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Abstract

We study the existence of positive solutions for a fourth order semilinear elliptic equation under Navier
boundary conditions with positive, increasing and convex source term. Both bounded and unbounded
solutions are considered. When compared with second order equations, several di®erences and di±culties
arise. In order to overcome these di±culties new ideas are needed. But still, in some cases we are able to
extend only partially the well-known results for second order equations. The theoretical and numerical study
of radial solutions in the ball also reveal some new phenomena, not available for second order equations.
These phenomena suggest a number of intriguing unsolved problems, which we quote in the ¯nal section.

AMS-MSC: 35J40, 35J60, 35G30

1 Introduction

In the last decades, positive solutions of the second order semilinear elliptic problem½ ¡¢u = ¹g(u) in −
u = 0 on @−

(1.1)

have attracted a lot of interest, see e.g. [5, 6, 7, 9, 11, 13, 14, 16, 17, 18] and references therein. Here, − is a

smooth bounded domain of Rn (n ¸ 2), ¹ ¸ 0 and g is a positive, increasing and convex smooth function. By
now, (1.1) is quite well understood. As a subsequent step, P.L. Lions [16, Section 4.2 (c)] suggests to study

positive solutions to systems of semilinear elliptic equations, namely½ ¡¢ui = ¹gi(u1; :::; um) in −
u1 = ::: = um = 0 on @−

(i = 1; :::;m) (1.2)

where m ¸ 2 and the functions gi are as just mentioned. In this paper we consider the case of two equations
(m = 2) with g1(u1; u2) = u2 and g2(u1; u2) = g(u1). Then, taking ¸ = ¹

2, system (1.2) reduces to the following

semilinear biharmonic elliptic problem under Navier boundary conditions:½
¢2u = ¸g(u) in −
u = ¢u = 0 on @− :

(1.3)

We will essentially focus our attention on the cases where g is logarithmically convex, namely

g 2 C1(R+) ; g(0) > 0 ; s7! log g(s) is nonconstant increasing and convex ; (1.4)

or g has a power-type behavior such as

g(s) = (1 + s)p; p > 1 : (1.5)
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Very little is known about (1.3) when g satis¯es (1.4) or (1.5). As far as we are aware, only a couple of papers

[3, 23] considering Dirichlet boundary conditions study this problem. But it is well-known that boundary

conditions signi¯cantly change the nature of the problem and of the tools available in the proofs. For instance,

under Navier boundary conditions one has maximum and comparison principles in any domain −. On the other

hand, when dealing with Dirichlet boundary conditions one seeks solutions in H2
0 (−) and this allows one to

extend solutions by 0 outside −; see, in particular, Problem 9.3 in Section 9.

The ¯rst purpose of the present paper is to extend to (1.3) some well-known results relative to (1.1). In Theorem

2.1 we assume that the source g satis¯es (1.4) and we prove a full extension of the results available for (1.1).

Although the results remain similar, the proof is completely di®erent due to some technical di±culties, see

Problem 9.1 in Section 9. We overcome this problem by generalizing a procedure developed in [3]. Then, we

turn to the power-like case (1.5). When p is subcritical, namely p · n+4
n¡4 , by applying critical point techniques

as in [2, 6, 9, 12] in Theorem 2.2 we completely extend the results relative to (1.1). But for supercritical p,

namely p > n+4
n¡4 , we only have partial results, see Theorem 2.3.

The second (and perhaps most important) purpose of the present paper is to emphasize some striking di®erences

between (1.1) and (1.3). These di®erences are not just the already mentioned technical di±culties in the proofs

but also some unexpected and new behaviors of the solutions which are particularly evident in the radial setting,

i.e. the case where − = B, the unit ball. Let us mention a couple of these di®erences.

When g(s) = es or g(s) = (1 + s)p one can easily ¯nd explicit singular radial solutions of (1.1), see [7, 19].

For the same nonlinearities g, one can also ¯nd explicit singular solutions of the equation in (1.3) which satisfy

the ¯rst boundary condition but not the second. Hence, apparently, these are \ghost" singular solutions which

have nothing to do with problem (1.3). But in [3] it was shown that the \true" singular solutions have the same

asymptotic blow up behavior as the ghost solutions. We have no explanation of this fact.

If g is critical, namely g(s) = (1+s)
n+2
n¡2 , problem (1.1) may be solved explicitly when − = B, see [11, 14]. Up to

rescaling and translations, the solutions are the restrictions to B of the positive entire solutions of the equation

¡¢u = u
n+2
n¡2 over Rn. For critical growth problems of fourth order, namely g(s) = (1 + s)

n+4
n¡4 , the same

result is not true. The reason is that Pohozaev identity does not ensure nonexistence of radial sign changing

solutions of ¢2u = juj 8
n¡4u over Rn, see Problem 9.4. With the aid of Mathematica we numerically show that

the previous equation has both radial positive solutions which (for ¯nite jxj) blow up towards +1 and solutions

which change sign and (for ¯nite jxj) blow up towards ¡1. Then, by a shooting method having the initial
second derivative as parameter, in Theorem 4.2 we partially prove these numerical evidences.

These are just some di®erences between (1.1) and (1.3), for further di®erences see Section 4. These surprising

results shed some light on semilinear fourth problems but still much work has to be done to reach a complete

understanding of (1.3) and (1.2). This leads us to suggest some (di±cult) unsolved problems in Section 9.

The paper is organized as follows. In next section we establish our main results for general domains −. In

Section 3 we prove some analogies between (1.1) and (1.3) for a wide classs of nonlinearities g. In Section 4 we

study the particular case where − is the unit ball and we emphasize some di®erences between (1.1) and (1.3).

Sections 5-8 are devoted to the proofs of the results. Finally, in Section 9 we quote some open problems.

