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Abstract. In the framework of transport theory, we are inter-
ested in the following optimization problem: given the distribu-
tions µ+ of working people and µ− of their working places in an
urban area, build a transportation network (such as a railway or
an underground system) which minimizes a functional depending
on the geometry of the network through a particular cost function.
The functional is defined as the Wasserstein distance of µ+ from
µ− with respect to a metric which depends on the transportation
network.

1. Introduction

Optimal Transportation Theory was first developed by Monge in
1781 in [12] where he raised the following question: given two mass
distributions f+ and f−, minimize the transport cost∫

RN

|x− t(x)|f+(x) dx

among all transport maps t, i.e. measurable maps such that the mass
balance condition ∫

t−1(B)

f+(x) dx =

∫
B

f−(y) dy

holds for every Borel set B. Because of its strong non-linearity, Monge’s
formulation did not lead to significant advances up to 1940, when Kan-
torovich proposed his own formulation (see [10], [11]).

In modern notation, given two finite positive Borel measures µ+ and
µ− on RN such that µ+(RN) = µ−(RN), Kantorovich was interested to
minimize ∫

RN×RN

|x− y| dµ(x, y)

among all transport plans µ, i.e. positive Borel measures on RN × RN

such that π+
#µ = µ+ and π−#µ = µ−, where by # we denoted the push-

forward operator (i.e. h#µ(E) = µ(h−1(E))). It is easy to see that
if t is a transport map between µ+ = f+LN and µ− = f−LN , then
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(Id×t)#µ
+ is a transport plan. So, Kantorovich’s problem is a weak

formulation of Monge’s one.
Of course, one can take, instead of RN and the cost function given

by the Euclidean modulus, a generic pair of metric spaces X and Y
and a positive lower semicontinuous cost function c : X × Y → R, so
that the Kantorovich problem reads:

min

{∫
X×Y

c(x, y) dµ(x, y) : π+
#µ = µ+, π−#µ = µ−

}
. (1.1)

We stress the fact that µ+ and µ− must have the same mass, otherwise
there are no transport plans.

If we set X = Y and take as cost function the distance d in X, then
the minimal value in (1.1) is called Wasserstein distance (of power 1)
between µ+ and µ−. In this case, we shall write Wd(µ+, µ−).

For other details on transportation problems on networks we refer
the interested reader to [2], [3], [5], [6], [7] and [13].

2. The Optimal Network Problem

We consider a bounded connected open subset Ω with Lipschitz
boundary of RN (the urban area) with N > 1 and two positive fi-
nite measures µ+ and µ− on K := Ω (the distributions of working
people and of working places). We assume that µ+ and µ− have the
same mass that we normalize both equal 1, that is µ+ and µ− are
probability measures on K.

In this section we introduce the optimization problem for transporta-
tion networks: to every “urban network” Σ we may associate a suitable
“cost function” dΣ which takes into account the geometry of Σ as well
as the costs for customers to move with their own means and by means
of the network. The cost functional will be then

T (Σ) = WdΣ
(µ+, µ−)

so that the optimization problem we deal with is

min{T (Σ) : Σ “admissible network”}. (2.2)

The main result of this paper is to prove that, under suitable and very
mild assumptions, and taking as admissible networks all connected,
compact one-dimensional subsets Σ of K, the optimization problem
(2.2) admits a solution. The tools we use to obtain the existence result
are a suitable relaxation procedure to define the function dΣ (Theorem
4.2) and a generalization of the Go lab Theorem (Theorem 3.3), also
obtained by Dal Maso and Toader in [8].

In order to introduce the distance dΣ we consider a function J :
[0,+∞]3 → [0,+∞]. For a given path γ in K the parameter a in
J(a, b, c) measures the length of γ outside Σ, b measures the length of
γ inside Σ, while c represents the total length of Σ. The cost J(a, b, c)
is then the cost of a customer who travels for a length a by his own
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means and for a length b on the network, being c the length of the
latter. For instance we could take J(a, b, c) = A(a) +B(b) + C(c) and
then the function A(t) is the cost for travelling a length t by one’s own
means, B(t) is the price of a ticket to cover the length t on Σ and C(t)
represents the cost of a network of length t.

