 0}, and | X¢| = | X #|. Notice that since X’inq; = X;X ¢, then
Q is of type less or equal than two according to Definition 6.1.

Let us start by proving the estimates from above (1.16). For this part of the proof we only
require ¢ € C1!. Notice that | X <;~5| is only a function of x, hence
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(7.2) ( Sup |X¢(P)|) = ( sup | X(z, 8)|) :
PeA(zo,R) (z,5)EA((z0,0),R)
It is convenient to rewrite A and B((z,,0), R) in the following (completely obvious) way
(7.3)  B((z,,0),R) = (B(mO,R) X V) B((z0,0), R),
A= (A(xO,R) X V> NA = (A(wo,R) X V) N B((z,,0), R).

At this point we recall from Theorem 6.6 that there exist C(£2, X) > 0 and Ry = Ro(X,Q) >0
such that

|B(($050)5R)|

(7.4) ( sup \Xi(I,SN) o(A) < C(,X) i ;

(z,5)€A((z0,0),R)
for any 0 < R < Ry. Set Ry = min{R;,Rz}. In view of (7.3), and (2.26) one has for
0 < R < Ry, and v € C§°(V),

(B0, ) 00| [ 0,0, 000060

<0l [ [ Xl dotw)
A(zo,R) JV

-¢ / XB((x0,0),R) (y, s)v(s)ds da(y)‘
(A(zo,R)XV)

(7.5) —C

/ v(s)ds da(y)‘
(A(zo,R)xV)NB((20,0),R)

from (7.3) < C(v, X)o(A).

The conclusion now follows from (7.2), (7.4) and (7.5). In fact, for R suitably small one has

( sup |X¢(P)|> A(zo, R))
PeA(zo,R)
= ( sup 5(43(96,3)\) a(A(zo, R))
(z S)EA (zm R
by (7.5) <C(v o(4) ( sup \)?qz(x, 3)|>
(z,5)EA((z0,0),R)

fV XB(aco, 0),R) (y’ 3) U(S)ds

1 1B((2,,0), R)|
R

(7.6) by (7.4) < C(v,X)

Jv XB(mo,O),R)(y,S) v(s)ds

[B(zo, R)| |B((20,0), R)|
|B(z,,0), R)| R
|B(z0, R)|
— 7

from Lemma 2.9 < C(v,X,9Q)

=C(v,X,Q)
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We now turn our attention to the lower Ahlfors regularity.
Let B = B(z,,0),R), and B = B(z,, R). Since B C B C U x V, then for every z € 9Q and
suitably small Ry = Ry(X, ) > 0, we can find v € C§°(V) such that

(7.7) v(s)xp(,s) = x3(2, ),

forany 0 < R< Rpand s€ V.
Recalling that X¢(z,s) = X¢(z), and in view of (7.3), and Lemma 2.9 we have

/ | X d(z, s)|do(s, 1) / | X d(z, s) v(s)xg(z,s)do(s,t)
— [ X359 vlxp(s.s)da(s, 1)
AXV
/ 1X¢|(z / o()x 5, 8)ds do(z)

B
t9) <o(x,9) [ 1X9l@)doa) 2]
A |B|
The proof now follows immediately from (7.8) and from Theorem 6.9 O

8. 1-Ahlfors regularity of the X-perimeter and the Dirichlet problem

In this section we bring up an interesting connection between 1-Ahlfors regularity of the X-
perimeter Px (€2;-) and the Dirichlet problem for the sub-Laplacian £ = )", X X, associated
with the system X. We recall that the latter consists in finding, for a given ¢ € C(99), a
L-harmonic function w in €2, ie., a solution to Lu = Y ;" X X;u = 0, such that u = ¢ on 9
continuously. For any bounded open set @ C M™ there exists a unique (generalized) solution
H (? to the Dirichlet problem, see [CG]. A point z, € 9 is called regular if for any ¢ € C(09Q)
one has

lim HY(x) = ().