2 Main results

Throughout the paper we assume that − is a bounded smooth domain of Rn (n ¸ 5) and ¸ ¸ 0.
For 1 · p · 1 we denote by j ¢ jp the Lp(−) norm whereas, we denote by k ¢ k the H2 \ H1

0 (−) norm, that

is kuk2 = R
−
j¢uj2. We ¯x some exponent q with q > n

4 and q ¸ 2. The de¯nitions and results below do not
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depend on the special choice of q. Consider the functional space

X(−) =
©
u 2W 4;q(−) j u = ¢u = 0 on @−ª :

Then, we say that a function u 2 L2(−); u ¸ 0 is a solution of (1.3) if g(u) 2 L1 (−) andZ
−

u¢2v = ¸

Z
−

g(u)v 8v 2 X(−):

A solution u of (1.3) is called regular (resp. singular) if u 2 L1(−) (resp. u =2 L1 (−)). We also say that a
solution u¸ of (1.3) is minimal if u¸ · u a.e. in − for any further solution u of (1.3). Next, we de¯ne

¤(g(u)) := f¸ ¸ 0 : (1:3) admits a solutiong ; ¸¤(g(u)) := sup¤(g(u)) : (2.1)

When it is clear which g we are dealing with we will simply write ¤ and ¸¤. Clearly, 0 2 ¤ so that ¤6= ; and
¸¤ is well-de¯ned. Finally, we call extremal a solution u¤ of (1.3) with ¸ = ¸¤.

Our ¯rst statement concerns the log-convex case (1.4). We set f(s) := log g(s), we assume that

f 2 C1(R+) ; s7! f(s) is nonconstant increasing and convex (2.2)

so that (1.3) reads ½
¢2u = ¸ef(u) in −
u = ¢u = 0 on @−:

(2.3)

Then, we prove

Theorem 2.1 Assume that f satis¯es (2:2). Then there exists ¸¤ > 0 such that:
(i) for 0 < ¸ < ¸¤ problem (2:3) admits a minimal regular solution;

(ii) for ¸ = ¸¤ problem (2:3) admits at least a solution, not necessarily regular;

(iii) for ¸ > ¸¤ problem (2:3) admits no solution.

Next, we consider the power-type case:

8<: ¢2u = ¸(1 + u)p in −
u > 0 in −
u = ¢u = 0 on @−:

(2.4)

Our ¯rst result about (2.4) deals with the subcritical case. In such situation, critical point theory applies.

We assume that the minimax variational characterization of mountain pass solutions given by Ambrosetti-

Rabinowitz [2] is known to the reader. Then, we prove

Theorem 2.2 Assume that 1 < p · n+4
n¡4 . Then, any solution of problem (2:4) is regular and there exists ¸

¤ > 0
such that:

(i) for 0 < ¸ < ¸¤ problem (2:4) admits at least two solutions: the minimal solution and a mountain pass

solution;

(ii) for ¸ = ¸¤ problem (2:4) admits a unique solution;

(iii) for ¸ > ¸¤ problem (2:4) admits no solution.

The supercritical case p > n+4
n¡4 is more delicate and we only have partial results. Note that Theorem 2.1 de¯nes

¸¤(epu) > 0 for all p > 1. This number is in some sense \optimal" for the following statement:
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Theorem 2.3 Assume that p > n+4
n¡4 . Then there exists ¸

¤ ¸ ¸¤(epu) such that:
(i) for 0 < ¸ < ¸¤ problem (2:4) admits a minimal solution which is regular whenever 0 < ¸ < ¸¤(epu);
(ii) for ¸ > ¸¤ problem (2:4) admits no solutions.

The upper bound ¸¤(epu) for the regularity of minimal solutions is obtained by comparison arguments. The
\optimal" choice of the function epu is a consequence of the fact that the function u 7! pu is the smallest

function f satisfying (2.2) and ef(u) ¸ (1 + u)p.

3 Some analogies between (1.1) and (1.3)

Throughout this section we deal with general nonlinearities g satisfying

g 2 C1(R+) is a nonconstant strictly positive, increasing and convex function. (3.1)

We collect here some results which will be useful in the sequel. We just give some hints of the proofs since they

are essentially similar to previous works. We ¯rst establish some technical lemmas:

Lemma 3.1 For all w 2 L1(−) such that w ¸ 0 a.e. in − there exists a unique u 2 L1(−) such that u ¸ 0 a.e.
in − and which satis¯es Z

−

u¢2v =

Z
−

wv

for all v 2 C4(−) \X(−). Moreover, there exists C > 0 (independent of w) such that juj1 · C jwj1 :

Proof. It is similar to that of [5, Lemma 1] which makes use of a weak form of the maximum principle. This

principle is proved in [3, Lemma 1] for polyharmonic equations in the ball under Dirichlet boundary conditions

for which one can use Boggio's principle. Under Navier boundary conditions, Boggio's principle is replaced by

the (strong) maximum principle for superharmonic functions and general domains − may be chosen.

A weak form of the maximum principle reads as follows:

Lemma 3.2 Assume that u 2 L1 (−) satis¯es Z
−

u¢2v ¸ 0

for all v 2 C4 ¡−¢ \X(−) such that v ¸ 0 in −. Then, u ¸ 0 a.e. in −:
Proof. This may be obtained using Lemma 3.1 and arguing as in [3, 5].

From Lemma 3.2 and arguing as for [3, Lemma 4], we obtain a weak form of the super-subsolution method:

Lemma 3.3 Assume (3:1). Let ¸ > 0, assume that there exists u 2 L2 (−), u ¸ 0 such that g(u) 2 L1 (−) andZ
−

u¢2v ¸ ¸
Z
−

g(u)v 8v 2 X(−) : v ¸ 0 a.e. in −:

Then, there exists a solution u of (1:3) which satis¯es 0 · u · u a.e. in −.

By Lemma 3.3 we infer at once that the set ¤ de¯ned in (2.1) is an interval. We now show that it is bounded:
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Lemma 3.4 Assume (3:1). Then, ®g := maxf® > 0 : g(s) ¸ ®s 8s ¸ 0g > 0 and

0 < ¸¤(g(u)) <
¸1
®g

; (3.2)

where ¸1 denotes the ¯rst eigenvalue of ¢
2 in − under Navier boundary conditions.

Proof. A standard application of the Implicit Function Theorem implies ¸¤ > 0.
Let ©1 denote a positive eigenfunction corresponding to ¸1. Assume that u 2 L2(−) solves (1.3), then we have

¸1

Z
−

u©1 =

Z
−

u¢2©1 = ¸

Z
−

g(u)©1 > ¸®g

Z
−

u©1

where the last inequality is strict since g(u) > ®gu for small u (recall that g(0) > 0). The upper bound for ¸
¤

now follows at once.

We now show that minimal regular solutions of (1:3) are stable:

Proposition 3.5 Assume (3:1). Let ¸ 2 (0; ¸¤) and suppose that the minimal solution u¸ of (1:3) is regular.
Let ¹1 denote the least eigenvalue of the linearized operator ¢

2 ¡ ¸g0(u¸) in u¸; then ¹1 > 0.

