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Zusammenfassung:

Die vorliegende Arbeit liefert einen Beitrag zur Regularitätstheorie für nichtlineare ellipti-
sche Systeme partieller Differentialgleichungen zweiter Ordnung. Wir betrachten schwache
Lösungen u ∈ g + W 1,p

0 (Ω, RN ) mit vorgeschriebenen Randwerten g ∈ W 1,p(Ω, RN ) des
inhomogenen elliptischen Systems

−div a( · , u,Du) = b( · , u,Du) in Ω

für ein beschränktes C1-Gebiet Ω ⊂ Rn und Koeffizienten a(·, ·, ·), die den üblichen Bedingun-
gen bzgl. Stetigkeit, Wachstum und Elliptizität genügen. Die Inhomogenität b(·, ·, ·) sei eine
Carathéodory-Funktion, die entweder eine kontrollierbare oder eine natürliche Wachstums-
bedingung erfüllt. Unter diesen Voraussetzungen werden vor allem für den subquadratischen
Fall 1 < p < 2 höhere Integrierbarkeits- bzw. Regularitätsaussagen der folgenden Art (bis
zum Rand von Ω) erzielt:

Sind Ω sowie die Randdaten g von der Klasse C1,α, α ∈ (0, 1), und sind die Koeffizienten
Hölder-stetig mit Exponent α in den ersten beiden Variablen, so geben wir mithilfe der
Methode der A-harmonischen Approximation eine Charakterisierung der regulären Punkte
von Du bis zum Rand. Der Beweis führt direkt zur optimalen höheren Regularität auf der
regulären Menge (d. h. lokale Hölder-Stetigkeit von Du zum Exponenten α).

Für C1-Randwerte g sowie gleichmäßig stetige Koeffizienten zeigen wir Calderón-Zygmund-
Abschätzungen, ein höheres Integrabilitätsresultat, bei dem im Unterschied zu klassischen Re-
sultaten nach Gehring der Gewinn an Integrierbarkeit in quantifizierter Weise bestimmt wird.
Hängen die Koeffizienten nicht explizit von u ab und liegt die Inhomogenität b(x, u, z) ≡ b(x)
in Lp/(p−1), so gilt: b ∈ Lq/(p−1)(Ω, RN ) und g ∈ W 1,q(Ω, RN ) garantieren Du ∈ Lq(Ω, RnN )
für q ∈ [p, np

n−2 + δ1] (bzw. q beliebig, falls n = 2).

In niedrigen Dimensionen n ∈ (p, p + 2] beweisen wir außerdem mit der direkten Methode
und Morrey-Abschätzungen: u ist lokal Hölder-stetig zu jedem Exponenten λ ∈ (0, 1− n−2

p )
außerhalb einer singulären Menge, deren Hausdorffdimension kleiner als n − p ist. Dieses
Resultat gilt sowohl für nicht-degenerierte als auch für degenerierte Systeme.

Im letzten Teil der Arbeit beschäftigen wir uns mit Techniken, die eine Abschätzung der Haus-
dorffdimension der singulären Menge von Du in Ω erlauben. Dabei finden alle bisher erzielten
Resultate ihre Anwendung. Sind Ω und g von der Klasse C1,α für ein α ∈ (0, 1) und die Ko-
effizienten Hölder-stetig mit Exponent α in den ersten beiden Variablen, so stellt sich heraus,
dass die Hausdorff-Dimension der singulären Menge von Du höchstens min{n−p, n−2α} ist,
falls n ∈ (p, p + 2] erfüllt ist. Somit ist insbesondere für α > 1

2 fast jeder Randpunkt regulär
(für eine natürliche Wachstumsbedingung an die Inhomogenität wird dies nur für den Fall
p = 2 gezeigt). Ferner gilt dieselbe Aussage für Koeffizienten der Form a(x, u, z) ≡ a(x, z)
unter einer kontrollierbaren Wachstumsbedingung ohne Einschränkung an die Dimension n.
Der Beweis basiert auf endlichen Differenzen-Operatoren, Interpolationstechniken und ge-
brochenen Sobolev-Räumen. Um dieser Strategie auch am Rand folgen zu können, stellen
wir zwei unterschiedliche Methoden vor: für kontrollierbares Wachstum gehen wir indirekt
vor und nutzen eine Familie von Vergleichsabbildung, die Lösungen eines regularisierten Sys-
tems sind, sowie Calderón-Zygmund-Abschätzungen. Für natürliches Wachstum hingegen
argumentieren wir direkt und verwenden die Tatsache, dass schichtweise gemittelte Koef-
fizienten in normaler Richtung schwach differenzierbar sind.
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Abstract:

The current thesis makes a contribution to the field of regularity theory of second-order non-
linear elliptic systems. We consider weak solutions u ∈ g+W 1,p

0 (Ω, RN ) of the inhomogeneous
elliptic system

−div a( · , u,Du) = b( · , u,Du) in Ω

with prescribed boundary data g ∈ W 1,p(Ω, RN ), a bounded domain Ω ⊂ Rn of class C1 and
a vector field a(·, ·, ·) which satisfies standard continuity, ellipticity and growth conditions.
The inhomogeneity b : Ω × RN × RnN → RN is assumed to be a Carathéodory function
obeying either a controllable or a natural growth condition. Under these assumptions, the
following higher integrability and regularity results (up to the boundary of Ω) are achieved,
mainly for the subquadratic case 1 < p < 2:

We first require that Ω and g are of class C1,α, α ∈ (0, 1), and that the coefficients are Hölder
continuous with exponent α with respect to the first and second variable. Via the method
of A-harmonic approximation we give a characterization of regular points for Du up to the
boundary which extends known results to the inhomogeneous case. The proof yields directly
the optimal higher regularity on the regular set (i. e., local Hölder continuity of Du with
exponent α).

Provided that the boundary data g is of class C1 and that the coefficients are uniformly
continuous we then show Calderón-Zygmund estimates, a higher integrability result that
yields, in contrast to classical higher integrability obtained from the application of Gehring’s
Lemma, a quantified gain in the higher integrability exponent. If the coefficients do not
depend explicitly on u and if the inhomogeneity b(x, u, z) ≡ b(x) belongs to Lp/(p−1), then
there holds: b ∈ Lq/(p−1)(Ω, RN ) and g ∈ W 1,q(Ω, RN ) imply Du ∈ Lq(Ω, RnN ) for q ∈
[p, np

n−2 + δ1] (or q arbitrary if n = 2).

Moreover, in low dimensions n ∈ (p, p + 2], we prove via the direct method and Morrey-type
estimates: u is locally Hölder continuous with every exponent λ ∈ (0, 1 − n−2

p ) outside a
singular set of Hausdorff dimension less than n − p. This result holds true both for non-
degenerate and degenerate systems.

The last part of the thesis is devoted to techniques which allow us to estimate the Hausdorff
dimension of the singular set of Du in Ω. Here, all the result achieved so far are of impor-
tance. Assuming that Ω and g are of class C1,α for some α ∈ (0, 1) and that the coefficients
are Hölder continuous with exponent α with respect to the first and second variable, we
find: The Hausdorff dimension of the singular set of Du does not exceed min{n− p, n− 2α}
whenever n ∈ (p, p + 2]. In particular, for α > 1

2 this implies that almost every boundary
point is in fact a regular one (for a natural growth condition this is proved only for p = 2).
Furthermore, this conclusion remains valid for coefficients of the form a(x, u, z) ≡ a(x, z)
and inhomogeneities of controllable growth without any restriction on the dimension n. The
proof is based on finite difference operators, interpolation techniques and fractional Sobolev
spaces. To extend this strategy up to the boundary, we present two different methods: for
controllable growth we proceed directly and use a family of comparison maps (which are
solutions of some regularized system) as well as Calderón-Zygmund estimates. For natural
growth, however, we argue in a direct way and employ the fact that slicewise mean values
of the coefficients are weakly differentiable in the normal direction.
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Chapter 1

Introduction

Partial differential equations are often motivated by problems from science and serve as sim-
plified models of physical phenomena. In general, we investigate the existence of a solution,
and furthermore, its qualitative properties like regularity and differentiability. An intuitive
example is the solution to the minimal surface equation – such as a soap film realizing the
least surface area amongst all surfaces spanned by a wire. This equation like many other
partial differential equations in science arises from the universal principle that nature favours
states of minimal type or energy. For this reason, partial differential equations have been of
substantial interest for a long time, and they have finally been studied in a systematic way –
independent of practical applications – since the end of the 19th century. One of the crucial
moments was the year 1900 when David Hilbert formulated 23 unsolved mathematical prob-
lems in his famous lecture at the International Congress of Mathematicians in Paris, one of
them being

Are the solutions of regular problems in the calculus of variations necessarily analytic?

In general, this question was answered in the negative, which in turn raised new questions
when trying to obtain regularity results in some weaker sense. One discarded the strategy
to search for classical solutions (i. e., solutions which are sufficiently smooth). Instead, even
in the cases where the previous question is answered in the affirmative, one first looks for
“weak” solutions in suitable Sobolev spaces solving the equation in an integrated form. This
allows to infer the existence of weak solutions via methods from functional analysis like
Galerkin’s method for nonlinear monotone operators. However, in the following we will only
briefly touch existence problems.

Then, in a second step, one is concerned with the regularity properties of these solutions.
Starting from the famous papers of De Giorgi, Nash and Moser [DG57, Nas58, Mos60] the
theory of (scalar-valued) solutions to single equations is by now well-understood. In partic-
ular, it has been shown, under quite general assumptions on the coefficients of the equation,
that solutions are in fact smooth. On the other hand, in the vectorial case counterexamples
of De Giorgi [DG68] and of Giusti and Miranda [GM68b] dating from 1968 have revealed
that solutions to elliptic systems (as well as minima of variational integrals) may develop
singularities even if the coefficients are analytic. Hence, in contrast to equations, we can
only expect partial regularity results for general nonlinear systems, which means that the
solution is regular outside a singular set. Having to abandon full regularity, we are then
interested in estimating the size of the singular set. This will be the main objective of this
thesis, focusing on estimates up to the boundary and the subquadratic setting.

1



2 Chapter 1. Introduction

The different chapters of this work are mostly self-contained. Thus, we do not provide
an extensive discussion of the historical background of the results in this introduction and
postpone it to the following chapters. For a broader discussion, we refer to Giaquinta’s
monograph [Gia83] and Mingione’s recent survey article [Min06]. Here, we rather concentrate
on giving a rough overview of the results achieved in the current work and how they fit in
the framework of dimension reduction of the singular set. We also give a brief explanation of
some features of the proofs. We will now begin by describing the system under consideration:

Let n, N ∈ N, n ≥ 2, p ∈ (1, 2), and let Ω ⊂ Rn be a bounded domain of class C1. We
consider weak solutions u ∈ g + W 1,p

0 (Ω, RN ) of the inhomogeneous elliptic system

−div a( · , u,Du) = b( · , u,Du) in Ω (1.1)

with prescribed boundary values g ∈ W 1,p(Ω, RN ). The vector field a : Ω×RN×RnN → RnN

is supposed to be of class C1 with respect to the last variable (possibly apart from the origin)
and to satisfy standard ellipticity and growth conditions

|a(x, u, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ,

ν
(
µ2 + |z|2

) p−2
2 |λ|2 ≤ Dza(x, u, z) λ · λ ≤ L

(
µ2 + |z|2

) p−2
2 |λ|2 ,

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
for all x, x̄ ∈ Ω, u, ū ∈ RN and z, λ ∈ RnN , where 0 < ν ≤ L and µ ∈ [0, 1] are arbitrary
constants and ω : R+ → (0, 1] is a modulus of continuity. The inhomogeneity b : Ω × RN ×
RnN → RN is assumed to be a Carathéodory function obeying either a controllable or a
natural growth condition, i. e.,

|b(x, u, z)| ≤ L1 (1 + |z|2)
p−1
2 or |b(x, u, z)| ≤ L2 (1 + |z|2)

p
2 .

We want to comment briefly on the weak formulation of the Dirichlet problem (1.1) and a
suitable space for weak solutions depending on which growth condition on the inhomogeneity
is assumed: Here the term weak solution signifies that u solves (1.1) in integrated form,
i. e., there holds

∫
Ω a(·, u,Du) · Dϕdx =

∫
Ω b( · , u,Du) · ϕ dx for all ϕ ∈ C∞

0 (Ω, RN ). The
boundary condition u = g on ∂Ω is to be understood in the sense of traces. In particular,
the existence of second derivatives of u is not required for the weak formulation of (1.1). In
general, we shall consider weak solutions in the Sobolev space W 1,p(Ω, RN ). Then, taking
into account the growth condition on the coefficients and on the inhomogeneity, we note
that the integrals arising in the weak formulation are well-defined and finite. In case of
a natural growth condition, however, we restrict our attention to bounded weak solutions
u ∈ W 1,p(Ω, RN ) ∩ L∞(Ω, RN ). To justify this restriction, we recall the following example
from [Hil82, Section 2]: Considering the equation 4u = |Du|2 in B1/2 ⊂ R2, we observe
that the functions u1 ≡ 0 and u2 = log log(1/|x|) − log log 2 are two distinct solutions
in W 1,2(B1/2) both vanishing on the boundary ∂B1/2. A straightforward adaption of this
example also applies in the subquadratic setting. Hence, taking W 1,p(Ω, RN ) to be the class
of admissible weak solutions may result in a violation of the “principle of local uniqueness”
which in turn is related to the occurence of irregular weak solutions even in the case of
equations, see also [LU68, Section 1.2]. Apart from boundedness, we will have to assume an
additional smallness condition on the weak solution u. More precisely, we will assume for
the remainder of this introduction that one of the following two conditions holds:
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(1) the inhomogeneity b(·, ·, ·) obeys a controllable growth condition,

(2) the inhomogeneity b(·, ·, ·) obeys a natural growth condition and u ∈ L∞(Ω, RN ) with
‖u‖L∞(Ω,RN ) ≤ M and 2L2M < ν.

Keeping in mind these assumptions, we are concerned with the following topics related to
higher integrability and regularity (up to the boundary of Ω):

Partial regularity of Du

We now consider non-degenerate systems (µ > 0) under the assumption of Hölder continuous
coefficients, that is ω(t) = min{1, tα} for some α > 0. As mentioned above, passing from
equations to systems (i. e., from N = 1 to N > 1), weak solutions may develop singularities.
Consequently, in a first step, one is interested in proving a partial regularity result, namely
that Du is locally Hölder continuous outside a set of Ln-measure zero. For this purpose we
introduce the set of regular points

RegDu(Ω) :=
{
x ∈ Ω : Du ∈ C0(U ∩ Ω, RnN ) for a neighbourhood U of x

}
and the set of singular points SingDu(Ω) := Ω \ RegDu(Ω) of the gradient Du. The proof
of partial regularity results for nonlinear systems usually relies on a linearization technique
which involves the frozen (linearized) system. Since solutions to linear systems enjoy good
a priori regularity estimates, a comparison principle yields a decay estimate for Du which
is the crucial step in order to control its local behaviour at a given point in Ω. Actually,
there are different proofs of partial regularity, which mainly differ in the implementation
of the linearization described above. By now, these techniques are the indirect approach
via the blow-up technique, the direct approach, and the method of A-harmonic approxima-
tion. Partial regularity results using these methods were first achieved in the interior (in
the quadratic case) by Morrey, Giusti and Miranda [Mor68, GM68a], Giaquinta, Modica
and Ivert [GM79, Ive79], and Duzaar and Grotowski [DG00], respectively. Furthermore,
Grotowski and Hamburger [Gro00, Ham07] succeeded in extending these techniques up to
the boundary in the (super-)quadratic case and gave a characterization of regular boundary
points (see also [Kro05] for the analogous results concerning almost minimizers of quasicon-
vex variational integrals).

Various subsequent papers were concerned with regularity results for more general nonlinear
systems. We only mention the role of the modulus of continuity ω(·): The assumption of
Hölder continuity was weakened by Duzaar, Gastel and by Wolf to Dini-continuous coef-
ficients requiring merely

∫ r
0

ω(ρ)
ρ dρ < ∞ for some r > 0, which still allows to conclude a

partial regularity result for Du, see [DG02, Wol01a]. Assuming merely continuity of the
coefficients, Foss and Mingione [FM08] recently gave a positive answer to the question of low
order partial regularity.

Our first result in this paper is a partial regularity result for inhomogeneous systems with
sublinear growth, stating that Du is in fact not only continuous but Hölder continuous with
optimal exponent on the set of regular points RegDu(Ω), and a characterization of RegDu(Ω)
(see Theorem 3.1 and Theorem 3.2):
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Theorem 1.1: Consider p ∈ (1, 2), α ∈ (0, 1), a bounded domain Ω ⊂ Rn of class C1,α

and g ∈ C1,α(Ω, RN ). Let u ∈ g + W 1,p
0 (Ω, RN ) be a weak solution of (1.1) under the

assumptions stated above with ω(t) = min{1, tα}. Then, for y ∈ RegDu(Ω) there holds: Du

is Hölder continuous with exponent α in a neighbourhood of y in Ω, and the set of singular
boundary points is contained in Σ1 ∪ Σ2 with

Σ1 =
{

y ∈ Ω: lim inf
ρ→ 0+

∫
−
Ω∩Bρ(y)

∣∣V (Du)−
(
V (Du)

)
Ω∩Bρ(y)

∣∣2 dx > 0
}

,

Σ2 =
{

y ∈ Ω: lim sup
ρ→ 0+

∣∣(V (Du)
)
Ω∩Bρ(y)

∣∣ = ∞
}

,

where V : RN → RN is given by V (ξ) = (1 + |ξ|2)(p−2)/4ξ for all ξ ∈ RN . In particular, we
have Ln(SingDu(Ω)) = 0.

The homogeneous case was treated in [Bec05]. Moreover, Wolf [Wol01b] already achieved
some regularity results for the subquadratic situation. Here we follow ideas of Grotowski
[Gro00, Gro02b] for the characterization of regular boundary points in the quadratic case
p = 2 and from Duzaar, Grotowski and Kronz [DGK05] for the subquadratic situation: Our
proof of this partial regularity result is based on the method of A-harmonic approximation
introduced by Duzaar and Steffen [DS02]: using good a priori estimates up to the boundary
for solutions of linear systems with constant coefficients and an adequate Caccioppoli inequal-
ity, this method allows us to derive an excess-decay estimate for the gradient of the weak
solution u of the nonlinear system (1.1). The presence of an inhomogeneity, in particular
in case of a natural growth condition, demands technical modifications, e. g. the derivation
of the Caccioppoli inequality becomes considerably more involved compared to the homoge-
neous situation. From Campanato’s integral characterization of Hölder continuous functions
we finally conclude the desired local Hölder continuity of Du.

Since the boundary ∂Ω itself is of Lebesgue measure zero, Theorem 1.1 does not yield the
existence of a single regular boundary point, whereas due to a counterexample of Giaquinta
[Gia78] the existence of irregular boundary points has been known for a while. In order
to close this gap, the remaining part of the thesis is devoted to finding conditions which
guarantee that the sets Σ1 and Σ2 defined above are not only Ln-negligible sets, but even
allow a suitable upper bound on their Hausdorff dimension. To this end, we first observe that
a measure density result due to Giusti allows us to gain control of the Hausdorff dimension of
Σ1 and Σ2, provided that Du belongs to some “better” space. For example, if the coefficients
do not depend on (x, u), then standard difference quotients reveal Du ∈ W 1,p(Ω, RnN ) which
in turn implies that the Hausdorff dimension of Σ1 and Σ2 does not exceed n−p. Thus, higher
integrability or higher differentiability of Du will be of central interest. These considerations
naturally lead to the investigation of Calderón-Zygmund estimates, a technique which will
enable us to carry higher integrability of the right-hand side and the boundary values over
to the weak solution.

Calderón-Zygmund estimates

In Chapter 5 we focus on weak solutions u ∈ g + W 1,p
0 (Ω, RN ) of the Dirichlet problem (1.1)

in the special situation where the coefficients do not depend explicitly on u, i. e. a(x, u, z) ≡
a(x, z), and where the inhomogeneity b(x, u, z) ≡ b(x) belongs to Lp/(p−1). We study higher
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integrability results for an arbitrary modulus of continuity ω(·) and both the non-degenerate
(µ > 0) and the degenerate (µ = 0) case. Roughly speaking, we are concerned with the
question to what extent higher integrability of the inhomogeneity b and of the boundary
values Dg is inherited by Du.

For the case of equations (N = 1), Caffarelli and Peral [CP98] introduced a method based
on Calderón-Zygmund type covering arguments which allows to prove

b ∈ L
q

p−1

loc (Ω, RN ) ⇒ Du ∈ Lq
loc(Ω, RnN ) (1.2)

without any restriction on q. The crucial point here is that one obtains L∞-estimates for
the gradient of the weak solution to a suitable comparison problem. Since an analogous
L∞-estimate is available for systems exhibiting a special structure such as the p-Laplacean,
the latter assertion also holds in this situation, see [Iwa83]. We mention that both results
were extended later by Acerbi and Mingione to non-standard p(x)-growth. In contrast, for
general nonlinear systems a corresponding comparison estimate can no longer be expected.
In the superquadratic case Kristensen and Mingione proved in [KM06] that for q ≤ np

n−2

higher integrability in the sense of (1.2) is still obtained. Moreover, if the boundary data
is assumed to satisfy g ∈ W 1,q(Ω, RN ), the higher integrability estimate is achieved for the
whole domain Ω. Arguing similarly to [KM06], we will prove the analogous result in the
subquadratic case (see Theorem 5.1):

Theorem 1.2: Let Ω ⊂ Rn be a bounded domain of class C1 and let u ∈ g+W 1,p
0 (Ω, RN ) be

a weak solution of (1.1) with coefficients a(x, u, z) ≡ a(x, z) and inhomogeneity b(x, u, z) ≡
b(x). Assume that g ∈ W 1,q(Ω, RN ), b ∈ Lq/(p−1) with q ∈ [p, s1] and

s1 ∈ (p,∞) if n = 2, and s1 =
np

n− 2
if n > 2

Then, there holds Du ∈ Lq(Ω, RnN ) with∫
Ω

(
µ2 + |Du|2

) q
2 dx ≤ c

∫
Ω

(
µ2 + |Dg|2 + |b|

2
p−1

) q
2 dx

for a constant c depending only on the structure constants and Ω.

As a main feature of this Calderón-Zygmund result we find a quantified gain in the higher
integrability exponent – in contrast to classical higher integrability obtained from the appli-
cation of Gehring’s Lemma. In the first step of the proof we deduce in Chapter 4 that the
solution to a suitable frozen comparison problem belongs to W 2,p. This is achieved by the
use of standard difference quotient techniques. However, some difficulties arise from the facts
that we need the higher differentiability result up to the boundary and that our strategy
immediately covers degenerate systems with µ = 0. The Sobolev-Poincaré inequality implies
a W 1,np/(n−2)-estimate (respectively W 1,∞ if n = 2) for the comparison solution. The proof
of Theorem 5.1 is then based on a local comparison principle, basic properties of the Hardy-
Littlewood maximal function and Calderón-Zygmund coverings, applied to the super-level
sets of the maximal functions of |Du|p and |Dg|p + |b|p/(p−1), respectively.

Having solved the problem of higher integrability, we are now in a position to deal with the
second obstacle to proving an upper bound for the Hausdorff dimension of the singular set
SingDu(Ω), namely with the fact that the coefficients may depend explicitly on u. Let us
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explain why this is a critical point in our situation: considering coefficients of the form a(x, z)
which are Lipschitz-continuous with respect to the x-variable, it is well-known that the Haus-
dorff dimension of SingDu(Ω) does not exceed n−2. Contrarily imposing only Hölder continu-
ity with an arbitrarily small exponent we trivially have dimH(SingDu(Ω)) ≤ n. This suggests
that the degree of Hölder continuity of the coefficients is related not only to the regularity of
the solution, but also to the size of the singular set. Starting from this observation, Mingione
[Min03b] accomplished in some sense an interpolation between Lipschitz continuity on the
one hand and Hölder continuity on the other, and obtained dimH(SingDu(Ω)) ≤ n−2α in the
interior, provided that the coefficients are Hölder continuous in x with exponent α ∈ (0, 1).
We now pass to coefficients of the form a(x, u, z). Following the above philosophy, we need
to investigate the regularity of the map x 7→ (x, u(x)). However, recalling that the weak
solution u to (1.1) might develop singularities, this map need not to be Hölder continu-
ous. Anyway, at this stage we may exploit the fact that u is actually a weak solution, and
therefore, we next study a situation where u is locally Hölder continuous at least outside
“irrelevant” sets (i. e., sets which are negligible with respect to the Hn−1-measure since our
final aim is to prove the existence of regular boundary points).

Partial regularity of u in low dimensions

In Chapter 6, we return to the case where the prescribed boundary data g is of class C1

and where no further assumption on the modulus of continuity ω(·) is made. We study
partial regularity of u in low dimensions n ∈ (p, p + 2]. Several results in slightly different
situations were established by Campanato, e. g. in [Cam82b, Cam87a, Cam87b], mostly in
the superquadratic case. He observed that the assumption n ≤ p+2 allows to prove that the
weak solution u is locally Hölder continuous outside a singular set of Hausdorff dimension
less than n − p. In particular, almost every boundary point is a regular one for u (but not
yet for its gradient Du). Some extensions concerning u-dependence and inhomogeneities
were given later by Arkhipova [Ark97, Ark03] and by Idone [Ido04a, Ido04b]. In Theorem
6.1 we provide the corresponding up-to-the-boundary result for subquadratic systems with
inhomogeneities:

Theorem 1.3: Let Ω ⊂ Rn be a bounded domain of class C1 and g ∈ C1(Ω, RN ). Let
u ∈ W 1,p(Ω, RN ) be a weak solution of (1.1) under the assumptions stated above. Then there
exists a constant δ > 0 such that for n > p > n− 2− δ there holds

dimH

(
Ω \ Regu(Ω)

)
< n− p and u ∈ C0,λ

loc

(
Regu(Ω), RN

)
for all λ ∈

(
0, min{1− n−2−δ

p , 1}
)
.

It is worth mentioning that this result applies to both the non-degenerate and the degenerate
case. The main difficulty lies, once more, in the derivation of a suitable comparison estimate
which has already been exploited in a weaker version in the Calderón-Zygmund estimates.
The proof of Theorem 1.3 is then obtained by the direct method and relies on certain Morrey-
type estimates from Campanato’s papers. Dealing with inhomogeneities obeying a natural
growth condition requires some technical modifications which are adapted from Arkhipova’s
work [Ark03].
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Existence of regular boundary points

The last part of the thesis is devoted to estimates of the Hausdorff dimension of the singular
set of Du in Ω. In particular, in some cases we will prove that the dimension is less than
n − 1, thus coming up with the existence of regular boundary points. Here we consider
the non-degenerate case µ = 1 and ω(t) = min{1, tα} for some α ∈ (0, 1). For a long
time suitable upper bounds for the Hausdorff dimension of the singular set Singu(Ω) of u

were known only for special situations – such as elliptic equations, quasilinear systems, see
[Wie76, HW75, Gro00, Gro02a], or low dimensions. For the general situation, it was a long-
standing open question to find conditions which allow to infer an analogous estimate for
SingDu(Ω) of the gradient Du. As mentioned above, the problem concerning the dimension
reduction in the interior of Ω was first tackled by Mingione in [Min03b, Min03a] where he
succeeded in showing that the Hausdorff dimension of SingDu(Ω) is not larger than n− 2α,
provided that the coefficients do not depend explicitly on u or that the assumption of low
dimension is satisfied. Also inhomogeneities with natural growth were included in these
interior estimates. Assuming that the bounded domain Ω and the prescribed boundary
data g are of class C1,α, Duzaar, Kristensen and Mingione [DKM07] eventually obtained
the essential estimate dimH(SingDu(Ω)) ≤ n − 2α up to the boundary (for p ∈ (1, 2) for
homogeneous systems, for p ≥ 2 for inhomogeneous systems with a controllable growth
condition). In particular, for α > 1

2 this implies that almost every boundary point is in fact
a regular one. Our first result in this context is given in Theorems 7.1, 7.2 and extends
[DKM07] to subquadratic systems with inhomogeneities of controllable growth:

Theorem 1.4: Let Ω be a domain of class C1,α and g ∈ C1,α(Ω, RN ) for an exponent
α > 1/2. Let u ∈ W 1,p(Ω, RN ) be a weak solution of (1.1) under the assumptions stated
above and a controllable growth condition on b(·, ·, ·). Furthermore, let one of the following
assumptions be fulfilled:

(i) the vector field a(·, ·, ·) is independent of u, i. e., a(x, u, z) ≡ a(x, z),

(ii) the assumption p > n− 2 of low dimension holds.

Then Hn−1-almost every boundary point is a regular point for Du.

The proof of the results in [Min03b, Min03a] is based on finite difference operators, inter-
polation techniques and fractional Sobolev spaces, combined in a delicate iteration scheme.
The main difficulty is to find estimates which are known as Nikolski-type estimates and
which bound the integral of finite differences of Du in terms of the step-size. Extending
this strategy up to the boundary, we initially get the corresponding estimates from testing
the system with classical differences only in tangential direction, but the missing normal
direction cannot be immediately obtained by exploiting the system. To overcome this prob-
lem, we follow the arguments of Duzaar, Kristensen and Mingione [DKM07] and construct
a family of comparison maps which are solutions of some regularized system and for which
the existence of second-order derivatives is known. Then, in every step of the iteration,
we gain via the Calderón-Zygmund theory some higher integrability of the gradient of the
comparison map, which in turn is used to improve the integrability of Du. Hence, for the
situations (i) and (ii) in Theorem 1.4, we find a suitable fractional Sobolev estimate for Du,
which ensures that the Hausdorff dimension of the singular set SingDu(Ω) does not exceed
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n− 2α and min{n− p, n− 2α}, respectively. This immediately implies the statement of the
Theorem.

Moreover, extending Mingione’s strategy up to the boundary we present a second approach
(implemented only in the quadratic case p = 2) which applies to systems with inhomo-
geneities of natural growth. In the low dimensional case we obtain (see Theorem 8.1):

Theorem 1.5: Consider n ∈ {2, 3, 4} and α > 1/2. Let Ω be a domain of class C1,α and
g ∈ C1,α(Ω, RN ). Let u ∈ W 1,2(Ω, RN ) ∩ L∞(Ω, RN ) be a weak solution of (1.1) under the
assumptions stated above and a natural growth condition on b(·, ·, ·) (with ‖u‖L∞(Ω,RN ) ≤ M

for some M > 0 such that 2L2M < ν). Then Hn−1-almost every boundary point is a regular
point for Du.

In contrast to the previous proof, we make use of the system in a direct way and employ an
observation of Kronz [Kro], namely that slicewise mean values of the coefficients are weakly
differentiable in the normal direction which is essential for the up-to-the-boundary estimates.
This enables us to find in every step of the iteration the desired Nikolski-type estimates and
to end up with a fractional Sobolev estimate for Du analogous to above.
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Chapter 2

Preliminaries
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2.1 Notation

We start with some remarks on the notation used throughout the whole work: we write

Bρ(x0) =
{
x ∈ Rn : |x− x0| < ρ

}
,

B+
ρ (x0) =

{
x ∈ Rn : xn > 0, |x− x0| < ρ

}
for an open ball, respectively the intersection of an open ball with the upper half-space
Rn−1 × R+, centred at a point x0 ∈ Rn (respectively ∈ Rn−1 × R+ in the latter case)
with radius ρ > 0. Be careful with this notation: the centre x0 is not assumed to be
located in general on the plane Rn−1 × {0}. For ease of notation it might even occur the
case Bρ(x0) ≡ B+

ρ (x0) when Bρ(x0) ⊂ Rn−1 × R+. Sometimes it will be convenient to
treat the n-th component of x ∈ Rn separately; therefore, we set x = (x′, xn) where x′ =
(x1, . . . , xn−1

)
∈ Rn−1. Furthermore, we write

Γρ(x0) =
{
x ∈ Rn : |x− x0| < ρ, xn = 0

}
if x0 ∈ Rn−1 × {0}. In the case x0 = 0 (respectively ρ = 1) we will use the short hand
notations Bρ := Bρ(0), B := B1 as well as B+

ρ := B+
ρ (0), B+ := B+

1 , Γρ := Γρ(0), and
Γ = Γ1(0). Accordingly,

Qρ(x0) =
{
x ∈ Rn : |xi − (x0)i| < ρ, for all 1 ≤ i ≤ n

}
denotes the open cube centred at x0 with side length l(Qρ(x0)) = 2ρ, and Q+

ρ (x0) denotes
the cube intersected with the upper half-plane. The boundary part Qρ(x0) ∩ {xn = 0} will
as well be denoted by Γρ(x0), but the precise meaning of Γρ(x0) will always be clear from
the context.

The function spaces considered below are mainly Hölder spaces Ck,α, Lebesgue spaces Lp

and Sobolev spaces W k,p for k ∈ N0, α ∈ (0, 1] and p ∈ [1,∞] on bounded domains Ω ⊂ Rn.

9
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Also fractional Sobolev spaces, Morrey spaces and Campanato spaces will play a crucial role
in the sequel; the definitions and some important properties will be introduced and discussed
later in more detail.

A function u : Ω → RN is called Hölder continuous with exponent α on Ω if there exists a
constant 0 < c < ∞ such that for all points x, y ∈ Ω the estimate |u(x)− u(y)| ≤ c|x− y|α
is satisfied (analogously for the closure Ω). Then the Hölder seminorm of u is defined as

[u]C0,α(Ω,RN ) := sup
x 6=y∈Ω

{ |u(x)− u(y)|
|x− y|α

}
.

The Hölder space Ck,α(Ω, RN ) consists of all functions u ∈ Ck(Ω, RN ), i. e., k times contin-
uously differentiable, for which the norm

‖u‖Ck,α(Ω,RN ) :=
∑
|β|≤k

sup
x∈Ω

|Dβu(x)|+
∑
|β|=k

[Dβu]C0,α(Ω,RN )

is finite. Here, β = (β1, . . . , βn) ∈ Nn denotes a multi-index of length |β| := β1 + . . . + βn

and Dβu := Dβ1
1 . . . Dβn

n u.

The space Lp is defined as

Lp(Ω, RN ) :=
{
u : Ω → RN : u is Lebesgue-measurable, ‖u‖Lp(Ω,RN ) < ∞

}
equipped with the norm

‖u‖Lp(Ω,RN ) =


( ∫

Ω
|u|p dx

) 1
p (1 ≤ p < ∞)

ess supΩ |u| (p = ∞) ,

where we consider classes of function which differ only on a set of Lebesgue measure zero.
Endowed with this norm Lp(Ω, RN ) is a Banach space (and in the case p = 2 even a Hilbert
space).

The Sobolev space W k,p is defined as

W k,p(Ω, RN ) :=
{
u ∈ Lp(Ω, RN ) : Dβu ∈ Lp(Ω, RN ) ∀ |β| ≤ k

}
,

where Dβu denotes the weak derivative of u. W k,p(Ω, RN ) is also a Banach space, endowed
with the norm

‖u‖W k,p(Ω,RN ) =


( ∑

|β|≤k

∫
Ω
|Dβu|p dx

) 1
p (1 ≤ p < ∞)∑

|β|≤k ess supΩ |Dβu| (p = ∞) .

Furthermore, we denote by W k,p
0 (Ω, Rn) the closure of C∞

0 (Ω, RN ) in the space W k,p(Ω, RN ).
Here, we also introduce the following notation for W 1,p-functions defined on some intersected
ball B+

ρ (x0) or cube Q+
ρ (x0) and which vanish on the flat part of the boundary:

W 1,p
Γ (B+

ρ (x0), RN ) :=
{
u ∈ W 1,p(B+

ρ (x0), RN ) : u = 0 on Γ√
ρ2−(x0)2n

(x′′0)
}

,

W 1,p
Γ (Q+

ρ (x0), RN ) :=
{
u ∈ W 1,p(Q+

ρ (x0), RN ) : u = 0 on Γρ(x′′0)
}

,

where (x0)n < ρ is satisfied and where x′′0 :=
(
(x0)′, 0

)
is the projection of x0 onto Rn−1×{0}.
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For a given set X ⊂ Rn we denote by Ln(X) = |X| and Hk(X) its n-dimensional Lebesgue-
measure and k-dimensional Hausdorff measure, respectively. Furthermore, if h ∈ L1(X, RN )
and 0 < |X| < ∞, we denote the average of h by

(h)X :=
∫
−
X

h dx :=
1
|X|

∫
X

h dx .

On balls and cubes we use from time to time the ambiguous abbreviation (h)z,ρ instead of
(h)Bρ(z) and (h)Qρ(z), respectively.

We will often provide up-to-the-boundary estimates. For this purpose we introduce bounded
domains Ω in Rn, for some n ≥ 2, obeying a certain boundary regularity condition: the
boundary of Ω is said to be of class Ck,τ for k ∈ N0 and some τ ∈ (0, 1) if for every boundary
point x0 ∈ ∂Ω there exist a radius r > 0 and a function h : Rn−1 → R of class Ck,τ such
that (up to an isometry) Ω is locally represented by Ω ∩ Br(x0) =

{
x ∈ Br(x0) : xn >

h(x′)
}

. Thus we can locally straighten the boundary ∂Ω via a Ck,τ -transformation defined
by (x′, xn) 7→

(
x′, xn − h(x′)

)
.

The constants c appearing in the different estimates will all be chosen greater than or equal
to 1, and they may vary from line to line. The dependencies of the constants are usually
indicated, and constants that are referred to will be signed in a unique way.

2.2 Morrey and Campanato spaces

We will also use the Morrey spaces Lp,ς(Ω, RN ) and the Campanato spaces Lp,ς(Ω, RN ). For
more details, the proofs of the Theorems below and an elaborate overview of the fundamental
properties of these spaces, we refer to the original papers of Campanato [Cam63, Cam64,
Cam65] and Meyers [Mey64], and to the monographs of Giusti, [Giu03, Chapter 2.3], or of
Giaquinta, [Gia83, Chapter 3]. In the sequel we shall use the following definitions:

Definition: Let Ω ⊂ Rn be a bounded open set and let 1 ≤ p < ∞. By Lp,ς(Ω, RN ), ς ≥ 0,
we denote the linear (Morrey) space of all functions u ∈ Lp(Ω, RN ) such that

‖u‖p
Lp,ς(Ω,RN )

:= sup
y∈Ω,0<ρ≤diamΩ

ρ−ς

∫
Bρ(y)∩Ω

|u|p dx < ∞ .

By Lp,ς(Ω, RN ), 0 ≤ ς ≤ n + p, we denote the linear (Campanato) space of all functions
u ∈ Lp(Ω, RN ) such that

[u]p
Lp,ς(Ω,RN )

:= sup
y∈Ω,0<ρ≤diamΩ

ρ−ς

∫
Bρ(y)∩Ω

∣∣u− (u)Bρ(y)∩Ω

∣∣p dx < ∞ .

In fact, both conditions stated above depend only on the behaviour of u for radii ρ → 0. The
Morrey space Lp,ς(Ω, RN ) is a Banach space with the norm ‖ · ‖Lp,ς(Ω,RN ) defined above. We
mention that the Morrey spaces Lp,ς(Ω, RN ) reduce to zero for ς > n in view of Lebesgue’s
differentiation theorem. Furthermore, in the definition of the Campanato spaces, it is obvious
that by [ · ]Lp,ς(Ω,RN ) only a seminorm is given, but Lp,ς(Ω, RN ) is also a Banach space,
endowed with the norm ‖ · ‖Lp,ς(Ω,RN ) := [ · ]Lp,ς(Ω,RN ) + ‖ · ‖Lp(Ω,RN ).
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We next consider domains Ω ⊂ Rn satisfying a so-called Ahlfors regularity condition, i. e.,
there exists a positive constant kΩ such that

(KΩ) |Bρ(x0) ∩ Ω| ≥ kΩ ρn for all points x0 ∈ Ω and every radius ρ ≤ diam(Ω) ,

which means that the domains have no external cusps. The constant kΩ depends only on n

and the domain Ω, precisely only on the similarity class of Ω, i. e., ktΩ = kΩ for any t > 0.
The latter condition is for example satisfied by the large class of domains with Lipschitz-
continuous boundary. Now we can deduce important equivalent formulations for Morrey and
Campanato spaces, namely an isomorphy between Morrey and Campanato spaces and an
integral characterization of Hölder continuous maps:

Theorem 2.1 ([Giu03], Proposition 2.3 and Theorem 2.9): Consider p ∈ [1,∞). If
Ω is a bounded open set satisfying the condition (KΩ) and if 0 ≤ ς < n, then Lp,ς(Ω, RN ) is
isomorphic to Lp,ς(Ω, RN ). Furthermore, if Ω is a bounded open set without internal cusps
and if n < ς ≤ n + p, then Lp,ς(Ω, RN ) is isomorphic to the space of Hölder continuous
functions C0,λ(Ω, RN ) with exponent λ = ς−n

p , and the following estimates hold true:

[u]C0,λ(Ω,RN ) ≤ c [u]Lp,ς(Ω,RN ) and ‖u‖C0,λ(Ω,RN ) ≤ c ‖u‖Lp,ς(Ω,RN )

with a constant c depending only on n, p, ς and Ω.

Remark 2.2: We still want to comment on the remaining case ς = n: the Morrey space
Lp,n(Ω, RN ) is isomorphic to L∞(Ω, RN ) with the identity

‖u‖Lp,n(Ω,RN ) = 2
n
p ‖u‖L∞(Ω,RN )

(see [Giu03, Proposition 2.2]), whereas the Campanato space Lp,n(Ω, RN ) is also called the
BMO-space, i. e., the space of all functions with bounded mean oscillation.

We will use the isomorphy stated in the latter theorem in the following form:

Theorem 2.3 ([KM06], Theorem 2.2): Let Br ⊂ Rn be a ball, p ∈ (1, n] and ς ∈ (n −
p, n]. If u ∈ W 1,p(Br, RN ) and Du ∈ Lp,ς(Br, RnN ) then u ∈ C0,λ(Br, RN )∩Lp,ς+p(Br, RN ),
where λ := 1 − (n − ς)/p. Moreover, there exists a constant c depending only on n, p (but
independent of the radius r) such that

[u]C0,λ(Br,RN ) ≤ c [u]Lp,ς+p(Br,RN ) ≤ c ‖Du‖Lp,ς(Br,RN ) .

The same result holds true if Br is replaced by a bounded Lipschitz domain Ω. In this case,
the constant c also depends on the Lipschitz constant of ∂Ω.

2.3 Fractional Sobolev spaces and interpolation

We now extend the notion of the previously defined Sobolev spaces W k,p by allowing also
noninteger values k /∈ N0, i. e., by introducing fractional Sobolev spaces; in the sequel we
will use the notation of [Ada75] (cf. also the papers [KM06, DKM07]). For a bounded open
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set A ⊂ Rn, parameters θ ∈ (0, 1) and q ∈ [1,∞) we write u ∈ W θ,q(A, RN ) provided that
u ∈ Lq(A, RN ) and the following Gagliardo-type norm of u defined as

‖u‖W θ,q(A) :=
( ∫

A
|u(x)|q dx

) 1
q +

( ∫
A

∫
A

|u(x)− u(y)|q

|x− y|n+qθ
dx dy

) 1
q

is finite.

In order to formulate a general criterion for a function to belong to a fractional Sobolev
space we introduce the finite difference operator τe,h via

τe,hG(x) ≡ τe,h(G)(x) := G(x + he)−G(x)

for a vector valued function G : A → RN , a vector e ∈ B1 ⊂ Rn and a real number h ∈ R.
This makes sense whenever x, x + he ∈ A which will always hold in the following when using
τe,h. If e = es, s ∈ {1, . . . , n}, is a standard basis vector, we use the abbreviation τs,h instead
of τes,h. These finite differences are related to the fractional Sobolev spaces (in the interior
as well as in an up-to-the-boundary version) via the next lemma:

Lemma 2.4 ([KM05], Lemma 2.5 and [DKM07], Lemma 2.2): Let G∈Lq(Q+
R, RN ),

q ≥ 1, and assume that for θ ∈ (0, 1], M > 0 and some 0 < r < R we have

n∑
s=1

∫
Q+

r

|τs,hG|q dx ≤ M q |h|qθ

for every h ∈ R satisfying 0 < |h| ≤ d where 0 < d < min{1, R− r} is a fixed number. In the
case s = n we only allow positive values of h. Then G ∈ W b,q(Q+

ρ , RN ) for every b ∈ (0, θ)
and ρ < r. Moreover, there exists a constant c = c(n, q) (in particular, independent of M

and G) such that the following inequality holds true:∫
Q+

ρ

∫
Q+

ρ

|G(x)−G(y)|q

|x− y|n+bq
dx dy ≤ c

(M qεq(θ−b)

θ − b
+
|Q+

R|
εn+bq

∫
Q+

R

|G|q dx
)

,

where ε := min{r − ρ, d}. This result also holds true in the interior without any constraint
on the sign of h with respect to the direction of the differences τs,h; moreover we can also
consider (half-)balls instead of cubes.

Proof: This proof is an adapted version of the proof of [KM05, Lemma 2.5] where the inte-
rior situation was considered. Therefore, we only present the calculations for the boundary
situation. For a vector v =

∑n
s=1 vses ∈ Rn we write v(k) =

∑k
s=1 vses for k = 1, . . . , n with

v(0) = 0. Then, we have

∣∣G(x + v)−G(x)
∣∣ =

∣∣∣ n∑
s=1

τs,vsG(x + v(s−1))
∣∣∣ ≤ n∑

s=1

∣∣τs,vsG(x + v(s−1))
∣∣

whenever x + v(s−1) ∈ Q+
R. We next calculate for ε = min{r − ρ, d} defined as above:∫

Q+
ρ

∣∣G(x + v)−G(x)
∣∣q dx ≤

∫
Q+

ρ

( n∑
s=1

∣∣τs,vsG(x + v(s−1))
∣∣)q

dx

≤ nq−1

∫
Q+

ρ

n∑
s=1

∣∣τs,vsG(x + v(s−1))
∣∣q dx ≤ nqM q|v|qθ
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by assumption for all v ∈ Rn with |v| ≤ ε and vn ≥ 0. Hence, we obtain for each b ∈ (0, θ):∫
{0<|v|≤ε,vn≥0}

∫
Q+

ρ

|G(x + v)−G(x)|q

|v|n+qb
dx dv ≤ nqM q

∫
{0<|v|≤ε,vn≥0}

|v|−n+q(θ−b) dv

≤ c(n, q)
M qεq(θ−b)

θ − b
.

Taking into account the symmetry with respect to x and y we thus infer an estimate for
points (x, y) ∈ Q+

ρ ×Q+
ρ satisfying |x− y| ≤ ε:∫

{(x,y)∈Q+
ρ ×Q+

ρ :|x−y|≤ε}

|G(y)−G(x)|q

|y − x|n+qb
dx dy ≤ 2 c(n, q)

M qεq(θ−b)

θ − b
.

Otherwise if we consider points (x, y) ∈ Q+
ρ ×Q+

ρ satisfying |x−y| > ε, we use the Lq-estimate∫
{(x,y)∈Q+

ρ ×Q+
ρ :|x−y|>ε}

|G(y)−G(x)|q

|y − x|n+qb
dx dy ≤ 2qε−n−bq

∣∣Q+
ρ

∣∣ ∫
Q+

ρ

|G|q dx .

Combining the last two inequalities we arrive at the desired estimate. �

In the case where G is the weak derivative of a W 1,q function v and where an estimate for
finite differences only in tangential direction is known, we are still in a position to state a
fractional differentiability result which is limited to the tangential derivative of v:

Lemma 2.5: Let v ∈ W 1,q(Q+
R, RN ), q ≥ 1, and assume that for θ ∈ (0, 1], M > 0 and

some 0 < r < R we have
n−1∑
s=1

∫
Q+

r

|τs,hDv|q dx ≤ M q |h|qθ (2.1)

for every h ∈ R satisfying 0 < |h| ≤ d where 0 < d < min{1, R− r} is a fixed number. Then
D′v = (D1v, . . . , Dn−1v) ∈ W b,q(Q+

ρ , R(n−1)N ) for every b ∈ (0, θ) and ρ < r.

Proof: We first fix b ∈ (0, θ) and ρ ∈ (0, r). Now we consider arbitrary numbers h′ ∈
R+ and h ∈ R satisfying 0 < |h|, |h′| < min{d, r−ρ

3 }. Then, using Young’s inequality,
standard properties of the difference operator and the assumption (2.1) on finite differences
in tangential direction, we conclude for every ε ∈ (0, θ) and s ∈ {1, . . . , n− 1}:

|h′|−(θ−ε)q+ |h|−(1+ε)q

∫
Q+

r−2d

|τn,h′τs,hτs,−hv|q dx

≤
(
|h′|−q |h|−θq + |h|−q−θq

) ∫
Q+

r−2d

|τn,h′τs,hτs,−hv|q dx

≤ 2 |h′|−q |h|−θq

∫
Q+

r−d

|τs,hτn,h′v|q dx + 2 |h|−q−θq

∫
Q+

r−d

|τs,hτs,−hv|q dx

≤ 2 |h|−θq

∫
Q+

r

|τs,hDnv|q dx + 2 |h|−θq

∫
Q+

r

|τs,hDsv|q dx ≤ 4 M q

uniformly in h, h′. From [Dom04, Lemma 2.2.1] we infer (for possibly smaller values of |h|)

|h′|−(θ−ε)q |h|−q

∫
Q+

r−2d

|τn,h′τs,hv|q dx ≤ c
( ∫

Q+
R

|Du|q dx + M q
)

,
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and the constant c depends only on θ, q, ε, d and r − ρ. Considering the limit h → 0, we
hence end up with

|h′|−(θ−ε)q

∫
Q+

r−2d

|τn,h′Dsv|q dx ≤ c
( ∫

Q+
R

|Du|q dx + M q
)

.

Keeping in mind that the index s ∈ {1, . . . , n − 1} is arbitrary, we may combine the latter
inequality with (2.1) to find

n∑
s=1

∫
Q+

r−2d

|τs,hD′v|q dx ≤ c |h|(θ−ε)q
( ∫

Q+
R

|Du|q dx + M q
)

for every h ∈ R satisfying 0 < |h| ≤ min{d, r−ρ
3 } where we only allow positive values of h if

s = n. Setting ε = (θ − b)/2 the application of the previous Lemma 2.4 with θ, r replaced
by θ − ε, r − 2d yields the desired result. �

The following lemma makes it possible to switch easily from a given decay estimate for finite
differences of V (G) (where V (ξ) = (1 + |ξ|2)(p−2)/4ξ for all ξ ∈ Rk, see Appendix A.1) to the
corresponding decay estimate for the finite differences of G:

Lemma 2.6 ([DKM07], Lemma 2.3): Let G ∈ Lp(Q+
R, RN ), 1 < p < 2, s ∈ {1, . . . , n},

and assume that for θ ∈ (0, 1], M > 0 and 0 < r < R we have∫
Q+

r

∣∣τs,h(V (G))
∣∣2 dx ≤ M2|h|2θ ,

for every 0 < |h| ≤ min{d, R − r}, where 0 < d ≤ min{1, R − r} is a fixed number. In the
case s = n we only allow positive values of h. Then, we have∫

Q+
r

∣∣τs,hG
∣∣p dx ≤ c(n, N, p) ‖1 + G‖

(2−p)p
2

Lp(Q+
R)

Mp|h|pθ .

This result also holds true in the interior without any constraint on the sign of h with respect
to the direction of the differences τs,h; moreover we can also consider (half-)balls instead of
cubes.

Proof: From Hölder’s inequality and Lemma A.3 (i) we obtain∫
Q+

r

|τs,hG|p dx ≤
( ∫

Q+
r

(
1 + |G(x)|2 + |G(x + hes)|2

) p
2 dx

) 2−p
2

·
( ∫

Q+
r

(
1 + |G(x)|2 + |G(x + hes)|2

) p−2
2 |τs,hG|2 dx

) p
2

≤ c(n, N, p) ‖1 + G‖
(2−p)p

2

Lp(Q+
R)

( ∫
Q+

r

∣∣τs,h(V (G))
∣∣2 dx

) p
2
,

and the conclusion is an immediate consequence of the assumption concerning the L2 norm
of |τs,h(V (G))|. �

The following interpolation inequality can be found in [Cam82a], Lemma 2.V., and is essen-
tially based on the inequality in [CC81], Theorem 2.I, for the case p = 2.
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Theorem 2.7: Let λ ∈ (0, 1], θ ∈ (0, 1], p ∈ (1,∞) and u ∈ C0,λ(Q, RN ) such that Du ∈
W θ,p(Q, RnN ) with pθ < n, where Q ⊂ RN is an (upper) cube. Then

Du ∈ Ls(Q, RnN ) for all s <
np(1 + θ)
n− pθλ

.

Moreover, ∫
Q
|Du|s dx ≤ c

(
n, N, p, θ, λ, s, |Q|, ‖u‖W 1+θ,p(Q,RN ) , [u]C0,λ(Q,RN )

)
.

A different definition for fractional Sobolev spaces, based on pointwise inequalities, can be
derived as follows: Let Ω ⊂ Rn be a bounded domain, p ≥ 1 and θ ∈ (0, 1]. Following the
approach of Haj lasz in [Haj96], we set

Dθ,p(Ω; f) :=
{
g ∈ Lp(Ω): ∃E ⊂ Ω, |E| = 0 such that

|f(x)− f(y)| ≤ |x− y|θ(g(x) + g(y)) for all x, y ∈ Ω \ E
}

,

and we define the fractional Sobolev space via

M θ,p(Ω, RN ) :=
{
f ∈ Lp(Ω, RN ) : Dθ,p(Ω; f) 6= ∅

}
.

We highlight that this definition has its origin in the definition of Sobolev spaces in the
context of arbitrary metric spaces (replacing |x− y| by dist(x, y)) and that it does not make
use of the notion of derivatives (for a more detailed discussion of the metric setting we refer
to [HK00]). Employing the Hardy-Littlewood maximal function we have in fact that for the
integer order θ = 1 and sufficiently regular domains (e. g. with Lipschitz boundary) this
“metric” Sobolev space coincides with the classical Sobolev space; more precisely, provided
that p > 1, there holds

M1,p(Ω, RN ) = W 1,p(Ω, RN )

for all bounded domains Ω with the so-called extension property, meaning that there ex-
ists a bounded linear operator E : W 1,p(Ω, RN ) → W 1,p(Rn, RN ) such that for every
f ∈ W 1,p(Ω, RN ) there holds Ef = f almost everywhere in Ω. We note that the equiv-
alence fails if p = 1, see [Haj95]. Furthermore, the definitions of the classical and the metric
fractional Sobolev spaces immediately yield for all bounded domains Ω, fractional orders
θ ∈ (0, 1) and p ∈ [1,∞) the following inclusion:

M θ,p(Ω, RN ) ⊆ W θ′,p(Ω, RN ) for all θ′ ∈ (0, θ).

M θ,p(Ω, RN ) is equipped with the norm

‖f‖Mθ,p(Ω,RN ) := ‖f‖Lp(Ω,RN ) + inf
g∈Dθ,p(Ω;f)

‖g‖Lp(Ω) .

We observe that if p ∈ (1,∞) then, due to the convexity of Lp, to every f ∈ M θ,p(Ω, RN )
there exists a unique function g ∈ Lp(Ω) which minimizes the Lp(Ω)-norm amongst all
functions in Dθ,p(Ω; f).

The following lemma provides an integral characterization of fractional Sobolev spaces:
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Lemma 2.8: Let Ω ⊂ Rn be a domain which fulfills an Ahlfors condition (KΩ), θ ∈ (0, 1],
p ∈ (1,∞). Then the following two statements are equivalent:

(i) f ∈ M θ,p(Ω, RN )

(ii) f ∈ L1(Ω, RN ) and there exists a function h ∈ Lp(Ω) and a radius R0 > 0 such that∫
−
Bρ(x0)∩Ω

|f − (f)Bρ(x0)∩Ω| dx ≤ ρθ h(x0) (2.2)

for almost all x0 ∈ Ω and ρ ≤ R0.

Proof: The implication (i) ⇒ (ii) follows by standard properties of the Hardy-Littlewood
maximal function for the choice h = 4M(g) with g ∈ Dθ,p(Ω; f).

For the reverse implication (ii) ⇒ (i) we follow the proof of Campanato’s integral charac-
terization of Hölder continuous functions, see e. g. [Sim96, Chapt. 1.1, Lemma 1]. We first
define the exceptional set

E :=
{
x0 ∈ Ω : h(x0) = ∞ or (2.2) is not fulfilled or x0 is not a Lebesgue point of f

}
which is in view of Lebesgue’s Lemma of Lebesgue measure zero. Then we consider ρ ∈ (0, R0]
and y ∈ Ω \ E. By assumption (ii) and the Ahlfors condition on Ω we observe∫

−
Bρ/2(y)∩Ω

|f − (f)Bρ(y)∩Ω| dx ≤ c(n, kΩ) ρθ h(y) .

Moreover, using the given integral inequality on Bρ/2(y) ∩ Ω in place of Bρ(y) ∩ Ω we infer∫
−
Bρ/2(y)∩Ω

|f − (f)Bρ/2(y)∩Ω| dx ≤ ρθ h(y) .

Combining these estimates we obtain
∣∣(f)Bρ/2(y)∩Ω − (f)Bρ(y)∩Ω

∣∣ ≤ c(n, kΩ) ρθ h(y) for the
mean values of f . Now, for every k ∈ N0 we can choose ρ = 2−kR0; consequently, we have∣∣(f)B

2−kR0
(y)∩Ω − (f)B

2−k−1R0
(y)∩Ω

∣∣ ≤ c(n, kΩ) Rθ
0 h(y) 2−kθ .

Due to the fact that 2−kθ is the k-th term of a convergent geometric series, the sequence of
the mean values {(f)B

2−kR0
(y)∩Ω}k∈N is convergent. Keeping in mind y /∈ E, we may use

Lebesgue’s Lemma and we note that its limit is in fact f(y). Moreover, we see

∣∣(f)B
2−kR0

(y)∩Ω − f(y)
∣∣ ≤ ∞∑

j=k

∣∣(f)B
2−jR0

(y)∩Ω − (f)B
2−j−1R0

(y)∩Ω

∣∣
≤ cRθ

0 h(y)
∞∑

j=k

2−jθ ≤ cRθ
0 h(y) 2−kθ

for a constant c which depends only on n, kΩ and θ. Furthermore, from the assumption in
(ii) with the choice ρ = 2−kR0 and the latter inequality we infer∫

−
Bρ(y)∩Ω

|f − f(y)| dx ≤ c(n, kΩ, θ) h(y) ρθ (2.3)
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for all radii ρ = 2−kR0, k ∈ N0. In fact, the previous inequality holds for any radius
ρ ∈ (0, R0] since for any such ρ there exists k ∈ N0 such that 2−k−1R0 < ρ ≤ 2−kR0 and
Bρ(y) ∩ Ω ⊆ B2−kR0

(y) ∩ Ω.

We next choose two arbitrary points y, z ∈ Ω \ E such that |y − z| ≤ R0
2 . Then we apply

(2.3) on balls with radius ρ = 2|y − z| with centres y and z, respectively. Since we have the
inclusions

Bρ/2

(
1
2(y + z)

)
∩ Ω ⊂ Bρ(y) ∩Bρ(z) ∩ Ω

this gives ∫
−
Bρ/2( 1

2
(y+z))∩Ω

(
|f − f(y)|+ |f − f(z)|

)
dx

≤ c
( ∫
−
Bρ(y)∩Ω

|f − f(y)| dx +
∫
−
Bρ(z)∩Ω

|f − f(z)| dx
)

≤ c ρθ
(
h(y) + h(z)

)
for a constant c depending only on n, kΩ and θ. This implies |f(y)−f(z)| ≤ c ρθ(h(y)+h(z)),
and thus yields the desired pointwise inequality, provided that the distance of the points is
less or equal than R0

2 . Therefore, in view of the boundedness of Ω and h ∈ Lp(Ω), a standard
covering argument reveals f ∈ Lp(Ω, RN ). Taking into account

|f(y)− f(z)| ≤ c(θ, R0) |x− y|θ
(
|f(x)|+ |f(y)|

)
if |x − y| > R0

2 , we observe that the function g = c (h + |f |) belongs to Dθ,p(Ω; f) for a
constant c depending only on n, kΩ, θ and R0. This completes the proof of the lemma. �

Remarks 2.9: In fact, we have proved the following local version of the integral character-
ization: let x0 ∈ Ω and R > 0 such that∫

−
Br(z)∩Ω

|f − (f)Br(z)∩Ω| dx ≤ rθ h(z)

for almost all z ∈ Ω and Br(z) ⊂ BR(x0). Then there holds f ∈ M θ,p(BR/2(x0) ∩ Ω, RN )
with

|f(x)− f(y)| ≤ c(n, kΩ, θ) |x− y|θ
(
h(x) + h(y)

)
for almost all x, y ∈ BR/2(x0) ∩ Ω. Furthermore, we mention that using Jensen’s inequality
and the fact that the Hardy Littlewood maximal operator is a bounded map from Lp to itself
this characterization allows us to infer the inclusion

W θ,p(Ω, RN ) ⊆ M θ,p(Ω, RN )

whenever Ω satisfies an Ahlfors condition (KΩ), θ ∈ (0, 1) and p ∈ (1,∞).

Moreover, we note that (i) implies indeed the following statement: there exists a function
h ∈ Lp(Ω) and a radius R0 > 0 such that( ∫

−
Bρ(x0)∩Ω

|f − (f)Bρ(x0)∩Ω|q dx
) 1

q ≤ ρθ h(x0)

for all q < p and almost all x0 ∈ Ω and ρ ≤ R0.
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In the sequel we consider weak solutions u ∈ W 1,p(Ω, RN ), p ∈ (1, 2) of the following non-
linear, inhomogeneous elliptic systems of partial differential equations of second order

−div a( · , u,Du) = b( · , u,Du) in Ω . (3.1)

Here Ω denotes a bounded domain in Rn of class C1,α for some α ∈ (0, 1). For the right-hand
side, we are going to investigate the controllable and the natural growth condition, which
will be explained in the following. In the second case, we will have to restrict ourselves to
bounded weak solutions u ∈ W 1,p(Ω, RN ) ∩ L∞(Ω, RN ).

We shall now prove partial regularity for the gradient Du and, in particular, how the set of
regular points of Du is characterized both in the interior and at the boundary (under addi-
tional assumptions concerning the regularity of the boundary values on ∂Ω). This extends
the results in [Bec05] where the homogeneous situation b ≡ 0 was studied.

We first give a short overview of partial regularity results in the interior and at the boundary.
For a broader discussion we refer to [Gia83, Gro00, Min06], where examples and motivations
can be found explaining the development of regularity theory and the idea of partial regularity
throughout the last century. In 1968, De Giorgi demonstrated in [DG68] that, in contrast to
equations, we cannot in general expect a weak solution to a nonlinear system to be a classical

19
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one (i. e., of class C2). The best we can hope for is partial regularity, in other words that
there exists a set Ω0 ⊂ Ω such that Ω\Ω0 is small in a certain sense, for instance of Lebesgue
measure zero, and that u or even Du is locally regular (e. g. Hölder continuous) in Ω0. There
are different approaches to prove partial regularity: in the interior, Giaquinta, Modica and
Ivert [GM79, Ive79] were the first to utilize the direct method; the blow-up technique was
earlier applied in the setting of elliptic systems by Giusti and Miranda [GM68a]; furthermore,
Duzaar and Steffen [DS02] introduced the method of A-harmonic approximation, which is
inspired by Simon’s proof of the regularity theorem of Allard and which extends the method
of harmonic approximation (i. e., approximating with functions solving the Laplace equation)
in a natural way to bounded elliptic operators with constant coefficients. Based on the latter
approach, Duzaar and Grotowski [DG00] gave a new proof of the partial regularity of Du.

In the situation considered in this paper we will use a version of the latter technique which
has been applied to various situations concerning regularity in the past few years. The idea of
A-harmonic approximation is the following: Given a linear system div(ADv) with constant
coefficients, we know that a function w which is approximately A-harmonic, i. e., for which∫
−BR(x0) ADw ·Dϕ dx is sufficiently small for all test functions ϕ ∈ C1

0 (BR(x0), RN ), is close
to an A-harmonic function h in the Lp-sense. Therefore, we consider an appropriate freezing
of the original nonlinear system denoted by A and we apply a comparison argument involving
the solution u of the original system and the Lp-close A-harmonic approximation h. Using
good a priori estimates for h and a Caccioppoli-type inequality, we then find an excess-decay
estimate in points where certain smallness assumptions (see below) are satisfied, i. e., where
the so-called regularity criterion applies. Finally, by Campanato’s characterization of Hölder
continuous functions, we conclude the desired partial regularity result.

Apart from the A-harmonic approximation lemma all proofs are direct. This gives a good
control on the dependencies on the structure conditions and enables us to directly establish
the optimal regularity result. It is optimal in the following sense: if (1 + |z|2)

1−p
2 a(x, u, z)

is uniformly Hölder continuous in x and u with exponent α, then Du is partially Hölder
continuous with the same exponent α.

In the subquadratic case, where u ∈ W 1,p(Ω, RN ) with p ∈ (1, 2) and where the coefficients
a(·, ·, ·) satisfy a corresponding (p − 1)-growth condition, only few partial regularity results
are known. We first concentrate on the interior situation: In [Pep71], Pepe applied the
blow-up technique to a special quasi-linear system and showed partial Hölder continuity of
u, and, due to the quasi-linearity of the system, the singular set is of (n − p) dimensional
Hausdorff measure zero. In [Wol01b], Wolf considered solutions of nonlinear systems for
both homogeneous and inhomogeneous systems, but the regularity result is not optimal in
the above sense. Theorem 1.1 in [Bec05] and Theorem 3.1 below close this gap since there,
for homogeneous and inhomogeneous systems, respectively, we have shown an (optimal)
result analogous to that of the quadratic case (see e. g. [GM68a] combined with [Ham95], or
[DG00]) and to that of the superquadratic case p ≥ 2 (see [Ham07]). Furthermore, we give
a characterization of regular points, similar to that of the (super-)quadratic case, where the
set of regular interior points is defined by

RegDu(Ω) :=
{
x ∈ Ω : Du ∈ C0(U, RnN ) for some neighbourhood U of x

}
.

More precisely, we obtain – exactly as for homogeneous systems – that under the structure
conditions introduced in Section 3.1 we have u ∈ C1,α

loc (RegDu(Ω), RN ), and the set of singular
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points SingDu(Ω) := Ω \ RegDu(Ω) ⊂ Π1 ∪Π2 is of Lebesgue measure zero, with

Π1 =
{

x0 ∈ Ω : lim inf
ρ→ 0+

∫
−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx > 0
}

,

Π2 =
{

x0 ∈ Ω : lim sup
ρ→ 0+

(∣∣(u)x0,ρ

∣∣ +
∣∣(V (Du)

)
x0,ρ

∣∣) = ∞
}

,

where V (ξ) = (1 + |ξ|2)
p−2
4 ξ for ξ ∈ Rk. We note that Carozza, Fusco and Mingione

[CFM98, CM01] studied the problem of partial regularity for minimizers of quasiconvex
integrals in the subquadratic setting, obtaining the same characterization for the set of
regular points.

We now focus on the boundary situation: in the early 70’s, Colombini [Col71] consid-
ered the case of quasi-linear systems and showed partial Hölder continuity of weak solutions
outside a singular set of Hausdorff dimension not greater than n − p (with p ≥ 2). Fur-
thermore, there are some papers, in particular by Campanato [Cam87b] and recently by
Arkhipova [Ark03], in which the authors obtain partial regularity up to the boundary in
low dimensions. In the case of general systems and arbitrary dimensions, regularity up to
the boundary was lately studied for the first time by Grotowski [Gro00] via the A-harmonic
approximation method in the case p = 2, and by Hamburger [Ham07] using a version of
the blow-up technique for the superquadratic case. For the analogous characterization of
regular boundary points for almost minimizers of quasiconvex variational integrals we refer
to [Kro05]. In what follows we will proceed analogously to Grotowski and provide a similar
characterization of the set of regular boundary points which is defined by

RegDu(∂Ω) :=
{
x ∈ ∂Ω : Du ∈ C0(U ∩ Ω, RnN ) for a neighbourhood U of x

}
.

Here we assume the boundary ∂Ω to be of class C1,α and further u = g on ∂Ω for a function
g ∈ C1,α(Ω, RN ).

To this end, we first state a priori estimates valid up to the boundary for weak solutions
u ∈ W 1,p of homogeneous linear systems with constant coefficients. This allows us to derive
an excess-decay estimate at the boundary. Combined with the excess-decay estimate in
the interior, we show that Du is locally Hölder continuous with exponent α in a boundary
neighbourhood of every point y ∈ RegDu(∂Ω), and that the set of singular boundary points
SingDu(∂Ω) := ∂Ω \ RegDu(∂Ω) satisfies the inclusion SingDu(∂Ω) ⊂ Σ̃1 ∪ Σ̃2, where

Σ̃1 =
{

y ∈ ∂Ω : lim inf
ρ→ 0+

∫
−
Ω∩Bρ(y)

∣∣V (Dν∂Ω(y)u)−
(
V (Dν∂Ω(y)u)

)
Ω∩Bρ(y)

∣∣2 dx > 0
}

,

Σ̃2 =
{

y ∈ ∂Ω : lim sup
ρ→ 0+

∣∣(V (Dν∂Ω(y)u)
)
Ω∩Bρ(y)

∣∣ = ∞
}

;

here ν∂Ω(y) denotes the inward-pointing unit normal to ∂Ω at y. This means that for
the regularity criterion at the boundary, only the normal derivative is of importance. We
emphasize that since the boundary ∂Ω itself is of Lebesgue measure zero, this does not
yield the existence of a single regular boundary point (whereas it was known for a while
that singularities may occur at the boundary even if the boundary data is smooth, see the
example in [Gia78]). For the existence we refer to the recent paper [DKM07] by Duzaar,
Kristensen and Mingione and to Chapters 7, 8 further below.
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In what follows we set the main focus on the treatment of the inhomogeneity: the proof is
quite similar to the proof in the homogeneous situation, therefore we will not perform all
the estimates in the proof, but rather concentrate on the modifications necessary to adapt
it to the inhomogeneous case. For these modifications we mainly refer on the one hand to
[DG00], where optimal interior regularity was considered in the quadratic case and where also
inhomogeneities under a natural growth condition were taken into account, and on the other
hand to [Gro00, Gro02b], respectively, where useful tools and techniques for the treatment
of the boundary situation are provided.

