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Abstract

We study Markov processes associated with stochastic differential equations, whose non-
linearities are gradients of convex functionals. We prove a general result of existence of such
Markov processes and a priori estimates on the transition probabilities. The main result
is the following stability property: if the associated invariant measures converge weakly,
then the Markov processes converge in law. The proofs are based on the interpretation of
a Fokker-Planck equation as the steepest descent flow of the relative Entropy functional in
the space of probability measures, endowed with the Wasserstein distance. Applications
include stochastic partial differential equations and convergence of equilibrium fluctuations
for a class of random interfaces.
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1 Introduction and main results

In the seminal paper [22], Jordan-Kinderlehrer-Otto have given a remarkable interpretation
of the solution to a linear Fokker-Planck equation as the steepest descent flow of the relative
Entropy functional in the space of probability measures, endowed with the Wasserstein distance.
The book [3] by Ambrosio-Gigli-Savaré has provided a general theory of gradient flows in the
Wasserstein space of probability measures, including linear and non-linear PDE’s, in finite and
infinite dimension.

In this paper we want to investigate the probabilistic counterpart of such results. The ap-
proach is analytical and based on techniques from Calculus of Variations and Optimal Transport
Problems; however several results have important consequences on existence and in particular
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convergence of Markov processes being reversible with respect to a log-concave probability mea-
sure.

Following [3], we interpret the solution (µt)t≥0 of a Fokker-Planck equation with convex
potential, as a curve in the space of probability measures, solving a suitable differential varia-
tional inequality. We obtain interesting estimates on µt which have, to our knowledge, no direct
probabilistic proof, and are very useful in the study of the time-homogeneous Markov process
(Xt)t≥0 whose one-time distributions are (µt)t≥0.

1.1 The main results

We consider a separable Hilbert space H, which could be finite or infinite dimensional, whose
scalar product and norm will be respectively denoted by 〈·, ·〉 and ‖ · ‖. We denote by P(H)
the set of all probability measures on H, endowed with the Borel σ-algebra.

We consider a probability measure γ on H with the following property:

Assumption 1.1 γ is log-concave, i.e. for all pairs of open sets B, C ⊂ H

log γ ((1− t)B + tC) ≥ (1− t) log γ(B) + t log γ(C) ∀t ∈ (0, 1). (1.1)

The class of log-concave probability measures includes all measures of the form (here L k stands
for Lebesgue measure)

γ :=
1
Z
e−V L k, where V : H = Rk → R is convex and Z :=

∫
Rk

e−V dx < +∞, (1.2)

all Gaussian measures, all Gibbs measures on a finite lattice with convex Hamiltonian; see
Proposition 2.2 and the Appendix for more information on the class of log-concave probability
measures.

We denote the support of γ by K = K(γ) and the smallest closed affine subspace of H
containing K by A = A(γ). We write canonically

A = H0 + h0, h0 ∈ K, ‖h0‖ ≤ ‖k‖ ∀ k ∈ K, (1.3)

so that h0 = h0(γ) is the element of minimal norm in K and H0 = H0(γ) is a closed linear
subspace of H. As in the Gaussian case, we will say that γ in non-degenerate if H0(γ) = H.

We want to consider a stochastic processes with values in A(γ) and reversible with respect
to γ. We now state a first result which determines such process in a canonical way. We
denote by Cb(H) the space of bounded continuous functions in H and by C1

b (A(γ)) the space
of all Φ : A(γ) 7→ R which are bounded, continuous and Fréchet differentiable with bounded
continuous gradient ∇Φ : A(γ) 7→ H0(γ) (notice that all functions in C1

b (A(γ)) are Lipschitz
continuous).

We set Ω := C([0,+∞[;K) ⊂ K [0,+∞[, and we denote by Xt : K [0,+∞[ → K the coordinate
process Xt(ω) := ωt, t ≥ 0. We shall endow Ω with the Polish topology of uniform conver-
gence on bounded subsets of [0,+∞[, and the relative Borel σ-algebra. On K [0,+∞[ we shall
consider the canonical σ-algebra generated by cylindrical sets and, for probability measures in
K [0,+∞[, the convergence induced by the duality with continuous cylindrical functions of the
form f(Xt1 , . . . , Xtn), with f ∈ Cb(Kn).
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Theorem 1.2 (Markov process and Dirichlet form associated to γ) Let γ be a log-concave
probability measure on H and let K be its support. Then:

(a) The bilinear form E = Eγ,‖·‖ given by

E(u, v) :=
∫

K
〈∇u,∇v〉H0(γ) dγ, u, v ∈ C1

b (A(γ)), (1.4)

is closable in L2(γ) and its closure (E , D(E)) is a symmetric Dirichlet Form. Furthermore,
the associated semigroup (Pt)t≥0 in L2(γ) maps L∞(γ) in Cb(K).