For every closed connected subset Σ in K, we define the cost function
dΣ as

dΣ(x, y) := inf
{
J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
: γ ∈ Cx,y

}
,

where Cx,y is the class of all closed connected subsets of K containing
x and y. The optimization problem we consider is then (2.2) where we
take as admissible networks all closed connected subsets Σ of K with
H1(Σ) < +∞. We also define, for every closed connected subset γ of
K

LΣ(γ) := J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
.

We assume that J satisfies the following conditions:

• J is lower semicontinuous,
• J is non-decreasing, i.e.

a1 < a2, b1 < b2, c1 < c2 =⇒ J(a1, b1, c1) ≤ J(a2, b2, c2),

• J(a, b, c) ≥ G(c) with G(c) → +∞ when c→ +∞,
• J is continuous in its first variable.

A curve joining two points x, y ∈ K is an element of the set

Cx,y := {γ closed connected, {x, y} ⊆ γ ⊆ K}
while an element of C will be, by definition, a closed connected set in
K:

C := {γ closed connected, γ ⊆ K}.
We associate to every admissible network Σ ∈ C the cost function

dΣ(x, y) = inf{LΣ(γ) : γ ∈ Cx,y}.
We are interested in the functional T given by

Σ 7→ T (Σ) := WdΣ
(µ+, µ−)

which is defined on the class C , where the Wasserstein distance is
defined in the introduction.

Finally by L
x,y

Σ we denote the lower semicontinuous envelope of LΣ

with respect to the Hausdorff convergence on Cx,y (see Section 3 for
the main definitions). In other words, for every γ ∈ Cx,y we set

L
x,y

Σ (γ) =

{
min {lim infn LΣ(γn) : γn → γ, γn ∈ Cx,y} if γ ∈ Cx,y

+∞ if γ /∈ Cx,y,

where we fix the condition x, y ∈ γ. Moreover, we define LΣ as

LΣ(γ) = min

{
lim inf
n→+∞

LΣ(γn) : γn → γ, γn ∈ C

}
,
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that is to say, the lower semicontinuous envelope of LΣ with respect to
the Hausdorff convergence on the class of closed connected sets of K.

3. The Go lab Theorem and its extensions

In this section X will be a set endowed with a distance function d,
i.e. (X, d) is a metric space. We assume for simplicity X to be compact.
By C (X) we indicate the class of all closed subsets of X.

Given two closed subsets C and D, the Hausdorff distance between
them is defined by

dH(C,D) := 1 ∧ inf{r ∈ [0,+∞[ : C ⊆ Dr, D ⊆ Cr}
where

Cr := {x ∈ X : d(x,C) < r}.
It is easy to see that dH is a distance on C (X), so (C (X), dH) is a metric
space. We remark the following well-known facts (see for example [1]):

• (X, d) compact =⇒ (C (X), dH) compact,
• (X, d) complete =⇒ (C (X), dH) complete.

In the rest of the paper we will use the notation Cn → C to indicate
the convergence of a sequence {Cn}n∈N to C with respect to the distance
dH.

Proposition 3.1. Let {Cn}n∈N be a sequence of compact connected
subsets in X such that Cn → C for some compact subset C. Then C
is connected.

Proof. Suppose, on the contrary, that there exist two closed non-void
separated subsets F1 and F2 such that C = F1 ∪ F2. Since F1 and
F2 are compact, d(F1, F2) = d > 0. Let us choose ε = d/4. By the
definition of Hausdorff convergence, there exists a positive integer N
such that

n ≥ N =⇒ Cn ⊆ (C)ε, C ⊆ (Cn)ε.