3.1 Structure conditions and results

We impose on the coefficients a : Ω×RN ×RnN → RnN of the inhomogeneous system (3.1)
– exactly as in the homogeneous case – standard boundedness, differentiability, growth and
ellipticity conditions: the functions (x, u, z) 7→ a(x, u, z) and (x, u, z) 7→ Dza(x, u, z) are
continuous, and for fixed L > 0, α ∈ (0, 1) and all triples (x, u, z), (x̄, ū, z) ∈ Ω× RN × RnN

there holds that:

(H1) a has polynomial growth:∣∣a(x, u, z)
∣∣ ≤ L

(
1 + |z|p−1

)
,

(H2) a is differentiable with respect to z with bounded and continuous derivatives:∣∣Dza(x, u, z)
∣∣ ≤ L ,

(H3) a is uniformly strongly elliptic:

Dza(x, u, z) λ · λ ≥
(
1 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(H4) There exists a modulus of continuity ω with ω(t) ≤ min(1, tα) and
K : [0,∞) → [1,∞) monotone nondecreasing such that∣∣a(x, u, z)− a(x̄, ū, z)

∣∣ ≤ LK(|u|)
(
1 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
.

Finally, we assume the following boundary condition:

(H5) g is in C1,α(Ω, RN ) .

In (H4), which describes the Hölder continuity in the first two arguments, we have taken
without loss of generality K ≥ 1. Furthermore, the function g will specify the values of the
weak solution u on the boundary ∂Ω. We mention that the exponents are all chosen equal
to α ∈ (0, 1), i. e., the exponent of the regularity class of the domain Ω, the modulus of
continuity ω and the Hölder exponent of Dg. This is no restriction to the general situation
with different exponents since we have seen in [Bec05] for the homogeneous case that only
the minimal exponent determines the class of regularity for the gradient Du. Moreover,
multiplying (3.1) by ν̄ > 0 we may consider any ellipticity constant ν̄ instead of 1.

In the proof of the characterization of regular boundary points (see Theorem 3.2 below)
we will transform our system to the model situation on a half-ball with Dirichlet boundary
values equal to zero on Γ. Performing this transformation we will end up with a modified
ellipticity constant, i. e., (H3) will be transformed into the following condition: there exists
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a number ν ∈ (0, 1) such that

(H3)* Dza(x, u, z) λ · λ ≥
(
ν−2 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN

is fulfilled. This means that ν plays the role of an ellipticity constant. In Chapter 3.2 we will
see that ν depends only on the boundary values g, and if we assume natural growth for the
inhomogeneity then it depends additionally on the smallness condition (3.3) on ‖u‖L∞(Ω)

further below. Moreover, since the gradient Dza(x, u, z) is continuous, we may conclude the
existence of a modulus of continuity on compact subsets of Ω×RN ×RnN , i. e., there exists
a function χ : [0,∞)× [0,∞) → [0,∞) satisfying

χ(t, 0) = 0 for all t ≥ 0
t 7→ χ(t, s) is monotone nondecreasing for fixed s

s 7→ χ2(t, s) is concave and monotone nondecreasing for fixed t

such that for all (x, u, z), (x̄, ū, z̄) ∈ Ω×RN ×RnN with |u|+ |z|+ |u− ū|+ |z− z̄| ≤ M0 + 1
we have ∣∣Dza(x, u, z)−Dza(x̄, ū, z̄)

∣∣ ≤ Lχ
(
M0, |x− x̄|2 + |u− ū|2 + |z − z̄|2

)
=: LχM0

(
|x− x̄|2 + |u− ū|2 + |z − z̄|2

)
. (3.2)

The right-hand side b : Ω×RN×RnN → RN is a Carathéodory function, i.e. measurable with
respect to x and continuous with respect to (u, z), and fulfills one of the following growth
conditions:

(B1) controllable growth:

|b(x, u, z)| ≤ L
(
1 + |z|2

) p−1
2

for all (x, u, z) ∈ Ω× RN × RnN

(B2) natural growth: there exist L1, L2 (possibly depending on M > 0), such that

|b(x, u, z)| ≤ L1(M) |z|p + L2(M)

for all (x, u, z) ∈ Ω× RN × RnN with |u| ≤ M .

Assuming the latter condition we have to additionally require: the solution u of the inhomo-
geneous system (3.1) to be bounded with |u| ≤ M for some M > 0 satisfying

2 L1(M) M < 1 . (3.3)

A discussion about the need of such a smallness condition appears in Giaquinta’s monograph
[Gia83, Chapter 6] and in [Hil82, Section 2].

In this context we now specify the notion weak solution:

Definition: u ∈ W 1,p(Ω, RN ) (∩L∞(Ω, RN )) is called a (bounded) weak solution of the
Dirichlet problem {

−div a(x, u, Du) = b(x, u, Du) in Ω ,

u = g on ∂Ω ,
(3.4)
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if there holds
∫

Ω
a( · , u,Du) ·Dϕ dx =

∫
Ω

b( · , u,Du) · ϕ dx ∀ϕ ∈ C∞
0 (Ω, RN )

u = g on ∂Ω ,
(3.5)

where the latter equality is to be understood in the sense of traces.

By approximation and the growth assumption on a(·, ·, ·) with respect to the last variable,
we see that the identity (3.5) holds for a larger class of test functions, taking into account the
different growth conditions of b(·, ·, ·): if we assume (B1) then all functions ϕ ∈ W 1,p

0 (Ω, RN )
are admissible test functions, whereas for (B2) we additionally have to demand boundedness,
i. e., ϕ ∈ W 1,p

0 (Ω, RN ) ∩ L∞(Ω, RN ).

In what follows we consider weak solutions u of (3.1) which coincide on the boundary of the
domain Ω with g (introduced in (H5)). On the one hand we will study the regularity of u

in the interior of Ω: here, the regularity of the boundary data (g and ∂Ω) is not involved
in the estimates so that we obtain Hölder continuity with exponent α (see (H4)) of the first
derivative of the solution u outside a negligible closed subset which is analogous to the results
in the quadratic and superquadratic case (cf. [DG00, Ham07]):

Theorem 3.1: Consider p ∈ (1, 2), Ω a bounded domain in Rn, n ≥ 2, and u ∈ W 1,p(Ω, RN )
a weak solution of the inhomogeneous system (3.1), where the coefficients a : Ω × RN ×
RnN → RnN fulfill the assumptions (H1)-(H4). Furthermore, we assume one of the following
structure conditions on the inhomogeneity:

1. the inhomogeneity b(·, ·, ·) obeys a controllable growth condition (B1),

2. the inhomogeneity b(·, ·, ·) obeys a natural growth condition (B2) and u ∈ L∞(Ω, RN )
with ‖u‖L∞(Ω,RN ) ≤ M and 2L1(M)M < 1.

Then there holds u ∈ C1,α
loc (RegDu(Ω), RN ) and SingDu(Ω) ⊆ Π1 ∪Π2 with

Π1 =
{

x0 ∈ Ω : lim inf
ρ→ 0+

∫
−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx > 0
}

,

Π2 =
{

x0 ∈ Ω : lim sup
ρ→ 0+

(∣∣(u)x0,ρ

∣∣ +
∣∣(V (Du)

)
x0,ρ

∣∣) = ∞
}

.

In particular, we have Ln(SingDu(Ω)) = 0.

Remark: In the second case when b(·, ·, ·) fulfills a natural growth condition we have a better
inclusion. Due to the fact that the solution u is a priori assumed to be bounded, the condition
in the definition of the set Π2 on the mean value of u, i. e., lim supρ→ 0+ |(u)x0,ρ| = ∞, is
unnecessary.

Furthermore, we obtain the following characterization of regular boundary points analogous
to the results in the quadratic and superquadratic case (cf. [Gro00, Gro02b] and [Ham07]):

Theorem 3.2: Consider p ∈ (1, 2), Ω a bounded domain of class C1,α in Rn, n ≥ 2, and
some α ∈ (0, 1). Let u ∈ g + W 1,p

0 (Ω, RN ) be a weak solution of the inhomogeneous system
(3.1), where the coefficients a : Ω × RN × RnN → RnN fulfill the assumptions (H1)-(H4).
Furthermore, we assume (H5) and one of the following structure conditions on the inhomo-
geneity:



3.2. The transformed system 25

1. the inhomogeneity b(·, ·, ·) obeys a controllable growth condition (B1),

2. the inhomogeneity b(·, ·, ·) obeys a natural growth condition (B2) and u ∈ L∞(Ω, RN )
with ‖u‖L∞(Ω,RN ) ≤ M and 2L1(M)M < 1.

Then, for y ∈ RegDu(∂Ω) there holds: Du is Hölder continuous with exponent α in a neigh-
bourhood of y in Ω, and the set of singular boundary points is contained in Σ̃1 ∪ Σ̃2 with

Σ̃1 =
{

y ∈ ∂Ω : lim inf
ρ→ 0+

∫
−
Ω∩Bρ(y)

∣∣V (Dν∂Ω(y)u)−
(
V (Dν∂Ω(y)u)

)
Ω∩Bρ(y)

∣∣2 dx > 0
}

,

Σ̃2 =
{

y ∈ ∂Ω : lim sup
ρ→ 0+

∣∣(V (Dν∂Ω(y)u)
)
Ω∩Bρ(y)

∣∣ = ∞
}

,

where ν∂Ω(y) denotes the inward-pointing unit normal to ∂Ω at y.

Remark: Since the solution u coincides with g on ∂Ω we do not need the assumption on
the mean values of u at the boundary even in the case of a controllable growth condition.

Remark 3.3: We mention here that if we consider bounded weak solutions of (3.1) and if
the inhomogeneity satisfies only an “almost” natural growth condition of the form

(B3) there exist L1, L2 (possibly depending on M > 0), such that:

|b(x, u, z)| ≤ L1(M) |z|p̃ + L2(M)

for all (x, u, z) ∈ Ω× RN × RnN with |u| ≤ M and some p̃ < p ,

then the conclusions of our main Theorems 3.1 and 3.2 follow without any assumption of
the form (3.3). The only point, where we actually use condition (3.3) is the proof of the
Caccioppoli inequality, where we will point out the necessary modifications (cf. e. g. [CW98,
Chapt. 12, Remark 4.2]) for dealing with the “almost” natural growth condition (B3).

3.2 The transformed system

In this section, we will explicitly transform the system to the model situation of the upper
half-sphere, and prove for the transformed system (for some r > 0){

−div ã(x, v,Dv) = b̃(x, v,Dv) in B+
r ,

v = 0 on Γr

that the new coefficients and the new inhomogeneity defined in (3.9), (3.10) below still satisfy
similar structure conditions as introduced in the previous section.

We now consider the transformation to the model situation: Let z ∈ ∂Ω be a boundary point.
After an affine transformation and a rotation we may assume z = 0 and ν∂Ω(z) = en, where
ν∂Ω(z) denotes the inner unit normal vector in z to the boundary ∂Ω. Our assumptions on
the regularity of the boundary of Ω ensure the existence of a C1,α-function h : Rn−1 → R
with h(0) = 0, ∇h(0) = 0, such that for some r > 0 there holds

Ω ∩Br(0) =
{
x ∈ Br(0) : xn > h(x′)

}
;
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we here recall x′ = (x1, . . . , xn−1). We choose the radius r sufficiently small such that for all
x′ ∈ Rn−1 with |x′| <

√
2r there holds:

|∇h(x′)| < 1
k (3.6)

for some number k ≥ 2 to be defined later. Since the boundary ∂Ω is compact, we can
choose a common r that is suitable for all boundary points. We define the mappings T,
T−1 : Rn → Rn of class C1,α by

T(x) =
(
x′, xn − h(x′)

)
,

T−1(y) =
(
y′, yn + h(y′)

)
.

We see that T locally flattens the boundary (meaning that T(Br ∩ ∂Ω) ⊂ Γr) and T−1 is its
inverse. In particular, we have T(0) = 0 by the assumptions above. The Jacobian DT(x) is
given by:

DT(x) =


0

Idn−1
...
0

−D1h(x′) · · · −Dn−1h(x′) 1

 .

We have det DT = det DT−1 = 1. Condition (3.6) implies for every x ∈ B√
2r and all vectors

w ∈ Rn: √
1− 1

k |w| ≤ |DT(x)w| ≤
√

1 + 1
k |w| (3.7)

and therefore, the corresponding estimates for |wT DT(x)| and multiplications by matrices.
Since T−1 has the same structure as T, we infer (3.7) also for DT−1 instead of DT, and hence
we observe that T and T−1 have for any choice of k ≥ 2 Lipschitz constants between 1/

√
2

and
√

2. Keeping in mind the structure of T we find for every ρ ≤
√

2r the inclusions

B+
ρ/
√

2
⊂ T(Ω ∩Bρ) ⊂ B+√

2ρ
. (3.8)

Using the change of variables formula we observe (note det DT−1 = 1) for the Ln-measure
of these sets

|B+
ρ/
√

2
| ≤ |Ω ∩Bρ| ≤ |B+√

2ρ
|.

We now consider a solution u of the Dirichlet problem (3.4) under the assumptions (H1)-
(H4) on the coefficients a(·, ·, ·), (H5) on the boundary data g as well as (B1) and (B2),
respectively on the inhomogeneity b(·, ·, ·). We next show that the function

ṽ(y) := ũ(y)− g̃(y) := u ◦ T−1(y)− g ◦ T−1(y)

(which is the transformation to the half-ball) is a weak solution to a system having the
same structure as (3.4), on the domain B+

r , for some r > 0. We will further show that the
coefficients of the new system satisfy structure conditions analogous to (H1)-(H4) and (B1)
and (B2), respectively (for some different constants and exponents given in terms of the
boundary data and of the structure constants of the original system). By definition we see
ṽ ∈ W 1,p

Γ (B+
r , RN ), hence, we have reduced our problem to the model situation of a half-ball

with zero boundary values on Γr.
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The transformed system: We begin by considering a test function ϕ ∈ C∞
0 (Ω ∩ Br/

√
2, R

N )

and define ϕ̃ = ϕ ◦ T−1 ∈ C1,α
0 (B+

r , RN ). Using the identity det DT−1 = 1 and the inclusion
(3.8), the system (3.1) may now be transformed to a half-ball:

0 =
∫

Ω
a
(
x, u(x), Du(x)

)
·Dϕ(x) dx−

∫
Ω

b
(
x, u(x), Du(x)

)
· ϕ(x) dx

=
∫

B+
r

a
(
T−1(y), u

(
T−1(y)

)
, Du

(
T−1(y)

))
·Dϕ

(
T−1(y)

)
dy

−
∫

B+
r

b
(
T−1(y), u

(
T−1(y)

)
, Du

(
T−1(y)

))
· ϕ

(
T−1(y)

)
dy

=
∫

B+
r

a
(
T−1(y),

(
ṽ + g̃

)
(y),

(
Dṽ + Dg̃

)
(y)

(
DT−1(y)

)−1
)
·Dϕ̃(y)

(
DT−1(y)

)−1
dy

−
∫

B+
r

b
(
T−1(y),

(
ṽ + g̃

)
(y),

(
Dṽ + Dg̃

)
(y)

(
DT−1(y)

)−1
)
· ϕ̃(y) dy ,

where we have employed ũ = ṽ + g̃ in the last equality. Due to
(
DT−1(y)

)−1 = DT
(
T−1(y)

)
this can be rewritten as:∫

B+
r

ã
(
y, ṽ(y), Dṽ(y)

)
·Dϕ̃(y) dy =

∫
B+

r

b̃
(
y, ṽ(y), Dṽ(y)

)
· ϕ̃(y) dy ,

where the coefficients ã(y, v, z) ∈ RnN and the inhomogeneity b̃(y, v, z) ∈ RN are given by

ã(y, v, z) := a
(
T−1(y), v + g̃(y),

(
z + Dg̃(y)

)
DT

(
T−1(y)

))
DT t

(
T−1(y)

)
, (3.9)

b̃(y, v, z) := b
(
T−1(y), v + g̃(y),

(
z + Dg̃(y)

)
DT

(
T−1(y)

))
, (3.10)

with DT t denoting the transpose of DT. For arbitrary functions ϕ̃ ∈ C∞
0 (B+

r , RN ) we may
invert the calculations above (i. e., test the original system (3.1) by ϕ̃ ◦T) and conclude that
ṽ is a weak solution of the (partial) Dirichlet problem{

div ã( · , ṽ, Dṽ) = b̃( · , ṽ, Dṽ) in B+
r ,

ṽ = 0 on Γr .
(3.11)

In the sequel we show how the structure conditions on a(·, ·, ·) and b(·, ·, ·), respectively, are
transferred to the new coefficients ã(·, ·, ·) and the new inhomogeneity b̃(·, ·, ·). For ease of
notation we will omit the specification of Ω and B+

r in the norms appearing below. In what
follows we consider y, ȳ ∈ B+

r , v, v̄ ∈ RN and z, C, C ∈ RnN . Hence, T−1(y) and T−1(ȳ)
belong to the ball with the same radius increased by the factor

√
2, and for the latter ball

inequality (3.6) is fulfilled. In particular we have (3.7) with x replaced by T−1(y) (or by
T−1(ȳ)), i. e., there holds√

1− 1
k |C| ≤

∣∣DT(T−1(y)) C
∣∣ ≤ √

1 + 1
k |C| .

Here we choose the factor k ≥ 2 according to the growth condition of the inhomogeneity in
such a way that{

k = 2 if condition (B1) is considered,

(1 + 1
k )2(1− 1

k )−1 ≤ 1 + 1−2L1(M)M
4L1(M)M if condition (B2) is considered.

(3.12)
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Moreover, we will use the following identity (see the definition of g̃):

Dg̃(y) DT
(
T−1(y)

)
= Dg

(
T−1(y)

)
DT−1(y) DT

(
T−1(y)

)
= Dg

(
T−1(y)

)
.

The coefficients ã(·, ·, ·): For detailed calculations (in particular concerning the Hölder con-
tinuity of ã(·, ·, ·) with respect to the first and second variable) we refer to [Bec05, Chapter
2.3]; here we only recapitulate the results and note the modifications necessary for the treat-
ment of the inhomogeneity. We mention that – in contrast to [Gro00] – the original Dirichlet
problem is reduced to zero boundary values on Γr. On the one hand, in particular in the
inhomogeneous situation, we have to pay more attention to the transformation arguments:
here we have to accept more restrictions on the radius and we do not obtain the same struc-
ture conditions (i. e., we will only deduce (H3)* instead of (H3)); moreover, the estimates
in the Caccioppoli inequality will become slightly more technical. But on the other hand
this reduction facilitates the notation within the deduction of the excess-decay estimates, be-
cause the function g does no longer appear in the model case; furthermore, we can proceed
analogously to [Bec05] and cite some parts of the regularity proof.

Firstly we see that Dzã(·, ·, ·) (as well as Dza(·, ·, ·)) may be written as a bilinear form on
RnN :

Dzã(y, v, z) (C,C)

= Dza
(
T−1(y), v + g̃(y),

(
z + Dg̃(y)

)
DT(T−1(y))

) (
C DT

(
T−1(y)

)
, C DT

(
T−1(y)

))
.

Taking into account the assumption (H1) we infer∣∣ã(y, v, z) · C
∣∣ =

∣∣∣a(
T−1(y), v + g̃(y),

(
z + Dg̃(y)

)
DT

(
T−1(y)

))
· C DT

(
T−1(y)

)∣∣∣
≤
√

2 L
(

1 +
∣∣z DT

(
T−1(y)

)
+ Dg

(
T−1(y)

)∣∣p−1
)
|C|

≤ 2
√

2 L
(
1 + ‖Dg‖∞

) (
1 + |z|p−1

)
|C| .

From condition (H2) and the regularity assumptions on T we further deduce that ã(y, v, z)
is differentiable with respect to z with continuous derivative. Moreover, for the growth of
Dzã we see via the representation above:∣∣Dzã(y, v, z) (C,C)

∣∣ ≤ 2 L |C| |C| ,

i. e., a condition as in (H2). Next we turn our attention to the ellipticity condition: here we
apply Young’s inequality, (H3) and the fact that p < 2 in order to achieve

Dzã(y, v, z) (C,C) ≥
(

1 +
∣∣z DT

(
T−1(y)

)
+ Dg

(
T−1(y)

)∣∣2 ) p−2
2

∣∣C DT
(
T−1(y)

)∣∣2
≥ (1− 1

k )
(

1 + (1 + k) ‖Dg‖2∞ + (1 + 1
k )

∣∣z DT
(
T−1(y)

)∣∣2) p−2
2 |C|2

≥ (1− 1
k ) (1 + 1

k )p−2
((

1 + (1 + k)‖Dg‖∞
)2 + |z|2

) p−2
2 |C|2 , (3.13)

or, for the choice k = 2, the less complicated representation

Dzã(y, v, z) (C,C) ≥ 2p−3
(
1 + ‖Dg‖2∞ + |z|2

) p−2
2 |C|2 .
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To infer Hölder continuity of the map (x, u) → ã(x, u, z)
(
1 + |z|2

) p−1
2 we need, apart from

the inequalities (3.7), a further restriction on the radius: we choose r sufficiently small such
that

‖T‖C1,α ‖T−1‖C1,α (2r)α ≤ 1
2
√

2
. (3.14)

This ensures in particular r < 1
2 ; moreover, this choice is always possible due to the fact that

the C1,α norms of T and of T−1, respectively, are bounded and therefore the left-hand side
in (3.14) converges to 0 as r → 0. Hence, applying (H2) we obtain (cf. [Bec05] for detailed
calculations)∣∣(ã(y, v, z)− ã(ȳ, v̄, z)

)∣∣ ≤ Lc K̃(|v|)
(
1 + |z|2

) p−1
2 ω

(
|y − ȳ| + |v − v̄|

)
for K̃(|v|) := K(|v| + ‖g‖∞) and a constant c depending only on ‖g‖C1,α , ‖T‖C1,α and
‖T−1‖C1,α .

The inhomogeneity b̃(·, ·, ·): For the assumption of controllable growth (B1) we easily derive∣∣b̃(y, v, z)
∣∣ =

∣∣∣b(T−1(y), v + g̃(y),
(
z + Dg̃(y)

)
DT

(
T−1(y)

))∣∣∣
≤ L

(
1 +

∣∣z DT
(
T−1(y)

)
+ Dg

(
T−1(y)

)∣∣2) p−1
2

≤ 2 L
(
1 + ‖Dg‖∞

) (
1 + |z|2

) p−1
2 .

If, in contrast, we assume natural growth (B2) and |v + g̃(y)| ≤ M , we obtain∣∣b̃(y, v, z)
∣∣ =

∣∣∣b(T−1(y), v + g̃(y), z DT
(
T−1(y)

)
+ Dg

(
T−1(y)

))∣∣∣
≤ L1(M)

∣∣z DT
(
T−1(y)

)
+ Dg

(
T−1(y)

)∣∣p + L2(M)

≤ L1(M)
(

(1 + 1
k )2|z|2 + (1 + k)‖Dg‖2∞

) p
2 + L2(M)

≤ (1 + 1
k )pL1(M) |z|p + (1 + k) L1(M) ‖Dg‖p

∞ + L2(M) .

Conclusion: We now rescale the transformed system (3.11) by the factor (1− 1
k ) (1 + 1

k )p−2,
i. e., by the factor appearing in the ellipticity condition in (3.13), meaning that we define the
new coefficients and the new right-hand side by

â( · , · , · ) := (1− 1
k )−1 (1 + 1

k )2−p ã( · , · , · ) ,

b̂( · , · , · ) := (1− 1
k )−1 (1 + 1

k )2−p b̃( · , · , · ) .

Then we see: ṽ is a weak solution of{
−div â( · , ṽ, Dṽ) = b̂( · , ṽ, Dṽ) in B+

r ,

ṽ = 0 on Γr

(3.15)

for r sufficiently small. Assuming a controllable growth condition on the inhomogeneity
b(·, ·, ·), we come to the conclusion that for the new system there hold conditions analogous
to (H1), (H2), (H3)*, (H4) and (B1) with constants

L̂ = LcL

(
‖g‖C1,α , ‖T‖C1,α , ‖T−1‖C1,α ,

)
,

K̂(·) = K
(
·+‖g‖∞

)
,

ν = ν
(
‖Dg‖∞

)
,
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i. e., the new structural constants depend only on the boundary ∂Ω and the boundary data
g. Otherwise, if we assume a natural growth condition we first note that the number k

introduced in (3.12) depends only on M and L1(M). Thus, keeping in mind the normalization
of the coefficients â(·, ·, ·) by the factor (1 − 1

k ) (1 + 1
k )p−2 for an appropriate number k =

k(M,L1(M)), we infer conditions analogous to (H1), (H2), (H3)* and (H4) with constants

L̂ = LcL

(
M,L1(M), ‖g‖C1,α , ‖T‖C1,α , ‖T−1‖C1,α ,

)
,

K̂(·) = K
(
·+‖g‖∞

)
,

ν = ν
(
M,L1(M), ‖Dg‖∞

)
,

i. e., the new structural constants depend here additionally on the constants appearing in the
smallness condition (3.3). We briefly comment on the dependence of the ellipticity constant
ν upon the parameters M and L1(M): when 2L1(M)M ↗ 1, then k →∞ and consequently
ν ↘ 0. This takes no effect on the ellipticity of the transformed system because (3.3) is a
global condition on Ω and hence, ν is bounded from below uniformly for every transformed
system. Moreover, (B2) transforms to the following condition: whenever we consider v ∈ RN

such that |v + g̃(y)| ≤ M we obtain: |b̂(y, v, z)| ≤ L̂1(M)|z|p + L̂2(M) where

L̂1(M) =
(
1 + 1

k

)2 (
1− 1

k

)−1
L1(M) = cL1

(
M,L1(M)

)
,

L̂2(M) = cL2

(
M,L1(M), L2(M), ‖Dg‖∞

)
.

The condition |v + g̃(y)| ≤ M required here is indeed natural: later we will apply condition
(B2) for the transformed solution ṽ(y) = ũ(y)− g̃(y) instead of v such that equivalently (by
definition of ṽ) the condition |ũ(y)| = |u(T−1(y)| ≤ M is required. Finally we calculate using
the explicit representation of L̂1(M) and the definition (3.12) of k (note the assumption (3.3)
on the quantity L1(M)M):

2L̂1(M) M = 2
(
1 + 1

k

)2 (
1− 1

k

)−1
L1(M) M

≤ 2
(
1 + 1−2L1(M)M

4L1(M)M

)
L1(M) M

= L1(M) M + 1
2 < 1 .

Consequently, there holds a condition analogous to 2L1(M)M < 1 for the transformed
problem. Altogether, this means we have proved that the transformation to the model
situation of a half-ball preserves all the structure conditions, both in the case of a controllable
and of a natural growth condition on the inhomogeneity b(·, ·, ·).

In summary, in the sequel we shall consider weak solutions u ∈ W 1,p(B+, RN ) of the elliptic
system

∫
B+

a( · , u,Du) ·Dϕ dx =
∫

B+

b( · , u,Du) · ϕ dx ∀ϕ ∈ C∞
0 (B+, RN )

u = 0 on Γ .
(3.16)

in the model case of a half-ball, where the coefficients a(·, ·, ·) satisfy the assumptions (H1),
(H2), (H3)* and (H4). Furthermore, with respect to the inhomogeneity b(·, ·, ·) either a
controllable growth condition (B1) or a (transformed) natural growth condition (B2)* is
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assumed, meaning that

(B1) |b(x, u, z)| ≤ L
(
1 + |z|2

) p−1
2 for all (x, u, z) ∈ B+ ∪ Γ× RN × RnN ,

or
(B2)* |b(x, u, z)| ≤ L1(M) |z|p + L2(M) for all (x, u, z) ∈ B+ ∪ Γ× RN × RnN

with |u + g| ≤ M

for some constants L1(M), L2(M). In the latter case we will further require

u ∈ L∞(B+, RN ) with ‖u + g‖L∞(B+,RN ) ≤ M and 2L1(M)M < 1 . (3.17)

Then, our objective is to infer a characterization of regular boundary points for the model
problem under these assumptions. As we will see in Section 3.6.3, this suffices to obtain the
desired characterization stated in Theorem 3.2 for the general situation.

3.3 Linear theory

In this section we first provide an a priori estimate for solutions of linear elliptic systems
of second order with constant coefficients in the subquadratic case. In the corresponding
quadratic situation it is well known that W 1,2-solutions are smooth up to the boundary.
Using different techniques with the Lp-theory in a global version as an essential tool it is
possible (see [Bec05, Chapter 4]) to overcome the difficulties arising from the fact that we
treat the case 1 < p < 2 in order to obtain regularity up to the boundary also in this case.
Secondly, we present a suitable A-harmonic approximation lemma.

We now consider the (partial) Dirichlet problems{
div(A Du) = 0 in B+

ρ (x0) ,

u = 0 on Γρ(x0) .
(3.18)

for x0 ∈ Rn−1 × {0} in order to prove C∞-regularity up to the boundary, and

div(A Du) = 0 in Bρ(x0) (3.19)

for some x0 ∈ Rn in order to derive the corresponding estimates in the interior. Here,
we assume the coefficients A ∈ RnN to be bounded and elliptic in the sense of Legendre-
Hadamard, i. e., that we have for some 0 < ν ≤ L

(A1) |A(C,C)| ≤ Λ |C| |C| ∀C,C ∈ RnN

(A2) A(ξ ⊗ η, ξ ⊗ η) ≥ ν |ξ|2 |η|2 ∀ ξ ∈ RN , η ∈ Rn .

Theorem 3.4 ([Bec05], Satz 4.5; [DGK05], Lemma 5): Let p ∈ (1, 2) and let A be
constant coefficients which satisfy conditions (A1) and (A2). There holds:

(i) Assume u ∈ W 1,p
Γ (B+

ρ (x0), RN ) to be weak solutions of the system (3.18). Then u ∈
C∞(B+

ρ (x0) ∪ Γρ(x0), RN ), and

sup
B+

ρ/2
(x0)

(
|Du|+ ρ |D2u|

)
≤ c

( ∫
−
B+

ρ (x0)
|Du|p dx

) 1
p

.
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(ii) Assume u ∈ W 1,p(Bρ(x0), RN ) to be weak solutions of the system (3.19). Then u ∈
C∞(Bρ(x0), RN ), and

sup
Bρ/2(x0)

(
|Du|+ ρ |D2u|

)
≤ c

( ∫
−
Bρ(x0)

|Du| dx
)

.

In both situations the constant c depends only on n, N, p and Λ
ν .

Furthermore, we state the following results concerning A-harmonic approximation:

Lemma 3.5 (A-harm. approximation; [Bec05], Lemma 4.7, [DGK05], Lemma 6):
Let λ, Λ be positive constants. Then for every ε > 0 there exists δ = δ(n, N, p, ν

Λ , ε) with the
following property:

(i) For every bilinear form A on RnN which is elliptic in the sense of Legendre-Hadamard
with ellipticity constant ν and upper bound Λ and for every u ∈ W 1,p

Γ (B+
ρ (x0), RN )

(with some ρ > 0, x0 ∈ Rn−1 × {0}) satisfying:∫
−
B+

ρ (x0)
|V (Du)|2 dx ≤ γ2 ≤ 1 ,∣∣∣ ∫

−
B+

ρ (x0)
A(Du, Dϕ) dx

∣∣∣ ≤ δ γ sup
B+

ρ (x0)

|Dϕ| ∀ϕ ∈ C1
0 (B+

ρ (x0), RN ) ,

there exists an A-harmonic function h ∈ W 1,p
Γ (B+

ρ/2(x0), RN ) (meaning that for all
ϕ ∈ C1

0 (B+
ρ/2(x0), RN ) there holds

∫
B+

ρ/2
(x0) A(Dh,Dϕ) dx = 0), which satisfies∫

−
B+

ρ/2
(x0)

∣∣∣V (u− γh

ρ

)∣∣∣2 dx ≤ γ2ε and
∫
−
B+

ρ/2
(x0)

∣∣V (Dh)
∣∣2 dx ≤ 2n+3 .

(ii) For every bilinear form A on RnN which is elliptic in the sense of Legendre-Hadamard
with ellipticity constant ν and upper bound Λ and for every u ∈ W 1,p(Bρ(x0), RN )
satisfying: ∫

−
Bρ(x0)

|V (Du)|2 dx ≤ γ2 ≤ 1 ,∣∣∣ ∫
−
Bρ(x0)

A(Du, Dϕ) dx
∣∣∣ ≤ δ γ sup

Bρ(x0)
|Dϕ| ∀ϕ ∈ C1

0 (Bρ(x0), RN ) ,

there exists an A-harmonic function h ∈ W 1,p(Bρ(x0), RN ) which satisfies∫
−
Bρ(x0)

∣∣∣V (u− γh

ρ

)∣∣∣2 dx ≤ γ2ε and
∫
−
Bρ(x0)

∣∣V (Dh)
∣∣2 dx ≤ 2 .

3.4 A Caccioppoli inequality

As usual the first step in proving a regularity theorem for solutions u of elliptic systems is
to establish a suitable reverse-Poincaré or Caccioppoli inequality. This means that a certain
integral of Du (here the L2-norm of V (Du) on a half-ball) is essentially controlled in terms
of the solution u itself on a larger domain (or, in our model situation, on a larger half-ball).
In the first step we will study the boundary situation.
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Lemma 3.6 (Caccioppoli inequality at the boundary): Let M0 > 0, ξ ∈ RN with
|ξ| ≤ M0 and let u ∈ W 1,p

Γ (B+, RN ) be a weak solution of (3.16) with coefficients a(·, ·, ·)
satisfying the assumptions (H1), (H2), (H3)* and (H4). Furthermore, assume that one of
the following conditions holds:

1. the inhomogeneity fulfills a controllable growth condition (B1),

2. the inhomogeneity fulfills a natural growth condition (B2)*, and (3.17) is satisfied.

Then for all x0 ∈ Γ and ρ < ρcacc ≤ 1− |x0| there holds∫
−
B+

ρ/2
(x0)

|V (Du− ξ ⊗ en)|2 dx ≤ ccacc

( ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + ρ2α
)

.

The constant ccacc depends in the first case only on n, p, ν, L, M0 and K(M0), whereas in the
second case it depends additionally on M,L1(M) and L2(M); the radius ρcacc is given in the
first case by 1− |x0|, and in the second case it depends only on M0,M, L1(M) and ‖Dg‖L∞.

Proof: Without loss of generality we may assume M > 0. We consider a cut-off function
η ∈ C∞

0 (Bρ/2(x0), [0, 1]) satisfying η = 1 on Bρ/2(x0) and |∇η| ≤ 4
ρ . Both in the case of

controllable and natural growth (keep in mind that in the latter case u is bounded) the
function ϕ = η2(u − ξ xn) can be taken as a test function in (3.16). Hence, using the
abbreviation X := ξ ⊗ en we obtain∫

−
B+

ρ (x0)
b( · , u,Du) · ϕ dx =

∫
−
B+

ρ (x0)
a( · , u,Du) ·Dϕ dx

=
∫
−
B+

ρ (x0)
a( · , u,Du) · (Du−X) η2 dx

+
∫
−
B+

ρ (x0)
a(· , u,Du) ·

(
(u− ξ xn)⊗∇η

)
2η dx .

Since a(x0, 0, X) is constant, the integral
∫
−B+

ρ (x0) a(x0, 0, X) ·Dϕ dx vanishes and thus we
conclude∫
−
B+

ρ (x0)

[
a( · , u,Du)− a( · , u,X)

]
· (Du−X) η2 dx

= −2
∫
−
B+

ρ (x0)

[
a( · , u,Du)− a( · , u,X)

]
·
(
(u− ξ xn)⊗∇η

)
η dx

−
∫
−
B+

ρ (x0)

[
a( · , u,X)− a( · , ξ xn, X)

]
·Dϕ dx

−
∫
−
B+

ρ (x0)

[
a( · , ξ xn, X)− a(x0, 0, X)

]
·Dϕ dx +

∫
−
B+

ρ (x0)
b( · , u,Du) · ϕ dx

=: −
∫
−
B+

ρ (x0)
(2 I + II + III − IV ) dx (3.20)

with the obvious labelling. To estimate the terms I, II and III we decompose the half-ball
into sets of the form

B(≤)(>) := B+
ρ (x0) ∩

{
x : |Du(x)−X| ≤ 1} ∩ {x :

∣∣u(x)−ξ xn

ρ

∣∣ > 1
}
,
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where other combinations involving > and ≤ are defined analogously. If we do not restrict
one of the two expressions |Du(x) −X| respectively |u(x)−ξ xn

ρ | in certain computations, we
replace the sign by a dot, for instance B(·)(≤) = B(≤)(≤) ∪B(>)(≤). On these sets we can use
Lemma A.1 (i) because for every ζ ∈ Rk there holds:

if |ζ| ≤ 1 : min{|ζ|2, |ζ|p} = |ζ|2 ≤
√

2 |V (ζ)|2

if |ζ| > 1 : min{|ζ|2, |ζ|p} = |ζ|p ≤
√

2 |V (ζ)|2 .

Hence, we will use in nearly every calculation Lemma A.1 and Young’s inequality in its
general form, i. e., that for all a, b ≥ 0, ε > 0 and q > 1 there holds

a · b ≤ q−1
q ε a

q
q−1 + 1

q ε1−q bq .

Keeping in mind ρ < 1, we use the assumptions on the coefficients a(·, ·, ·) to estimate the
various terms: for term I we apply condition (H2) if x ∈ B(≤)(·) and condition (H1) if
x ∈ B(>)(·) to conclude completely similarly to the derivation of the estimate (5.4) in [Bec05]

2 I ≤ ε |V (Du−X)|2 η2 + c(p, M0)
(
L2 ε−1 + Lp ε1−p

) ∣∣V (u−ξ xn

ρ

)∣∣2 . (3.21)

Using condition (H4) and the fact that we have |u − ξ xn| ≤ ρ in the set B(·)(≤), we find
for the remaining terms II and III in a standard way (see (5.5) in [Bec05] for detailed
computations)

II + III ≤ 2 ε |V (Du−X)|2 η2 + c(p, M0) K(M0)
p

p−1
(
L + L

p
p−1 ε

1
1−p

) ∣∣V (u−ξ xn

ρ

)∣∣2
+ c(p, M0) K(M0)

p
p−1

(
L + L

p
p−1 ε

1
1−p + L2 ε−1

)
ρ2α . (3.22)

In the next step we consider the remaining integrals in (3.20), i. e., the left-hand side and
the integral involving IV . Taking into consideration the ellipticity of Dza in (H3)* we find
for the left-hand side of (3.20) via Young’s inequality for all δ ∈ (0, 1]:∫
−
B+

ρ (x0)

[
a( · , u,Du)− a( · , u,X)

]
· (Du−X) η2 dx

=
∫
−
B+

ρ (x0)

∫ 1

0
Dza

(
· , u,X + t(Du−X)

)(
Du−X, Du−X

)
η2 dt dx

≥
∫
−
B+

ρ (x0)

∫ 1

0

(
ν−2 + |X + t(Du−X)|2

) p−2
2 |Du−X|2η2 dt dx

≥
∫
−
B+

ρ (x0)

(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2 |Du−X|2η2 dx . (3.23)

We now have to distinguish the growth conditions for the inhomogeneity b(·, ·, ·) in order to
bound the integrand IV :

Controllable growth condition (B1): First we see

IV = b( · , u,Du) · ϕ ≤ L (1 + |Du|2)
p−1
2 |u− ξ xn| η2,
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we then estimate the integrand completely analogously to the terms I, II and III above on
the different sets B(·)(·) and we obtain

IV ≤


c(p, M0) L

(∣∣u−ξ xn

ρ

∣∣2 + ρ2
)

on B(≤)(≤)

c(p, M0) L
∣∣u−ξ xn

ρ

∣∣p on B(≤)(>)

ε√
2
|Du−X|p η2 + c(p, M0) L2 ε−1

∣∣u−ξ xn

ρ

∣∣2 on B(>)(≤)

ε√
2
|Du−X|p η2 + c(p, M0) Lp ε1−p

∣∣u−ξ xn

ρ

∣∣p on B(>)(>) .

By Lemma A.1, (i) this yields

IV ≤ ε |V (Du−X)|2 η2 + c(p, M0)
(
L2 ε−1 + Lp ε1−p

) ∣∣∣V (u− ξ xn

ρ

)∣∣∣2 + c(p, M0) Lρ2α .

(3.24)
Making the choice δ = 1 we obtain in (3.23)∫

−
B+

ρ (x0)

[
a( · , u,Du)− a( · , u,X)

]
· (Du−X) η2 dx

≥ (2 + 2 M2
0 )

p−2
2

∫
−
B+

ρ (x0)

(
ν−2 + |Du−X|2

) p−2
2 |Du−X|2 η2 dx

≥ c−1
1 (p, M0, ν)

∫
−
B+

ρ (x0)
|V (Du−X)|2 η2 dx .

Combining this with (3.20)-(3.22) and (3.24), i. e., the estimates for each of the integrands,
we obtain

(
c−1
1 (p, ν,M0)− 4ε

) ∫
−
B+

ρ (x0)
|V (Du−X)|2 η2 dx

≤ c(p, M0) K(M0)
p

p−1
(
L2 ε−1 + Lp ε1−p + L + L

p
p−1 ε

1
1−p

) ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx

+ c(p, M0) K(M0)
p

p−1
(
L + L

p
p−1 ε

1
1−p + L2 ε−1

)
ρ2α .

Choosing ε = 1
8 c−1

1 (p, ν,M0) and dividing this by 1
2 c−1

1 (p, ν,M0) finally yields∫
−
B+

ρ/2
(x0)

|V (Du−X)|2 dx ≤ 2n

∫
−
B+

ρ (x0)
|V (Du−X)|2 η2 dx

≤ c(n, p, L, ν, M0) K(M0)
p

p−1

[ ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + ρ2α

]
,

meaning that we have established the desired result if the inhomogeneity obeys a controllable
growth condition.

Natural growth condition (B2)*: In this case we first mention that the solution u

vanishes on Γ by assumption and hence, in view of (3.17) g is bounded on Γ by M . This
enables us to calculate

|u− ξxn| ≤ |u + g|+ |g(x0)|+ |g − g(x0)|+ |ξxn| ≤ 2M + (‖Dg‖L∞ + |ξ|) ρ .
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Therefore, we estimate the inhomogeneity utilizing the growth condition (B2)*, Young’s
inequality, Lemma A.1, (i) and |ξ| ≤ M0 to infer for every δ > 0 that

IV ≤
[
L1(M) |Du|p + L2(M)

]
|u− ξxn| η2

≤
[
L1(M)

(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p
2 + L2(M)

]
|u− ξxn| η2

= L1(M) (1 + δ) |Du−X|2
(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2 |u− ξxn| η2

+
[
L1(M)

(
ν−2 + (1 + δ−1) |X|2

) (
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2

+ L2(M)
]
|u− ξxn| η2

≤ L1(M) (1 + δ)
(
2M + (‖Dg‖L∞ + |ξ|) ρ

)
×

(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2 |Du−X|2 η2

+
[
L1(M)

(
ν−2 + (1 + δ−1) |X|2

)
+ L2(M)

]
|u− ξxn| η2

≤ L1(M) (1 + δ)
(
2M + (‖Dg‖L∞ + M0) ρ

)
×

(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2 |Du−X|2 η2

+
√

2
[
L1(M)

(
ν−2 + (1 + δ−1) M2

0

)
+ L2(M)

](∣∣∣V (u− ξ xn

ρ

)∣∣∣2 + ρ2α
)

=: (IVa + IVb) .

The first term on the right-hand side of the last inequality will now be absorbed in (3.23)
by employing the smallness condition 2L1(M) M < 1. For this purpose we choose

δ =
1− 2L1(M)M

4L1(M)M

(implying that (1 + δ)2L1(M)M is the arithmetic mean of 2L1(M)M and 1). We continue
by setting

ρ0 := min
{

1− |x0| ,
M − 2L1(M)M2

(1 + 2L1(M)M)(‖Dg‖L∞ + M0)

}
,

meaning that we take once again the arithmetic mean if necessary; therefore, ρ0 is a quantity
depending only on M0,M,L1(M) and ‖Dg‖L∞ . In particular, the choices for δ and ρ0 allow
us to compute

1− L1(M) (1 + δ)
(
2M + (‖Dg‖L∞ + M0) ρ0

)
≥ 1− L1(M)

1 + 2L1(M)M
4L1(M)M

(
2M +

M − 2L1(M)M2

1 + 2L1(M)M

)
= 1− 1 + 2L1(M)M

4M

3M + 2L1(M)M2

1 + 2L1(M)M

=
1− 2L1(M)M

4
= c−1

(
M,L1(M)

)
> 0 ,

where we have employed that 2L1(M)M < 1 by assumption. Furthermore, in view of the
choice of δ, we find (1 + δ)(p−2)/2 ≥ (1 + δ)−1 = c−1(M,L1(M)) as well as (1 + δ−1)(p−2)/2 ≥
c−1(M,L1(M)). Hence, we use (3.23) and |X| ≤ M0 to obtain for all radii ρ ∈ (0, ρ0):∫
−
B+

ρ (x0)

[
a( · , u,Du)− a( · , u,X)

]
· (Du−X) η2 dx−

∫
−
B+

ρ (x0)
IVa dx
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≥ c−1
(
M,L1(M)

) ∫
−
B+

ρ (x0)

(
ν−2 + (1 + δ−1) |X|2 + (1 + δ) |Du−X|2

) p−2
2 |Du−X|2η2 dx

≥ c−1
(
M,L1(M)

) ∫
−
B+

ρ (x0)

(
ν−2 + |X|2 + |Du−X|2

) p−2
2 |Du−X|2η2 dx

≥ c−1
2

(
p, ν,M0,M, L1(M)

) ∫
−
B+

ρ (x0)
|V (Du−X)|2η2 dx .

We note that the constant c−1
2 approaches 0 as 2L1(M)M ↗ 1 in condition (3.17). Com-

bining (3.20)-(3.22) and the definition of IVb, we infer similarly to the case of a controllable
growth condition that

(
c−1
2

(
p, ν,M0,M, L1(M)

)
− 3ε

) ∫
−
B+

ρ (x0)
|V (Du−X)|2 η2 dx

≤ c(p, L, M0,M, L1(M), L2(M), ε) K(M0)
p

p−1

( ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + ρ2α
)

.

Choosing ε = 1
6 c−1

2 and dividing this by 1
2 c−1

2 then yields for all ρ ∈ (0, ρ0)∫
−
B+

ρ/2
(x0)

|V (Du−X)|2 dx ≤ 2n

∫
−
B+

ρ (x0)
|V (Du−X)|2 η2 dx

≤ cK(M0)
p

p−1

[ ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + ρ2α

]
with a constant c which depends only on n, p, L, ν, M0,K(M0),M, L1(M) and L2(M), and
the proof of the lemma is complete. �

Remark: Actually, we only have to confine ourselves to small radii if ‖Dg‖L∞ 6= 0, whereas
we have ρcacc = 1− |x0| if ‖Dg‖L∞ = 0. To prove this assertion it remains to consider radii
ρ ≥ ρ0 where the radius ρ0 is defined in the proof above. We apply Lemma A.1 and the
Lemma with ξ = 0 (then it is easy to see that we do not require any smallness assumption
on the radius). Hence, we find the following estimate∫
−
B+

ρ/2
(x0)

|V (Du−X)|2 dx ≤ c(p)
( ∫
−
B+

ρ/2
(x0)

|V (Du)|2 dx + M2
0

)
≤ c

[ ∫
−
B+

ρ (x0)

∣∣∣V (u

ρ

)∣∣∣2 dx + ρ2α + M2
0

]
≤ c

[ ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + M2
0 + ρ2α

]
≤ c

(
n, p, L, ν, M0,K(M0),M, L1(M), L2(M)

) [ ∫
−
B+

ρ (x0)

∣∣∣V (u− ξ xn

ρ

)∣∣∣2 dx + ρ2α

]
where in the last inequality we have used the fact that for all radii ρ ≥ ρ0 under consideration
there holds:

M2
0 ≤ M2

0 ρ−2α
0 ρ2α = c(M0,M,L1(M)) ρ2α .

In the interior we find an analogous result. For later application the following form of the
Caccioppoli inequality will be convenient:
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Lemma 3.7 (Caccioppoli inequality in the interior): Consider µ̄ ∈ RN , Υ ∈ RnN

with |µ̄|, |Υ| ≤ M0 and let u ∈ W 1,p(Ω, RN ) be a weak solution of under the assumptions
(H1)-(H4). Furthermore, assume that one of the following conditions holds:

1. the inhomogeneity fulfills a controllable growth condition (B1),

2. the inhomogeneity fulfills a natural growth condition (B2); additionally we suppose:
u ∈ L∞(Ω, RN ) with ‖u‖L∞ ≤ M and 2L1(M)M < 1.

Then for every x0 ∈ Ω, ρ ∈ (0, 1) such that Bρ(x0) b Ω there holds∫
−
Bρ/2(x0)

|V (Du)− V (Υ)|2 dx ≤ ĉcacc

( ∫
−
Bρ(x0)

∣∣∣V (u(x)− µ̄−Υ(x− x0)
ρ

)∣∣∣2 dx + ρ2α
)

,

The constant ĉcacc depends in the first case only on n, N, p, L, M0 and K(2M0), whereas in
the second case it depends additionally on M,L1(M) and L2(M).

Proof: We proceed similarly to the proof of the Caccioppoli inequality at the boundary,
however, the occurrence of µ̄ necessitates some modifications in the choices of the quantities
appearing within the proof. Instead of u− ξxn we will consider the map v(x) := u(x)− µ̄−
Υ(x − x0). Let η ∈ C∞

0 (Bρ/2(x0), [0, 1]) be a cut-off function satisfying η = 1 in Bρ/2(x0)
and |∇η| ≤ 4

ρ . We now test the system (3.1) with the function ϕ = η2 v and analogously to
(3.20) we obtain∫
−
Bρ(x0)

[
a( · , u,Du)− a( · , u, Υ)

]
· (Du−Υ) η2 dx

= − 2
∫
−
Bρ(x0)

[
a( · , u,Du)− a( · , u, Υ)

]
·
(
v ⊗∇η

)
η dx

−
∫
−
Bρ(x0)

[
a( · , u, Υ)− a( · , µ̄ + Υ(x− x0), Υ)

]
·Dϕ dx

−
∫
−
Bρ(x0)

[
a( · , µ̄ + Υ(x− x0), Υ)− a(x0, µ̄, Υ)

]
·Dϕ dx +

∫
−
Bρ(x0)

b( · , u,Du) · ϕ dx

=: −
∫
−
Bρ(x0)

(
2 I + II + III − IV

)
dx (3.25)

with the obvious abbreviations of the integrands. This time we decompose Bρ(x0) in sets of
the form

B(≤)(>) := Bρ(x0) ∩
{
x : |Du(x)−Υ| ≤ 1} ∩ {x :

∣∣v(x)
ρ

∣∣ > 1
}
,

with analogous definitions for other combinations involving > and ≤. For the estimates for I -
III we now refer to Lemma 3.6: the only difference is the application of the Hölder continuity
in (H4) since K depends on the second argument of a(·, ·, ·) and hence, on |µ̄ + Υ(x−x0)| ≤
2 M0. Therefore, in the Caccioppoli inequality in the interior we have K(2M0) instead of
K(M0). Combining these estimates we find (cf. (3.21) and (3.22)):

I ≤ ε |V (Du−Υ)|2 η2 + c(p, M0)
(
L2 ε−1 + Lp ε1−p

) ∣∣V (
v
ρ

)∣∣2
II + III ≤ 2 ε |V (Du−Υ)|2 η2 + c(p, M0) K(2M0)

p
p−1

(
L + L

p
p−1 ε

1
1−p

) ∣∣V (
v
ρ

)∣∣2
+

(
L + L

p
p−1 ε

1
1−p + L2 ε−1

)
K(2M0)

p
p−1 c(p, M) ρ2α .
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As previously we now distinguish the different growth conditions on the inhomogeneity:

Controllable growth condition (B1): for the remaining integrand IV we find (cf. (3.24)):

IV ≤ ε |V (Du−Υ)|2 η2 + c(p, M0)
(
L2 ε−1 + Lp ε1−p

) ∣∣V (
v
ρ

)∣∣2 + c(p, M0) Lρ2α .

Utilizing the ellipticity of Dza in (H3), we may estimate the integral on the left-hand side of
(3.25) from below by∫
−
Bρ(x0)

[
a( · , u,Du)− a( · , u, Υ)

]
· (Du−Υ) η2 dx ≥ c−1

1 (p, M0)
∫
−
Bρ(x0)

|V (Du−Υ)|2η2 dx .

These estimates allow us to deduce from (3.25):

(
c−1
1 − 4 ε

) ∫
−
Bρ(x0)

|V (Du−Υ)|2 η2 dx

≤ c(p, L, M0, ε) K(2M0)
p

p−1

∫
−
Bρ(x0)

∣∣∣V (v

ρ

)∣∣∣2 dx + c(p, L, M0, ε) K(2M0)
p

p−1 ρ2α .

With the choice ε := 1
8 c−1

1 and taking into account Lemma A.1 (v) and the definition of v,
we immediately obtain the assertion of the lemma:∫
−
Bρ/2(x0)

|V (Du)− V (Υ)|2 dx ≤ 2n

∫
−
Bρ(x0)

|V (Du)− V (Υ)|2 η2 dx

≤ c(n, N, p)
∫
−
Bρ(x0)

|V (Du−Υ)|2 η2 dx

≤ c(n, N, p, L, M0) K(2M0)
p

p−1

( ∫
−
Bρ(x0)

∣∣∣V (v

ρ

)∣∣∣2 dx + ρ2α
)

.

Natural growth condition (B2): Here, we proceed exactly as in the boundary situation:
the ellipticity of Dza yields for every δ ∈ (0, 1]:∫

−
Bρ(x0)

[
a( · , u,Du)− a( · , u, Υ)

]
· (Du−Υ) η2 dx

≥
∫
−
Bρ(x0)

(
1 + (1 + δ−1) |Υ|2 + (1 + δ) |Du−Υ|2

) p−2
2 |Du−Υ|2η2 dx ,

and for the inhomogeneity we obtain via the growth condition (B2):∫
−
Bρ(x0)

IV dx ≤
∫
−
Bρ(x0)

(
L1(M) |Du|p + L2(M)

)
|v| η2 dx

≤ L1(M)(1 + δ)(2M + |Υ|ρ)

×
∫
−
Bρ(x0)

(
1 + (1 + δ−1)|Υ|2 + (1 + δ)|Du−Υ|2

) p−2
2 |Du−Υ|2 η2 dx

+
√

2
[
L1(M)

(
1 + (1 + δ−1) |Υ|2

)
+ L2(M)

] ∫
−
Bρ(x0)

(∣∣V (
v
ρ

)∣∣2 + ρ2α
)
dx

=:
∫
−
Bρ(x0)

(IVa + IVb) dx .
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To absorb the first term on the right-hand side of the last inequality we choose

δ =
1− 2L1(M)M

4L1(M)M
and ρ0 := min

{
1 ,

M − 2L1(M)M2

(1 + 2L1(M)M)M0

}
.

This allows us to proceed again as in the boundary situation and we obtain in the first step
that for all radii ρ ∈ (0, ρ0) there holds∫

−
Bρ(x0)

[
a( · , u,Du)− a( · , u, Υ)

]
· (Du−Υ) η2 dx−

∫
−
Bρ(x0)

IVa dx

≥ c−1
2

(
p, M, L1(M)

) ∫
−
Bρ(x0)

|V (Du−Υ)|2η2 dx ,

which yields for ε = 1
6 c−1

2 (p, M, L1(M)) the inequality∫
−
Bρ/2(x0)

|V (Du−Υ)|2 dx ≤ 2n

∫
−
Bρ(x0)

|V (Du−Υ)|2 η2 dx

≤ cK(2M0)
p

p−1

[ ∫
−
Bρ(x0)

∣∣∣V (v

ρ

)∣∣∣2 dx + ρ2α

]
where the constant c depends only on n, p, L,M0,M, L1(M) and L2(M). Analogously to the
remark after Lemma 3.6, the assertion follows also for radii ρ ≥ ρ0 in view of Lemma A.1
and the result for the case Υ = 0. �

Remark: As already noted in Remark 3.3 we obtain the Caccioppoli inequalities for both
the interior and the boundary situation under the almost natural growth condition (B3)
on the inhomogeneity also for bounded weak solutions u ∈ W 1,p(Ω, RN ) ∩ L∞(Ω, RN ) and
u ∈ W 1,p

Γ (B+, RN )∩L∞(B+, RN ), respectively, without assuming any condition of the form
2L1(M)M < 1. In fact, the integrand IV in Lemma 3.6 is then estimated by

IV ≤
(
L1(M) |Du|p̃ + L2(M)

)
|u− ξxn| η2

≤ 2 L1(M) |Du−X|p̃ |u− ξxn| η2 + c
(
p, M0, L1(M), L2(M)

)[∣∣V (u−ξ xn

ρ

)∣∣2 + ρ2α
]
.

The first term on the right-hand side of the last inequality is bounded from above as follows:
on the set B(≤)(·) we have

2 L1(M) |Du−X|p̃ |u− ξxn| η2 ≤ 2 L1(M) |u− ξxn|

≤ 4 L1(M)
[∣∣V (u−ξ xn

ρ

)∣∣2 + ρ2α
]
.

On the remainder B(>)(·) we find via Young’s inequality and the fact that we consider
bounded solutions u ∈ L∞(B+, RN ):

2 L1(M) |Du−X|p̃ |u− ξxn| η2 ≤ ε√
2
|Du−X|p η2 + c

(
p, p̃, L1(M), ε

)
|u− ξxn|

p
p−p̃

≤ ε |V (Du−Υ)|2 η2 + c(p, p̃, M0,M,L1(M), ‖Dg‖∞, ε)
∣∣V (u−ξ xn

ρ

)∣∣2
and the constant c blows up for p̃ ↗ p. Combining these estimates we infer

IV ≤ ε |V (Du−Υ)|2 η2 + c(p, p̃, M0,M, L1(M), L2(M), ‖Dg‖∞, ε)
[∣∣V (u−ξ xn

ρ

)∣∣2 + ρ2α
]
,

and the Caccioppoli inequality at the boundary follows in a standard way. In the interior
situation we proceed analogously. We mention here that we do not need any further restric-
tion on ρcacc = 1 − |x0|, and the constants ccacc and ĉcacc now additionally depend on the
exponent p̃.
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3.5 Estimate for the excess quantity

3.5.1 Approximate A-harmonicity

For every half-ball B+
ρ (y) with y ∈ Γ and Bρ(y) b B, a fixed function u ∈ W 1,p

Γ (B+, RN )
and ξ ∈ RN we define the excess function by

Φ(y, ρ, ξ) :=
( ∫
−
B+

ρ (y)
|V (Du− ξ ⊗ en)|2 dx

) 1
2
. (3.26)

In this section we consider a solution u ∈ W 1,p
Γ (B+, RN ) of the system (3.16). We will show

that the function u − ξ xn is approximately A-harmonic for some constant coefficients A

which are derived from the original coefficients a(·, ·, ·). The application of Lemma 3.5 will
then yield the existence of an A-harmonic function, which is on the one hand comparable
via the function W to the function (u − ξ xn) in the L2-sense, and for which, on the other
hand, good a priori estimates are available.

Lemma 3.8: Let u ∈ W 1,p
Γ (B+, RN ) be a weak solution of (3.16), where the conditions

(H2) and (H4) are satisfied, and let M0 > 0. Furthermore, assume that one of the following
conditions holds:

1. the inhomogeneity fulfills a controllable growth condition (B1),

2. the inhomogeneity fulfills a natural growth condition (B2)*, and (3.17) is satisfied.

Then for every B+
ρ (y) with y ∈ Γ and Bρ(y) b B and for every ξ ∈ RN with |ξ| ≤ M0 there

holds∣∣∣ ∫
−
B+

ρ (y)
Dza(y, 0, ξ ⊗ en)

(
Du− ξ ⊗ en, Dϕ

)
dx

∣∣∣ ≤ ca

[
Φ2 + ρα + χM0

(
Φ2

)
Φ

]
sup

B+
ρ (y)

|Dϕ|

for all ϕ ∈ C∞
0 (B+

ρ (y), RN ), where we have abbreviated Φ(y, ρ, ξ ⊗ en) on the right-hand
side by Φ. The constant ca depends in Case 1 only on p, L, M0 and K(M0), and in Case
2 additionally on M,L1(M) and L2(M). Here χM0 denotes the modulus of continuity from
(3.2).

Proof: In the sequel, we will use the notation X = ξ ⊗ en. Moreover, we will estimate in
the various calculations below |Du−X|2 and |Du−X|p, respectively, by

√
2|V (Du−X)|2

via Lemma A.1 (i).

Using −div a( · , u,Du) = b( · , u,Du) and the fact that a(y, 0, X) is constant, we infer the
following identity for every test function ϕ ∈ C∞

0 (B+
ρ (y), RN ) satisfying supB+

ρ (y) |Dϕ| ≤ 1:∫
−
B+

ρ (y)

∫ 1

0
Dza

(
y, 0, X + t(Du−X)

)
dt

(
Du−X, Dϕ

)
dx

=
∫
−
B+

ρ (y)

[
a(y, 0, Du)− a(y, 0, X)

]
·Dϕ dx

=
∫
−
B+

ρ (y)

[
a(y, 0, Du)− a( · , u,Du)

]
·Dϕ dx +

∫
−
B+

ρ (y)
b( · , u,Du) · ϕ dx .
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This allows us to infer the estimate∣∣∣ ∫
−
B+

ρ (y)
Dza(y, 0, X)

(
Du−X, Dϕ

)
dx

∣∣∣
=

∣∣∣ ∫
−
B+

ρ (y)

∫ 1

0

[
Dza(y, 0, X)−Dza(y, 0, X + t(Du−X))

]
dt

(
Du−X, Dϕ

)
dx

+
∫
−
B+

ρ (y)

[
a(y, 0, Du)− a( · , u,Du)

]
·Dϕ dx +

∫
−
B+

ρ (y)
b( · , u,Du) · ϕ dx

∣∣∣
≤

∫
−
B+

ρ (y)
(I + II + III + IV ) dx (3.27)

with

I =
∣∣∣ ∫ 1

0

[
Dza

(
y, 0, X

)
−Dza

(
y, 0, X + t(Du−X)

)]
dt

∣∣∣ ∣∣(Du−X
)∣∣ ,

II =
∣∣a(

y, 0, Du
)
− a

(
x, X (x− y), Du

)∣∣ ,

III =
∣∣a(

x, X (x− y), Du
)
− a

(
x, u, Du

)∣∣ ,

IV =
∣∣b(x, u, Du) · ϕ(x)

∣∣ .

Estimate for I: On the set B+
ρ (y)∩

{
|Du−X| > 1

}
we get from the boundedness of Dza(·, ·, ·)

in (H2):

I ≤ 2 L|Du−X| ≤ 2 L|Du−X|p ≤ 2
√

2 L|V (Du−X)|2 .

On the complement, we use the existence of the modulus of continuity χM0 for Dza(·, ·, ·) to
conclude

I ≤
∫ 1

0

∣∣Dza(y, 0, X)−Dza
(
y, 0, X + t(Du−X)

)∣∣ dt |Du−X|

≤ LχM0

(√
2|V (Du−X)|2

)
2

1
4 |V (Du−X)| .

Since χ2
M0

is concave and monotone nondecreasing, we apply Hölder’s and Jensen’s inequality
(note that we have χ2

M0
(ct) ≤ cχ2

M0
(t) for c ≥ 1) to arrive at

1
|B+

ρ (y)|

∫
B+

ρ (y)∩{|Du−X|≤1}
I dx ≤ 2

1
4 L

∫
−
B+

ρ (y)
χM0

(√
2|V (Du−X)|2

)
|V (Du−X)| dx

≤
√

2 LχM0

( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx

) ( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx

) 1
2
.

Therefore, we achieve for the first integral:∫
−
B+

ρ (y)
I dx ≤ 2

√
2 L

∫
−
B+

ρ (y)
|V (Du−X)|2 dx

+
√

2 LχM0

( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx

) ( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx

) 1
2

= 2
√

2 L Φ2(y, ρ,X) +
√

2 LχM0

(
Φ2(y, ρ,X)

)
Φ(y, ρ,X) . (3.28)
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Estimate for II: By assumption (H4) we have

II ≤ LK(|X|) ω
(
|x− y|+ |X| |x− y|

) (
1 + |Du|2

) p−1
2

≤ LK(M0) ω
(
ρ (1 + |X|)

) (
1 + |Du−X|p−1 + |X|p−1

)
≤ LK(M0) (1 + M0)α ρα

(
1 + |Du−X|p−1 + Mp−1

0

)
≤ LK(M0) c(M0) ρα

(
1 + |Du−X|p−1

)
.

On B+
ρ (y) ∩

{
|Du−X| > 1

}
we have (keeping in mind ρ ≤ 1)

II ≤ LK(M0) c(M0) ρα |Du−X|p−1

≤ LK(M0) c(M0) |Du−X|p

≤ LK(M0) c(M0) |V (Du−X)|2 ,

and on B+
ρ (y) ∩

{
|Du−X| ≤ 1

}
we find

II ≤ LK(M0) c(M0) ρα .

Hence, for the second integral we obtain the estimate∫
−
B+

ρ (y)
II dx ≤ LK(M0) c(M0)

( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx + ρα

)
= LK(M0) c(M0)

(
Φ2(y, ρ,X) + ρα

)
. (3.29)

Estimate for III: Taking into account the special form of X = ξ⊗en we see for the function
appearing in III (note yn = 0 by assumption):

X (x− y) = ξ (xn − yn) = ξ xn .

Therefore, similarly to the estimate for II we derive via (H4)

III ≤ LK(M0) ω
(
|u−X(x− y)|

) (
1 + |Du|2

) p−1
2

≤ LK(M0) c(M0) ω
(
|u− ξxn|

) (
1 + |Du−X|p−1

)
. (3.30)

In view of ω(t) ≤ 1, we infer on the set B+
ρ (y) ∩

{
|Du−X| > 1

}
:

III ≤ LK(M0) c(M0) |Du−X|p−1

≤ LK(M0) c(M0) |V (Du−X)|2 .

For an estimate of the right-hand side of (3.30) on the complement B+
ρ (y)∩

{
|Du−X| ≤ 1

}
we first note that for

{∣∣u−ξxn

ρ

∣∣ ≤ 1
}

we have

|u− ξxn|α ≤ ρα ,

whereas for
{∣∣u−ξxn

ρ

∣∣ > 1
}

we see (using 0 < ρ < 1)

|u− ξxn|α ≤
∣∣u−ξxn

ρ

∣∣α ≤
∣∣u−ξxn

ρ

∣∣p ≤ √
2

∣∣V (u−ξxn

ρ

)∣∣2 .
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Hence, we deduce on B+
ρ (y) ∩

{
|Du−X| ≤ 1

}
:

III ≤ LK(M0) c(M0)
(
ρα +

∣∣V (u−ξxn

ρ

)∣∣2) .

Since u − ξxn vanishes on Γ, in particular on Γρ(y), we apply the Poincaré inequality from
Lemma A.8 to deduce∫
−
B+

ρ (y)

∣∣∣V (u− ξxn

ρ

)∣∣∣2 dx ≤ c(p)
∫
−
B+

ρ (y)
|V (Dnu− ξ)|2 dx ≤ c(p)

∫
−
B+

ρ (y)
|V (Du−X)|2 dx .

This provides the following estimate for the third integral:∫
−
B+

ρ (y)
III dx ≤ LK(M0) c(M0)

( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx +

∫
−
B+

ρ (y)

∣∣V (u−ξxn

ρ

)∣∣2 dx + ρα
)

≤ LK(M0) c(p, M0)
( ∫
−
B+

ρ (y)
|V (Du−X)|2 dx + ρα

)
= LK(M0) c(p, M0)

(
Φ2(y, ρ,X) + ρα

)
. (3.31)

Estimate for IV : Due to supB+
ρ (y) |Dϕ| ≤ 1 and ϕ = 0 on ∂B+

ρ (y) there holds supB+
ρ (y) |ϕ| ≤

ρ. Hence, we may estimate the remaining term using the different growth conditions on the
inhomogeneity b(·, ·, ·):

Controllable growth condition (B1): we proceed analogously to II and obtain

∣∣b(x, u, Du) · ϕ(x)
∣∣ ≤ L

(
1 + |Du|2

) p−1
2 ρ

≤ L
(
1 + |X|p−1 + |Du−X|p−1

)
ρα

≤ Lρα |Du−X|p−1 + Lc(M0) ρα

≤ Lc(M0)
(
|V (Du−X)|2 + ρα

)
.

Natural growth condition (B2)*: with the assumption |u + g| ≤ M from (3.17) we may
utilize (B2)* in order to derive via |Du−X|p ≤ 1 + |V (Du−X)|2:

∣∣b(x, u, Du) · ϕ(x)
∣∣ ≤ ρ

(
L1(M) |Du|p + L2(M)

)
≤ ρ

(
2 L1(M) |Du−X|p + 2 L1(M) |X|p + L2(M)

)
≤ 2 L1(M) |V (Du−X)|2 + c

(
M0,M,L1(M), L2(M)

)
ρα .

Therefore, in both cases we find for the last term:∫
−
B+

ρ (y)
IV dx ≤ c

(
Φ2(y, ρ,X) + ρα

)
, (3.32)

where the constant c depends only on L and M0 in the case of controllable growth and on
M0,M,L1(M) and L2(M) in the case of natural growth, respectively.

Combining the estimates (3.28), (3.29), (3.31) and (3.32) with (3.27) we see that∣∣∣ ∫
−
B+

ρ (y)
Dza(y, 0, X)

(
Du−X, Dϕ

)
dx

∣∣∣ ≤ c
[
Φ2(y, ρ,X) +ρα +χM0

(
Φ2(y, ρ,X)

)
Φ(y, ρ,X)

]
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whenever supB+
ρ (y) |Dϕ| ≤ 1 with the dependencies of the constants as stated in the lemma.