Proof. Recall the variational characterization of ¹1:

¹1 = ¹1(¸) = inf
w2H2\H1

0 (−)

R
−
j¢wj2 ¡ ¸ R

−
g0(u¸)w2R

−
w2

:

Clearly, the map ¸ : (0; ¸¤)7! ¹1(¸) is non increasing and, by Proposition 2 in [3], it is continuous from the left.

For contradiction, suppose there exists ¸ 2 (0; ¸¤) such that ¹1(¸) · 0 and de¯ne ¸0 := sup f¸ ¸ 0 : ¹1(¸) > 0g.
By the continuity from the left we have ¹1(¸0) ¸ 0: If ¹1(¸0) > 0; by the second part of Proposition 2 in [3],
we get ¹1(¸) > 0 for some ¸ > ¸0; which contradicts the de¯nition of ¸0. So it must be ¹1(¸0) = 0: Fix some

° 2 (¸0; ¸¤); then, u° is a strict supersolution of (1.3) with ¸ = ¸0; but Proposition 3 in [3] yields u¸0 = u°
giving again a contradiction.

Next, we show that the interval ¤ is closed, provided the minimal solution u¸ is regular for all ¸ and the

nonlinearity g satis¯es a growth condition which is veri¯ed by (1.4) and (1.5). Since by Lemma 3.3 the map

¸7! u¸(x) is strictly increasing for all x 2 −, it makes sense to de¯ne

u¤(x) := lim
¸!¸¤

u¸(x) (x 2 −) : (3.3)

The following statement tells us that u¤ is the extremal solution:

Proposition 3.6 Assume (3:1) and

lim
s!+1

g0(s)s
g(s)

> 1 : (3.4)

Assume that the minimal solution u¸ of (1:3) is regular for all ¸ 2 (0; ¸¤) and let u¤ be as in (3:3). Then,
u¤ 2 H2 \H1

0 (−) and u
¤ solves (1:3) for ¸ = ¸¤. Moreover, u¸ ! u¤ in H2 \H1

0 (−) as ¸! ¸¤:

Proof. Let u¸ be the minimal solution of (1:3), then:Z
−

u¸¢
2v = ¸

Z
−

g(u¸)v 8v 2 X (−) ; (3.5)
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and, by Proposition 3.5,

¸

Z
−

g0(u¸)u2¸ ·
Z
−

(¢u¸)
2 = ¸

Z
−

g(u¸)u¸: (3.6)

From (3.4), it follows that for every " > 0 there exists C > 0 such that (1 + ")g(s)s · g0(s)s2 +C for all s ¸ 0.
Arguing as in [7], and applying this last inequality and (3.6), we get:Z

−

(g0 (u¸)u2¸ + C) ¸ (1 + ")
Z
−

g(u¸)u¸ ¸ (1 + ")
Z
−

g0(u¸)u2¸;

which gives the existence of a constant C1 > 0 such that:Z
−

g(u¸)u¸ < C1

and therefore

ku¸k2 =
Z
−

(¢u¸)
2 < ¸¤C1: (3.7)

If we let ¸! ¸¤; by (3.7) and (3.3) we deduce that, up to a subsequence,

u¸ * u¤ in H2 \H1
0 (−) as ¸! ¸¤: (3.8)

Furthermore, (3.8) allows us to pass to the limit in (3.5) and to get that u¤ solves (1:3) for ¸ = ¸¤. Finally, by
Lebesgue's Theorem, we have that:

ku¸k2 = ¸
Z
−

g(u¸)u¸ ! ¸¤
Z
−

g(u¤)u¤ = ku¤k2 as ¸! ¸¤:

This, together with (3.8), shows that u¸ ! u¤ in H2 \H1
0 (−) as ¸! ¸¤.

If in addition fu¸g is uniformly bounded then we can improve Proposition 3.6 with the following:

Proposition 3.7 Assume (3:1). Let u¸ denote the minimal solution of (1:3) and assume there exists M > 0

such that ju¸j1 < M; for all ¸ 2 (0; ¸¤). Then u¸ ! u¤ in C4;®
¡
−
¢
for all ® 2 (0; 1). Moreover, ¸¤ is

a turning point, that is, there exists ± > 0 such that the solutions (¸; u) of (1:3), near (¸¤; u¤); form a

di®erentiable curve s 2 (¡±;+±)7! (¸(s); u(s)) 2 R+£C4;®
¡
−
¢\X(−), which satis¯es: u(0) = u¤, ¸(0) = ¸¤,

¸0(0) = 0 and ¸00(0) < 0:

Proof. We argue as in [9]. Since fu¸g is bounded in L1(−); by elliptic regularity, we deduce the boundedness
of fu¸g also in W 4;p(−); for every p > 1: Then, by Sobolev embedding, we get that, for every 0 < ® < 1; fu¸g
is bounded in C3;®(−) and so, again by elliptic regularity, fu¸g is also bounded in C4;®(−): Finally, from the

compact embedding C4;®1(−) ½ C4;®2(−) (for every ®1 > ®2) we get the claimed convergence.
Let us now de¯ne the operator F : (0; ¸¤]£ C4;® ¡−¢ \X(−)! C0;®

¡
−
¢
by:

F (¸; u) := ¢2u¡ ¸g(u):

It is not di±cult to verify that F (¸; u) satis¯es the hypotheses of Theorem 3.2 in [8], from which follows the

existence of a curve of solutions, (¸(s); u(s)); such that u(0) = u¤and ¸(0) = ¸¤.
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To show that ¸0(0) = 0 and ¸00(0) < 0, it is su±cient to di®erentiate s7! F (¸(s); u(s)) twice with respect to s

and evaluate these derivatives at s = 0:

A further step towards a better knowledge of the set of solutions of problem (1:3) is made by showing that this

set is unbounded in C4;®
¡
−
¢
. Assume (3.1) and for every u 2 C0;® ¡−¢ let v := G(¸; u) 2 C0;® ¡−¢ be the

unique solution of the problem: ½
¢2v = ¸g(u) in −
v = ¢v = 0 on @− :

The solutions of (1:3) are ¯xed points of G: Furthermore, by elliptic regularity, we have that v 2 C4;® ¡−¢ and
hence, from the compactness of the embedding C4;®(−) ½ C0;®(−), we get that G is a compact operator from

C0;®
¡
−
¢
into C0;®

¡
−
¢
. So, if we call C0 the component of the set

S :=
n
(ȩ; u) 2 (0; ¸¤]£ C4;® ¡−¢ : u solves (1:3) with ¸ = ȩo

to which (0,0) belongs, we are in the framework of Theorem 6.2 in [22], from which it follows that:

Proposition 3.8 Assume (3:1). Then C0 is unbounded in (0; ¸
¤]£ C4;® ¡−¢ :

4 Some di®erences between (1.1) and (1.3): radial problems

In this section we assume that − = B (the unit ball). In this case, writing (1.3) in its original form of system

(1.2), by [25, Theorem 1] we know that any regular solution of (1.3) is radially symmetric and radially decreasing.

