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1 Introduction

In the last years there has been a tremendous progress in the understanding of the Sobolev-
space theory in the general setting of metric spaces, see for instance [28] and the references
therein, [10], [29], [38] but the list is not exhaustive).

More recently, starting from the papers [20], [23], [11], [7] (see also [5] for the case of
Finsler spaces and [4] for the case of weighted Sobolev spaces), some more progress has
been made in [33] on the definition of BV functions and sets of finite perimeter in the
general setting of metric measure spaces, i.e. metric spaces (X, d) endowed with a locally
finite Borel measure µ. A basic assumption of the theory is that µ is a doubling measure,
see (2.1).

The aim of this paper is to study the properties of the perimeter measure in this quite
general setting. In particular, defining the essential boundary ∂∗E of E as the set of points
where neither the density of E nor the density of X \ E is 0, we show that the perimeter
measure is concentrated on ∂∗E and is representable by an Hausdorff-type measure. As a
consequence we show that ∂∗E is not only µ-negligible (a well known consequence of the
doubling property of µ) but it has a finite lower dimensional measure. Moreover, we show
that the perimeter measure P (E, ·) is almost everywhere asymptotically doubling, i.e.

lim sup
%↓0

P (E,B2%(x))

P (E,B%(x))
<∞ for P (E, ·)-a.e. x ∈ X.

This information allows to differentiate with respect to the perimeter measure and there-
fore is useful in connection with blow-up methods, closer to the original ones adopted by
De Giorgi in his pioneering work [14] on Euclidean sets of finite perimeter. In fact, the
blow-up method provides stronger informations on sets of finite perimeter in the Heisen-
berg group, see [21], [22].

In [1] we obtained the above mentioned results on the perimeter measure under the
following assumptions:

(i) X is Ahlfors-regular, i.e. there exist a dimension s ≥ 1 and a constant a > 0
satisfying

a%s ≤ µ(B%(x)) ≤ 1

a
%s ∀x ∈ X, % ∈ (0, diamX) . (1.1)

(ii) The weak (1,1)-Poincaré inequality∫
B%(x)

|u(y)− ux,%| dµ(y) ≤ CP%
∫
Bλ%(x)

g(y) dµ(y)

holds. Here u is any locally Lipschitz function in X, ux,% is the mean value of u on
B%(x) and g is an upper gradient of u according to Heinonen and Koskela, see [30].

(iii) The space BV and the class of sets of finite perimeter are built using the upper
gradients.
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After some time, and after the influence of the work [25], we realized that the as-
sumption (i) could be removed and that the the proofs in [1] depend very little on the
upper gradient structure but, rather, on some abstract properties that any reasonable
“differentiation structure” must satisfy.

The way to remove assumption (i) is indeed very natural: while in the presence of
(1.1) the space X has a definite dimension s, and therefore the perimeter measure can
be represented by integration with respect to the Hausdorff measure Hs−1, in the general
doubling case the dimension is not constant, not even locally. Therefore, we have to
consider the Hausdorff-type measure Hh built with the Carathéodory construction based
on the function (see (2.3) for the precise definition)

h
(
B%(x)

)
:=

µ
(
B%(x)

)
diam (B%(x))

.

The function h, comparable to the (s − 1)-th power the diameter of the ball under as-
sumption (1.1), takes into account in a natural way of the local change of dimension of
X. A nice example where this phenomenon occurs is the so-called Grušin plane: see the
discussion in Belläıche’s contribution to [26].

Concerning assumption (iii), we relax it by defining BV functions and sets of finite
perimeter relative to a given differentiation structure, following basically the relaxation
approach in [33]. We assume that the differentiation structure is local (see §3 for details)
and that it satisfies a suitable weak (1,1)-Poincaré inequality.

2 Notation and preliminary results

Throughout this paper we assume that (X, d) is a complete metric space. We denote the
open ball {y ∈ X : d(x, y) < %} by B%(x) and the closed ball {y ∈ X : d(x, y) ≤ %} by
B%(x). We use the notation B(X) for the collection of all closed balls of X and B(X) for
the Borel σ-algebra of X.

We assume that (X, d) is endowed with a doubling measure µ, i.e. a σ-additive set
function µ : B(X)→ [0,∞] finite on bounded sets and satisfying

µ (B2%(x)) ≤ CDµ (B%(x)) ∀x ∈ X, % > 0 (2.1)

for some constant CD. It is well known that the doubling property implies the density
lower bound

µ(B%(x))

µ(BR(y))
≥ c

( %
R

)s
, ∀0 < % ≤ R <∞, x ∈ BR(y) (2.2)

for some constant c = c(s, CD), where s is any power greater than log2CD.
In the following, Liploc(X) stands for the space of real valued Lipschiz functions on

bounded subsets of X. More generally, whenever A ⊂ X is an open set, by u ∈ L1
loc(A) we

mean that u ∈ L1(C) for any bounded and closed set C ⊂ A; the same convention applies
to other functions spaces, convergence, and so on. Notice that, in view of the completeness
and doubling assumptions, bounded and closed sets in X are compact.