Since CN is connected, we must have either CN ⊆ (F1)ε or CN ⊆ (F2)ε.
Let us suppose, for example, that CN ⊆ (F1)ε. On one side by the
Hausdorff convergence it is F2 ⊆ (CN)ε, on the other by the choice of
ε we have (CN)ε ∩ F2 = ∅, a contradiction. �

The Hausdorff 1-dimensional measure in (X, d) of a Borel set B is
defined by

H1(B) := lim
δ→0+

H1,δ(B),

where

H1,δ(B) := inf

{∑
n∈N

diamBn : diamBn < δ,B ⊆
⋃
n∈N

Bi

}
.

The measure H1 is Borel regular and if (X, d) is the 1-dimensional
Euclidean space, then H1 is just the Lebesgue measure L1.
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The Go lab classical Theorem states that in a metric space, the mea-
sure H1 is sequentially lower semicontinuous with respect to the Haus-
dorff convergence over the class of all compact connected subsets of
X.

Theorem 3.2 (Go lab). Let X be a metric space. If {Cn}n∈N is a
sequence of compact connected subsets of X and Cn → C for some
compact connected subset C, then

H1(C) ≤ lim inf
n→+∞

H1(Cn). (3.3)

Actually, this result can be strengthened.

Theorem 3.3. Let X be a metric space, {Γn}n∈N and {Σn}n∈N be two
sequences of compact subsets such that Γn → Γ and Σn → Σ for some
compact subsets Γ and Σ. Let us also suppose that Γn is connected for
all n ∈ N. Then

H1(Γ \ Σ) ≤ lim inf
n→+∞

H1(Γn \ Σn). (3.4)

A proof of this result has been given by Dal Maso and Toader in [8];
for sake of completeness, we include the proof here below. It is in fact
based on the following two rectifiability theorems whose proof can be
found in [1].

Theorem 3.4. Let X be a metric space and C a closed connected subset
of finite length, i.e. H1(C) < +∞. Then C is compact and connected
by injective rectifiable curves.

Theorem 3.5. Let C be a closed connected subset in a metric space
X such that H1(C) < +∞. Then there exists a sequence of Lipschitz
curves {γn}n∈N, γn : [0, 1] → C, such that

H1(C \
⋃
n∈N

γn([0, 1])) = 0.

The first step in the proof of Theorem 3.3 is a localized form of the
Go lab classical Theorem. To this aim we need the following lemma.

Lemma 3.6. Let C be a closed connected subset of X and let x ∈ C.
If r ∈ [0, 1

2
diamC], then

H1(C ∩Br(x)) ≥ r.

Proof. See for instance Lemma 4.4.2 of [1] or Lemma 3.4 of [9]. �

Remark 3.7. Lemma 3.6 yields the following estimate from below for
the upper density:

θ(C, x) := lim sup
r→0+

H1(C ∩Br(x))

2r
≥ 1

2
.

5



We recall that for every measure µ the upper density is defined by

θ(µ, x) := lim sup
r→0+

µ(Br(x))

2r
.

We also recall that θ(µ, x) ≥ t for all x ∈ X implies µ(B) ≥ tH1(B)
for every Borel set B (see Theorem 2.4.1 in [1]).

We are now in a position to obtain the localized version of the Go lab
Theorem.

Theorem 3.8. Let X be a metric space. If {Cn}n∈N is a sequence of
compact connected subsets of X such that Cn → C for some compact
connected subset C, then for every open subset U of X

H1(C ∩ U) ≤ lim inf
n→+∞

H1(Cn ∩ U).

Proof. We can suppose that L := limnH1(Cn ∩ U) exists, is finite and
H1(Cn ∩ U) ≤ L + 1. Let dn = diam(Cn ∩ U). We can suppose up to
a subsequence that dn → d > 0. Let us consider the sequence of Borel
measures defined by

µn(B) := H1(B ∩ Cn ∩ U)

for every Borel set B. Up to a subsequence we can assume that µn ⇀
∗ µ

for a suitable µ. We choose x ∈ C ∩ U and r′ < r < diam(C ∩ U)/2.
Then, by Lemma 3.6,

µ(Br(x)) ≥ µ(Br′(x)) ≥ lim sup
n→+∞

µn(Br′(x))

= lim sup
n→+∞

H1(Cn ∩Br′(x) ∩ U) ≥ r′. (3.5)

Since r′ was chosen arbitrarily we get

µ(Br(x)) ≥ r

for every x ∈ C∩U and r < diam(C∩U)/2. This implies θ(C, x) ≥ 1/2.
By Remark 3.7

H1(C ∩ U) ≤ 2µ(X) ≤ 2 lim inf
n→+∞

µn(X) = 2 lim inf
n→+∞

H1(Cn ∩ U) = 2L.