We discuss separately the exponential case (2.3) (when f(u) ´ u) and the power case (2.4). For the latter, the
critical case p = n+4

n¡4 deserves particular attention. In radial coordinates r = jxj, (1.3) becomes

uiv(r) +
2 (n¡ 1)

r
u000(r) +

(n¡ 1) (n¡ 3)
r2

u00(r)¡ (n¡ 1) (n¡ 3)
r3

u0(r) = ¸g(u(r)) r 2 [0; 1) (4.1)

supported with Navier boundary conditions

u(1) = u00(1) + (n¡ 1)u0(1) = 0 : (4.2)

Moreover, regular solutions u are smooth and therefore r7! u(r) must be an even function of r, namely

u0(0) = u000(0) = 0 : (4.3)

The main purpose of the present section is to highlight several striking di®erences between (1.3) and the

corresponding second order problem (1.1).

Another purpose of this section is to estimate ¸¤. In order to give an upper bound for ¸¤ we use Lemma 3.4.
The estimate (3.2) gives

¸¤(eu) <
¸1
e
; ¸¤((1 + u)p) <

(p¡ 1)p¡1
pp

¸1 : (4.4)

It is well-known that ¸1 = Z
4, where Z is the ¯rst zero of the Bessel function Jn¡2

2
. According to [1] we have

n 5 6 7 8
¸1 407.6653 695.6191 1103.3996 1657.0143
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In order to give a lower bound for ¸¤, we seek a supersolution for (1.3). For any C > 0 the function

UC(r) = C

µ
2n

n+ 3
r3 ¡ 3n+ 1

n+ 3
r2 + 1

¶
(4.5)

belongs to H2 \H1
0 (−) and satis¯es the boundary conditions (4.2). We investigate for which C and ¸ we have

¢2UC ¸ ¸g(UC). The largest such ¸ gives a lower bound for ¸¤. The choice of UC in (4.5) as a supersolution
is probably not optimal. Nevertheless, with Mathematica we could at least optimize the choice of the constant

C and ¯nd the results listed in the tables in the following subsections.

The last purpose of this section is to determine the ghost solutions as mentioned in the introduction. More

precisely, we determine solutions of (4.1) satisfying the ¯rst boundary condition in (4.2) but not the second.

Of particular interest is the value of ¸g corresponding to the ghost solution. We will see that ¸g may be either

larger or smaller than ¸¤; apparently, the former case occurs for subcritical nonlinearities whereas the latter
occurs for supercritical nonlinearities. However, this is not a rule, see the case of critical nonlinearities.

4.1 Exponential nonlinearity

When f(u) = u, (2.3) written in radial coordinates becomes

uiv(r) +
2(n¡ 1)

r
u000(r) +

(n¡ 1)(n¡ 3)
r2

u00(r)¡ (n¡ 1) (n¡ 3)
r3

u0(r) = ¸eu(r) r 2 [0; 1) (4.6)

together with the boundary conditions (4.2). As may be checked by a simple calculation, for ¸ = ¸e :=

8(n¡ 2)(n¡ 4) the function U(r) := ¡4 log r is a ghost solution, namely it solves (4.6) and the ¯rst boundary
condition in (4.2) but not the second boundary condition. Contrary to what happens for the second order

equation, the explicit form of a radial singular solution seems not simple to be determined, see also [3].

In dimensions n = 5; 6; 7; 8, the table below shows ¯rst for which values of C the function UC de¯ned in (4.5) is

a supersolution of (4.6) and the corresponding lower bound for ¸¤. We also give the upper bound obtained with
(4.4). In the ¯fth column, we quote from [3] a lower bound for the extremal value ¸¤(D) of the corresponding
Dirichlet problem; as for the eigenvalues, it is considerably larger than ¸¤. Finally, in the last column, we quote
¸e, namely the value of ¸ corresponding to the ghost solution: it is considerably smaller than ¸

¤.

n C ¸¤ ¸ ¸¤ < ¸¤(D) ¸ ¸e
5 1.093 98.37 149.9716 235.89 24
6 1.132 158.48 255.9039 361.34 64
7 1.162 234.26 405.9180 523.16 120
8 1.185 325.76 609.5814 724.50 192

4.2 Power-type nonlinearity

In radial coordinates (2.4) reads

uiv(r) +
2(n¡ 1)

r
u000(r) +

(n¡ 1)(n¡ 3)
r2

u00(r)¡ (n¡ 1) (n¡ 3)
r3

u0(r) = ¸(1 + u(r))p r 2 [0; 1) (4.7)

together with the boundary conditions (4.2).

Let us ¯rst recall some results for the second order problem corresponding to (4.7), namely

¡u00(r)¡ n¡ 1
r

u0(r) = ¹(1 + u(r))p ; r 2 [0; 1) : (4.8)
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It is well-known [7] that the function vp(r) = r¡2=(p¡1) ¡ 1 solves (4.8) (and satis¯es the Dirichlet boundary
condition u(1) = 0) if

¹ = ¹p :=
2(np¡ n¡ 2p)
(p¡ 1)2 :

Note that ¹p > 0 if and only if p >
n
n¡2 ; note also that

n
n¡2 is the critical (largest) trace exponent q for which

one has H1(−) ½ Lq+1(@−). Moreover, up 2 H1
0 (B) if and only if p >

n+2
n¡2 , the critical Sobolev exponent.