T—To

We will prove the following result.

Theorem 8.1. Let Q be a bounded domain in a Carnot group G. If the perimeter measure

Px (92; ) is 1-Ahlfors regular, then every g, € Q is regqular for the Dirichlet problem.

The full proof of this result will be accomplished in several steps, and it is ultimately based
on an important generalization to sub-Laplacians of the classical criterion of Wiener. We begin
by introducing the relevant definitions. A couple (K,Q), K C Q C M"™, with K compact and

open, is called a condenser. For a given condenser (K, ), we let

F(K,Q) = {$€CX(Q)]$>1onK)}.
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The X-capacity of the condenser (K, €2) is defined as follows, see [CDG2],

K,Q) = inf X 2 dg.
capx (K,Q) e o) /Q | Xé(g)|” dg

When Q = G, then we simply write capx K, instead of capx (K, G). The following properties
of the capacity are simple consequences of its definition, and we list them without proof.

Proposition 8.2. Let K C Q1 C Qy, then

capx (K,$2) < capx (K,).
If, instead, one has K1 C Ko C €, then

capx (K1,9) < capx(Ka, Q).

According to the capacitary estimates in [D], [CDG2], when M" is a Carnot group G with
homogeneous dimension @, then there exists C = C(G) > 0 such that for every g, € G and
r>0

(8.1) capx (B(go,7), B(go,2r)) = C 1972,

The following basic criterion of Wiener type was proved in [NS], see also [D] for a generalization

to quasilinear equations.

Theorem 8.3. Given a bounded open set Q C M"™, a point x, € IQ is regular if and only if for

some small § > 0

— — = OQ.

/‘5 capx (2°NB(go,1), B(go,2t)) dt
0 capx (B(goa t)a B(goa 2t)) i

We will also need the following result.

Let %9~ 1(-) denote the (Q—1)—Hausdorff measure in G with respect to the Carnot-Carathéodory
metric. The next simple theorem is a particular instance of a potential theoretic result which

holds in any metric space with controlled geometry, See Theorem 5.9 in [HK].

Theorem 8.4. In a Carnot group G consider a compact subset F of a ball B = B(go, R). If
for some 0 < A <1 we have
[ B(go; R)|
R 7
then there exists C = C(Q) > 1 such that for every u € C3°(B(go, CR)) satisfying u > 1 on F,

one has

(8.2) HOY(F) > A

A |B(905R)‘
8.3 / Xu(g)|? dg > = /22
(8-3) B(goch)l (9l c R

Corollary 8.5. In a Carnot group G consider a bounded open set Q0 C G. If the Hausdorff
measure HY™! is lower 1—Ahlfors regular, then there ezists C = C(G) > 0, such that for any
go € 0 and any r >0

capx (B(go, R) N0, B(gy,2R)) > C RO2.
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Proof. Let F = B(g,, R) be the compact subset of B(g,,2R) in the statement of Theorem 8.4.
Since we are assuming the lower 1—Ahlfors regularity, then hypothesis (8.2) is automatically
satisfied. By virtue of Theorem 8.4 and of the definition of capacity we obtain that there exists
C1 > 1 and Cy > 0 such that

capx (B(go, R) N0, B(go,2C1R)) > Cy RO72.
The conclusion now follows from the latter inequality and from Proposition 8.2. O

We next establish, in the special setting of Carnot groups, a general property of the Hausdorff

measure in a space of homogeneous type.

Proposition 8.6. Let y be a Borel measure in a Carnot group G with homogeneous dimension
Q, and suppose that for a bounded open set @ C G the measure Px(2;-) is upper 1-Ahifors
reqular, i.e., for some M > 0 one has for every g € 02 and R > 0

(8.4) Px(2;B(g,R)) < M R97'.
There ezists a constant C = C(M) > 0 such that for every
(8.5) HITH (92N B(g,R)) > C Px(%B(g, R)) -
Proof. Consider the compact set
K = 09 NB(go,R) .