By Theorem 3.5 for H1-almost all x0 ∈ C ∩ U there exists a Lipschitz
curve γ whose range is in C ∩ U such that x0 = γ(t0) and t0 ∈]0, 1[.
We can also suppose that

lim
h→0+

d(γ(t0 + h), γ(t0 − h))

2|h|
= 1.

We choose arbitrarily σ ∈]0, 1[. If h is small, then

d(γ(t0 + h), γ(t0 − h)) ≥ (2− σ)|h|
and

(1− σ)|h| ≤ d(γ(t0 ± h), γ(t0)) ≤ (1 + σ)|h|.
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Let us also suppose that |h| < σ/(1 + σ) and put

y := γ(t0 − h), z := γ(t0 + h), r := max{d(y, x0), d(z, x0)}.

We get

r < (1 + σ)|h| < σ, d(y, z) ≥ (2− σ)|h| ≥ 2− σ

2 + σ
r.

Let r′ := (1 + σ)r. Since Cn → C, then (see Proposition 4.4.3 in [1])
there exist subsequences {yn}n∈N and {zn}n∈N such that yn, zn ∈ Cn∩U ,
yn → y and zn → z. One must have yn, zn ∈ Br′(x0) for n large enough
and

µn(Br′(x)) = H1(Cn ∩Br′(x) ∩ U) ≥ d(z, yn).

Taking the limsup

µ(Br′(x)) ≥ lim sup
n→+∞

H1(Cn ∩Br′(x) ∩ U) ≥ lim sup
n→+∞

d(z, yn)

= d(z, y) ≥ 2− σ

2 + σ
r =

2− σ

(2 + σ)(1 + σ)
r′.

Since σ was arbitrary, we get θ(µ, x0) ≥ 1 for H1-almost all x0 ∈ C∩U .
Then, by Remark 3.7

H1(C ∩ U) ≤ µ(X) ≤ lim inf
n→+∞

µn(X) = lim inf
n→+∞

H1(Cn ∩ U). �

Proof of Theorem 3.3. Let A = Γ ∩ Σ. Thanks to the equality⋃
ε>0

(Γ \ Aε) = Γ \ Σ

we have

lim
ε→0+

H1(Γ \ Aε) = H1(Γ \ Σ).

Recalling that the following inclusion of sets holds for large values of n

Γn \ Aε ⊆ Γn \ An ⊆ Γn \ Σn

by the localized form of Go lab Theorem (Theorem 3.8) we deduce

H1(Γ \ Aε) ≤ lim inf
n→+∞

H1(Γn \ Aε) ≤ lim inf
n→+∞

H1(Γn \ Σn).

Taking the limit as ε→ 0+, we obtain

H1(Γ \ Σ) ≤ lim inf
n→+∞

H1(Γn \ Σn). �

Remark 3.9. It is easy to see that if the number of connected compo-
nents of Cn is bounded from above by a positive integer independent on
n, then the localized form of Go lab Theorem is still valid. All details
can be found in [8].
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4. Relaxation of the cost function

We can give an explicit expression for the lower semicontinuous en-
velopes LΣ and L

x,y

Σ in terms of J . In order to achieve this result it is
useful to introduce the function:

J(a, b, c) = inf{J(a+ t, b− t, c) : 0 ≤ t ≤ b}.
The following lemma is an important step to establish Theorem 4.2.