For the fourth order problem, we consider the function

up(r) = r
¡4=(p¡1) ¡ 1;

which solves (4.7) if

¸ = ¸p :=
8(p+ 1)(2 + 2p¡ np+ n)(4p¡ np+ n)

(p¡ 1)4 :

Note that

¸p > 0 () p 2
µ
1;
n+ 2

n¡ 2
¶
[
µ

n

n¡ 4 ;1
¶

and that up 2 H2 \ H1
0 (B) if and only if p >

n+4
n¡4 . The number (n + 2)=(n ¡ 2) is the critical exponent

for the ¯rst order Sobolev inequality while n=(n ¡ 4) is again the critical trace exponent q for the embedding
H2(−) ½ Lq+1(@−). For ¸ = ¸p, the function up is a singular solution of equation (4.7) but up does not satisfy
the second condition in (4.2); hence, it is not a solution of problem (1.3). The functions up are the ghost

solutions. These facts suggest several problems which we quote in Section 9.

Also for (4.7) we used the function UC in (4.5). In dimensions n = 5; 6; 7; 8, the tables below show both for

which values of C the function UC is a supersolution of (4.7) and the corresponding lower bound for ¸
¤. We also

give the upper bound obtained with (4.4). The tables correspond, respectively, to the cases p = 3=2 (subcritical)

and p = 10 (supercritical); in the ¯rst case we have ¸¤ < ¸p, whereas in the second we have ¸¤ > ¸p.

(p=3/2)

n C ¸¤ ¸ ¸¤ < ¸p
5 0.801 72.09 156.91 2800
6 0.844 118.16 267.74 1920
7 0.878 177 424.69 1200
8 0.905 248.79 637.78 640

n C ¸¤ ¸ ¸¤ < ¸p
5 0.111 9.99 15.79 1.542
6 0.115 16.1 26.94 6.001
7 0.118 23.79 42.74 12.648
8 1.121 33.26 64.19 21.46

(p=10)

4.3 The critical case

Of special interest is problem (2.4) in the critical case p = n+4
n¡4 . By Theorem 2.2 and [25, Theorem 1] we know

that this problem admits at least two regular and radially symmetric solutions. Take any such solution u; then

the function v = ¸
n¡4
8 (1 + u) solves the problem8>><>>:

¢2v = v
n+4
n¡4 in B

v > ¸(n¡4)=8 in B
v = ¸(n¡4)=8 on @B
¢v = 0 on @B :

(4.9)

Equivalently, v = v(r) satis¯es

viv(r) +
2 (n¡ 1)

r
v000(r) +

(n¡ 1) (n¡ 3)
r2

v00(r)¡ (n¡ 1) (n¡ 3)
r3

v0(r)¡ v(r) n+4n¡4 = 0 (4.10)

9



with the boundary conditions

v(1) = ¸(n¡4)=8 ; ¢v(1) = v00(1) + (n¡ 1)v0(1) = 0 ; (4.11)

and the regularity conditions v0(0) = v000(0) = 0.
Consider now the critical problem over the whole space

¢2v = v
n+4
n¡4 in Rn : (4.12)

By [15, Theorem 1.3], we know that (up to translations) any smooth positive solution of (4.12) has the form

vd (x) =

¡
n
¡
n2 ¡ 4¢ (n¡ 4) d2¢n¡48³
1 + d jxj2

´n¡4
2

(d > 0) : (4.13)

The main goal of this section is to describe the (smooth) continuation of solutions of (4.9) outside B. We obtain

a new phenomenon, not available for the corresponding second order problem:

Proposition 4.1 Let v be a (radial) solution of (4:9); then it does not admit a positive radial extension to Rn.

Proof. By contradiction suppose there exists v; positive radial extension of v to Rn. Then, by [24, Theorem

4] we have that v coincides with one of the functions vd in (4.13), for some d > 0. But this is impossible since

for all d, the function vd does not satisfy the second condition in (4.11).

For the critical growth second order problem it is known (see e.g. [11, Theorem 7]) that the solutions of the

equation in fact coincide in B with some of the functions vd of the corresponding family (4.13) and it is so clear

in which way they are continued. Proposition 4.1 tells us that fourth order problems behave di®erently: it is

therefore natural to inquire in which way the solutions of (4.9) may be continued for jxj > 1.
To this end, we performed several numerical experiments with Mathematica. The next ¯gures display the

graphics of three solutions of

viv(r) +
14

r
v000(r) +

35

r2
v00(r)¡ 35

r3
v0(r)¡ v(r)3 = 0 : (4.14)

All three solutions satisfy the initial conditions

v(0) = 4

r
6

5
¼ 4:38178 v0(0) = v000(0) = 0: (4.15)

The distinction between the three solutions is made by the choice of the second derivative at r = 0: we take

respectively

v00(0) = ¡8
5

r
6

5
¼ ¡1:75271 ; v00(0) = ¡8

5

r
6

5
¡ 10¡3 ; v00(0) = ¡8

5

r
6

5
+ 10¡3 : (4.16)

Therefore, the ¯rst ¯gure represents the function (4.13) for n = 8 and d = 0:1.

We performed further numerical experiments for other choices of n and d but the results were completely similar.

Obviously, if one takes the \equilibrium" initial second derivative (the one of (4.13)), then the solution is precisely

vd. If one slightly increases this value, the corresponding solution has ¯rst a global minimum at positive level

and then blows up towards +1. If one slightly decreases the equilibrium value, the corresponding solution

vanishes, becomes negative and then blows up towards ¡1. These numerical results are partially con¯rmed by
a rigorous proof. To be more precise, up to rescaling we may restrict our attention to the following problem8><>:

uiv(r) +
2(n¡ 1)

r
u000(r) +

(n¡ 1)(n¡ 3)
r2

u00(r)¡ (n¡ 1)(n¡ 3)
r3

u0(r) = u
n+4
n¡4 (r) r 2 [0;1)

u(0) = 1 ; u0(0) = u000(0) = 0 ; u00(0) = ° < 0 :

(4.17)
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Figure 1: The plot of the solution of (4.14)-(4.15)-(4.16)1
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Figure 2: The plots of the solutions of (4.14)-(4.15) with (4.16)2 and (4.16)3

Here ° is the only free parameter while u0(0) = u000(0) = 0 are the already mentioned regularity conditions.

Existence and uniqueness of a local solution u° of (4.17) is quite standard. For a suitable choice of ° < 0, say

° = °, the unique solution u := u° of (4.17) is in the family (4.13), namely

u(r) =

£
n(n2 ¡ 4)(n¡ 4)¤n¡44

(
p
n(n2 ¡ 4)(n¡ 4) + r2)n¡42

:

Then, we prove

Theorem 4.2 For any ° < 0 let u° be the unique (local) solution of (4:17). Then:

(i) if ° < ° there exists R > 0 such that u°(R) = 0, u°(r) < u(r) and u
0
°(r) < 0 for r 2 (0; R];

(ii) if ° > ° there exist 0 < R1 < R2 < 1 such that u°(r) > u(r) for r 2 (0; R2), u0°(r) < 0 for r 2 (0; R1),
u0°(R1) = 0, u0°(r) > 0 for r 2 (R1; R2) and lim

r!R2

u°(r) = +1.