3



Let h : B(X) → [0,∞] be an increasing function. By the Carathéodory construction,
h induces a Borel regular outer measure Hh, defined for any set B ⊂ X by supδ>0Hhδ (B),
where

Hhδ (B) := inf

{∑
i∈I

h(Bi) : Bi ∈ B(X), diam (Bi) < δ, B ⊂
⋃
i∈I

Bi

}
(2.3)

and we adopt the convention that Hh(∅) = 0. In the case when h(B) = [diam (B)]α the
measure Hh reduces to Sα, the spherical Hausdorff α-dimensional measure (possibly up
to a normalization factor).

For E ⊂ X, we denote by Ec = X\E the complement of E and by χE the characteristic
function of E. For E, F ⊂ X we denote by E∆F the symmetric difference of E and F . If
E is a Borel set, we denote the volume µ(E∩B%(x)) of E in B%(x) by mE(x, %). Moreover,
∂∗E stands for the essential boundary of E, i.e. x ∈ ∂∗E if

neither lim
%↓0

mE(x, %)

µ(B%(x))
= 0 nor lim

%↓0

mEc(x, %)

µ(B%(x))
= 0.

We will use a classical covering theorem well adapted to the Hausdorff-type measures. The
proof for the case h(B) = [diam (B)]α is given, for instance, in Theorem 1.10 of [16]; the
same proof works if h is a doubling function, i.e. there exists a constant cD such that

h(B2%(x)) ≤ cDh(B%(x)) whenever x ∈ X, % > 0. (2.4)

Theorem 2.1 (Vitali covering theorem) Let (X, d) be a metric space. Let F a family
of closed balls and K ⊂ X be such that:

(i) for any x ∈ K and any δ > 0 the set{
% ∈ (0, δ) : B%(x) ∈ F

}
is not empty;

(ii) there exist a doubling function h and a positive finite measure ν in (X,B(X)) such
that

ν
(
B%(x)

)
≥ h(B%(x)) ∀B%(x) ∈ F .

Then, there exists a disjoint collection G ⊂ F such that

Hh
(
K \

⋃
B∈G

B

)
= 0. (2.5)

A simple and well known consequence of the above covering theorem (see for instance
[17], 2.10.19) is the following implication

lim sup
%↓0

ν(B%(x))

h(B%(x))
≥ t ∀x ∈ B =⇒ ν(B) ≥ tHh(B). (2.6)
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for any locally finite measure ν in X and any B ∈ B(X). Letting t ↑ ∞ in (2.6) we obtain
also

lim sup
%↓0

ν(B%(x))

h(B%(x))
<∞ for Hh-a.e. x ∈ X. (2.7)

3 Differentiation structure

In this section, following basically (but not exactly) the presentation of [25], we introduce
a list of axioms that the our set of pseudo-gradients must satisfy. Precisely, assume that
we are given, for any u ∈ Liploc(X), a set D[u] of nonnegative Borel functions. Then, we
consider the following 6 axioms:

Axiom 0. (Non triviality) 0 ∈ D[u] for any constant function u.

Axiom 1. (Upper linearity) If g1 ∈ D[u1], g2 ∈ D[u2] and g ≥ |α|g1 + |β|g2 µ-a.e., then
g ∈ D[αu1 + βu2].

Axiom 2. (Leibniz rule) If g ∈ D[u], then sup |ϕ|g + Lip(ϕ)|u| belongs to D[ϕu] whenever
ϕ is a Lipschitz function.

Axiom 3. (Lattice property) If g1 ∈ D[u1], g2 ∈ D[u2] and u = min{u1, u2} then
max{g1, g2} ∈ D[u].

Axiom 4. (Locality) If A ⊂ X is an open set and g ∈ D[u], then the function

g′ =

{
g on X \A
h on A

belongs to D(u) whenever h ∈ D[v] and u ≡ v on A.

Axiom 5. (Weak Poincaré inequality) For any g ∈ D[u] and any ball B%(x) we have∫
B%(x)

|u(y)− ux,%| dµ(y) ≤ CP%
∫
Bλ%(x)

g(y) dµ(y). (3.1)

Here

ux,% :=
1

µ(B%(x))

∫
B%(x)

u(y) dµ(y)

is the mean value of u in B%(x).

Notice that axiom A5 can also be stated in an apparently weaker form (more suitable
for some applications)

min
m∈R

∫
B%(x)

|u(y)−m| dµ(y) ≤ C%
∫
Bλ%(x)

g(y) dµ(y) (3.2)

Indeed, it is easy to check that (3.2) implies (3.1) with CP = 2C.
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Definition 3.1 (D-structure) We say that the set-valued map u 7→ D[u] is a D-structure
if axioms A0-A4 hold. We say that the D-structure satisfies the weak (1, 1)-Poincaré
inequality if axiom 5 holds. Finally, we say that the D-structure satisfies the (1, 1)-Poincaré
inequality if (3.1) holds with λ = 1.