Rescaling by supB+
ρ (y) |Dϕ| for a general test function ϕ ∈ C∞

0 (B+
ρ (y), RN ) yields the desired

result:∣∣∣ ∫
−
B+

ρ (y)
Dza(y, 0, X)

(
Du−X, Dϕ

)
dx

∣∣∣
≤ c

[
Φ2(y, ρ,X) + ρα + χM0

(
Φ2(y, ρ,X)

)
Φ(y, ρ,X)

]
sup

B+
ρ (y)

|Dϕ| . �

3.5.2 Excess-decay estimate at the boundary

The right-hand side of the inequality in Lemma 3.8 must be small in order to apply the
A-harmonic approximation, Lemma 3.5, to the function w = u − ξxn. Combined with the
a priori estimates for A-harmonic functions (i. e., solutions of a linear elliptic system with
constant coefficients A) this provides an estimate for the excess function on smaller half-balls.
We proceed in a manner close to [Gro02b, Section 3.3-3.4] and the case of homogeneous
systems [Bec05, Chapter 6]. Hence, we will only sketch the proceeding and mention the
modifications necessary or the new dependencies occurring in the choices of the constants.

For a solution u ∈ W 1,p
Γ (B+, RN ) of the system (3.16) we fix y ∈ Γ, ρ ∈ (0, ρcacc) (with ρcacc

determined in Lemma 3.6), M1 ≥ 1, ξ ∈ RN with |ξ| ≤ M1, and we set

Φ(r, ξ) := Φ(y, r, ξ) =
( ∫
−
B+

r (y)
|V (Du− ξ ⊗ en)|2 dx

) 1
2
,

w := u− ξ xn ∈ W 1,p
Γ (B+, RN ) .

The bilinear form A := νp−2 Dza(y, 0, ξ ⊗ en) is elliptic and bounded from above with

(1 + M2
1 )

p−2
2 |B|2 ≤ A(B,B) ≤ Lνp−2|B|2 ∀B ∈ RnN ,

see conditions (H2) and (H3)*. Applying Lemma 3.8 we obtain for all ϕ ∈ C∞
0 (B+

ρ (y), RN ):∣∣∣ ∫
−
B+

ρ (y)
A(Dw,Dϕ) dx

∣∣∣ =
∣∣∣ ∫
−
B+

ρ (y)
νp−2 Dza(y, 0, ξ ⊗ en)

(
Du− ξ ⊗ en, Dϕ

)
dx

∣∣∣
≤ ca

[
Φ2(ρ, ξ) + ρα + χM1

(
Φ2(ρ, ξ)

)
Φ(ρ, ξ)

]
sup

B+
ρ (y)

|Dϕ|

≤ 2 ca

√
Φ2(ρ, ξ) + δ−2ρ2α

√
Φ2(ρ, ξ) + 1

2δ2 + χ2
M1

(
Φ2(ρ, ξ)

)
sup

B+
ρ (y)

|Dϕ| ,

where δ ∈ (0, 1] is a parameter at our disposal, which will be chosen later. Here, we have
used the elementary inequality a + b + c ≤ 2 (a2 + 1

2b2 + c2)
1
2 , and ca depends only on

p, L, ν,M1 and K(M1) under the assumption (B1) of controllable growth, and additionally
on M,L1(M) and L2(M) under the assumption (B2)* of natural growth.

For ε > 0 to be specified later, let δ = δ(n, N, p, ν, L,M1, ε) ∈ (0, 1] denote the constant from
Lemma 3.5. Keep in mind that δ has to be chosen according to the ellipticity constant and
the upper bound of A. Assume

Φ2(ρ, ξ) + χ2
M1

(
Φ2(ρ, ξ)

)
≤ 1

2 δ2 , (3.33)

γ := 2 ca

√
Φ2(ρ, ξ) + δ−2ρ2α ≤ 1 . (3.34)
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Then we have∣∣∣ ∫
−

B+
ρ (y)

A(Dw,Dϕ) dx
∣∣∣ ≤ γ δ sup

B+
ρ (y)

|Dϕ| for all ϕ ∈ C∞
0 (B+

ρ (y), RN ) ,

and the application of the A-harmonic approximation Lemma 3.5 ensures the existence of
an A-harmonic function h ∈ W 1,p

Γ (Bρ/2(y), RN ) satisfying∫
−
B+

ρ/2
(y)

∣∣∣V (w − γh

ρ

)∣∣∣2 dx ≤ γ2ε , and
∫
−
B+

ρ/2
(y)

∣∣V (Dh)
∣∣2 dx ≤ 2n+3 .

We next deduce some relevant properties of the function h: splitting the integration domain
in {|Dh| > 1} and {|Dh| ≤ 1}, we infer the following inequality (similarly to (6.19) in
[Bec05]) using Lemma A.1 (i), Hölder’s inequality and the second of the latter estimates:∫

−
B+

ρ/2
(y)
|Dh|p dx ≤ 2n+5 .

Moreover, in view of Lemma 3.4, h is smooth on B+
σ (y) for all σ < ρ

2 and fulfills the a priori
estimate

sup
B+

ρ/4
(y)

(
|Dh|+ ρ |D2h|

)
≤ c

( ∫
−
B+

ρ/2
(y)
|Dnh|p dx

) 1
p ≤ ch(n, N, p, ν, L,M1) .

Since h vanishes on Γρ/2, there exists a constant vector ζ ∈ RN such that we have the
representation

Dh(y) = ζ ⊗ en where |ζ| ≤ ch ;

Taylor expansion of h in points x ∈ B+
2θρ(y) with θ ∈ (0, 1

8 ], Lemma A.1 and the choice
ε = θn+4 then yields (cf. [Bec05], p.65):∫

−
B+

2θρ(y)

∣∣∣V (w − γ ζxn

2θρ

)∣∣∣2 dx ≤ c(p) c2
h θ2 γ2 . (3.35)

We highlight that the choice of ε fixes δ = δ(n, N, p, ν, L,M1, ε) ∈ (0, 1] in terms of θ. In
the next step we want to estimate the left-hand side of (3.35) by means of the Caccioppoli
inequality. Since w − γζxn = u − (ξ + γζ)xn its application is only possible if |ξ + γζ|
is bounded. Thus we choose M2 ≥ M1 + 1 such that |ξ + γζ| ≤ M2. Observing that the
constants ch, δ and ca depend monotone nondecreasingly on M1 we note that it is sufficient
to state the dependency on M2. From the Caccioppoli inequality in Lemma 3.6 with radii
(θρ, 2θρ) instead of (ρ

2 , ρ), we infer with (3.35) an estimate for the excess function on smaller
half-balls B+

θρ(y):

Φ2(θρ, ξ + γζ) =
∫
−
B+

θρ(y)
|V

(
Du− (ξ + γζ)⊗ en

)
|2 dx

≤ ccacc

( ∫
−
B+

2θρ(y)

∣∣∣V (w − γ ζxn

2θρ

)∣∣∣2 dx + (2θρ)2α
)

≤ ccacc

(
c(p) c2

h θ2 γ2 + ρ2α
)
≤ c2

dec

(
θ2 Φ2(ρ, ξ) + δ−2ρ2α

)
,

where we have used the definition γ = 2 ca

√
Φ2 + δ−2ρ2α in the last line and where the

constant cdec = 2
√

ccacc c(p) chca depends on n, N, p, L, ν,M2 and K(M2) for a control-
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lable growth condition, and additionally on M,L1(M) and L2(M) if we assume a natu-
ral growth condition. To an arbitrary exponent σ ∈ (α, 1) we fix θ ∈ (0, 1

8 ] in depen-
dency of σ and cdec (meaning that we have θ = θ(n, N, p, ν, L,M2,K(M2), σ) and θ =
θ(n, N, p, ν, L,M2,K(M2),M,L1(M), L2(M), σ), respectively) sufficiently small such that

c2
dec θ2 ≤ θ2σ

is satisfied. Note that this fixes δ in dependency of exactly the same quantities as given for
the parameter θ. Then we have

Φ2(θρ, ξ + γζ) ≤ θ2σΦ2(ρ, ξ) + c2
dec δ−2 ρ2α .

With the definition Φ̃2(ρ, ξ) := Φ2(ρ, ξ) + ρ2α of the modified excess function we come to the
conclusion that

Φ̃2(θρ, ξ + γζ) ≤ θ2σΦ2(ρ, ξ) + c2
dec δ−2 ρ2α + (θρ)2α

≤ θ2σΦ̃2(ρ, ξ) + c̃ 2
dec δ−2 ρ2α , (3.36)

where c̃ 2
dec = 1 + c2

dec. If we now assume the smallness condition

Φ̃2(ρ, ξ) + χ2
M2

(Φ̃2(ρ, ξ)) ≤ δ2

4 c2
a c2

h

we easily compute that the previous assumptions (3.33), (3.34) and |ξ+γζ| ≤ M2 are satisfied
because χM (t) is monotone in M and t and the definition of γ shows:

• Φ2(ρ, ξ) + χ2
M1

(Φ2(ρ, ξ)) ≤ Φ̃2(ρ, ξ) + χ2
M2

(Φ̃2(ρ, ξ)) ≤ δ2

4 c2
a c2

h

≤ 1
2 δ2

• γ2 = 4 c2
a

(
Φ2(ρ, ξ) + δ−2ρ2α

)
≤ 4 δ−2 c2

a Φ̃2(ρ, ξ) ≤ c−2
h ≤ 1

• |ξ + γζ| ≤ M1 + γ ch ≤ M1 + 1 ≤ M2 .

In particular, we may choose M2 = 2M1. Taking into consideration the new dependencies of
the quantities appearing above we may proceed as in the homogeneous situation and iterate
the estimate (3.36); for this purpose we choose t0 > 0 for fixed M2 > 0 such that

t20 + χ2
M2

(t20) ≤ δ2

4 c2
a c2

h

and t0 ≤
M2(1− θα)

8 ca ch
. (3.37)

Furthermore, we choose a radius ρ0 ∈ (0, ρcacc) satisfying

2 c̃ 2
dec δ−2

θ2α − θ2σ
ρ2α
0 ≤ t20 . (3.38)

Hence, t0 and ρ0 depend only on n, N, p, L, ν,M2,K(M2), α, σ and χM2(·) if we assume a
controllable growth condition (B1), and additionally on M,L1(M), L2(M) and ‖Dg‖∞ if we
assume a natural growth condition (B2)*. Finally we conclude as in [Bec05, Lemma 6.3] the
following excess improvement:
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Lemma 3.9: Let M2 ≥ 2. Choose t0 and ρ0 such that the smallness assumptions (3.37) are
valid. Assume that for some ρ ∈ (0, ρ0] we have

|ξ0| ≤ 1
2 M2 , and Φ̃2(ρ, ξ0) ≤ 1

2 t20 . (3.39)

Then there exists ξ∞ ∈ RN such that for every r ∈ (0, ρ] there holds:∫
−
B+

r (y)

∣∣V (Du− ξ∞ ⊗ en)
∣∣2 dx ≤ cit

((r

ρ

)2σ
Φ2(ρ, ξ0) + r2α

)
(3.40)

for a constant cit, which depends only on n, N, p, L, ν,M2,K(M2), α, σ and χM2(·) for a
controllable growth condition (B1), and additionally on M,L1(M), L2(M) and ‖Dg‖∞ for a
natural growth condition (B2)*.

3.5.3 Excess-decay estimate in the interior

In the interior of Ω we define the excess function for a ball Bρ(x0) b Ω, a fixed function
u ∈ W 1,p(Ω, RN ) and C ∈ RnN by

Ψ(x0, ρ, C) :=
( ∫
−
Bρ(x0)

∣∣V (Du− C)
∣∣2 dx

) 1
2
. (3.41)

To establish an excess-decay estimate in the interior as above at the boundary we now show
that for a weak solution u of (3.1) there holds: the function u−Υ(x−x0) is approximately A-
harmonic where A are again constant coefficients derived from the coefficients of the original
system.

Lemma 3.10: Let u ∈ W 1,p(Ω, RN ) be a weak solution of (3.1), where the conditions (H2)
and (H4) are satisfied, and let M0 > 0. Furthermore, assume that one of the following
conditions holds:

1. the inhomogeneity fulfills a controllable growth condition (B1),

2. the inhomogeneity fulfills a natural growth condition (B2); additionally we suppose:
u ∈ L∞(Ω, RN ) with ‖u‖L∞(Ω,RN ) ≤ M .

Then for every ball Bρ(x0) b Ω with ρ ≤ 1 and for every Υ ∈ RnN with |Υ| ≤ M0 there
holds, provided that |(u)x0,ρ| ≤ M0, the following estimate:∣∣∣ ∫
−
Bρ(x0)

Dza
(
y, (u)x0,ρ, Υ

) (
Du−Υ, Dϕ

)
dx

∣∣∣ ≤ ĉa

[
Ψ2 + ρα + χ2M0

(
Ψ2

)
Ψ

]
sup

Bρ(x0)
|Dϕ|

for all ϕ ∈ C∞
0 (Bρ(x0), RN ), where we have abbreviated Ψ(x0, ρ, Υ) on the right-hand side

by Ψ. The constant ĉa depends in Case 1 only on n, N, p, L, M0 and K(2M0), and in Case
2 additionally on M,L1(M) and L2(M).

Proof: We proceed analogously to the proof of Lemma 3.8: for every test function ϕ ∈
C∞

0 (Bρ(x0), RN ) satisfying supBρ(x0) |Dϕ| ≤ 1 we verify∫
−
Bρ(x0)

∫ 1

0
Dza

(
x0, (u)x0,ρ, Υ + t(Du−Υ)

)
dt

(
Du−Υ, Dϕ

)
dx

=
∫
−
Bρ(x0)

[
a
(
x0, (u)x0,ρ, Du

)
− a

(
x0, (u)x0,ρ, Υ

)]
·Dϕ dx

=
∫
−
Bρ(x0)

[
a
(
x0, (u)x0,ρ, Du

)
− a

(
·, u,Du

)]
·Dϕ dx +

∫
−
Bρ(x0)

b
(
·, u,Du

)
· ϕ dx
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We note that in the last line we have employed the fact that a(x0, (u)x0,ρ, Υ) is constant and
−div a( · , u,Du) = b( · , u,Du). Therefore, we find∣∣∣ ∫
−
Bρ(x0)

Dza
(
x0, (u)x0,ρ, Υ

) (
Du−Υ, Dϕ

)
dx

∣∣∣
=

∣∣∣ ∫
−
Bρ(x0)

∫ 1

0

[
Dza

(
x0, (u)x0,ρ, Υ

)
−Dza

(
x0, (u)x0,ρ, Υ + t(Du−Υ)

)]
dt

(
Du−Υ, Dϕ

)
dx

+
∫
−
Bρ(x0)

[
a
(
x0, (u)x0,ρ, Du

)
− a

(
·, u,Du

)]
·Dϕ dx +

∫
−
Bρ(x0)

b
(
·, u,Du

)
· ϕ dx

∣∣∣
≤

∫
−
Bρ(x0)

(I + II + III + IV ) dx (3.42)

with the following abbreviations:

I =
∣∣∣ ∫ 1

0

[
Dza

(
x0, (u)x0,ρ, Υ

)
−Dza

(
x0, (u)x0,ρ, Υ + t(Du−Υ)

)]
dt

∣∣∣ ∣∣Du−Υ
∣∣ ,

II =
∣∣a(

x0, (u)x0,ρ, Du
)
− a

(
x, (u)x0,ρ + Υ (x− x0), Du

)∣∣ ,

III =
∣∣a(

x, (u)x0,ρ + Υ (x− x0), Du
)
− a

(
x, u, Du

)∣∣ ,

IV =
∣∣b(x, u, Du) · ϕ(x)

∣∣ .

The first two terms and the last term are estimated exactly as in the boundary situation,
where X is replaced by Υ; for the third term, we have to take into consideration that
|(u)x0,ρ + Υ (x− x0)| ≤ 2M0 is the new argument of the function K (instead of |X(x− y)| ≤
M0). This yields:∫

−
Bρ(x0)

I dx ≤ 2
√

2 L Ψ2(x0, ρ, Υ) +
√

2 Lχ2M0

(
Ψ2(x0, ρ, Υ)

)
Ψ(x0, ρ, Υ)∫

−
Bρ(x0)

II dx ≤ LK(M0) c(M0)
(

Ψ2(x0, ρ, Υ) + ρα
)

∫
−
Bρ(x0)

III dx ≤ LK(2M0) c(M0)
(

Ψ2(x0, ρ, Υ) + ρα

+
∫
−
Bρ(x0)

∣∣∣V (u− (u)x0,ρ −Υ(x− x0)
ρ

)∣∣∣2 dx
)

∫
−
Bρ(x0)

IV dx ≤ c
(
Ψ2(y, ρ,X) + ρα

)
,

where the last constant c depends, according to the growth condition imposed on the inho-
mogeneity b(·, ·, ·), on L and M0 if we assume (B1), and on M0,M, L1(M) and L2(M) if we
assume (B2). The mean of u− (u)x0,ρ −Υ(x− x0) vanishes on the ball Bρ(x0). Hence, the
application of Poincaré’s inequality from Lemma A.6 gives:∫

−
Bρ(x0)

∣∣∣V (u− (u)x0,ρ −Υ(x− x0)
ρ

)∣∣∣2 dx ≤ cs(n, N, p)
∫
−
Bρ(x0)

∣∣V (Du−Υ)
∣∣2 dx .

Combining this inequality with the estimates for the various terms above and the decompo-
sition in (3.42), we obtain∣∣∣ ∫

−
Bρ(x0)

Dza
(
x0, (u)x0,ρ, Υ

) (
Du−Υ, Dϕ

)
dx

∣∣∣
≤ c

[
Ψ2(x0, ρ, Υ) + ρα + χ2M0

(
Ψ2(x0, ρ, Υ)

)
Ψ(x0, ρ, Υ)

]
,
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and the constant c has the dependencies stated in the lemma. Rescaling then yields the
desired result for general test functions ϕ ∈ C∞

0 (Bρ(x0), RN ). �

The right-hand side of the bound in Lemma 3.10 must again be small in order to ensure
that the second assumption (concerning the approximate A-harmonicity) of Lemma 3.5 is
satisfied: we fix x0 ∈ Ω, ρ ∈ (0, 1], M̂1 ∈ R+ and Υ ∈ RnN such that |(u)x0,ρ|, |Υ| ≤ M̂1

is fulfilled. If we choose e. g. M̂1 ≥ M while assuming the growth condition (B2) then
|(u)x̃,ρ̃| ≤ M̂1 trivially holds true for every ball Bρ̃(x̃) b Ω. We set

Ψ(r, Υ) := Ψ(x0, r, Υ) =
( ∫
−
Br(x0)

∣∣V (Du−Υ)
∣∣2 dx

) 1
2
,

ŵ := u− (u)x0,ρ −Υ (x− x0) , (3.43)

where u denotes the weak solution of (3.1) and where we will always assume that the in-
homogeneity b(·, ·, ·) obeys one of the growth conditions (B1) and (B2). Hence, we have
ŵ ∈ W 1,p(Ω, RN ) with vanishing mean value on the ball Bρ(x0). As above, in view of Lemma
3.10 on approximate A-harmonicity, we obtain for the bilinear form Â := Dza(x0, (u)x0,ρ, Υ),
some free parameter δ̂ ∈ (0, 1] and all test functions ϕ ∈ C∞

0 (Bρ(x0), RN ):∣∣∣ ∫
−
B+

ρ (y)
Â(Dŵ,Dϕ) dx

∣∣∣
≤ 2 ĉa

√
Ψ2(ρ, Υ) + δ̂−2ρ2α

√
Ψ2(ρ, Υ) + 1

2 δ̂ 2 + χ2
2 bM1

(Ψ2(ρ, Υ)) sup
Bρ(x0)

|Dϕ| , (3.44)

and ĉa depends only on n, N, p, L, M̂1 and K(2M̂1) under the assumption (B1) of controllable
growth, and additionally on M,L1(M) and L2(M) under the assumption (B2) of natural
growth. Let ε̂ > 0 and let δ̂ = δ̂(n, N, p, L, M̂1, ε̂) ∈ (0, 1] denote the constant from Lemma
3.5. Assume

Ψ2(ρ, Υ) + χ2
2 bM1

(Ψ2(ρ, Υ)) ≤ 1
2 δ̂ 2 , (3.45)

γ̂ := 2 ĉa

√
Ψ2(ρ, Υ) + δ̂−2ρ2α ≤ 1 . (3.46)

Due to (3.44) and the definition of Ψ(ρ, Υ) (keep in mind Dŵ = Du − Υ), these smallness
assumptions allow us to verify that the assumptions of Lemma 3.5 are satisfied:∣∣∣ ∫

−
Bρ(x0)

Â(Dŵ,Dϕ) dx
∣∣∣ ≤ γ̂ δ̂ sup

Bρ(x0)
|Dϕ| ,∫

−
Bρ(x0)

∣∣V (Dŵ)
∣∣2 dx = Ψ2(ρ, Υ) ≤ γ̂ 2 . (3.47)

Hence, there exists an Â-harmonic function ĥ ∈ W 1,p(Bρ/2(x0), RN ) satisfying∫
−
Bρ(x0)

∣∣∣V ( ŵ − γ̂ ĥ

ρ

)∣∣∣2 dx ≤ γ̂ 2 ε̂ and
∫
−
Bρ(x0)

∣∣V (Dĥ)
∣∣2 dx ≤ 2 .

In view of the a priori estimate for harmonic functions in Lemma 3.4, we now find an excess-
decay estimate on smaller balls: first, we see for every θ̂ ∈ (0, 1

8 ] and the choice ε̂ = θ̂ n+4 an
inequality analogous to (3.35):∫

−
B

2bθρ
(x0)

∣∣∣V ( ŵ − γ̂ (ĥ(x0) + Dĥ(x0)(x− x0))

2θ̂ρ

)∣∣∣2 dx ≤ c(p) ĉ 2
h θ̂ 2 γ̂ 2 . (3.48)
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The aim is to bound the left-hand side via Caccioppoli’s inequality from below. Due to

ŵ − γ̂
(
ĥ(x0) + Dĥ(x0)(x− x0)

)
= u−

(
(u)x0,ρ + γ̂ ĥ(x0)

)
−

(
Υ + γ̂Dĥ(x0)

)
(x− x0) ,

we next choose M̂2 ≥ M̂1 + 1 such that |(u)x0,ρ + γ̂ ĥ(x0)| and |Υ + γ̂Dĥ(x0)| are bounded
from above by M̂2. Then, the application of Lemma 3.7 and the definition

Ψ̃2(ρ, Υ) := Ψ2(ρ, Υ) + ρ2α

of the modified excess function reveals

Ψ̃2(θ̂ρ, Υ + γ̂Dĥ(x0)) =
∫
−
Bbθρ

(x0)

∣∣V (
Du−Υ− γ̂Dĥ(x0)

)∣∣2 dx + (θ̂ρ)2α

≤ ĉcacc

( ∫
−
B

2bθρ
(y)

∣∣∣V ( ŵ − γ̂ (ĥ(x0) + Dĥ(x0)(x− x0))

2θ̂ρ

)∣∣∣2 dx + 2ρ2α
)

≤ ĉcacc

(
c(p) ĉ 2

h θ̂ 2 γ̂ 2 + 2ρ2α
)
≤ ĉ 2

dec

(
θ̂ 2 Ψ2(ρ, Υ) + δ̂−2ρ2α

)
for a constant ĉdec = 2

√
ĉcacc c(p) ĉhĉa depending only on n, N, p, L, M̂2 and K(2M̂2) for

controllable growth (B1), and additionally on M,L1(M) and L2(M) for a natural growth
condition (B2). To an arbitrary exponent σ ∈ (α, 1) we fix θ̂ ∈ (0, 1

8 ] sufficiently small such
that

ĉ 2
dec θ̂ 2 ≤ θ̂ 2σ

is satisfied, which also fixes δ̂ in dependency of n, N, p, L, M̂2,K(2M̂2) and σ, and additionally
of M,L1(M) and L2(M), respectively, for (B2). This gives

Ψ̃2(θ̂ρ, Υ + γ̂Dĥ(x0)) ≤ θ̂ 2σΨ̃2(ρ, Υ) + ĉ 2
dec δ̂−2 ρ2α . (3.49)

To find a smallness condition which makes all the calculations above possible, we need an
appropriate bound for |γ̂ ĥ(x0)|. Since the mean value of Dĥ(x0)(x−x0) on every ball centred
at x0 as well as the mean value of ŵ on Bρ(x0) vanishes (see the definition of ŵ in (3.43)),
we apply the Poincaré inequality, denoting the related constant by cP (n, N, p), and we see∣∣γ̂ ĥ(x0)

∣∣ =
∣∣∣γ̂ ∫
−
Bρ/2(x0)

(
ĥ(x0) + Dĥ(x0)(x− x0)

)
dx

∣∣∣
≤

∫
−
Bρ/2(x0)

∣∣ŵ(x)− γ̂
(
ĥ(x0) + Dĥ(x0)(x− x0)

)∣∣ dx +
∫
−
Bρ/2(x0)

|ŵ(x)| dx

≤ ρ
2

∫
−
Bρ/2(x0)

∣∣∣ ŵ(x)− γ̂ (ĥ(x0) + Dĥ(x0)(x− x0))
ρ/2

∣∣∣ dx + 2n cP ρ

∫
−
Bρ(x0)

|Dŵ(x)| dx .

Using the inequality |v| ≤
√

2
(
|V (v)|+ |V (v)|2

)
, θ̂ = 1

8 and (3.47), we conclude from (3.48):

|γ̂ ĥ(x0)| ≤ ρ
[ ∫
−
Bρ/2(x0)

∣∣∣V ( ŵ − γ̂ (ĥ(x0) + Dĥ(x0)(x− x0))
ρ/2

)∣∣∣2 dx

+
( ∫
−
Bρ/2(x0)

∣∣∣V ( ŵ − γ̂ (ĥ(x0) + Dĥ(x0)(x− x0))
ρ/2

)∣∣∣2 dx
) 1

2
]

+ 2n+ 1
2 cP (n, p) ρ

[ ∫
−
Bρ(x0)

|V (Dŵ)|2 dx +
( ∫
−
Bρ(x0)

|V (Dŵ)|2 dx
) 1

2
]
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≤ c(p) ρ
(
ĉ 2
h γ̂ 2 + ĉhγ̂

)
+ 2n+ 1

2 cP (n, N, p) ρ
(
γ̂ 2 + γ̂

)
≤ 1

4 ĉi(n, N, p) ρ
(
ĉ 2
h γ̂ 2 + ĉhγ̂

)
.

In particular, we haven chosen ĉi ≥ 2n+ 5
2 cP ≥ 1. The smallness condition

Ψ̃2(ρ, Υ) + χ2
2 bM2

(
Ψ̃2(ρ, Υ)

)
≤ δ̂ 2

4 ĉ 2
i ĉ 2

a ĉ 2
h

ensures (cf. (3.45) in the situation at the boundary) that (3.46) and |(u)x0,ρ + γ̂ ĥ(x0)|,
|Υ + γ̂ Dĥ(x0)| ≤ M̂2 hold true (keep in mind ρ ≤ 1):

• Ψ2(ρ, Υ) + χ2
2 bM1

(Ψ2(ρ, Υ)) ≤ Ψ̃2(ρ, Υ) + χ2
2 bM2

(Ψ̃2(ρ, Υ)) ≤ 1
2 δ̂ 2

• γ̂2 = 4 ĉ 2
a

(
Ψ2(ρ, Υ) + δ̂−2ρ2α

)
≤ δ̂−2 4 ĉ 2

a Ψ̃2(ρ, Υ) ≤ ĉ−2
h ĉ−2

i ≤ 1

• |(u)x0,ρ + γ̂ ĥ(x0)| ≤ |(u)x0,ρ|+ 1
4 ĉi

(
ĉ 2
h γ̂ 2 + ĉhγ̂

)
≤ M̂1 + 1

2 ≤ M̂2

• |Υ + γ̂ Dĥ(x0)| ≤ |Υ|+ |γ̂Dĥ(x0)| ≤ M̂1 + γ̂ ĉh ≤ M̂1 + 1 ≤ M̂2 .

In particular, we may take M̂2 = 2M̂1. In order to iterate the estimate (3.49) we next choose
t1 > 0 such that for fixed M̂2 ≥ 2 we have

t21 + χ2
2 bM2

(t21) ≤ δ̂ 2

4 ĉ 2
i ĉ 2

a ĉ 2
h

and t1 ≤
M̂2(1− θ̂ α)(2θ̂)n

8 ĉi ĉa ĉh
. (3.50)

Furthermore, we choose a radius ρ1 ∈ (0, 1) satisfying

2 ĉ 2
dec δ̂−2

θ̂ 2α − θ̂ 2σ
ρ2α
1 ≤ t21 . (3.51)

Hence, t1 and ρ1 depend only on n, N, p, L, M̂2,K(2M̂2), α, σ and χ
2 bM2

(·) if we assume a
controllable growth condition (B1), and additionally on M,L1(M) and L2(M) if we assume
a natural growth condition (B2). Finally we conclude as in [Bec05, Lemma 6.6] the following
excess improvement:

Lemma 3.11: Let M̂2 ≥ 2. Choose t1 and ρ1 such that the smallness assumptions (3.50)
are valid. Assume that for some ρ ∈ (0, ρ1] we have

|Υ0| ≤ 1
2 M̂2 , |(u)x0,ρ| ≤ 1

2 M̂2 and Ψ̃2(ρ, Υ0) ≤ 1
2 t21 . (3.52)

Then there exists Υ∞ ∈ RnN such that for every r ∈ (0, ρ] there holds∫
−
Br(x0)

∣∣V (Du)− V (Υ∞)
∣∣2 dx ≤ ĉit

((r

ρ

)2σ
Ψ2(ρ, Υ0) + r2α

)
(3.53)

for a constant cit, which depends only on n, N, p, L, M̂2,K(2M̂2), α, σ and χ
2 bM2

(·) for a
controllable growth condition (B1), and additionally on M,L1(M) and L2(M) for a natural
growth condition (B2).
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3.6 Regularity

We now prove partial Hölder continuity of Du for weak solutions u to system (3.1): in the
first step we establish a partial regularity result in the interior of Ω, i. e., we prove Theorem
3.1; in the second step we deal with the characterization of regular boundary points, i. e.,
with Theorem 3.2 (for homogeneous systems we refer to [Bec05, Chapter 7]). The growth
of the excess functions with respect to the radius of the ball, which we obtained in Lemma
3.11 and Lemma 3.9, will be the crucial point; namely it allows us to apply the following
theorems going back to a more general result due to Campanato [Cam63, Teorema I.2] and
providing an integral characterization of Hölder continuous functions (see also Theorem 2.1).

Theorem 3.12 (cf. [Sim96], Chapt. 1.1, Lemma 1): Consider n, N ∈ N, n ≥ 2 and
x0 ∈ Rn. Suppose u ∈ L2(B2R(x0), RN ), α ∈ (0, 1], κ > 0 and

inf
µ̄∈R

{∫
−
Bρ(y)

|u− µ̄|2 dx
}
≤ κ2

( ρ

R

)2α

for every y ∈ BR(x0) and ρ ∈ (0, R]. Then there exists a Hölder continuous representative ū

for the L2-class of u with

|ū(x)− ū(z)| ≤ c κ
( |x− z|

R

)α

for all x, z ∈ BR(x0) and a constant c depending only on n, N and α.

For the proof of the characterization of regular boundary points in Theorem 3.2 we first
consider the set of regular points RegDu(Γ) defined correspondingly to the definition of
RegDu(∂Ω) in the model situation. Here we make use of a slight modification of Campanato’s
integral characterization of Hölder continuity:

Theorem 3.13 ([Gro02b], Theorem 2.3): Consider n, N ∈ N, n ≥ 2 and x0 ∈ Rn−1 ×
{0}. Suppose v ∈ L2(B+

6R(x0), RN ), α ∈ (0, 1], κ > 0 and

inf
µ̄∈R

{∫
−
B+

ρ (y)
|v − µ̄|2 dx

}
≤ κ2

( ρ

R

)2α

for all y ∈ Γ2R(x0) and ρ ∈ (0, 4R]; and

inf
µ̄∈R

{∫
−
Bρ(y)

|v − µ̄|2 dx
}
≤ κ2

( ρ

R

)2α

for all y ∈ B+
2R(x0) with Bρ(y) ⊂ B+

2R(x0). Then there exists a Hölder continuous rep-
resentative v̄ of v on B+

R(x0), and for v̄ there holds: |v̄(x) − v̄(z)| ≤ c κ
( |x−z|

R

)α for all
x, z ∈ B+

R(x0), for a constant c depending only on n, N and α.

3.6.1 Proof of Theorem 3.1

Proof (of Theorem 3.1): Consider x0 ∈ Ω \ (Π1 ∪ Π2). Then there exist M̂2 ≥ 2 and
ρ ∈ (0, ρ1] such that B2ρ(x0) b Ω and∣∣(u)x0,ρ

∣∣ < 1
2 M̂2 ,

∣∣(V (Du)
)
x0,ρ

∣∣ < 2
p−6
4 M̂

p
2
2 and (3.54)∫

−
Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
x0,ρ

∣∣2 dx + ρ2α < 1
2 c−2(p, M̂2) t21 , (3.55)
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where c(p, M̂2) is the constant originating from Lemma A.1 (vi). Since the functions

z 7→ (u)z,ρ , z 7→
(
V (Du)

)
z,ρ

and z 7→
∫
−
Bρ(z)

∣∣V (Du)−
(
V (Du)

)
z,ρ

∣∣2 dx

are continuous there exists a ball Bρ̃(x0) such that for all points z ∈ Bρ̃(x0) we have:
Bρ(z) b Ω, and the estimates (3.54) and (3.55) holds true with x0 replaced by z. We next
choose Υ0(z) ∈ RnN such that

V
(
Υ0(z)

)
=

(
V (Du)

)
z,ρ

(note: this is always possible because the function V is bijective). Combining these esti-
mates with Lemma A.1 (i) and (vi) we find in view of M̂2 ≥ 2 that |Υ0(z)| < 1

2M̂2 and
Ψ̃2

(
z, ρ, Υ0(z)

)
< 1

2 t21. Thus the above assumptions in (3.52) in Lemma 3.11 are satisfied
for all z ∈ Bρ̃(x0) and we obtain: there exists Υ∞(z) ∈ RnN such that:∫

−
Br(z)

∣∣V (Du)− V
(
Υ∞(z)

)∣∣2 dx ≤ c
((r

ρ

)2σ
Ψ2

(
z, ρ, Υ0(z)

)
+ r2α

)
for all r ∈ (0, ρ] and all points z ∈ Bρ̃(x0). The constant c depends only on n, N, p, ν, L,
M̂2,K(2M̂2), α, σ and χ

2 bM2
(·). Applying the integral characterization of Hölder continuous

functions due to Campanato, Lemma 3.12, we conclude that there exists a representative of
V ◦ Du which is Hölder continuous with exponent α (< σ). Using Lemma A.4 as well as
Lebesgue’s Differentiation Theorem we obtain that Du is locally Hölder continuous with the
same exponent α in a neighbourhood of x0, and that Ln(Π1) = Ln(Π2) = 0 (since both u

and V ◦Du belong to the class L1(Ω, RN )). This completes the proof of the theorem. �

3.6.2 Regular boundary points in the model situation

In the sequel we consider the model situation of a half-ball and we characterize the set of
regular boundary points on Γ. In the next section this will enable us to transform the model
situation back to the general situation, where we deal with general domains and boundary
values of class C1,α.

Theorem 3.14: Let u ∈ W 1,p
Γ (B+, RN ) be a weak solution of

−div a( · , u,Du) = b( · , u,Du) in B+

where the coefficients a : B+×RN ×RnN → RnN satisfy the assumptions (H1), (H2), (H3)*
and (H4). Furthermore, assume that one of the following conditions hold

1. the inhomogeneity fulfills a controllable growth condition (B1),

2. the inhomogeneity fulfills a natural growth condition (B2)*, and (3.17) is satisfied.

Then there holds for every y ∈ RegDu(Γ): Du is Hölder continuous with exponent α in a
relative neighbourhood in B+ ∪ Γ, and the set of singular boundary points is contained in
Σ1 ∪ Σ2 where

Σ1 =
{

y ∈ Γ : lim inf
ρ→ 0+

∫
−
Bρ(y)∩B+

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩B+

∣∣2 dx > 0
}

,

Σ2 =
{

y ∈ Γ : lim sup
ρ→ 0+

∣∣(V (Dnu)
)
Bρ(y)∩B+

∣∣ = ∞
}

.
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Proof: In the first step of the proof we will find a different formulation for the set Σ1 ∪Σ2

which allows us to apply Lemma 3.9, where an assumption on the total weak derivative,
instead of only the normal derivative of u, is required. To this end, let y ∈ Γ \ (Σ1 ∪ Σ2)
and let {ρk}k∈N be a monotone decreasing sequence of radii with ρk → 0 for k → ∞,
ρk ≤ min{ρcacc, 1− |y|} for all k ∈ N, and

lim
k→∞

∫
−
B+

ρk
(y)

∣∣V (Dnu)−
(
V (Dnu)

)
B+

ρk
(y)

∣∣2 dx = 0 .

Since y /∈ Σ2 there exists M0 ≥ 1 such that∣∣(V (Dnu)
)
B+

ρk
(y)

∣∣ ≤ M0 ∀ k ∈ N .

Similarly to the proof of the interior estimate in Theorem 3.1 we define {ξ(y, ρk)} ∈ RN via

V
(
ξ(y, ρk)

)
=

(
V (Dnu)

)
Bρk

(y)∩B+ =
(
V (Dnu)

)
B+

ρk
(y)

(3.56)

(and analogously for general radii σ). Then Lemma A.1 (i) yields |ξ(y, ρk)| ≤ 2M2
0 . Applying

the Caccioppoli inequality in Lemma 3.6, the Poincaré inequality in Lemma A.8 (note that
u− ξ(y, ρk)xn ∈ W 1,p

Γ (B+, RN )) and Lemma A.1 (vi) we compute∫
−
B+

ρk/2
(y)

∣∣V (
Du− ξ(y, ρk)⊗ en

)∣∣2 dx ≤ ccacc

( ∫
−
B+

ρk
(y)

∣∣V (u−ξ(y,ρk)xn

ρk

)∣∣2 dx + ρ2α
k

)
≤ ccacc

(
cP (p)

∫
−
B+

ρk
(y)

∣∣V (
Dnu− ξ(y, ρk)

)∣∣2 dx + ρ2α
k

)
≤ c

( ∫
−
B+

ρk
(y)

∣∣V (Dnu)−
(
V (Dnu)

)
B+

ρk
(y)

∣∣2 dx + ρ2α
k

)
(3.57)

and the constant c depends only on n, p, L, ν, M0 and K(2M2
0 ) under a controllable growth

assumption (B1), and additionally on M,L1(M) and L2(M) under a natural growth assump-
tion (B2)*. Due to the choice of the sequence {ρk}, the right-hand side of the last inequality
vanishes as k →∞. Setting

Σ′
1 =

{
y ∈ Γ : lim inf

ρ→ 0+

∫
−
Bρ(y)∩B+

∣∣V (
Du− ξ(y, 2ρ)⊗ en

)∣∣2 dx > 0
}

, (3.58)

Σ′
2 =

{
y ∈ Γ : lim sup

ρ→ 0+

|ξ(y, ρ)| = ∞
}

, (3.59)

the calculation above yields the inclusion Γ \ (Σ1 ∪ Σ2) ⊂ Γ \ (Σ′
1 ∪ Σ′

2).

We thus consider y ∈ Γ \ (Σ1 ∪Σ2); without loss of generality, we may assume y = 0. In the
second step of the proof we will show that Du ∈ C0,α(B+

ρ , RnN ) for some ρ > 0.

Let M2 denote the upper bound on 2|ξ(0, ρ)| (note that M2 < ∞ is guaranteed since 0 /∈ Σ′
2).

We take t0 to be the constant appearing in Lemma 3.9 and ρ0 to be the corresponding radius,
cf. (3.37) and (3.38). In order to apply Theorem 3.13 to end up with the Hölder continuity
up to the boundary, we have to combine the excess-decay estimates in the interior and at the
boundary. Thus, we define M̂2 = 2M2 and choose t1 according to the smallness assumption
(3.50) in Lemma 3.11 in the interior. For every y ∈ B+ let ρ1 ∈ (0, min{1− |y|, yn}) be the
corresponding radius from (3.51). We now choose t2 > 0 such that

t22 ≤ min{t20 , 21−n 3−2σ c−1
it t21} , (3.60)
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and
2n+1 32σ cit t2 ≤ M2 (3.61)

are satisfied; cit denotes the constant in Lemma 3.9. We fix R0 > 0 sufficiently small such
that

6R0 ≤ min{ρ0, ρ1} and 3n 23+4αR2α
0 ≤ t22 . (3.62)

Since 0 /∈ Σ′
1 we find a radius R ∈ (0, R0] such that, abbreviating ξ0(0) := ξ(0, 12R), we have

Φ2
(
0, 6R, ξ0(0)

)
=

∫
−
B+

6R(0)

∣∣V (
Du− ξ0(0)⊗ en

)∣∣2 dx ≤ 2−3 3−n t22 , (3.63)

and by assumption |ξ0(0)| ≤ 1
2M2. The conditions in (3.60), (3.61) and (3.62) guarantee in

particular that also the smallness assumption Φ̃2(0, 6R, ξ0(0)) ≤ 1
2 t20 of Lemma 3.9 is satisfied

on B+
6R(0), because the choices of t2 and R0 allow us to calculate

Φ̃2(0, 6R, ξ0(0)) = Φ2(0, 6R, ξ0(0)) + (6R)2α

≤ 2−3 3−n t22 + 2−1 3−n t22 ≤
1
2

t20 .

Thus we find ξ∞(0) ∈ RN with |ξ∞(0)| ≤ M2 such that for every r ∈ (0, 6R] there holds:∫
−
B+

r

∣∣V (
Du− ξ∞(0)⊗ en

)∣∣2 dx ≤ cit

[( r

6R

)2σ
Φ2(0, 6R, ξ0(0)) + r2α

]
. (3.64)

Using the smallness assumption (3.63) we next show that the conditions of Theorem 3.13 are
fulfilled on all required balls and half-balls with centre y ∈ Γ2R and y ∈ B+

2R, respectively.
We distinguish several cases (cf. [Gro02b], p. 378-379):

Case 1: y ∈ Γ2R, |y| ≤ ρ ≤ 4R:
Using B+

ρ (y) ⊆ B+
ρ+|y|(0), the last estimate for r = ρ + |y| ≤ 6R and 22α ≤ 22σ, we

immediately see that an estimate corresponding to (3.64) also holds on B+
ρ (y):∫

−
B+

ρ (y)

∣∣V (
Du− ξ∞(0)⊗ en

)∣∣2 dx ≤
(ρ + |y|

ρ

)n
∫
−
B+

ρ+|y|

∣∣V (
Du− ξ∞(0)⊗ en

)∣∣2 dx

≤ 2n cit

[(ρ + |y|
6R

)2σ
Φ2(0, 6R, ξ0(0)) + (ρ + |y|)2α

]
≤ 2n+2σ cit

[( ρ

6R

)2σ
Φ2(0, 6R, ξ0(0)) + ρ2α

]
. (3.65)

Case 2: y ∈ Γ2R, 0 < ρ < |y| < 2R:
Here we calculate that the assumptions of Lemma 3.9 are also satisfied for the point y and
radius 2R: recalling the definition of Φ(0, 6R, ξ0(0)) we infer from (3.63) that∫

−
B+

2R(y)

∣∣V (
Du− ξ0(0)⊗ en

)∣∣2 dx ≤
(6R

2R

)n
∫
−
B+

6R

∣∣V (
Du− ξ0(0)⊗ en

)∣∣2 dx

= 3n Φ2(0, 6R, ξ0(0)) . (3.66)

We have |ξ0(0)| ≤ 1
2M2 (see above). Furthermore, by the condition (3.63) on Φ2(0, 6R, ξ0(0))

and (3.62) on the radius we conclude

Φ̃2(y, 2R, ξ0(0)) ≤ 1
2 t20 .



3.6. Regularity 57

Lemma 3.9 yields the existence of ξ∞(y) ∈ RN with |ξ∞(y)| ≤ M2 such that for all 0 < ρ ≤ 2R

from (3.66) there follows:∫
−
B+

ρ (y)

∣∣V (
Du− ξ∞(y)⊗ en

)∣∣2 dx ≤ cit

[( ρ

2R

)2σ
Φ2(0, 2R, ξ0(0)) + ρ2α

]
≤ 3n cit

[( ρ

6R

)2σ
Φ2(0, 6R, ξ0(0)) + ρ2α

]
. (3.67)

In view of Lemma A.1 (v), combining the first two cases, i. e., (3.65) and (3.67), reveals (for
ξ̄ = ξ∞(0) or ξ̄ = ξ∞(y) with |ξ̄| ≤ M2):∫
−
B+

ρ (y)

∣∣V (Du)− V (ξ̄ ⊗ en)
∣∣2 dx ≤ c(n, N, p)

∫
−
B+

ρ (y)

∣∣V (Du− ξ̄ ⊗ en)
∣∣2 dx

≤ c(n, N, p) cit

[( ρ

6R

)2σ
Φ2(0, 6R, ξ0(0)) + ρ2α

]
; (3.68)

hence, the assumptions of Theorem 3.13 are fulfilled for all points y ∈ Γ and radii ρ ∈ (0, 4R].

Case 3: y ∈ B+
2R, Bρ(y) ⊂ B+

2R:
Recalling that y′′ = (y1, ..., yn−1, 0) denotes the projection of y onto Rn−1×{0}, we have the
inclusions

Bρ(y) ⊂ Byn(y) ⊂ B+
2yn

(y′′) .

We shall now show that the assumptions for the iteration and thus for the excess-decay
estimate in the interior are satisfied on the ball Byn(y). If |y′′| ≤ 2yn (≤ 4R) we can apply
Case 1 with centre y′′ and radius 2yn to obtain∫
−
B+

2yn
(y′′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 3n+2σ cit

[(2yn

6R

)2σ
Φ2(0, 6R, ξ0(0)) + (2yn)2α

]
. (3.69)

Here we have set ξ̂ = ξ∞(0) and have replaced 2n+2σ by 3n+2σ. Otherwise, if 2yn < |y′′| < 2R

we have in particular B+
2yn

(y′′) ⊂ B+
2R(y′′), and the application of Case 2 ensures that

the smallness condition Φ̃2(y′′, 2R, ξ0(0)) ≤ 1
2 t20 is satisfied. Hence, Lemma 3.9 yields the

existence of ξ∞(y′′) ∈ RN with |ξ∞(y′′)| ≤ M2 such that the above inequality holds setting
ξ̂ = ξ∞(y′′).

Thus, for every y ∈ B+
2R and Bρ(y) ⊂ B+

2R we conclude, with the appropriate choice ξ̂ =
ξ∞(0) or ξ̂ = ξ∞(y′′) that (keeping in mind Byn(y) ⊂ B+

2yn
(y′)):∫

−
Byn (y)

∣∣V (Du− ξ̂⊗ en)
∣∣2 dx ≤ 2n−1 3n+2σ cit

[(2yn

6R

)2σ
Φ2(0, 6R, ξ0(0)) + (2yn)2α

]
. (3.70)

Apart from the explicit estimates for the excess-functions in (3.69) and (3.70) in dependency
of the radius, we use the choice in (3.62) for the radius R0 and the smallness condition (3.63)
for the excess function, and according to the choice of t2 in (3.60) we obtain with 2yn ≤ 4R0

that the following estimates hold:∫
−
B+

2yn
(y′′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 3n+2σ cit

[(2yn

6R

)2σ
2−3 3−n t22 + 2−3 3−n t22

]
≤ 1

4 32σ cit t22 , (3.71)∫
−
Byn (y)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx ≤ 2n−3 32σ cit t22 ≤ 1

4 t21 .
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Since |ξ̂ ⊗ en| ≤ M2 = 1
2M̂2, it remains to ensure that the mean value of u on the ball

Byn(y) is bounded by 1
2M̂2 for all assumptions in Lemma 3.11 to hold true. We note here

that this is trivially satisfied for the assumption of a natural growth condition (B2)* on
the inhomogeneity b(·, ·, ·) if we choose M̂2 sufficiently large. Otherwise, if we consider the
controllable growth situation, the Poincaré inequality in Lemma A.7, Lemma A.1 and (3.71)
allow us to estimate (note t2 ≤ 1, yn ≤ 1

2):

|(u)y,yn | ≤
∫
−
Byn (y)

|u− ξ̂xn| dx +
∣∣∣ ∫
−
Byn (y)

ξ̂xn dx
∣∣∣

≤ 2n yn

∫
−
B+

2yn
(y′′)

|Du− ξ̂ ⊗ en| dx + |ξ̂| yn

≤ 2n
[ ∫
−
B+

2yn
(y′′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx +

( ∫
−
B+

2yn
(y′′)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx

) 1
2
]

+ 1
2 |ξ̂|

≤ 2n
[

1
4 32σ cit t22 +

(
1
4 32σ cit t22

) 1
2

]
+ 1

2 M2

≤ 2n 32σ cit t2 + 1
2 M2 .

Condition (3.61) for t2 now guarantees |(u)y,yn | ≤ M2 = 1
2M̂2. Therefore, all assumptions of

Lemma 3.11 are satisfied and we conclude: there exists Υ∞(y) ∈ RnN with |Υ∞(y)| ≤ M̂2

and for all 0 < r ≤ yn we deduce with (3.70) and α ≤ σ:∫
−
Br(y)

∣∣V (Du)− V (Υ∞(y))
∣∣2 dx ≤ ĉit

[( r

yn

)2σ
∫
−
Byn (y)

∣∣V (Du− ξ̂ ⊗ en)
∣∣2 dx + r2α

]
≤ ĉit

(( r

yn

)2σ
2n−1 3n+2σ cit

[(2yn

6R

)2σ
Φ2(0, 6R, ξ0(0)) + (2yn)2α

]
+ r2α

)
≤ ĉit cit 2n+2σ 3n+2σ

(( r

6R

)2σ
Φ2(0, 6R, ξ0(0)) + r2α

)
≤ ĉit cit 6n+2

(( r

6R

)2σ
Φ2(0, 6R, ξ0(0)) + r2α

)
.

Combining the last estimate with (3.68) we have shown that the assumptions of Theorem
3.13 are satisfied for V (Du). Thus V (Du) ∈ C0,α(B+

R , RnN ), and due to Lemma A.4 we
obtain: Du ∈ C0,α(B+

R , RnN ). This completes the proof of the theorem. �

Remark: For the sets Σ′
1 and Σ′

2 introduced in the first part of the proof, we have not only
the inclusion Σ′

1 ∪Σ′
2 ⊂ Σ1 ∪Σ2 but indeed equality. To see this, we first obtain via Lemma

A.1 (i) that Σ′
2 = Σ2. Moreover, using the fact that for every function v ∈ L2(Ω, RN ) the

mean value minimizes the map RN 3 µ̄ 7→
∫
Ω |v− µ̄|2 dx, combined with Lemma A.1 (v), we

derive ∫
−
Bρ(y)∩B+

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩B+

∣∣2 dx

≤
∫
−
Bρ(y)∩B+

∣∣V (Dnu)− V (ξ(y, 2ρ))
∣∣2 dx

≤ c(n, N, p)
∫
−
Bρ(y)∩B+

∣∣V (
Du− ξ(y, 2ρ)⊗ en

)∣∣2 dx .

Choosing an appropriate subsequence {ρk}, the right-hand side of the last inequality vanishes.
Hence, the desired equality follows (though not necessarily Σ′

1 = Σ1 holds true).
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3.6.3 Proof of Theorem 3.2

Proof (of Theorem 3.2): In Section 3.2 we have already verified that the system (3.1)
may be transformed via the map T locally at a point (without loss of generality at the origin
and with ν∂Ω(0) = en) to the model situation of a half-ball, meaning that the transformed
function ṽ = u ◦ T−1 − g ◦ T−1 ∈ W 1,p

Γ (B+
r , RN ) is weak solution of

−div â( · , ṽ, Dṽ) = b̂( · , ṽ, Dṽ) in B+
r .

Here the radius r is chosen sufficiently small such that the smallness conditions in Section
3.2 are satisfied (in particular, the inclusions (3.8) hold true). Furthermore, the coefficients
â(·, ·, ·) satisfy structure conditions analogous to (H1), (H2), (H3)* and (H4), and the in-
homogeneity b̂(·, ·, ·) obeys either (B1) or (B2)* (with condition (3.17) being true in the
latter case). Thus we are in the situation of the last theorem which characterizes the set of
regular boundary points in the model situation of a half-ball, and we have to conclude that
Du is Hölder continuous in a relative neighbourhood of 0 in Ω with exponent α under the
assumption that 0 /∈ Σ̃1 ∪ Σ̃2 instead of 0 /∈ Σ1 ∪ Σ2.

Analogously to (3.56) in the proof of Theorem 3.14, we define ξ̃(0, ρ) ∈ RN by

V
(
ξ̃(0, ρ)

)
=

(
V (Dn(u− g))

)
Ω∩Bρ

=
∫
−
Ω∩Bρ

V
(
Dn(u− g)

)
dx .

In view of 0 /∈ Σ̃2 there exists M ≥ 2 and r1 ∈ (0, 1) such that for all ρ ≤ r1 we have∣∣(V (Dnu)
)
Ω∩Bρ

∣∣ ≤ M and thus (similarly to the proof of Theorem 3.14) |ξ̃(0, ρ)| is bounded
from above by a constant c(M, ‖Dg‖∞). The special form of T, i. e.,

T(x) =
(
x′, xn − h(x′)

)
(where h is the local representation of the boundary defined in Section 3.2), then implies
DnT−1(y) = en; therefore, Dnṽ may be rewritten as follows:

Dnṽ(y) = Dn

(
u ◦ T−1 − g ◦ T−1

)
(y)

= Du
(
T−1(y)

)
DnT−1(y)−Dg

(
T−1(y)

)
DnT−1(y)

= Dnu
(
T−1(y)

)
−Dng

(
T−1(y)

)
.

The change of variables formula and Lemma A.1 (v), (iii), (iv), (i) yield∫
−
B+

ρ

∣∣V (Dnṽ)− V
(
ξ̃(0,

√
2ρ)

)∣∣2 dy

=
∫
−
B+

ρ

∣∣V (
Dn(u− g)(T−1(y))

)
−

(
V

(
Dn(u− g)

))
Ω∩B√

2ρ

∣∣2 dy

=
∫
−
T−1(B+

ρ )

∣∣V (
Dn(u− g)

)
−

(
V

(
Dn(u− g)

))
Ω∩B√

2ρ

∣∣2 dx

≤ 2n

∫
−
Ω∩B√

2ρ

∣∣V (
Dn(u− g)

)
−

(
V

(
Dn(u− g)

))
Ω∩B√

2ρ

∣∣2 dx

≤ c(n, N, p)
∫
−
Ω∩B√

2ρ

∣∣V (
Dn(u− g)− V −1

(
(V (Dnu))Ω∩B√

2ρ

)
+ (Dng)Ω∩B√

2ρ

)∣∣2 dx
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≤ c(n, N, p)
∫
−
Ω∩B√

2ρ

∣∣V (
Dnu− V −1

(
(V (Dnu))Ω∩B√

2ρ

))∣∣2 dx

+ c(n, N, p)
∫
−
Ω∩B√

2ρ

∣∣V (
Dng − (Dng)Ω∩B√

2ρ

)∣∣2 dx

≤ c(n, N, p, M)
∫
−
Ω∩B√

2ρ

∣∣V (Dnu)− (V (Dnu))Ω∩B√
2ρ

∣∣2 dx

+ c(n, N, p)
∫
−
Ω∩B√

2ρ

∣∣Dng − (Dng)Ω∩B√
2ρ

∣∣2 dx

for radii
√

2ρ ≤ min{r0, r1}. In view of the assumption 0 /∈ Σ̃1 and g ∈ C1,α(Ω, RN ), the
right-hand side of the last inequality vanishes for a subsequence as ρ → 0. The application of
the Caccioppoli and Poincaré’s inequalities now shows, similarly to the calculation in (3.57),
that the following inequality holds true:∫

−
B+

ρ/2

∣∣V (
Dṽ − ξ̃(0,

√
2ρ)⊗ en

)∣∣2 dy ≤ c
( ∫
−
B+

ρ

∣∣V (Dnṽ)− V
(
ξ̃(0,

√
2ρ)

)∣∣2 dy + ρ2α
)

,

provided that ρ ≤ min{r0, r1}. Here the constant c depends only on n, p, ν, L, M, K̃(2M2),
‖g‖C1,α , ‖T‖C1,α , ‖T−1‖C1,α and α if we assume a controllable growth condition (B1), and
additionally on M,L1(M) and L2(M) if we assume a natural growth condition (B2)*. We
note that the dependencies on g, K̃ and T occur due to the structure conditions for â(·, ·, ·)
(cf. Section 3.2). Hence, we end up with

lim inf
ρ→ 0+

∫
−
B+

ρ

∣∣V (
Dṽ − ξ̃(0,

√
8ρ)⊗ en

)∣∣2 dy = 0 and lim sup
ρ→ 0+

∣∣ξ̃(0, ρ)
∣∣ ≤ c(M) .

Taking into account the additional smallness assumption concerning the transformation for
the choice of the radii r0, r1, we may now proceed exactly as in the proof of Theorem 3.14
(with ṽ, ξ̃(0, ·) instead of u, ξ(0, ·)) and conclude: Dṽ is Hölder continuous with exponent
α on the half-ball B+

R for some 0 < R < 1. Since T is a transformation of class C1,α, this
means for two arbitrary points x1, x2 ∈ Ω ∩BR/

√
2∣∣Du(x1)−Du(x2)

∣∣ ≤ ∣∣D(u− g)(x1)−D(u− g)(x2)
∣∣ + [Dg]C0,α(Ω∩BR,RN )|x1 − x2|α

=
∣∣Dṽ(T(x1))DT(x1)−Dṽ(T(x2))DT(x2)

∣∣ + [Dg]C0,α(Ω∩BR,RN )|x1 − x2|α

≤
∣∣Dṽ(T(x1))−Dṽ(T(x2))

∣∣ ∣∣DT(x1)
∣∣ +

∣∣Dṽ(T(x2))
∣∣ ∣∣DT(x1)−DT(x2)

∣∣
+ [Dg]C0,α(Ω∩BR,RN )|x1 − x2|α

≤ c
(
[Dṽ]C0,α(B+

R ,RN ), [DT]C0,α(Ω∩BR,RN )

)
|x1 − x2|α .

Hence, since 0 ∈ ∂Ω \
(
Σ̃1 ∪ Σ̃2

)
was chosen arbitrarily, the desired result follows. �
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In this section we provide an up-to-the-boundary comparison estimates in the setting of sub-
quadratic growth both for degenerate and non-degenerate elliptic systems of partial differen-
tial equations in divergence form; we will utilize these estimates later when deriving Calderón-
Zygmund type estimates in Section 5 and for the regularity theory for low dimensions in
Section 6. To this end, we first turn our attention to weak solutions v ∈ W 1,p

Γ (B+
R(x0), RN ),

x0 ∈ Rn−1 × {0}, R < 1 and p ∈ (1, 2), of the inhomogeneous system

−div a0(x,Dv) = LG(x) in B+
R(x0) . (4.1)

In the weak formulation this becomes∫
B+

R(x0)
a0(x,Dv) ·Dϕ dx = L

∫
B+

R(x0)
G · ϕ dx ∀ϕ ∈ C∞

0 (B+
R(x0), RN ) , (4.2)

where the coefficients a0 : B+
R(x0)×RnN → RnN are Lipschitz continuous in x, but indepen-

dent of v, and satisfy the following ellipticity and growth conditions: z 7→ a(x, z) is a vector
field of class C0(RnN , RnN ) ∩ C1(RnN \ {0}, RnN ), and for some fixed 0 < ν ≤ L and for
µ ∈ [0, 1], there holds

(C1) Polynomial growth of a0 :

|a0(x, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ,

(C2) a0 is differentiable in z with continuous and bounded derivatives:∣∣Dza0(x, z)
∣∣ ≤ L

(
µ2 + |z|2

) p−2
2 ,

(C3) a0 is uniformly elliptic, i. e., we have

Dza0(x, z) λ · λ ≥ ν
(
µ2 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

61
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(C4) a0 is Lipschitz-continuous with respect to the first variable. More precisely, there
exists a non-negative function γ ∈ L∞(B+

R(x0)) such that∣∣Dxa0(x, z)
∣∣ ≤ Lγ(x)

(
µ2 + |z|2

) p−1
2

for all (x, z) ∈ B+
R(x0) × RnN . Additionally, we suppose that (x, z) 7→ Dza0(x, z) and

(x, z) 7→ Dxa0(x, z) are Carathéodory maps. We emphasize that we have to exclude z = 0 in
conditions (C2) and (C3) when dealing with degenerate systems (µ = 0). We further impose
the following integrability condition on the inhomogeneity G(·):

(C5) G ∈ Lp∗(B+
R(x0), RN ) with p∗ = p

p−1 .

For the solution v of (4.1), we will prove the existence of second order derivatives using
a difference quotients method, and we will derive a Caccioppoli-type estimate for second
order derivatives. We mention that in the sequel, all estimates are considered on balls or
intersection of balls, but they remain also valid if we replace the ball BR(x0) by a cube
QR(x0).

In the second part of this chapter, we will deal with homogeneous systems without x-
dependency, i. e., with γ = 0 and G = 0, meaning that we consider weak solutions v ∈
W 1,p

Γ (B+
R(x0), RN ), x0 ∈ Rn−1 × {0}, R < 1 and p ∈ (1, 2), to

div a0(Dv) = 0 in B+
R(x0) , (4.3)

where the coefficients a0 : RnN → RnN satisfy the assumptions (C1)-(C3). In this special
case we are in a position to improve the Caccioppoli-type inequality derived so far and infer
an estimate where a certain integral involving second derivatives is bounded by only the
tangential part of V (Dv). This allows us to prove a higher integrability result via Gehring’s
Lemma, and we finally conclude a decay estimate for the weak derivative Dv.

4.1 A preliminary Caccioppoli-type inequality

In the first step, we will consider balls (centred at points y) which have a sufficiently large
intersection with ΓR(x0). In this situation we prove the existence of the tangential second
derivatives of v by deriving a Caccioppoli-type estimate. In the interior, we will as well obtain
the existence of second order derivatives using the same arguments without any constraint
to the direction:

Lemma 4.1: Let v ∈ W 1,p
Γ (B+

R(x0), RN ) be a weak solution to system (4.1) under the
assumptions (C1)-(C5) and let µ ∈ [0, 1] be arbitrary. Then, the tangential derivative
D′v = (D1v, . . . , Dn−1v) belongs to W 1,p(B+

ρ (x0), R(n−1)N ) for all ρ < R, and there exists a
constant c depending only on n, p and L

ν such that

a) (close to the boundary) for all y ∈ B+
R(x0) ∪ ΓR(x0) and 0 < r < R − |y − x0| with

yn ≤ 3
4r there holds∫
B+

3r/4
(y)

∣∣D′(Vµ(Dv))
∣∣2 dx

≤ c
(
r−2 (1 + ‖γ‖2∞)

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
, (4.4)
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b) (in the interior) for all y ∈ B+
R(x0) and 0 < r < R− |y − x0| with yn > 3

4r there holds∫
B5r/8(y)

∣∣D(Vµ(Dv))
∣∣2 dx

≤ c
(
r−2 (1 + ‖γ‖2∞)

∫
B+

3r/4
(y)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

3r/4
(y)
|G|

p
p−1 dx

)
.

Proof: For the proof of a) we consider a standard cut-off function η ∈ C∞
0 (B7r/8(y), [0, 1])

satisfying
η ≡ 1 on B3r/4(y) and |Dη|2 + |D2η| ≤ c r−2 . (4.5)

Let f be a function defined in an open set U ⊂ Rn, V ⊂ U . The difference quotient 4s,hf(x)
of f with respect to xs is defined as

4s,hf(x) :=
f(x + hes)− f(x)

h

for x ∈ V, h ∈ R, with 0 < |h| < dist(V, ∂U), where es, s = 1, ..., n, denotes the standard
basis of Rn. Let |h| < r

8 . We observe that η24s,hv ∈ W 1,p
0 (B7r/8(y), RN ) for all tangential

directions s = 1, . . . , n− 1, and we now choose

ϕ = 4s,−h

(
η24s,hv

)
∈ W 1,p

0 (B+
r (y), RN ) (4.6)

as a test function in (4.2). This is an admissible choice since we only consider the tangential
difference quotients for which the zero boundary values on Γ7r/8(y) are preserved. Integration
by parts for finite differences yields∫

B+
r (y)

4s,h a0(x,Dv) ·D4s,hv η2 dx

= −2
∫

B+
r (y)

4s,h a0(x,Dv) · (4s,hv ⊗Dη) η dx− L

∫
B+

r (y)
G · 4s,−h

(
η24s,hv

)
dx . (4.7)

The difference quotient 4s,h a0(x,Dv) = 1
h

[
a0

(
x + hes, Dv(x + hes)

)
−a0

(
x,Dv(x)

)]
can be

rewritten as follows:

4s,h a0

(
x, Dv(x)

)
=

1
h

[
a0

(
x + hes, Dv(x + hes)

)
− a0

(
x + hes, Dv(x)

)]
+

1
h

[
a0

(
x + hes, Dv(x)

)
− a0

(
x, Dv(x)

)]
=

1
h

∫ 1

0

d

dt
a0

(
x + thes, Dv(x) + th4s,hDv(x)

)
dt

+
1
h

∫ 1

0

d

dt
a0

(
x + thes, Dv(x)

)
dt

=
∫ 1

0
Dza0

(
x + hes, Dv(x) + th4s,hDv(x)

)
dt4s,hDv(x)

+
∫ 1

0
Dxsa0

(
x + thes, Dv(x)

)
dt . (4.8)

At this stage it still remains to justify the formula in (4.8) for degenerate systems (µ = 0)
because the term involving the derivative Dza0(·, ·) might not be well defined for some
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t̃ ∈ [0, 1]. It suffices to show that for all x ∈ B+
R(x0), λ, λ̄ ∈ RnN not simultaneously equal

to 0 (otherwise all integrands appearing in the estimates vanish) we have

a0(x, λ + λ̄)− a0(x, λ) =
∫ 1

0
Dza0(x, λ + tλ̄) dt λ̄ . (4.9)

Following the arguments in [DM04a, p. 749] we consider the map [0, 1] 3 t 7→ h(t) =
a0(x, λ + tλ̄) ∈ RnN . We first observe that the identity (4.9) is trivially fulfilled if the
segment [λ, λ̄] does not contain the origin of RnN , because then, h(t) is differentiable with
respect to t on [0, 1]. Therefore, we assume that for some t̃ ∈ [0, 1] we have λ + t̃λ̄ = 0. We
first suppose t̃ ∈ (0, 1). Then, using the differentiability of h on [0, t̃) and on (t̃, 1], we find
for every ε ∈ (0, min{t̃, 1− t̃}):

h(1)− h(t̃ + ε) =
∫ 1

t̃+ε
Dza0(x, λ + tλ̄) dt λ̄ ,

h(t̃− ε)− h(0) =
∫ t̃−ε

0
Dza0(x, λ + tλ̄) dt λ̄ .

Observing that the function h is continuous by definition of the coefficients a0(·, ·), the limit
ε ↘ 0 reveals the identity (4.9), because the integrals converge due to the growth condition
(C2), i. e., |Dza0(x, λ+tλ̄)| ≤ L|λ+tλ̄|p−2, and the fact p−2 > −1 which allows us to employ
Lemma A.2. Otherwise, if t̃ ∈ {0, 1} we only have to take into account one of the previous
integrals and argue similarly. Thus, we have finished the proof of (4.9) for all λ, λ̄ ∈ RnN .

Using the ellipticity condition (C3), Young’s inequality and p−2 < 0, we deduce the following
inequality for the first integral on the right-hand side of the previous identity (4.8):∫ 1

0
Dza0

(
x + hes, Dv + th4s,hDv

)
dt ξ · ξ

≥ ν

∫ 1

0

(
µ2 + |Dv + th4s,hDv|2

) p−2
2 dt |ξ|2

≥ 2
p−2
2 ν

(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p−2
2 |ξ|2 =: 2

p−2
2 ν Zµ(x)p−2 |ξ|2 (4.10)

with the obvious abbreviation of Zµ(x); the latter inequality holds true for ξ = 4s,hDv (see
the justification above), and for all ξ ∈ RnN whenever the segment [Dv(x), Dv(x+hes)] does
not contain the origin of RnN . We now combine (4.10) with the identities (4.8) and (4.7),
and we find

2
p−2
2 ν

∫
B+

r (y)
Zµ(x)p−2|4s,hDv|2 η2 dx

≤
∫

B+
r (y)

∫ 1

0
Dza0(x + hes, Dv + th4s,hDv) dt4s,hDv · 4s,hDv η2 dx

=
∫

B+
r (y)

4s,h a0(x,Dv) · 4s,hDv η2 dx−
∫

B+
r (y)

∫ 1

0
Dxsa0

(
x + thes, Dv

)
dt4s,hDv η2 dx

= −2
∫

B+
r (y)

4s,h a0(x,Dv) · (4s,hv ⊗Dη) η dx− L

∫
B+

r (y)
G · 4s,−h

(
η24s,hv

)
dx

−
∫

B+
r (y)

∫ 1

0
Dxsa0

(
x + thes, Dv

)
dt4s,hDv η2 dx

= I + II + III (4.11)
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with the obvious abbreviations. In view of spt η ⊂ B7r/8(y) and the restriction |h| < r
8 we

first rewrite term I using partial integration for finite differences, and we then apply the
growth condition (C1), Young’s inequality and standard properties of difference quotients
(see e. g. [GT77, Chapter 7.11]) to find

I = 2
∫

B+
r (y)

a0(x,Dv) · 4s,−h

(
(4s,hv ⊗Dη) η

)
dx

≤ 2 L

∫
B+

r (y)

(
µ2 + |Dv|2

) p−1
2

∣∣4s,−h

(
(4s,hv ⊗Dη) η

)∣∣ dx

≤ 2 Lr−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx + 2 Lr2p−2

∫
B+

r (y)

∣∣4s,−h

(
(4s,hv ⊗Dη) η

)∣∣p dx

≤ 2 Lr−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx + 2 Lr2p−2

∫
B+

r (y)

∣∣Ds

(
(4s,hv ⊗Dη) η

)∣∣p dx .