Lemma 4.1. Let γ and Σ be closed connected subsets of K. Let also
suppose that Σ has a finite length. Then for every t ∈ [0,H1(γ ∩ Σ)]
we can find a sequence {γn}n∈N in C such that

• γn → γ,
• limnH1(γn) = H1(γ),
• H1(γn ∩ Σ) ↗ H1(γ ∩ Σ)− t.

Moreover, if x, y ∈ γ then the sequence {γn}n∈N can be chosen in Cx,y.

Proof. The set γ ∩ Σ is closed and with a finite length. By the second
rectifiability result (Theorem 3.5) it follows the existence of a sequence
of curves σn ∈ Lip([0, 1], K) such that

H1

(
(γ ∩ Σ) \

⋃
n∈N

σn([0, 1])

)
= 0.

We can also suppose that the subsets σn([0, 1]) are disjoint up to subsets
of negligible length. Fix a sufficiently small δ > 0 and choose a sequence
of intervals In = [an, bn] such that∑

n∈N

H1(σn(In)) = t+ δ.

For every sequence v = {vn}n∈N of unit vectors of RN such that vn is not
tangent to γ∩Σ in σn(an) and σn(bn), and every sequence ε = {εn}n∈N
of positive real numbers, let us consider

Av,ε =
⋃
n∈N

σn([0, an] ∪ [bn, 1]),

Bv,ε =
⋃
n∈N

(σn(an) + εnVn),

Cv,ε =
⋃
n∈N

(vn + σn(In)),

Dv,ε =
⋃
n∈N

(σn(bn) + εnVn)

γv,ε = (γ \ Σ) ∪ Av,ε ∪Bv,ε ∪ Cv,ε ∪Dv,ε

where Vn = {tvn : t ∈ [0, 1]} (see Figure 1).
Since Σ is closed and with a finite length, the class of γv,ε that have

not H1-negligible intersection with Σ is at most countable. Out of
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Figure 1. The approximating curves γn.

that set we can choose sequences δm ↘ 0, and {γvm,εm
}m∈N such that

‖εm‖ ↘ 0, where by ‖ε‖ we denote the quantity
∑

n εn. The sequence
{γvm,εm

}m∈N is the one we were looking for. �

Theorem 4.2. For every closed connected subset γ ∈ Cx,y we have

L
x,y

Σ (γ) = J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).

Moreover, if γ ∈ Cx,y then

L
x,y

Σ (γ) = LΣ(γ).

Proof. Let γ be a fixed curve in Cx,y. First we establish that

L
x,y

Σ (γ) ≥ J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).

It is enough to show that for every sequence {γn}n∈N in Cx,y converging
to γ with respect to the Hausdorff metric, there exists t ∈ [0,H1(γ∩Σ)]
such that

J(H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)) ≤ lim inf
n→+∞

LΣ(γn).

Up to a subsequence we can suppose the following equalities hold true:

lim inf
n→+∞

LΣ(γn) = lim
n→+∞

LΣ(γn),

lim inf
n→+∞

H1(γn) = lim
n→+∞

H1(γn),

lim inf
n→+∞

H1(γn \ Σ) = lim
n→+∞

H1(γn \ Σ).
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Moreover, by Go lab Theorems (Theorem 3.2 and Theorem 3.3)

H1(γ) ≤ lim
n→+∞

H1(γn),

H1(γ \ Σ) ≤ lim
n→+∞

H1(γn \ Σ).

Choose t = limnH1(γn \ Σ) − H1(γ \ Σ). Then H1(γ \ Σ) + t =
limnH1(γn \ Σ). We have

H1(γn) = H1(γn \ Σ) +H1(γn ∩ Σ)

= [H1(γn \ Σ)− t] + [H1(γn ∩ Σ) + t].

Taking the limit as n→ +∞ gives

H1(γ) ≤ lim
n→+∞

H1(γn) = [H1(γ \ Σ) + t] + lim
n→+∞

H1(γn ∩ Σ)

so that
H1(γ ∩ Σ)− t ≤ lim

n→+∞
H1(γn ∩ Σ).

It follows by the semicontinuity and monotonicity of J in the first two
variables

J
(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
≤ lim inf

n→+∞
J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
.