The paper [25] contains several examples of D-structures and of the induced Sobolev
spaces (by a natural completion argument): weighted Sobolev spaces, Haj lasz–Sobolev
spaces (in this case the locality axiom fails), combinatorial Sobolev spaces, upper gradients
and infinitesimal stretch.

We need in the following an important consequence of the axioms A0-A5. The proof
follows an argument of S.Semmes and is taken from [10] (see also [28]).

Theorem 3.2 (Quasi convexity) For any pair of points x, y ∈ X there exists a Lip-
schitz curve γ connecting x to y with length at most Cd(x, y). Here C depends only on
(CD, λ, CP ).

Proof We first prove that X is connected. Assume by contradition that A ⊂ B%(x)
is a nontrivial connected component of X. In view of the local compactness of X, the
characteristic function of A is a locally Lipschitz function in X. Moreover, the locality
axiom implies that 0 ∈ D[χA], and therefore the Poincaré inequality gives that χA is a.e.
equal to a constant in any ball. Therefore, either A or X \A are negligible. Being A and
X \A open, this contradicts the doubling property.

Let x ∈ X and ε > 0 be fixed; since X is connected, any point y ∈ X is ε-connected to
x, namely there are finitely many points x1, . . . , xn with x1 = x, xn = y and d(xi, xi+1) < ε
for i = 1, . . . , n− 1. Denoting by uε(y) the infimum of

n−1∑
i=1

d(xi, xi+1)

among all these families of points, it is clear that uε(x) = 0 and Lip(uε) ≤ 1. Therefore,
setting u = supε>0 uε, the “telescope estimate” (see for instance [28], [10])∫

B%(x)
uε dµ ≤ C(CD, λ, CP )%µ(B%(x))

and the dominated convergence theorem give∫
B%(x)

u(y) dµ(y) ≤ C%µ(B%(x)). (3.3)

By the local compactness of X, u(y) < ∞ implies the existence of a Lipschitz curve
connecting x to y with length u(y).

Let now y0 ∈ X and % = d(x, y0). By (3.3) we obtain y1 ∈ B%/2(y0) and a Lipschitz
curve connecting x to y1 with length at most C%. Repeating this construction with y1 in
place of x, we obtain y2 ∈ B%/4(y0) and a Lipschitz curve connecting y1 to y2 with length
at most C%/2. Iterating this argument and glueing all these curves the proof is achieved.
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4 Sets of finite perimeter

In this section we recall the main properties of sets of finite perimeter which will be useful
in the sequel. According to [33] (see also [20], [23] and [11]) we define the class of sets
of finite perimeter and the perimeter measure by a relaxation procedure, using as energy
functional the L1 norm of g, where g is any function in D[u]. As a consequence, the class
of sets of finite perimeter and the perimeter measure depend on the D-structure.

Definition 4.1 (Perimeter) Let E ∈ B(X) and A ⊂ X open. The perimeter of E in A,
denoted by P (E,A), is defined by

P (E,A) := inf

{
lim inf
h→∞

∫
A
gh dµ : (uh) ⊂ Liploc(A), uh → χE in L1

loc(A), gh ∈ D[uh]

}
.

We say that E has finite perimeter in X if P (E,X) <∞.

An analogous definition could be given for BV functions, defining

|Du|(A) := inf

{
lim inf
h→∞

∫
A
gh dµ : (uh) ⊂ Liploc(A), uh → u in L1

loc(A), gh ∈ D[uh]

}
and saying that u ∈ BV (X) if u ∈ L1(X) and |Du|(X) <∞.

The basic example which motivated the present paper is the following:

Example 4.2 (Carnot–Carathéodory spaces) Let Ω ⊂ Rn be an open connected
set, let Y1, . . . , Yk be locally Lipschitz vector fields defined in Ω, and let ρ be the Carnot–
Carathéodory distance induced by (Yi). Then, assuming that ρ(x, y) < ∞ whenever
x, y ∈ Ω, the function

|Y u| :=
(
|Y1u|2 + . . .+ |Yku|2

)1/2
is a minimal upper gradient of u whenever u ∈ Liploc(Ω, ρ) (see the discussion in §11.2 of
[28]). Then, adopting as D-structure the one induced by upper gradients, the definitions
of BV functions and sets of finite perimeter adopted in [20], [23] and [11] are equivalent
to the one adopted here, with X = Ω, d = % and µ equal to the Lebesgue measure and
the D-structure induced by upper gradients, see the discussion in [33].

It turns also out that u ∈ BV if and only if there exists measures µi = DYiu such that∫
X
uY ∗i ϕdµ = −

∫
X
ϕdµi ∀i = 1, . . . , k, ϕ ∈ C∞c (X)

(here Y ∗i ϕ is the adjoint of Yiϕ, the partial derivative along the vector field Yi) and the
measure |Du| is the total variation of the vector-valued measure (µ1, . . . , µk).