Via Young’s inequality and the properties of the cut-off function η we next estimate the last
integral on the right-hand side of the previous inequality:∫

B+
r (y)

∣∣Ds

(
(4s,hv ⊗Dη) η

)∣∣p dx

=
∫

B+
r (y)

∣∣4s,hv ⊗
(
Dη Dsη + ηDsDη

)
+ Ds4s,hv ⊗Dη η

∣∣p dx

≤ c r−2p

∫
B+

7r/8
(y)
|4s,hv|p dx + c r−p

∫
B+

r (y)
|4s,hDsv|p ηp dx .

Therefore, term I is estimated by

I ≤ 2 Lr−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx + cL r−2

∫
B+

7r/8
(y)
|4s,hv|p dx

+ cL rp−2

∫
B+

r (y)
|4s,hDsv|p ηp dx .

For the second integral we proceed close to [Giu78], proof of Theorem III.3.5 (for p = 2); we
apply condition (C5) and use again the properties of finite difference quotients to compute

II ≤ L

∫
B+

r (y)
|G|

p
p−1 dx + L

∫
B+

r (y)

∣∣4s,−h

(
η24s,hv

)∣∣p dx

≤ L

∫
B+

r (y)
|G|

p
p−1 dx + L

∫
B+

r (y)

∣∣Ds

(
η24s,hv

)∣∣p dx

≤ L

∫
B+

r (y)
|G|

p
p−1 dx + cL r−p

∫
B+

r (y)
|4s,hv|p ηp dx + cL

∫
B+

r (y)
|D4s,hv|p η2 dx .

Using assumption (C4) and Young’s inequality (recall the definition of Zµ(x) given in (4.10)),
we calculate for the third integral:

III ≤ L

∫
B+

r (y)
‖γ‖∞

(
µ2 + |Dv|2

) p−1
2 |4s,hDv| η2 dx

≤ L2 ε−1

∫
B+

r (y)
‖γ‖2∞ Zµ(x)p η2 dx + ε

∫
B+

r (y)
Zµ(x)p−2|4s,hDv|2 η2 dx
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for every ε ∈ (0, 1). We now observe from Young’s inequality (applied with 2
2−p and 2

p) that
we have

|4s,hDv|p = Zµ(x)
p
2
(2−p) Zµ(x)

p
2
(p−2) |4s,hDv|p ≤ Zµ(x)p + Zµ(x)p−2|4s,hDv|2 (4.12)

(note: if Zµ(x) = 0 then both sides vanish and the inequality trivially holds true). Combining
the estimates for I, II and III with (4.11) and using adequate modifications of inequality
(4.12), we find

2
p−2
2 ν

∫
B+

r (y)
Zµ(x)p−2|4s,hDv|2 η2 dx

≤ c(L
ε ) Lr−2

( ∫
B+

7r/8
(y)

(
(1 + ‖γ‖2∞) Zµ(x)p + |4s,hv|p

)
dx +

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx

)
+ L

∫
B+

r (y)
|G|

p
p−1 dx + 3 ε

∫
B+

r (y)
Zµ(x)p−2|4s,hDv|2 η2 dx . (4.13)

Keeping in mind that B+
7r/8(y) ⊃ spt(η) and |h| ≤ r

8 we first mention that

∫
B+

7r/8
(y)
|4s,hv|p dx ≤

∫
B+

r (y)
|Dsv|p dx .

Furthermore, the integral over Zµ(x)p (see (4.10) for the definition of Zµ(x)) is estimated by

∫
B+

7r/8
(y)

Zµ(x)p dx =
∫

B+
7r/8

(y)

(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p
2 dx

≤ 2
∫

B+
r (y)

(
µ2 + |Dv(x)|2

) p
2 dx . (4.14)

Therefore, choosing 3ε = 2
p−4
2 ν in (4.13), dividing through by 2

p−4
2 ν, recalling that η = 1

on B3r/4(y), we finally arrive at

∫
B+

3r/4
(y)

Zµ(x)p−2|4s,hDv|2 dx ≤
∫

B+
r (y)

Zµ(x)p−2|4s,hDv|2 η2 dx

≤ c r−2 (1 + ‖γ‖2∞)
∫

B+
r (y)

(
µ2 + |Dv(x)|2

) p
2 dx + c

∫
B+

r (y)
|G|

p
p−1 dx , (4.15)

and the constant c depends only on L
ν (note: the dependency on the parameter p is dropped

due to 2(p−2)/2 ∈ (1
2 , 1)). We mention here: in order to conclude that the tangential deriva-

tives belong to the space Lp, we deduce analogously to the proof of [Giu03, Theorem 8.1]
from (4.12): the family

(
4s,hDv

)
h
, h ∈ R with |h| < r

8 , is bounded in Lp(B3r/4(y), RnN )
(see (4.14), (4.15)) and therefore converges in Lp(B+

3r′/4(y), RnN ) to DsDv for all r′ < r

(see e.g. [Eva98], Chapter 5.8.2, proof of Theorem 3 and the remark immediately after the
proof). Thus we also conclude DsDv ∈ Lp(B+

3r′/4(y), RnN ) (for s ∈ {1, . . . , n − 1}), which

proves D′v ∈ W 1,p(B+
ρ (x0), R(n−1)N ) for all ρ < R.
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We apply Lemma A.3 (i) and obtain∫
B+

3r/4
(y)

∣∣4s,hVµ(Dv)
∣∣2 dx =

∫
B+

3r/4
(y)

h−2
∣∣Vµ

(
Dv(x + hes)

)
− Vµ

(
Dv(x)

)∣∣2 dx

≤ c(p) h−2

∫
B+

3r/4
(y)

(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p−2
2

∣∣Dv(x + hes)−Dv(x)
∣∣2 dx

= c(p)
∫

B+
3r/4

(y)
Zµ(x)p−2|4s,hDv|2 dx

≤ c
(
p, L

ν

) (
r−2 (1 + ‖γ‖2∞)

∫
B+

r (y)

(
µ2 + |Dv(x)|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
.

As above, the sequence
(
4s,hVµ(Dv)

)
h

is uniformly bounded in L2(B3r/4(y), RnN ) and
therefore converges strongly to Ds(Vµ(Dv)). Thus we obtain the tangential estimate (s =
1, . . . , n− 1), and summing up this yields∫

B+
3r/4

(y)

∣∣D′(Vµ(Dv))
∣∣2 dx

≤ c
(
n, p, L

ν

) (
r−2 (1 + ‖γ‖2∞)

∫
B+

r (y)

(
µ2 + |Dv(x)|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
,

which is the desired inequality in a) for the boundary situation.

The proof of b) in the interior case is achieved in the same way: we here choose analogously
to above a cut-off function η with support in B11r/16(y) which satisfies η ≡ 1 on B5r/8(y)
with the same assumptions on the derivatives as in (4.5). Then we may use the same test
function as in the boundary case, where this time |h| < r

16 . Finally we note that in the
interior we do not need any constraint of the direction, i. e., we can take s = 1, . . . , n. �

Before going on we mention that the Caccioppoli-type estimate given in the last lemma can
be rewritten in a slightly different but equivalent form. We define the j-th component of
Vµ(Dv) via

Vµ,j(Dv) =
(
µ2 + |Dv|2

) p−2
4 Djv j = 1, . . . , n ,

and the tangential part V ′
µ(Dv) :=

(
Vµ,1(Dv), . . . , Vµ,n−1(Dv)

)
. Furthermore, the derivative

of Vµ(Dv) is given by

Ds(Vµ(Dv)) =
(
µ2 + |Dv|2

) p−2
4 DsDv + p−2

2

(
µ2 + |Dv|2

) p−6
4 Dv Dv ·DsDv

(s = 1, . . . , n) such that the absolute value of Ds(Vµ(Dv)) is bounded by∣∣Ds(Vµ(Dv))
∣∣ ≤ 2

(
µ2 + |Dv|2

) p−2
4 |DsDv| (4.16)∣∣Ds(Vµ(Dv))

∣∣ ≥ 1
2

(
µ2 + |Dv|2

) p−2
4 |DsDv| (4.17)

from below and above. Thus, we can reformulate the estimate in (4.4) in the boundary
situation (as well as the corresponding estimate in the interior) by∫

B+
3r/4

(y)

(
µ2 + |Dv|2

) p−2
2 |D′Dv|2 dx

≤ c
(
n, p, L

ν

) (
r−2 (1 + ‖γ‖2∞)

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
. (4.18)
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4.2 Inhomogeneous systems with x-dependency

We are now interested in improving the previous lemma for weak solutions of the system
(4.1): we are going to give a sharper bound in the inequality given in Lemma 4.1 by an
argument based on weak convergence. Employing the system (4.1), we further obtain the
existence of the full derivative of Vµ(Dv) up to the boundary, a result, which was announced
in [DKM07, Theorem 2.4]:

Theorem 4.2: Let v ∈ W 1,p
Γ (B+

R(x0), RN ) be a weak solution to system (4.1) under the
assumptions (C1)-(C5) and let µ ∈ [0, 1] be arbitrary. Then v is twice differentiable in the
weak sense. Moreover, v ∈ W 2,p(B+

ρ (x0), RN ) for all ρ < R, and there exists a constant c

depending only on n, N, p and L
ν such that for all y ∈ B+

R(x0)∪ΓR(x0) and 0 < r < R−|y−x0|
there holds:∫

B+
r/2

(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c

(
r−2

∫
B+

r (y)
(1 + γ(x)2)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
.

Proof: We first note that inequality in Lemma 4.1 is the desired estimate – at least for the
tangential derivative of Vµ(Dv) – apart from the fact that the supremum of γ appears on
the right-hand side. To prove the inequality in the final form we proceed similarly to the
proof of the last lemma. The important difference is that we already may take advantage
of the fact Dsv ∈ W 1,p

Γ (B+
ρ (x0), RN ) for all 0 < ρ < R and for all tangential derivatives

(s = 1, . . . , n−1). We first deal with the boundary situation and consider y ∈ B+
R(x0)∪ΓR(x0)

and 0 < r < R− |y − x0| with yn ≤ 3
4r. We define

ϕ = 4s,−h

(
η2Dsv

)
∈ W 1,p

0 (B+
r (y), RN ) , (4.19)

where η ∈ C∞
0 (B3r/4(y), [0, 1]) is a standard cut-off function satisfying η ≡ 1 on Br/2(y) and

Dη ≤ c r−1, and s ∈ {1, . . . , n− 1}, |h| < r
4 , cf. the test function in (4.6). In view of Lemma

4.1, ϕ is an admissible test function in (4.2). With integration by parts for finite differences
we infer the identity∫

B+
r (y)

4s,h a0(x,Dv) ·
(
DDsv η + 2 Dsv ⊗Dη

)
η dx = −L

∫
B+

r (y)
G · 4s,−h

(
η2Dsv

)
dx .

Therefore, instead of inequality (4.11), we now obtain

ν

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

≤
∫

B+
r (y)

Dza0(x,Dv) DDsv ·DDsv η2 dx

=
∫

B+
r (y)

Dsa0(x,Dv) ·DDsv η2 dx−
∫

B+
r (y)

Dxsa0(x,Dv) ·DDsv η2 dx

=
∫

B+
r (y)

(
Dsa0(x,Dv)−4s,ha0(x,Dv)

)
·
(
DDsv η + 2 Dsv ⊗Dη

)
η dx

− 2
∫

B+
r (y)

Dsa0(x,Dv) · (Dsv ⊗Dη) η dx

+ L

∫
B+

r (y)
G ·

[
Ds

(
η2Dsv

)
−4s,−h

(
η2Dsv

)]
dx− L

∫
B+

r (y)
G ·Ds

(
η2Dsv

)
dx

−
∫

B+
r (y)

Dxsa0(x,Dv) ·DDsv η2 dx (4.20)
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(note: all integrands vanish on the set {x ∈ B+
r (y) : Dv = 0}). For the first integral on the

right-hand side, called Ih in what follows, we next show that it vanishes as h tends to zero,
using a weak convergence argument. For this purpose we abbreviate

fh :=
(
Dsa0(x,Dv)−4s,ha0(x,Dv)

) (
µ2 + |Dv|2

) 2−p
4 η ,

g :=
(
µ2 + |Dv|2

) p−2
4

(
DDsv η + 2 Dsv ⊗Dη

)
.

This means we can rewrite the integral Ih =
∫
B+

r (y) fh · g dx. From the last lemma (to be
more precise, from (4.18)) we infer g ∈ L2(B+

3r/4(y), RnN ). Furthermore, the sequence {fh}
is uniformly bounded in L2(B+

3r/4(y), RnN ): To this aim we first use condition (C2), the
technical Lemma A.2 and the reasoning for the identity (4.9) to deduce∣∣∣ ∫ 1

0
Dza0(x, Dv + th4s,hDv) dt4s,hDv

∣∣∣
≤ L

∫ 1

0

(
µ2 + |Dv + th4s,hDv|2

) p−2
2 dt |4s,hDv|

≤ Lc(p)
(
µ2 + |Dv(x)|2 + |Dv(x + hes)−Dv(x)|2

) p−2
2 |4s,hDv|

≤ Lc(p)
(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p−2
2 |4s,hDv| (4.21)

(again, if µ = 0, this inequality is trivially satisfied for Dv(x) = 4s,hDv = 0). Combined
with the decomposition in (4.8) and condition (C4) we then obtain∣∣4s,ha0(x,Dv(x))

∣∣ ≤ Lc(p)
(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p−2
2 |4s,hDv|

+ L ‖γ‖∞
(
µ2 + |Dv(x)|2

) p−1
2 ,

and from (C2) and (C4) we further infer

∣∣Dsa0(x,Dv(x))
∣∣ ≤ L ‖γ‖∞

(
µ2 + |Dv(x)|2

) p−1
2 + L

(
µ2 + |Dv(x)|2

) p−2
2 |DDsv(x)|

for all x ∈ B+
3r/4(y) (note that if Dv(x) = 0 then DDsv(x) = 0 and hence, the latter

inequality trivially holds true). Hence, we end up with∫
B+

3r/4
(y)
|fh|2 dx

≤ 2
∫

B+
3r/4

(y)

(∣∣Dsa0(x,Dv(x))
∣∣2 +

∣∣4s,ha0(x,Dv(x))
∣∣2) (

µ2 + |Dv(x)|2
) 2−p

2 dx

≤ Lc(p)
∫

B+
3r/4

(y)

(
‖γ‖∞

(
µ2 + |Dv(x)|2

)p−1 +
(
µ2 + |Dv(x)|2

)p−2 |DDsv(x)|2+

(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

)p−2 |4s,hDv(x)|2
) (

µ2 + |Dv(x)|2
) 2−p

2 dx

≤ Lc(p)
∫

B+
3r/4

(y)

(
‖γ‖∞

(
µ2 + |Dv(x)|2

) p
2 +

(
µ2 + |Dv(x)|2

) p−2
2 |DDsv(x)|2+

(
µ2 + |Dv(x)|2 + |Dv(x + hes)|2

) p−2
2 |4s,hDv(x)|2

)
dx

≤ Lc
(
p, L

ν , ‖γ‖∞
) (

r−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
,
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where we have applied the estimates (4.18) and (4.15) in the last inequality. Thus, we can
find a function f ∈ L2(B+

3r/4(y), RnN ) such that a subsequence of {fh} converges weakly

in L2(B+
3r/4(y), RnN ) to f . Furthermore, we estimate for every φ ∈ Lp/(p−1)(B+

3r/4(y), RnN )

using Hölder’s inequality with exponents 2, 2p
2−p and p

p−1 :∫
B+

3r/4
(y)
|fh · φ| dx ≤

( ∫
B+

3r/4
(y)

∣∣Dsa0(x,Dv)−4s,ha0(x,Dv)
∣∣2 dx

) 1
2

·
( ∫

B+
3r/4

(y)

(
µ2 + |Dv|2

) p
2 dx

) 2−p
2p

( ∫
B+

3r/4
(y)
|φ|

p
p−1

) p−1
p

.

Keeping in mind that Dsa0(x,Dv), s ∈ {1, . . . , n − 1}, belongs to L2(B+
ρ (x0), RnN ) for

all ρ < R due to the last lemma, we obtain 4s,ha0(x, Dv) → Dsa0(x, Dv) strongly in
L2(B+

3r/4(y), RnN ) as h → 0, i. e., we have {fh}h ⇀ 0 weakly in Lp(B+
3r/4(y), RnN ). Since

weak limits are unique, we conclude f ≡ 0. Therefore, in view of fh ⇀ 0 in L2(B+
3r/4(y), RnN )

and g ∈ L2(B+
3r/4(y), RnN ), we finally arrive at

lim
h→0

Ih = lim
h→0

∫
B+

r (y)
fh · g dx = 0

Taking into account the strong convergence 4s,−h

(
η2Dsv

)
→ Ds

(
η2Dsv

)
in Lp(B+

r (y), RnN )
and G ∈ Lp/(p−1)(B+

r (y), RN ), we observe that the first and the third integral on the right-
hand side of (4.20) vanish as h → 0 due to weak respectively strong convergence. Thus, we
obtain

ν

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

≤ −2
∫

B+
r (y)

Dsa0(x,Dv) · (Dsv ⊗Dη) η dx− L

∫
B+

r (y)
G ·Ds

(
η2Dsv

)
dx

−
∫

B+
r (y)

Dxsa0(x,Dv) ·DDsv η2 dx

= −2
∫

B+
r (y)

Dza0(x, Dv) DDsv · (Dsv ⊗Dη) η dx− L

∫
B+

r (y)
G ·Ds

(
η2Dsv

)
dx

−
∫

B+
r (y)

Dxsa0(x,Dv) ·
(
2 Dsv ⊗Dη + DDsv η

)
η dx . (4.22)

Evaluating the remaining integrals in a standard manner and keeping in mind (4.16), finally
reveals the stronger tangential estimate∫

B+
r/2

(y)

∣∣D′(Vµ(Dv))
∣∣2 dx ≤ c

∫
B+

r/2
(y)

(
µ2 + |Dv|2

) p−2
2 |DD′v|2 dx

≤ c
(
n, p, L

ν

) (
r−2

∫
B+

r (y)
(1 + γ(x)2)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
. (4.23)

In contrast to (4.4) in Lemma 4.1, the function γ now appears in the integrand on the
right-hand side; this will be a crucial point for later applications.

For interior balls B3r/4(y) ⊂ B+ all the calculations remain true for every s ∈ {1, . . . , n},
and hence, the last estimate holds for the full derivative. This proves the statement of the
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theorem in the interior. At the boundary we still have to find an estimate for the normal
derivative. To this aim we differentiate the system (4.1) and get

N∑
β=1

n∑
i,j=1

∂(a0)α
i (x, Dv)

∂zβ
j

Dijv
β +

n∑
i=1

∂(a0)α
i (x,Dv)
∂xi

= −LGα

which implies

N∑
β=1

∂(a0)α
n(x, Dv)

∂zβ
n

Dnnvβ = −
N∑

β=1

n∑
i,j=1

(i,j) 6=(n,n)

∂(a0)α
i (x,Dv)

∂zβ
j

Dijv
β −

n∑
i=1

∂(a0)α
i (x,Dv)
∂xi

− LGα

for α = 1, . . . , N almost everywhere in B+
r/2(y) ∩ {xn > ε} (for some ε > 0). Finally, the

estimate involving the derivative Dnnv is derived as follows: We recall that in the interior
all second derivatives exist. Then we multiply the previous relation by Dnnvα and sum up
upon α; using the growth (C2), the ellipticity condition (C3) and the Lipschitz continuity of
a0(·, ·) with respect to x in (C4), we get

ν
(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤

N∑
α,β=1

∂(a0)α
n(x,Dv)

∂zβ
n

Dnnvβ Dnnvα

= −
N∑

α,β=1

n∑
i,j=1

(i,j) 6=(n,n)

∂(a0)α
i (x,Dv)

∂zβ
j

Dijv
β Dnnvα −

n∑
i=1

∂(a0)α
i (x,Dv)
∂xi

Dnnvα − LGα Dnnvα

≤ c(n, N) L
((

µ2 + |Dv|2
) p−2

2 |DD′v|+ γ(x)
(
µ2 + |Dv|2

) p−1
2 + |G|

)
|Dnnv| (4.24)

almost everywhere in B+
r/2(y) ∩ {xn > ε} (note that in order to apply (C2) and (C3),

respectively, we have employed the fact that all terms above vanish if Dv(x) = 0). Then
Young’s inequality and absorbing the term involving |Dnnv| implies(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤ c

((
µ2 + |Dv|2

) p−2
2 |DD′v|2 +(1+γ(x)2)

(
µ2 + |Dv|2

) p
2 + |G|

p
p−1

)
for a constant c depending only on n, N and L

ν . From (4.17) and the estimate (4.23) we
know that the right-hand side of the last inequality exists and that there holds(

µ2 + |Dv|2
) p−2

2 |DD′v|2 ∈ L1(B+
r/2(y)) .

Keeping in mind G ∈ Lp/(p−1), we hence integrate the previous inequality on B+
r/2(y)∩{xn >

ε}. Letting ε → 0 we gain∫
B+

r/2
(y)

(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 dx

≤ c

∫
B+

r/2
(y)

((
µ2 + |Dv|2

) p−2
2 |DD′v|2 + (1 + γ(x)2)

(
µ2 + |Dv|2

) p
2 + |G|

p
p−1

)
dx

≤ c
(
r−2

∫
B+

r (y)
(1 + γ(x)2)

(
µ2 + |Dv|2

) p
2 dx +

∫
B+

r (y)
|G|

p
p−1 dx

)
,

and the constant c still depends only on n, N, p and L
ν . Combined with (4.17) and (4.23),

this is the desired Caccioppoli-type inequality at the boundary.
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Finally, we note that the decomposition

|D2v|p ≤
(
µ2 + |Dv|2

) p
2 +

(
µ2 + |Dv|2

) p−2
2 |D2v|2

cf. (4.12), finally gives v ∈ W 2,p(B+
ρ (x0), RN ) for all ρ < R. Thus the proof of the theorem

is complete. �

4.3 Homogeneous systems without x-dependency

4.3.1 An improved version of Theorem 4.2

In the next step, we consider weak solutions v ∈ W 1,p
Γ (B+

R(x0), RN ) to the homogeneous
system (4.3), where the coefficients a0(·) do not depend explicitly on the x-variable. In this
situation the previous Theorem 4.2 states that v ∈ W 2,p(B+

ρ (x0), RN ) for all ρ < R with the
estimate ∫

B+
r/2

(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c r−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p
2 dx .

for all y ∈ B+
R(x0)∪ΓR(x0) and 0 < r < R− |y−x0|. In order to infer a higher integrability

estimate for D(Vµ(Dv)) we now show an improved version of this Caccioppoli-type estimate
such that on the right-hand side only the tangential part of Vµ(Dv) shows up:

Theorem 4.3: Let v ∈ W 1,p
Γ (B+

R(x0), RN ) be a weak solution to the system (4.3), whose
coefficients a0(·) satisfy the conditions (C1)-(C3), and let µ ∈ [0, 1] be arbitrary. Then v is
twice differentiable in the weak sense, more precisely v ∈ W 2,p(B+

ρ (x0), RN ) for all ρ < R,
and there exists a constant c depending only on n, N, p and L

ν such that

a) (close to the boundary) for all y ∈ B+
R(x0) ∪ ΓR(x0) and 0 < r < R − |y − x0| with

yn ≤ 3
4r there holds∫

B+
r/2

(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c r−2

∫
B+

r (y)

∣∣V ′
µ(Dv)

∣∣2 dx , (4.25)

b) (in the interior) for all y ∈ B+
R(x0) and 0 < r < R− |y−x0| with yn > 3

4r there holds∫
Br/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c r−2

∫
B3r/4(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B3r/4(y)

∣∣2 dx . (4.26)

Remark: We emphasize that in statement a) the normal derivative of v is not involved in
the quadratic term of |V ′

µ(Dv)|2 = (µ2 + |Dv|2)(p−2)/2|D′v|2 on the right-hand side of (4.25).
If we pass to coefficients which additionally depend explicitly on x (as in the previous Section
4.2), this result can no longer be obtained because a dependency only on the xn-variable of
the solution might occur: consider for example the coefficients a(x, z) defined by

a(x, z) =

(
1 + |z|2

) p−2
2 z(

1 + (1 + xα
n)2

) p−2
2 (1 + xα

n)

for a number α ∈ (0, 1). Then, v(x) = 1
1+α x1+α

n +xn is a weak solution of div a(x,Dv) = 0 in
B+ ⊂ Rn, n ≥ 2, but the statement of the theorem obviously does not hold on any (half-)ball
B+

r/2(y) ⊂ B+, and even v ∈ W 2,p(B+
ρ , RN ) does not hold for every ρ ∈ (0, 1) (in fact, v only

belongs to a suitable fractional Sobolev space).
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Proof: We proceed analogously to the proof of the last theorem, taking advantage of
the simpler structure of the coefficients in (4.3) in contrast to (4.1). We first recall v ∈
W 2,p(B+

ρ (x0), RN ) for all ρ < R in view of Theorem 4.2. To prove inequality (4.25) we
consider y ∈ B+

R(x0) ∪ ΓR(x0) and 0 < r < R − |y − x0| with yn ≤ 3
4r and choose a cut-

off function η ∈ C∞
0 (B3r/4(y), [0, 1]) satisfying η ≡ 1 on Br/2(y) and |Dη| ≤ 8

r . Now let
h ∈ R with |h| < r

4 and choose ϕ = 4s,−h(η2Dsv) ∈ W 1,p
0 (B+

r (y), RN ) (see (4.19) above),
s = 1, . . . , n − 1, as a test function for the system (4.3). Arguing exactly as in the proof of
the previous theorem, we find (see (4.22)):

ν

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx ≤ −2

∫
B+

r (y)
Dsa0(Dv) · (Dsv ⊗Dη) η dx ,

and from Young’s inequality and the growth condition (C2) we thus infer

ν

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

≤ 2L

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv| |Dsv| |Dη| η dx

≤ ν

2

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx + c

L2

ν
r−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |Dsv|2 dx .

This allows us to find the following estimate in tangential direction (s = 1, . . . , n− 1):∫
B+

r/2
(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 dx ≤ c

(
L
ν

)
r−2

∫
B+

r (y)

(
µ2 + |Dv|2

) p−2
2 |Dsv|2 dx . (4.27)

To estimate also the normal derivative we again make use of the differentiated system (4.3).
Since G = 0 we end up with

ν
(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤

N∑
α,β=1

∂(a0)α
n(Dv)

∂zβ
n

Dnnvβ Dnnvα

= −
N∑

α,β=1

n∑
i,j=1

(i,j) 6=(n,n)

∂(a0)α
i (Dv)

∂zβ
j

Dijv
β Dnnvα

≤ c(n, N) L
(
µ2 + |Dv|2

) p−2
2 |DD′v| |Dnnv|

almost everywhere in B+
r/2(y) ∩ {xn > ε}, see (4.24). At this stage, we apply Young’s

inequality to see(
µ2 + |Dv|2

) p−2
2 |Dnnv|2 ≤ c(n, N, L

ν )
(
µ2 + |Dv|2

) p−2
2 |DD′v|2 .

Since the right-hand side is in L1(B+
r/2(y)), we may integrate the latter inequality on B+

r/2(y)∩
{xn > ε}. Then, keeping in mind (4.16) and the tangential estimate (4.27), the desired
inequality in a) follows immediately from letting ε → 0.

In the interior of B+
R(x0) we proceed similarly, but we need a modification of the arguments

to obtain the mean value version: Lemma 4.1 holds in the interior without any assumption
on the direction of the derivative. We choose 4s,−h

(
η2

(
Dsv − ξs

))
as a test function (here
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all directions s = 1, . . . , n are allowed), where η ∈ C∞
0 (B5r/8(y), [0, 1]) is a cut-off function

satisfying
η ≡ 1 on Br/2(y) and |Dη|2 + |D2η| ≤ c r−2 ,

h ∈ R with |h| < r
8 and where ξ = (ξ1, . . . , ξn) ∈ RnN will be defined later. Calculating as in

Theorem 4.2 when deriving the estimate (4.22), we use partial integration and the fact that
a0(ξ) is constant to see

ν

∫
Br(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

≤ −2
∫

Br(y)
Dsa0(Dv) ·

(
(Dsv − ξs)⊗Dη

)
η dx

= 2
∫

Br(y)
a0(Dv) ·Ds

[(
(Dsv − ξs)⊗Dη

)
η
]
dx

= 2
∫

Br(y)

(
a0(Dv)− a0(ξ)

)
·Ds

[(
(Dsv − ξs)⊗Dη

)
η
]
dx .

Using the properties of the test functions, the estimate

a0(Dv)− a0(ξ) =
∫ 1

0
Dza0

(
ξ + t(Dv − ξ)

)
dt (Dv − ξ)

≤ c(p) L
(
µ2 + |Dv|2 + |ξ|2)

p−2
2 |Dv − ξ|

(see the justification for (4.9)) and Young’s inequality, we obtain

ν

∫
Br(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

≤ c

∫
Br(y)

(
µ2 + |Dv|2 + |ξ|2

) p−2
2 |Dv − ξ|

[
|DDsv| |Dη| η + |Dv − ξ|

(
|Dη|2 + |D2η| η

)]
dx

≤ 1
2 ν

∫
Br(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 η2 dx

+ c
(
p, L

ν

)
Lr−2

∫
B3r/4(y)

(
µ2 + |Dv|2 + |ξ|2

) p−2
2 |Dv − ξ|2 dx ,

Absorbing the first integral on the the right-hand side and applying Lemma A.3 (i) yields∫
Br/2(y)

(
µ2 + |Dv|2

) p−2
2 |DDsv|2 dx ≤ c

(
p, L

ν

)
r−2

∫
B3r/4(y)

∣∣Vµ(Dv)− Vµ(ξ)
∣∣2 dx .

Since the function Vµ is surjective, we may choose ξ such that Vµ(ξ) = (Vµ(Dv))B3r/4(y).
Combined with the estimate in (4.16) this gives the desired Caccioppoli-inequality in the
mean value version. �

4.3.2 Higher integrability of D(Vµ(Dv))

Starting from the Caccioppoli inequalities close to the boundary and in the interior in The-
orem 4.3 we next derive reverse Hölder inequalities on balls and intersections of balls in
B+

R(x0) for weak solutions v of (4.3). This enables us to apply an up-to-the-boundary ver-
sion of Gehring’s Lemma which yields an appropriate higher integrability result.
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First, we deal with the boundary situation and consider points y ∈ B+
R(x0) ∪ ΓR(x0) and

radii 0 < r < R − |y − x0| satisfying yn ≤ 3
4r. We see that V ′

µ(Dv) vanishes identically on
ΓR(x0) ⊃ Γr(y′′) (recalling that y′′ denotes the projection of y onto Rn−1 × {0} and that
D′v ≡ 0 on ΓR(x0) by assumption). Therefore, we can apply the Sobolev-Poincaré inequality
in Lemma A.5 (with 2n

n+2 < n instead of p) to the right-hand side of (4.25) and we obtain

r2

∫
B+

r/2
(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c

∫
B+

r (y)

∣∣V ′
µ(Dv)

∣∣2 dx (4.28)

≤ c
( ∫

B+
r (y)

|D(V ′
µ(Dv))|

2n
n+2 dx

)n+2
n

≤ c
( ∫

B+
r (y)

|D(Vµ(Dv))|
2n

n+2 dx
)n+2

n
.

Hence, taking mean values we have

∫
−
B+

r/2
(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c(n, N, p, L

ν )
( ∫
−
B+

r (y)
|D(Vµ(Dv))|

2n
n+2 dx

)n+2
n

. (4.29)

In the interior, we consider points y ∈ B+
R(x0) and radii 0 < r < R− |y − x0| with yn > 3

4r.
As above we apply the Sobolev-Poincaré inequality to the Caccioppoli-type estimate (4.26)
to see

r2

∫
Br/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c

∫
B3r/4(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B3r/4(y)

∣∣2 dx

≤ c
( ∫

B+
r (y)

|D(Vµ(Dv))|
2n

n+2 dx
)n+2

n

⇒
∫
−
Br/2(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c(n, N, p, L

ν )
( ∫
−
B+

r (y)
|D(Vµ(Dv))|

2n
n+2 dx

)n+2
n

. (4.30)

Hence, by (4.29) and (4.30), for every ball Bρ(z) with centre z ∈ B+
R(x0) ∪ ΓR(x0) and

radius 0 < ρ < R− |x0 − z| we have verified assumption (A.3) in Theorem A.14 for any ball
Br(y) ∩ ∂Bρ(z) ∩ B+

R(x0) = ∅. As in the proof of [DGK04], Lemma 3.1, we apply Theorem
A.14 with

g(x) =
∣∣DVµ(Dv)

∣∣ 2n
n+2 , p = n+2

n , Ω = Bρ(z) ∩B+
R(x0) and A = ∂Bρ(z) ∩B+

R(x0) ,

and we infer that there exists a positive number δ = δ(n, N, p, L
ν ) such that |D(Vµ(Dv))| ∈

L2t(Bρ/2(z) ∩B+
R(x0)) with

( ∫
−
Bρ/2(z)∩B+

R(x0)
|D(Vµ(Dv))|2t dx

) n
(n+2)t

≤ c
(
n, N, p, L

ν , t
) ( ∫

−
Bρ(z)∩B+

R(x0)

∣∣D(Vµ(Dv))
∣∣2 dx

) n
n+2

for all t ∈ [1, 1 + δ). Note that the dependence of kΩ does not occur, as it can be chosen
independent of ρ and R (note that every such Ω satisfies a uniform interior and exterior
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cone-condition). Thus we can choose a number t0 > 1 such that for all z ∈ B+
R(x0)∪ΓR(x0)

and 0 < ρ < R− |x0 − z| there holds( ∫
−
B+

ρ/2
(z)
|D(Vµ(Dv))|2t0 dx

) 1
t0 ≤ c

(
n, N, p, L

ν

) ∫
−
B+

ρ (z)

∣∣D(Vµ(Dv))
∣∣2 dx . (4.31)

This estimate remains valid if we consider (half-)balls B+
ρ̃ (z), B+

ρ (z) with ρ̃ < ρ instead of
B+

ρ/2(z), B+
ρ (z) (where an additional dependency on the ratio ρ̃

ρ occurs) or if we consider
cubes instead of balls as mentioned at the beginning of this chapter.

4.3.3 A decay estimate

The previous higher integrability result enables us to estimate D(Vµ(Dv)) on half-balls of
different radii and afterwards to deduce a decay estimate for Dv.

Lemma 4.4: Let v ∈ W 1,p
Γ (B+

R(x0), RN ) be a weak solution of the system (4.3) under the
assumptions (C1)-(C3) and µ ∈ [0, 1]. Then for all y ∈ B+

R(x0)∪ΓR(x0), 0 < ρ < R−|x0−y|
and τ ∈ (0, 1) we have∫

B+
τρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ c τ ε

∫
B+

ρ (y)

∣∣D(Vµ(Dv))
∣∣2 dx (4.32)

with constants c = c
(
n, N, p, L

ν

)
and ε := n (1− 1

t0
) > 0, where t0 = t0(n, N, p, L

ν ) > 1 comes
from the Gehring-Lemma.

Proof: We argue as follows: if τ ∈ [12 , 1), the estimate (4.32) is obvious for the constant
c = τ−ε ≤ 2ε ≤ 2n, whereas in the case τ ∈ (0, 1

2) we estimate via Jensen’s inequality and
the higher integrability estimate (4.31) for D(Vµ(Dv)):∫

B+
τρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx ≤ αn (τρ)n

∫
−
B+

τρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx

≤ αn (τρ)n
( ∫
−
B+

τρ(y)

∣∣D(Vµ(Dv))
∣∣2t0 dx

) 1
t0

≤ αn (τρ)n (2τ)−
n
t0

( ∫
−
B+

ρ/2
(y)

∣∣D(Vµ(Dv))
∣∣2t0 dx

) 1
t0

≤ c
(
n, N, p, L

ν

)
αn ρn τ

n− n
t0

∫
−
B+

ρ (y)

∣∣D(Vµ(Dv))
∣∣2 dx

= c
(
n, N, p, L

ν

)
τ ε

∫
B+

ρ (y)

∣∣D(Vµ(Dv))
∣∣2 dx ,

where αn denotes the Ln-measure of the unit ball in Rn. �

In the next step, the last result for D(Vµ(Dv)) is carried over to an estimate for Vµ(Dv):

Lemma 4.5: Let v ∈ W 1,p
Γ (B+

R(x0), RN ) be a weak solution of the system (4.3) under the
assumptions (C1)-(C3) and µ ∈ [0, 1]. Then for every B+

ρ (y) ⊂ B+
R(x0) with y ∈ B+

R(x0) ∪
ΓR(x0) and 0 < ρ < R− |x0 − y| and for all τ ∈ (0, 1) we have∫

B+
τρ(y)

∣∣Vµ(Dv)
∣∣2 dx ≤ c τγ0

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx (4.33)
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with γ0 = min{2 +ε, n} (with the definition of ε given in the previous lemma). Furthermore,
we have the estimate∫

B+
τρ(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

τρ(y)

∣∣2 dx ≤ c τ2+ε

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx , (4.34)

and both constants c depend only on n, N, p and L
ν .

Proof: This result in (4.33) is achieved in a similar way as in the proof of [Cam87b, The-
orem 3.I], where the corresponding estimate was shown for the interior situation in the
superquadratic case. Note that our function V is called W in Campanato’s paper. In the
following, we will consider points y ∈ B+

R(x0)∪ΓR(x0) and radii 0 < ρ < R−|x0−y|. We first
use the usual Poincaré inequality, the last Lemma 4.4 and the Caccioppoli-type inequalities
in Theorem 4.3, and we obtain for every τ ∈ (0, 1

2)∫
B+

τρ(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

τρ(y)

∣∣2 dx ≤ c (τρ)2
∫

B+
τρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx

≤ c τ2+ε ρ2

∫
B+

ρ/2
(y)

∣∣D(Vµ(Dv))
∣∣2 dx

≤ c
(
n, N, p, L

ν

)
τ2+ε

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx .

This is exactly the inequality given in (4.34) (otherwise if 1
2 ≤ τ ≤ 1, the inequality is trivial,

see below). Choosing ε possibly smaller, we may assume ε 6= n− 2 and only distinguish the
cases 0 < ε < n− 2 and n− 2 < ε < n. In the first case, in view of Jensen’s inequality there
holds for all τ, t with 0 < τ < t < 1

2 :∫
B+

τρ(y)

∣∣Vµ(Dv)
∣∣2 dx

≤ 2αn (τρ)n
∣∣(Vµ(Dv)

)
B+

tρ(y)

∣∣2 + 2
∫

B+
τρ(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

tρ(y)

∣∣2 dx

≤ 4
(τ

t

)n
∫

B+
tρ(y)

∣∣Vµ(Dv)
∣∣2 dx + 2

∫
B+

tρ(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

tρ(y)

∣∣2 dx

≤ 4
(τ

t

)n
∫

B+
tρ(y)

∣∣Vµ(Dv)
∣∣2 dx + c t2+ε

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx ,

where we have used (4.34) in the last line (with τ replaced by t), and the constant c depends
only on n, N, p and L

ν . Since we have n > 2 + ε, the technical Lemma A.11 then yields∫
B+

τρ(y)

∣∣Vµ(Dv)
∣∣2 dx ≤ c

[(τ

t

)2+ε
+ τ2+ε

] ∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx .

Taking the limit t → 1
2 , we obtain the desired inequality in the case 0 < τ < 1

2 , and the
constant c still depends only on n, N, p and L

ν . Otherwise, if 1
2 ≤ τ < 1, the inequality in

(4.33) holds trivially true for the constant c = 22+ε = 2γ0 . This proves (4.33) in the case
0 < ε < n− 2.

If, on the contrary, we consider the case n− 2 < ε < n, we see as above that∫
B+

tρ(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

tρ(y)

∣∣2 dx ≤ c
(
n, N, p, L

ν

)
t2+ε

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx (4.35)
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for all t ∈ (0, 1). Hence, by definition of the Campanato spaces (see Section 2.2) the last es-
timate implies that the map Vµ(Dv) belongs to the Campanato space L2,2+ε(B+

R−δ(x0), RN )
for every δ > 0 (note that the supremum defining the Campanato norm might blow up for
points y ∈ B+

R(x0)∪ΓR(x0) with |y−x0| ↗ R). Thus, via the isomorphy of Campanato spaces
and Hölder spaces given in Theorem 2.1, we conclude Vµ(Dv) ∈ C0,α(B+

R(x0)∪ ΓR(x0), RN )
with Hölder exponent α = 2+ε−n

2 = 1− n−ε
2 . Furthermore, for all balls B+

ρ (y) ⊂ B+
R(x0) con-

sidered above the Hölder norm of Vµ(Dv) and in particular its supremum norm on B+
ρ/2(y)

is bounded by the norm in the Campanato space on B+
ρ/2(y) (for the dependency on the

radius, we use a rescaling argument); more precisely, we have the following estimate:

‖Vµ(Dv)‖2
∞,B+

ρ/2
(y)

≤ c(ε, n) ρ−n
(
‖Vµ(Dv)‖2

L2(B+
ρ/2

(y),RN )
+ ρ2+ε

[
Vµ(Dv)

]2

L2,2+ε(B+
ρ/2

(y),RN )

)
≤ c

(
n, N, L

ν

)
ρ−n

( ∫
B+

ρ/2
(y)

∣∣Vµ(Dv)
∣∣2 dx

+ supey∈B+
ρ/2

(y),0<eρ≤ρ

( ρ̃

ρ

)−2−ε
∫

Beρ(ey)∩B+
ρ/2

(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
Beρ(ey)∩B+

ρ/2
(y)

∣∣2 dx
)

≤ c ρ−n
( ∫

B+
ρ (y)

∣∣Vµ(Dv)
∣∣2 dx

+ supey∈B+
ρ/2

(y),0<eρ≤ρ−|ey−y|

( ρ̃

ρ

)−2−ε
∫

B+eρ (ey)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
Beρ(ey)

∣∣2 dx
)

,

where the radius ρ̃ in the latter supremum is restricted to ρ−|ỹ−y| because for every radius
ρ̃ ≥ ρ− |ỹ − y| ≥ ρ

2 we have the following “monotonicity” estimate:

ρ̃−2−ε

∫
Beρ(ey)∩B+

ρ/2
(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
Beρ(ey)∩B+

ρ/2
(y)

∣∣2 dx

≤ ρ̃−2−ε

∫
B+

ρ/2
(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

ρ/2
(y)

∣∣2 dx

≤
(ρ

2

)−2−ε
∫

B+
ρ/2

(y)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
B+

ρ/2
(y)

∣∣2 dx .

Thus, taking into account ρ− |ỹ − y| ≥ ρ
2 , we continue estimating the supremum of Vµ(Dv)

using (4.35), and we finally arrive at

‖Vµ(Dv)‖2
∞,B+

ρ/2
(y)

≤ c ρ−n

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx ,

where the constant c depends only on n, N, p and L
ν . Then we have for all 0 < τ < 1

2 :∫
B+

τρ(y)

∣∣Vµ(Dv)
∣∣2 dx ≤ αn (τρ)n ‖Vµ(Dv)‖2

∞,B+
ρ/2

(y)

≤ c
(
n, N, p, L

ν

)
τn

∫
B+

ρ (y)

∣∣Vµ(Dv)
∣∣2 dx .

For 1
2 ≤ τ < 1 the last estimate holds true using the constant c = 2n = 2γ0 . Thus we have

demonstrated the inequality (4.33) also in the case n − 2 < ε < n and we have completed
the proof. �
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We next state two important consequences of Lemma 4.5: first we obtain the following
Morrey type decay-estimate:

Corollary 4.6: Let the assumptions of Lemma 4.5 be satisfied. Then there exists a constant
c = c

(
n, N, p, L

ν

)
independent of v such that for every B+

ρ (y) ⊂ B+
R(x0) with centre y ∈

B+
R(x0) ∪ ΓR(x0) and radius 0 < ρ < R− |x0 − y| there holds∫

B+
τρ(y)

(
µp + |Dv|p

)
dx ≤ c τγ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx ∀ τ ∈ (0, 1] .

Furthermore, we have∫
B+

ρ (x0)

(
µp + |Dv|p

)
dx ≤ c

( ρ

R

)γ0
∫

B+
R(x0)

(
µp + |Dv|p

)
dx ∀ ρ ∈ (0, R] . (4.36)

Proof: Using (4.33) and keeping in mind γ0 ≤ n, we infer these decay estimates for Dv as
follows: ∫

B+
τρ(y)

(
µp + |Dv|p

)
dx ≤ 2

∫
B+

τρ(y)

(
µp +

∣∣Vµ(Dv)
∣∣2) dx

≤ 4
∫

B+
ρ (y)

[
τnµp + c τγ0

∣∣Vµ(Dv)
∣∣2] dx

≤ c τγ0

∫
B+

ρ (y)

(
µp +

∣∣Vµ(Dv)
∣∣2) dx

≤ c
(
n, N, p, L

ν

)
τγ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx .

Taking into account that Lemma 4.5 obviously holds for the choice y = x0 and ρ = R, we
have immediately the estimate in (4.36). �

As a second consequence we may state the following fundamental estimate which is analogous
to [Cam87b, Theorem 1.II] for the superquadratic setting:

Corollary 4.7: Under the assumptions of Lemma 4.5 there holds: if n ∈ [2, p + γ0), then
for every B+

ρ (y) ⊂ B+
R(x0) with centre y ∈ B+

R(x0)∪ΓR(x0) and radius 0 < ρ < R− |x0− y|
and for all τ ∈ (0, 1) there holds∫

B+
τρ(y)

|v|p dx ≤ c τn
[ ∫

B+
ρ (y)

|v|p dx + ρp

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx

]
(4.37)

with a constant c depending only on n, N, p and L
ν .

Proof: We proceed similarly to [Cam87b, Chapter 4] (for the interior in the superquadratic
case p ≥ 2). We fix B+

ρ (y) with y ∈ B+
R(x0)∪ΓR(x0) and ρ ∈ (0, R−|x0−y| ). The Sobolev-

Poincaré-inequality in Lemma A.5 and Corollary 4.6 yield for τ ∈ (0, 1):∫
B+

τρ(y)
|v − (v)B+

τρ(y)|
p dx ≤ c(n, N, p) (τρ)p

∫
B+

τρ(y)
|Dv|p dx

≤ c
(
n, N, p, L

ν

)
(τρ)p τγ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx .
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Thus, we obtain

(τρ)−(γ0+p)

∫
B+

τρ(y)
|v − (v)B+

τρ(y)|
p dx ≤ c

(
n, N, p, L

ν

)
ρ−γ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx .

Since the centre y ∈ B+
R(x0)∪ ΓR(x0) and the radius ρ were chosen arbitrarily, the map v is

in the Campanato-space Lp,γ0+p(B+
R−δ(x0), RN ) for every δ > 0 (we recall γ0 ≤ n). Hence,

using Theorem 2.1 we conclude (note n < γ0 + p ≤ n + p)

v ∈ C0,α(B+
r (x0), RN ) with α = 1− n− γ0

p
.

Similarly to the proof of Lemma 4.5 we find the estimate

[v]p
C0,α(B+

ρ/2
(x0),RN )

≤ c(n, p, γ0) [v]p
Lp,γ0+p(B+

ρ/2
(y),RN )

≤ c
(
n, N, p, L

ν

)
ρ−γ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx .

In particular, there holds for all x, x̃ ∈ B+
ρ/2(y)

|v(x̃)|p ≤ c(p) |v(x)|p + c(p) ραp [v]p
C0,α(B+

ρ/2
(y),RN )

.

The point x̃ ∈ B+
ρ/2(y) is arbitrary, hence integration with respect to x gives

ρn ‖v‖p

L∞(B+
ρ/2

(y),RN )
≤ c

( ∫
B+

ρ (y)
|v|p dx + ρn+αpρ−γ0

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx

)
.

Therefore, in dimensions n < p + γ0 = n + αp we conclude with τ ∈ (0, 1
2)∫

B+
τρ(y)

|v|p dx ≤ c(n) (τρ)n ‖v‖p

L∞(B+
ρ/2

(y),RN )

≤ c
(
n, N, p, L

ν

)
τn

( ∫
B+

ρ (y)
|v|p dx + ρp

∫
B+

ρ (y)

(
µp + |Dv|p

)
dx

)
,

i. e., the desired estimate. Finally if τ ∈ [12 , 1], the estimate trivially holds true with a
constant c = 2n. �

Remark 4.8: For an appropriate reference estimate in the interior, we consider weak solu-
tion in v ∈ W 1,p(BR(x0), RN ), for a centre x0 ∈ Rn, a radius R < 1 and p ∈ (1, 2), to the
homogeneous system

div a1(Dv) = 0 in BR(x0) .

It is easy to see that all estimates achieved above remain true in the interior of BR(x0). In
particular, the higher integrability estimate (4.31) is valid in this case, i. e., we have for all
y ∈ BR(x0) and 0 < ρ < R− |x0 − y|( ∫

−
Bρ/2(y)

|D(Vµ(Dv))|2t0 dx
) 1

t0 ≤ c
(
n, N, p, L

ν

) ∫
−
Bρ(y)

∣∣D(Vµ(Dv))
∣∣2 dx . (4.38)

Moreover, the interior estimates analogous to the statements in Lemma 4.5 and Corollary
4.7 still hold true. Therefore, the decay estimates in (4.36) hold for balls BR(x0) instead of
half-balls B+

R(x0), i. e., we have∫
Bρ(x0)

(
µp + |Dv|p

)
dx ≤ c

(
n, N, p, L

ν

) ( ρ

R

)γ0
∫

BR(x0)

(
µp + |Dv|p

)
dx ∀ ρ ∈ (0, R] .
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Our aim in this chapter is to prove estimates of Calderón-Zygmund-type. For this purpose
we consider weak solutions u ∈ W 1,p(Ω, RN ), p ∈ (1, 2), of the inhomogeneous Dirichlet
problem {

−div a(x,Du) = LG(x) in Ω ,

u = g on ∂Ω ,

where Ω ⊂ Rn is a bounded domain of class C1 and L > 0 is a constant. We further
suppose G ∈ Lp/(p−1)(Ω, RN ) and g ∈ W 1,p(Ω, RN ). The coefficients a : Ω×RnN → RnN are
assumed to be continuous with respect to the first variable and of class C1 with respect to
the second variable, satisfying a standard (p − 1) growth condition (for the exact structure
assumptions see Section 5.1 below). We shall now prove a global higher integrability result
of the following form for the gradient Du: there exists a number δ > 0 depending on n, N, p

and the structure constants of the system such that

G ∈ L
q

p−1 (Ω, RN ) and g ∈ W 1,q(Ω, RN ) ⇒ Du ∈ Lq(Ω, RnN ) (5.1)

for all q < np
n−2 + δ (and n > 2). This means that, in contrast to the application of Gehring’s

Lemma where this implication can only be deduced for exponents q “close” to p, we provide
a quantified gain in the higher integrability exponent (which is bounded from below by np

n−2

independently of the structure constants).

To this aim we use a method which is based on Calderón-Zygmund type covering arguments
and which was introduced by Caffarelli and Peral in [CP98]. In this paper the authors deduce
a similar (interior) higher integrability result for elliptic equations (i. e., scalar-valued solution

81
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u where N = 1): In the case of equations one can show by Moser iteration techniques
L∞-estimates for the gradient Dv of the weak solution to the frozen comparison system.
This can be used to prove that the statement (5.1), i. e., the Calderón-Zygmund assertion,
holds for every exponent q > 1. An analogous L∞-estimate is available for systems with
special structure such as the p-Laplacean. In this situation, consequently, the implication
(5.1) is obtained without restriction on q, see [Iwa83]. We note that both results may
be extended to non-standard p(x)-growth (where the function p(x) obeys a quantitative
continuity assumption), that is, we consider function u which belong to the generalized
Sobolev space W 1,p(x)(Ω) and which are weak solutions of the equation

div a(x, Du) = div
(
|F |p(x)−2 F

)
in Ω

(see [AM05], for the linear situation we also refer to [DR03]), or we consider weak solutions
in W 1,p(x)(Ω, RN ) of the non-homogeneous p(x)-Laplacean system

div
(
|Du|p(x)−2 Du

)
= div

(
|F |p(x)−2 F

)
in Ω

(see [AM05]), respectively, for a function F ∈ Lp(x)(Ω, RnN ). Then there holds the implica-
tion

|F |p(x) ∈ Lq
loc(Ω) ⇒ |Du|p(x) ∈ Lq

loc(Ω) for all q ≥ 1 .

For general nonlinear elliptic systems the necessary L∞ comparison estimates can no longer
be expected and hence, some restriction on the exponent q will be required. In fact, taking
into account the results of Chapter 4, it is still possible to deduce Dv ∈ Lq for all q < np

n−2 +δ

and some (small) number δ > 0. Then, via a comparison principle and the application of
Calderón-Zygmund type estimates on level sets of the Hardy-Littlewood maximal function
of |Du|p and of |Dg|p + |G|p/(p−1), respectively, this estimate allows us to deduce the desired
higher integrability of Du. Here we will follow the strategy of Kristensen and Mingione in
[KM06] and extend their results to the subquadratic case. We mention that the literature
does not provide appropriate counterexamples to judge the optimality of our restriction on
the exponent q (or whether the bound given above is only required due to our method). We
note that Habermann [Hab06, Hab08] has presented a local version of the higher integrability
result for nonlinear elliptic systems of higher order with non-standard p(x)-growth.

Although these results may be considered of interest in their own right we mention their appli-
cations. Our results may be employed both in the non-degenerate and the degenerate elliptic
case. In Section 7 we will consider weak solutions u to general non-degenerate elliptic systems
−div a(·, u,Du) = b(·, u,Du) in Ω where the right-hand side obeys a controllable growth con-
dition. While u is the fixed solution, we will apply the Calderón-Zygmund estimates to the
weak solution uh of a comparison problem of the form −div ah(·, Duh) = b(·, u,Du); the
higher integrability of Duh (originating from the higher integrability of Du via Gehring’s
Lemma) will then enable us to find appropriate fractional Sobolev estimates for the weak
solution u to the original problem via an iteration procedure. In a second step this yields a
suitable upper bound for the Hausdorff dimension of the singular set (see also [DKM07]; for
minimizers of general variational integrals we refer to [KM06]), which in turn guarantees the
existence of regular boundary points under additional assumptions concerning the Hölder
continuity with respect to the (x, u) variables.
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5.1 Structure conditions and result

In the sequel we assume that the following structure conditions are satisfied for the coefficients
a : Ω × RnN → RnN : the mapping z 7→ a(x, z) is a vector field of class C0(RnN , RnN ) ∩
C1(RnN \ {0}, RnN ), and for fixed numbers 0 < ν ≤ L, 1 < p < 2, µ ∈ [0, 1] and all tuples
(x, z), (x̄, z) ∈ Ω × RnN there hold the following assumptions concerning growth, ellipticity
and continuity:

(Z1) a has polynomial growth:

|a(x, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ,

(Z2) a is differentiable with respect to z with bounded and continuous derivatives:

|Dza(x, z)| ≤ L
(
µ2 + |z|2

) p−2
2 ,

(Z3) a is uniformly elliptic, i. e.,

Dza(x, z) λ · λ ≥ ν
(
µ2 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(Z4) a is continuous with respect to its first argument, i. e., there exists ω : R+ → R+

nondecreasing and continuous with ω(0) = 0 such that

|a(x, z)− a(x̄, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ω

(
|x− x̄|

)
.

We recall that the choice of the parameter µ specifies whether the system is non-degenerate
(µ 6= 0) or degenerate (µ = 0). We note that we have to exclude the case z = 0 in conditions
(Z2) and (Z3) when dealing with degenerate systems.

The main statement of this chapter is the following

Theorem 5.1: Let Ω ⊂ Rn be a bounded domain of class C1 and let u ∈ W 1,p(Ω, RN ) be a
solution of the Dirichlet problem{

−div a(x,Du) = LG(x) in Ω ,

u = g on ∂Ω ,
(5.2)

where the vector field a : Ω × RnN → RnN satisfies the assumptions (Z1)-(Z4) on Ω and
where g ∈ W 1,q(Ω, RN ), G ∈ Lq/(p−1) with q ∈ [p, s1] and

s1 ∈ (p,∞) if n = 2, and s1 =
np

n− 2
+ δ1 if n > 2 (5.3)

for some δ1 = δ1(n, N, p, L
ν ) > 0. Then there holds∫

Ω

(
µ2 + |Du|2

) q
2 dx ≤ c

∫
Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx

for a constant c depending only on n, N, p, q, L
ν , ω(·) and Ω.

In order to obtain these global estimates we proceed in a standard way and start with
considering systems of the form

−div a(x,Dg + Du) = LG(x)
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in the model cases for the interior and the boundary situation, i. e., in the cube Q2R centred
at the origin with side length l(Q2R) = 4R or the corresponding upper half-cube Q+

2R under
the corresponding assumptions. In the latter case we additionally assume zero-boundary
values on Γ2R. In the sequel we will only consider cubes or rectangles with sides parallel to
the coordinate axes and we will use the short-hand notation γQ := Q(x0, γR) for γ > 0 for
cubes Q with side length 2R with the analogous definition for the upper cube γQ+.

5.2 Preliminary results

5.2.1 Higher integrability of the comparison map

We first consider weak solutions v ∈ W 1,p(3Q, RN ) of systems without x-dependency of the
form

div a(Dv) = 0 in 3Q,

or weak solutions v ∈ W 1,p
Γ ((3Q)+, RN ) of

div a(Dv) = 0 in (3Q)+,

respectively, and we state an a priori estimate. We first remind the higher integrability
result from Section 4.3.2, namely that D(Vµ(Dv)) ∈ W 1,2t0 for some t0 > 1 depending only
on n, N, p and L

ν on all smaller upper half-cubes (γQ)+ with γ < 3 as well as on all cubes
in the interior of (3Q)(+) (denoting either the cube 3Q or the upper cube (3Q)+); we note
that the exponent t0 comes from the application of the Gehring Lemma. Then we conclude
(see below) the following reverse Hölder inequality for the comparison function v:( ∫

−
(2Q)(+)

(
µ2 + |Dv|2

) s
2 dx

) 1
s ≤ c

(
n, N, p, L

ν

) ( ∫
−
(3Q)(+)

(
µ2 + |Dv|2

) p
2 dx

) 1
p

, (5.4)

where the exponent s is defined as

s ∈ (p,∞) if n = 2, and s =
np

n− 2
+ δ if n > 2 (5.5)

for some δ = δ(n, N, p, L
ν ) > 0 which can be chosen sufficiently small that 2s

p = 2n
n−2 + 2δ

p ≤
2nt0

n−2t0
= (2t0)∗. We mention that δ is independent of the number µ ∈ [0, 1], of the particular

solution considered and of the vector field a(·). We now prove inequality (5.4) for the cube
and the upper half-cube simultaneously: using the Sobolev-Poincaré inequality from Lemma
A.5, the higher integrability estimates (4.31) and (4.38) for D(Vµ(Dv)) at the boundary and
in the interior, respectively, and the Caccioppoli-inequality in Theorem 4.3 we obtain( ∫

−
(2Q)(+)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
(2Q)(+)

∣∣ 2s
p dx

) 1
s ≤ c l(Q)

2
p

( ∫
−
(2Q)(+)

∣∣D(Vµ(Dv))
∣∣2t0 dx

) 1
pt0

≤ c l(Q)
2
p

( ∫
−
(2.5Q)(+)

∣∣D(Vµ(Dv))
∣∣2 dx

) 1
p

≤ c
(
n, N, p, L

ν

) ( ∫
−
(3Q)(+)

∣∣Vµ(Dv)
∣∣2 dx

) 1
p

.
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Here, all inequalities are applied on (half-)cubes instead of on (half-)balls. Thus, using p < 2
and the definition of the function V , we conclude the desired reverse Hölder inequality (5.4):

( ∫
−
(2Q)(+)

(
µ2 + |Dv|2

) s
2 dx

) 1
s ≤

( ∫
−
(2Q)(+)

[(
µ2 + |Dv|2

) p−2
2 |Dv|2 + µp

] s
p dx

) 1
s

≤ 2
( ∫
−
(2Q)(+)

∣∣Vµ(Dv)−
(
Vµ(Dv)

)
(2Q)(+)

∣∣ 2s
p dx

) 1
s + 2

∣∣(Vµ(Dv)
)
(2Q)(+)

∣∣ 2
p + µ

≤ c
(
n, N, p, L

ν

) ( ∫
−
(3Q)(+)

∣∣Vµ(Dv)
∣∣2 dx

) 1
p + µ

≤ c
(
n, N, p, L

ν

) ( ∫
−
(3Q)(+)

(
µ2 + |Dv|2

) p
2 dx

) 1
p

.

5.2.2 Calderón-Zygmund coverings

Q

Q

Q
0

~

Let Q0 ⊂ Rn be a cube (centred in some arbitrary point x). By
D(Q0) we denote the class of all dyadic subcubes of Q0, i. e.,
of all cubes with sides parallel to those of Q0 that have been
obtained by a positive, finite number of dyadic subdivisions of
Q0; in particular, Q0 is not contained in D(Q0). We now recall
some basic properties of the class D(Q0): If Q1, Q2 ∈ D(Q0)
then either the two cubes are disjoint, Q1 ∩Q2 = ∅, or one of
the cubes contains the other one, Q1 ⊆ Q2 or Q2 ⊆ Q1. We
call Qp a predecessor of some cube Q if Q has been obtained by
a finite number of dyadic subdivisions of Qp; furthermore, we
call Q̃ the predecessor of Q if Q has been obtained by exactly
one dyadic subdivision of the original cube Q̃.

To deal with the boundary situation, we will also have to consider Calderón-Zygmund cover-
ings involving rectangles of the form Q+

R and using the corresponding family of subrectangles.
But this requires only minor modifications, which will be mentioned in the sequel.

We will use the following version of the Calderón-Zygmund decomposition:

Lemma 5.2 (Calderón-Zygmund; [CP98], Lemma 1.1): Let Q ⊂ Rn be a bounded
cube and A ⊂ Q a measurable set satisfying

0 < |A| < δ |Q| for some δ ∈ (0, 1) .

Then there exists a sequence {Qk}k∈N of disjoint dyadic subcubes of Q such that there holds:

1.
∣∣A \ ( ⋃

Qk

)∣∣ = 0,

2.
∣∣A ∩Qk

∣∣ > δ
∣∣Qk

∣∣, and

3.
∣∣A ∩ Q̄k

∣∣ ≤ δ
∣∣Q̄k

∣∣, if Qk is a dyadic subcube of Q̄k.

The same result holds, if we replace the dyadic cubes by dyadic rectangles.
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Proof: We divide Q (or the corresponding rectangle) into 2n dyadic cubes {Qj
1} and choose

those for which ∣∣Qj
1 ∩A

∣∣ > δ
∣∣Qj

1

∣∣
is satisfied. Now we divide each cube that has not been chosen before again into 2n dyadic
subcubes {Qj

2} and repeat the process above iteratively. Thus we obtain a disjoint sequence
of dyadic subcubes called {Qk} for which the assumption 2 and 3 are fulfilled by construction.
Now if x /∈

⋃
k∈N Qk, then there exists a sequence of cubes {Ci(x)} with x ∈ Ci+1(x) ⊂ Ci(x)

for all i ∈ N and with diameter diam(Ci(x)) → 0 as i →∞ such that∣∣Ci(x) ∩A
∣∣ ≤ δ

∣∣Ci(x)
∣∣ <

∣∣Ci(x)
∣∣

or, in an equivalent notion, meaning that
∫
− Ci(x) 1A dx < 1, where 1A denotes the character-

istic function of the set A. By Lebesgue’s differentiation theorem we have
∫
− Ci(x) 1A dx →

1A(x) as i → ∞ for almost every x. Thus, we conclude that for almost every x ∈ Q \( ⋃
k∈N Qk

)
we have x ∈ Q \A, and therefore |A \

( ⋃
k∈N Qk

)
| = 0. �

Definition: A sequence of cubes (or rectangles) with the properties of the Calderón-Zygmund
lemma is called a Calderón-Zygmund covering for the set A.

The next lemma, which is a consequence of the previous one, is the key to the proof of the
Calderón-Zygmund-type estimates:

Lemma 5.3 ([CP98], Lemma 1.2): Let Q0 ⊂ Rn be a bounded cube and δ ∈ (0, 1). As-
sume that X ⊂ Y ⊂ Q0 are measurable sets satisfying the following two conditions:

(i) |X| < δ |Q0|,

(ii) if Q ∈ D(Q0), then there holds:

|X ∩Q| > δ |Q| ⇒ Q̃ ⊂ Y ,

where Q̃ denotes the predecessor of Q. Then we have

|X| ≤ δ |Y | ,

The result remains true if we replace the dyadic cubes by dyadic rectangles.

Proof: We consider the Calderón-Zygmund covering for the set X and then we choose a
disjoint subcovering by predecessors Q̃k which is denoted by {Q̃kj

}j∈N. By the last definition,
i. e., the construction of the Calderón-Zygmund covering, we have |X ∩ Q̃| ≤ δ|Q̃| for all
cubes (or rectangles, respectively) Q̃ ∈ {Q̃kj

}j∈N but
∣∣X ∩ Q

∣∣ > δ
∣∣Q∣∣ for its successors.

Furthermore, by assumption (ii) of the lemma, there holds Q̃ ⊂ Y for all Q̃ ∈ {Q̃kj
}j∈N.

Hence, we conclude∣∣X∣∣ =
∣∣X ∩

( ⋃
k∈N

Qk

)∣∣ ≤ ∑
j∈N

∣∣X ∩ Q̃kj

∣∣ ≤ δ
∑
j∈N

∣∣Q̃kj

∣∣ ≤ δ
∣∣Y ∣∣ . �
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5.2.3 The restricted maximal operator

In order to show Calderón-Zygmund-type estimates, a main tool will be the Hardy Littlewood
maximal function restricted on cubes and on rectangles. Let Q0 ⊂ Rn be a cube and
f ∈ L1(Q0). Then the restricted maximal operator M∗

Q0
relative to Q0 is defined as

M∗
Q0

(
f
)
(x) := sup

Q⊆Q0,x∈Q

∫
−
Q
|f(y)| dy ,

x ∈ Q0, where the supremum is taken over all cubes Q contained in Q0 with sides parallel
to those of Q0 and containing the point x (note: x is not necessarily the centre of Q). At
the boundary, we will consider the maximal function restricted to a rectangle R0 ⊂ Rn with
side length 2l0 > 0 of the form

R0 = x0 + Q+
l0

(0) = x0 + (−l0, l0)n−1 × (0, l0) . (5.6)

Now let f ∈ L1(R0). According to the restricted maximal operator M∗
Q0

we define the
restricted maximal operator M∗

R0
relative to the rectangle R0 as

M∗
R0

(
f
)
(x) := sup

R⊆R0,x∈R

∫
−
R
|f(y)| dy ,

x ∈ R0, where the supremum is this time taken analogously over all rectangles R contained
in R0 (with R of the same type as R0) with sides parallel to those of R0 and containing the
point x.

The next lemma provides weak type (1, 1) and Lq inequalities for the maximal operator:

Lemma 5.4: Let Q0, R0 as well as the function M∗
Q0

,M∗
R0

be defined as above. Then there
exists a constant cw depending only on n and q such that for every function f ∈ Lq(Q0),
q ≥ 1, and for all λ > 0 there holds:

∣∣{x ∈ Q0 : M∗
Q0

(
f
)
(x) > λ

}∣∣ ≤ cw

λq

∫
Q0

|f(y)|q dy .

Furthermore, if q > 1, we have M∗
Q0

(f) ∈ Lq(Q0) with

∫
Q0

∣∣M∗
Q0

(
f
)
(x)

∣∣q dx ≤ c(n, q)
∫

Q0

∣∣f(x)
∣∣q dx .

The same estimates hold true, if we replace Q0 by the rectangle R0.

Proof: A proof may be recovered from [Ste93, Chapter I.3, Theorem 1]. �

Remark: It is a well known fact that the standard maximal operator is not bounded as
a map from L1 to itself. It is easy to see that this statement also holds for the restricted
maximal operator. Moreover, we emphasize that the latter constant c(n, q) might diverge as
q ↘ 1.
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5.3 Local integrability estimates in the interior

We now study the interior situation and consider weak solutions u ∈ W 1,p(Q2R, RN ) of the
inhomogeneous system

−div a(x,Dg + Du) = LG(x) in Q2R (5.7)

for functions g ∈ W 1,p(Q2R, RN ) and G ∈ Lp/(p−1)(Q2R, RN ). As noted above, the applica-
tion of the Calderón-Zygmund Lemma 5.3 will be the crucial point in deriving the higher
integrability estimates. The following Lemma provides a statement concerning superlevel
sets of the maximal function of |Du|p which will be the central estimate in order to establish
condition (ii) in Lemma 5.3 for suitable sets X and Y .

Lemma 5.5: Let u ∈ W 1,p(Q2R, RN ) be a weak solution of the Dirichlet problem (5.7)
under the assumption (Z1)-(Z4). Let B > 1. Then there exists ε = ε

(
n, N, p, L

ν , B
)

> 0 and
a radius R0 = R0

(
n, N, p, L

ν , B, ω(·)
)

> 0, such that there holds: if 2
√

nR ≤ R0, λ > 0 and
Q ⊂ QR is a dyadic subcube of QR such that∣∣∣Q ∩

{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > ABλ ,

M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x) ≤ ελ

}∣∣∣ > B
− s

p |Q| , (5.8)

then its predecessor Q̃ of Q satisfies

Q̃ ⊆
{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > λ

}
. (5.9)

Here M∗ = M∗
Q2R

denotes the restricted maximal operator relative to Q2R, s is the expo-
nent defined in (5.5) and A = A

(
n, N, p, L

ν

)
≥ 2 is an absolute constant. Furthermore, all

constants and quantities involved are uniform with respect to µ ∈ [0, 1].