Now, we have to establish the opposite inequality:

L
x,y

Σ (γ) ≤ J
(
H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)

)
.

In the same way as before, it is enough to show that for every t ∈
[0,H1(γ ∩ Σ)] we can find a sequence {γn}n∈N in Cx,y which converges
to γ such that

lim inf
n→+∞

LΣ(γn) ≤ J
(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
.

Given t, let {γn}n∈N be the sequence given by Lemma 4.1. Then we
get

lim
n→+∞

H1(γn \ Σ) = H1(γ)−H1(γ ∩ Σ) + t = H1(γ \ Σ) + t.

Thanks to H1(γn ∩ Σ) ≤ H1(γ ∩ Σ)− t, we have

J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
≤ J

(
H1(γn \ Σ),H1(γ ∩ Σ),H1(Σ)

)
and by the continuity of J in the first variable

lim inf
n→+∞

J
(
H1(γn \ Σ),H1(γn ∩ Σ),H1(Σ)

)
≤ J

(
H1(γ \ Σ) + t,H1(γ ∩ Σ)− t,H1(Σ)

)
which implies the inequality we looked for. The proof of the second
statement of the Theorem is analogous and hence omitted. �
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The next proposition is a consequence of Theorem 4.2.

Proposition 4.3. For every x, y ∈ K we have

dΣ(x, y) = inf{LΣ(γ) : γ ∈ Cx,y}.

Proof. By a general result of relaxation theory (see for instance [4]),
the infimum of a function is the same as the infimum of its lower semi-
continuous envelope, so

dΣ(x, y) = inf{Lx,y

Σ (γ) : γ ∈ Cx,y}.
It is then enough to prove that

inf{Lx,y

Σ (γ) : γ ∈ Cx,y} = inf{LΣ(γ) : γ ∈ Cx,y},
which is a consequence of Theorem 4.2. �

It is more convenient to introduce the function whose variables a, b, c
now represent the length H1(γ \ Σ) covered by one’s own means, the
path length H1(γ), and the length of the network H1(Σ):

Θ(a, b, c) = J(a, b− a, c).

Obviously, Θ satisfies

Θ(H1(γ \ Σ),H1(γ),H1(Σ)) = J(H1(γ \ Σ),H1(γ ∩ Σ),H1(Σ)).

We now study some properties of Θ.

Proposition 4.4. Θ is monotone, non-decreasing with respect to each
of its variables.

Proof. The monotonicity in the third variable is straightforward. The
one in the first variable can be obtained observing that

Θ(a, b, c) = inf
a≤s≤b

J(s, b− s, c) (4.6)

and that the right-hand side of (4.6) is a non-decreasing function of
a. The monotonicity in the second variable is obtained in a similar
way, still relying on (4.6) and paying attention to the sets where the
infimum is taken. �

Proposition 4.5. Θ is lower semicontinuous.

Proof. We have to show that

Θ(a, b, c) ≤ lim inf
n→+∞

Θ(an, bn, cn)

when an → a, bn → b and cn → c. Let us consider for every real
positive number ε and for every positive integer n a real number sn

such that an ≤ sn ≤ bn and

J(sn, b− sn, cn) ≤ Θ(an, bn, cn) + ε.

Up to a subsequence, we can suppose that

lim inf
n→+∞

Θ(an, bn, cn) = lim
n→+∞

Θ(an, bn, cn).
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We can also suppose that sn → s, where a ≤ s ≤ b. Thanks to the
semicontinuity of J

Θ(a, b, c) ≤ J(s, b− s, c) ≤ lim inf
n→+∞

J(sn, bn − sn, cn)

≤ lim inf
n→+∞

Θ(an, bn, cn) + ε.

Letting ε→ 0+ yields the desired inequality. �

5. Existence theorem

In this section we continue to develop the tools we will use to prove
Theorem 5.6.