Notice also that in general a Carnot–Carathéodory metric measure space (X, d, µ) is
only doubling: the Ahlfors regularity condition holds, however, for Carnot groups.

The following properties easily follow from the definition of perimeter and the axioms
A0-A4 (see [33] for a proof in the case of the upper gradients D-structure).
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(a) (locality) P (E,A) = P (F,A) whenever (E∆F ) ∩A is µ-negligible;

(b) (lower semicontinuity) E 7→ P (E,A) is lower semicontinuous with respect to the
L1

loc(A) topology;

(c) (subadditivity) P (E ∪ F,A) + P (E ∩ F,A) ≤ P (E,A) + P (F,A);

(d) (complementation) P (E,A) = P (Ec, A).

By (c) and (d) it follows that

max {P (E ∪ F,A), P (E ∩ F,A), P (E \ F,A)} ≤ P (E,A) + P (F,A). (4.1)

The proof of the following result, still obtained in [33], is not elementary: it uses the
axioms A0-A4 and methods typical of the theory of Γ-convergence (see for instance [12]).

Theorem 4.3 Let E be a set of finite perimeter in X. Then:

(i) the set function A 7→ P (E,A) is the restriction to the open subsets of X of a finite
Borel measure P (E, ·) in X, defined by

P (E,B) := inf {P (E,A) : A ⊃ B, A open} ∀B ∈ B(X);

(ii) if D supports the weak (1, 1)-Poincaré inequality (3.1), the following relative isoperi-
metric inequality holds:

min {mE(x, %),mEc(x, %)} ≤ CI
(

%s

µ(B%(x))

)1/(s−1)

[P (E,B2λ%(x))]s/(s−1) (4.2)

where s > 1 is any exponent satisfying (2.2);

(iii) for any u ∈ Liploc(X) and any g ∈ D[u] the following coarea formula holds:∫
R
P ({u > t}, B) dt ≤

∫
B
g dµ ∀B ∈ B(X). (4.3)

Proof. Properties (i), (ii), (iii) are proved in [33]. We repeat, for the reader’s convenience,
only the proof of (ii). By a well known result of Haj lasz and Koskela still true in our
abstract setting (see [28], Theorem 5.1 and [25], Theorem 1.14), (3.1) and (2.2) imply a
weak (1∗, 1)-Poincaré inequality, i.e.(

1

µ(B%(x))

∫
B%(x)

|u(y)− ux,%|s/(s−1) dµ(y)

)(s−1)/s

≤ C %

µ(B%(x))

∫
B2λ%(x)

g dµ

for any u ∈ Lip(B2λ%(x)) and any g ∈ D[u]. Taking into account the definition of
P (E,B2λ%(x)), and noticing that by a truncation argument we need only to consider
sequences (uh) converging to χE in L1(B2λ%(x)), we obtain (4.2).
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Remark 4.4 By a similar argument, we have

min {mE(x, %),mEc(x, %)} ≤ CI
(

%s

µ(B%(x))

)1/(s−1)

[P (E,B%(x))]s/(s−1) (4.4)

whenever D supports a (1, 1)-Poincaré inequality.

Finally, we will need the following canonical relation between perimeter and derivative
of volume. The proof (see [1]) uses the lower semicontinuity of the variation and an
approximation argument.

Lemma 4.5 (Localization) Let E be a set of finite perimeter in X and x ∈ X. For a.e.
% > 0 the set E \B%(x) has finite perimeter in X and satisfies

P (E \B%(x), ∂B%(x)) ≤ d

dr
mE(x, r)

∣∣∣∣
r=%

.

5 Representation of perimeter and doubling property

Throughout this section we assume that E is a set of finite perimeter in X. We define
h : B(X)→ [0,∞) as

h(B) :=
µ(B)

diam(B)

and notice that h is a doubling function (i.e. it satisfies (2.4) with cD = CD), since µ is a
doubling measure. We will consider the measure Hh built from h using the Carathéodory
construction.

We recall an useful co-area inequality involving theHh-measure of level sets of Lipschitz
functions; the proof of the inequality is given in Theorem 2.10.25 of [17] for the spherical
Hausdorff measures Sα (see also Proposition 3.1.2 of [2]) and works for Hh as well.

Proposition 5.1 For any u ∈ Lip(X) and any B ∈ B(X) we have∫
R
Hh
(
B ∩ u−1(t)

)
dt ≤ Lip(u)µ(B).

In particular, for any x ∈ X the set ∂B%(x) has finite Hh-measure for a.e. % > 0.
We begin our analysis of the perimeter measure by proving the absolute continuity of

P (E, ·) with respect to Hh.

Lemma 5.2 (Absolute continuity) We have P (E,B) = 0 whenever B ∈ B(X) is Hh-
negligible.
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Proof. Assuming with no loss of generality that B is a compact set, for any ε > 0 we
can cover B by a finite number of open balls Bε

i of radius rεi < ε and center xεi such that∑
i h(Brεi

(xεi)) < ε. By (4.3) with u = d(·, xεi) and A = B2rεi
(xεi) we can find concentric

open balls B̂ε
i ⊃ Bε

i with radius at most 2rεi such that

P (B̂ε
i , X) ≤

µ(B2rεi
(xεi))

rεi
≤ 2CDh(Brεi

(xεi)).