Remark 4.3 The functions u = u(r) displayed in the last plot of Figure 2 solve the following Dirichlet problem8<: ¢2u = u
n+4
n¡4 in BR

u = ° on @BR
@u
@º = 0 on @BR

for some °;R > 0. Then, the function w(x) = u(Rx)
° ¡ 1 satis¯es(

¢2w = ¸(1 + w)
n+4
n¡4 in B

w = @w
@º = 0 on @B

for ¸ = R4°
8

n¡4 , namely the Dirichlet problem for the equation in (2.4) in the unit ball.
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We conclude this section with the table containing the value of ¸(n+4)=(n¡4) and the estimates of ¸¤ obtained
with UC in (4.5):

n (n+ 4)=(n¡ 4) ¸(n+4)=(n¡4) C ¸¤ ¸ ¸¤ <
5 9 25/16 0.123 11.07 17.65
6 5 9 0.235 32.9 56.98
7 11/3 441/16 0.335 67.54 128.72
8 3 64 0.425 116.84 245.48

5 Proof of Theorem 2.1

Note ¯rst that, up to rescaling ¸, we may assume that

f(0) = 0 :

Then, we start with a \calculus" statement:

Lemma 5.1 Assume that ' 2 C1 [0;+1) is a nonnegative, non-decreasing and convex function such that
'(0) = 0: Then for any x ¸ 0 and any ¯ > 1 we have '(¯x) ¸ ¯'(x):

Proof. If '(x) = 0 (in particular if x = 0) the statement is trivial. For x > 0 such that '(x) > 0, Lagrange's

Theorem states that there exists »x 2 (x; ¯x) such that

' (¯x)¡ ' (x) = (¯ ¡ 1)x'0 (»x) ; (5.1)

and there exists ®x 2 (0; x) such that

' (x) = ' (x)¡ ' (0) = '0 (®x)x: (5.2)

Divide (5.1) by ' (x) so that, by (5.2) and using the convexity of ', we obtain:

' (¯x)

'(x)
= 1 +

'0 (»x) (¯ ¡ 1)x
'(x)

= 1 +
(¯ ¡ 1)x'0 (»x)

x'0 (®x)
¸ 1 + (¯ ¡ 1) = ¯

which is the statement.

We now establish an improved version of [3, Lemma 5]:

Lemma 5.2 Assume that for some ¹ > 0 there exists a (possibly singular) solution u0 of (2:3) with ¸ = ¹

Then, for all 0 < ¸ < ¹ there exists a regular solution of (2:3).

Proof. Let 0 < ¸ < ¹ , and consider the (unique) functions u1; u2 2 L2(−) satisfying respectivelyZ
−

u1¢
2v = ¸

Z
−

ef(u0)v and

Z
−

u2¢
2v = ¸

Z
−

ef(u1)v 8v 2 X(−) ;

such functions exist by Lemma 3.1 and belong to L2(−) since Lemma 3.2 entails

u0 ¸ ¸

¹
u0 = u1 ¸ u2 a.e. in −:

We now need the following elementary statement:

8# > 1 8® > 1 9° > 0 s.t. e#f(s) + ° ¡ ®ef(s) ¸ 0 8s ¸ 0: (5.3)
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Fix # := ¹
¸ > 1 and take ® > maxfn4 ; 2g; then, (5.3) ensures that there exists k > 0 such that

e
¹
¸ f(s) +

k

¸
¸ ®ef(s) 8s ¸ 0: (5.4)

Let w 2 X(−) be the unique solution of the equation ¢2w = k in −; then w 2 L1(−) and w > 0 in −.

Moreover, using Lemma 5.1 and (5.4) we getZ
−

(u1 + w)¢
2v = ¸

Z
−

µ
ef(u0) +

k

¸

¶
v = ¸

Z
−

µ
ef(

¹
¸u1) +

k

¸

¶
v ¸

¸ ¸
Z
−

µ
e
¹
¸ f(u1) +

k

¸

¶
v ¸ ¸®

Z
−

ef(u1)v = ®

Z
−

u2¢
2v

for all v 2 X(−) such that v ¸ 0 in −. Hence, by Lemma 3.2, we infer that u2 · u1+w
® . Since ® > 2 and w > 0,

this inequality, together with the monotonicity and convexity of f , implies that

f(u2) · f
³u1
®
+
w

®

´
· f

µ
1

®
u1 +

µ
1¡ 1

®

¶
w

¶
· 1

®
f(u1) +

µ
1¡ 1

®

¶
f(w):

In particular,

ef(u2) · e 1® f(u1)e(1¡ 1
®)f(w) ;

since e
1
® f(u1) 2 L®(−) and e(1¡ 1

®)f(w) 2 L1(−) we get at once that

ef(u2) 2 L® (−) :

Finally, consider u3 2 L2 (−) such thatZ
−

u3¢
2v = ¸

Z
−

ef(u2)v 8v 2 X(−) :

By elliptic regularity and the fact that ® > n
4 ; we deduce

u3 2W 4;® (−) ½ L1 (−) :

Moreover, Z
−

(u2 ¡ u3)¢2v = ¸
Z
−

³
ef(u1) ¡ ef(u2)

´
v ¸ 0 8v 2 X(−) : v ¸ 0 in −

so that by Lemma 3.2 we infer that u3 · u2. Hence,Z
−

u3¢
2v ¸ ¸

Z
−

ef(u3)v 8v 2 X(−) : v ¸ 0 in −:

Then u3 is a weak bounded supersolution of (2.3) and the statement follows by Lemma 3.3.

Theorem 2.1 is now a straightforward consequence of (3.2) and of Lemma 5.2 and Proposition 3.6.
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6 Proof of Theorem 2.2

The proof of Theorem 2.2 is obtained by combining some well-known results in [2, 6, 9, 12, 27]. Firstly, by

applying the regularity results in [27], we prove

Proposition 6.1 Assume that 1 < p · n+4
n¡4 and let u 2 H2 \H1

0 (−) be a solution of (2:4). Then u is regular.