Proposition 5.1. Let {xn}n∈N and {yn}n∈N be sequences in K such
that xn → x and yn → y. If {Σn}n∈N is a sequence of closed connected
sets such that Σn → Σ, then

dΣ(x, y) ≤ lim inf
n→+∞

dΣn(xn, yn). (5.7)

Proof. First, up to a subsequence, we can suppose that

lim inf
n→+∞

dΣn(xn, yn) = lim
n→+∞

dΣn(xn, yn).

Given ε > 0, we choose a sequence {γn}n∈N such that γn ∈ Cxn,yn and

Θ(H1(γn \ Σn),H1(γn),H1(Σn)) ≤ dΣn(xn, yn) + ε.

Up to a subsequence we can suppose that γn → γ (it is easy to check
that xn → x and yn → y imply γ ∈ Cx,y) and

H1(γ \ Σ) ≤ lim
n
H1(γn \ Σn),

H1(γ) ≤ lim
n
H1(γn),

H1(Σ) ≤ lim
n
H1(Σn).

Using the semicontinuity and monotonicity of Θ (Propositions 4.4 and
4.5), we obtain

dΣ(x, y) ≤ Θ
(
H1(γ \ Σ),H1(γ),H1(Σ)

)
≤ Θ

(
lim

n→+∞
H1(γn \ Σn), lim

n→+∞
H1(γn), lim

n→+∞
H1(Σn)

)
≤ lim inf

n→+∞
Θ
(
H1(γn \ Σn),H1(γn),H1(Σn)

)
≤ lim inf

n→+∞
dΣn(xn, yn) + ε.

The arbitrary choice of ε gives then inequality (5.7). �

As a consequence of Proposition 5.1 we have the following Corollary.
12



Corollary 5.2. Let {xn}n∈N and {yn}n∈N be sequences in K such that
xn → x and yn → y. If Σ is a closed connected set, then

dΣ(x, y) ≤ lim inf
n→+∞

dΣ(xn, yn).

In other words, dΣ is a lower semicontinuous function on K ×K.

Proposition 5.5 will play a crucial role in the proof of our main exis-
tence result. We split its proof in the next two lemmas for convenience.

Lemma 5.3. Let X be a compact metric space, {fn}n∈N a sequence
of positive real valued functions defined on X. Let also g be a contin-
uous positive real valued function defined on X. Then, the following
statements are equivalent:

(1) ∀ε > 0 ∃N : ∀n ≥ N ∀x ∈ X g(x) ≤ fn(x) + ε,
(2) ∀x ∈ X ∀xn → x g(x) ≤ lim infn fn(xn).

Proof.

• Let xn → x. Then

g(xn) = fn(xn) + (g(xn)− fn(xn)) ≤ fn(xn) + ε

By the continuity of g, taking the lower limit we achieve

g(x) ≤ lim inf
n→+∞

fn(xn) + ε. (5.8)

Then (1) ⇒ (2) is established when ε→ 0+.
• Let us now prove that (2) ⇒ (1). Suppose on the contrary that

there exists a positive ε and an increasing sequence of positive
integers {nk}k such that

g(xnk
) ≥ fnk

(xnk
) + ε (5.9)

for a suitable xnk
. Thanks to the compactness of X we can

suppose up to a subsequence that xnk
→ x. Define

xn =

{
xnk

if n = nk for some k
x otherwise

Then xn → x, and g(x) ≤ lim infn fn(xn). From (5.9) it follows,

g(x) ≥ lim inf
k→+∞

fnk
(xnk

) + ε ≥ lim inf
n→+∞

fn(xn) + ε ≥ g(x) + ε

which is false. �

Lemma 5.4. Let f be a lower semicontinuous function defined on a
metric space (X, d) which ranges in [0,+∞]. Then the set of functions
{gt : t ≥ 0} defined by

gt(x) = inf{f(y) + td(x, y) : y ∈ X}
satisfies the following properties:

• gt ≥ 0
• gt is t-Lipschitz continuous
• gt(x) ↗ f(x).