Denoting by Aε ⊃ B the union of the balls B̂ε
i , by locality and subadditivity of perimeter

we get
P (E ∪Aε, X) = P (E ∪Aε, X \B) ≤ P (E,X \B) + 2CDε.

Since
µ(Aε) ≤ 2ε

∑
i

h(Brεi
(xεi)) ≤ 2CDε

2 → 0,

passing to the limit as ε ↓ 0 the lower semicontinuity of perimeter gives

P (E,X) ≤ P (E,X \B)

whence P (E,B) = 0.

Now we prove that P (E, ·) is representable by integration of Hh on ∂∗E; moreover,
at Hh-a.e. point of ∂∗E we have lower bounds on mE(x, %) and mEc(x, %) for arbitrarily
small radii %. The volume lower bounds will be improved in Theorem 5.4, showing that
both fractions mE(x, %)/µ(B%(x)) and mEc(x, %)/µ(B%(x)) are far from zero for sufficiently
small radii % > 0.

Theorem 5.3 (Hausdorff representation of perimeter) The measure P (E, ·) is con-
centrated on the set

Σγ :=

{
x : lim sup

%↓0
min{mE(x, %)

µ(B%(x))
,
mEc(x, %)

µ(B%(x))
} ≥ γ

}
⊂ ∂∗E

with γ > 0 depending only on (CD, λ, CI). Moreover ∂∗E\Σγ is Hh-negligible, Hh(∂∗E) <
∞ and

P (E,B) =

∫
B∩∂∗E

θ dHh ∀B ∈ B(X)

for some Borel function θ : X → [γ′,∞), with γ′ > 0 depending only on (CD, λ, CI).

Proof. We prove that P (E,K) = 0 for any compact set K ⊂ X \Σγ . By Egorov theorem
we can assume the existence of r0 > 0 such that

min {mE(x, %),mEc(x, %)} < γµ(B%(x)) ∀x ∈ K, % ∈ (0, r0).

We define

mF (x, %) :=
2

%

∫ %

%/2
mF (x, τ) dτ, µ(B%(x)) :=

1

%

∫ 2%

%
µ(Bτ (x)) dτ,
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and notice that mF (x, %) ≤ mF (x, %), µ(B%(x)) ≤ µ(B%(x)) and that % 7→ mF (x, %),
% 7→ µ(B%(x)) are continuous. By a continuity argument, either mE(x, %) < γµ(B%(x))
in (0, r0) or mEc(x, %) < γµ(B%(x)) in (0, r0) and not both, provided γC2

D < 1, because
µ(B%(x)) ≤ µ(B2%(x)) and mE(x, %) + mEc(x, %) ≥ µ(B%/2(x)). Hence, possibly splitting
K in two parts and replacing E by Ec, we can assume that mE(x, %) < γCDµ(B%(x)) in
(0, r0) and therefore

mE(x, %) ≤ mE(x, 2%) ≤ γC2
Dµ(B%(x)) ∀% ∈ (0, r0/2). (5.1)

Let r ∈ (0, r0/4) and let x1, . . . , xn ∈ K be recursively chosen in such a way that
d(xi, xj) ≥ r for i 6= j and K ⊂ ∪iBr(xi). We can find ρi ∈ (r, 2r) such that Hh(∂Bρi(xi))
is finite and

r
d

d%
mE(x, ρ)

∣∣∣∣
%=%i

≤ mE(x, 2r) ≤ CI
(

(2r)s

µ(B2r(x))

)1/(s−1)

[P (E,B2λr(xi))]
s/(s−1) ,

where we have used (5.1) and we have assumed γC2
D < 1/2. We can also choose recursively

ρi in such a way that Hh(∂Bρi(xi) ∩ ∂Bρj (xj)) = 0 whenever i 6= j. By Lemma 4.5 and
(4.2) we get

P (E \Bρi(xi), ∂Bρi(xi)) ≤
1

r
[mE(x, 2r)]1/s+(s−1)/s

≤ 2(γC2
D)1/sC

(s−1)/s
I P (E,B2λr(xi)).

Now we estimate the overlapping of the balls B2λr(xi). Let x ∈ X be in all balls B2λr(xi),
i ∈ J . Taking into account that d(xi, xj) ≥ r, we obtain that the balls Br/2(xi) are
pairwise disjoint and, for i ∈ J , contained in B(2λ+1)r(x). Since

µ(B(2λ+1)r(x)) ≤ µ(B(4λ+1)r(xi)) ≤ c(λ,CD)µ(Br/2(xi)),

adding with respect to i ∈ J we obtain that the cardinality of J is at most ξ = 1/c(λ,CD).
Then, setting Ar = ∪iBρi(xi), subadditivity and locality of perimeter give

P (E \Ar, X) = P (E \Ar, X \Ar) = P (E,X \Ar) + P (E \Ar, ∂Ar)

≤ P (E,X \K) +
n∑
i=1

P (E \Ar, ∂Bρi(xi))

≤ P (E,X \K) +
n∑
i=1

P (E \Bρi(xi), ∂Bρi(xi)) + P (
⋃
j 6=i

Bρj (xi), ∂Bρi(xi))

≤ P (E,X \K) + 2(γC2
D)1/sC

(s−1)/s
I ξP (E,∪iB2λr(xi)).