Proof. If we show that u 2 Lq(−) for every q <1, the statement will follow by elliptic regularity.
We ¯rst claim that for every " > 0 there exist q" 2 Ln

4 (−) and F" 2 L1 (−) such that:

(1 + u(x))p = q"(x)u(x) + F"(x) and kq"kn4 < " : (6.1)

Fix M ¸ 1 and write

(1 + u)p = Âfu·Mg(1 + u)p + Âfu>Mg(1 + u)p = '(x) + Âfu>Mg
(1 + u)p

u
u (6.2)

where Âf:g is the characteristic function and '(x) = Âfu·Mg(1+u)p 2 L1 (−). It is clear that (1+u)p · (2u)p
whenever u > M . Moreover, using the embedding H2(−) ½ L 2n

n¡4 (−) and the fact that p · n+4
n¡4 ; we have that

up¡1 2 Ln
4 (−), hence:

0 · a(x) := Âfu>Mg
(1 + u)p

u
· 2pup¡1 2 Ln

4 (−) :

Therefore, we may write (1 + u)p = '(x) + a(x)u with ' 2 L1(−) and a 2 Ln
4 (−). Applying Lemma B2 in

[27], for every " > 0 we obtain

a(x)u(x) = q"(x)u(x) + f"(x) (6.3)

where q" and f" satisfy kq"kn
4
< " and f" 2 L1(−). De¯ning F"(x) = f"(x) + '(x); from (6.2) and (6.3) we

obtain (6.1).

By (6.1), for every " > 0; the equation in (2.4) can be rewritten as

¢2u = ¸
³
q"(x)u(x) + F"(x)

´
in −

so that the result follows by Steps 2 and 3 in [27].

Consider the functional

J(u) =

Z
−

j¢uj2 ¡ ¸

p+ 1

Z
−

j1 + ujp+1:

When 1 < p < n+4
n¡4 , Proposition 3.5 enables us to argue as in the proof of Theorem 2.1 in [9] with minor

changes; therefore, the existence of a (positive) mountain pass critical point for J follows.

When p = n+4
n¡4 , the embedding H

2 \H1
0 (−) ½ Lp+1 (−) is not compact and the Palais-Smale condition for J

does not hold at all levels. In order to ¯nd a mountain pass solution, we combine arguments from [6] and [12].

As in [6], we seek a second solution u of the form u = u¸ + v with v > 0 in − so that v solves the problem8<: ¢2v = ¸(1 + u¸ + v)
n+4
n¡4 ¡ ¸(1 + u¸)

n+4
n¡4 in −

v > 0 in −
v = ¢v = 0 on @−:
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Setting h(x; v) = ¸(1 + u¸ + v)
n+4
n¡4 ¡ ¸(1 + u¸)

n+4
n¡4 ¡ ¸v n+4n¡4 , the previous problem reads8<: ¢2v = ¸v
n+4
n¡4 + h(x; v) in −

v > 0 in −
v = ¢v = 0 on @−

Finally, let w = ¸
n¡4
8 v and f(x;w) = ¸

n¡4
8 h(x; ¸

4¡n
8 w), then w satis¯es8<: ¢2w = w

n+4
n¡4 + f(x;w) in −

w > 0 in −
w = ¢w = 0 on @−

(6.4)

The function f satis¯es the hypotheses of Corollary 1 in [12]; therefore, we infer the existence of a positive

solution of (6.4) or, equivalently, of a positive mountain pass solution for (2.4).

In order to conclude the proof of Theorem 2.2, we need to show that the extremal solution u¤, which exists
by Proposition 3.6, is unique. To this end, recall that u¤ is a classical solution in view of Proposition 6.1.

Therefore, it su±ces to argue as for Lemma 2.6 in [7].

7 Proof of Theorem 2.3

As eps ¸ (1 + s)p for all s ¸ 0, arguing as in Theorem 8 in [11], we get that:

0 < ¸¤(epu) · ¸¤((1 + u)p): (7.1)

By Lemma 5.2, for every ¸ < ¸¤(epu) there exists a minimal regular solution u¸ of (2.3) with f(u) = pu. Such
u¸ is also a bounded supersolution of (2.4), indeedZ

−

u¸¢
2v = ¸

Z
−

epu¸v ¸ ¸
Z
−

(1 + u¸)
pv 8v 2 X(−) : v ¸ 0 in −:

Then, by Lemma 3.3, for all ¸ < ¸¤(epu) there exists a solution up of (2.4) such that up · u¸.

8 Proof of Theorem 4.2

(i) Since u°(0) = u(0), u
0
°(0) = u

0(0) and u00°(0) < u
00(0), we have u°(r) < u(r) at least in a su±ciently small

right neighborhood of r = 0. For contradiction, assume that there exists (a ¯rst) ½ > 0 such that

u°(½) = u(½) ; u°(r) < u(r) < 1 8r 2 (0; ½) : (8.1)

Note that (4.17) may be rewritten as©
rn¡1 [¢u°(r)]

0ª0 = rn¡1un+4
n¡4
° (r) ;

©
rn¡1 [¢u(r)]0

ª0
= rn¡1u

n+4
n¡4 (r) 8r 2 [0; ½] : (8.2)

By subtracting the two equations in (8.2) we readily obtain©
rn¡1 [¢u°(r)¡¢u(r)]0

ª0
= rn¡1[u

n+4
n¡4
° (r)¡ un+4

n¡4 (r)] 8r 2 [0; ½] : (8.3)

Since both solutions u° and u are smooth, we have

lim
r!0

©
rn¡1 [¢u°(r)¡¢u(r)]0

ª
= 0 ;
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therefore, for any r 2 (0; ½] we may integrate (8.3) over [0; r] and obtain

rn¡1 [¢u°(r)¡¢u(r)]0 =
Z r

0

tn¡1[u
n+4
n¡4
° (t)¡ u n+4

n¡4 (t)] dt < 0 8r 2 (0; ½] ; (8.4)

the last inequality being a consequence of (8.1). Note also that ¢u°(0) = n° < n° = ¢u(0); this, combined

with the strict decreasing of r7! ¢[u°(r)¡ u(r)] (see (8.4)) shows that

¡¢(u° ¡ u) > 0 in B½ : (8.5)

Moreover, (8.1) tells us that (u° ¡ u) = 0 on @B½. This, together with (8.5) and the maximum principle shows

that u° > u in B½. This contradicts (8.1) and shows that u°(r) < u(r) as long as u°(r) remains positive. The

positivity interval for u° cannot be (0;1), otherwise u° would be a positive solution of (4.12) which is not in
the family (4.13), against [15, Theorem 1.3].