For each € > 0 we can find a covering {B(z;,7;) }ieny of K such that 0 < r; < e. Using the
hypothesis (8.4) we obtain

o0 o
Px(%B(g,R) < Y Px(%Blgim) < M Y e
i=1 =1

Since
- o0 . (o]
HOTH(2 N B(g, R)) = lim inf {2} r?1 80N B(g,R) C U1 B(gi,ri),7i < ¢},
1= 1=
we reach the conclusion.

O

Notice that there is nothing special about the role of the perimeter measure in the last
proposition. The same result still holds when Px (2, -) is substituted by any Borel measure on
0. We are now ready to give the

Proof of Theorem 8.1. Assume that Px((;-) is 1-Ahlfors regular, i.e., we have for some
constant M > 0

(8.6) M~ Re™! < Px(%B(g,R)) < M R®,
for every g € 02 and every R > 0. Using the upper bound in (8.6) in view of Proposition 8.6

we conclude that (8.5) holds. The lower bound in (8.6) yields the lower 1—Ahlfors regularity of
the Hausdorff measure H?~!. Thanks to Theorem 8.4 and Corollary 8.5, this estimate implies

capx (02N B(go, R), B(90,2R)) > C" R%2 .
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Due to (8.1) the latter estimate implies

(8-7) CapX (BQD E(QO’R),B(QO,QR)) > CIII > 0 .
capx (B(gOaR)’B(ganR)) -
We now apply the second part of Proposition 8.2 with Ko = QN B(g,, R), K1 = 0QNB(g,, R),

) = G, obtaining

capx (8Q N F(gm R), B(gm 2R)) < capx (Qc N F(gm R), B(gm 2R)) .

This estimate, combined with (8.7), and with Theorem 8.3, finally implies the regularity of
the point g € 0Q2. By the arbitrariness of g € 0€2 we reach the conclusion.
O

Interestingly, using Theorem 8.1 in combination with some examples due to Hansen and
Hueber [HH], it is possible to provide a proof of the optimal character of the type assumption
in Theorems 1.5 and 1.7, which is alternative to that in section 5. Let us start by recalling
Theorem 3.6, [HH].

Theorem 8.7. Let G be a Carnot group of step r € N, and denote by m; the dimension of
the first layer of the stratification V1. If r < 2, or if my = 2 and r < 4, then every bounded
domain Q@ C G is regular for the Dirichlet problem, provided it satisfies a pointwise exterior
ball condition (with respect to the underlying Euclidean metric). In all other cases there exist

bounded domains with smooth boundary which are not regular.

Let us describe more explicitly the smooth domains with irregular boundary points mentioned
in the theorem. If r > 3 and m; > 3, or m; = 2 and r > 4, then for every v > 0 we set y = {y; ;}
the be the point on the y, ,,, —axis at distance vy from the origin, i.e. y;, = 0if &k =1,...,7,
Jj # my, and Y, ;m, = . Consider the Euclidean ball

m;

Bg = {m = {zy;} € G such that Z Z(:Ck,j — k)’ < 72} CcG.
k=1j=1

In Theorem 3.4 and 3.5, in [HH], it is proved that B is thin at the origin, and consequently
the origin is an irregular boundary point for BY. This proves that there exist bounded smooth
domains with irregular points in Carnot groups of step r > 3 (for instance consider B(0,1007) \
Bg). Consequently, in view of Theorem 8.1, the perimeter measure of such domains cannot be

1—Ahlfors regular. Note that the origin is always of type r.

Corollary 8.8. If r > 3 and mq1 > 3, or my = 2 and r > 4, then there exist Carnot groups G of
step r € N, with dim Vi = mq, and bounded, smooth domains Q C G, whose perimeter measure
Px(9;) is not 1—Ahlfors regular.
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