In the last line we have used Lemma 5.2 and the fact that ∂Bρi(xi) ∩ ∂Bρj (xj) is Hh-
negligible for i 6= j. Since Ar is contained in the 2r-neighbourhood of K and

µ(E ∩Ar) ≤
n∑
i=1

mE(xi, 2r) ≤ 2r(γC2
D)1/sC

(s−1)/s
I ξP (E,X)→ 0,
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passing to the limit as r ↓ 0 we obtain

P (E,X) ≤ P (E,X \K) + 2(γC2
D)1/sC

(s−1)/s
I ξP (E,K).

Thus, P (E,K) = 0, provided 2(γC2
D)1/sC

(s−1)/s
I ξ < 1 and γC2

D < 1/2.
This proves that P (E, ·) is concentrated on Σγ . Denoting by c(λ,CD) a constant such

that c(λ,CD)µ(B2λ%(x)) ≤ µ(B%(x)), by (4.2) we get

lim sup
%↓0

P (E,B2λ%(x))

h(B2λ%(x))
≥ (γc(λ,CD)/CI)

(s−1)/s ∀x ∈ Σγ ,

hence (2.6) gives P (E,B) ≥ γ′Hh(B) for any Borel set B ⊂ Σγ with γ′ depending only
on (CD, λ, CI). As a consequence Σγ is σ-finite with respect to Hh and Lemma 5.2 in
conjunction with the Radon–Nikodým theorem gives

P (E,B) =

∫
B∩Σγ

θ dHh ∀B ∈ B(X)

for some Borel function θ : X → [γ′,∞).
It remains to prove that ∂∗E \Σγ is Hh-negligible. Notice that, since X is connected,

the diameter of any ball B%(x) is at least %, provided % < diam (X)/2.
By (2.6) with ν = P (E, ·) we know that P (E,B%(x)) = o(h(B%(x))) Hh-a.e. in X \Σγ ,

because ν is concentrated on Σγ . The relative isoperimetric inequality, in conjunction with
the lower bound on the diameter of balls, gives

min {mE(x, %),mEc(x, %)} = o (µ(B%(x))) for Hh-a.e. x ∈ X \ Σγ

and, by a continuity argument again, either mE(x, %) = o (µ(B%(x))) or mEc(x, %) =
o (µ(B%(x))) (thus x /∈ ∂∗E) for Hh-a.e. x ∈ X \ Σγ .

Now we prove a lower density estimate for both perimeter and area and, as a conse-
quence, the asymptotic doubling property.

Theorem 5.4 The measure P (E, ·) satisfies

∞ > lim sup
%↓0

P (E,B%(x))

h(B%(x))
≥ lim inf

%↓0

P (E,B%(x))

h(B%(x))
≥ τ1 for P (E, ·)-a.e. x ∈ X (5.2)

lim inf
%↓0

min

{
mE(x, %)

µ(B%(x))
,
mEc(x, %)

µ(B%(x))

}
≥ τ2 for P (E, ·)-a.e. x ∈ X (5.3)

with τ1, τ2 > 0 depending only on (CD, λ, CI).

Proof. The upper estimate in (5.2) follows by (2.7) and Lemma 5.2.
In the proof of the lower estimate in (5.3) we can assume that (X, d) is a length space,

i.e., that any pair of points x, y ∈ X can be connected by a rectifiable curve of length

12



d(x, y). Indeed, by Theorem 3.2 we know that any pair of points x, y ∈ X can be connected
by a Lipschitz curve with length at most Cd(x, y). Hence, we can simply replace d by the
geodesic metric

d̃(x, y) := inf

{
n−1∑
i=1

d(xi+1, xi) : x1 = x, xn = y

}
associated to d and, taking into account that the class of locally Lipschitz functions is
invariant, define a new D-structure D̃ on (X, d̃, µ) saying that g ∈ D̃[u] if and only if
g/C ∈ D[u]. It is easy to check that the axioms A0-A4 still hold, and that axiom A5 holds
with λ̃ = Cλ and C̃P = 2CP (see (3.2)). Notice also that the perimeter measures induced
by D and D̃ are comparable.

Since any ball in a length space is a John domain, from Corollary 9.8 in [28] we obtain
the (1∗, 1)-Poincaré inequality. In particular, by Remark 4.4, the relative isoperimetric
inequality (4.4) follows. We will also use the fact (when applying Proposition 5.7) that
the diameter of any ball B%(x) is at least % for % < diam (X)/2.