Remark: The superquadratic analogue of this Lemma is [KM06, Lemma 7.3], which was
stated in this form only for the homogeneous situation. The inhomogeneity arising on the
right-hand side of the system (5.7) now demands a straightforward modification of the state-
ment: in order to be in a position to show the inclusion (5.9), the sublevel sets of the maximal
function of both the function |Dg|p and the inhomogeneity |G|p/(p−1) have to be in a certain
sense small. Furthermore, we note that we have included the degenerate case µ = 0. This
fact requires to pay attention whenever the system becomes degenerate. Furthermore, since
the estimates are based on a comparison principle, the case µ = 0 necessitates degenerate
comparison estimates which are provided in Section 4. Lastly, we remark that the degenerate
case µ = 0 (as well as the presence of an inhomogeneity) was taken into account in the main
higher integrability result [KM06, Lemma 7.8]: due to the uniformity of the preliminary
estimates with respect to µ > 0 the application of an approximation argument yields the
desired higher integrability also for degenerate superquadratic systems.

Proof: We proceed similarly to [KM06, Lemma 7.3] and prove the lemma via contradiction;
the constants A, ε and R0 will be chosen later.
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Q Q

Q
R

~

Q
2R

3Q

x
~

We suppose that (5.9) is not true although (5.8)
is satisfied. Then there exists a point x̃ ∈ Q̃ such
that

M∗((µ2 + |Du|2)
p
2
)
(x̃) ≤ λ . (5.10)

Since Q̃ is the predecessor of Q, we have in par-
ticular x̃ ∈ Q̃ ⊂ 3Q ⊂ Q2R (note Q is a dyadic
subcube of QR), and therefore by definition of
the restricted maximal operator∫

−
3Q

(
µ2 + |Du|2

) p
2 dx ≤ λ . (5.11)

Furthermore, we find by (5.8) a point x̄ ∈ Q such
that

M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x̄) ≤ ελ . (5.12)

and therefore ∫
−
3Q

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx ≤ ελ . (5.13)

We next define the comparison function v ∈ W 1,p(3Q, RN ) to be the unique solution of the
Dirichlet problem with frozen coefficients a(x0, ·) and boundary values u, i. e., v solves{

div a(x0, Dv) = 0 in 3Q ,

u− v ∈ W 1,p
0 (3Q, RN ) ,

(5.14)

where x0 denotes the centre of Q. The existence of v follows by means of monotone operators
(see e.g. [Lio69, Théorème 2.1, page 171]). We first derive the following energy estimate∫

3Q

(
µ2 + |Dv|2

) p
2 dx ≤ c

(
n, N, p, L

ν

) ∫
3Q

(
µ2 + |Du|2

) p
2 dx , (5.15)

which states that the p-energy of Dv can be bounded from above by the p-energy of Du. In
fact, due to the choice v = u on the boundary, we may test the system div a(x0, Dv) = 0
with the function u− v ∈ W 1,p

0 (3Q, RN ) to obtain

0 =
∫

3Q
a(x0, Dv) · (Du−Dv) dx

=
∫

3Q

[
a(x0, Dv)− a(x0, 0)

]
· (Du−Dv) dx

=
∫

3Q

∫ 1

0
Dza(x0, tDv) dt Dv · (Du−Dv) dx ,

where we have used the facts that a(x0, 0) is constant and that u = v on the boundary of
3Q. By assumptions (Z2), (Z3) and taking into account p < 2 we thus infer

ν

∫
3Q

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx ≤

∫
3Q

∫ 1

0
Dza(x0, tDv) dt Dv ·Dv dx

=
∫

3Q

∫ 1

0
Dza(x0, tDv) dt Dv ·Du dx

≤ c(p, L)
∫

3Q

(
µ2 + |Dv|2

) p−2
2 |Dv| |Du| dx .
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We recall that, when considering degenerate systems (µ = 0), the structure conditions (Z2)
and (Z3) must not be applied if Dv = 0. However, taking into account the growth of
z 7→ a(·, z) in (Z1), it is easy to see that the term

∫ 1
0 Dza(x0, tDv) dt Dv vanishes on the

set {x ∈ 3Q : Dv(x) = 0}. As a consequence, the previous inequality holds both for non-
degenerate and degenerate systems. Hence, the Young-type inequality in Lemma A.3 (iii)
yields ∫

3Q

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx ≤ c

(
p, L

ν

) ∫
3Q

(
µ2 + |Du|2

) p
2 dx .

Distinguishing the cases |Dv| ≤ µ and |Dv| > µ, we conclude the energy estimate (5.15)
stated above which is independent of µ ∈ [0, 1]. Since v is a solution of the frozen problem
(5.14) where the vector field a(x0, ·) does not depend on x itself, it satisfies the reverse
Hölder-type inequality (5.4), which in combination with the energy estimate (5.15) and the
assumption (5.11) leads us to∫

−
2Q

(
µ2 + |Dv|2

) s
2 dx ≤ c

( ∫
−
3Q

(
µ2 + |Dv|2

) p
2 dx

) s
p

≤ c
( ∫
−
3Q

(
µ2 + |Du|2

) p
2 dx

) s
p

≤ c
(
n, N, p, L

ν

)
λ

s
p . (5.16)

In the next step, we compare the weak solution u of the orginal problem to the weak solution
v of the comparison problem by testing the original system div a(·, Dg + Du) = LG(·) as
well as the frozen system div a(x0, Dv) = 0 introduced above with the difference v − u. Via
the ellipticity condition and Lemma A.2 we obtain

c−1(p) ν

∫
−
3Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Dv −Du|2 dx

≤
∫
−
3Q

[
a(x0, Dv)− a(x0, Du)

]
· (Dv −Du) dx

=
∫
−
3Q

[
a(x,Du)− a(x0, Du)

]
· (Dv −Du) dx

+
∫
−
3Q

[
a(x,Dg + Du)− a(x,Du)

]
· (Dv −Du) dx− L

∫
−
3Q

G · (v − u) dx

=: I + II + III (5.17)

with the obvious labelling. We next estimate the three terms arising on the right-hand side
of (5.17):

Estimate for I: Here, we use that, according to hypothesis (Z4), the coefficients a(·, ·) are
continuous with respect to the first variable. For all points x ∈ 3Q we can estimate the
distance |x− x0| in dependency of R and bound it from above by 2

√
nR ≤ R0. By Young’s

inequality and the energy inequality (5.15), we then find:

|I| ≤ L

∫
−
3Q

ω
(
|x− x0|

) (
µ2 + |Du|2

) p−1
2 |Dv −Du| dx

≤ L

∫
−
3Q

ω
(
|x− x0|

) (
µ2 + |Du|2 + |Dv|2

) p
4
(
µ2 + |Du|2 + |Dv|2

) p−2
4 |Dv −Du| dx
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≤ c(p, L
ν ) Lω2(R0)

∫
−
3Q

(
µ2 + |Du|2 + |Dv|2

) p
2 dx

+ 1
2 c−1(p) ν

∫
−
3Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Dv −Du|2 dx

≤ c(n, N, p, L
ν ) Lω2(R0)

∫
−
3Q

(
µ2 + |Du|2

) p
2 dx

+ 1
2 c−1(p) ν

∫
−
3Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Dv −Du|2 dx . (5.18)

Estimate for II: For the second term, we first use assumption (Z2) on the growth of Dza(·, z)
combined with Lemma A.2. To incorporate degenerate systems we follow the arguments
above (this time employing the fact that all integrals involving (Z2) vanish on the set {x ∈
3Q : Dg(x) = 0}) and we then conclude via Young’s inequality, applied with ε̃ ∈ (0, 1), and
the energy estimate (5.15):

|II| =
∣∣∣ ∫
−
3Q

[
a(x,Dg + Du)− a(x, Du)

]
· (Dv −Du)1{Dg 6=0} dx

∣∣∣
≤ c(p) L

∫
−
3Q

(
µ2 + |Du|2 + |Dg|2

) p−2
2 |Dg| |Dv −Du| dx

≤ ε̃ L

∫
−
3Q
|Dv −Du|p dx + c(p) L ε̃1−p

∫
−
3Q

[(
µ2 + |Du|2 + |Dg|2

) p−2
2 |Dg|

] p
p−1 dx

≤ cL ε̃

∫
−
3Q

(
µ2 + |Du|2

) p
2 dx + cL ε̃1−p

∫
−
3Q

(
µ2 + |Dg|2

) p
2 dx , (5.19)

and the constant c depends only on n, N, p and L
ν .

Estimate for III: For the last integral, we apply Young’s inequality, the Poincaré inequality
(note R0 ≤ 1) and (5.15) to find

|III| ≤ L

∫
−
3Q
|G| |v − u| dx

≤ ε̃ c(n, N, p) L

∫
−
3Q
|Dv −Du|p dx + ε̃1−p L

∫
−
3Q
|G|

p
p−1 dx

≤ c
(
n, N, p, L

ν

)
L ε̃

∫
−
3Q

(
µ2 + |Du|2

) p
2 dx + ε̃1−p L

∫
−
3Q

(
µ2 + |G|

2
p−1

) p
2 dx . (5.20)

Altogether, we combine the decomposition in (5.17) with the estimates (5.18)-(5.20) to de-
duce∫

−
3Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Dv −Du|2 dx

≤ c
(
ω2(R0) + ε̃

) ∫
−
3Q

(
µ2 + |Du|2

) p
2 dx + c ε̃1−p

∫
−
3Q

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx .

Via (5.11) and (5.13) we finally arrive at∫
−
3Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Dv −Du|2 dx ≤ c

[
ω2(R0) + ε̃ + c(ε̃) ε

]
λ , (5.21)

where the constant c depends only on n, N, p and L
ν . In the next step, we will apply this

comparison estimate as follows: we introduce the restricted maximal operator M∗∗ relative
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to the reduced cube 2Q. The next aim is to gain control over M∗∗((µ2 + |Du|2)p/2
)

on Q.
Together with assumption (5.10) this will provide the desired contradiction to (5.8).

By Lemma A.3 we have

(
µ2 + |Du|2

) p
2 ≤ c

(
µ2 + |Dv|2

) p
2 + c

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Du−Dv|2

with a constant c depending only on p. Thus we conclude via the weak-type estimate in
Lemma 5.4 that (note: due to (5.4) Dv is integrable with exponent s):∣∣∣{x ∈ Q : M∗∗((µ2 + |Du|2)

p
2
)
(x) > ABλ

}∣∣∣
≤

∣∣∣{x ∈ Q : M∗∗((µ2 + |Dv|2)
p
2
)
(x) >

ABλ

2c1

}∣∣∣
+

∣∣∣{x ∈ Q : M∗∗((µ2 + |Du|2 + |Dv|2)
p−2
2 |Du−Dv|2

)
(x) >

ABλ

2c2

}∣∣∣
≤ c(n, s, p)

(ABλ)s/p

∫
2Q

(
µ2 + |Dv|2

) s
2 dx +

c(n, p)
ABλ

∫
2Q

(
µ2 + |Du|2 + |Dv|2

) p−2
2 |Du−Dv|2 dx

=: IM + IIM . (5.22)

The first integral on the right-hand side is estimated by (5.16)

IM ≤ c

(ABλ)s/p
|2Q|λ

s
p

= cI

(
n, N, p, s, L

ν

) 1
(AB)s/p

|Q| ≤ 1
8n+1Bs/p

|Q| , (5.23)

where the last inequality is true provided that we have chosen A large enough, for instance
A := max{(8n+1cI)p/s, 2}. This fixes the constant A ≥ 2 in dependency of n, N, p and L

ν

since the higher integrability exponent s is expressed in terms of the same quantities and all
constants c are assumed to be greater than or equal to 1. For the second integral IIM we
apply (5.21) and thus conclude that∣∣∣{x ∈ Q : M∗∗((µ2 + |Du|2)

p
2
)
(x) > ABλ

}∣∣∣
≤ |Q|

8n+1Bs/p
+ cII

(
n, N, p, L

ν

) |Q|
AB

[
ω2(R0) + ε̃ + c(ε̃) ε

]
. (5.24)

Now we choose R0 = R0(n, N, p, L
ν , B, ω(·)) and ε̃ = ε̃(n, N, p, L

ν , B) sufficiently small such
that

cII
ω2(R0)

AB
≤ 1

8Bs/p
and cII

ε̃

AB
≤ 1

8Bs/p
(5.25)

is satisfied. Once ε̃ is determined, we can take ε > 0 depending on n, N, p, L
ν and B such

that

cII c(ε̃)
ε

AB
≤ 1

8Bs/p
. (5.26)

Combining (5.25) and (5.26) with (5.24) we thus observe∣∣∣{x ∈ Q : M∗∗((µ2 + |Du|2)
p
2
)
(x) > ABλ

}∣∣∣ ≤ |Q|
Bs/p

( 1
8n+1

+
3
8

)
≤ |Q|

2Bs/p
. (5.27)
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It remains to show that this estimate for the restricted maximal function relative to the
reduced cube combined with (5.10) suffices to control M∗((µ2 + |Du|2)p/2). More precisely,
we are going to calculate:

M∗((µ2 + |Du|2)
p
2
)
(x) ≤ max

{
M∗∗((µ2 + |Du|2)

p
2
)
(x), 5nλ

}
(5.28)

for every x ∈ Q. At this stage we recall that M∗ and M∗∗ denote the restricted maximal
operators relative to Q2R and relative to 2Q, respectively. To prove the last inequality we
consider an arbitrary point y ∈ Q and a cube C ⊂ Q2R containing y. Then we have to
distinguish:

Case C ⊂ 2Q: By the definition of M∗∗ there holds∫
−
C

(
µ2 + |Du|2

) p
2 dx ≤ M∗∗((µ2 + |Du|2)

p
2
)
(y) .

Q Q

Q
R

~

Q
2R

2Q

x
~

C

C’

y

A possible configuration for C 6⊂ 2Q

Case C 6⊂ 2Q: We have C \ (2Q) 6= ∅. In
view of the fact that y ∈ Q this implies the
following inequality for the side lengths of
the cubes:

l(C) ≥ 1
2 l(Q)

(for illustration of this situation see the
figure on the right). Then we may find
a cube C ′ ⊂ Q2R containing the original
cube C and the point x̃, where x̃ ∈ Q̃ is
the point, for which the assumption (5.10)
holds. Additionally, we require that the
side length of C ′ is bounded by

l(C ′) ≤ 2l(Q) + l(C) .

Then we obtain with (5.10)∫
−
C

(
µ2 + |Du|2

) p
2 dx ≤ (2l(Q) + l(C))n

(l(C))n

∫
−
C′, x̃∈C′

(
µ2 + |Du|2

) p
2 dx

≤ 5n M∗((µ2 + |Du|2)
p
2
)
(x̃) ≤ 5nλ .

Combined with the first case this implies (5.28).

Since AB ≥ A > 8n, we observe from (5.27) and (5.28):∣∣∣{x ∈ Q : M∗((µ2 + |Du|2)
p
2
)
(x) > ABλ

}∣∣∣
≤

∣∣∣{x ∈ Q : max
{
M∗∗((µ2 + |Du|2)

p
2
)
(x), 5nλ

}
> ABλ

}∣∣∣
=

∣∣∣{x ∈ Q : M∗∗((µ2 + |Du|2)
p
2
)
(x) > ABλ

}∣∣∣ ≤ |Q|
2Bs/p

,

which is a contradiction to (5.8) and hence completes the proof of the lemma. �
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Remark 5.6: In order to apply the previous lemma, we still need to fix the constant B,
depending on the integrability exponent q ∈ (p, s). For fixed q we choose B in a canonical
way such that

B
q−s

p = 1
2 A

− q
p (5.29)

is satisfied. Since the constant A depends only on n, N, p and L
ν , this fixes the constant B

in dependency of n, N, p, L
ν and s − q. We note that B diverges if q ↗ s. Keeping in mind

that R0 and ε were chosen sufficiently small such that the inequalities in (5.25) and (5.26)
are satisfied we further observe that R0 and ε tend to zero if q ↗ s. The choice of B in turn
provides the following dependencies for the quantities involved in Lemma 5.5:

R0 = R0

(
n, N, p, L

ν , ω(·), s− q
)

and

ε0 := ε = ε
(
n, N, p, L

ν , s− q
)
.

In the next lemma, we apply Lemma 5.5 on iterated level sets of the (restricted) maximal
function to obtain an interior reverse Hölder inequality for weak solutions u of system (5.7):

Lemma 5.7: Let u ∈ W 1,p(Q2R, RN ) be a weak solution of (5.7) under the assumptions
(Z1)-(Z4) with 2

√
nR ≤ R0, where R0 is the radius according to the remark above, and let

µ ∈ [0, 1]. For every exponent q ∈ (p, s) there exists a constant c depending only on n, N, p, L
ν

and s− q, such that there holds:( ∫
−
QR

(
µ2 + |Du|2

) q
2 dx

) 1
q

≤ c
( ∫
−
Q2R

(
µ2 + |Du|2

) p
2 dx

) 1
p + c

( ∫
−
Q2R

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx

) 1
q
. (5.30)

Proof: Without loss of generality we may assume |Du| 6≡ 0 on QR, g ∈ W 1,q(Q2R, RN )
and G ∈ Lq/(p−1)(Q2R, RN ), otherwise estimate (5.30) is trivially satisfied. We use again the
notation M∗ for the restricted maximal operator relative to the cube Q2R, and we define

µ1(t) :=
∣∣{x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > t

}∣∣ ,

µ2(t) :=
∣∣{x ∈ QR : M∗((µ2 + |Dg|2 + |G|

2
p−1 )

p
2
)
(x) > t

}∣∣ .

Then, with the parameter B ≥ 1 defined in (5.29), we set:

λ0 := 5n+2cw(n) B
s
p

∫
−
Q2R

(
µ2 + |Du|2

) p
2 dx ,

where cw is the constant appearing in the weak L1-estimate from Lemma 5.4; in particular,
we see that λ0 is positive. By Lemma 5.4 and the definition of λ0 we find

µ1(λ0) ≤ cw

λ0

∫
−
Q2R

(
µ2 + |Du|2

) p
2 dx |Q2R|

=
2n|QR|

5n+2Bs/p
<

|QR|
2Bs/p

. (5.31)

Since A,B > 1, we have in particular AB > 1 and thus we also obtain from the last inequality
that for all k ∈ N0 the inequality

µ1

(
(AB)kλ0

)
<

|QR|
2Bs/p

(5.32)
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is fulfilled, where A is the constant appearing in Lemma 5.5. We next show by induction
that for every k ∈ N0 there holds

µ1

(
(AB)k+1λ0

)
≤ B

− s
p
(k+1)

µ1

(
λ0

)
+

k∑
i=0

B
− s

p
(k−i)

µ2

(
(AB)iε0λ0

)
, (5.33)

where ε0 is chosen according to the previous remark. To prove (5.33) we define

X :=
{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > (AB)k+1λ0 ,

M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x) ≤ ε0(AB)kλ0

}
Y :=

{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > (AB)kλ0

}
,

δ := B
− s

p ,

and we show that both assumptions of Lemma 5.3 are satisfied on the cube QR:

• from (5.32) we see: |X| ≤ µ1((AB)k+1λ0) ≤ |QR|
2Bs/p < δ|QR|.

• We consider the levels λ := (AB)kλ0 and assume that for a dyadic subcube Q ∈ D(QR)
we have∣∣X ∩Q

∣∣ =
∣∣Q ∩

{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > ABλ ,

M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x) ≤ ε0λ

}∣∣ > δ |Q| = B
− s

p |Q| .

Then, according to Lemma 5.5, the predecessor Q̃ of Q satisfies

Q̃ ⊆
{
x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > λ

}
= Y .

Thus, we may apply the Calderón-Zygmund Lemma 5.3 to conclude |X| ≤ δ|Y |, which
transforms into∣∣{x ∈ QR : M∗((µ2 + |Du|2)

p
2
)
(x) > (AB)k+1λ0

}∣∣
−

∣∣{x ∈ QR : M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x) > ε0(AB)kλ0

}∣∣
≤ δ

∣∣{x ∈ QR : M∗((µ2 + |Du|2)
p
2
)
(x) > (AB)kλ0

}∣∣ .

Due to the definition of µ1, µ2 and δ, this is equivalent to the inequality

µ1

(
(AB)k+1λ0

)
≤ B

− s
p µ1

(
(AB)kλ0

)
+ µ2

(
(AB)kε0λ0

)
for all k ∈ N0. Applying this inequality iteratively, we obtain the desired estimate (5.33) as
follows:

µ1

(
(AB)k+1λ0

)
≤ B

−2 s
p µ1

(
(AB)k−1λ0

)
+ B

− s
p µ2

(
(AB)k−1ε0λ0

)
+ µ2

(
(AB)kε0λ0

)
≤ . . . ≤ B

− s
p
(k+1)

µ1

(
λ0

)
+

k∑
i=0

B
− s

p
(k−i)

µ2

(
(AB)iε0λ0

)
.



96 Chapter 5. Calderón-Zygmund estimates

Summing up over k we infer for any M ∈ N:

M∑
k=0

(AB)
q
p
(k+1)

µ1

(
(AB)k+1λ0

)
≤

M∑
k=0

(AB)
q
p
(k+1)

B
− s

p
(k+1)

µ1(λ0)

+
M∑

k=0

k∑
i=0

(AB)
q
p
(k+1)

B
− s

p
(k−i)

µ2

(
(AB)iε0λ0

)
. (5.34)

To evaluate the right-hand side of the last inequality we notice that the choice of B in (5.29)
provides:

∞∑
k=0

[
(AB)

q
p B

− s
p
]k+1 =

∞∑
k=0

[
A

q
p B

q−s
p

]k+1 =
∞∑

k=0

2−(k+1) = 1 . (5.35)

Thus, interchanging the order of summation in the second term on the right-hand side of
(5.34) we get:

M∑
k=0

k∑
i=0

(AB)
q
p
(k+1)

B
− s

p
(k−i)

µ2

(
(AB)iε0λ0

)
= (AB)

q
p

M∑
i=0

µ2

(
(AB)iε0λ0

) M∑
k=i

(AB)
q
p
k
B
− s

p
(k−i)

= (AB)
q
p

M∑
i=0

µ2

(
(AB)iε0λ0

)
(AB)

q
p
i
M−i∑
m=0

[(AB)
q
p B

− s
p ]m

≤ 2(AB)
q
p

M∑
i=0

µ2

(
(AB)iε0λ0

)
(AB)

q
p
i
.

Inserting the last two estimates in (5.34) and passing to the limit M →∞ we finally arrive
at (with k 7→ k − 1 on the left-hand side):

∞∑
k=1

(AB)
q
p
k
µ1

(
(AB)kλ0

)
≤ µ1

(
λ0

)
+ 2(AB)

q
p

∞∑
k=0

(AB)
q
p
k
µ2

(
(AB)kε0λ0

)
. (5.36)

In order to conclude the higher integrability result (5.30) we will proceed as follows: the
previous estimate (5.36) will next be used to control the Lq/p-norm of the restricted maximal
operator M∗((µ2 + |Du|2)p/2

)
. In the second step we then show that the two terms in (5.36)

in turn are controlled by ‖(µ2 + |Du|2)p/2‖L1 and ‖M∗((µ2 + |Dg|2 + |G|2/(p−1))p/2
)
‖Lq/p .

For these computations, we make use of the following identity:∫
Q
|f |p̃ dx =

∫ ∞

0
p̃ λp̃−1

∣∣{x ∈ Q : |f(x)| > λ}
∣∣ dλ ∀f ∈ Lp̃(Q), p̃ ≥ 1 ,

i. e., the decomposition of the integral of |f |p̃ into levelsets. This yields∫
QR

[
M∗((µ2 + |Du|2)

p
2
)] q

p dx =
∫ ∞

0

q
p λ

q
p
−1

µ1(λ) dλ

=
∫ λ0

0

q
p λ

q
p
−1

µ1(λ) dλ +
∫ ∞

λ0

q
p λ

q
p
−1

µ1(λ) dλ

=: Iλ0 + IIλ0 .
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Using µ1(λ) ≤ |QR| we conclude for the first term

Iλ0 ≤ |QR|
∫ λ0

0

q
p λ

q
p
−1

dλ = |QR|λ
q
p

0 .

The second integral IIλ0 is decomposed into integrals on intervals
[
(AB)kλ0, (AB)k+1λ0

)
.

Furthermore, we use the fact that µ1(·) is monotone non-increasing to find

IIλ0 =
∞∑

k=0

∫ (AB)k+1λ0

(AB)kλ0

q
p λ

q
p
−1

µ1(λ) dλ

≤
∞∑

k=0

µ1

(
(AB)kλ0

) [(
(AB)k+1λ0

) q
p −

(
(AB)kλ0

) q
p
]

≤ (ABλ0)
q
p

∞∑
k=0

(AB)
q
p
k
µ1

(
(AB)kλ0

)
= (ABλ0)

q
p µ1

(
λ0

)
+ (ABλ0)

q
p

∞∑
k=1

(AB)
q
p
k
µ1

(
(AB)kλ0

)
.

Using (5.36) we obtain altogether∫
QR

[
M∗((µ2 + |Du|2)

p
2
)] q

p dx

≤ |QR|λ
q
p

0 + 2 (ABλ0)
q
p

[
µ1

(
λ0

)
+ (AB)

q
p

∞∑
k=0

(AB)
q
p
k
µ2

(
(AB)kε0λ0

)]
. (5.37)

The last estimate shall now be estimated from above by the maximal operator of the functions
g and G. Similarly to above we decompose the corresponding integral into∫

QR

[
M∗((µ2 + |Dg|2 + |G|

2
p−1 )

p
2
)] q

p dx =
∫ ε0λ0

0

q
p λ

q
p
−1

µ2(λ) dλ +
∫ ∞

ε0λ0

q
p λ

q
p
−1

µ2(λ) dλ

=: IIIλ0 + IVλ0 .

We then use the monotonicity of µ2(·) to find

IIIλ0 ≥ µ2

(
ε0λ0

) ∫ ε0λ0

0

q
p λ

q
p
−1

dλ = µ2

(
ε0λ0

)
(ε0λ0)

q
p

IVλ0 =
∞∑

k=1

∫ (AB)kε0λ0

(AB)k−1ε0λ0

q
p λ

q
p
−1

µ2(λ) dλ

≥
∞∑

k=1

µ2

(
(AB)kε0λ0

) [(
(AB)kε0λ0

) q
p −

(
(AB)k−1ε0λ0

) q
p
]

= (ε0λ0)
q
p

∞∑
k=1

(AB)
q
p
k
µ2

(
(AB)kε0λ0

) (
1− (AB)−

q
p
)
.

Due to A ≥ 2 and B ≥ 1 we have
(
1− (AB)−q/p

)
∈ (1

2 , 1), and therefore∫
QR

[
M∗((µ2 + |Dg|2 + |G|

2
p−1 )

p
2
)] q

p dx ≥ 1
2 (ε0λ0)

q
p

∞∑
k=0

(AB)
q
p
k
µ2

(
(AB)kε0λ0

)
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follows. Since the last sum already appeared in inequality (5.37), this enables us to find a
new estimate for the Lq/p-norm of M∗((µ2 + |Du|2)p/2

)
:∫

QR

[
M∗((µ2 + |Du|2)

p
2
)] q

p dx

≤ |QR|λ
q
p

0 + 2 (ABλ0)
q
p

[
µ1

(
λ0

)
+ (AB)

q
p

∞∑
k=0

(AB)
q
p
k
µ2

(
(AB)kε0λ0

)]
≤ |QR|λ

q
p

0 + 2 (ABλ0)
q
p µ1

(
λ0

)
+ 4 (AB)2

q
p ε

− q
p

0

∫
QR

[
M∗((µ2 + |Dg|2 + |G|

2
p−1 )

p
2
)] q

p dx .

Taking into account the dependencies of A,B and ε0 and recalling the definition of λ0, we
calculate with (5.31) and the estimate of the norm of the maximal operator in Lemma 5.4
(for the exponent q

p > 1):∫
QR

[
M∗((µ2 + |Du|2)

p
2
)] q

p dx

≤ c
(
|QR|λ

q
p

0 +
∫

QR

[
M∗((µ2 + |Dg|2 + |G|

2
p−1 )

p
2
)] q

p dx
)

≤ c |QR|
[( ∫
−
Q2R

(
µ2 + |Du|2

) p
2 dx

) q
p +

∫
−
QR

[(
µ2 + |Dg|2 + |G|

2
p−1

) p
2
] q

p dx

]
,

and the constant c depends only on n, N, p, L
ν and s− p. Since every function f is bounded

pointwise almost everywhere on QR by the maximal function M∗(f), we thus infer∫
−
QR

(
µ2 + |Du|2

) q
2 dx ≤ |QR|−1

∫
QR

[
M∗((µ2 + |Du|2)

p
2
)] q

p dx

≤ c
( ∫
−
Q2R

(
µ2 + |Du|2

) p
2 dx

) q
p + c

∫
−
QR

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx ,

where the constant c still depends on the same quantities as above. Hence, we have completed
the proof of Lemma 5.7. �

Remark 5.8: We used Lemma 5.4 for the estimate of the Lq/p-norm of the Hardy Littlewood
maximal operator, which blows up if q

p → 1. Therefore, the constant c in Lemma 5.7 might
blow up for q → p. Nevertheless, the estimate (5.30) is trivially satisfied in the case q = p.

5.4 Local integrability estimates up to the boundary

In order to achieve a boundary version of the higher integrability estimate in (5.30), we start
by considering weak solutions u ∈ W 1,p(Q+

2R, RN ) of the inhomogeneous system{
−div a(x,Dg + Du) = LG(x) in Q+

2R ,

u = 0 on Γ ,
(5.38)

for functions g ∈ W 1,p(Q+
2R, RN ) and G ∈ Lp/(p−1)(Q+

2R, RN ). We first obtain analogously
to Lemma 5.5:
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Lemma 5.9: Let u ∈ W 1,p(Q+
2R, RN ) be a weak solution of the Dirichlet problem (5.38)

under the assumption (Z1)-(Z4). Let B > 1. Then there exists ε = ε
(
n, N, p, L

ν , B
)

> 0 and
a radius R0 = R0

(
n, N, p, L

ν , B, ω(·)
)

> 0, such that there holds: if 2
√

nR ≤ R0, λ > 0 and
Q ⊂ Q+

R is a dyadic subrectangle of Q+
R such that∣∣∣Q ∩

{
x ∈ Q+

R : M∗((µ2 + |Du|2)
p
2
)
(x) > ABλ ,

M∗((µ2 + |Dg|2 + |G|
2

p−1 )
p
2
)
(x) ≤ ελ

}∣∣∣ > B
− s

p |Q| , (5.39)

then its predecessor Q̃ of Q satisfies

Q̃ ⊆
{
x ∈ Q+

R : M∗((µ2 + |Du|2)
p
2
)
(x) > λ

}
. (5.40)

Here M∗ = M∗
Q+

2R

denotes the restricted maximal operator relative to Q+
2R, s is the exponent

defined in (5.5) and A = A
(
n, N, p, L

ν

)
is an absolute constant. Furthermore, all constants

and quantities involved are uniform with respect to µ ∈ [0, 1].

Proof: We prove the Lemma by contradiction. We proceed analogously to the proof of
Lemma 5.5 and we only state the modifications due to the boundary situation. Instead of
cubes we now consider dyadic rectangles (also called Q for easier comparability) of the type
(5.6). We distinguish the two cases whether the closure of Q intersects Γ or not:

The case Q ∩ {xn = 0} = ∅: Since Q is a dyadic subrectangle we also have 3Q ⊂ Q+
2R

(therefore, we are in fact in the interior situation). We next use the higher integrability
estimate (5.4) of the comparison map in the rectangle-version. Keeping in mind that all the
computations here have to be performed on (dyadic sub-)rectangles instead of on (dyadic
sub-)cubes, we may repeat the arguments leading to (5.28). This allows us to infer for all
points x ∈ Q

M∗((µ2 + |Du|2)
p
2
)
(x) ≤ max

{
M∗∗((µ2 + |Du|2)

p
2
)
(x), 5nλ

}
where M∗∗ denotes the restricted maximal operator relative to 2Q. This provides again the
desired contradiction.

Q
R

+

Q
R

Q=Q
C

2Q

Q
C

+

x
0

The case Q ∩ {xn = 0} 6= ∅: We first
recall that Q is a dyadic subrectangle of
Q+

R which by definition means that Q

has sides parallel to the coordinate axes.
Hence, in this case one side of Q is lying
on Γ. Thus we find a cube Qc ⊂ Q2R

with centre x0 on Γ such that Q = Q+
c

(see the illustration for the involved cubes
and rectangles). The reason for introduc-
ing Qc is that 2Q 6⊂ Q+

2R whereas (2Qc)+

(which is indeed only a shifted version of
2Q with respect to the normal direction
en) satisfies (2Qc)+ ⊂ Q+

2R. We then may
go on as in the proof of Lemma 5.5 with
Q+

c instead of Q. In particular, we have
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to replace (5.11) and (5.13) (coming from the assumptions of the lemma) by∫
−
(3Qc)+

(
µ2 + |Du|2

) p
2 dx ≤ λ and∫

−
(3Qc)+

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx ≤ ε λ ,

for some ε > 0 to be determined later and where we have used for the first inequality the
fact that Q̃ ⊂ (3Qc)+. The comparison map v ∈ W 1,p((3Qc)+, RN ) is then defined as the
unique solution of the Dirichlet problem with frozen coefficients{

div a(x0, Dv) = 0 in (3Qc)+ ,

v = u on ∂(3Qc)+ .

Testing the system with v− u and using the higher integrability estimate (5.4) of Dv in the
up to the boundary version, we obtain analogously to (5.16)∫

−
2Q

(
µ2 + |Dv|2

) s
2 dx ≤ c

(
n, N, p, L

ν

)
λ

s
p .

Then, the conclusion follows as in Lemma 5.5. �

Remark 5.10: In order to apply the previous lemma, we again have to fix the constant B,
depending on the integrability exponent q ∈ (p, s), which in turn determines the quantities
R0 and ε. Choosing B as in (5.29), we then pick the smaller radius R0 and the smaller
number ε such that R0 and ε are appropriate for both the Lemma 5.5 in the interior and
Lemma 5.9 at the boundary. Then we have the following dependencies for the quantities
involved:

R0 = R0

(
n, N, p, L

ν , ω(·), s− q
)

and

ε0 := ε = ε
(
n, N, p, L

ν , s− q
)
.

In the next lemma we apply Lemma 5.9 exactly as in deriving the higher integrability estimate
in Lemma 5.7 in the interior situation; this gives a reverse Hölder inequality up to the
boundary for solutions u of the system (5.38):

Lemma 5.11: Let u ∈ W 1,p(Q+
2R, RN ) be a weak solution of (5.38) under the assumptions

(Z1)-(Z4) with 2
√

nR ≤ R0, where R0 is the radius as above in Lemma 5.7, and let µ ∈ [0, 1].
Then for every exponent q ∈ (p, s) there holds:

( ∫
−
Q+

R

(
µ2 + |Du|2

) q
2 dx

) 1
q

≤ c
( ∫
−
Q+

2R

(
µ2 + |Du|2

) p
2 dx

) 1
p + c

( ∫
−
Q+

2R

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx

) 1
q
. (5.41)

for a constant c depending only on n, N, p, L
ν and s− q. �
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5.5 The global higher integrability result

With the local estimates of Lemma 5.7 for cubes QR in the interior and of Lemma 5.11 for
upper half-cubes Q+

R at the boundary we are in a position to prove the higher integrability
result on general bounded domains Ω ⊂ Rn of class C1 stated in Theorem 5.1 above:

Proof (of Theorem 5.1): We first consider the case q = p. Here we obtain the desired
result by arguing similarly to the estimates (5.15) and (5.20): testing the system (5.2) with
the function u− g ∈ W 1,p

0 (Ω, RN ) we have

∫
Ω

[
a(x,Du)− a(x, 0)

]
·Du dx

=
∫

Ω
a(x,Du) · (Du−Dg) dx−

∫
Ω

a(x, 0) ·Du dx +
∫

Ω
a(x, Du) ·Dg dx

= L

∫
Ω

G · (u− g) dx−
∫

Ω
a(x, 0) ·Du dx +

∫
Ω

a(x,Du) ·Dg dx .

Using the ellipticity condition (Z3) on the left-hand side of the last equation (in order to
cover also the degenerate case µ = 0 we argue only on the set {x ∈ Ω : Du(x) 6= 0} and note
that on the remaining set the integrand does not contribute to the integral), we obtain via
Lemma A.2 and the growth condition (Z1):

c(p) ν

∫
Ω

(
µ2 + |Du|2

) p−2
2 |Du|2 dx

≤ L

∫
Ω

(
|G| |u− g|+ µp−1 |Du|+

(
µ2 + |Du|2

) p−1
2 |Dg|

)
dx

≤ 3ε

∫
Ω

(
µ2 + |Du|2

) p
2 dx + c(n, p, L

ε , Ω) L

∫
Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx ,

where we have applied Young’s and the Poincaré-inequality in the last line. With the in-
equality (µ2 + |Du|2)

p
2 ≤ (µ2 + |Du|2)

p−2
2 |Du|2 + µp and the choice ε = c(p)ν

4 we thus get

∫
Ω

(
µ2 + |Du|2

) p
2 dx ≤ c

(
n, p, L

ν , Ω
) ∫

Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx , (5.42)

i. e., we have proved the assertion of the theorem in the case q = p.

Thus, we may now assume q > p; first we define w = u− g and see that w ∈ W 1,p
0 (Ω, RN ) is

a solution of the system

−div a(x,Dg + Dw) = LG(x) in Ω (5.43)

since u = g + w solves the Dirichlet problem (5.2). Systems of this form were already
considered in Lemma 5.7 on cubes in the interior case and in Lemma 5.11 on half-cubes at
the boundary. We next flatten the boundary of the domain Ω in a standard way which we
will explain in detail:



102 Chapter 5. Calderón-Zygmund estimates

Some sets ρi(Q2ri) and ρi(Qri) in the interior

Since by assumption of the theorem Ω is a com-
pact set, we find a covering of Ω by a finite
number of C1-regular charts (ρi, Ai)1≤i≤k and
(σi, Bi)1≤i≤k with

ρi : Q2ri → Ai

σi : Q+
2si
→ Bi

for numbers ri, si > 0, the side lengths of
the cubes and half-cubes, respectively, for i =
1, . . . , k. Furthermore, without loss of general-
ity, we may assume that the inclusion

Ω ⊂
k⋃

i=1

(
ρi(Qri) ∪ σi(Q+

si
)
)
.

is satisfied.

By construction, the charts ρi map into the interior of Ω (they may be assumed to be
isometries, cf. the figure above), and for the boundary charts σi we assume

σi(Q+
2si

) = Bi ∩ Ω and σi(Γ2si) = Bi ∩ ∂Ω ,

i. e., the ρi do not intersect the boundary ∂Ω whereas the σi do (for all indices i = 1, . . . , k).

For the boundary situation we

Some sets σi(Q
+
2si

) and σi(Q
+
si

) at the boundary

employ an additional assump-
tion (which is in fact a stan-
dard assumption for the bound-
ary situation and, in particular,
for the transformation of the
original coefficients): For this
purpose we consider for any ar-
bitrary chart σi the boundary
point xi = σi(0), the “centre”
of the distorted half-cube; we
then define φi to be the isom-
etry which maps xi to 0 in such
a way that there holds ν∂(φi(Ω∩Bi))(0) = en for the inner unit normal vector. We note that
this implies ∇h(0) = ∇h((φi(xi))′) = 0 where h : Rn−1 → R denotes the function which
represents the boundary ∂Ω∩Bi after application of the isometry φi (for illustration see the
figure above). Having introduced these quantities, we may now assume that for all indices
i = 1, . . . , k there holds ∣∣∇h

(
φ′i(x)

)∣∣ < 1
2 ∀x ∈ σi(Γ2si) (5.44)

(cf. Section 3.2). Moreover, we can choose the charts σi such that we have for the volumes
of the corresponding sets:∣∣σi(Q+

2si
)
∣∣ =

∣∣Bi ∩ Ω
∣∣ ∀ i ∈ {1, . . . , k} .
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Transforming the system (5.43) above via the maps ρi and σi for i ∈ {1, . . . , k}, we obtain
a finite number of systems which are of the types given in (5.7) and (5.38), respectively,
and which are solved by the transformed functions defined on (half-) cubes. In detail, we
introduce for i ∈ {1, . . . , k} the functions

ŵi := w ◦ ρi w̃i := w ◦ σi

ĝi := g ◦ ρi g̃i := g ◦ σi

Ĝi := G ◦ ρi G̃i := G ◦ σi

as well as the transformed coefficients

âi(x, z) := a
(
ρi(x), z Dρ−1

i (ρ(x))
)
D(ρ−1

i )t(ρi(x))

ãi(x, z) := a
(
σi(x), z Dσ−1

i (σ(x))
)
D(σ−1

i )t(σi(x)) ,

which are defined on Q2ri and on Q+
2si

, respectively. Due to the fact that the transformation
mappings are of class C1, the transformed functions ŵi, w̃i belong to the space W 1,p, ĝi,
g̃i to W 1,q, and Ĝi, G̃i to Lq/(p−1). Furthermore, in view of (5.44), the new coefficients
âi(·, ·) and ãi(·, ·), i = 1, . . . , k, have the same structure as the original coefficients, i. e., they
satisfy conditions of the form (Z1)-(Z4) with structure constants c(ν), c(L) instead of ν, L.
Moreover, according to the fact that the number of charts is finite, we may assume that all
the systems have the same modulus of continuity ω̃(·). We easily infer via a transformation
argument that, for every 1 ≤ i ≤ k, the function ŵi is a weak solution of the system

−div âi(x,Dĝi + Dŵi) = L̂ Ĝi(x) in Q2ri ,

and the function w̃i is a weak solution of

−div ãi(x,Dg̃i + Dw̃i) = L̃ G̃i(x) in Q+
2si

with w̃i = 0 on Γ2si . This transformation allows us to apply Lemma 5.7 and Lemma 5.11,
respectively: we first fix δ1 with the given dependencies by choosing δ1 = δ

2 , where δ is
the number representing the higher integrability exponent of the comparison map Dv which
was determined in (5.5). We next choose the radius R0 in dependency of n, N, p, L

ν and
ω̃(·) according to the remarks above. We note that we can skip here the dependency of
s − q ≥ δ1 > 0. Then we divide all the cubes Qri and half-cubes Q+

si
for i ∈ {1, . . . , k} into

(disjoint) subcubes QRi ⊂ Qri and Q+
Si
⊂ Q+

si
(centred at points xij and yij for 1 ≤ j ≤ mi)

with 2
√

nRi ≤ R0 and 2
√

nSi ≤ R0. On each of the inner cubes QRi we may apply the
estimate (5.30) (with u replaced by ŵi) such that we arrive at∫

Qri

(
µ2 + |Dŵi|2

) q
2 dx =

mi∑
j=1

∫
QRi

(xij)

(
µ2 + |Dŵi|2

) q
2 dx

≤ c

mi∑
j=1

[( ∫
Q2Ri

(xij)

(
µ2 + |Dŵi|2

) p
2 dx

) q
p +

∫
Q2Ri

(xij)

(
µ2 + |Dĝi|2 + |Ĝi|

2
p−1

) q
2 dx

]
≤ c

[( ∫
Q2ri

(
µ2 + |Dŵi|2

) p
2 dx

) q
p +

∫
Q2ri

(
µ2 + |Dĝi|2 + |Ĝi|

2
p−1

) q
2 dx

]
,

where the constant c depends only on n, N, p, L
ν , ω̃(·) and Ω. Here, we have omitted the

meanvalues for the integrals as we have Ri = Ri(n, N, p, L
ν , ω̃(·), Ω) > 0 for all i ∈ {1, . . . , k},



104 Chapter 5. Calderón-Zygmund estimates

and in the last line we have used the fact that each point in Q2ri is covered by at most 2n

small cubes Q2Ri(xij). Analogously we apply on each rectangle Q+
Si

at the boundary the
estimate (5.41) and on each inner cube QSi the estimate (5.30) (with u replaced by w̃i),
respectively. Thus, we conclude∫

Q+
si

(
µ2 + |Dw̃i|2

) q
2 dx

≤ c
[( ∫

Q+
2si

(
µ2 + |Dw̃i|2

) p
2 dx

) q
p +

∫
Q+

2si

(
µ2 + |Dg̃i|2 + |G̃i|

2
p−1

) q
2 dx

]
.

We recall that Ω is covered by ρi(Qri) in the interior and by σi(Q+
si

) at the boundary. This
allows us to go back to the original system on Ω via the transformations ρi and σi. Taking
into account that the number of charts is finite (and depending on the domain Ω) we thus
obtain∫

Ω

(
µ2 + |Du|2

) q
2 dx ≤ c(q)

[ ∫
Ω

(
µ2 + |Dw|2

) q
2 dx +

∫
Ω

(
µ2 + |Dg|2

) q
2 dx

]
≤ c(q)

k∑
i=1

[ ∫
Qri

(
µ2 + |Dŵi|2

) q
2 dx +

∫
Q+

si

(
µ2 + |Dw̃i|2

) q
2 dx

]
+ c(q)

∫
Ω

(
µ2 + |Dg|2

) q
2 dx

≤ c
(
n, N, p, q, L

ν , ω(·), Ω
) [( ∫

Ω

(
µ2 + |Dw|2

) p
2 dx

) q
p +

∫
Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx

]
,

(5.45)

where we have used the definition w = u− g to rewrite the inequalities given above in terms
of ŵ on Qri and of w̃ on Q+

si
; furthermore, we recall the fact that the modulus of continuity

ω̃(·) in the transformed setting depends only on ∂Ω and ω(·). In the last step we estimate
the first integral of the right-hand side of the last inequality from above via applying the
estimate (5.42) achieved before in the case q = p and Jensen’s inequality, and we see:( ∫

Ω

(
µ2 + |Dw|2

) p
2 dx

) 1
p ≤ 2

( ∫
Ω

(
µ2 + |Du|2

) p
2 dx

) 1
p + 2

( ∫
Ω

(
µ2 + |Dg|2

) p
2 dx

) 1
p

≤ c
(
n, p, L

ν , Ω
) ( ∫

Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) p
2 dx

) 1
p

≤ c
(
n, p, q, L

ν , Ω
) ( ∫

Ω

(
µ2 + |Dg|2 + |G|

2
p−1

) q
2 dx

) 1
q
.

Combined with (5.45) this yields the result of the theorem. �

Remark 5.12: Let us consider the previous system in the special case of a ball BR(x0)
with coefficients not explicitly depending on x. The next aim is to study the constant c of
Theorem 5.1 and its dependency with respect to the domain Ω = BR(x0). To this end we
suppose that u ∈ W 1,p(BR(x0), RN ) is a weak solution of the system{

−div a(Du) = LG(x) in BR(x0) ,

u = g on ∂BR(x0) ,

for functions g ∈ W 1,q(BR(x0), RN ) and G ∈ Lq/(p−1)(BR(x0), RN ) for a fixed exponent
q ∈ [p, s1]. Rescaling via

ur(x) :=
u(Rx + x0)

R
, gr(x) :=

g(Rx + x0)
R

and Gr(x) := R G(Rx + x0)
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for x in the unit ball B, we find: ur is a weak solution of the system{
−div a(Dur) = LGr(x) in B ,

ur = gr on ∂B .

Taking into account that in this case the number of charts of the covering (ρi, Ai)1≤i≤k and
(σi, Bi)1≤i≤k of B is a constant depending only on the dimension n, we may apply Theorem
5.1 with Ω = B to obtain∫

Ω

(
µ2 + |Dur|2

) q
2 dx ≤ c

∫
Ω

(
µ2 + |Dgr|2 + |Gr|

2
p−1

) q
2 dx ,

where the constant c depends only on n, N, p, q and L
ν . Scaling back to the original solution

u, we end up with the following higher integrability estimate:∫
−
BR(x0)

(
µ2 + |Du|2

) q
2 dx =

∫
−
B1

(
µ2 + |Dur|2

) q
2 dx

≤ c
(
n, N, p, q, L

ν

) ∫
−
B1

(
µ2 + |Dgr|2 + |Gr|

2
p−1

) q
2 dx

≤ c
(
n, N, p, q, L

ν

) ∫
−
BR(x0)

(
µ2 + |Dg|2 + R

2
p−1 |G|

2
p−1

) q
2 dx .

Hence, in the case Ω = BR(x0) the constant c in Theorem 5.1 also depends on the radius
R, but the dependency on R is only due to the term involving the function G. Nevertheless,
since 2

p−1 > 0, we can neglect this R-terms if we are on small balls or cubes, respectively.
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We now consider weak solutions u ∈ W 1,p(Ω, RN ), 1 < p < 2, of the elliptic system{
−div a( · , u,Du) = b( · , u,Du) in Ω ,

u = g on ∂Ω .
(6.1)

Here Ω ⊂ Rn (n ≥ 2) denotes a bounded domain of class C1 and we suppose boundary values
g ∈ C1(Ω, RN ). As usual this boundary condition is to be understood in the sense of traces.
The coefficients a : Ω×RN×RnN → RnN are assumed to be uniformly continuous with respect
to the first and the second variable, of class C1 with respect to the last variable, and satisfy
a standard (p−1)-growth condition. We further require the vector field b : Ω×RN ×RnN →
RN to obey either a controllable or a natural growth condition (for the precise structure
assumptions see Section 6.1 below).

The present chapter is devoted to Morrey-type estimates up to the boundary and the question
of (partial) regularity of the weak solution u in low dimensions, meaning that n ∈ (p, p + 2].
For this purpose, we define the set of regular and singular points of u via

Regu(Ω) :=
{
x ∈ Ω : u ∈ C0(Ω ∩A, RN ) for some neighbourhood A of x

}
,

Singu(Ω) := Ω \ Regu(Ω) .

We are going to prove that the weak solution u to the nonlinear system (6.1) is Hölder
continuous on Regu(Ω) with some Hölder exponent λ > 0. Moreover, we show that the set of
singular points is of Hausdorff dimension strictly less than n− p, which immediately implies
the existence of regular boundary points and, in fact, that Hn−1-almost every boundary
point is regular. For general dimension n, under such a mild continuity assumption on the
coefficients, this property has only been proved for quasilinear systems, see for example
[Col71, Pep71, GG78, Gro02a].

107
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Taking into account the counterexamples to full regularity given in [DG68, GM68b, Gia78,
NJS80] (for n ≥ 3) and the general form of the coefficients (i. e., their u-dependency), it is
well-known that we cannot expect a global Hölder continuity result to hold. In contrast, due
to the global higher integrability of the weak solution and the Sobolev embedding theorem,
we see that full Hölder regularity up to the boundary holds true provided that p ∈ (n− ε, n)
with a (small) number ε > 0 depending only on the structure constants, cf. [GI05] for n = 2.
However, since the literature lacks an appropriate counterexample in the two-dimensional
case (keep in mind that all the counterexamples mentioned above are for codimension ≥ 3),
it is still an open question whether there might exist a singular point in dimension n = 2
and arbitrary p ∈ (1, 2).

We note that we also cover partial Hölder continuity of weak solutions to degenerate systems.
A model case of the degenerate situation is given by the p-Laplacean, i. e., by the degenerate
system

div
(
|Du|p−2 Du

)
= 0 in Ω .

The strategy for the proof of the partial regularity result stated in Theorem 6.1 below relies
on the so-called direct method and is essentially based on the techniques due to Campanato,
applied e. g. in [Cam82b, Cam83, Cam87a, Cam87b]. In [Cam82b] Campanato derived inte-
rior estimates under a controllable growth assumption, and in [Cam83] he obtained similar
results for systems of higher order. Moreover, Campanato presented in [Cam87a, Cam87b]
global estimates for coefficients not depending explicitly on u, i. e., a(x, u, z) ≡ a(x, z), in
the superquadratic case. These results were extended recently by Idone to systems with
inhomogeneities which may also depend on u and Du, see [Ido04a, Ido04b].

For the examination of both the boundary situation and the interior, we define adequate
comparison maps which are solutions of the frozen (homogeneous) system and for which
good a priori estimates are available (see Chapter 4). This allows us to deduce Morrey-
type estimates for the gradient Du, namely that Du belongs to a suitable Morrey space
Lp,γ(Ω, RnN ), which in view of the Campanato-Meyer embedding Theorem immediately
yields the desired Hölder continuity of u. In case of natural growth of the inhomogeneity,
these techniques require some modifications for which we adapt Arkhipova’s cut-off procedure
from the proof of [Ark97, Ark03, Theorem 1], where the corresponding result (for non-
degenerate systems) was proved in the superquadratic case.

6.1 Structure conditions and result

We impose standard structure conditions on a(·, ·, ·) and b(·, ·, ·): the mapping z 7→ a(x, u, z)
is a vector field of class C0(RnN , RnN )∩C1(RnN\{0}, RnN ), and for fixed numbers 0 < ν ≤ L,
1 < p < 2, µ ∈ [0, 1] and all triples (x, u, z), (x̄, ū, z) ∈ Ω×RN×RnN , there hold the following
growth, ellipticity and continuity assumptions:

(H1) Polynomial growth of a :

|a(x, u, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ,

(H2) a is differentiable in z with continuous and bounded derivatives:

|Dza(x, u, z)| ≤ L
(
µ2 + |z|2

) p−2
2 ,
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(H3) a is uniformly strongly elliptic, i. e.,

Dza(x, u, z) λ · λ ≥ ν
(
µ2 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(H4) There exists a nondecreasing, concave modulus of continuity ω : R+ → [0, 1]
such that

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
µ2 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
,

We recall that the parameter µ specifies whether our system is non-degenerate (µ 6= 0) or
degenerate (µ = 0), and we note that we have to exclude z = 0 in conditions (H2) and
(H3) when dealing with degenerate systems. Condition (H4) means that the coefficients
a(x, u, z) are continuous with respect to (x, u), uniformly for fixed z. Moreover, we assume
the inhomogeneity b(·, ·, ·) to be a Carathéodory map, that is, it is continuous with respect to
(u, z) and measurable with respect to x, and to satisfy one of the following growth conditions:

(B1) Controllable growth condition:

|b(x, u, z)| ≤ L
(
µ2 + |z|2

) p−1
2

for all (x, u, z) ∈ Ω× RN × RnN ,

(B2) Natural growth condition: there exists a constant L2 (possibly depending on
M > 0) such that

|b(x, u, z)| ≤ L2 |z|p + L

for all (x, u, z) ∈ Ω× RN × RnN with |u| ≤ M .

If we pass to vector fields a
ν and b

ν , we see that the dependency on the constants ν, L and
L2 will only show up in terms of the ratio L

ν and L2
ν . Therefore, the dependency on these

constants in the various estimates below will be of this type.

For the right-hand side b(·, ·, ·) we are going to treat both the controllable and the natural
growth condition listed above. In the second case, we will have to restrict ourselves to bounded
weak solutions u ∈ W 1,p(Ω, RN ) ∩ L∞(Ω, RN ). More precisely, we assume ‖u‖L∞(Ω,RN ) ≤
M < ∞ for some constant M > 0 such that

2 L2 M < ν . (6.2)

The regularity proofs in both situations are largely similar. Therefore we will start with a
Morrey-type excess-decay estimate under a controllable growth condition (B1) to illustrate
the general approach via a comparison principle. In a second step, we will concentrate on
the modifications necessary for the natural growth condition. The conclusion of the partial
regularity of the weak solution then rests on a classical iteration lemma (thus, it is only
carried out for the natural growth situation). For ease of notation, some of the constants are
labelled by the superscript (i) and refer to the growth condition (Bi) for i = 1, 2.

The aim of this chapter is the proof of the following

Theorem 6.1: Let Ω be a bounded domain in Rn with boundary ∂Ω of class C1 and g ∈
C1(Ω, RN ). Let u ∈ W 1,p(Ω, RN ) be a weak solution of (6.1) with coefficients a : Ω× RN ×
RnN → RnN satisfying the assumptions (H1)-(H4), and inhomogeneity b : Ω×RN ×RnN →
RN . If one of the following assumptions is fulfilled:
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1. b(·, ·, ·) obeys a controllable growth condition (B1),

2. b(·, ·, ·) obeys a natural growth condition (B2); additionally, we assume u ∈ L∞(Ω, RN )
with ‖u‖L∞(Ω,RN ) ≤ M and 2L2M < ν,

then there exists a constant δ2 > 0 depending only on n, N, p and L
ν such that for n > p >

n− 2− δ2 there holds
dimH

(
Ω \ Regu(Ω)

)
< n− p .

Moreover,
u ∈ C0,λ

loc

(
Regu(Ω), RN

)
∀λ ∈

(
0, min{1− n−2−δ2

p , 1}
)

and the singular set Singu(Ω) of u is contained in

Σ :=
{

x ∈ Ω : lim inf
R↘0

Rp−n

∫
BR(x)∩Ω

(
1 + |Du|p

)
dx > 0

}
.

As in the proof of partial regularity for weak solutions of inhomogeneous systems in Chapter
3 where we characterized the regular set for the gradient Du, we have to consider on the
one hand the interior situation and on the other hand the boundary situation. The latter
case is treated by reducing the original system (6.1) in a (by now) standard way to the
model situation of a unit half-ball, i. e., we consider weak solutions u ∈ W 1,p(B+, RN ) (or
u ∈ W 1,p(B+, RN ) ∩ L∞(B+, RN )) of the system:{

−div a( · , u,Du) = b( · , u,Du) in B+ ,

u = g on Γ .
(6.3)

We mention that – in contrast to Section 3, when considering inhomogeneous systems for
arbitrary dimension n – in order to cover also degenerate systems, we do not reduce to
boundary values 0. Hence, the function g will appear in most of the estimates below. For
ease of notation we will then use the abbreviation ‖Dg‖L∞ instead of ‖Dg‖L∞(B+,RN ).

6.2 Higher integrability

In this section, we will prove a higher integrability result up to the boundary for the gradient
of the weak solution u of system (6.3). We mention that this estimate is valid in all dimen-
sions. The procedure is standard and only needs to be adjusted to the boundary situation.
For this purpose, we will first of all deduce a weak version of a Caccioppoli-type inequality
where an additional additive constant may occur on the right-hand side, both in the interior
and close to the boundary part Γ of the domain B+. Via the Poincaré inequalities stated in
Section 2, we will infer a reverse Hölder inequality. Then we are in a position to apply the
Gehring Lemma A.14 in the up-to-the-boundary version to finally deduce the desired higher
integrability of Du.

Lemma 6.2 (Higher integrability): Let u ∈ g + W 1,p
Γ (B+, RN ) be a weak solution of

(6.3), where the coefficients a(·, ·, ·) satisfy the growth and ellipticity conditions (H1) and
(H3) and where g ∈ C1(B+ ∪ Γ, RN ). If one of the following assumptions is fulfilled:
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1. the inhomogeneity b(·, ·, ·) obeys the controllable growth condition (B1),

2. the inhomogeneity b(·, ·, ·) obeys the natural growth condition (B2); additionally, there
holds u ∈ L∞(B+, RN ) with ‖u‖L∞(B+,RN ) ≤ M and 2L2M < ν,

then there exists an exponent s > p depending only on n, N, p,L
ν , ‖Dg‖L∞, and in case 2

additionally on L2
ν and M such that u ∈ W 1,s(B+

ρ , RN ) for all ρ < 1. Furthermore, for
y ∈ B+ ∪ Γ and 0 < ρ < 1− |y| there holds:( ∫

−
B+

ρ/2
(y)

(
1 + |Du|

)s
dx

) p
s ≤ c(i)

∫
−
B+

ρ (y)

(
1 + |Du|p

)
dx

(for i = 1, 2) with constants c(1) = c(1)(n, N, p, L
ν , ‖Dg‖L∞) and c(2) = c(2)(n, N, p, L

ν , L2
ν ,

‖Dg‖L∞ ,M).

Proof: We start by proving the following Caccioppoli-type inequalities:∫
−
B+

r/2
(z)

(
1 + |Du|p

)
dx ≤ ccacc

∫
−
B+

r (z)

(
1 +

∣∣∣u− g

r

∣∣∣p) dx (6.4)

for all z ∈ B+ ∪ Γ and 0 < r < 1− |z| with zn ≤ 3
4r, and

∫
−
Br/2(z)

(
1 + |Du|p

)
dx ≤ ccacc

∫
−
B3r/4(z)

(
1 +

∣∣∣u− (u)B3r/4(z)

r

∣∣∣p) dx (6.5)

for all z ∈ B+ and 0 < r < 1 − |z| with zn > 3
4r. Here the constant ccacc depends only

on p, L
ν , ‖Dg‖L∞ when considering (B1), and on n, p, L

ν , L2
ν , ‖Dg‖L∞ ,M when considering

(B2), respectively. To prove inequality (6.4) close to the boundary Γ, we choose a standard
cut-off function η ∈ C∞

0 (Br(z), [0, 1]) satisfying η ≡ 1 on Br/2(z) and |∇η| ≤ 4
r . First we

note that u coincides with the function g ∈ C1(B+, RN ) on Γ and therefore the function
ϕ = (u − g)η2 belongs to W 1,p

0 (B+, RN ). Under the natural growth condition, there also
holds ϕ ∈ L∞(B+, RN ), and thus in both situations – when dealing with (B1) or (B2) – ϕ

can be taken as a test function in the weak formulation (6.3). Hence, we obtain∫
−
B+

r (z)
b( · , u,Du) · ϕ dx =

∫
−
B+

r (z)
a( · , u,Du) ·Dϕ dx

=
∫
−
B+

r (z)
a( · , u,Du) ·

(
(Du−Dg) η2 + 2(u− g)⊗∇η η

)
dx ,

and therefore, we have the identity∫
−
B+

r (z)

(
a( · , u,Du)− a( · , u, 0)

)
·Du η2 dx

= −
∫
−
B+

r (z)
a( · , u, 0) ·Du η2 dx−

∫
−
B+

r (z)
2 a( · , u,Du) · (u− g)⊗∇η η dx

+
∫
−
B+

r (z)
a( · , u,Du) ·Dg η2 dx +

∫
−
B+

r (z)
b( · , u,Du) · (u− g) η2 dx

= I + II + III + IV (6.6)



112 Chapter 6. Low dimensions: partial regularity of the solution

with the obvious labelling. The left-hand side of (6.6) is bounded from below via the ellip-
ticity assumption (H3)

∫
−
B+

r (z)

(
a( · , u,Du)− a( · , u, 0)

)
·Du η2 dx =

∫
−
B+

r (z)

∫ 1

0
Dza( · , u, t Du) Du ·Du η2 dt dx

≥
∫
−
B+

r (z)

∫ 1

0
ν

(
µ2 + t2|Du|2

) p−2
2 |Du|2η2 dt dx

≥ ν

∫
−
B+

r (z)

∣∣Vµ(Du)
∣∣2η2 dx , (6.7)

where we have used the basic inequality (µ2 + t2|Du|2)(p−2)/2 ≥ (µ2 + |Du|2)(p−2)/2 for all
t ∈ [0, 1]. Note that, in order to apply (H3) also for degenerate systems, we have employed
the fact that all integrals above vanish on the set {x ∈ B+

r (z) : Du(x) = 0}. To estimate
term I in (6.6) we use (H1) and Young’s inequality (for a positive ε to be determined later)
and obtain

I ≤ Lµp−1

∫
−
B+

r (z)
|Du| η2 dx ≤ ε

∫
−
B+

r (z)
|Du|p η2 dx + ε

1
1−p L

p
p−1 µp .

Using (H1) (taking into account p
p−1 ≥ 2) and Young’s inequality, the second and the third

term can be handled similarly, and we get

II ≤ 2
∫
−
B+

r (z)
L

(
µ2 + |Du|2

) p−1
2 |u− g| |∇η| η dx

≤ 8 L

∫
−
B+

r (z)

(
µ2 + |Du|2

) p−1
2

∣∣∣u− g

r

∣∣∣ η dx

≤ ε

∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx + 8 p ε1−pLp

∫
−
B+

r (z)

∣∣∣u− g

r

∣∣∣p dx

and

III ≤ ε

∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx + ε1−pLp

∫
−
B+

r (z)
|Dg|p dx .

For further calculations, i. e., the estimate for term IV , we have to distinguish the different
growth conditions concerning the inhomogeneity b(·, ·, ·):

Controllable growth condition (B1): using (B1) we proceed as in integral II (note here
r ≤ 1) and we obtain

IV ≤ L

∫
−
B+

r (z)

(
µ2 + |Du|2

) p−1
2 |u− g| η2 dx

≤ ε

∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx + ε1−pLp

∫
−
B+

r (z)

∣∣∣u− g

r

∣∣∣p dx .

In view of the inequality µp + |Du|p ≤ 2
(
µp + |Vµ(Du)|2

)
, setting ε = ν

8 and dividing through
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by ν, we combine the last estimates for the various terms arising in (6.6) and conclude∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx ≤ 2

∫
−
B+

r (z)

(
µp + |Vµ(Du)|2

)
η2 dx

≤ 2
∫
−
B+

r (z)

(
µp + ν−1

(
a( · , u,Du)− a( · , u, 0)

)
·Du

)
η2 dx

≤ c
(
p, L

ν

) ∫
−
B+

r (z)

(
µp + |Dg|p +

∣∣∣u− g

r

∣∣∣p) dx +
1
2

∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx . (6.8)

Absorbing the integral over
(
µp + |Du|p

)
η2 on the left-hand side in the last inequality, we

thus find ∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx ≤ c

(
p, L

ν

) ∫
−
B+

r (z)

(
µp + |Dg|p +

∣∣∣u− g

r

∣∣∣p) dx . (6.9)

Natural growth condition (B2): Here the estimate for the remaining integral arising
from the inhomogeneity is similar to the one in Lemma 3.6 (we note that in the present
situation it is not necessary to introduce a number δ as on p. 36 since we do not consider a
linear perturbation of u). We assume that the radius r ≤ r0 is sufficiently small with

r0 := min
{

1− |z| , ν − 2L2M

4L2(‖Dg‖L∞ + 1)

}
.

Applying the growth condition (B2) for the integral IV and paying attention to the smallness
assumption ‖u‖L∞(B+,RN ) ≤ M < ∞ with 2L2M < ν, we infer from the inequality |Du|p ≤
µp + |Vµ(Du)|2 that

IV ≤
∫
−
B+

r (z)

(
L2|Du|p + L

)
|u− g| η2 dx

≤ L2

∫
−
B+

r (z)

(
µp + |Vµ(Du)|2

) (
|u− g(z′′)|+ |g(z′′)− g(x)|

)
η2 dx + L

∫
−
B+

r (z)
|u− g| η2 dx

≤ L2

(
2 M + 2 r ‖Dg‖L∞

) ∫
−
B+

r (z)

(
µp + |Vµ(Du)|2

)
η2 dx + L

∫
−
B+

r (z)

(
1 +

∣∣∣u− g

r

∣∣∣p) dx

≤
(
L2 M +

ν

2

) ∫
−
B+

r (z)

∣∣Vµ(Du)
∣∣2η2 dx + ν µp + L

∫
−
B+

r (z)

(
1 +

∣∣∣u− g

r

∣∣∣p) dx

≤
(
L2 M +

ν

2

) ∫
−
B+

r (z)

∣∣Vµ(Du)
∣∣2η2 dx + L

∫
−
B+

r (z)

(
2 +

∣∣∣u− g

r

∣∣∣p) dx ,

where z′′ denotes the projection of z ∈ Rn onto Rn−1 × {0}. We further note that, in view
of u = g on Γ, we have bounded g(z′′) by M from above. We recall L2M + ν

2 < ν; then we
subtract (L2M + ν

2 )
∫
−B+

r (z)

∣∣Vµ(Du)
∣∣2η2 dx on the right-hand side in (6.7) and combine it

with the estimates for I, II and III to get(ν

2
− L2M

) ∫
−
B+

r (z)

∣∣Vµ(Du)
∣∣2 η2 dx

≤
(

(8 p + 1) ε1−pLp + L + ε
1

1−p L
p

p−1

) ∫
−
B+

r (z)

(
1 + |Dg|p +

∣∣∣u− g

r

∣∣∣p) dx

+ 3 ε

∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx ;
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with the choice ε = ν−2L2M
24 = ν

24 (1 − L2
ν M) this yields analogously to inequality (6.9) in

the controllable situation the estimate∫
−
B+

r (z)

(
µp + |Du|p

)
η2 dx ≤ c

(
p, L

ν , L2
ν ,M

) ∫
−
B+

r (z)

(
1 + |Dg|p +

∣∣∣u− g

r

∣∣∣p) dx . (6.10)

Starting from the inequalities (6.9) in the case of controllable growth and (6.10) in the case
of natural growth, we first note that both inequalities still hold true if we replace µ ∈ [0, 1]
by 1. Keeping in mind that g is of class C1 and using the properties of the cut-off function
η, we then end up with the desired Caccioppoli-type estimate in (6.4) with a constant c

depending only on p, L
ν , ‖Dg‖L∞ for controllable growth, and on p, L

ν , L2
ν , ‖Dg‖L∞ ,M for

natural growth (provided that r ≤ r0).

The estimate (6.5) in the interior is achieved in the same way using a standard cut-off function
η with support in the ball B3r/4(z) ⊂ B+ and choosing ϕ = η2(u − (u)B3r/4(z)) as a test
function instead of ϕ = (u− g)η2. For inhomogeneities obeying a natural growth condition,
we further observe that |u − (u)B3r/4(z)| ≤ 2M . Therefore, we obtain in the estimate of IV

the term 2ML2

∫
−B+

r (z) |Vµ(Du)|2η2 dx such that the constant depends also in the interior

on the factor 1− 2M L2
ν (which is strictly positive by assumption).