13



Proof. See Lemma 1.3.1 of [1] or Proposition 1.3.7 of [4]. �

Proposition 5.5. Let {fn}n∈N and f be non-negative lower semi-
continuous functions, all defined on a compact metric space (X, d).
Let {µn}n∈N be a sequence of nonnegative measures on X such that
µn ⇀

∗ µ. Suppose that

∀x ∈ X ∀xn → x f(x) ≤ lim inf
n→+∞

fn(xn).

Then ∫
X

f dµ ≤ lim inf
n→+∞

∫
X

fn dµn.

Proof. Let ψ be a continuous function with compact support such that
0 ≤ ψ ≤ 1. Let gt be the function of Lemma 5.4; since gt satisfies the
hypothesis of Lemma 5.3 with g = gt, we have gt ≤ fn + ε for n large
enough and then∫

X

gtψ dµ = lim
n→+∞

∫
X

gtψ dµn ≤ lim inf
n→+∞

∫
X

fn dµn.

Taking the supremum in t and ψ, we obtain∫
X

f dµ ≤ lim inf
n→+∞

∫
X

fn dµn. �

We may now state and prove our existence result.

Theorem 5.6. The problem

min{T (Σ) : Σ ∈ C }
admits a solution.

Proof. First, let us prove that for every l > 0 the class

Dl := {Σ : Σ ∈ C , H1(Σ) ≤ l}
is a compact subset of the metric space (C (K), dH). Since (C (K), dH)
is a compact space, it is enough to show that Dl is closed. We already
know that the Hausdorff limit of a sequence of closed connected set is
a closed connected set. If {Σn}n∈N is a sequence of closed connected
sets such that H1(Σn) ≤ l

Σn → Σ =⇒ H1(Σ) ≤ lim inf
n→+∞

H1(Σn) ≤ l

by Go lab Theorem (Theorem 3.2).
Second, by our assumption on the function J

dΣ(x, y) ≥ G(H1(Σ))

so that
T (Σ) ≥ G(H1(Σ)).

Then, if {Σn}n∈N is a minimizing sequence, the sequence of 1-dimensio-
nal Hausdorff measures {H1(Σn)}n∈N must be bounded, i.e. H1(Σn) ≤
l, for some l > 0.

14



If we prove that the functional Σ 7→ T (Σ) is sequentially lower semi-
continuous on the class Dl, then then existence of an optimal Σ will
be a consequence of the fact that a sequentially lower semicontinuous
function takes a minimum on a compact metric space. Let {Σn}n∈N
be a sequence in Dl such that Σn → Σ. Let {µn}n∈N be an optimal
transport plan for the transport problem

min

{∫
K×K

dΣn(x, y)dµ : π+
#µ = µ+, π−#µ = µ−

}
.

Up to a subsequence we can suppose µn ⇀
∗ µ for a suitable µ. It is

easy to see that µ is a transport plan between µ+ and µ−.
Since by Proposition 5.1 dΣ(x, y) ≤ lim infn dΣn(xn, yn) for all xn →

x and yn → y, by Lemma 5.5 we have∫
K×K

dΣ(x, y) dµ ≤ lim inf
n→+∞

∫
K×K

dΣn(x, y) dµn. (5.10)

Then by (5.10) we have

T (Σ) ≤
∫

K×K

dΣ(x, y) dµ

≤ lim inf
n→+∞

∫
K×K

dΣn(x, y) dµn = lim inf
n→+∞

T (Σn). �

We end with the following remark.

Remark 5.7. Note that if Σn is a minimizing sequence, then the mea-
sure µ obtained in the proof of Theorem 5.6 is an optimal transport
plan for the transport problem

min

{∫
K×K

dΣ(x, y) dµ : π+
#µ = µ+, π−#µ = µ−

}
.
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[2] G. Bouchitté and G. Buttazzo. Characterization of Optimal Shapes and Masses
through Monge-Kantorovich Equation. J. Eur. Math. Soc. (JEMS), 2001.

15



[3] A. Brancolini. Problemi di Ottimizzazione in Teoria del Trasporto e
Applicazioni. Master’s thesis, Università di Pisa, 2002. Available at
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