We define

α :=
1

2sC
(s−1)/s
I

, m(%) := [µ(B%(x)]1/s

and fix a strictly positive number d < min{1/2, γ/C2s
D , (α/2)sC−2s

D }. Notice that m is a

doubling function in (0,∞), with doubling constant cD = C
1/s
D .

By applying Proposition 5.7 below both to E and to Ec, we need only to prove the
lower estimate in (5.2) for any compact set K ⊂ X where the following property holds:
there exists %0 > 0 such that for any x ∈ K and a.e. % ∈ (0, %0), the volume bounds
µ(B%(x)) ≥ mE(x, %) ≥ dµ(B%(x)) imply

P (E,B%(x)) ≤ 2P (E \B%(x), ∂B%(x)) (5.4)

and the volume bounds µ(B%(x)) ≥ mEc(x, %) ≥ dµ(B%(x)) imply

P (Ec, B%(x)) ≤ 2P (Ec \B%(x), ∂B%(x)). (5.5)

Let v(%) := [min{mE(x, %),mEc(x, %)}1/s; then, if v(%) ≥ d1/sm(%), Lemma 4.5, (5.4)
and the relative isoperimetric inequality give

sv′(%) ≥ [mE(x, %)](1−s)/sP (E \B%(x), ∂B%(x)) ≥ 1

2
[mE(x, %)](1−s)/sP (E,B%(x))

≥ αs
m(%)

%
(5.6)

for a.e. % ∈ (0, %0) such that v(%) = [mE(x, %)]1/s. Analogously, for a.e. % ∈ (0, %0) such
that v(%) = [mEc(x, %)]1/s we obtain v′(%) ≥ αm(%)/%. Summing up, we have checked
that, for a.e. % ∈ (0, %0), v(%) ≥ d1/sm(%) implies v′(%) ≥ αm(%)/%.

By Theorem 5.3 we can also assume that

lim sup
%↓0

v(%)

m(%)
≥ γ1/s. (5.7)
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Let m̃ be given by Lemma 5.6 below and let u := v−βm̃, with β ≥ cDd1/s, β < α/(2cD)
and β < γ1/s/cD (this choice is possible, due to our choice of d). Notice that the negative
part of Du is absolutely continuous with respect to L1 because v is nondecreasing and
m̃ is an absolutely continuous function. Moreover u(%) ≥ 0 implies, by our choice of β,
v(%) ≥ d1/sm(%) and therefore

u′(%) = v′(%)− βm̃′(%) ≥ (α− 2βcD)
m(%)

%
≥ 0

again by our choice of β. In addition, by (5.7) we infer

lim sup
%↓0

u(%)

m̃(%)
= lim sup

%↓0

v(%)

m̃(%)
− β ≥ γ1/s

cD
− β > 0.

Then, the Calculus lemma below gives that u is strictly positive in (0, %0), hence

v(%) ≥ βm̃(%) >
β

cD
m(%) ∀% ∈ (0, %0).

This proves (5.3) with τ2 = (β/cD)s.
Finally, using (5.3) in conjunction with the relative isoperimetric inequality (4.4) we

obtain the lower bound in (5.2).

In the next proposition we list some elementary properties functions with finite point-
wise variation needed in the proof of Theorem 5.4. We recall that the derivative in the sense
of distributions of any function u with finite pointwise variation in an interval I = (a, b) is
representable by a finite measure Du; the fundamental theorem of calculus, in this setting,
says that u coincides a.e. in I with the function u(a+) +Du ((a, t)) (see for instance [3],
[36]).

Lemma 5.5 (Calculus Lemma) Let %0 > 0 and let u : (0, %0) → R be with finite
pointwise variation. Let us assume that u is left continuous and that the negative part of
Du is absolutely continuous with respect to L1. Then:

(i) if u′ ≥ 0 a.e. in (0, %0) then u is nondecreasing;

(ii) if
u′ ≥ 0 a.e. in {u ≥ 0} (5.8)

and lim sup%↓0 u(%) > 0, then u is strictly positive and nondecreasing in (0, %0).

Proof. (i) It is well known that the absolutely continuous part of Du is given by u′L1.
Then, the negative part of Du vanishes. Since, by the fundamental theorem of calculus in
BV , u coincides a.e. with the nondecreasing function and left continuous function

ũ(t) := u(0+) +Du ((0, t)) ,

the left continuity of u gives u = ũ in (0, %0).
(ii) It suffices to apply (i) to u+, the positive part of u, to obtain that u+ is nondecreasing.
Since u+(%) > 0 for arbitrarily small % > 0 we obtain that u = u+ in (0, %0).
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We also need an elementary lemma, showing that for any doubling function m there
is always a comparable function m̃ absolutely continuous (and doubling as well).

Lemma 5.6 Let %0 > 0 and let m : (0, %0)→ (0,∞) be a nondecreasing doubling function.
Then, there exists an absolutely continuous nondecreasing function m̃ satisfying

1

cD
m ≤ m̃ ≤ cDm in (0, %0), m̃′ ≤ 2cD

m

%
a.e. in (0, %0),

where cD is the doubling constant of m.