We have so far proved that there exists a ¯nite R > 0 such that u°(R) = 0 and u°(r) < u(r) whenever

r 2 (0; R]. We now show that u0°(r) < 0 for all r 2 (0; R]. If u0°(R°) = 0 for some R° · R, then ¢u°(R°) ¸ 0;
by integrating the ¯rst of (8.2) over [0; r] for r > R° and arguing as above we deduce that ¢u°(r) > 0 for all

r > R° and, in turn, that u
0
°(r) > 0 for all r > R° . But then we would ¯nd ½ > R° such that (8.1) holds, which

we have just seen to be impossible. This contradiction shows that u0°(r) < 0 for all r 2 (0; R] and completes
the proof of (i).

(ii) As in the proof of (i), it cannot be u°(½) = u(½) for some ½ > 0. Hence, for r > 0, 0 < u(r) < u°(r) as

long as the latter exists; if there exists no R1 > 0 such that u
0
°(R1) = 0, then u

0
°(r) < 0 for all r > 0 so that u°

would be a positive global solution of (4.12) which is not in the family (4.13), against [15, Theorem 1.3]. So,

let R1 > 0 be the ¯rst solution of u
0
°(R1) = 0; then, ¢u°(R1) ¸ 0. By integrating the ¯rst of (8.2) over [0; r]

for r > R1 we deduce that ¢u°(r) > 0 for all r > R1 and that u
0
°(r) > 0 for all r > R1. Invoking once more

[15, Theorem 1.3], we deduce that u° cannot exist globally; this proves the existence of R2 and completes the

proof of (ii).

9 Some unsolved problems

Problem 9.1 Prove Lemma 5.2 for general nonlinearities g.

For any strictly positive, increasing and convex function g, it is shown in [5] that (1.1) possesses a minimal regular

solution for all ¹ < ¹¤ (the extremal value). The proof takes advantage of the inequality ¢©(u) · ©0(u)¢u
which holds for any smooth concave function © with bounded ¯rst derivative and such that ©(0) = 0. For the

fourth order problem (1.3), this inequality seems out of reach and one should ¯nd other issues. On the other

hand, the method used in Lemma 5.2 seems to apply only to functions g satisfying (1.4).

Problem 9.2 Find the critical dimensions.

Consider again the second order equation (1.1). For g(u) = (1+u)p, it is shown in [18, Th¶eorµeme 4] that if either

n · 10 or n ¸ 11 and p < p := n¡2pn¡1
n¡4¡2pn¡1 , then the extremal solution u

¤ (corresponding to ¹¤) is bounded; on
the other hand, it is shown in [7] that when − is a ball, if n ¸ 11 and p ¸ p, then the extremal solution u¤ is
unbounded. Similarly, for g(u) = eu, it is proved in [18, Th¶eorµeme 3] that if n · 9 then u¤ is bounded, whereas
from [7] we know that if − is a ball and n ¸ 10, then u¤ is unbounded. We call critical dimension N(g(u)) the
largest dimension for which the semilinear equation with nonlinearity g(u) admits a regular extremal solution

in any domain −. Then, we just saw that for second order equations we have

N(eu) = 9 ; N((1 + u)p) = +1 for 1 < p < p ; N((1 + u)p) = 10 for p ¸ p :
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One is then interested in ¯nding the critical dimensions also for fourth order problems. Two main di±culties

arise. First, the counterpart of [7] fails due to the double boundary condition and no interpretation in terms of

remainder terms for Hardy inequality is available, see [10]. Second, also the method in [18] fails since the very

same arguments as in the proof of [18, Th¶eorµeme 3] yield

¸a

4

Z
−

[e(a+1)u¸ ¡ eu¸ ] + a4

16

Z
−

[eau¸ jru¸j4] ¸ ¸
Z
−

[e(a+1)u¸ ¡ 2e(a+2)u¸=2 + eu¸ ] 8a > 0

which allows no conclusion. If one assumes (with no motivation!) that the additional term
R
eau¸ jru¸j4 is a

lower order term as ¸! ¸¤, then we would have boundedness of the extremal solution for n < 20. Nevertheless,
as in [3], we believe that N(eu) = 12 for fourth order problems and that the critical dimension does not depend

on the boundary condition (Navier or Dirichlet) considered.

Problem 9.3 Prove uniqueness for small ¸.

If − is conformally contractible, then Reichel [23] proves that the equation in (1.3) under Dirichlet boundary

conditions admits a unique smooth solution for small ¸ and suitable nonlinearities g. Conformally contractible

domains are slightly more general than starshaped domains and allow to obtain uniqueness from a strict vari-

ational principle by means of a Pohozaev-type identity. Among other tools, the proof is based on a crucial

extension argument (see Proposition 8 p.68 in [23]) which is not available under Navier boundary conditions. Is

it possible to by-pass this di±culty and to obtain uniqueness for small ¸ also under Navier boundary conditions?

Problem 9.4 Nonexistence of entire nodal radial solutions of the critical growth equation.

The numerical results of Section 4.3 and Theorem 4.2 suggest the following conjecture: the equation

¢2u = juj8=(n¡4)u in Rn (9.1)

admits no radial sign changing solutions. Even if this result is well-known for the second order equation

¡¢u = juj4=(n¡2)u, this conjecture appears hard to prove due to a lack of Lyapunov functional for (4.10). Let
us also mention that (9.1) admits in¯nitely many (nonradial!) sign changing solutions, see [4].

Problem 9.5 Prove the missing part of Theorem 4.2.

In Theorem 4.2 we prove that there exists R > 0 such that the problem½
¢2u = juj8=(n¡4)u for jxj < R
u = 0 for jxj = R (9.2)

admits a positive radial solution. This problem is underdetemined as it lacks one boundary condition. It is

well-known [20, 21, 26] that Pohozaev identity enables to exclude the existence of positive solutions of (9.2)

complemented with a further boundary condition (either @u
@º = 0 or ¢u = 0 for jxj = R). In view of the

numerical results of Section 4.3, one should try to prove that the positive radial solution of (9.2) changes sign

at jxj = R and then blows up towards ¡1 at some ¯nite jxj > R.
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