In order to finish the proof of the Caccioppoli-type inequalities it still remains to remove the
condition r ≤ r0 required in the calculations above leading to the boundary version (6.4)
(under the natural growth condition). Thus, we consider an arbitrary centre z ∈ B+ ∪ Γ
and a radius r ∈ (r0, 1− |z|) satisfying zn ≤ 3

4r. We now choose a finite number of points zi

satisfying (zi)n ≤ 3
4r0 for i = 1, . . . , k1, and (zi)n > 3

4r0 for i = k1 + 1, . . . , k2 such that the
inclusion

B+
r/2(z) ⊂

k2⋃
i=1

B+
r0/2(zi)

holds. Keeping in mind that r0 = r0(L2,M, ‖Dg‖L∞), the numbers k1 ≤ k2 depend only on
n, L2,M and ‖Dg‖L∞ . Then, applying (6.5) and (6.4), respectively, we find in a standard
way∫
−
B+

r/2
(z)

(
1 + |Du|p

)
dx

≤ r−p
0 r−n c

( k1∑
i=1

∫
B+

r0
(zi)

(
1 + |u− g|p

)
dx +

k2∑
i=k1+1

∫
B3r0/4(zi)

(
1 + |u− (u)B3r0/4(zi)|

p
)
dx

)

≤ c
( k1∑

i=1

∫
B+

r0
(zi)

(
1 + |u− g|p

)
dx +

k2∑
i=k1+1

∫
B3r0/4(zi)

(
1 + |g − (g)B3r0/4(zi)|

p + |u− g|p
)
dx

)

≤ c

k2∑
i=1

∫
B+

r0
(zi)

(
1 + |u− g|p

)
dx ≤ ccacc

∫
−
B+

r (z)

(
1 +

∣∣∣u− g

r

∣∣∣p) dx

with a constant ccacc admitting exactly the dependencies stated above. Lastly, we want to
remark how the constant ccacc in (6.4) and (6.5) depends upon the parameters L

ν , L2
ν and

M : from the choices of ε above we see that ccacc becomes larger and larger as L
ν increases or

as 1− 2 L2
ν M approaches 0.
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In the next step we apply the Sobolev-Poincaré Lemma A.5 in the zero-boundary-data ver-
sion, to the inequalities (6.4) in order to get for z ∈ B+ ∪ Γ and 0 < r < 1 − |z| with
zn ≤ 3

4r ∫
−
B+

r/2
(z)

(
1 + |Du|p

)
dx ≤ ccacc

∫
−
B+

r (z)

(
1 +

∣∣∣u− g

r

∣∣∣p) dx

≤ c
[
1 +

( ∫
−
B+

r (z)
|Du−Dg|

np
n+p dx

)n+p
n

]
≤ c

( ∫
−
B+

r (z)

(
1 + |Du|p

) n
n+p dx

)n+p
n

, (6.11)

and the constant c depends on n, N, p, L
ν , ‖Dg‖L∞ for controllable growth, and on n, N, p, L

ν ,
L2
ν , ‖Dg‖L∞ ,M for natural growth, respectively. We remark that we here have absorbed the

term |Dg| in the constant c. In the interior (for zn > 3
4r) we apply the Sobolev-Poincaré

Lemma A.5 in the mean value version to (6.5) and increase the domain of integration to
B+

r (z); thus, we end up with (6.11) for all z ∈ B+ ∪ Γ and 0 < r < 1 − |z| (using the
generalized notation B+

r (z) ≡ Br(z) for balls in the interior). Therefore, we have established
a so-called reverse Hölder inequality for the function x 7→ (1 + |Du|p)

n
n+p . In the next step

the application of the Gehring Lemma A.14 is performed as in [DGK04, Lemma 3.1] or on
p. 75 above: we consider an arbitrary ball Bρ(y) with y ∈ B+ ∪ Γ, 0 < ρ < 1 − |y|, and
define Ω := B+

ρ (y) and A := ∂Bρ(y) ∩ B+. Then, in view of inequality (6.11) which is in
particular valid for all balls Br(z) ∩ A = ∅ with z ∈ Ω, the prerequisite (A.3) of Gehring’s
Lemma is fulfilled for the function x 7→ (1 + |Du|p)

n
n+p and exponent n+p

n instead of g

and p. Thus, there exist a constant c and an exponent s > p depending on n, N, p, L
ν and

‖Dg‖L∞ when considering condition (B1), and depending on n, N, p,L
ν ,L2

ν ,‖Dg‖L∞ and M

when considering condition (B2) (we note that we can choose the constant kΩ independent
of ρ because every half-ball satisfies a uniform interior and exterior cone-condition) such that

(1 + |Du|p)
n

n+p ∈ L
n+p

n
s
p (B+

ρ/2(y)) with the estimate( ∫
−
B+

ρ/2
(y)

(
1 + |Du|

)s
dx

) p
s ≤ 2p

( ∫
−
B+

ρ/2
(y)

(
1 + |Du|p

) s
p dx

) p
s

≤ 2n(1+ p
s
)+p

( ∫
−
B+

ρ (y)

Ln
(
Bd(x,A)(x) ∩B+

ρ (y)
)

Ln
(
B+

ρ (y)
) (

1 + |Du|p
) s

p dx
) p

s

≤ c

∫
−
B+

ρ (y)

(
1 + |Du|p

)
dx .

In the second last line we have used the fact that Ln(B+
ρ (y)) ≤ 2nLn(B+

ρ/2(y)) and the
inequality

Ln
(
Bd(x,A)(x) ∩B+

ρ (y)
)
≥ Ln

(
Bρ/2(x) ∩B+

ρ (y)
)

= Ln
(
B+

ρ/2(x)
)

for all x ∈ B+
ρ (y) \B+

ρ/2(y). Hence, we have finished the proof of the desired higher integra-
bility estimate. �

For bounded weak solutions of systems with inhomogeneities under a natural growth con-
dition the previous calculations allow us to state the following Morrey-type estimate (cf.
[Ark03, Lemma 2] for the superquadratic case):
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Corollary 6.3: Assume u ∈ g+W 1,p
Γ (B+, RN )∩L∞(B+, RN ) to be a weak solution to (6.3)

with g ∈ C1(B+ ∪Γ, RN ), ‖u‖L∞(B+,RN ) ≤ M and 2L2M < ν, where the coefficients a(·, ·, ·)
satisfy the conditions (H1) and (H3) and where the inhomogeneity b(·, ·, ·) obeys the natural
growth condition (B2). Then for fixed σ ∈ (0, 1) we have Du ∈ Lp,n−p(B+

1−σ, RN ) with

‖Du‖p

Lp,n−p(B+
1−σ ,RN )

≤ cσ (1 + Mp)

and the constant cσ depends on σ and the same parameters as the constant c(2) in the previous
Lemma 6.2.

Proof: This is a direct consequence of the Caccioppoli-estimates (6.4) and (6.5) combined
with the bounds ‖u‖L∞(B+,RN ) ≤ M and ‖u− (u)Br(z)‖L∞(B+,RN ) ≤ 2M , respectively. �

6.3 Decay estimate for the solution

In this section we deduce an appropriate decay estimate for the solution u of the original
system (6.3) by comparing u with the solution v ∈ W 1,p(B+

R(x0), RN ) of the frozen system{
div a0(Dv) = 0 in B+

R(x0) ,

v = u− g on ∂B+
R(x0) ,

(6.12)

where a0(z) := a(x0, (u)B+
R(x0), z) are the frozen coefficients, x0 ∈ Γ, and 2R < 1− |x0|. We

note that freezing in the average of u as opposed to in 0 turns out to be of advantage also
at the boundary (this is due to the fact that our transformation to the model situation does
not force u to vanish on Γ). Testing the latter system with u − g − v, which is admissible,
since the functions u− g and v have the same boundary values, we obtain

0 =
∫

B+
R(x0)

a0(Dv) · (Du−Dg −Dv) dx

=
∫

B+
R(x0)

(
a0(Dv)− a0(0)

)
· (Du−Dg −Dv) dx

=
∫

B+
R(x0)

∫ 1

0
Dza0(tDv) Dv · (Du−Dg −Dv) dt dx .

The ellipticity condition (H3) and the growth condition (H2) (applied on the set {x ∈
B+

R(x0) : Dv 6= 0}), Young’s inequality, the technical Lemmas A.2 and A.3 (iii) now yield:

ν

∫
B+

R(x0)

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx ≤ ν

∫
B+

R(x0)

∫ 1

0

(
µ2 + |tDv|2

) p−2
2 |Dv|2 dt dx

≤
∫

B+
R(x0)

∫ 1

0
Dza0(tDv) Dv ·Dv dt dx

=
∫

B+
R(x0)

∫ 1

0
Dza0(tDv) Dv · (Du−Dg) dt dx

≤ c(p) L

∫
B+

R(x0)

(
µ2 + |Dv|2

) p−2
2 |Dv| |Du−Dg| dx

≤ ε

∫
B+

R(x0)

(
µ2 + |Dv|2

) p−2
2 |Dv|2 dx + c(p) ε1−p Lp

∫
B+

R(x0)

(
µp + |Du−Dg|p

)
dx .
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Choosing ε = ν
2 , absorbing the first integral on the right-hand side and reasoning as in (6.8),

we end up with an estimate for the p-Dirichlet functional of Dv:∫
B+

R(x0)
|Dv|p dx ≤ c

(
p, L

ν

) ∫
B+

R(x0)

(
µp + |Du−Dg|p

)
dx

≤ c
(
p, L

ν , ‖Dg‖L∞
) ∫

B+
R(x0)

(
1 + |Du|p

)
dx . (6.13)

Now, we have in the weak sense

div
(
− a0(Dv) + a( · , u,Du)

)
+ b( · , u,Du) = 0 in B+

R(x0)

and therefore it also weakly holds that

div
(
a0(Dv + Dg)− a0(Du)

)
= div

(
a0(Dv + Dg)− a0(Dv)

)
+ div

(
a( · , u,Du)− a0(Du)

)
+ b( · , u,Du) (6.14)

in B+
R(x0). To go on we next distinguish the different growth conditions concerning the

inhomogeneity b(·, ·, ·).

6.3.1 Controllable growth of b(·, ·, ·)

The procedure here is quite similar to the one established in [Cam82b, Section 4], where
(partial) Hölder continuity of the solution was discussed in the interior in low dimensions
under similar assumptions concerning the coefficients. By Young’s inequality combined with
the ellipticity condition (H3) (applied on the set where Dv + Dg−Du 6= 0, otherwise all the
relevant integrals vanish) we first infer

2
p−2
2 ν

∫
B+

R(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ ν

∫
B+

R(x0)

∫ 1

0

(
µ2 + 2(1− t)2|Du|2 + 2t2|Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dt dx

≤ ν

∫
B+

R(x0)

∫ 1

0

(
µ2 +

∣∣Du + t(Dv + Dg −Du)
∣∣2) p−2

2 |Du−Dv −Dg|2 dt dx

≤
∫

B+
R(x0)

∫ 1

0
Dza0

(
Du + t(Dv + Dg −Du)

)(
Dv + Dg −Du

)
·
(
Dv + Dg −Du

)
dt dx

=
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Du)

)
·
(
Dv + Dg −Du

)
dx .

Using u − g − v ∈ W 1,p
0 (B+

R(x0), RN ) in relation (6.14) as a test function, we may rewrite
the last line of the previous inequality and we get

2
p−2
2 ν

∫
B+

R(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Dv)

)
·
(
Dv + Dg −Du

)
dx

+
∫

B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·
(
Dv + Dg −Du

)
dx

−
∫

B+
R(x0)

b( · , u,Du) · (v + g − u) dx =: I + II + III . (6.15)
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The terms on the right-hand side are bounded from above separately: via the growth condi-
tion (H2) on the set {x ∈ B+

R(x0) : Dg 6= 0}, Lemma A.2, Young’s inequality and the energy
estimate (6.13), we estimate term I and, in view of p < 2, we obtain

I ≤ c(p) L

∫
B+

R(x0)

(
µ2 + |Dv|2 + |Dg|2

) p−2
2 |Dg| |Dv + Dg −Du| dx

≤ c(p, ‖Dg‖L∞) L

∫
B+

R(x0)

(
1 + |Dv −Du|

)
dx

≤ c(p, L
ν , ‖Dg‖L∞) L

(
δ

∫
B+

R(x0)

(
1 + |Du|p

)
dx + Rn δ1−p

)
(6.16)

for every δ ∈ (0, 1). For the second term we first use assumption (H4) (recalling the definition
a0(·) := a(x0, (u)B+

R(x0), ·) of the frozen coefficients) and Hölder’s inequality (note ω(·) ≤ 1)
with

p−1
p

s−p
s + p−1

p
p
s + 1

p = 1 ,

where s > p denotes the (up-to-the-boundary) higher integrability exponent of the gradient
Du from Lemma 6.2 depending only on n, N, p,L

ν and ‖Dg‖L∞ . In view of Young’s inequality
we then obtain

II ≤ L

∫
B+

R(x0)
ω
(
|x− x0|+ |u− (u)B+

R(x0)|
)(

µ2 + |Du|2
) p−1

2 |Du−Dg −Dv| dx

≤
∣∣B+

R(x0)
∣∣ L

( ∫
−
B+

R(x0)
ω
(
|x− x0|+ |u− (u)B+

R(x0)|
)
dx

) p−1
p

s−p
s

×
( ∫
−
B+

R(x0)

(
µ2 + |Du|2

) p−1
2

p
p−1

s
p dx

) p−1
p

p
s
( ∫
−
B+

R(x0)
|Du−Dg −Dv|p dx

) 1
p

≤
∣∣B+

R(x0)
∣∣ L

( ∫
−
B+

R(x0)
ω
(
R + |u− (u)B+

R(x0)|
)
dx

) p−1
p

s−p
s

×
( ∫
−
B+

R(x0)

(
µp + |Du|p

) s
p dx

) p−1
p

p
s
(

3p−1

∫
−
B+

R(x0)

(
|Du|p + ‖Dg‖p

L∞ + |Dv|p
)
dx

) 1
p
.

To continue estimating term II we define

β :=
p− 1

p

s− p

s
(6.17)

(where s = s(n, N, p, L
ν , ‖Dg‖L∞) is given in Lemma 6.2), and we recall that ω(·) is concave

and monotone non-decreasing. Making use of the higher integrability estimate for 1 + |Du|p,
which was proved in Lemma 6.2, the energy estimate (6.13) and Jensen’s inequality we then
find:

II ≤
∣∣B+

R(x0)
∣∣ Lc ωβ

( ∫
−
B+

R(x0)

(
R + |u− (u)B+

R(x0)|
)
dx

)
×

( ∫
−
B+

2R(x0)

(
1 + |Du|p

)
dx

) p−1
p

( ∫
−
B+

R(x0)

(
1 + |Du|p

)
dx

) 1
p

≤ Lc ωβ
(( ∫

−
B+

R(x0)

(
Rp + |u− (u)B+

R(x0)|
p
)
dx

) 1
p
) ∫

B+
2R(x0)

(
1 + |Du|p

)
dx
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≤ Lc
(
n, N, p, L

ν , ‖Dg‖L∞
)
ωβ

((
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) 1
p
)

×
∫

B+
2R(x0)

(
1 + |Du|p

)
dx , (6.18)

where we have used the Poincaré inequality in the last line.

Finally we estimate the remaining term III appearing on the right-hand side in inequality
(6.15): by the growth condition imposed on b(x, u, Du) in (B1) and Hölder’s inequality we
have

III = −
∫

B+
R(x0)

b( · , u,Du) · (v + g − u) dx

≤ L

∫
B+

R(x0)

(
µ2 + |Du|2

) p−1
2 |v + g − u| dx

≤ L
( ∫

B+
R(x0)

(
µp + |Du|p

)
dx

) p−1
p

( ∫
B+

R(x0)
|v + g − u|p dx

) 1
p

.

Keeping in mind that the functions u − g and v have the same values on the boundary
∂B+

R(x0), the second term is estimated via the Poincaré inequality and then (6.13), and we
obtain ∫

B+
R(x0)

|v + g − u|p dx ≤ c
(
n, N, p

)
Rp

∫
B+

R(x0)
|Dv + Dg −Du|p dx

≤ c
(
n, N, p

)
Rp

∫
B+

R(x0)

(
|Dv|p + ‖Dg‖p

L∞ + |Du|p
)
dx

≤ c
(
n, N, p, L

ν , ‖Dg‖L∞
)
Rp

∫
B+

R(x0)

(
1 + |Du|p

)
dx .

Therefore, we conclude

III ≤ Lc
(
n, N, p, L

ν , ‖Dg‖L∞
)
R

∫
B+

R(x0)

(
1 + |Du|p

)
dx . (6.19)

Merging the estimates for I, II and III, i. e., (6.16), (6.18) and (6.19), with (6.15), we find
the comparison estimate∫

B+
R(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c

[
ωβ

((
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) 1
p
)

+ R + δ

] ∫
B+

2R(x0)

(
1 + |Du|p

)
dx + cRn δ1−p

(6.20)

for every δ ∈ (0, 1), and the constant c depends only on n, N, p, L
ν and ‖Dg‖L∞ . In the next

step, in a standard way we transfer the decay properties of v to the weak solution u of the
original Dirichlet problem (6.3). We first recall the exponent γ0 defined by

γ0 = min{2 + ε, n} (6.21)

for some ε > 0 depending only on n, N, p and L
ν (for the precise derivation of γ0 we refer to

Lemma 4.5). Then, Corollary 4.6 provides the decay estimate∫
B+

ρ (x0)
|Dv|p dx ≤ c

(
n, N, p, L

ν

) ( ρ

R

)γ0
∫

B+
R(x0)

(
1 + |Dv|p

)
dx
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for all radii ρ ∈ (0, R] for the solution v of the comparison problem (6.12) with constant
(frozen) coefficients (keeping in mind v = 0 on Γρ(x0) by definition). In view of γ0 ≤ n we
further note that ∫

B+
ρ (x0)

(
1 + |Dg|p

)
dx ≤ c

(
‖Dg‖L∞

) ( ρ

R

)γ0
∫

B+
R(x0)

1 dx

for all ρ ∈ (0, R]. We now observe from Lemma A.3 (ii) that the inequality

1 + |Du|p ≤ c
(
n, N, p

)[(
1 + |Dv + Dg|p

)
+

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv−Dg|2

]
holds true. Thus, combining the last three inequalities and taking advantage of the energy
inequality (6.13) gives∫

B+
ρ (x0)

(
1 + |Du|p

)
dx ≤ c

∫
B+

ρ (x0)

(
1 + |Dv + Dg|p

)
dx

+ c

∫
B+

ρ (x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c
( ρ

R

)γ0
∫

B+
R(x0)

(
1 + |Du|p

)
dx

+ c

∫
B+

R(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

for every radius ρ ∈ (0, R], and the constant c depends on n, N, p, L
ν and ‖Dg‖L∞ . Replacing

the second integral appearing on the right-hand side of the previous inequality by the estimate
in (6.20), we finally arrive at a decay estimate for the gradient Du:∫

B+
ρ (x0)

(
1 + |Du|p

)
dx

≤ c

[( ρ

R

)γ0

+ ωβ
((

(2R)p−n

∫
B+

2R(x0)

(
1 + |Du|p

)
dx

) 1
p
)

+ R + δ

]
×

∫
B+

2R(x0)

(
1 + |Du|p

)
dx + cRn δ1−p ,

with the constant c depending on n, N, p, L
ν and ‖Dg‖L∞ . The same inequality trivially holds

if ρ ∈ (R, 2R]. If we define the Excess function

Φ(x0, r) :=
∫

B+
r (x0)

(
1 + |Du|p

)
dx ,

the last estimate can be rewritten in the following form:

Φ(x0, ρ) ≤ c
[( ρ

R

)γ0

+ ωβ
((

(2R)p−nΦ(x0, 2R)
) 1

p

)
+ R + δ

]
Φ(x0, 2R) + cRn δ1−p

for all x0 ∈ Γ, 2R < 1 − |x0| and every ρ ∈ (0, 2R]. This estimate is similar to inequality
(4.23) achieved in [Cam82b], where regularity up to the boundary of weak solutions was
considered in the low-dimensional (non-degenerate) case with p > 2.

We note that the latter estimate also follows in the interior, i. e., for balls BR(x0) contained
in B+ (or in the interior of Ω). Here we do not need to take into account the function g
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(which specifies the boundary values of u on Γ), and hence term I does not appear in the
calculations corresponding to (6.15) in the interior. All other estimates above as well as the
conclusion of (6.22) below remain valid, and we can choose the same constant c. Replacing
2R by R we thus conclude altogether (note that the Excess function Φ(x0, r) is defined for
arbitrary centre x0 ∈ B+ ∪ Γ and radius 0 < r < 1− |x0| on the set Br(x0) ∩B+):

Lemma 6.4: Let β, γ0 be chosen as above in (6.17), (6.21), and let δ ∈ (0, 1). Furthermore,
let u ∈ g + W 1,p

Γ (B+, RN ), 1 < p < 2, be a weak solution of the system (6.3) under the
assumptions (H1)-(H4), (B1), and g ∈ C1(B+ ∪ Γ, RN ). Then, if x0 ∈ Γ, R < 1− |x0| or if
x0 ∈ B+, R < min{1− |x0|, (x0)n}, there holds

Φ(x0, ρ) ≤ c(1)
ex

[( ρ

R

)γ0

+ ωβ
((

Rp−nΦ(x0, R)
) 1

p

)
+ R + δ

]
Φ(x0, R) + c(1)

ex Rn δ1−p (6.22)

for every ρ ∈ (0, R], and the constant c
(1)
ex depends only on n, N, p, L

ν and ‖Dg‖L∞.

6.3.2 Natural growth of b(·, ·, ·)

In what follows, we proceed analogously to the situation of the controllable growth condition
(B1) for the inhomogeneity b(·, ·, ·). Therefore, we sometimes refer to the corresponding
estimates in the last section. For the modifications necessary for natural growth we adapt
the techniques used in [Ark03, proof of Theorem 1].

Fix σ ∈ (0, 1). We consider the unique solution v ∈ W 1,p(B+
R(x0), RN ) to the Dirichlet

problem (6.12), where x0 ∈ Γ1−σ, 2R < 1− σ − |x0|, and again aim for a comparison of the
functions u and v. Furthermore, let n < p + γ0. It still holds (6.14), i. e., we have

div
(
a0(Dv + Dg)− a0(Du)

)
= div

(
a0(Dv + Dg)− a0(Dv)

)
+ div

(
a( · , u,Du)− a0(Du)

)
+ b( · , u,Du) (6.23)

in B+
R(x0) in the weak sense, but, in contrast to above, we may test the system only with

bounded functions in W 1,p
0 (B+

R(x0), RN ) ∩ L∞(B+
R(x0), RN ) (according to the growth con-

dition (B2)). Hence, in order to be allowed to test our system with the function u − v − g

as before under the controllable growth assumption, we start by proving a qualitative L∞-
estimate for v on B+

R/2(x0):

Consider a ball Bρ(y) with centre y ∈ B+
R/2(x0) and radius ρ < R

2 . According to Corollary
4.7 we have∫

−
B+

ρ (y)
|v|p dx ≤ c

(
n, N, p, L

ν

) [
R−n

∫
B+

R/2
(y)
|v|p dx + Rp−n

∫
B+

R/2
(y)

(
µp + |Dv|p

)
dx

]
(it is obvious that we may allow |y − x0| = R/2). Hence, taking advantage of B+

R/2(y) ⊂
B+

R(x0), the Poincaré inequality (keeping in mind v = 0 on ΓR(x0) by definition), and the
estimate (6.13) for the p-Dirichlet functional of Dv, we estimate the mean values of |v|p as
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follows:

sup
y∈B+

R/2
(x0)

ρ∈(0,R/2)

∫
−
B+

ρ (y)
|v|p dx ≤ c

[
R−n

∫
B+

R(x0)
|v|p dx + Rp−n

∫
B+

R(x0)

(
µp + |Dv|p

)
dx

]
≤ cRp−n

∫
B+

R(x0)

(
µp + |Dv|p

)
dx

≤ cRp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

≤ c
(
n, N, p, L

ν , L2
ν , ‖Dg‖L∞ ,M, σ) =: mp

0 ,

where we have used Corollary 6.3 in the last line. According to Lebesgue’s Differentiation
Theorem this yields v ∈ L∞(B+

R/2(x0), RN ), see also Remark 2.2, with

‖v‖L∞(B+
R/2

(x0),RN ) ≤ mp
0 . (6.24)

Therefore we have u− v − g ∈ W 1,p
0 (B+

R(x0), RN ) ∩ L∞(B+
R/2(x0), RN ) with

‖u− v − g‖L∞(B+
R/2

(x0),RN ) ≤ ‖u− g(x0)‖L∞(B+
R/2

(x0),RN ) + ‖g − g(x0)‖L∞(B+
R/2

(x0),RN )

+ ‖v‖L∞(B+
R/2

(x0),RN )

≤ 2M + ‖Dg‖L∞ + m0 =: m > 0 .

To obtain an admissible test-function for the system (6.23), we next modify the function
u− v − g on B+

R(x0) (for which we cannot expect an L∞-estimate) as follows: we set

h := (v + g − u)
(
T δ − (|v + g − u|+ m)δ

)
+

for some exponent δ > 0 to be determined later and a number T = T (δ,m) > 0 determined
by the condition

T δ − (2m)δ = 1
2 T δ ⇔ T = 21+ 1

δ m . (6.25)

In particular, δ → 0 implies T →∞, and via the estimate |u−v−g| ≤ m on B+
R/2(x0) found

above we note that we have(
T δ − (|v + g − u|+ m)δ

)
+
≥ 1

2 T δ on B+
R/2(x0) .

Keeping in mind that the function h vanishes outside of the set θ+ := {x ∈ B+
R(x0) :

|v + g − u| < T −m}, we observe that the weak differentiability of v + g − u is transferred
to h, and hence, by construction we have h ∈ W 1,p

0 (B+
R(x0), RN ) ∩ L∞(B+

R(x0), RN ). In
particular, this implies that testing the system (6.23) with the function h is allowed. We
next proceed similarly to (6.15), but we have to take into account a new term which arises
by this modification:

2
p−4
2 T δ ν

∫
B+

R/2
(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ 2
p−2
2 ν

∫
B+

R(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2

×
(
T δ − (|v + g − u|+ m)δ

)
+

dx
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≤ ν

∫
B+

R(x0)

∫ 1

0

(
µ2 +

∣∣Du + t(Dv + Dg −Du)
∣∣2) p−2

2 |Du−Dv −Dg|2 dt

×
(
T δ − (|v + g − u|+ m)δ

)
+

dx

≤
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Du)

)
·
(
Dv + Dg −Du

) (
T δ − (|v + g − u|+ m)δ

)
+

dx

=
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Du)

)
·Dh dx

+
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Du)

)
· (v + g − u)⊗ (Dv + Dg −Du) · (v + g − u)

|v + g − u|

× δ (|v + g − u|+ m)δ−1
1θ+ dx .

Using the system (6.23) given above with the test function h, we further estimate the first
integral on the right-hand side of the last inequality. Hence, we find exactly as in the
calculations leading to (6.15):

2
p−4
2 T δ ν

∫
B+

R/2
(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Dv)

)
·Dh dx

+
∫

B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·Dh dx−

∫
B+

R(x0)
b( · , u,Du) · h dx

+
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Du)

)
· (v + g − u)⊗ (Dv + Dg −Du) · (v + g − u)

|v + g − u|

× δ (|v + g − u|+ m)δ−1
1θ+ dx

=
∫

B+
R(x0)

(
a0(Dv + Dg)− a0(Dv)

)
·
(
Dv + Dg −Du

) (
T δ − (|v + g − u|+ m)δ

)
+

dx

+
∫

B+
R(x0)

(
a( · , u,Du)− a0(Du)

)
·
(
Dv + Dg −Du

) (
T δ − (|v + g − u|+ m)δ

)
+

dx

−
∫

B+
R(x0)

b( · , u,Du) · (v + g − u)
(
T δ − (|v + g − u|+ m)δ

)
+

dx

+ δ

∫
B+

R(x0)

(
a0(Dv)− a( · , u,Du)

)
· (v + g − u)⊗ (v + g − u) · (Dv + Dg −Du)

|v + g − u|

× (|v + g − u|+ m)δ−1
1θ+ dx

=: I ′ + II ′ + III ′ + IV ′ (6.26)

with the obvious abbreviations. We first note (T δ − (|v + g − u| + m)δ)+ ≤ T δ. Therefore,
term I ′ and term II ′ are estimated as term I in (6.16) and term II in (6.18), respectively,
in the controllable growth situation, and we get

|I ′| ≤ T δ c(p, L
ν , ‖Dg‖L∞) L

(
δ

∫
B+

R(x0)

(
1 + |Du|p

)
dx + Rn δ1−p

)
,

|II ′| ≤ T δ Lc
(
n, N, p, L

ν , ‖Dg‖L∞
)
ωβ

((
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) 1
p
)

×
∫

B+
2R(x0)

(
1 + |Du|p

)
dx .
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The growth condition (B2) yields for the third term:

|III ′| ≤
∫

B+
R(x0)

(
L2|Du|p + L

)
|v + g − u|

(
T δ − (|v + g − u|+ m)δ

)
+

dx

≤ T δ (L2 + L)
∫

B+
R(x0)

(
1 + |Du|p

)
|v + g − u|1θ+ dx .

Taking into account Hölder’s inequality, Lemma 6.2 on higher integrability (where s denotes
the higher integrability exponent depending on n, N, p,L

ν , L2
ν , ‖Dg‖L∞ and M), the basic

inequality |v + g − u|1θ+ < T − m ≤ T and the Poincaré inequality, term III is further
estimated by

|III ′|

≤ T δ (L2 + L) |B+
R(x0)|

( ∫
−
B+

R(x0)

(
1 + |Du|p

) s
p dx

) p
s
( ∫
−
B+

R(x0)

(
|v + g − u|1θ+

) s
s−p dx

) s−p
s

≤ T δ c(2)
(
n, N, p, L

ν , L2
ν ,M, ‖Dg‖L∞

)
(L2 + L)

∫
B+

2R(x0)

(
1 + |Du|p

)
dx

×
(
|v + g − u|1θ+

)( s
s−p

−p) s−p
s

( ∫
−
B+

R(x0)
|v + g − u|p dx

) s−p
s

≤ T δ c
(
n, N, p, L

ν , L2
ν ,M, ‖Dg‖L∞

)
(L2 + L) T 1− p(s−p)

s

(
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) s−p
s

×
∫

B+
2R(x0)

(
1 + |Du|p

)
dx .

In the last line we have used once again the energy estimate (6.13). For the last integral
IV ′, we obtain via (H1), Young’s inequality and (6.13):

|IV ′| ≤ 2 δ L

∫
B+

R(x0)

(
µp−1 + |Du|p−1 + |Dv|p−1

) (
|Du|+ |Dv|+ ‖Dg‖L∞

)
× |v + g − u| (|v + g − u|+ m)δ−1

1θ+ dx

≤ T δ c
(
‖Dg‖L∞

)
δ L

∫
B+

R(x0)

(
1 + |Du|p + |Dv|p

)
dx

≤ T δ c
(
p, L

ν , ‖Dg‖L∞
)
δ L

∫
B+

R(x0)

(
1 + |Du|p

)
dx .

Hence, combining the estimates for the terms I ′, II ′, III ′ and IV ′ with (6.26) we finally
arrive at∫

B+
R/2

(x0)

(
µ2 + |Du|2 + |Dv + Dg|2

) p−2
2 |Du−Dv −Dg|2 dx

≤ c
[
ωβ

((
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) 1
p
)

+ T 1− p(s−p)
s

(
Rp−n

∫
B+

R(x0)

(
1 + |Du|p

)
dx

) s−p
s + δ

] ∫
B+

2R(x0)

(
1 + |Du|p

)
dx + cRn δ1−p

with a constant c depending on n, N, p, L
ν , L2

ν , ‖Dg‖L∞ and M . This estimate corresponds to
(6.20) above for systems under a controllable growth assumption. For a similar up-to-the-
boundary estimate (concerning the superquadratic case for non-degenerate systems) we refer
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to inequality (36) in [Ark03]. Furthermore, we note that the same reasoning leading to the
latter inequality also applies for balls BR(x0) ⊂ B+

1−σ, and thus, a corresponding estimate
(without the function g) also holds in the interior. Following the arguments of the comparison
principle in the last section and recalling the definition Φ(x0, r) =

∫
Br(x0)∩B+

(
1 + |Du|p

)
dx

of the Excess function, we then deduce the following decay estimate for the gradient Du:

Lemma 6.5: Let β, γ0 be chosen as above in (6.17), (6.21), and let M < ∞, δ ∈ (0, 1),
σ ∈ (0, 1) and n < p+γ0. Furthermore, let u ∈ g+W 1,p

Γ (B+, RN )∩L∞(B+, RN ), 1 < p < 2,
satisfying ‖u‖L∞(Ω,RN ) ≤ M be a weak solution of the system (6.3) under the assumptions
(H1)-(H4), (B2), (6.2), and g ∈ C1(B+ ∪ Γ, RN ). Then, if x0 ∈ Γ1−σ, R < 1− σ − |x0| or
if x0 ∈ B+, R < min{1− σ − |x0|, (x0)n}, there holds

Φ(x0, ρ) ≤ c(2)
ex

[( ρ

R

)γ0

+ ωβ
((

Rp−nΦ(x0, R)
) 1

p

)
+ T 1− p(s−p)

s
(
Rp−nΦ(x0, R)

) s−p
s + δ

]
Φ(x0, R) + c(2)

ex Rn δ1−p (6.27)

for every ρ ∈ (0, R]. Here, the constant c
(2)
ex depends only on n, N, p, L

ν , L2
ν , ‖Dg‖L∞ and M ,

s is the higher integrability exponent from Lemma 6.2 admitting the same dependencies, and
T is a positive number additionally depending on σ and δ.

6.4 Proof of Theorem 6.1

Now, we prove a (partial) regularity result in the model situation of the unit half-ball. This in
turn yields the statement of Theorem 6.1 using a transformation which flattens the boundary
locally and a covering argument in a standard way (see Chapter 3.2).

Theorem 6.6: Let u ∈ W 1,p(B+, RN ) be a weak solution of

−div a( · , u,Du) = b( · , u,Du) in B+

with u = g on Γ, g ∈ C1(B+∪Γ, RN ), and coefficients a : B+×RN ×RnN → RnN satisfying
the assumptions (H1)-(H4), and inhomogeneity b : B+ × RN × RnN → RN . If one of the
following assumptions is fulfilled:

1. b(·, ·, ·) obeys a controllable growth condition (B1),

2. b(·, ·, ·) obeys a natural growth condition (B2); additionally, we assume u ∈ L∞(B+, RN )
with ‖u‖L∞(B+,RN ) ≤ M and 2L2M < ν,

then there exists a constant δ2 > 0 depending only on n, N, p and L
ν such that if n > p >

n− 2− δ2, then there holds

dimH

(
(B+ ∪ Γ) \ Regu(B+ ∪ Γ)

)
< n− p .

Moreover,

u ∈ C0,λ
loc

(
Regu(B+ ∪ Γ), RN

)
∀λ ∈

(
0, min{1− n−2−δ2

p , 1}
)

and the singular set Singu(B+ ∪ Γ) of u is contained in

Σ̃ :=
{

x ∈ B+ ∪ Γ : lim inf
R↘0

Rp−n

∫
BR(x)∩B+

(
1 + |Du|p

)
dy > 0

}
.
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Proof: In the sequel we will discuss only the case of natural growth. The result for the
controllable growth condition follows completely analogously (the proof is actually simpler).

We first fix ε in dependency of n, N, p and L
ν to be the positive number stemming from the

application of Gehring’s Lemma (see also Lemma 4.5) if n ≥ 3 and ε = 2p(1− λ), λ ∈ (0, 1)
arbitrary, if n = 2. We set γ0 = min{2 + ε, n} admitting the same dependencies and choose
κ0 < 1 according to Lemma A.11 in dependency of the exponents γ0, γ0 − ε

2 instead of α, β

and the constant c
(2)
ex in (6.22) instead of A. Furthermore, let s be the higher integrability

exponent from Lemma 6.2 depending on n, N, p, L
ν , L2

ν , ‖Dg‖L∞ and M , and set β = p−1
p

s−p
s .

Furthermore, we fix σ ∈ (0, 1), and set δ = κ0
4 , which in turn fixes a number T > 0 (according

to Lemma 6.5) in dependency of n, N, p, L
ν , L2

ν , ‖Dg‖L∞ ,M, σ and δ. Since ω(·) is a modulus
of continuity, we then find a positive number ς such that

ωβ
(
ς

1
p
)

<
κ0

4
and T 1− p(s−p)

s ς
s−p

s <
κ0

4
.

We now consider a regular point x0 ∈ B+
1−σ, this means a point x0 ∈ B+

1−σ \ Σ̃ where the
excess quantity Rp−nΦ(x0, R) becomes arbitrarily small for R ↘ 0. Hence there exists a
radius R0 > 0 such that BR0(x0) b B1−σ and

Rp−n
0

∫
B+

R0
(x0)

(
1 + |Du|p

)
dx = Rp−n

0 Φ(x0, R0) < ς .

Since the function z 7→ Rp−n
0 Φ(z,R0) is continuous, there exists a ball Br(x0) such that for

all z ∈ Br(x0) ∩ (B+ ∪ Γ) we have BR0(z) b B1−σ and such that the previous inequality is
also satisfied when we replace x0 by z, i. e., there holds

Rp−n
0 Φ(z,R0) < ς for all z ∈ Br(x0) ∩ (B+ ∪ Γ) .

Our next goal is to show that the gradient Du belongs to an appropriate Morrey space on
Br(x0) ∩ (B+ ∪ Γ). To this aim we will show Morrey-type estimates of the form

Φ(z, ρ) ≤ c
[( ρ

R0

)γ0−ε/2
Φ(z, R0) + ργ0−ε/2

]
(6.28)

for all balls B+
ρ (z) with centre z ∈ Br(x0)∩ (B+∪Γ), radius ρ ≤ R0, and a constant c which

depends only on n, N, p, L
ν , L2

ν ,M and ‖Dg‖L∞ . We next have to combine the estimates at
the boundary and in the interior and thus, we need to distinguish several cases:

Case 1: z ∈ Γ, 0 < ρ ≤ R0:
In view of the choices of σ, δ, κ0, ς and R0 made above, the boundary version of Lemma 6.5
gives

Φ(z, ρ) ≤ c(2)
ex

[( ρ

R0

)γ0

+
3κ0

4

]
Φ(x0, R0) + 4p−1 c(2)

ex Rn
0 κ1−p

0

≤ c
[( ρ

R0

)γ0

+
3κ0

4

]
Φ(x0, R0) + cR

γ0−ε/2
0

for all ρ ≤ R0, and the constant c has the dependencies stated above. Thus we are in a
position to apply Lemma A.11, an iteration scheme to be able to neglect κ0 by choosing the
exponent γ0 slightly smaller, to deduce the claimed inequality (6.28) for every such centre z.
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Case 2: z ∈ B+, 0 < ρ ≤ R0 ≤ zn:
There holds BR0(z) ⊂ B+, hence we apply the interior version of Lemma 6.5 and inequality
(6.28) follows identically to Case 1.

Case 3: z ∈ B+, 0 < zn < ρ ≤ R0:
Without loss of generality we may assume ρ ≤ R0/4, otherwise (6.28) is trivially satisfied.
Then we have the inclusions

B+
ρ (z) ⊂ B+

2ρ(z′′) ⊂ B+
R0/2(z′′) ⊂ B+

R0
(z)

where z′′ denotes the projection of z onto Rn−1 ×{0}, and the boundary estimate in Case 1
yields the desired inequality:

Φ(z, ρ) ≤ Φ(z′′, 2ρ) ≤ c
[( 4ρ

R0

)γ0−ε/2
Φ(z′′, 1

2R0) + (2ρ)γ0−ε/2
]

≤ c
[( ρ

R0

)γ0−ε/2
Φ(z, R0) + ργ0−ε/2

]
where we have used the monotonicity of Φ with respect to the domain of integration.

Case 4: z ∈ B+, 0 < ρ ≤ zn < R0:
Without loss of generality we may assume zn < R0/4, otherwise we apply Case 2 for the
inner ball BR0/4(z) ⊂ B+. We then take advantage of the inclusions

Bρ(z) ⊂ Bzn(z) ⊂ B+
2zn

(z′′) ⊂ B+
R0/2(z′′) ⊂ B+

R0
(z),

the interior estimates in Case 2 and the boundary estimates in Case 1, and we find

Φ(z, ρ) ≤ c
[( ρ

zn

)γ0−ε/2
Φ(z, zn) + ργ0−ε/2

]
≤ c

[( ρ

zn

)γ0−ε/2
Φ(z′′, 2zn) + ργ0−ε/2

]
≤ c

[( ρ

zn

)γ0−ε/2
c
[(4zn

R0

)γ0−ε/2
Φ(z′′, 1

2R0) + (2zn)γ0−ε/2
]

+ ργ0−ε/2
]

≤ c
[( ρ

R0

)γ0−ε/2
Φ(z,R0) + ργ0−ε/2

]
.

Combining the estimates above we see that we have covered all the cases required to prove
inequality (6.28). Recalling the definition of the Excess function Φ, this yields

Du ∈ Lp,γ0−ε/2
(
Br(x0) ∩ (B+ ∪ Γ), RnN

)
.

We define δ2 = ε
2 (with exactly the dependencies asserted in the statement of the theorem)

and observe that the low dimensional assumption prescribes that

n < p + 2 + δ2 = p + 2 + ε/2 .

We recall γ0 = 2 if n = 2 and γ0 = 2 + ε if n > 2. As a consequence (taking ε smaller if
required) we have γ0− ε/2 ∈ (n− p, n], and, according to the Campanato-Meyer embedding
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in Theorem 2.3, we arrive at the conclusion that u is Hölder continuous on Br(x0)∩(B+∪Γ),
more precisely, we have

u ∈ C0,λ
(
Br(x0) ∩ (B+ ∪ Γ), RN

)
with λ = 1− n− γ0 + ε/2

p
.

Using a covering argument and the fact that σ ∈ (0, 1) was chosen arbitrarily, we immediately
conclude the desired regularity result.

Since we have shown higher integrability of Du in Lemma 6.2 we can improve the condition
of x being a regular point via

Rp−n

∫
B+

R(x)

(
1 + |Du|p

)
dx ≤ c

(
Rs−n

∫
B+

R(x)

(
1 + |Du|s

)
dx

) p
s

for R sufficiently small. As a consequence we get

B+ \ Σ̃ ⊇
{

x ∈ B+ ∪ Γ : lim inf
R→0

Rs−n

∫
BR(x)∩B+

(
1 + |Du|s

)
dy = 0

}
which, in view of Lemma A.12, in turn provides the upper bound for the Hausdorff dimension
of the singular set given in the theorem. �
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In this chapter we are concerned with the existence of regular boundary points for the
gradient of weak solutions u ∈ W 1,p(Ω, RN ), p ∈ (1, 2), of nonlinear, inhomogeneous elliptic
systems of the form {

−div a( · , u,Du) = b( · , u,Du) in Ω ,

u = g on ∂Ω .
(7.1)

Here Ω ⊂ Rn is a bounded domain of class C1,α and g ∈ C1,α(Ω, RN ) for some α ∈ (0, 1). The
coefficients a : Ω × RN × RnN → RnN are assumed to be Hölder continuous with exponent
α with respect to the first two variables and of class C1 in the last variable, satisfying a
standard (p−1)-growth condition. Furthermore, the right-hand side b : Ω×RN×RnN → RN

is assumed to obey a controllable growth condition.

Let us recall the usual notation concerning regularity theory. We denote by

RegDu(Ω) :=
{
x ∈ Ω : Du ∈ C0(Ω ∩A, RnN ) for some neighbourhood A of x

}
the set of regular points for Du (in the interior and at the boundary), and by SingDu(Ω) :=
Ω \ RegDu(Ω) the set of singular points of Du. For the subquadratic case we have already
obtained a characterization of the singular set in Chapter 3, stating that x0 is a regular point
for Du, i. e., x0 ∈ RegDu(Ω), if and only if the excess quantity∫

−
Ω∩Bρ(x0)

∣∣V (Du)−
(
V (Du)

)
Ω∩Bρ(x0)

∣∣2 dx

is sufficiently small and |(V (Du))Ω∩Bρ(x0)|+ |(u)Ω∩Bρ(x0)| does not diverge for ρ ↘ 0. More-
over, we have proved that the gradient Du of the weak solution to the inhomogeneous system
(7.1) is locally Hölder continuous with exponent α in a (small) neighbourhood of every point

129
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x0 ∈ RegDu(Ω). By Lebesgue’s differentiation Theorem, the regularity criterion applies to
almost every point in Ω, meaning that |Ω \ RegDu(Ω)| = 0. However, this does not yield
the existence of even one single regular boundary point for general nonlinear elliptic sys-
tems, since the boundary ∂Ω itself is a set of Lebesgue measure zero. We recall that, due
to the counterexample in [Gia78], it is a well-known fact that singularities may occur at the
boundary even if the boundary data is smooth.

Consequently, the main objective is to improve the almost-everywhere regularity result in
the sense that the singular set SingDu(Ω) is not only negligible with respect to the Lebesgue
measure but that its Hausdorff dimension is also small enough. Under additional assumptions
on the regularity of the coefficients our aim is to prove that the Hausdorff dimension is less
than n−1 because this would immediately yield that almost every boundary point is regular.
We want to start the discussion of the size of the singular set by briefly stating some significant
results for special systems: considering quasilinear systems of the form

−div
(
a( · , u) Du

)
= b( · , u,Du) ,

various partial regularity results were established, stating that the weak solution u (instead
of its first derivative) is locally Hölder continuous. To bound the Hausdorff dimension of
the singular set Singu(Ω), we recall that the regular (boundary) points x0 ∈ Ω of u are
characterized as the ones where the lower order excess functional∫

−
Ω∩Bρ(x0)

∣∣V (u)−
(
V (u)

)
Ω∩Bρ(x0)

∣∣2 dx

is small, see e. g. [GM68a, Col71, Pep71, Gro02a, Ark96]. Since the set of non-Lebesgue
points of every W 1,p-map has Hausdorff dimension not larger than n−p, this yields that the
Hausdorff dimension of Singu(Ω) may not exceed n − p. If the coefficient matrix a(·, ·) of
the quasilinear system is further assumed to be of diagonal form, it is even known that the
weak solution u is in fact a classical solution, i. e., of class C2 (see [Wie76] where boundary
regularity is included). Useful estimates for the singular set are also available for nonlinear
elliptic systems obeying special structure assumptions: for instance, Uhlenbeck established
in her fundamental paper [Uhl77] a strong maximum principle for the gradient Du of weak
solutions to nonlinear systems depending in the nonlinear portion of the coefficient function
only on the modulus |Du|. This was the key to an everywhere-regularity result for Du. For
an extension to the nonquadratic case we refer to [Tol83, AF89]. However, these techniques
could not yet be carried over to the boundary, leaving the question of full boundary regularity
open in this case.

Turning our attention to general nonlinear elliptic systems, we observe that a direct compari-
son technique allows us to infer local Hölder continuity of the weak solution u outside a set of
Hausdorff dimension n−p, provided that the assumption n ≤ p+2 on low dimensions holds,
see e. g. the results in [Cam82b, Cam87b, Ark97, Ark03, Ido04a, Ido04b] and in Chapter
6. In contrast, in arbitrary dimensions n the reduction of the Hausdorff dimension of the
singular set SingDu(Ω) for the gradient Du was a long-standing unsolved problem. It was
finally tackled by Mingione in [Min03b] where he introduced a remarkable new technique:
he studied the (interior) singular set SingDu(Ω) in the superquadratic case p ≥ 2 for systems
without u-dependencies and with inhomogeneities obeying a controllable growth condition,
and he succeeded in showing that the Hausdorff dimension of SingDu(Ω) is not larger than
n − 2α. In [Min03a] he extended these results to systems with inhomogeneities under a
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natural growth condition, and he also covered systems depending additionally on the weak
solution u, provided that the low dimensional assumption n ≤ p + 2 is satisfied. Recently,
Duzaar, Kristensen and Mingione [DKM07] considered weak solutions u ∈ W 1,p(Ω, RN ),
p ∈ (1,∞), of the homogeneous Dirichlet problem corresponding to (7.1) and developed
a technique which allowed them to carry these estimates up to the boundary, implying in
particular the existence of regular boundary points provided that n− 2α < n− 1 (or equiv-
alently α > 1

2) is satisfied. To be more precise, the authors obtained for every α ∈ (1
2 , 1]

that almost every boundary point is regular if the coefficients a(x, z) have no u-dependency
or if the low dimensional assumption n ≤ p + 2 holds. In the quadratic case this result was
improved in two different ways: on the one hand, inhomogeneities with controllable growth
were included, and on the other hand the condition on α was sharpened to α > 1

2 − ε for
some number ε > 0 stemming from an application of Gehring’s lemma. We mention that
various results establishing better estimates for the (interior) singular set of minimizers of
variational integral can be found in [KM06].

In the following we shall extend the results in [DKM07] for p ∈ (1, 2) to inhomogeneous
systems under a controllable growth condition and the assumption α > 1

2 . To this end,
in a first step we will ensure the existence of regular boundary points for systems with
a(x, u, z) ≡ a(x, z). In a second step, we will use an iteration procedure to extend this
conclusion to systems also depending on the weak solution u, provided that n ≤ p + 2. For
the exact statements see Theorem 7.1 and Theorem 7.2 in the next section.

We close this introductory part with some remarks about the ideas behind the arguments
and the techniques used within this section. Roughly speaking, the strategy can be described
as follows: To simplify matters we initially consider coefficients of the form a(x, z) which
are Lipschitz continuous (or even differentiable) with respect to the x-variable. We may
differentiate the system similarly as in Chapter 4.2 and obtain the existence of second order
derivatives of the weak solution in a suitable Sobolev space. Hence, we find

dimH(SingDu(Ω)) ≤ n− 2 ,

see [GM79, Theorem 4.2] and [Ive79]. Weakening the regularity condition on the coeffi-
cients by imposing only a Hölder continuity condition with an arbitrarily small exponent,
we trivially know that

dimH(SingDu(Ω)) ≤ n ,

i. e., the upper bound on the dimension of the singular set reflects the the regularity of
the coefficients with respect to x. This gives the impression that the degree of Hölder
continuity of the coefficients is related not only to the regularity of the solution (namely
that Du is locally Hölder continuous with the same exponent), but also to the size of the
singular set. Working from this observation, Mingione [Min03b] accomplished in some sense
an interpolation between Lipschitz continuity on the one hand and Hölder continuity on
the other: for arbitrary exponents α ∈ (0, 1) the existence of higher order derivatives of u

cannot be ensured, but it is still possible to differentiate the system (7.1) in a fractional
sense. This leads to the desired estimate, namely that the Hausdorff dimension of the set
of (interior) singular points does not exceed n − 2α, via suitable fractional Sobolev spaces
and a measure density result. If we allow the coefficients a(x, u, z) to depend additionally on
u itself, the situation becomes more complex and the estimates are technically much more
involved. To follow the line of arguments from above, we have to investigate the regularity of
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x 7→ (x, u(x)). If the weak solution u is a priori known to be everywhere Hölder continuous
then x 7→ (x, u(x)) is also Hölder continuous and the arguments apply with only marginal
modifications. However, in general this map is no longer continuous, because u may exhibit
irregularities. At this stage the fact that u solves the Dirichlet problem (7.1) comes into play:
in low dimensions partial Hölder continuity of u is already ensured outside of closed subsets
of Hausdorff dimension less than n− p (see Chapter 6), and therefore the map x 7→ (x, u(x))
is regular at least on a “large” subset of Ω. In other words, the set of points where u is not
continuous has sufficiently small Hausdorff dimension, hence, we may restrict the analysis of
Du to the regular set Regu(Ω) of u, and we still arrive at a good result for dimH(SingDu(Ω)).
The fact that the Hölder continuity of the coefficients with respect to x is decreased by the
presence of u is compensated for in a last step by an iteration technique which leads to
dimH(SingDu(Ω)) ≤ min{n− 2α, n− p}.

This method relying upon fractional differentiability estimates for the gradient Du was de-
veloped by Mingione [Min03b, Min03a] for elliptic systems and is based on an interpola-
tion technique dating back to Campanato, cf. [CC81, Cam82a]. It was later extended to
parabolic systems by Duzaar and Mingione [DM05], and by Bögelein [Bög07, Bög] to higher
order parabolic systems. In this chapter we are interested in the situation at the boundary,
so we will explain the main ingredients for the up to the boundary approach introduced by
Duzaar, Kristensen and Mingione [DKM07], and in the sequel we adapt them to inhomoge-
neous systems. We highlight that, by testing the system (7.1), up-to-the-boundary estimates
for classical differences of the form |V (Du)(x+hes)−V (Du)(x)| can only be found for tangen-
tial directions. When working with partial derivatives, an estimate for the normal direction
follows immediately by differentiating the system. This is no longer possible for our system
when considering derivatives of only fractional order. To overcome this difficulty, i. e., to
prove an appropriate difference estimate also for the normal direction, an indirect technique
was introduced in [DKM07]: a family of comparison maps uh ∈ u + W 1,p

0 , h ∈ (−1, 1), is
constructed. Here, uh stands for the unique solution of some regularized system

−div ah( · , Duh) = b( · , u,Du) ,

with continuous coefficients ah(·, ·) which satisfy growth conditions analogous to a(·, ·, ·).
Such systems are obtained via a regularization procedure involving both the original co-
efficients a(·, ·, ·) and the specific solution u. Due to the comparison results in Chapter
4.2, we infer that DV (Duh) exists and hence, appropriate estimates for the differences
|V (Duh)(x + hes) − V (Duh)(x)| are available for all directions and every fixed number
h. By a standard estimate for |V (Duh) − V (Du)|, this allows us to deduce the missing
normal estimate for Du. These estimates have to be iterated: in each step, additional higher
integrability is gained for Du and is then carried over to Duh via Calderón-Zygmund type
estimates (provided in Chapter 5) in order to enable the next iterative step. We arrive at
V (Du) ∈ W s,2 for every s < α, and the statement concerning the Hausdorff dimension of
the singular set then follows immediately.

Finally, we remark that it is not clear to what extent the estimates for the Hausdorff dimen-
sion of the singular set may be improved. Up to now, the bound depends on the parameter
α. While one cannot rule out that the dependence on α is only due to technique, it is be-
lieved that this dependence is a structural feature of the problem concerning the Hausdorff
dimension of the singular set. As a consequence, the question of the existence of regular
boundary points for Hölder exponents α ∈ (0, 1

2 ] remains open for general nonlinear systems.
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7.1 Structure conditions and results

We impose on the coefficients a : Ω×RN ×RnN → RnN standard conditions of subquadratic
growth: the mapping z 7→ a(x, u, z) is a continuous vector field, and for fixed numbers
0 < ν ≤ L, 1 < p < 2 and all triples (x, u, z), (x̄, ū, z) ∈ Ω×RN ×RnN , the following growth,
ellipticity and continuity assumptions hold:

(H1) a has polynomial growth:

|a(x, u, z)| ≤ L
(
1 + |z|2

) p−1
2 ,

(H2) a is differentiable in z with continuous and bounded derivatives:

|Dza(x, u, z)| ≤ L
(
1 + |z|2

) p−2
2 ,

(H3) a is uniformly strongly elliptic, i. e.,

Dza(x, u, z) λ · λ ≥ ν
(
1 + |z|2

) p−2
2 |λ|2 ∀λ ∈ RnN ,

(H4) There exists a nondecreasing, concave modulus of continuity ω : R+ → [0, 1]
such that ω(s) ≤ min{1, sα} for all s ∈ R+ and

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
1 + |z|2

) p−1
2 ω

(
|x− x̄|+ |u− ū|

)
,

i. e., the conditions (H1)-(H4) of the last chapter with µ = 1. We remark that the latter
condition (H4) will be of importance in the following. It prescribes uniform Hölder continuity
(for fixed z) with respect to the (x, u)-variable with Hölder exponent α. Moreover, we
assume the inhomogeneity b : Ω × RN × RnN → RN to be a Carathéodory map, that is, it
is continuous with respect to (u, z) and measurable with respect to x, and to satisfy for all
(x, u, z) ∈ Ω× RN × RnN a controllable growth condition of the form:

(B1) |b(x, u, z)| ≤ L
(
1 + |z|2

) p−1
2 .

Our main theorems in the chapter provide appropriate upper bounds for the singular set
SingDu(∂Ω) which in turn guarantees the existence of regular boundary points. The first
result is concerned with systems of type (7.1) where the coefficients do not depend on u:

Theorem 7.1 (cf. [DKM07], Theorem 1.1): Let Ω be a domain of class C1,α and let
u ∈ W 1,p(Ω, RN ) be a weak solution of the Dirichlet problem (7.1) under the assumptions
(H1)-(H4), (B1) and g ∈ C1,α(Ω, RN ). Furthermore, let the vector field a(·, ·, ·) be indepen-
dent of u, i. e., a(x, u, z) ≡ a(x, z). If

α >
1
2

, (7.2)

then Hn−1-almost every boundary point is a regular point for Du.

Furthermore, for general systems we obtain the following result in low dimensions:

Theorem 7.2 (cf. [DKM07], Theorem 1.2): Let Ω be a domain of class C1,α and let
u ∈ W 1,p(Ω, RN ) be a weak solution of the Dirichlet problem (7.1) under the assumptions
(H1)-(H4), (B1) and g ∈ C1,α(Ω, RN ). Assume further

α >
1
2

and 1 < γ1 ≤ p ≤ γ2 < ∞ . (7.3)
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Then there exists a positive number δ depending only on n, N, γ1, γ2,
L
ν , ‖g‖C1,α(Ω,RN ) and

∂Ω such that if
p > n− 2− δ for n > 2 , (7.4)

then Hn−1-almost every boundary point is a regular point for Du.

7.2 Smoothing

In what follows we concentrate on the (partially) boundary value problem{
−div a( · , u,Du) = b( · , u,Du) in Q+

2 ,

u = 0 on Γ2 ,
(7.5)

where all assumptions mentioned above are fulfilled with Ω replaced by Q+
2 . We next con-

struct a family of regularized vector fields ah : Q+
1 ×RnN → RnN , |h| ∈ (0, 1], out of both the

original coefficients and the weak solution u ∈ W 1,p
Γ (Q+

2 , RN ) such that the new coefficients
depend only on (x, z) and are smooth with respect to x for every fixed h. Moreover, the
dependency with respect to h reflects the regularity properties of x 7→ u(x) in a quantifiable
way.

We first note that due to the uniform continuity of the coefficients with respect to the
(x, u)-variable for fixed z, i. e., the condition (H4), we can extend a(·, ·, ·) for every fixed
(u, z) ∈ RN × RnN to a vector field a : Q+

2 × RN × RnN → RnN still satisfying all the
assumptions. Now we extend a(·, ·, ·) to a new vector field still denoted by a(·, ·, ·) defined
on Q2 × RN × RnN . This extension is as usually performed by even reflection:

a(x, u, z) :=

{
a(x, u, z) x ∈ Q+

2 ,

a(i(x), u, z) x ∈ Q2 \Q+
2 ,

where i : Rn 3 (x′, xn) 7→ (x′,−xn). The extended vector field obviously still satisfies the
assumptions (H1)-(H3). For condition (H4), it only remains to verify the case where x ∈ Q+

2

and x̄ ∈ Q2 \Q+
2 . We then find a point x̃ ∈ Γ2 such that |x− x̃|, |x̃− x̄| ≤ |x− x̄| and∣∣a(x, u, z)− a(x̄, ū, z)

∣∣ ≤ ∣∣a(x, u, z)− a(x̃, u, z)
∣∣ +

∣∣a(x̃, u, z)− a(x̄, ū, z)
∣∣

≤ L
[
ω(|x− x̃|) + ω(|x̃− x̄|+ |u− ū|)

] (
1 + |z|2

) p−1
2

≤ 2Lω(|x− x̄|+ |u− ū|)
(
1 + |z|2

) p−1
2 .

Thus also (H4) is satisfied replacing L by 2L if required. In the same way we extend the
map u (still denoted by u) preserving the regularity properties of the original one, i. e.,
u ∈ W 1,p(Q2, RN ), setting

u(x) :=

{
u(x) x ∈ Q+

2

u(i(x)) x ∈ Q2 \Q+
2 .

For the construction of an appropriate smoothing of the coefficients a(·, ·, ·) we proceed as
follows: we fix a smooth, positive, radially symmetric convolution kernel φ ∈ C∞

0 (B1) such
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that
∫
B1

φdx = 1. For 0 < |h| ≤ 1 we define

ah(x, z) :=
∫

B1

a
(
x + |h|y, u(x + |h|y), z

)
φ(y) dy

= |h|−n

∫
B|h|(x)

a
(
y, u(y), z

)
φ
(y−x
|h|

)
dy

for every x ∈ Q2−|h| and z ∈ RnN . Finally, we define the difference-averaged operator
pointwise by

πh(u)(x) :=
∫
−
B1

∣∣τy,|h|(u)(x)
∣∣ dy =

∫
−
B1

∣∣u(x + |h|y)− u(x)
∣∣ dy .

In the next step we prove the following properties of the smoothed coefficients (see [DKM07,
Section 3]):

Proposition 7.3: Assume that the coefficients a(·, ·, ·) satisfy the conditions (H1)-(H4) on
Q2. Then the following statements for the smoothed coefficients ah(·, ·) defined above hold
true:

(h1) |ah(x, z)| ≤ L (1 + |z|2)
p−1
2 ,

(h2) |Dzah(x, z)| ≤ L (1 + |z|2)
p−2
2 ,

(h3) Dzah(x, z)λ · λ ≥ ν (1 + |z|2)
p−2
2 |λ|2,

(h4) (ah(x, z2)− ah(x, z1)) · (z2 − z1) ≥ c−1(p) ν (1 + |z1|2 + |z2|2)
p−2
2 |z2 − z1|2,

(h5) |Dxah(x, z)| ≤ c(n, ‖Dφ‖L∞(B1)) L |h|−1
[
ω(|h|) + ω(πh(u)(x))

]
(1 + |z|2)

p−1
2 ,

(h6) |ah(x, z)− a(x, u(x), z)| ≤ c(n, ‖Dφ‖L∞(B1)) L
[
ω(|h|) + ω(πh(u)(x))

]
(1 + |z|2)

p−1
2 ,

(h7) ah(x, z) · z ≥ c−1(p) ν |z|p − c(p, L
ν ) ν

for all z, z1, z2, λ ∈ RnN and x ∈ Q2−|h|, and all constants c are independent of h.

Proof: The first three properties follow immediately from (H1)-(H3) since the smoothing
procedure affects only the (x, u)-variable. For the proof of (h4) we note that for all z1, z2 ∈
RnN and y ∈ Q2 , due to (H3) and Lemma A.2, there holds the pointwise inequality

c−1(p) ν (1 + |z1|2 + |z2|2)
p−2
2 |z2 − z1|2

≤ ν

∫ 1

0
(1 + |z1 + t(z2 − z1)|)

p−2
2 dt |z2 − z1|2

≤
∫ 1

0
Dza(y, u(y), z1 + t(z2 − z1)) dt (z2 − z1) · (z2 − z1)

=
[
a(y, u(y), z2)− a(y, u(y), z1)

]
· (z2 − z1) .

Convolution then yields the desired inequality:

c−1(p) ν (1 + |z1|2 + |z2|2)
p−2
2 |z2 − z1|2

≤ |h|−n

∫
B|h|(x)

[
a(y, u(y), z2)− a(y, u(y), z1)

]
φ
(y−x
|h|

)
dy · (z2 − z1)

=
[
ah(x, z2)− ah(x, z1)

]
· (z2 − z1) .
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In order to infer (h6) we use (H4), subadditivity and Jensen’s inequality (keeping in mind
the concavity of ω) and see∣∣ah(x, z)− a(x, u(x), z)

∣∣
=

∣∣∣ ∫
B1

[
a(x + |h|y, u(x + |h|y), z)− a(x, u(x), z)

]
φ(y) dy

∣∣∣
≤ L

∫
B1

ω
(
|h||y|+ |u(x + |h|y)− u(x)|

)
φ(y) dy (1 + |z|2)

p−1
2

≤ L
(
ω(|h|) + c(n)

∫
−
B1

ω
(
|τy,|h|(u)(x)|

)
φ(y) dy

)
(1 + |z|2)

p−1
2

≤ L
(
ω(|h|) + c(n) ‖Dφ‖L∞(B1) ω

( ∫
−
B1

|τy,|h|(u)(x)| dy
))

(1 + |z|2)
p−1
2

= L
(
ω(|h|) + c(n, ‖Dφ‖L∞(B1)) ω(πh(u)(x))

)
(1 + |z|2)

p−1
2 .

For (h5) we have to differentiate the kernel and use the fact that
∫
B1

a(x, u(x), z)∂yφ(y) dy

vanishes. This finally allows us to proceed analogously to above:

|Dxah(x, z)| =
∣∣∣− |h|−n−1

∫
B|h|(x)

a(y, u(y), z) (Dxφ)
(y−x
|h|

)
dy

∣∣∣
=

∣∣∣|h|−1

∫
B1

a(x + |h|y, u(x + |h|y), z) ∂yφ(y) dy
∣∣∣

=
∣∣∣|h|−1

∫
B1

[
a(x + |h|y, u(x + |h|y), z)− a(x, u(x), z)

]
∂yφ(y) dy

∣∣∣
≤ Lc(n) |h|−1 ‖Dφ‖L∞(B1)

∫
−
B1

ω
(
|h||y|+ |τy,|h|(u)(x)|

)
dy (1 + |z|2)

p−1
2

≤ c(n, ‖Dφ‖L∞(B1)) L |h|−1
[
ω(|h|) + ω(πh(u)(x))

]
(1 + |z|2)

p−1
2 .

The last property (h7) follows immediately from (h1), (h4) and Young’s inequality:

ah(x, z) · z = (ah(x, z)− ah(x, 0)) · z + ah(x, 0) · z

≥ c−1(p) ν (1 + |z|2)
p−2
2 |z|2 − L|z|

≥ c−1(p) ν |z|p − c(p) ν − ν
(
ε|z|p + c(p, L

ν , ε)
)
,

which is the desired estimate for a suitable choice of ε. �

Remark 7.4: In this chapter we also consider the particular situations where the vector
field a(x, u, z) ≡ a(x, z) does not explicitly depend on u or where we argue under the low
dimensional assumption, for which the weak solution u is a priori known to be Hölder con-
tinuous (at least outside a set of Hn−p measure zero and therefore in particular outside a
set of Hn−1 measure zero, see Theorem 6.1). This allows us to simplify or improve the
representation in the proposition above, and therefore, to obtain even Hölder continuity of
ah(·, ·) with respect to x:

1. The case a(x, u, z) ≡ a(x, z): we observe that the comparison of u(x + |h|y) and u(x)
does not appear in the proof of (h5), (h6) and thus leads to

(h5)1 |Dxah(x, z)| ≤ c(n) L |h|−1ω(|h|) (1 + |z|2)
p−1
2 ,

(h6)1 |ah(x, z)− a(x, u(x), z)| ≤ c(n) Lω(|h|) (1 + |z|2)
p−1
2 .
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Furthermore, the Hölder continuity of a(·, ·) with respect to x is preserved, and we
have

(h8)1 |ah(x, z)− ah(y, z)| ≤ c(n) L |x− y|α (1 + |z|2)
p−1
2 .

2. The case u ∈ C0,λ(Q+
2d ∪ Γ2d, RN ) for some λ, d ∈ (0, 1): we note that u is extended

via even reflection to a map u ∈ C0,λ(Q2d, RN ) and obtain

(h8)2 |ah(x, z)− ah(y, z)| ≤ c(n, [u]C0,λ) L |x− y|αλ (1 + |z|2)
p−1
2

for all x, y ∈ Q+
d and 0 < |h| < d.

The dependency on ‖Dφ‖L∞(B1) is omitted here since the convolution kernel φ was chosen
fixed. We further remark that in both situations the constants are independent of h.

For the proof of the Hölder continuity (h8) we first observe that case 2, where Hölder con-
tinuity of the weak solution u is already known, is easily traced back to case 1 by setting
ã(x, z) := a(x, u(x), z): here we have to keep in mind that the constant L and the mod-
ulus of continuity ω in condition (H4) then have to be replaced by some new constant
L̃ = Lc([u]C0,λ) and a new modulus of continuity ω̃ satisfying ω̃(t) ≤ min{1, tαλ}.

To prove (h8)1 we have to distinguish two cases: using the simplified representation (h5)1

we infer in the case when |x− y| ≤ h:

|ah(x, z)− ah(y, z)| =
∣∣∣ ∫ 1

0
Dxah(y + t(x− y), z) · (x− y) dt

∣∣∣
≤ c |h|α−1|x− y| (1 + |z|2)

p−1
2

≤ c |x− y|α (1 + |z|2)
p−1
2 .

Otherwise if |x− y| > |h| we conclude from (h6)1 and (H4)

|ah(x, z)− ah(y, z)| ≤ |ah(x, z)− a(x, z)|+ |a(x, z)− a(y, z)|+ |a(y, z)− ah(y, z)|

≤ c
[
|h|α + |x− y|α

]
(1 + |z|2)

p−1
2

≤ c |x− y|α (1 + |z|2)
p−1
2 ,

which is the desired estimate (h8)1. We note that for vector field of type a(x, u, z) ≡ a(x, z)
we did not need the assumption that the map u is Hölder continuous.

7.3 A comparison estimate

This section provides a comparison estimate which will be the crucial point for the deriva-
tion of an appropriate fractional Sobolev estimate and therefore for the proof of our main
theorems. Let A be a bounded Lipschitz domain such that Q+

4d ⊂ A ⊆ Q+
1 , d ∈ (0, 1

4 ]
and let u ∈ W 1,p

Γ (Q+
2 , RN ) be the fixed solution of the boundary value problem (7.5) used

in the construction of the vector fields {ah} above. We further assume that the map u is
defined on the whole cube using even reflection and that the inhomogeneity b(·, ·, ·) obeys
the controllable growth condition (B1).
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Let uh ∈ u + W 1,p
0 (A, RN ) be the unique solution to the Dirichlet problem

{
−div ah( · , Duh) = b( · , u,Du) in A ,

uh = u on ∂A .
(7.6)

Since the right-hand side satisfies b(x, u, Du) ∈ Lp/(p−1)(A, RN ) ⊂ W−1,p(A, RN ), the ex-
istence of uh follows in a standard way via the theory of monotone operators (in view of
(h7) the monotonicity property is guaranteed), see [Lio69, Théorème 2.1, page 171]. More-
over, uniqueness follows from (h4). In the first step, we shall find an energy-estimate for
the p-Dirichlet-functional with more or less the same calculations which led to (6.13), more
precisely, we derive: ∫

A
|Duh|p dx ≤ c

∫
A

(1 + |Du|2)
p
2 dx , (7.7)

where the constant c = c(n, N, p, L
ν ) is independent of h. Testing the system (7.6) with uh−u

we infer from (h7), (h1) and Young’s inequality:

∫
A
|Duh|p dx ≤ c

∫
A

(
ah(x, Duh) ·Duh + 1

)
dx

= c

∫
A

(
ah(x, Duh) ·Du + b(x, u, Du) · (uh − u) + 1

)
dx

≤ c ε

∫
A
|Duh|p dx + c(ε)

∫
A

(1 + |Du|2)
p
2 dx + c

∫
A
|b(x, u, Du| |uh − u| dx .