Proof. Assume for simplicity %0 = ∞. We define m̃(%) = m(%) if % = 2i for some i ∈ Z
and extend m̃ to (0,∞) by linear interpolation. For % > 0, denoting by i the unique
integer such that 2i−1 ≤ % < 2i, we have

m̃(%) ≤ m̃(2i) = m(2i) ≤ cDm(2i−1) ≤ cDm(%)

and
m(%) ≤ m(2i) ≤ cDm(2i−1) = cDm̃(2i−1) ≤ cDm̃(%).

Moreover, if 2i−1 < % we have

m̃′(%) = 21−i (m(2i)−m(2i−1)
)
≤ 2cD

m(%)

%
.

Proposition 5.7 (Asymptotic quasi-minimality) Assume that the relative isoperi-
metric inequality (4.4) holds. Let d ∈ (0, 1/2) and M > 1. Then, for P (E, ·)-a.e. x ∈ X
there exists %x > 0 such that, for a.e. % ∈ (0, %x), the volume bounds

1

2
µ(B%(x)) ≥ mE(x, %) ≥ dµ(B%(x))

imply
P (E,B%(x)) ≤MP (E \B%(x), ∂B%(x)).

Proof. Let B be the family of all balls B%(x) of finite perimeter such that

(a) P (E, ∂B%(x)) = 0 and µ(∂B%(x)) = 0;

(b) 1
2µ(B%(x)) ≥ mE(x, %) ≥ dµ(B%(x));

(c) P (E,B%(x)) > MP (E \B%(x), ∂B%(x)).
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Notice that, for x given, the conditions in (a) are fulfilled with at most countably many
exceptions and that, since X is connected, the diameter of any ball B%(x) is at least %
whenever % < diam (X)/2. Let B = ∩hBh, where Bh is the set of points x such that{

% ∈ (0, 2−h) : (b) and (c) hold
}

has strictly positive measure. It is easy to check that

Lh :=
{

(x, %) ∈ X × (0,∞) : % < 2−h and (b), (c) hold
}

is a Borel subset of X × (0,∞), and therefore

B =

∞⋂
h=1

{
x :

∫ ∞
0

χLh(x, τ) dτ > 0

}
is a Borel set as well.

We will prove that P (E,K) = 0 for any compact set K ⊂ B. To this aim, for any
δ > 0 we consider the family

F =
{
B%(x) : x ∈ K, % ∈ (0, δ), B%(x) ∈ B

}
.

Notice that, for any ball B%(x) ∈ F , the second condition in (a), (b), the lower bound on
the diameter of balls and the relative isoperimetric inequality (4.4) give P (E,B%(x)) ≥
(d/CI)

(s−1)/sh(B%(x)). In particular, by the inclusion K ⊂ B, F fulfils the assumptions
(i), (ii) of Theorem 2.1.

Hence, by applying Theorem 2.1 (with ν equal to a constant multiple of P (E, ·)), we
can find a disjoint family of balls (B%i(xi))i∈I ⊂ F such that ∪iB%i(xi) contains Hh-
almost all (hence P (E, ·) almost all) of K. By the first condition in (a), the open set
Aδ = ∪iB%i(xi) satisfies P (E,K \Aδ) = 0.

Let J ⊂ I be a finite family and let AJ be the union of the balls B%i(xi), i ∈ J . By
locality and subadditivity of perimeter we get

P (E \AJ , X) = P (E \AJ , X \AJ) = P (E \AJ , X \AJ) + P (E \AJ , ∂AJ)

= P (E,X \AJ) + P (E \AJ , ∂AJ)

≤ P (E,X \AJ) +
∑
i, j∈J

P (E \B%i(xi), ∂B%j (xj))

= P (E,X \AJ) +
∑
i∈J

P (E \B%i(xi), ∂B%i(xi))

≤ P (E,X \AJ) +M−1P (E,Aδ).

Letting J ↑ I and using the lower semicontinuity of perimeter we infer

P (E \Aδ, X) ≤ P (E,X \Aδ) +
1

M
P (E,Aδ) ≤ P (E,X \K) +

1

M
P (E,Aδ).
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Since
µ(Aδ) ≤ 2 sup

i
%i
∑
i

h(B%i(xi)) ≤ 2δ(CI/d)(s−1)/sP (E,X),

letting δ ↓ 0 and using again the lower semicontinuity of perimeter we obtain P (E,X) ≤
P (E,X \K) + P (E,K)/M , hence P (E,K) = 0.

By (5.2) and the doubling property of h we obtain that the perimeter measure is a.e.
asymptotically doubling.

Corollary 5.8 (Asymptotic doubling property) The measure P (E, ·) is a.e. asymp-
totically doubling, i.e.

lim sup
%↓0

P (E,B2%(x))

P (E,B%(x))
<∞ for P (E, ·)-a.e. x ∈ X.
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