Applying (B1), Young’s inequality and the Poincaré inequality (note here A ⊆ Q+
1 such that

the constant c remains independent of A) we estimate the last integral via

∫
A
|b(x, u, Du)| |uh − u| dx ≤ ε

∫
A
|uh − u|p dx + c(L, ε)

∫
A

(1 + |Du|2)
p
2 dx

≤ cP ε

∫
A
|Duh|p dx + c(L, ε)

∫
A

(1 + |Du|2)
p
2 dx .

Choosing ε sufficiently small yields the desired energy-estimate (7.7).

Exploiting the facts that uh solves the system (7.6) and that u solves the system (7.5) we
compute via Lemma A.1 (iv) and (h4)

∫
A

∣∣V (Duh)− V (Du)
∣∣2 dx ≤ c

∫
A

(
1 + |Du|2 + |Duh|2

) p−2
2 |Duh −Du|2 dx

≤ c

∫
A

[
ah(x, Duh)− ah(x,Du)

]
· (Duh −Du) dx

= c

∫
A

b(x, u, Du) · (uh − u) dx− c

∫
A

ah(x, Du) · (Duh −Du) dx

= c

∫
A

[
a(x, u, Du)− ah(x,Du)

]
· (Duh −Du) dx , (7.8)
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where c = c(n, N, p)ν−1. This last integral is estimated applying (h6), Young’s inequality,
Lemma A.1 (iv) and (7.7), and we arrive at

c

∫
A

[
a(x, u, Du)− ah(x, Du)

]
· (Duh −Du) dx

≤ cL

∫
A

[
ω(|h|) + ω(πh(u)(x))

]
(1 + |Du|2)

p−1
2 |Duh −Du| dx

≤ ε

∫
A

(1 + |Du|2 + |Duh|2)
p−2
2 |Duh −Du|2 dx

+ c(ε)
∫

A

[
ω(|h|) + ω(πh(u)(x))

]2(1 + |Du|2 + |Duh|2)
p
2 dx

≤ c ε

∫
A

∣∣V (Duh)− V (Du)
∣∣2 dx + c |h|2α

∫
A

(1 + |Du|2)
p
2 dx

+ c

∫
A

ω(πh(u)(x))2(1 + |Du|2 + |Duh|2)
p
2 dx ,

and the constant c depends only on n, N, p and L
ν . Choosing ε in dependency of these

quantities sufficiently small, we can absorb the integral of |V (Duh) − V (Du)|2 in the last
inequality on the left-hand side of (7.8) and we finally arrive at the conclusion∫

A

∣∣V (Duh)− V (Du)
∣∣2 dx

≤ c
(
|h|2α

∫
A

(1 + |Du|2)
p
2 dx +

∫
A

ω(πh(u)(x))2(1 + |Du|2 + |Duh|2)
p
2 dx

)
, (7.9)

where c = c(n, N, p, L
ν ). As noted in the remark at the end of the last section the esti-

mates become much less complicated in the case of vector fields of type a(x, u, z) ≡ a(x, z).
Therefore, applying (h6)1 instead of (h6), the last integral on the right-hand side in (7.9)
disappears, and we find the inequality∫

A

∣∣V (Duh)− V (Du)
∣∣2 dx ≤ c

(
n, N, p, L

ν

)
|h|2α

∫
A

(1 + |Du|2)
p
2 dx . (7.10)

7.4 A decay estimate and proof of Theorem 7.1

In the next step we derive a decay estimate for the integral of τs,h(V (Du)). Here the map
u is again the fixed weak solution to the Dirichlet problem (7.5) used for the construction
of the family {ah}. In what follows uh ∈ u + W 1,p

0 (A, RN ) denotes the unique solution of
the Dirichlet problem (7.6) where A is a bounded Lipschitz domain with Q+

4d ⊂ A ⊆ Q+
1 ,

d ∈ (0, 1
4 ] to be specified later. For the finite difference operator τs,h we will always assume

h ∈ R, 0 < |h| < d with h > 0 when dealing with the normal direction s = n.

The crucial point for the decay estimate is the following: the system (7.5), which we have
introduced above, is exactly of the form (4.1) considered in Chapter 4 where we have derived
comparison estimates for inhomogeneous systems with x-dependency; due to the properties
(h1)-(h3) and (h5) stated in Proposition 7.3 the smoothed coefficients ah(·, ·) satisfy all the
required conditions with

γ(x) := |h|−1
[
ω(|h|) + ω(πh(u)(x))

]
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(and with appropriate constants which were also computed in Proposition 7.3). Furthermore,
setting G(x) = L−1 b(x, u(x), Du(x)), the controllable growth condition (B1) guarantees
also condition (C5) to be fulfilled. Now the application of Theorem 4.2 allows us to obtain
the existence of second derivatives for the comparison map uh, and we find V (Duh) ∈
W 1,2(Q+

2d, R
nN ) with∫

Q+
2d

∣∣D(V (Duh))
∣∣2 dx ≤ c

d2

∫
Q+

4d

(
1 + |Du|2 + |Duh|2

) p
2 dx

+
c

d2 |h|2

∫
Q+

4d

[
ω(|h|) + ω(πh(u)(x))

]2 (
1 + |Duh|2

) p
2 dx

for a constant c depending only on n, N, p and L
ν . The existence of D(V (Duh)) then yields

(note h > 0 for the normal difference operator τn,h):∫
Q+

d

∣∣τs,h(V (Duh))
∣∣2 dx ≤ c(n) |h|2

∫
Q+

2d

∣∣D(V (Duh))
∣∣2 dx .

Keeping in mind ω(t) ≤ tα, we conclude from the last two estimates and the energy estimate
(7.7) (with Q+

4d ⊂ A) that∫
Q+

d

∣∣τs,h(V (Duh))
∣∣2 dx ≤ c |h|2α

d2

∫
A

(
1 + |Du|2

) p
2 dx

+
c

d2

∫
Q+

4d

(
ω(πh(u)(x))

)2 (
1 + |Duh|2

) p
2 dx , (7.11)

and the constant c = c(n, N, p, L
ν ) is independent of h. By the following comparison argument

this yields the desired decay estimate for τs,h(V (Duh)) replaced by τs,h(V (Du)):∫
Q+

d

∣∣τs,h(V (Du))(x)
∣∣2 dx ≤ 3

∫
Q+

d

∣∣V (Du(x + hes))− V (Duh(x + hes))
∣∣2 dx

+ 3
∫

Q+
d

∣∣τs,h(V (Duh))(x)
∣∣2 dx + 3

∫
Q+

d

∣∣V (Duh(x))− V (Du(x))
∣∣2 dx .

Since |h| < d, we can estimate the first and the last integral on the right-hand side of the
last inequality by 6

∫
A |V (Duh) − V (Du)|2 dx, for which in turn we apply the comparison

estimate (7.9) from in the previous section. Hence, in view of (7.11) we finally derive∫
Q+

d

∣∣τs,h(V (Du))
∣∣2 dx ≤ c |h|2α

d2

∫
A

(
1 + |Du|2

) p
2 dx

+
c

d2

∫
Q+

4d

(
ω(πh(u)(x))

)2 (
1 + |Du|2 + |Duh|2

) p
2 dx , (7.12)

and c depends only on n, N, p and L
ν .

For vector field of the form a(x, u, z) ≡ a(x, z) we derive a simplified version of the last
inequality: via (h5)1 we may apply Theorem 4.2 for γ = ω(|h|)/|h| ≤ |h|α−1, and the
application of (7.10) instead of (7.9) then yields∫

Q+
d

∣∣τs,h(V (Du))
∣∣2 dx ≤ c |h|2α

d2

∫
A

(
1 + |Du|2

) p
2 dx (7.13)

for c having the same dependencies as above. Choosing A = Q+
1 , the estimate (7.13) for

vector fields of this special type leads to
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Proposition 7.5: Let u ∈ W 1,p(Q+
2 , RN ) be a weak solution to the Dirichlet problem (7.5)

for coefficients of the form a(x, u, z) ≡ a(x, z) under the assumptions (H1)-(H4) and (B1).
Then V (Du) ∈ W s,2(Q+

d , RnN ) for every s < α and every d ∈ (0, 1/4). Moreover, we have

Du ∈ W s,p(Q+
d , RnN ) .

Proof: The fact that V (Du) ∈ W s,2(Q+
d , RnN ) for any s < α and d ∈ (0, 1/4) is easily

inferred from (7.13) and Lemma 2.4 applied with the choice G = V (Du). The length d of
the cube has now to be chosen in (0, 1/4) instead of d ∈ (0, 1/4] (for which the estimate (7.13)
holds), because the conclusion of Lemma 2.4 only follows on smaller (half-) cubes. In order
to obtain the assertion concerning Du we first pass from (7.13) to the corresponding decay
estimate for τs,h(Du) via Lemma 2.6 and then apply Lemma 2.4 with the choice G = Du.
This yields the desired estimate (the assumption α > 1

2 is not needed here). �

The previous proposition allows us to prove our result concerning the existence of regular
boundary points in the situation without an explicit dependency on the u-variable:

Proof (of Theorem 7.1): Following the reasoning in Section 3.2, see also [DKM07, proof
of Theorem 1.1], we first observe that, due to the regularity assumption on g, we are in a
position to reduce the Dirichlet problem (7.1) to the study of systems with zero boundary
values g = 0. Furthermore, the regularity of ∂Ω allows us to flatten the boundary locally
around every boundary point x0 ∈ ∂Ω by a transformation whose regularity is determined
by that of ∂Ω. We again refer to Section 3.2 and the arguments leading to the associated
Dirichlet problem (3.15). Thus, it is sufficient to assume in the sequel the model situation
of an upper cube Ω = Q+

2 , and to prove that almost every point on Γ is in fact a regular
boundary point, i. e., that it belongs to the set RegDu(Γ). Since the Hausdorff dimension
is invariant under bi-Lipschitz transformations, a standard covering argument then yields
that an estimate for the Hausdorff dimension of the set of singular boundary points on Γ
(for a solution of a problem of type (7.5)) implies a corresponding estimate for the singular
boundary points on ∂Ω, i. e., for SingDu(∂Ω).

We recall from Chapter 3, Theorem 3.14 that we have the following inclusions for weak
solutions u ∈ W 1,p

Γ (Q+
2 , RN ) of the model situation: SingDu(Γ2) ⊂ Σ1 ∪Σ2 ⊂ Σ∗

1 ∪Σ∗
2 where

Σ1 =
{

y ∈ Γ2 : lim inf
ρ→ 0+

∫
−
Bρ(y)∩Q+

2

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩Q+

2

∣∣2 dx > 0
}

,

Σ2 =
{

y ∈ Γ2 : lim sup
ρ→ 0+

∣∣(V (Dnu)
)
Bρ(y)∩Q+

2

∣∣ = ∞
}

,

and analogously with the full derivative Du instead of only the normal derivative Dnu

Σ∗
1 =

{
y ∈ Γ2 : lim inf

ρ→ 0+

∫
−
Bρ(y)∩Q+

2

∣∣V (Du)−
(
V (Du)

)
Bρ(y)∩Q+

2

∣∣2 dx > 0
}

,

Σ∗
2 =

{
y ∈ Γ2 : lim sup

ρ→ 0+

∣∣(V (Du)
)
Bρ(y)∩Q+

2

∣∣ = ∞
}

(for the second inclusion see the remark below). Our next aim is to show the upper bound
dimH

(
Σ∗

1 ∪Σ∗
2

)
< n− 1 on the Hausdorff dimension of the sets Σ∗

1 and Σ∗
2. We note that it

is sufficient to prove
dimH

(
(Σ∗

1 ∪ Σ∗
2) ∩ Γd

)
< n− 1
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for some fixed number d ∈ (0, 1
4) because we may cover ∂Ω by a larger number of charts,

depending on the smallness of d. Keeping in mind the assumption (7.2), i. e., α > 1
2 , we

fix a number s ∈ (1
2 , α), and conclude from Proposition 7.5 that V (Du) ∈ W s,2(Q+

d , RnN ).
Lastly, the application of Proposition A.13 (with θ, q replaced by s, 2) yields

dimH

(
(Σ∗

1 ∪ Σ∗
2) ∩ Γd

)
≤ n− 2s < n− 1 .

This finishes the proof of the theorem. �

Remark: For the sake of completeness, we sketch the proof for the inclusion Σ1 ∪ Σ2 ⊂
Σ∗

1∪Σ∗
2 (see [DKM07, Remark 5.1]): we consider y ∈ Γ2\(Σ∗

1∪Σ∗
2) and show y ∈ Γ2\(Σ1∪Σ2).

By assumption we find M < ∞ such that

sup
ρ>0

∣∣(V (Du)
)
Bρ(y)∩Q+

2

∣∣ ≤ M .

Furthermore, since the function V : RnN → RnN is a bijection we find A = A(ρ) ∈ RnN such
that

V (A) =
(
V (Du)

)
Bρ(y)∩Q+

2

holds true, and via Lemma A.1 (i) we have |A| ≤ c(M). Then, in view of Lemma A.1 (v),
we compute∫

−
Bρ(y)∩Q+

2

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩Q+

2

∣∣2 dx ≤
∫
−
Bρ(y)∩Q+

2

∣∣V (Dnu)− V (An)
∣∣2 dx

≤ c(n, N, p)
∫
−
Bρ(y)∩Q+

2

∣∣V (Dnu−An)
∣∣2 dx .

Furthermore, the fact that t 7→ V (t) is monotone nondecreasing on R+ and |Dnu − An| ≤
|Du−A| allows us to calculate further∫

−
Bρ(y)∩Q+

2

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩Q+

2

∣∣2 dx ≤ c(n, N, p)
∫
−
Bρ(y)∩Q+

2

∣∣V (Du−A)
∣∣2 dx

≤ c(n, N, p, M)
∫
−
Bρ(y)∩Q+

2

∣∣V (Du)− V (A)
∣∣2 dx

where we have taken into account Lemma A.1 (vi). Recalling the definition of A we finally
obtain for all radii ρ > 0:∫

−
Bρ(y)∩Q+

2

∣∣V (Dnu)−
(
V (Dnu)

)
Bρ(y)∩Q+

2

∣∣2 dx

≤ c(n, N, p, M)
∫
−
Bρ(y)∩Q+

2

∣∣V (Du)−
(
V (Du)

)
Bρ(y)∩Q+

2

∣∣2 dx .

Hence, y /∈ Σ1. It still remains to bound the mean values |(V (Dnu))Bρ(y)∩Q+
2
|: here we

proceed similarly and arrive at the conclusion that for all radii ρ > 0 sufficiently small there
holds (keeping in mind y ∈ Γ2 \ (Σ∗

1 ∪ Σ∗
2))∣∣(V (Dnu)

)
Bρ(y)∩Q+

2

∣∣ ≤ ∫
−
Bρ(y)∩Q+

2

∣∣V (Dnu)− V (An)
∣∣ dx +

∣∣V (An)
∣∣

≤ c(n, N, p, M)
( ∫
−
Bρ(y)∩Q+

2

∣∣V (Du)− V (A)
∣∣2 dx

) 1
2 +

∣∣V (A)
∣∣

≤ c(n, N, p, M) .
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Combining the latter inequality with the previous estimate we have shown y ∈ Γ2 \ (Σ1∪Σ2)
and thus the asserted inclusion.

All the calculations leading to Proposition 7.5 where based on a comparison principle which
works as well for cubes in the interior. Hence, we also obtain V (Du) ∈ W s,2(Qd, RnN ) for
every s < α and every d ∈ (0, 1/4) for cubes Qd ⊂ Ω. Arguing exactly as in the proof of
Theorem 5.1 on global estimates of Calderón-Zygmund type we may combine the estimates
in the interior with the estimates at the boundary and use a standard covering argument in
order to infer the following global estimate. We mention that in this situation we have to
keep in mind the fact that the fractional Sobolev norm is super-additive with respect to the
domain of integration.

Theorem 7.6 (cf. [DKM07], Theorem 5.1): Let u ∈ W 1,p(Ω, RN ) be a weak solution of
the Dirichlet problem (7.1) with g ∈ C1,α(Ω̄, RN ) under the assumptions (H1)-(H4) and (B1).
Furthermore, assume that the coefficients are independent of u, i. e., a(x, u, z) ≡ a(x, z).
Then V (Du) ∈ W s,2(Ω, RnN ) for every s < α. Moreover, we have

Du ∈ W s,p(Ω, RnN ) .

As a consequence, in view of the Sobolev embedding theorem for fractional Sobolev spaces, we
obtain the following higher integrability result which provides, in contrast to the application
of Gehring’s Lemma, a quantitative improvement of the higher integrability exponent:

Corollary 7.7: Let u ∈ W 1,p(Ω, RN ) be as in the previous Theorem 7.6. Then there holds:

Du ∈ Lt(Ω, RnN ) for all t <
np

n− 2α
.

Proof: Applying the embedding Theorem A.10 for the function V (Du) ∈ W s,2(Ω, RnN ) for
every s < α, we obtain V (Du) ∈ Lt̃(Ω, RnN ) for all t̃ < 2n

n−2α . Hence, in view of Lemma A.1
(i), the statement of the corollary follows. �

7.5 Proof of Theorem 7.2

We proceed here analogously to [DKM07, proof of Theorem 1.2]. First we define the number
δ introduced in (7.4) in the statement of the theorem as follows:

δ := min
{δ1(n− 2)p

2
, δ2

}
> 0 if n ≥ 3 , (7.14)

where the number δ1 is given in Theorem 5.1, and δ2 comes from Theorem 6.1. We emphasize
that a condition of type (7.4) is not required if n = 2. Thus, (keeping in mind that we consider
inhomogeneities obeying a controllable growth condition) δ depends only on n, N, p and L

ν .
Furthermore, we assume for all the estimates below the low dimensional assumption

p > n− 2− δ . (7.15)

We next fix a sequence of domains {Ωk}k∈N of class C2 such that for all k ∈ N we have the
inclusions:

Q+
4dk+1

⊂ Ωk ⊂ Q+
sk
⊂ Q+

ρk
⊂ Q+

dk
, (7.16)
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where
dk :=

1
32k

, ρk :=
dk

2
, sk :=

dk

4
.

In particular, this means Γdk+1
⊂ Ωk and Ωk ⊂ Q+

1 for all k ∈ N . We now start with a
higher integrability estimate for the derivative Du of the weak solution to our model system
(7.5) of an upper half-cube:

Lemma 7.8 (cf. [DKM07], Lemma 6.2): Let u ∈ W 1,p(Q+
2 , RN ) ∩ C0,λ(Q+

1 , RN ), λ ∈
(0, 1], be a weak solution of the Dirichlet problem (7.5) under the assumptions (H1)-(H4),
(B1) and (7.15). Then, for every t < p + 2α there exists k̄ = k̄(t) ∈ N such that Du ∈
Lt(Q+

dk̄
, RnN ).

Proof: For k ∈ N we define the comparison maps uk
h ∈ u + W 1,p

0 (Ωk, RN ) as the unique
solution to the Dirichlet problem{

−div ah( · , Duk
h) = b( · , u,Du) in Ωk ,

uk
h = u on ∂Ωk ,

(7.17)

i. e., the Dirichlet problem (7.6) with the choice A := Ωk. In the sequel, we restrict ourselves
to 0 < |h| ≤ dk

4 . We define the sequence

η1 := 0 , ηk+1 := ηk +
pλ

2
(
α(2− p)− ηk

)
,

and, accordingly,

θk :=
pαλ

p + ηk
+

pηk(1− λ)
(2− p)(p + ηk)

for k ∈ N. We easily check that the sequence {ηk}k∈N is increasing with ηk ↗ (2− p)α. The
strategy of the proof will be the following:

Du ∈ L
p+

2ηk
2−p (Q+

ρk
, RnN ) → Du ∈ W γθk,p+ηk(Q+

ρk+1
, RnN ) → Du ∈ L

p+
2ηk+1
2−p (Q+

ρk+1
, RnN )

for all γ ∈ (0, 1) and every k ∈ N. The first implication is performed via employing the
decay estimate (7.12) in an appropriate form, taking advantage of the Hölder continuity of
u and applying the Calderón-Zygmund Theorem 5.1; for the latter step, we need the low
dimensional assumption (7.15). The second implication is then a direct consequence from
the interpolation Theorem 2.7. More precisely, we prove by induction that for every k ∈ N
there holds:

(Bk)
∫

Q+
ρk

|Du|p+
2ηk
2−p dx ≤ ck .

For k ≥ 2 the constant ck depends only on n, N, p, L
ν , α, λ, Ωk−1, k − 1, ck−1 and [u]0,λ.

Proof of (B1): Since η1 = 0 the assertion of (B1) is satisfied with c1 = ‖Du‖p

Lp(Q+
1 ,RnN )

.

Proof of (Bk) ⇒ (Bk+1): In order to derive (Bk+1) we first show that (Bk) implies the
following fractional Sobolev estimate

(B′
k)

∫
Q+

ρk+1

∫
Q+

ρk+1

|Du(x)−Du(y)|p+ηk

|x− y|n+γ(p+ηk) θk
dx dy ≤ c̃k ,
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for all γ ∈ (0, 1) and c̃k depends only on n, N, p, L
ν , α, λ, Ωk, k, ck, [u]C0,λ(Ω,RN ) and γ (i. e.,

the first implication above). For the proof in the case k = 1 we infer from (7.12) for the
choices A = Ω1 and d = d2, from the Hölder continuity of u with exponent λ and the energy
estimate (7.7) that there holds∫

Q+
d2

∣∣τs,h(V (Du))
∣∣2 dx ≤ c |h|2αλ

∫
Ω1

(
1 + |Du|2

) p
2 dx ,

for every s ∈ {1, . . . , n} with a constant c = c(n, N, p, L
ν ). Lemma 2.6 then allows us to

conclude ∫
Q+

d2

∣∣τs,h(Du)
∣∣p dx ≤ c |h|pαλ

( ∫
Q+

1

(
1 + |Du|2

) p
2 dx

) p
2
+ 2−p

2

≤ c |h|pαλ

∫
Q+

1

(
1 + |Du|2

) p
2 dx ,

for every s ∈ {1, . . . , n}, and the constant c has the same dependencies as above. The
application of Lemma 2.4 then yields Du ∈ W γαλ,p(Q+

ρ2
, RnN ) for all γ ∈ (0, 1) with the

desired fractional Sobolev estimate (B′
1). For the proof of (B′

k), k ≥ 2, we take advantage
of Hölder’s inequality, Lemma A.3 (i), the decay estimate (7.12) for the choices A = Ωk and
d = dk+1 and the inclusions (7.16). Thus, we infer for every s ∈ {1, . . . , n}∫

Q+
dk+1

∣∣τs,h(Du)
∣∣p+ηk dx

=
∫

Q+
dk+1

(
1 + |Du(x)|2 + |Du(x + hes)|2

) p−2
2

p
2
+ 2−p

2
p
2 |τs,h(Du)(x)|p+ηk dx

≤ 2
( ∫

Q+
dk+1

(
1 + |Du(x)|2 + |Du(x + hes)|2

) p−2
2 |τs,h(Du)(x)|2 dx

) p
2

×
( ∫

Q+
ρk

(
1 + |Du(x)|

)p+
2ηk
2−p dx

)1− p
2

≤ c(n, N, p)
( ∫

Q+
dk+1

∣∣τs,h(V (Du))
∣∣2 dx

) p
2
( ∫

Q+
ρk

(
1 + |Du|

)p+
2ηk
2−p dx

)1− p
2

≤ c |h|pα

∫
Q+

ρk

(
1 + |Du|

)p+
2ηk
2−p dx + cI

p
2

( ∫
Q+

ρk

(
1 + |Du|

)p+
2ηk
2−p dx

)1− p
2
. (7.18)

Here we have abbreviated

I =
∫

Ωk

(
ω(πh(u))

)2 (
1 + |Du|2 + |Duk

h|2
) p

2 dx ,

and the constant c depends only on n, N, p, L
ν and k but is independent of h. We note

that the finiteness of the right-hand side of (7.18) is guaranteed by the induction hypothesis
(Bk). In order to estimate the latter integral denoted by I we will apply the Calderón-
Zygmund Theorem 5.1 in the next step. For this purpose, we first have to check that all the
assumptions of this theorem are fulfilled: in view of Proposition 7.3 (h1),(h2),(h3) combined
with (h8)2 in Remark 7.4 (valid for Hölder continuous maps u) we observe: (Z1)-(Z4) are
satisfied for the coefficients ah(·, ·) of the system in (7.17). Therefore, keeping in mind the
growth condition (B1) on the inhomogeneity, we see that if we have u ∈ W 1,q(Ωk, RN ) for
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a number q ∈ [p, s1], then g := u ∈ Lq and LG := b(x, u, Du) ∈ L
q

p−1 . As a consequence of
Theorem 5.1, the higher integrability of Du may be carried over to Duk

h, and we obtain the
following estimate∫

Ωk

(
1 + |Duk

h|
)q

dx ≤ c

∫
Ωk

(
1 + |Du|+ | 1L b(x, u, Du)|

1
p−1

)q
dx

≤ c

∫
Ωk

(
1 + |Du|

)q
dx (7.19)

for a constant c depending only on n, N, p, L
ν , α, λ, Ωk and [u]0,λ. In the present situation,

(Bk) ensures the higher integrability with exponent q = p + 2ηk
2−p , and with ηk < (2 − p)α,

(7.15) and the choice of δ in (7.14) we easily see for n ≥ 3 the following inequality:

p +
2ηk

2− p
< p + 2 <

1
n− 2

(pn + 2δ) ≤ np

n− 2
+ δ1 .

Therefore, the assumption q ∈ [p, s1] in Theorem 5.1 holds true. Combining the estimate
in (7.19) with Hölder’s inequality and the fact that ω(s) ≤ min{1, sα} for all s ∈ R+, we
further find

I ≤ c
( ∫

Ωk

(
1 + |Du|

)p+
2ηk
2−p dx

) p(2−p)
p(2−p)+2ηk

( ∫
Ωk

(πh(u))2α(1+
p(2−p)

2ηk
)
dx

) 2ηk
p(2−p)+2ηk

where the constant c has the same dependencies as above. The Hölder continuity of u allows
us to write

(πh(u))2α(1+
p(2−p)

2ηk
) = (πh(u))2α

[
1+

p(2−p)
2ηk

]
−p− 2ηk

2−p (πh(u))p+
2ηk
2−p

≤ c(λ, [u]0,λ) |h|λ
[
2α(1+

p(2−p)
2ηk

)−p− 2ηk
2−p

]
(πh(u))p+

2ηk
2−p .

In order to estimate (πh(u))p+
2ηk
2−p on Ωk we apply Fubini’s Theorem and Jensen’s inequality

to infer for every p̃ > 1:∫
Ωk

(πh(u))p̃ dx =
∫

Ωk

( ∫
−
B1

|u(x + |h|y)− u(x)| dy
)p̃

dx

=
∫

Ωk

( ∫
−
B1

∣∣∣ ∫ 1

0
Du(x + s|h|y) ds · |h|y

∣∣∣ dy
)p̃

dx

≤
∫

Ωk

∫
−
B1

∫ 1

0
|Du(x + s|h|y)|p̃ ds dy dx |h|p̃

≤
∫ 1

0

∫
−
B1

∫
s|h|y+Ωk

|Du(x)|p̃ dx dy ds |h|p̃

≤ 2
∫

Q+
ρk

|Du(x)|p̃ dx |h|p̃ (7.20)

where in the last line we have used s|h|y + Ωk ⊂ Qρk
, see (7.16) and the restriction on h,

and the fact that u is extended to Q2 by even reflection. Combining the last two estimates
(setting p̃ = p + 2ηk

2−p) we find

I ≤ c |h|2αλ+(1−λ)
2ηk
2−p

∫
Q+

ρk

(
1 + |Du|

)p+
2ηk
2−p dx
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for c = c(n, N, p, L
ν , α, λ, Ωk, [u]0,λ). The latter inequality enables us to calculate further in

(7.18): with
θk(p + ηk) = pαλ + (1− λ)

pηk

2− p
< pα (7.21)

(since we have ηk < (2− p)α) we infer for every s ∈ {1, . . . , n} and 0 < |h| ≤ dk
4 :∫

Q+
dk+1

∣∣τs,h(Du)
∣∣p+ηk dx ≤ c |h|θk(p+ηk)

∫
Q+

ρk

(
1 + |Du|

)p+
2ηk
2−p dx

by definition of θk, and the constant c depends only on n, N, p, L
ν α, λ, Ωk, k and [u]0,λ but is

independent of h. The application of Lemma 2.4 yields Du ∈ W γθk,p+ηk(Q+
ρk+1

, RnN ) for all
γ ∈ (0, 1) with the desired fractional Sobolev estimate (B′

k). Moreover, the constant c̃k has
exactly the dependencies stated in (B′

k). This finishes the proof of (B′
k).

It remains to prove (Bk+1): to this end we choose γ ∈ (0, 1) sufficiently close to 1 such that

p +
2ηk+1

2− p
= (p + ηk) (1 + θk) <

n(p + ηk)(1 + γθk)
n− (p + ηk)γθkλ

.

Here, we have used the definitions of ηk and θk to obtain the first equality. In view of the
fact that (p + ηk)θkγ < pα < p < n (see (7.21)), we may apply Theorem 2.7 and we obtain
(Bk+1).

Finally, the statement of the lemma follows from the convergence p + 2ηk
2−p ↗ p + 2α. �

This higher integrability result for Du allows us to deduce fractional differentiability for
V (Du):

Lemma 7.9: Let u ∈ W 1,p(Q+
2 , RN ) ∩ C0,λ(Q+

1 , RN ), λ ∈ (0, 1], be a weak solution of the
Dirichlet problem (7.5) under the assumptions (H1)-(H4), (B1) and (7.15). Then, for every
t2 < α there exists k̄ = k̄(t2) such that V (Du) ∈ W t2,2(Q+

ρk̄
, RnN ).

Proof: For fixed t̄2 ∈ (t2, α) we determine γ ∈ (0, 1) such that t̄2 = αγ. The application
of the previous Lemma 7.8 for t := p + 2αγ yields the existence of k̄ = k̄(t) for which
Du ∈ Lt(Q+

dk̄−1
, RnN ). Keeping in mind(

ω(πh(u))
) p+2αγ

αγ ≤
(
ω(πh(u))

) p+2αγ
α ≤ (πh(u))p+2αγ ,

we infer from the decay estimate (7.12) (with Q+
dk̄

, Ωk̄−1 instead of Q+
d , A), Hölder’s in-

equality, the computations in (7.20) and (7.19) with p̃ = q = p + 2αγ the following line of
inequalities:∫

Q+
dk̄

∣∣τs,h(V (Du))
∣∣2 dx

≤ c |h|2α

∫
Ωk̄−1

(
1 + |Du|2

) p
2 dx + c

∫
Ωk̄−1

(
ω(πh(u)(x))

)2 (
1 + |Du|2 + |Duk

h|2
) p

2 dx

≤ c |h|2α

∫
Ωk̄−1

(
1 + |Du|2

) p
2 dx

+ c
( ∫

Ωk̄−1

(πh(u))p+2αγ dx
) 2αγ

p+2αγ
( ∫

Ωk̄−1

(
1 + |Du|2 + |Duk

h|2
) p+2αγ

2 dx
) p

p+2αγ

≤ c
(
|h|2α + |h|2αγ

) ∫
Q+

ρk̄−1

(
1 + |Du|)p+2αγ dx ≤ c |h|2t̄2
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for every s ∈ {1, . . . , n}, 0 < |h| ≤ dk̄
4 and for a constant c depending only on n, N, p, L

ν , α, λ,
Ωk̄−1, k̄ − 1, ‖Du‖Lp , [u]0,λ and t̄2. Lemma 2.4 then yields the assertion of the lemma. �

Proof (of Theorem 7.2): We will proceed close to the proof of Theorem 7.1: first, we
reduce our problem (7.1) to the analysis of an associated Dirichlet problem with zero bound-
ary values on ∂Ω. Then, by a covering argument and a local flattening procedure, we reduce
it to the study a finite number of problems of type (7.5) on cubes. As a consequence of these
transformations, the new structure conditions L and ν (see e. g. Section 3.2) depend on the
regularity of the boundary data, i. e. on ‖g‖C1,α(Ω,RN ) and ∂Ω, which in turn is reflected in
the dependencies of the number δ given in the statement of Theorem 7.2.

We again denote by SingDu(Γ) the set of singular points of Du on Γ, and we will now show
the estimate dimH(SingDu(Γ)) < n− 1 on the Hausdorff dimension of the singular set. The
crucial point in the present situation is the following: the fact that we consider only the low
dimensional case, see (7.4), ensures via Theorem 6.1 that u is known to be Hölder continuous
on the regular set Regu(Q+ ∪ Γ) of u with every exponent λ ∈

(
0, 1− n−2−δ2

p

)
(cf. Theorem

6.6 for the model case); moreover, we have dimH(Singu(Q+ ∪ Γ) < n− p. Hence, it suffices
to confine our attention to the regular set of u and hence, to prove

dimH

(
SingDu(Γ) ∩ Regu(Q+ ∪ Γ)

)
< n− 1 .

We next choose an increasing sequence of sets Bk ↗ Regu(Q+∪Γ) with Bk ⊂ Regu(Q+∪Γ)
such that Bk is relatively open in Q+∪Γ for every k ∈ N, i. e., such that for every k ∈ N there
exists an open set Ak ⊂ Rn with Bk = (Q+ ∪ Γ) ∩ Ak. Therefore, in view of the continuity
of Hn−1 with respect to monotone sequences of measurable sets, we find: in order to prove
Theorem 7.2 it is sufficient to show

dimH

(
SingDu(Γ) ∩Bk

)
< n− q (7.22)

for all k ∈ N and some q > 1. We observe that Lemma 7.8 and Lemma 7.9 still hold if we
replace the cube Q+ by any other cube Q+

R(x0) for some x0 ∈ Γ ∩ Bk; as a consequence of
these lemmas, we then obtain V (Du) ∈ W t2,2(Q+

ρk̄R(x0), RnN ), and the number ρk̄ depends
only on t2 ∈ (0, α). Hence, taking t2 ∈ (1

2 , α) (keeping in mind the assumption (7.3) on α),
the application of Proposition A.13 yields

dimH

(
SingDu(Γ) ∩Q+

ρk̄R(x0)
)
≤ n− 2t2 < n− 1 .

Since x0 ∈ Γ ∩ Bk is arbitrary and Bk is relatively open in Q+ ∪ Γ, a standard covering
argument yields (7.22) which in turn implies dimH(SingDu(Γ)) < n−1, meaning that Hn−1-
almost every boundary point in Γ is a regular point for Du. This finishes the proof of
Theorem 7.2. �
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In this section we continue to study the existence of regular boundary points. We consider
bounded weak solutions u ∈ W 1,2(Ω, RN ) ∩ L∞(Ω, RN ) of the quadratic nonlinear elliptic
system {

−div a( · , u,Du) = b( · , u,Du) in Ω ,

u = g on ∂Ω .
(8.1)

Here Ω is a domain of class C1,α, g ∈ C1,α(Ω, RN ) for some α ∈ (0, 1). The coefficients
a : Ω×RN×RnN → RnN are assumed to be Hölder continuous with exponent α with respect
to the first two variables and of class C1 with respect to the last variable, satisfying a standard
quadratic growth condition. We shall now work on the existence of regular boundary points
under the prerequisite that the right-hand side b : Ω × RN × RnN → RN obeys a natural
growth condition (see (B2) in Chapter 8.1 further below) and that the smallness assumption
|u| ≤ M for some M > 0 with 2L2M < ν is satisfied. The latter condition ensures, see e. g.
[DG00] combined with [Gro02b], that every weak solution u ∈ W 1,2(Ω, RN ) ∩ L∞(Ω, RN ) is
partially C1,α-regular. More precisely, we have:

u ∈ C1,α
loc (RegDu(Ω), RN ) and |SingDu(Ω)| = 0 .

149
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Therefore, the situation with inhomogeneities under a natural growth condition seems to
be closely connected to that under a controllable growth condition, and the same line of
arguments as in the last chapter might be expected to lead to the desired results, but several
critical difficulties arise: The definition of the comparison maps uh in (7.17) would require
some modifications; however, even if this problem were solved, it is yet not clear how the
higher integrability of Du could be carried over to the weak solution Duh of the regularized
Dirichlet problem (cf. p. 146), because the necessary Calderón-Zygmund theory developed
in Chapter 5 only applies when the right-hand side belongs to the Lebesgue space Lq/(p−1)

for some q > p. This prerequisite is not fulfilled in this case since the natural growth of
b(·, ·, ·) merely gives L1+δ for some (small) value δ > 0 (coming from the higher integrability
of Du). This motivates why we present a different technique introduced by Kronz in [Kro]
where it is a promising approach to up to the boundary regularity results including upper
bounds for the Hausdorff dimension of the singular set, with the flexibility to attack even
higher order systems.

To overcome the difficulties arising from the fact that differences |Du(x + hes)−Du(x)| can
be estimated up to the boundary only for the tangential directions, Kronz [Kro] suggested
to replace the indirect comparison principle from the previous chapter by a direct method.
Introducing slicewise mean values on slices in tangential direction he observed that estimates
for the tangential differences suffice to control the averaged mean deviation with respect to
these slicewise mean values. Using an alternative definition of fractional Sobolev spaces
based on pointwise inequalities, this allows us to derive a fractional Sobolev estimate for the
map an(·, u,Du), which in turn is transferred to the normal derivative of the weak solution
u. Combined with a corresponding estimate for the tangential derivatives of u this leads to
a higher integrability statement for the full gradient Du. Via a standard iteration argument
combined with a measure density result and a partial Hölder continuity result for u (outside
a set of Hausdorff dimension less than n − 2) in low dimensions, we then reach the desired
result that almost every boundary point is a regular one for Du.

Finally, we mention that, to this date, the existence of regular boundary points for elliptic
systems with inhomogeneities under a natural growth condition is established only for the
quadratic case p = 2. A positive answer to the same question also for elliptic systems fulfilling
standard assumptions of p-growth with p ∈ (1,∞) arbitrary should be obtainable from an
adaptation of the techniques used within this chapter.

8.1 Structure conditions and result

We impose on the coefficients a : Ω × RN × RnN → RnN standard conditions of quadratic
growth: the functions (x, u, z) 7→ a(x, u, z) and (x, u, z) 7→ Dza(x, u, z) are continuous, and
for fixed 0 < ν ≤ L and all triples (x, u, z), (x̄, ū, z) ∈ Ω× RN × RnN there holds:

(H1) a has linear growth:

|a(x, u, z)| ≤ L
(
1 + |z|

)
,

(H2) a is differentiable with respect to z with bounded and continuous derivatives:

|Dza(x, u, z)| ≤ L ,

(H3) a is uniformly strongly elliptic:

Dza(x, u, z) λ̃ · λ̃ ≥ ν |λ̃|2 ∀ λ̃ ∈ RnN ,
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(H4) There exists a modulus of continuity ω : R → [0, 1] with ω(t) ≤ min(1, tα)
such that

|a(x, u, z)− a(x̄, ū, z)| ≤ L
(
1 + |z|

)
ω
(
|x− x̄|+ |u− ū|

)
.

For the inhomogeneity b : Ω×RN ×RnN → RN we assume for all (x, u, z) ∈ Ω×RN ×RnN

(B2) a natural growth condition: there exists a constant L2 (possibly depending on
M > 0) such that

|b(x, u, z)| ≤ L + L2 |z|p

for all (x, u, z) ∈ Ω× RN × RnN with |u| ≤ M .

The aim of this chapter is to improve |SingDu(Ω)| = 0 in the following sense:

Theorem 8.1: Consider n ∈ {2, 3, 4} and α > 1/2. Let Ω ⊂ Rn be a domain of class
C1,α and g ∈ C1,α(Ω, RN ). Assume further that u ∈ W 1,2(Ω, RN ) ∩ L∞(Ω, RN ) is a weak
solution of the Dirichlet problem (8.1) under the assumptions (H1)-(H4) and (B2), and
suppose ‖u‖L∞(Ω,RN ) ≤ M for some M > 0 such that 2L2M < ν. Then Hn−1-almost every
boundary point is a regular point for Du.

In the sequel we restrict ourselves again to the model case Ω = Q+
2 , cf. Chapter 7, and study

weak solutions u ∈ W 1,2
Γ (Q+

2 , RN ) ∩ L∞(Q+
2 , RN ) of the system

−div a( · , u,Du) = b( · , u,Du) in Q+
2 . (8.2)

By a transformation argument this covers the situation of general inhomogeneous systems
of type (8.1) on arbitrary domains Ω of class C1,α, see Chapter 3.2.

8.2 Slicewise mean values and a Caccioppoli inequality

8.2.1 A statement concerning slicewise mean values

Before introducing slicewise mean values we need some more notation: it will be convenient
to work on cylinders; hence, for ρ > 0, we define (n− 1)-dimensional balls

Dρ(z′) :=
{
y ∈ Rn−1 : |z′ − y′| < ρ

}
for z′ ∈ Rn−1, and cylinders on the upper half-plane

Zρ(z) := Dρ(z′)×
(

max{0, zn − ρ}, zn + ρ
)

=: Dρ(z′)× Iρ(zn)

for centres z = (z′, zn) ∈ Rn with zn ≥ 0. Given a function v ∈ L1(ZR(z), RN ), Zρ(x0) ⊂
ZR(z), we denote the mean value (v)Zρ(x0) by (v)x0,ρ . Furthermore, we define the slicewise
mean value at almost every height xn ∈ Iρ((x0)n) via

(v)x′0,ρ(xn) :=
∫
−
Dρ((x0)′)

v(x′, xn) dx′ .

The next lemma enables us to conclude from difference estimates for a map u an appropriate
estimate for the averaged mean deviation with respect to slicewise mean values (see [Kro]):
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Lemma 8.2: Let σ < 1
3 , n ≥ 2, τ > 0, Zρ(x0) ⊂ Q+ for some x0 ∈ Q+ ∪ Γ. Furthermore,

assume that v ∈ Lp(Zρ(x0), RN ), p > 1, satisfies∫
Zσρ(x0)

|τh,ev|p dx ≤ Kp |h|τp

for some K > 0, all e ∈ Sn−1 with e ⊥ en and h ∈ R with |h| < 2σρ. Then, for every
β ∈ (0, τ) there exists a function F ∈ Lp(Zσρ(x0)) such that∫

Zσρ(x0)
|F |p dx ≤ c(n, p, τ, β) Kp ρ(τ−β)p

and ( ∫
−
Zr(z)

∣∣v(x)− (v)z′,r(xn)
∣∣ep

dx
) 1ep

≤
( ∫
−
Zr(z)

∫
−
Dr(z′)

|v(x′, xn)− v(y′, xn)|ep dy′ dx
) 1ep ≤ c(n, β) rβ F (z)

for every exponent p̃ ∈ [1, p), almost all z ∈ Q+∪Γ and all r > 0 such that Zr(z) ⊂ Zσρ(x0).

Proof: The proof of this lemma is taken from [Kro]. We choose exponents β < τ , q ∈(
max{p̃, (n−1)p

(τ−β)p+(n−1)}, p
)

and an arbitrary cylinder Zr(z) ⊂ Zσρ(x0) with z ∈ Q+ ∪ Γ.
Using the definition of slicewise mean values, Jensen’s inequality and the inclusion Dr(z′) ⊂
Dσρ((x0)′) we obtain( ∫
−
Zr(z)

∣∣v(x)− (v)z′,r(xn)
∣∣ep

dx
) 1ep ≤

( ∫
−
Zr(z)

∫
−
Dr(z′)

|v(x′, xn)− v(y′, xn)|q dy′ dx
) 1

q

≤ c rβ
( ∫
−
Zr(z)

∫
Dσρ((x0)′)

|v(x′, xn)− v(y′, xn)|q

|x′ − y′|n−1+βq
dy′ dx

) 1
q

for a constant c depending only on n and β. Defining

f(x) =
∫

Dσρ((x0)′)

|v(x′, xn)− v(y′, xn)|q

|x′ − y′|n−1+βq
dy′

for x = (x′, xn) ∈ Zσρ(x0) we further find( ∫
−
Zr(z)

∣∣v(x)− (v)z′,r(xn)
∣∣ep

dx
) 1ep ≤ c rβ

( ∫
−
Zr(z)

f(x) dx
) 1

q

≤ c rβ sup
Zr̃(z̃)⊆Zσρ(x0), z∈Zr̃(z̃)

( ∫
−
Zr̃(z̃)

f(x) dx
) 1

q

= c rβ
(
M∗(f)(z)

) 1
q =: c(n, β) rβ F (z) ,

where M∗(f)(z) is the maximal function restricted to the cylinder Zσρ(x0), cf. Chapter
5.2.3; note that the supremum is taken over all cylinders containing the point z. Lemma
5.4 then yields the desired result (M∗(f))1/q ∈ Lp(Zσρ(x0)), provided that we can show
f ∈ Lp/q(Zσρ(x0)). We next claim: f ∈ Lp/q(Zσρ(x0)) with∫

Zσρ(x0)
f

p
q dx ≤ cKp ρ(τ−β)p (8.3)
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for a constant c depending only on n, p, τ and β. To this end we apply Hölder’s inequality,
the co area formula and Fubini’s Theorem to find∫

Zσρ(x0)
f

p
q dx =

∫
Zσρ(x0)

( ∫
Dσρ((x0)′)

|v(x′, xn)− v(y′, xn)|q

|x′ − y′|n−1+βq
dy′

) p
q
dx

≤
(
Ln−1(Dσρ((x0)′))

) p−q
q

∫
Zσρ(x0)

∫
Dσρ((x0)′)

|v(x′, xn)− v(y′, xn)|p

|x′ − y′|(n−1) p
q
+βp

dy′ dx

≤ c (σρ)(n−1)( p
q
−1)

∫
Zσρ(x0)

∫ 2σρ

0

∫
Sn−2

h (x′)

|v(x′, xn)− v(y′, xn)|p

h
(n−1) p

q
+βp

dHn−2(y′) dh dx

= c (σρ)(n−1)( p
q
−1)

∫
Zσρ(x0)

∫ 2σρ

0

∫
Sn−2(x′)

|v(x′, xn)− v(x′ + he, xn)|p

h
(n−1) p

q
+βp+2−n

de dh dx

= c (σρ)(n−1)( p
q
−1)

∫ 2σρ

0

∫
Sn−2(x′)

∫
Zσρ(x0)

|τh,ev|p

h
(n−1) p

q
+βp+2−n

dx de dh ,

and the constant c depends only on n, p and q. Using the assumption of the lemma, σ < 1
and taking into account the fact that q = q(n, p, τ, β), we hence conclude∫

Zσρ(x0)
f

p
q dx ≤ c(n, p, q) Kp (σρ)(n−1)( p

q
−1)

Hn−2(Sn−2)
∫ 2σρ

0
h

(τ−β)p+(n−1)(1− p
q
)−1

dh

= c(n, p, τ, β) Kp ρ(τ−β)p ,

provided that (τ−β)p+(n−1)(1− p
q ) > 0 which is equivalent to our choice q > (n−1)p

(τ−β)p+(n−1)

above. This proves (8.3) and therefore the assertion of the lemma. �

8.2.2 Caccioppoli inequality revised

In the sequel we will argue under the permanent assumption that the weak solution u of
system (8.2) is Hölder continuous on Q+ with Hölder exponent λ for some λ ∈ (0, 1). This
assumption will later be justified by the fact that in low dimensions the weak solution u

is a priori known to be Hölder continuous outside a set of Hausdorff dimension n − 2 (and
we are interested in the behaviour of Du on the boundary which is of Hausdorff dimension
n−1). The fact that the oscillations of u are hence arbitrarily small in a cylinder – provided
that the side length of the cylinder is chosen sufficiently small – allows us to deduce an up-
to-the-boundary version of the Caccioppoli inequality in a more or less standard way: the
proof follows the line of arguments in the proof of the Caccioppoli-type inequality in Lemma
3.6, but with simplified estimates because on the one hand we consider the quadratic case
p = 2 and on the other hand, due to the Hölder continuity of u, we do not need to involve
the smallness assumption |u| ≤ M with 2L2M < ν.

Lemma 8.3 (Caccioppoli inequality revised): Let u ∈ W 1,2
Γ (Q+

2 , RN )∩L∞(Q+
2 , RN ) be

a bounded weak solution of (8.2) with coefficients a(·, ·, ·) and inhomogeneity b(·, ·, ·) satisfying
the assumptions (H1)-(H4) and (B2), respectively. Assume further u ∈ C0,λ(Q+, RN ). Then
there exist positive constants c̃cacc = c̃cacc(L

ν , L2
ν ) and ρ̃cacc = ρ̃cacc(L2

ν , λ, [u]C0,λ(Q+,RN )) such
that for every ξ ∈ RN and every cylinder Zρ(y) with y ∈ Q+ ∪ Γ and yn < ρ ≤ ρ̃cacc there
holds: ∫

−
Zρ/2(y)

|Du− ξ ⊗ en|2 dx ≤ c̃cacc

( ∫
−
Zρ(y)

∣∣∣u− ξxn

ρ

∣∣∣2 dx + ρ2β
(
1 + |ξ|

)2+2β
)

for all β ∈ (0, α].
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8.3 A preliminary estimate

Our starting point for all further calculations is the following inequality concerning finite
tangential differences of Du and which is the up to the boundary analogue of [Min03a],
estimate (4.7). More precisely, we consider δ ∈ (0, 1) and assume u ∈ W 1,2

Γ (Q+
2 , RN ) ∩

L∞(Q+
2 , RN ) to be a weak solution of system (8.2); then for every cut-off function η ∈

C∞
0 (Q1−δ, [0, 1]) and every tangential direction e ∈ Sn−1 with e ⊥ en there holds∫

Q+

η2|τe,hDu|2 dx ≤ c

(
|h|2α

∫
Q+∩spt(η)

(
1 + |Du(x + he)|2 + |h|−2|τe,hu(x)|2

)
dx

+
∫

Q+∩spt(η)

(
1 + |Du(x + he)|2

)
|τe,hu(x)|2α dx

+
∫

Q+

(
1 + |Du(x)|2

)
|τe,−h(η2τe,hu(x))| dx

)
(8.4)

for all h ∈ R with |h| < δ, and the constant c depends only on n, N, L
ν , L2

ν , ‖u‖∞ and ‖Dη‖∞.
For the sake of completeness we here give the proof of inequality (8.4): we test the system
(8.2) with the function ϕ = τe,−h(η2τe,hu). Using partial integration for finite differences, we
then obtain∫

Q+

τe,h

(
a(x, u(x), Du(x))

)
·
(
τe,hDu(x) η2 + 2 τe,hu⊗Dη η

)
dx

=
∫

Q+

b(x, u(x), Du(x)) · τe,−h(η2τe,hu) dx . (8.5)

We next decompose the finite differences τs,h

(
a(x, u(x), Du(x))

)
as follows:

τe,h

(
a(x, u(x), Du(x))

)
= a(x + he, u(x + he), Du(x + he))− a(x, u(x + he), Du(x + he))

+ a(x, u(x + he), Du(x + he))− a(x, u(x), Du(x + he))

+ a(x, u(x), Du(x + he))− a(x, u(x), Du(x))

=: A(h) + B(h) + C(h) (8.6)

with the obvious notation. Hence, (8.5) may be rewritten as∫
Q+

C(h) · τe,hDu(x) η2 dx

= −
∫

Q+

A(h) ·
(
τe,hDu(x) η2 + 2 τe,hu⊗Dη η

)
dx

−
∫

Q+

B(h) ·
(
τe,hDu(x) η2 + 2 τe,hu⊗Dη η

)
dx

−
∫

Q+

C(h) · 2 τe,hu⊗Dη η dx +
∫

Q+

b(x, u(x), Du(x)) · τe,−h(η2τe,hu) dx

=: I + II + III + IV . (8.7)

In the next step we estimate the various terms arising in the last inequality:
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Estimate for I: Using Young’s inequality and (H4) we obtain for every ε ∈ (0, 1):∫
Q+

A(h) · τe,hDu(x) η2 dx ≤ Lω(|h|)
∫

Q+

(
1 + |Du(x + he)|

)
|τe,hDu(x)| η2 dx

≤ ε

∫
Q+

|τe,hDu(x)|2 η2 dx + 2 L2 ε−1 |h|2α

∫
Q+∩spt(η)

(
1 + |Du(x + he)|2

)
dx .

Similarly, in view of |h| < 1, we conclude for the second term∫
Q+

A(h) · 2 τe,hu⊗Dη η dx ≤ c(‖Dη‖∞) L |h|α+1

∫
Q+

(
1 + |Du(x + he)|

)
|h|−1|τe,hu| dx

≤ c(‖Dη‖∞) L |h|2α

∫
BR(x0)

(
1 + |Du(x + he)|2 + |h|−2|τe,hu|2

)
dx .

Estimate for II: Applying (H4) and Young’s inequality we find∫
Q+

B(h) · τe,hDu(x) η2 dx ≤ L

∫
Q+

(
1 + |Du(x + he)|

)
|τe,hu(x)|α |τe,hDu(x)| η2 dx

≤ ε

∫
Q+

|τe,hDu(x)|2 η2 dx + 2 L2 ε−1

∫
Q+∩spt(η)

(
1 + |Du(x + he)|2

)
|τe,hu(x)|2α dx ,

and due to the boundedness of u we see for the second term in II:∫
Q+

B(h) · 2 τe,hu⊗Dη η dx ≤ 2 L

∫
Q+

|Dη| η
(
1 + |Du(x + he)|

)
|τe,hu(x)|1+α dx

≤ c
(
‖u‖∞ , ‖Dη‖∞

)
L

∫
Q+∩spt(η)

(
1 + |Du(x + he)|2

)
|τe,hu(x)|2α dx .

Before estimating term III and the left-hand side of (8.7) we observe that C(h) may be
rewritten as follows

C(h) = a(x, u(x), Du(x + he))− a(x, u(x), Du(x))

=
∫ 1

0
Dza

(
x, u(x), Du(x) + tτe,hDu(x))

)
dt τe,hDu(x) =: C̃(h) τe,hDu(x) . (8.8)

Keeping in mind the conditions (H2) and (H3) on Dza(·, ·, ·) we easily check that the following
upper and lower bounds are available for C̃(h):

|C̃(h)| ≤ L and C̃(h) τe,hDu(x) · τe,hDu(x) ≥ ν |τe,hDu(x)|2 .

Estimate for III: Using the upper bound, we compute for term III in the same way as in
the estimates of the previous integrals I and II that we have∫

Q+

C(h) · 2 τe,hu⊗Dη η dx ≤ 2
∫

Q+

|C̃(h)| |τe,hDu(x)| |τe,hu| |Dη| η dx

≤ ε

∫
Q+

|τe,hDu(x)|2 η2 dx + c(‖u‖∞ , ‖Dη‖∞) L2 ε−1

∫
Q+∩spt(η)

|τe,hu(x)|2α dx .

Estimate for the left-hand side of (8.7): The lower bound of C̃(h) is used to estimate∫
Q+

C(h) · τe,hDu(x) η2 dx ≥ ν

∫
Q+

|τe,hDu(x)|2 η2 dx .
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Estimate for IV: For the term with the inhomogeneity b(·, ·, ·) we only need to apply the
growth condition (B2) to infer∫

Q+

b(x, u(x), Du(x)) · τe,−h(η2τe,hu) dx ≤ (L + L2)
∫

Q+

(
1 + |Du|2

)
|τe,−h(η2τe,hu)| dx .

We now combine all the estimates found for the integrals appearing in (8.7) and choose
ε = ν

6 to end up with the desired inequality (8.4). We note that the constant c has the
dependencies stated above.

8.4 Higher integrability of finite differences of Du

We next assume θ ∈ (0, 1), u ∈ C0,λ(Q+, RN ), Zr(x0) ⊂ Q+ with x0 ∈ Q+ ∪ Γ. Then we
choose a standard cut-off function η ∈ C∞

0 (Z(1+θ)r/2(x0), [0, 1]) satisfying η ≡ 1 on Zθr(x0)
and |Dη| ≤ c

(1−θ)r . We easily infer from (8.4):∫
Zθr(x0)

|τe,hDu|2 dx ≤ c |h|αλ

∫
Zr(x0)

(
1 + |Du|2

)
dx (8.9)

for all e ∈ Sn−1 with e ⊥ en, h ∈ R satisfying |h| < r(1−θ)
2 , and the constant c depends only on

n, N, L
ν , L2

ν , [u]C0,λ(Q+,RN ), θ and r. Note that we have ‖u‖L∞(Q+,RN ) ≤ [u]C0,λ(Q+,RN ) because
u is assumed to vanish on Γ. Moreover, the coefficients a(·, ·, ·) and the inhomogeneity b(·, ·, ·)
satisfy the hypotheses of Lemma 6.2 which ensures the existence of a higher integrability
exponent s̃ > 2 depending only on n, N, L

ν , L2
ν and [u]C0,λ(Q+,RN ) such that we have u ∈

W 1,es(Q+
ρ , RN ) for all ρ < 1. Furthermore, for every centre x0 ∈ Q+ ∪ Γ and every radius

ρ ∈ (0, 1− |x0|) there holds:( ∫
−
Zρ/2(x0)

|Du|es dx
) 1es ≤ c

(
n, N, L

ν , L2
ν , [u]C0,λ(Q+,RN )

) ( ∫
−
Zρ(x0)

(
1 + |Du|2

)
dx

) 1
2
. (8.10)

Employing the previous two estimates we obtain similarly to [Min03a, Section 5, step 2] a
higher integrability result for τe,hDu:

Proposition 8.4: Let u ∈ W 1,2
Γ (Q+

2 , RN )∩L∞(Q+
2 , RN )∩C0,λ(Q+, RN ) be a weak solution

of (8.2) under the assumptions (H1)-(H4) and (B2). Furthermore, let Zρ(x0) ⊂ Q+ for
some x0 ∈ Q+ ∪ Γ, σ ∈ (0, 1

10), e ∈ Sn−1 with e ⊥ en and h ∈ R with |h| ∈ (0, 2σρ).
Then there exists a higher integrability exponent s ∈ (2, s̃) depending only on n, N, L

ν , L2
ν and

[u]C0,λ(Q+,RN ) such that∫
−
Zσρ(x0)

|τe,hDu|s dx ≤ c |h|
αλs
2

( ∫
−
Zρ(x0)

(
1 + |Du|2

)
dx

) s
2

for a constant c= c
(
n, N, L

ν , L2
ν , [u]C0,λ(Q+,RN ), ρ, σ

)
. Here, s̃ = s̃

(
n, N, L

ν , L2
ν , [u]C0,λ(Q+,RN )

)
is the higher integrability exponent of Du.

Proof: We consider in the sequel the tangential directions e ∈ Sn−1, i. e., e ⊥ en, and we
initially look at numbers h ∈ R satisfying |h| < 1. Taking τe,−hϕ with ϕ ∈ C∞

0 (Q+
1−|h|, R

N )
as a test function and making use of the partial integration formula for finite differences we
rewrite the system (8.2) in its weak form as follows:∫

Q+

[
A(h) + B(h) + C(h)

]
·Dϕ dx =

∫
Q+

b(x, u, Du) · τe,−hϕ dx ,
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where the abbreviations for A(h), B(h) and C(h), representing the differences of the coeffi-
cients a(·, ·, ·) with respect to each variable, were introduced in (8.6). We set

vh :=
τe,hu

|h|
αλ
2

, Ã(h) :=
−A(h)

|h|
αλ
2

, B̃(h) :=
−B(h)

|h|
αλ
2

,

and we recall the definition of C̃(h) =
∫ 1
0 Dza

(
x, u(x), Du(x) + tτe,hDu(x))

)
dt in (8.8).

Dividing the previous identity by |h|αλ/2 we get∫
Q+

C̃(h) Dvh·Dϕ dx =
∫

Q+

[
Ã(h)+B̃(h)

]
·Dϕ dx+

∫
Q+

|h|−
αλ
2 b(x, u, Du)·τe,−hϕ dx (8.11)

for all functions ϕ ∈ C∞
0 (Q+

1−|h|, R
N ), i. e., the map vh ∈ W 1,2(Q+

1−|h|, R
N ) is a weak solution

to the linear system (8.11) for every h ∈ R with |h| < 1. In the next step we are going to
infer Caccioppoli-type inequalities for the functions vh, where the constants may be chosen
independently of the parameter h. For this purpose we first observe some simple properties
of the new system: taking into account the assumptions (H1)-(H4) and the Hölder continuity
of u with exponent λ, we immediately find the following upper and lower bounds:

|Ã(h)| ≤ L
(
1 + |Du(x + he)|

)
,

|B̃(h)| ≤ L [u]αC0,λ(B+,RN )

(
1 + |Du(x + he)|

)
,

ν |λ̃|2 ≤ C̃(h)λ̃⊗ λ̃ ≤ L |λ̃|2 ∀ λ̃ ∈ RnN .

For σ, ρ and x0 fixed according to the assumptions of the proposition, we next choose h ∈ R
such that |h| ∈ (0, 2σρ) and consider intersections of balls B+

R(y) with the upper half-
plane Rn−1 × R+ for centres y ∈ Z(1−σ)ρ/2(x0) satisfying B+

R(y) ⊂ Q+
1−|h| (implying that

0 < R < 1−|h|−maxk∈{1,...,n} |yk|) and yn ≤ 3R
4 , i. e., we first study the situation for centres

close to the boundary. Furthermore, we take a cut-off function η ∈ C∞
0 (B3R/4(y), [0, 1])

satisfying η ≡ 1 on BR/2(y) and |Dη| ≤ 8
R , and we choose ϕ := η2vh as a test function in

(8.11) which is admissible by a standard approximation argument. Taking into account

Dϕ = η2 Dvh + 2 η vh ⊗Dη

we estimate the various terms arising in (8.11): using Young’s inequality with ε ∈ (0, 1) and
the estimates for Ã(h), B̃(h) and C̃(h) given above we see

• ν

∫
B+

R(y)
η2 |Dvh|2 dx ≤

∫
B+

R(y)
η2 C̃(h) Dvh ·Dvh dx ,

•
∫

B+
R(y)

2 η |C̃(h)Dvh · vh ⊗Dη| dx ≤ ε

∫
B+

R(y)
η2 |Dvh|2 dx +

cL2

ε R2

∫
B+

R(y)
|vh|2 dx ,

•
∫

B+
R(y)

|Ã(h) ·Dϕ| dx ≤ ε

∫
B+

R(y)
η2 |Dvh|2 dx +

L

R2

∫
B+

R(y)
|vh|2 dx

+ c
(
ε−1L2 + L

) ∫
B+

R(y)

(
1 + |Du(x + he)|2

)
dx ,

•
∫

B+
R(y)

|B̃(h) ·Dϕ| dx ≤ ε

∫
B+

R(y)
η2 |Dvh|2 dx +

c ε

R2

∫
B+

R(y)
|vh|2 dx

+ c
(
[u]C0,λ(B+,RN )

)
ε−1L2

∫
B+

R(y)

(
1 + |Du(x + he)|2

)
dx .
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In order to estimate the last integral on the right-hand side of (8.11) we first recall the
definition vh = |h|−

αλ
2 τe,hu and calculate

∣∣τe,−hϕ
∣∣ =

∣∣τe,−h(η2vh)
∣∣ = |h|−

αλ
2

∣∣τe,−h(η2τe,hu)
∣∣

≤ |h|−
αλ
2

(
|τe,hu(x− he)|+ |τe,hu(x)|

)
≤ 2 [u]C0,λ(Q+,RN ) |h|λ−

αλ
2 . (8.12)

This yields

•
∫

B+
R(y)

|h|−
αλ
2 |b(x, u, Du) · τe,−hϕ| dx ≤ c

(
[u]C0,λ(Q+,RN )

) ∫
B+

R(y)

(
L + L2 |Du(x)|2

)
dx .

Collecting the estimates for all terms arising in equation (8.11) and choosing ε = ν
6 , we

finally conclude the Caccioppoli-type estimate∫
B+

R/2
(y)
|Dvh|2 dx ≤ cR−2

∫
B+

R(y)
|vh|2 dx + c

∫
B+

R(y)

(
1 + |Du(x)|2 + |Du(x + he)|2

)
dx ,

and the constant c depends only on L
ν , L2

ν and [u]C0,λ(Q+,RN ). With the boundary version of
the Sobolev-Poincaré inequality, Lemma A.5, we deduce

∫
−
B+

R/2
(y)
|Dvh|2 dx ≤ c

( ∫
−
B+

R(y)
|Dvh|

2n
n+2 dx

)n+2
n

+ c

∫
−
B+

R(y)

(
1 + |Du(x)|2 + |Du(x + he)|2

)
dx ,

and the constant c depends only on n, N, L
ν , L2

ν and [u]C0,λ(Q+,RN ). We here note that the
integrand of the second integral on the right-hand side of the last inequality belongs to Les/2

due to the higher integrability result for Du from (8.10).

In the interior we proceed analogously and consider B+
R(y) with centres y ∈ Z(1−σ)ρ/2(x0)

satisfying B+
R(y) ⊂ Q+

1−|h| and yn > 3R
4 . If we choose ϕ := η2

(
vh − (vh)y,3R/4

)
as a test

function all the computations above remain valid (with 2 replaced by 4 in inequality (8.12)).
Then, after applying the Sobolev-Poincaré inequality in the interior in the mean value version
on the ball B3R/4(y), we obtain the corresponding inequality

∫
−
BR/2(y)

|Dvh|2 dx ≤ c
( ∫
−
B+

R(y)
|Dvh|

2n
n+2 dx

)n+2
n

+ c

∫
−
B+

R(y)

(
1 + |Du(x)|2 + |Du(x + he)|2

)
dx ,

and c has exactly the same dependencies as in the previous reverse Hölder-type inequality;
in particular, the constant c is independent of the parameter h. Applying the global Gehring
Lemma, Theorem A.14, on the cylinder Z(1−σ)ρ/2(x0) for the choices of σ, ρ and x0 made in
the assumptions of the proposition, we obtain that there exist a constant c depending only
on n, N, q, L

ν , L2
ν , [u]C0,λ(Q+,RN ) and σ and a positive number δ depending only on n, N, L

ν , L2
ν



8.4. Higher integrability of finite differences of Du 159

and [u]C0,λ(Q+,RN ) such that there holds

( ∫
−
Zσρ(x0)

|Dvh|q dx
) 1

q

≤ c
[( ∫
−
Z(1−8σ)ρ/2(x0)

|Dvh|2 dx
) 1

2 +
( ∫
−
Z(1−8σ)ρ/2(x0)

(
1 + |Du(x)|2 + |Du(x + he)|2

) q
2 dx

) 1
q
]

≤ c
[
|h|−

αλ
2

( ∫
−
Z(1−8σ)ρ/2(x0)

|τe,hDu|2 dx
) 1

2 +
( ∫
−
Zρ/2(x0)

(
1 + |Du(x)|2

) q
2 dx

) 1
q
]

≤ c
[( ∫
−
Zρ/2(x0)

(
1 + |Du|2

)
dx

) 1
2 +

( ∫
−
Zρ/2(x0)

(
1 + |Du|2

) q
2 dx

) 1
q
]

≤ c
( ∫
−
Zρ/2(x0)

(
1 + |Du|2

) q
2 dx

) 1
q

for all q ∈ [2, 2 + δ). Here, we have also used the bound |h| < 2σρ (with |σ| < 1
10), the

estimate (8.9) on finite differences and Jensen’s inequality. We notice that, in view of the
dependencies appearing in (8.9), the constant c depends additionally on the radius ρ. Hence,
for all s ∈ (2, min{s̃, 2 + δ}), where s̃ > 2 is the higher integrability exponent of Du from
(8.10), the previous inequality holds true; moreover, keeping in mind the definition of vh and
the higher integrability result (8.10), we finally arrive at

( ∫
−
Zσρ(x0)

|τe,hDu|s dx
) 1

s = |h|
αλ
2

( ∫
−
Zσρ(x0)

|Dvh|s dx
) 1

s

≤ c |h|
αλ
2

( ∫
−
Zρ/2(x0)

(
1 + |Du|2

) es
2 dx

) 1es

≤ c |h|
αλ
2

( ∫
−
Zρ(x0)

(
1 + |Du|2

)
dx

) 1
2
,

which finishes the proof of the proposition. �

Moreover, we want to mention two direct consequences of Proposition 8.4. The first one
follows from Lemma 8.2 and concerns the slicewise mean-square deviation of Du:

Corollary 8.5: Let u ∈ W 1,2
Γ (Q+

2 , RN ) ∩ L∞(Q+
2 , RN ) ∩ C0,λ(Q+, RN ) be a weak solution

of (8.2) under the assumptions (H1)-(H4) and (B2). Furthermore, let Zρ(x0) ⊂ Q+ for
some x0 ∈ Q+ ∪ Γ and σ ∈ (0, 1

10). Then for every γ ∈ (0, 1) there exists a function
F1 ∈ Ls(Zσρ(x0)) (s > 2 still denotes the higher integrability exponent from Proposition 8.4)
such that the following estimate holds true:

( ∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣2 dx

) 1
2

≤
( ∫
−
Zr(z)

∫
−
Dr(z′)

|Du(x′, xn)−Du(y′, xn)|2 dy′ dx
) 1

2 ≤ c r
γαλ
2 F1(z)

for all cylinders Zr(z) ⊂ Zσρ(x0) with z ∈ Q+∪Γ, and the constant c depends only on n, α, λ

and γ.
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Remarks: We note that the Ls-norm of F1 might blow up if γ ↗ 1 because in that case
the application of the Lq-inequality for the maximal operator in the proof of Lemma 8.2
becomes critical (meaning that q ↘ 1), cf. Lemma 5.4 and the Remark thereafter.

Moreover, when verifying the assumptions of Lemma 8.2, we observe that the number K

(resulting from the inequality in Proposition 8.4) depends on the radius ρ and on σ. This
dependency is reflected only in the Ls-norm of F1. However, in the sequel this is not of im-
portance because ρ and σ may be chosen fixed in every step of the subsequent iteration. More
precisely, in the next section the cylinders Zσρ(x0) will be used to infer appropriate fractional
Sobolev estimates on them and then, via a covering argument, also on Q+ (respectively on
smaller half-cubes in the course of the iteration).

As a second consequence of Proposition 8.4 we obtain that the tangential derivative is already
known to be in a suitable fractional Sobolev space. This follows immediately from Lemma
2.5 and the inclusion W θ,s ⊆ M θ,s (for θ ∈ (0, 1), s ∈ (1,∞)) given in Remark 2.9.

Corollary 8.6: Let u ∈ W 1,2
Γ (Q+

2 , RN )∩L∞(Q+
2 , RN )∩C0,λ(Q+, RN ) be a weak solution of

(8.2) under the assumptions (H1)-(H4) and (B2). Then for every γ ∈ (0, 1) there holds

D′u = (D1u, . . . , Dn−1u) ∈ Mγαλ/2,s(Q+
ρ , R(n−1)N )

for every ρ < 1. In particular, there exists a function H1 ∈ Ls(Q+
1/2) such that

|D′u(x)−D′u(y)| ≤ |x− y|
γαλ
2

(
H1(x) + H2(y)

)
for almost all x, y ∈ Q+

1/2.

8.5 An estimate for the full derivative

So far, we can estimate finite differences close to the boundary only with respect to tangential
directions. Therefore, we have obtained that the tangential derivative D′u belongs to a
fractional Sobolev space. In order to find a fractional Sobolev estimate of type (2.2) also
with respect to normal direction we next choose a cylinder Zρ(x0) ⊂ Q+, x0 ∈ Q+ ∪ Γ,
ρ ≤ ρ̃cacc where ρ̃cacc is from Lemma 8.3, and σ ∈ (0, 1

10). Furthermore, we fix a number
γ ∈ (0, 1) to be specified later. In the sequel we study the model system (8.2) on cylinders
Zr(z) with z ∈ Q+ ∪ Γ such that Z2r(z) ⊂ Zσρ(x0), and by M∗ we will always denote the
maximal operator restricted to the cylinder Zσρ(x0), i. e.,

M∗(f)(z) := sup
Zr̃(z̃)⊆Zσρ(x0), z∈Zr̃(z̃)

∫
−
Zr̃(z̃)

|f(x)| dx .

for every f ∈ L1(Zσρ(x0), Rk), k ≥ 1, and z ∈ Zσρ(x0). In coordinates we have the following
representation of the weak formulation for the system (8.2):

N∑
j=1

n∑
κ=1

∫
−
Zr(z)

aj
κ(x, u(x), Du(x)) Dκϕj dx =

N∑
j=1

∫
−
Zr(z)

bj(x, u(x), Du(x)) ϕj dx (8.13)

for all ϕ ∈ C∞
0 (Zr(z), RN ).
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8.5.1 A fractional Sobolev estimate for an( · ,u,Du)

In the first step we are going to derive a weak differentiability result for the function

Aj
r(xn) :=

∫
−
Dr(z′)

aj
n(x′, xn, u(x′, xn), Du(x′, xn))dx′ (8.14)

for every j ∈ {1, . . . , N} and xn ∈ Ir(zn). For this purpose we choose a “splitting” test
function of the form ϕ(x) = φ1(x′) φ2(xn) Ej where φ1 ∈ C∞

0 (Dr(z′)) with φ1 ≡ 1 on
the (n − 1)-dimensional ball Dτr(z′) for some τ ∈ (0, 1), φ2 ∈ C∞

0 (Ir(zn)), and where Ej

denotes the standard unit coordinate vector in RN . Testing (8.13) with ϕ then yields for
j ∈ {1, . . . , N}:∫
−
Ir(zn)

∫
−
Dr(z′)

aj
n(x, u(x), Du(x)) φ1(x′) Dnφ2(xn) dx′ dxn

= −
∫
−
Ir(zn)

∫
−
Dr(z′)

n−1∑
κ=1

aj
κ(x, u(x), Du(x)) Dκφ1(x′) φ2(xn) dx′ dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) φ1(x′) φ2(xn) dx′ dxn

= −
∫
−
Ir(zn)

1
|Dr(z′)|

∫
Dr(z′)\Dτr(z′)

n−1∑
κ=1

aj
κ(x, u(x), Du(x)) Dκφ1(x′) φ2(xn) dx′ dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) φ1(x′) φ2(xn) dx′ dxn

= −
∫
−
Ir(zn)

1
|Dr(z′)|

∫ r

τr

∫
∂Der(z′)

n−1∑
κ=1

[
aj

κ(x, u(x), Du(x))− aj
κ(z, (u)z,r, (Du)z′,r(xn))

]
×Dκφ1(x′) dHn−2(x′) dr̃ φ2(xn) dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) φ1(x′) dx′ φ2(xn) dxn ,

where we have used the co area formula in the last line. In particular, we may choose by
approximation

φ1(x′) =


1 if |x′ − z′| ≤ τr ,

r−|x′−z′|
(1−τ)r if τr < |x′ − z′| < r ,

0 if |x′ − z′| ≥ r .

We note that this implies Dκφ1(x′) = − 1
(1−τ)r

xκ−zκ
|x′−z′| for every κ ∈ {1, . . . , n − 1} provided

that |x′ − z′| ∈ (τr, r). Setting

Bj
κ(x) = aj

κ(x, u(x), Du(x))− aj
κ(z, (u)z,r, (Du)z′,r(xn)) (8.15)

for j ∈ {1, . . . , N} and κ ∈ {1, . . . , n − 1}, we calculate with this particular choice for the
cut-off function φ1:∫

−
Ir(zn)

∫
−
Dr(z′)

aj
n(x, u(x), Du(x)) φ1(x′) dx′ Dnφ2(xn) dxn

=
∫
−
Ir(zn)

1
|Dr(z′)|

∫
−

r

τr

∫
∂Der(z′)

Bj(x) · x′ − z′

|x′ − z′|
dHn−2(x′) dr̃ φ2(xn) dxn

+
∫
−
Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) φ1(x′) dx′ φ2(xn) dxn .
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Recalling the definition of Aj
r(xn) given in (8.14) we consider the limit τ ↗ 1 and conclude

from Lebesgue’s differentiation Theorem for almost every radius r (and fixed centre z ∈
Zσρ(x0)) such that Zr(z) ⊂ Zσρ(x0):∫

Ir(zn)
Aj

r(xn) Dnφ2(xn) dxn =
∫

Ir(zn)

1
|Dr(z′)|

∫
∂Dr(z′)

Bj(x) · x′ − z′

|x′ − z′|
dHn−2(x′) φ2(xn) dxn

+
∫

Ir(zn)

∫
−
Dr(z′)

bj(x, u(x), Du(x)) dx′ φ2(xn) dxn .

Hence, for almost every radius r with Zr(z) ⊂ Zσρ(x0) we find that the function Ar(xn) =
(A1

r(xn), . . . , AN
r (xn)) is weakly differentiable on Ir(zn) (note that the index j ∈ {1, . . . , N}

and φ2 are arbitrary in the latter identity), and its weak derivative is given by

A′
r(xn) = − 1

|Dr(z′)|

∫
∂Dr(z′)

B(x) · x′ − z′

|x′ − z′|
dHn−2(x′)

−
∫
−
Dr(z′)

b(x, u(x), Du(x)) dx′ . (8.16)

We next consider for any fixed r all radii ρ̃ ∈ (0, r] and we define the set J via

J =
{

ρ̃ : ρ̃ ∈ (0, r] and
∫

Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn >
2
r

∫
Zr(z)

|B(x)| dx
}

.

The following computations reveals that there holds L1(J) < r
2 : employing the co area

formula and Fubini’s Theorem yields∫
Zr(z)

|B(x)| dx =
∫

Ir(zn)

∫ r

0

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dρ̃ dxn

≥
∫ r

0

∫
Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn dρ̃

≥
∫

J

∫
Ieρ(zn)

∫
∂Deρ(z′)

|B(x)| dHn−2(x′) dxn dρ̃

>

∫
J

2
r

∫
Zr(z)

|B(x)| dx dρ̃ = L1(J)
2
r

∫
Zr(z)

|B(x)| dx .

Therefore, we find some radius ρ̄ ∈ [ r
2 , r] such that on the one hand Aρ̄(xn) is weakly

differentiable and on the other hand ρ̄ /∈ J , i. e., we have∫
Iρ̄(zn)

∫
∂Dρ̄(z′)

|B(x)| dHn−2(x′) dxn ≤ 2
r

∫
Zr(z)

|B(x)| dx .

Hence, in view of Poincaré’s inequality and identity (8.16), we obtain for this choice of ρ̄:∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄

∣∣ dxn ≤ c(N)
∫

Iρ̄(zn)

∣∣A′
ρ̄(xn)

∣∣ dxn

≤ c(N)
|Dρ̄(z′)|

∫
Iρ̄(zn)

∫
∂Dρ̄(z′)

|B(x)| dHn−2(x′) dxn

+ c(N)
∫

Iρ̄(zn)

∫
−
Dρ̄(z′)

|b(x, u(x), Du(x))| dx′ dxn

≤ c(N)
[ 1
|Dρ̄(z′)| r

∫
Zr(z)

|B(x)| dx + ρ̄

∫
−
Zρ̄(z)

|b(x, u(x), Du(x))| dx
]

≤ c(n, N)
[ ∫
−
Zr(z)

|B(x)| dx + r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx
]
. (8.17)
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In the next step we want to control the integrals arising on the right-hand side of the
last inequality by using the growth conditions on a(·, ·, ·) and b(·, ·, ·) and by exploiting the
assumption that u is Hölder continuous with exponent λ.

For the first integral in (8.17) we use the definition of B(x) in (8.15), the assumptions (H2),
(H4), the Hölder continuity of u, and Corollary 8.5 to see∫

−
Zr(z)

∣∣B(x)
∣∣ dx ≤

∫
−
Zr(z)

[ ∣∣a(x, u(x), Du(x))− a(x, u(x), (Du)z′,r(xn))
∣∣

+
∣∣a(x, u(x), (Du)z′,r(xn))− a(z, (u)z,r, (Du)z′,r(xn))

∣∣ ]
dx

≤ L

∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣ dx

+ 4 L
(
rα + [u]αC0,λ(Q+,RN ) rαλ

) ∫
−
Zr(z)

(
1 + |(Du)z′,r(xn)|

)
dx

≤ c r
γαλ
2

(
F1(z) + M∗(1 + |Du|

)
(z)

)
,

and the constant c depends only on n, L, [u]C0,λ(Q+,RN ), α, λ and γ. Moreover, the functions
F1 and M∗(1 + |Du|

)
belong to the space Ls(Zσρ(x0)), due to Corollary 8.5 and the higher

integrability of Du combined with Lemma 5.4 on the maximal function, respectively.

For the second integral in (8.17), we initially assume that we are close to the boundary,
meaning that zn < 2r. Then, we infer the following estimate from the natural growth
condition (B2) on the inhomogeneity, the Caccioppoli inequality from Lemma 8.3 (note that
2r ≤ ρ̃cacc), the Hölder continuity of u and the Poincaré inequality in the boundary version:

r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx ≤ r

∫
−
Zr(z)

(L + L2 |Du|2) dx

≤ r L2 c̃cacc

( ∫
−
Z2r(z)

∣∣∣u
r

∣∣∣2 dx + r2α
)

+ r L

≤ c
(
r1−1+λ

∫
−
Z2r(z)

|Du| dx + r2α+1
)

+ r L

≤ c rλ M∗(1 + |Du|
)
(z) ,

and the constant c depends only on n, N,L, L2, ν and [u]C0,λ(Q+,RN ). For cylinders in the inte-
rior, where zn ≥ 2r, we end up with exactly the same estimate using an interior Caccioppoli-
type inequality corresponding to the statement in Lemma 8.3 and the Poincaré inequality
where in both cases |u| is replaced by |u− (u)z,2r|.

Hence, combining the last two estimates, we conclude from (8.17)∫
−
Zρ̄(zn)

∣∣∣ ∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′ −
∫
−
Zρ̄(z)

an(ỹ, u(ỹ), Du(ỹ)) dỹ
∣∣∣ dx

=
∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄

∣∣ dxn ≤ c r
γαλ
2

[
F1(z) + M∗(1 + |Du|

)
(z)

]
, (8.18)

and the constant c depends only on n, N,L, L2, ν, [u]C0,λ(Q+,RN ), α, λ and γ. Besides, we
have F1, M∗(1 + |Du|

)
∈ Ls(Zσρ(x0)) for some s > 2. We mention here that the Ls-norm

of F1 might diverge for γ ↗ 1, see the comments after Corollary 8.5. Furthermore, applying
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Jensen’s inequality, the Hölder continuity of a(·, ·, ·) with respect to the first two variables
in (H4), condition (H2), the Hölder continuity of u and Corollary 8.5 we find∫
−
Zρ̄(z)

∣∣∣an(x, u(x), Du(x))−
∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′
∣∣∣ dx

≤
∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣an(x′, xn, u(x′, xn), Du(x′, xn))− an(y′, xn, u(y′, xn), Du(x′, xn))
∣∣ dy′ dx

+
∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣an(y′, xn, u(y′, xn), Du(x′, xn))− an(y′, xn, u(y′, xn), Du(y′, xn))
∣∣ dy′ dx

≤ c
(
L, [u]C0,λ(Q+,RN )

)
ρ̄αλ

∫
−
Zρ̄(z)

(
1 + |Du|

)
dx

+ L

∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣Du(x′, xn)−Du(y′, xn)
∣∣ dy′ dx

≤ c
(
n, L, [u]C0,λ(Q+,RN ), α, λ, γ

)
ρ̄

γαλ
2

[
M∗(1 + |Du|

)
(z) + F1(z)

]
. (8.19)

Hence, combining (8.18) and (8.19), we conclude∫
−
Zρ̄(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,ρ̄

∣∣ dx ≤ c r
γαλ
2

[
M∗(1 + |Du|

)
(z) + F1(z)

]
for every r with Zr(z) ⊂ Zσρ(x0) and an appropriate radius ρ̄ ∈ [ r

2 , r] for which Aρ̄(xn) is
weakly differentiable on Ir(zn) and ρ̄ /∈ J . The constant c here depends only on n, N,L, L2, ν,
[u]C0,λ(Q+,RN ), α, λ and γ. In particular, this yields∫
−
Zr/2(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,r/2

∣∣ dx ≤ c r
γαλ
2

[
M∗(1 + |Du|

)
(z) + F1(z)

]
,

and the constant c admits the same dependencies as in the previous inequality. This allows
us to apply the characterization of fractional Sobolev spaces given in Lemma 2.8 and Remark
2.9 (note that these results also hold true if we replace the balls by cubes or cylinders). Since
the cylinders Zρ(x0) ⊂ Q+ were chosen arbitrarily we infer via a covering argument

an( · , u,Du) ∈ M
γαλ
2

,s(Q+
1/2, R

N ) .

Furthermore, there exists a function G1 ∈ Ls(Q+
1/2, R

N ) which satisfies

|an(x, u(x), Du(x))− an(y, u(y), Du(y))| ≤ |x− y|
γαλ
2

(
G1(x) + G1(y)

)
for almost every x, y ∈ Q+

1/2. We finally note that G1 can be calculated from c, M∗(1+|Du|
)
,

F1(z) and the restriction on the radius ρ.

We close this section with some remarks concerning the components ak(·, u,Du) of the
coefficients, k ∈ {1, . . . , n− 1}, and the interior situation:

Remarks 8.7: We first note that testing the system (8.2) with finite differences in normal
direction of the weak solution u is not allowed. Hence, the statement in Proposition 8.4
cannot be expected to cover (via a modified proof) also differences of Du in any arbitrary
direction e ∈ Sn−1 up to the boundary. This reveals the crucial point for the up-to-the-
boundary estimates derived in this section: our method makes only an up to the boundary
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estimate for an(·, u,Du) available – which is still sufficient to enable us later to find an ap-
propriate fractional Sobolev estimate for Du – but a corresponding estimate for ak(·, u,Du),
k ∈ {1, . . . , n− 1}, does not follow.

For cylinders in the interior, however, Proposition 8.4 holds true for every direction e ∈
Sn−1. As a consequence, we may repeat the arguments above line-by-line and end up with
an interior fractional estimate for the full coefficients a(·, u,Du). We here mention that
fractional Sobolev estimates for the coefficients a(·, u,Du) are not necessary in this situation.
In fact, interior fractional Sobolev estimates for weak solutions of quadratic systems with
inhomogeneities obeying a natural growth condition can be obtained directly by exploiting
the fundamental estimate (8.4); for this we refer to [Min03a].

8.5.2 A fractional Sobolev estimate for Du

Following the approach of [Kro] we next derive a fractional Sobolev estimate for Dnu from
the last section: The ellipticity condition (H3) and the upper bound in (H2) allow us to
estimate [

an(x, u(x), Du(x))− an(x, u(x), Du(y))
]
·
(
Dnu(x)−Dnu(y)

)
=

∫ 1

0
Dzan

(
x, u(x), Du(y) + t(Du(x)−Du(y))

)
dt(

Du(x)−Du(y)
)
·
(
Dnu(x)−Dnu(y)

)
≥ ν |Dnu(x)−Dnu(y)|2 − L |D′u(x)−D′u(y)| |Dnu(x)−Dnu(y)|

for almost all x, y ∈ Q+
1/2. Dividing by |Dnu(x)−Dnu(y)| (provided that Dnu(x) 6= Dnu(y)

which is the trivial case) and taking into account the fractional Sobolev estimates for both
an(·, u,Du) and the tangential derivative D′u given in Corollary 8.6, condition (H4) and the
Hölder continuity of u, the latter inequality implies

ν |Dnu(x)−Dnu(y)| ≤
∣∣an(x, u(x), Du(x))− an(x, u(x), Du(y))

∣∣ + L |D′u(x)−D′u(y)|
≤

∣∣an(y, u(y), Du(y))− an(x, u(x), Du(y))
∣∣ +

∣∣an(x, u(x), Du(x))− an(y, u(y), Du(y))
∣∣

+ L |D′u(x)−D′u(y)|
≤ L

(
|x− y|α + [u]αC0,λ(Q+,RN )|x− y|αλ

) (
1 + |Du(y)|

)
+ |x− y|

γαλ
2

(
G1(x) + G1(y)

)
+ L |x− y|

γαλ
2

(
H1(x) + H1(y)

)
≤ c(L, [u]C0,λ(Q+,RN )) |x− y|

γαλ
2

(
1 + |Du(y)|+ G1(x) + G1(y) + H1(x) + H1(y)

)
for almost every x, y ∈ Q+

1/2, meaning that we have

Dnu ∈ M
γαλ
2

,s(Q+
1/2, R

N ) .

Combined with Corollary 8.6 stating that D′u belongs to the same fractional Sobolev space,
we end up with

Du ∈ M
γαλ
2

,s(Q+
1/2, R

nN )

which is the desired estimate for the full derivative Du. We remind the embedding for the
fractional Sobolev spaces, namely that

Mγαλ/2,s(Q+
1/2, R

nN ) ⊂ W γ′γαλ/2,s(Q+
1/2, R

nN )
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for all γ′ ∈ (0, 1). Then, in view of the fact that γ and γ′ may be chosen arbitrarily close
to 1 and the interpolation Theorem 2.7 due to Campanato, we finally arrive at the higher
integrability result

Du ∈ Ls(1+αλ/2)(Q+
1/2, R

nN ) .

Calculating the limiting exponent in Theorem 2.7 reveals that setting γ = γ′ = ( n
n+2λ)1/2,

for example, is an appropriate choice.

8.6 Iteration

In the next step we are going to iterate the fractional Sobolev estimate for Du. To this aim
we define a sequence {bk}k∈N as follows:

b0 := 0, bk+1 :=
αλ

2
+ bk

(
1− λ

2

)
= bk +

αλ

2
(α− bk)

for all k ∈ N0. We observe that the sequence {bk} is increasing with bk ↗ α. The strategy
of the proof will be the following: For every k ∈ N0 we will show the following inclusions:

Du ∈ Lsk(1+bk) → Du ∈ Mγbk+1,sk+1 → Du ∈ Lsk+1(1+bk+1)

(on appropriate half-cubes with decreasing radius), where γ ∈ (0, 1) is an arbitrary number
and where (sk)k∈N is a decreasing sequence of higher integrability exponents with sk > 2
for every k ∈ N0. We will next establish suitable estimates by induction. The first step
of the induction, k = 0, was already performed above (with s0 = s̃, s1 = s). We now
proceed to the inductive step and suppose that for some fixed number k ∈ N we have
proved Du ∈ Lsk(1+bk)(Q+

1/2k , RnN ). The objective is to conclude in a first step Du ∈
Mγbk+1,sk+1(Q+

1/2k+1 , RnN ) by improving the estimates reached in Section 8.5.1. In the second

step we will then deduce the higher integrability result Du ∈ Lsk+1(1+bk+1)(Q+
1/2k+1 , RnN )

from the fractional Sobolev estimate by applying the interpolation Theorem 2.7.

8.6.1 Higher integrability

In the first step (cf. Proposition 8.4) we again deduce a higher integrability result for the
tangential differences τe,hDu which now incorporates the fact that Du is assumed to be higher
integrable with exponent sk(1 + bk). In what follows we will frequently use the inequality

αλ + bk(1− λ) ≥ αλ

2
+ bk

(
1− λ

2

)
= bk+1

which we infer from the fact fact that bk ≤ α.

Proposition 8.8: Let u ∈ W 1,2
Γ (Q+

2 , RN )∩L∞(Q+
2 , RN )∩C0,λ(Q+, RN ) be a weak solution

to the inhomogeneous system (8.2) under the assumptions (H1)-(H4) and (B2). Assume
further u ∈ W

1,sk(1+bk)
Γ (Q+

1/2k , RN ) for some k ∈ N, sk > 2, and let Zρ(x0) ⊂ Q+
1/2k for some

x0 ∈ Γ1/2k ∪ Q+
1/2k , σ ∈ (0, 1

5), e ∈ Sn−1 with e ⊥ en and h ∈ R satisfying |h| ∈ (0, 2σρ).
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Then there exists a higher integrability exponent sk+1 ∈ (2, sk) depending only on n, N, L
ν , L2

ν

and [u]C0,λ(Q+,RN ) such that∫
−
Zσρ(x0)

|τe,hDu|sk+1 dx ≤ c |h|sk+1bk+1

( ∫
−
Zρ(x0)

(
1 + |Du(x)|

)sk(1+bk)
dx

) sk+1
sk

for a constant c = c
(
n, N, L

ν , L2
ν , [u]C0,λ(Q+,RN ), ρ, σ

)
.

Proof: We start by deriving an estimate for tangential differences similar to (8.9), namely
we show that for every θ ∈ (0, 1) and every cylinder Zr(x0) ⊂ Q+

1/2k there holds∫
Zθr(x0)

|τe,hDu|2 dx ≤ c |h|2bk+1

∫
Zr(x0)

(
1 + |Du|

)2+2bk dx (8.20)

for all e ∈ Sn−1 with e ⊥ en and h ∈ R satisfying |h| < r(1−θ)
2 . Furthermore, the constant c

depends only on n, N, L
ν , L2

ν , [u]C0,λ(Q+,RN ), θ and r. For this purpose we choose a standard
cut-off function

η ∈ C∞
0

(
D(1+θ)r/2(x′0)× ((x0)n − (1 + θ)r/2, (x0)n + (1 + θ)r/2), [0, 1]

)
satisfying η ≡ 1 on Zθr(x0) and |Dη| ≤ c(n)

(1−θ)r , and we then study the different terms arising
on the right-hand side of the preliminary estimate (8.4): for the first integral we find by
standard properties of differences for every h ∈ R with |h| ≤ (1−θ)r

2 :

|h|2α

∫
Q+∩spt(η)

(
1 + |Du(x + he)|2 + |h|−2|τe,hu(x)|2

)
dx ≤ |h|2α

∫
Zr(x0)

(
1 + |Du(x)|

)2
dx ;

for the second integral we further argue with Hölder’s inequality and the Hölder continuity
of u, and we calculate∫

Q+∩spt(η)

(
1 + |Du(x + he)|2

)
|τe,hu(x)|2α dx

≤
( ∫

Z(1+θ)r/2(x0)

(
1 + |Du(x + he)|

)2+2bk dx
) 1

1+bk

( ∫
Z(1+θ)r/2(x0)

|τe,hu(x)|2α
1+bk

bk dx
) bk

1+bk

≤ c([u]C0,λ(Q+,RN )) |h|2αλ+2bk(1−λ)

∫
Zr(x0)

(
1 + |Du(x)|

)2+2bk dx

≤ c([u]C0,λ(Q+,RN )) |h|2bk+1

∫
Zr(x0)

(
1 + |Du(x)|

)2+2bk dx .

For the last integral on the right-hand side of (8.4) we apply Young’s inequality with expo-
nents 1+bk

bk
, 1 + bk and the standard estimate for the difference operator as above. Hence, we

see for every ε ∈ (0, 1):∫
Q+

(
1 + |Du|2

)
|τe,−h(η2 τe,hu)| dx (8.21)

=
∫

Q+

|h|−
2bk

1+bk |τe,−h(η2 τe,hu)|
2bk

1+bk · |h|
2bk

1+bk

(
1 + |Du|2

)
|τe,−h(η2 τe,hu)|

1−bk
1+bk dx

≤ ε |h|−2

∫
Q+

|τe,−h(η2 τe,hu)|2 dx + c(ε) |h|2bk

∫
Q+

(
1 + |Du|

)2+2bk |τe,−h(η2 τe,hu)|1−bk dx
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≤ 2 ε

∫
Q+

η2 |τe,hDu|2 dx + c(‖Dη‖∞) |h|2
∫

Zr(x0)

(
1 + |Du|

)2
dx

+ c(ε, [u]C0,λ(Q+,RN )) |h|2bk+λ(1−bk)

∫
Zr(x0)

(
1 + |Du|

)2+2bk dx

≤ 2 ε

∫
Q+

η2 |τe,hDu|2 dx + c(ε, [u]C0,λ(Q+,RN ), ‖Dη‖∞) |h|2bk+1

∫
Zr(x0)

(
1 + |Du|

)2+2bk dx .

Choosing ε = c
4 where c is the constant coming from (8.4) and merging the previous estimates

together with the inequality in (8.4), we obtain the assertion in (8.20).

In the next step we proceed similarly to the case k = 0 and estimate the Lsk+1-norm of
|τe,hDu| for some exponent sk+1 > 2 in terms of an appropriate power of |h|. To this end
we consider in the sequel directions e ∈ Sn−1 with e ⊥ en and h ∈ R satisfying |h| < 1/2k;
furthermore, we set analogously to the proof of Proposition 8.4

v
(k)
h :=

τe,hu

|h|bk+1
, Ã(k)(h) :=

−A(h)
|h|bk+1

, B̃(k)(h) :=
−B(h)
|h|bk+1

,

and C̃(k)(h) = C̃(h) =
∫ 1
0 Dza

(
x, u(x), Du(x) + tτe,hDu(x))

)
dt as above. Analogously to the

derivation of (8.11) we obtain∫
Q+

1/2k

C̃(k)(h) Dv
(k)
h ·Dϕ dx =

∫
Q+

1/2k

[
Ã(k)(h) + B̃(k)(h)

]
·Dϕ dx

+
∫

Q+

1/2k

|h|−bk+1 b(x, u, Du) · τe,−hϕ dx (8.22)

for all functions ϕ ∈ C∞
0 (Q+

1/2k−|h|, R
N ), i. e., the map v

(k)
h ∈ W 1,2+2bk(Q+

1/2k−|h|, R
N ) is a

weak solution to the linear system (8.22). For σ, ρ and x0 fixed according to the assumptions
of the proposition, we next choose h ∈ R sufficiently small such that |h| ∈ (0, 2σρ) and look at
intersections of balls B+

R(y) with the upper half-plane Rn−1×R+ for centres y ∈ Z(1−σ)ρ/2(x0)
at the boundary Γ which satisfy B+

R(y) ⊂ Q+
1/2k−|h| and yn ≤ 3R

4 . Furthermore, we take a

cut-off function ηk ∈ C∞
0 (B3R/4(y), [0, 1]) satisfying ηk ≡ 1 on BR/2(y) and |Dηk| ≤ 8

R , and

we choose ϕ := η2
kv

(k)
h as a test function. Taking into account

Dϕ = η2
kDv

(k)
h + 2ηkv

(k)
h ⊗Dηk

and the assumptions (H1)-(H4) we again estimate the various terms arising in (8.22); firstly
we remind that for every ε ∈ (0, 1) there holds (cf. the proof of Proposition 8.4):

• ν

∫
B+

R(y)
η2

k |Dv
(k)
h |2 dx ≤

∫
B+

R(y)
η2

k C̃(k)(h) Dv
(k)
h ·Dv

(k)
h dx ,

•
∫

B+
R(y)

2ηk

∣∣C̃(k)(h)Dv
(k)
h ·v(k)

h ⊗Dηk

∣∣ dx ≤ ε

∫
B+

R(y)
η2

k |Dv
(k)
h |2 dx+

cL2

ε R2

∫
B+

R(y)
|v(k)

h |2 dx ,

•
∫

B+
R(y)

∣∣Ã(k)(h) ·Dϕ
∣∣ dx ≤ ε

∫
B+

R(y)
η2

k |Dv
(k)
h |2 dx +

c ε

R2

∫
B+

R(y)
|v(k)

h |2 dx

+ c ε−1L2

∫
B+

R(y)

(
1 + |Du(x + he)|2

)
dx .
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To find an adequate estimate for the integral involving B̃(k)(h) we first take advantage of
the Hölder continuity of u and Young’s inequality and we see∫

B+
R(y)

(
1 + |Du(x + he)|

)2 |τe,hu|2α dx

≤ c
(
[u]C0,λ(B+,RN )

)
|h|2αλ−2bkλ

∫
B+

R(y)

(
1 + |Du(x + he)|

)2 |τe,hu|2bk dx

≤ c
(
[u]C0,λ(B+,RN )

)
|h|2bk+1

∫
B+

R(y)

(
1 + |Du(x + he)|+ |Gh(x)|

)2+2bk dx ,

where we have used the fact that

|τe,hu| ≤ |h|
∫ 1

0
|Du(x + the)| dt =: |h|Gh(x) .

In view of Fubini’s Theorem, the fact that u ∈ W
1,sk(1+bk)
Γ (Q+

1/2k , RN ) and the inclusion

B+
R(y) ⊂ Q+

1/2k−|h| (see the choices for y and R above), we note that the function Gh is

Lsk(1+bk)-integrable on B+
R(y) and satisfies∫

B+
R(y)

|Gh|sk(1+bk) dx ≤
∫

Q+

1/2k

|Du|sk(1+bk) dx < ∞ .

Hence, we find with Young’s inequality for every ε ∈ (0, 1)

•
∫

B+
R(y)

∣∣B̃(k)(h) ·Dϕ
∣∣ dx ≤ L

∫
B+

R(y)
|h|−bk+1

(
1 + |Du(x + he)|

)
|τe,hu|α |Dϕ| dx

≤ ε

∫
B+

R(y)
η2

k |Dv
(k)
h |2 dx +

c ε

R2

∫
B+

R(y)
|v(k)

h |2 dx

+ c
(
[u]C0,λ(B+,RN )

)
ε−1L2

∫
B+

R(y)

(
1 + |Du(x + he)|+ |Gh(x)|

)2+2bk dx.

Exactly as in (8.12) there holds |τe,−h(η2
kv

(k)
h )| ≤ 2 [u]C0,λ(Q+,RN ) |h|λ−bk+1 . Therefore, the re-

maining term in (8.22) can be bounded from above by calculations similar to those performed
in (8.21), which means by Young’s inequality, standard properties concerning difference quo-
tients and the Hölder continuity of u, and we obtain:

•
∫

B+
R(y)

|h|−bk+1 |b(x, u, Du)| |τe,−hϕ| dx

≤ |h|−bk+1

∫
B+

R(y)

(
L + L2 |Du(x)|2

)
|τe,−h(η2

kv
(k)
h )| dx

≤ ε |h|−2

∫
B+

R(y)
|τe,−h(η2

kv
(k)
h )|2 dx

+ c
(

L
ε , L2

ε

)
|h|2bk−bk+1(1+bk)

∫
B+

R(y)

(
L + L2 |Du|

)2+2bk |τe,−h(η2
kv

(k)
h )|1−bk dx

≤ ε

∫
B+

R(y)
η2

k |Dv
(k)
h |2 dx +

c

R2

∫
B+

R(y)
|v(k)

h |2 dx

+ c
(

L
ε , L2

ε , [u]C0,λ(Q+,RN )

) ∫
B+

R(y)

(
L + L2 |Du|

)2+2bk dx .
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In the last line we have made use of the fact that 2bk − bk+1(1 + bk) + (1− bk)(λ− bk+1) =
λ(1 − α) > 0. We now argue exactly as in the proof of Proposition 8.4: Collecting all the
terms we infer with the choice ε = ν

8 a Caccioppoli-type estimate from which, in turn, we
deduce via the Sobolev-Poincaré inequality the following reverse Hölder-type inequality:∫

−
B+

R/2
(y)
|Dv

(k)
h |2 dx ≤ c

( ∫
−
B+

R(y)
|Dv

(k)
h |

2n
n+2 dx

)n+2
n

+ c

∫
−
B+

R(y)

(
1 + |Du(x)|+ |Du(x + he)|+ |Gh(x)|

)2+2bk dx ,

and the constant c depends only on n, N, L
ν , L2

ν and [u]C0,λ(Q+,RN ) but is independent of h.
We note that the latter inequality is also valid in the interior situation if we consider balls
B+

R(y) with centres y ∈ Z(1−σ)ρ/2(x0) satisfying B+
R(y) ⊂ Q+

1−|h| and yn > 3R
4 (see the proof

of Proposition 8.4 for the necessary modifications).

We finally apply the global Gehring Lemma, Theorem A.14, on the cylinder Z(1−σ)ρ/2(x0)
for the choices of σ, ρ and x0 made in the proposition; hence, we find a constant c depending
only on n, N, q, L

ν , L2
ν , [u]C0,λ(Q+,RN ) and σ and a positive number δk+1 < sk − 2 depending

only on n, N, L
ν , L2

ν and [u]C0,λ(Q+,RN ), both independent of the parameter h, such that for
all q ∈ [2, 2 + δk+1)

( ∫
−
Zσρ(x0)

|Dv
(k)
h |q dx

) 1
q ≤ c

[( ∫
−
Z(1−4σ)ρ(x0)

|Dv
(k)
h |2 dx

) 1
2

+
( ∫
−
Z(1−4σ)ρ(x0)

(
1 + |Du(x)|+ |Du(x + he)|+ |Gh(x)|

)(1+bk)q
dx

) 1
q
]

≤ c
[
|h|−bk+1

( ∫
−
Z(1−4σ)ρ(x0)

|τe,hDu|2 dx
) 1

2 +
( ∫
−
Zρ(x0)

(
1 + |Du(x)|

)(1+bk)q
dx

) 1
q
]

≤ c
( ∫
−
Zρ(x0)

(
1 + |Du(x)|

)sk(1+bk)
dx

) 1
sk .

Here, we have also used the definition of the function Gh, the bound |h| < 2σρ (with σ < 1
5),

the estimate (8.20) on finite differences and Jensen’s inequality. Hence, we find an exponent
sk+1 ∈ (2, sk) with the dependencies stated in the proposition such that the inequality above
holds true; keeping in mind the definition of v

(k)
h , i. e., its normalization by the factor |h|bk+1 ,

this immediately yields the desired assertion. �

Again, Proposition 8.8 combined with Lemma 8.2 and with Lemma 2.5, respectively, allows
us to state two direct consequences concerning the slicewise mean-square deviation of Du

and a suitable fractional differentiability of the tangential derivative D′u:

Corollary 8.9: Let u ∈ W 1,2
Γ (Q+

2 , RN ) ∩ L∞(Q+
2 , RN ) ∩ C0,λ(Q+, RN ) be a weak solution

to the inhomogeneous system (8.2) under the assumptions (H1)-(H4) and (B2). Assume
further u ∈ W

1,sk(1+bk)
Γ (Q+

1/2k , RN ) for some k ∈ N, sk > 2, and let Zρ(x0) ⊂ Q+
1/2k for

some x0 ∈ Γ1/2k ∪ Q+
1/2k and σ ∈ (0, 1

5). Then for every γ ∈ (0, 1) there exists a function
Fk+1 ∈ Lsk+1(Zσρ(x0)) where sk+1 ∈ (2, sk) is the higher integrability exponent determined
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in Proposition 8.8 such that the following estimate holds true:( ∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣2 dx

) 1
2

≤
( ∫
−
Zr(z)

∫
−
Dr(z′)

|Du(x′, xn)−Du(y′, xn)|2 dy′ dx
) 1

2 ≤ c rγbk+1 Fk+1(z)

for all cylinders Zr(z) ⊂ Zσρ(x0) with z ∈ Q+∪Γ, and the constant c depends only on n, α, λ

and γ.

Corollary 8.10: Let u ∈ W 1,2
Γ (Q+

2 , RN ) ∩ L∞(Q+
2 , RN ) ∩ C0,λ(Q+, RN ) be a weak solution

to the inhomogeneous system (8.2) under the assumptions (H1)-(H4) and (B2). Assume
further u ∈ W

1,sk(1+bk)
Γ (Q+

1/2k , RN ) for some k ∈ N, sk > 2. Then for every γ ∈ (0, 1) there
holds

D′u ∈ Mγbk+1,sk+1(Q+
ρ , R(n−1)N )

for every ρ < 1
2k+1 . In particular, there exists a function Hk+1 ∈ Lsk+1(Q+

1/2k+1) such that

|D′u(x)−D′u(y)| ≤ |x− y|γbk+1
(
Hk+1(x) + Hk+1(y)

)
for almost all x, y ∈ Q+

1/2k+1.

8.6.2 An improved fractional Sobolev estimate for an( · ,u,Du)

Taking into account that Du is assumed to be higher integrable with exponent sk(1 + bk),
we next proceed similarly to Section 8.5: We choose a cylinder Zρ(x0) ⊂ Q+

1/2k with centre

x0 ∈ Q+
1/2k ∪ Γ1/2k and radius ρ sufficiently small , i. e., ρ ≤ ρ̃cacc where ρ̃cacc is from the

Caccioppoli-type inequality in Lemma 8.3, and σ ∈ (0, 1
5). Furthermore, we fix a number

γ ∈ (0, 1). In the sequel we again study the model system (8.2) on cylinders Zr(z) with
z ∈ Q+

1/2k∪Γ1/2k such that Z2r(z) ⊂ Zσρ(x0), and by M∗ we still denote the maximal operator
restricted to the cylinder Zσρ(x0). We use the notation from Section 8.5, in particular, the
definitions of Aρ̄ and B from (8.14) and (8.15). We first improve the estimate (8.18). To
this aim we once again start with inequality (8.17), i. e., with∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄

∣∣ dxn ≤ c
[ ∫
−
Zr(z)

|B(x)| dx + r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx
]

(8.23)

for a constant c = c(n, N) and where ρ̄ ∈ [ r
2 , r] is chosen in such a way that on the one hand

Aρ̄(xn) is weakly differentiable in Iρ̄(zn) and on the other hand ρ̄ /∈ J (see p. 162).

For the first integral on the right-hand side of (8.23) we recall the definition of B(x) in (8.15)
and take advantage of conditions (H2) and (H4) to infer∫

−
Zr(z)

∣∣B(x)
∣∣ dx ≤

∫
−
Zr(z)

[ ∣∣a(x, u(x), Du(x))− a(x, u(x), (Du)z′,r(xn))
∣∣

+
∣∣a(x, u(x), (Du)z′,r(xn))− a(z, (u)z,r, (Du)z′,r(xn))

∣∣ ]
dx

≤ L

∫
−
Zr(z)

∣∣Du(x)− (Du)z′,r(xn)
∣∣ dx

+ L

∫
−
Zr(z)

(
|x− z|α + |u(x)− (u)z,r|α

) (
1 + |(Du)z′,r(xn)|

)
dx .



172 Chapter 8. Existence of regular boundary points II

In view of Hölder’s and Jensen’s inequality, the Hölder continuity of u and Poincaré’s Lemma,
we derive∫
−
Zr(z)

|u(x)− (u)z,r|α
(
1 + |(Du)z′,r(xn)|

)
dx

≤
( ∫
−
Zr(z)

|u(x)− (u)z,r|
α

1+bk
bk dx

) bk
1+bk

( ∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
bk+1

≤ c rαλ−bkλ
( ∫
−
Zr(z)

|u(x)− (u)z,r|1+bk dx
) bk

1+bk

( ∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
1+bk

≤ c rαλ+bk(1−λ)

∫
−
Zr(z)

(
1 + |Du|)1+bk dx

≤ c rγbk+1 M∗((1 + |Du|)1+bk
)
(z) (8.24)

for c = c(n, [u]C0,λ(Q+,RN )). Furthermore, we trivially have∫
−
Zr(z)

|x− z|α
(
1 + |(Du)z′,r(xn)|

)
dx ≤ c(n) rα

∫
−
Zr(z)

(
1 + |Du|)1+bk dx

≤ c(n) rγbk+1 M∗((1 + |Du|)1+bk
)
(z) .

Keeping in mind Corollary 8.9 we finally arrive at the following estimate for the integral of
|B(x)|: ∫

−
Zr(z)

∣∣B(x)
∣∣ dx ≤ c rγbk+1

(
Fk+1(z) + M∗((1 + |Du|)1+bk

)
(z)

)
, (8.25)

where the constant c depends only on n, L, [u]C0,λ(Q+,RN ), α, λ and γ. We note that the
functions Fk+1 and M∗((1+ |Du|)1+bk

)
belong to the space Lsk+1(Zσρ(x0)), due to Corollary

8.9 and the higher integrability of Du combined with Lemma 5.4 on the maximal function,
respectively (we here recall sk+1 ∈ (2, sk)).

For the second integral on the right-hand side of (8.23) we argue similarly to above on p.
163: we initially assume that we are close to the boundary, i. e., zn < 2r. Then, we infer the
following estimate from the growth condition (B2) on the inhomogeneity, the Caccioppoli
inequality (note that 2r ≤ ρ ≤ ρ̃cacc), the Hölder continuity of u and Poincaré’s inequality
in the boundary version:

r

∫
−
Zr(z)

|b(x, u(x), Du(x))| dx ≤ r

∫
−
Zr(z)

(L + L2 |Du|2) dx

≤ r L2 c̃cacc

( ∫
−
Z2r(z)

∣∣∣u
r

∣∣∣2 dx + r2α
)

+ r L

≤ c r

∫
−
Z2r(z)

(
1 +

∣∣∣u
r

∣∣∣1+bk

r(1−bk)(λ−1)
)

dx

≤ c r1+(1−bk) (λ−1)

∫
−
Z2r(z)

(
1 + |Du|

)1+bk dx

≤ c rbk+1 M∗((1 + |Du|)1+bk
)
(z) , (8.26)

where in the last line we have employed the fact that

1 + (1− bk) (λ− 1) = λ + bk (1− λ) ≥ bk+1
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and where the constant c depends only on n, N,L, L2, ν and [u]C0,λ(Q+,RN ). For cylinders in
the interior, meaning that zn ≥ 2r, we end up with exactly the same estimate using both
the Caccioppoli inequality and the Poincaré inequality with |u| replaced by |u− (u)z,2r|.

Merging the estimates found in (8.25) and (8.26) together with (8.17) hence yields∫
−
Zρ̄(z)

∣∣∣ ∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′ −
(
an( · , u,Du)

)
z,ρ̄

∣∣∣ dx

=
∫
−
Iρ̄(zn)

∣∣Aρ̄(xn)− (Aρ̄)zn,ρ̄

∣∣ dxn ≤ c rγbk+1
[
Fk+1(z) + M∗((1 + |Du|)1+bk

)
(z)

]
for a constant c depending only on n, N,L, L2, [u]C0,λ(Q+,RN ), α, λ and γ. This is the desired
improvement of inequality (8.18). Moreover, Fk+1,M

∗((1 + |Du|)1+bk
)
∈ Lsk+1(Zσρ(x0))

holds true. In order to find a fractional Sobolev estimate for the map x 7→ an(x, u(x), Du(x))
it still remains to deduce an estimate corresponding to (8.19). To this aim we follow the line
of arguments leading to (8.19) and (8.24): we use Corollary 8.9, Hölder’s inequality and the
Hölder continuity of u, and we see∫
−
Zρ̄(z)

∣∣∣an(x, u(x), Du(x))−
∫
−
Dρ̄(z′)

an(y′, xn, u(y′, xn), Du(y′, xn)) dy′
∣∣∣ dx

≤ L

∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

∣∣Du(x′, xn)−Du(y′, xn)
∣∣ dy′ dx

+ 4 L

∫
−
Zρ̄(z)

∫
−
Dρ̄(z′)

(
ρ̄α + |u(x′, xn)− u(y′, xn)|α

) (
1 + |Du(x)|

)
dy′ dx

≤ c rγbk+1 Fk+1(z) + 4 L ρ̄α

∫
−
Zρ̄(z)

(
1 + |Du(x)|

)
dx

+ 8 L
( ∫
−
Zr(z)

|u(x)− (u)z,r|
α

1+bk
bk dx

) bk
1+bk

( ∫
−
Zr(z)

(
1 + |Du|)1+bk dx

) 1
bk+1

≤ c rγbk+1
(
Fk+1(z) + M∗((1 + |Du|)1+bk

)
(z)

)
,

and the constant c depends only on n, L, [u]C0,λ(Q+,RN ), α, λ and γ. In particular, taking into
account ρ̄ ∈ [ r

2 , r], we infer from the latter two estimates that we have∫
−
Zr/2(z)

∣∣an(x, u(x), Du(x))−
(
an( · , u,Du)

)
z,r/2

∣∣ dx

≤ c rγbk+1

(
Fk+1(z) + M∗((1 + |Du|)1+bk

)
(z)

)
,

where the constant c admits the same dependencies as in the preceding inequalities. In
view of Fk+1,M

∗((1 + |Du|)1+bk
)
∈ Lsk+1(Zσρ(x0)), we may apply the characterization of

fractional Sobolev spaces in Lemma 2.8 and Remark 2.9, and we obtain

an( · , u,Du) ∈ Mγbk+1,sk+1(Q+
1/(2·2k)

, RN ) .

Furthermore, there exists a function Gk+1 ∈ Lsk+1(Q+
1/(2k+1)

, RN ) which satisfies

|an(x, u(x), Du(x))− an(y, u(y), Du(y))| ≤ |x− y|γbk+1
(
Gk+1(x) + Gk+1(y)

)
for almost every x, y ∈ Q+

1/(2k+1)
. We note that Gk+1 can be calculated from the constant c,

the functions M∗((1 + |Du|)1+bk
)
, Fk+1(z) and the restriction on the radius ρ which in turn
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result in a dependency on the iteration step k. For the interior situation we observe that the
statements of the Remarks 8.7 remain valid, which means in particular that the coefficients
a(·, u,Du) satisfy a corresponding interior fractional Sobolev estimate.

8.6.3 Final conclusion for Du

Exactly as in Section 8.5.2 we make Dnu inherit the fractional Sobolev estimate of both the
coefficients an(·, u,Du) and the tangential derivative D′u (see Corollary 8.10), and we find

Dnu ∈ Mγbk+1,sk+1(Q+
1/2k+1 , RN ) .

Due to the fact that D′u belongs to the same fractional Sobolev space, we arrive at the
conclusion

Du ∈ Mγbk+1,sk+1(Q+
1/2k+1 , RnN ) .

At this point we are in the position to use the embeddding

Mγbk+1,sk+1(Q+
1/2k+1 , RnN ) ⊂ W γ′γbk+1,sk+1(Q+

1/2k+1 , RnN )

for all γ′ ∈ (0, 1). Since γ and γ′ may be chosen arbitrarily close to 1, the application of
Theorem 2.7 yields Du ∈ Lsk+1(1+bk+1)(Q+

1/2k+1 , RnN ). We note, that the choice γ = γ′ =

( n
n+2λ)1/2 is appropriate for every k ∈ N. This finishes the iteration. Keeping in mind

bk ↗ α, the iteration scheme immediately implies the following fractional differentiability
result for Du:

Lemma 8.11: Let α ∈ (0, 1) and let u ∈ W 1,2
Γ (Q+

2 , RN ) ∩ L∞(Q+
2 , RN ) ∩ C0,λ(Q+, RN ),

λ ∈ (0, 1], be a weak solution of the Dirichlet problem (8.2) under the assumptions (H1)-(H4)
and (B2). Then, for every t < α there exists k̄ = k̄(t) such that Du ∈ W t,2(Q+

1/2k̄
, RnN ).

Remark: We mention that in Lemma 7.9 in the previous chapter we have derived the same
statement for weak solutions to subquadratic nonlinear elliptic systems with inhomogeneities
satisfying a controllable growth condition, see also [DKM07, Lemma 6.1] for the quadratic
case. We easily observe that the method presented in this chapter does not only apply to
inhomogeneities obeying a natural growth condition, but also to those obeying a controllable
growth condition. As an advantage of the technique presented in this chapter, we note that
in the formulation of the previous Lemma 8.11 the low dimensional assumption p > n−2−δ

for some positive number δ is not necessary, whereas it was required in the proof of [DKM07,
Lemma 6.1].

Proof (of Theorem 8.1): All the arguments required here can be recovered from the
proof of Theorem 7.2 on p. 148; for the sake of completeness we sketch briefly the procedure:
First, we reduce the general Dirichlet problem (8.1) to the corresponding boundary value
problem with zero boundary values, i e., g = 0 on ∂Ω. Then we employ a covering argument
and a local flattening procedure to end up with a finite number of problems of type (8.2) on
cubes.

In the model situation, [Ark03, Theorem 1] then guarantees that u is Hölder continu-
ous on the regular set Regu(Q+

2 ∪ Γ) of u with any exponent λ ∈
(
0, 1 − n−2

2

)
and that
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dimH(Singu(Q+
2 ∪ Γ) < n − 2. In particular, if n = 2, we note that the set of singular

points is empty. We next observe that the statement in Lemma 8.11 still holds true if we
replace the cube Q+

1 by any smaller cube Q+
R(x0), meaning that in this case we obtain

Du ∈ W t,2(Q+
δR(x0), RnN ) for some δ(t) > 0 for all t < α. Therefore, choosing an increasing

sequence of sets Bk ↗ Regu(Q+ ∪ Γ) with Bk ⊂ Regu(Q+ ∪ Γ) such that Bk is relatively
open in Q+ ∪ Γ for every k ∈ N, Lemma 8.11 allows us to infer that for every t < α and
every point x0 ∈ Γ ∩ Bk there holds Du ∈ W t,2(Q+

δR(x0), RnN ) for some δ(t) > 0. Taking
t ∈ (1

2 , α) and applying Proposition A.13 thus yields

dimH

(
SingDu(Γ) ∩Q+

δ (x0)
)
≤ n− 2t < n− 1

which in turn implies dimH(SingDu(Γ)∩Bk) < n−2t for every k ∈ N via a covering argument.
Hence, keeping in mind dimH(Singu(Q+∪Γ) < n−2, we finally conclude the desired estimate
dimH(SingDu(Γ)) < n− 1 on the Hausdorff dimension of the singular set of the gradient Du

on the boundary. This completes the proof of our main result. �

Remark: It is not clear whether the result of Theorem 8.1 can be improved for arbitrary
vector fields a(x, u, z) ≡ a(x, z) which do not explicitly depend on u, in the sense that the
existence of regular boundary points is in this case valid for all dimensions n ≥ 2. To me,
there seems to be no hope to produce any positive power of h for the last integral in (8.4)
with the techniques presented so far such that in turn no quantitative gain in the higher
integrability exponent via fractional Sobolev estimates is achieved. However, if for some
reason the weak solution u is a priori known to be Hölder continuous in an open set of Ω
outside a set of Hausdorff dimension less than n−1, then the statement obviously holds true
without any restriction on the dimension n.
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Appendix A

Additional Lemmas

A.1 The function Vµ(ξ)

To handle the subquadratic case the V -function is very useful. For ξ ∈ Rk, k ∈ N, µ ∈ [0, 1]
and p > 1 it is defined by

Vµ(ξ) =
(
µ2 + |ξ|2

) p−2
4 ξ , (A.1)

which is a locally bi-Lipschitz bijection on Rk. Actually, only the cases µ = 0 (for the
degenerate case) and µ = 1 (for the non-degenerate case) are interesting because for every µ ∈
(0, 1) the functions Vµ(ξ) and V1(ξ) are equivalent. Therefore, we introduce the abbreviation
V (ξ) = V1(ξ). The crucial point of the V -function is its property concerning growth: it
behaves linearly for |ξ| very small, but grows like |ξ|p/2 for |ξ| → ∞. Some useful algebraic
properties of V we shall frequently use can be found in [CFM98]:

Lemma A.1 ([CFM98], Lemma 2.1): Let p ∈ (1, 2) and V : Rk → Rk be the function
defined in (A.1). Then for all ξ, η ∈ Rk and t > 0 there holds:

(i) 2
p−2
4 min{|ξ|, |ξ|

p
2 } ≤ |V (ξ)| ≤ min{|ξ|, |ξ|

p
2 },

(ii) |V (tξ)| ≤ max{t, t
p
2 }|V (ξ)|,

(iii) |V (ξ + η)| ≤ c(p)
(
|V (ξ)|+ |V (η)|

)
,

(iv) p
2 |ξ − η| ≤ |V (ξ)− V (η)|

(1 + |ξ|2 + |η|2)
p−2
4

≤ c(k, p) |ξ − η|,

(v) |V (ξ)− V (η)| ≤ c(k, p) |V (ξ − η)|,

(vi) |V (ξ − η)| ≤ c(p, M) |V (ξ)− V (η)|, provided |η| ≤ M .

We will also need some technical lemmas when dealing with the Vµ-function:

Lemma A.2: Let ξ, η be vectors in Rk, µ ∈ [0, 1] and q > −1. Then there exist constants
c1, c2 ≥ 1, which depend only on q but are independent of µ, such that

c−1
1

(
µ + |ξ|+ |η|

)q ≤
∫ 1

0

(
µ + |ξ + tη|

)q
dt ≤ c2

(
µ + |ξ|+ |η|

)q
.
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Proof: A proof can be found in [AF89, Lemma 2.1], and for the case µ = 1 also in [Cam82a,
Lemma 2.VI]. Without loss of generality we may assume |η| 6= 0, otherwise both inequalities
are trivially satisfied. We first study negative exponents q ∈ (−1, 0): the lower bound holds
true for the constant c1 = 1; for the upper bound, we distinguish three different cases:

The case µ, |ξ| < |η|: we use the fact that q ∈ (−1, 0) and decompose the integral as follows∫ 1

0

(
µ + |ξ + tη|

)q
dt ≤

∫ |ξ|/|η|

0

(
µ + |ξ| − t|η|

)q
dt +

∫ 1

|ξ|/|η|

(
µ− |ξ|+ t|η|

)q
dt

= − 2 µq+1

(q + 1) |η|
+

(µ + |ξ|)q+1

(q + 1) |η|
+

(µ− |ξ|+ |η|)q+1

(q + 1) |η|

≤ 2
(µ + |ξ|+ |η|)q+1

(q + 1) |η|
≤ 6

q + 1
(
µ + |ξ|+ |η|

)q
.

The case µ, |η| ≤ |ξ|: here we proceed similarly and obtain∫ 1

0

(
µ + |ξ + tη|

)q
dt ≤

∫ 1

0

(
µ + |ξ| − t|η|

)q
dt ≤

∫ 1

0

(
µ + |ξ| − t|ξ|

)q
dt

= − µq+1

(q + 1) |ξ|
+

(µ + |ξ|)q+1

(q + 1) |ξ|
≤ 3

q + 1
(
µ + |ξ|+ |η|

)q
.

The case |ξ|, |η| ≤ µ: neglecting the term |ξ + tη| we get∫ 1

0

(
µ + |ξ + tη|

)q
dt ≤ µq ≤ 3−q

(
µ + |ξ|+ |η|

)q
.

Therefore, we have shown the desired estimate for the constant c2(q) = max{ 6
q+1 , 3−q} = 6

q+1

provided that q ∈ (−1, 0). For nonnegative exponents q we have to differ the same cases,
using opposite signs instead and the fact that

aq+1 + bq+1 ≤ (a + b)q+1 ≤ 2q
(
aq+1 + bq+1

)
for a, b ≥ 0. This yields the result with c−1

1 (q) = min{ 6−q

q+1 , 3−q} = 6−q

q+1 and c2 = 1 for
nonnegative exponents q. �

Lemma A.3: Let ξ, η be vectors in Rk, µ ∈ [0, 1] and p ∈ (1, 2). Then there exist constants
c1 and c2 depending only on k, p and on p, respectively, such that the following inequalities
hold:

(i) c−1
1 |ξ − η| (µ2 + |ξ|2 + |η|2)

p−2
4 ≤ |Vµ(ξ)− Vµ(η)| ≤ c1 |ξ − η| (µ2 + |ξ|2 + |η|2)

p−2
4

(ii) (µ2 + |ξ|2)
p
2 ≤ c2 (µ2 + |η|2)

p
2 + c2 (µ2 + |ξ|2 + |η|2)

p−2
2 |ξ − η|2 ,

(iii) (µ2 + |ξ|2)
p−2
2 |ξ| |η| ≤ ε (µ2 + |ξ|2)

p−2
2 |ξ|2 + ε1−p(µ2 + |η|2)

p
2 for ε ∈ (0, 1) .

(iv) (µ2 + |ξ|2)
p−2
2 |ξ| |η| ≤ ε (µ2 + |ξ|2)

p−2
2 |ξ|2 + ε−1(µ2 + |η|2)

p−2
2 |η|2 for ε ∈ (0, 1) .

Proof: The inequality in (i) is proved in [AF89, Lemma 2.2], while the other inequalities
are easily obtained by distinguishing cases: for (ii) we consider max{µ, |η|} > 1

2 |ξ| and
max{µ, |η|} ≤ 1

2 |ξ|, and for (iii), (iv) we study the cases |η| > ε|ξ| and |η| ≤ ε|ξ|. �
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Employing Lemma A.1 we lastly state another important property of Vµ (cf. [DM04b,
Lemma 3] for the proof carried out for the V0-function):

Lemma A.4: Let µ ∈ [0, 1] and let f : Ω → RnN be a function for which Vµ ◦ f is Hölder
continuous with exponent α ∈ (0, 1). Then also f is Hölder continuous on Ω with the same
exponent α.

A.2 Sobolev-Poincaré inequalities

We first state the Sobolev-Poincaré inequality on balls and appropriate sections of balls in a
convenient form. A proof can be found by modifying the arguments in [Giu03, Chapter 3.6].

Lemma A.5 (Sobolev-Poincaré): Let p < n, p∗ = np
n−p and Br(z) ⊂ Rn. Then there

exists a constant c = c(n, N, p) such that for every u ∈ W 1,p(Br(z), RN )( ∫
Br(z)

|u− (u)Br(z)|p
∗
dx

)1/p∗

≤ c
( ∫

Br(z)
|Du|p dx

)1/p
,

and such that for every u ∈ W 1,p
Γ (B+

r (z), RN ) with 0 ≤ zn ≤ 3
4r( ∫

B+
r (z)

|u|p∗ dx
)1/p∗

≤ c
( ∫

B+
r (z)

|Du|p dx
)1/p

.

Furthermore, we want to consider a W 1,p-function u in the subquadratic case and state some
inequalities of Sobolev-Poincaré-type, both for the interior and the boundary, which are
appropriate for our situation. For the interior estimates we also refer to [DGK05, Theorem
2].

Lemma A.6 ([Bec07], Lemma 3.3): Let p ∈ (1, 2), Bρ(x0) ⊂ Rn with n ≥ 2 and set
p] = 2n

n−p . Moreover, let V be the function defined in (A.1). Then there exists a constant cs

depending only on n, N and p such that for every u ∈ W 1,p(Bρ(x0), RN )( ∫
−
Bρ(x0)

∣∣∣V (u− (u)x0,ρ

ρ

)∣∣∣p]

dx
) 1

p] ≤ cs

( ∫
−
Bρ(x0)

∣∣V (Du)
∣∣2 dx

) 1
2

and such that for every u ∈ W 1,p
Γ (B+

r (x0), RN ) with x0 ∈ Rn−1 × {0}( ∫
−
B+

ρ (x0)

∣∣∣V (u

ρ

)∣∣∣p]

dx
) 1

p] ≤ cs

( ∫
−
B+

ρ (x0)

∣∣V (Du)
∣∣2 dx

) 1
2
.

In the next step we will have a closer look at the Poincaré inequality for u ∈ W 1,p
Γ (B+

R , RN ).
Since u vanishes on Γ, the Lp-norm of u is estimated by the Lp-norm of only the normal
derivative Dnu rather than the full derivative:

Lemma A.7 ([Bec07], Lemma 3.4): For functions u ∈ W 1,p
Γ (B+

R(x0), RN ) with x0 ∈
Rn−1 × {0}, p ≥ 1, there holds:∫

B+
R(x0)

|u|p dx ≤ Rp

p

∫
B+

R(x0)
|Dnu|p dx .



180 Appendix A. Additional Lemmas

Furthermore, we have an analogous result involving the function V :

Lemma A.8 ([Bec07], Lemma 3.6): Let p ∈ (1, 2) and B+
ρ (x0) ⊂ Rn with x0 ∈ Rn−1 ×

{0}, n ≥ 2. Then for all u ∈ W 1,p
Γ (B+

ρ (x0), RN ) there holds∫
−
B+

ρ (x0)

∣∣∣V (u

ρ

)∣∣∣2 dx ≤ c(p)
∫
−
B+

ρ (x0)
|V (Dnu)|2 dx .

Also in the setting of fractional Sobolev spaces we can state a Poincaré-type inequality
extending the results for the Sobolev spaces Wm,p for integer values of m:

Lemma A.9 (see e. g. [Min03b], (4.2)): Let u ∈ W θ,q(Br(z), RN ) where q ≥ 1, θ ∈
(0, 1) and Br(z) ⊂ Rn. Then we have for a constant c = c(n, q)∫

Br(z)
|u− (u)Br(z)|q dx ≤ c rθq

∫
Br(z)

∫
Br(z)

|u(x)− u(y)|q

|x− y|n+θq
dx dy .

Moreover, there holds a corresponding Sobolev embedding theorem:

Theorem A.10 ([Ada75], Theorem 7.57): Let Ω be a domain in Rn having the cone
property. Furthermore, let s > 0 and p ∈ (1, n). Assume u ∈ W s,p(Ω, RN ). Then we have
the following embeddings:

(i) If n > sp, then u ∈ Lt(Ω, RN ) for all t ∈ [p, np
n−sp ].

(ii) If n = sp, then u ∈ Lt(Ω, RN ) for all t ∈ [p,∞).

(iii) If n < (s− j)p for some noninteger j, then u ∈ Cj(Ω, RN ).

A.3 Further technical lemmas

The next lemma due to Campanato is of technical nature: instead of iterating the decay,
it may be applied to yield directly the desired decay estimate, and it will be applied when
proving (partial) regularity in low dimensions in Chapter 6 (here, Φ will be the Excess
function).

Lemma A.11 ( [Gia83], Chapter III, Lemma 2.1; [DGK04], Lemma 2.2 ): Let A,B,
R1, α and β be non-negative numbers with α > β. Then there exist a positive constant κ0

and a constant c depending only on α, β and A such that the following is true: whenever Φ
is nonnegative and nondecreasing on (0, R1) and satisfies

Φ(ρ) ≤
[
A

( ρ

R

)α
+ κ

]
Φ(R) + B Rβ for all ρ ∈ (0, R) (A.2)

for some R < R1 and some κ ∈ (0, κ0), then there holds for all ρ ∈ (0, R)

Φ(ρ) ≤ c
[( ρ

R

)β
Φ(R) + B ρβ

]
.
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Lastly, we give a measure density result tracing back to Giusti which allows us to control the
Hausdorff-dimension dimH of the singular set, when we consider partial regularity for weak
solutions to some nonlinear system:

Lemma A.12 (cf. [Giu03], Proposition 2.7, [Min03b], Section 4): Let A be an open
set in Rn, and let λ be a finite, non-negative and increasing function defined on the family
of open subsets of A which is also countably superadditive in the following sense that∑

i∈N
λ
(
Oi

)
≤ λ

( ⋃
i∈N

Oi

)
whenever {Oi}i∈N is a family of pairwise disjoint open subsets of A. Then, for 0 < α < n,
we have dimH(Eα) ≤ α where

Eα =
{
x ∈ A : lim sup

ρ→0+

ρ−α λ
(
Bρ(x)

)
> 0

}
.

In the original formulation due to Giusti instead of λ a Radon measure µ on A such that
µ(A) < ∞ was considered. The new formulation allows us to deduce the following estimate
for the set of non-Lebesgue-points of fractional Sobolev functions which is essentially based
on the arguments in [Min03b, Section 4]:

Proposition A.13 ([DKM07], Proposition 2.1): Suppose that v ∈ W θ,q(Q+
d , RN ) for

d > 0 is a fixed number, θ ∈ (0, 1], q ≥ 1, N ∈ N. Moreover, let

A :=
{

x ∈ Q+
d ∪ Γd : lim sup

ρ→0+

∫
−
Bρ(x)∩Q+

d

∣∣v(y)− (v)Bρ(x)∩Q+
d

∣∣q dy > 0
}

,

B :=
{

x ∈ Q+
d ∪ Γd : lim sup

ρ→0+

|(v)Bρ(x)∩Q+
d
| = ∞

}
.

Then
dimH(A) ≤ n− θq and dimH(B) ≤ n− θq .

Proof: We first note that we can restrict ourselves to prove the proposition for the interior
case where we replace the half-cube Q+

d by the full cube Qd. Otherwise we extend a given
function v ∈ W θ,q(Q+

d , RN ) by even reflection; then, an easy calculation reveals that the
extended function v̄ belongs to W θ,q(Qd, RN ) and satisfies

‖v̄‖W θ,q(Qd,RN ) ≤ 4 ‖v‖W θ,q(Q+
d ,RN ) .

Therefore, we consider a function v ∈ W θ,q(Qd, RN ) and we define a set-function λ defined
by

λ(O) :=
∫

O

∫
O

|v(x)− v(y)|q

|x− y|n+θq
dx dy

on every open subset O ⊂ Qd. We observe that all the assumptions on λ in Lemma A.12
are fulfilled. To estimate the dimensions of the sets A and B we define

SA :=
{
x ∈ Qd : lim sup

ρ→0+

ρθq−nλ
(
Bρ(x)

)
> 0

}
.
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Now let ε > 0. Then, the previous lemma implies Hn−θq+ε(SA) = 0. By the Poincaré-type
inequality in Lemma A.9 we conclude that if x0 ∈ A, then x0 ∈ SA, and therefore A ⊆ SA

and Hn−θq+ε(A) = 0. To infer the analogous estimate for the set B we fix ε0 ∈ (0, ε) and
define

SB :=
{
x ∈ Qd : lim sup

ρ→0+

ρθq−n−ε0λ
(
Bρ(x)

)
> 0

}
.

Again, from Lemma A.12 follows that Hn−θq+ε(SB) = 0. To prove B ⊆ SB we next consider
centres x0 ∈ Qd \ SB and radii R < 1 such that BR(x0) ⊂ Qd. Then, we use Jensen’s
inequality and the fractional Poincaré inequality in Lemma A.9 to estimate∣∣(v)x0,2−k−1R − (v)x0,2−kR

∣∣q ≤ 2−n

∫
−
B

2−kR
(x0)

∣∣v − (v)x0,2−kR

∣∣q dx

≤ c(n, q)
( R

2k

)θq−n
∫

B
2−kR

(x0)

∫
B

2−kR
(x0)

|v(x)− v(y)|q

|x− y|n+θq
dx dy

= c(n, q)
( R

2k

)ε0
( R

2k

)θq−n−ε0

λ
(
B2−kR(x0)

)
≤ c̃(n, q) 2−kε0

for every k ∈ N0 sufficiently large. Summing up these terms finally yields

lim
k→∞

|(v)x0,2−kR| ≤ c(n, q, ε0) < ∞ .

Hence, since ε0 ∈ (0, ε) was chosen arbitrarily, we obtain Hn−θq+ε(B) = 0; this completes
the proof of the proposition. �

A.4 A global version of Gehring’s Lemma

We will use the following version of the Gehring lemma which was proved in [DGK04]. It
gives conditions easy to verify to prove higher integrability up to the boundary of some
bounded Lipschitz-domain Ω ⊂ Rn which satisfies an Ahlfors regularity condition (KΩ) with
positive constant kΩ (see p. 12).

Theorem A.14 ([DGK04], Theorem 2.4): Let A be a closed subset of Ω. Consider two
nonnegative function g, f ∈ L1(Ω) and p with 1 < p < ∞ such that there holds∫

−
Br/2(z)∩Ω

g p dx ≤ bp
[( ∫
−
Br(z)∩Ω

g dx
)p

+
∫
−
Br(z)∩Ω

f p dx
]

(A.3)

for almost all z ∈ Ω \A with Br(z)∩A = ∅, for some constant b. Then there exist constants
c = c(n, p, q, b, kΩ) and δ = δ(n, p, b, kΩ) such that( ∫

−
Ω

g̃ q dx
) 1

q ≤ c
[( ∫
−
Ω

g p dx
) 1

p +
( ∫
−
Ω

f q dx
) 1

q
]

for all q ∈ [p, p + δ), where g̃(x) = Ln(Bd(x,A)(x)∩Ω)

Ln(Ω) g(x).

As in [DGK04] we use the convention d(x, ∅) = ∞. In particular, if A = ∅, we have g̃ ≡ g,
and the Theorem then provides a global version of the usual Gehring Lemma.
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Br(x0) open n-dimensional ball with radius r and centre x0 9
B+

r (x0) intersection of Br(x0) with the upper half-plane Rn−1 × R+ 9
C0(Ω, RN ) space of continuous functions on Ω 10
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