(b) There exists a unique Markov family (Px : x ∈ K) of probability measures on K [0,+∞[

associated with E. More precisely, Ex[f(Xt)] = Ptf(x) for all bounded Borel functions and
all x ∈ K. Moreover, x 7→ Px is continuous.

(c) For all x ∈ K, P∗x (C(]0,+∞[;H)) = 1 and Ex[‖Xt − x‖2] → 0 as t ↓ 0. Moreover,
P∗x (C([0,+∞[;H)) = 1 for γ-a.e. x ∈ K.

(d) (Px : x ∈ K) is reversible with respect to γ, i.e. the transition semigroup (Pt)t≥0 is
symmetric in L2(γ); moreover γ is invariant for (Pt), i.e. γ(Ptf) = γ(f) for all f ∈ Cb(K)
and t ≥ 0.

An example in H := Rk of the above setting is provided by (1.2) when the potential V : Rk → R
is convex with Lipschitz continuous gradient ∇V : Rk → Rk. Then γ is log-concave, see
Proposition 2.2, and the process X is a solution of the Stochastic Differential Equation (SDE):

dXt = −∇V (Xt) dt+
√

2 dW, X0(x) = x, (1.5)

where W is a Rk-valued Brownian motion. One can also consider a convex V ∈ C1,1(U), where
U ⊂ Rk is a convex open set, and V ≡ +∞ on Rk \ U . Then X solves the SDE with reflection
at the boundary ∂U of U :

dXt = −∇V (Xt) dt+
√

2 dW + n(Xt) dLt, X0(x) = x, (1.6)

where n is an inner normal vector to ∂U and L is a continuous monotone non-decreasing process
which increases only when Xt ∈ ∂U . Equations like (1.5) and (1.6) with convex potentials arise
in the theory of random interfaces. The invariant measure γ is typically a Gibbs measure on
a lattice. Interesting infinite-dimensional examples include Stochastic PDEs with monotone
gradient non-linearities or with reflection. See subsection 1.2 for an overview of the literature.

Before stating the next theorem, we define the relative Entropy functional; for all probability
measures µ on H we set:

H(µ|γ) :=
∫

H
ρ log ρ dγ (1.7)

if µ = ρ γ for some ρ ∈ L1(γ), and +∞ otherwise. We recall that H(·|γ) ≥ 0 by Jensen’s
inequality.
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We also define the Wasserstein distance: given two probability measures µ, ν on H, we set

W2(µ, ν) := inf

{[∫
H×H

‖y − x‖2 dΣ
] 1

2

: Σ ∈ Γ(µ, ν)

}
. (1.8)

Here Γ(µ, ν) is the set of all couplings between µ and ν: it consists of all probability measures
Σ on H ×H whose first and second marginals are respectively µ and ν, i.e. Σ(B ×H) = µ(B)
and Σ(H ×B) = ν(B) for all B ∈ B(H). We set

P2(H) :=
{
µ ∈ P(H) :

∫
H
‖x‖2 dµ(x) <∞

}
.

It turns out that W2(·, ·) is a distance on P2(H) and that (P2(H),W2) is a complete and
separable metric space, whose convergence implies weak convergence, see for instance [3, Propo-
sition 7.1.5]. Then, we have the following result:

Theorem 1.3 (Estimates on transition probabilities) Let γ be a log-concave probability
measure on H and let (Px) be as in Theorem 1.2. Fix x ∈ K and denote the law of Xt under
Px by νx

t . Then [0,+∞[×K 3 (t, x) 7→ νx
t ∈ P2(H) is continuous and

H(νx
t |γ) ≤ inf

σ∈P2(H)

{
1
2t

∫
H
‖y − x‖2 dσ(y) + H(σ|γ)

}
< +∞ ∀t > 0,

so that νx
t � γ for all t > 0, x ∈ K. Moreover,

W2(νx
t , ν

x
s ) ≤

√
2H(νx

ε |γ)
√
|t− s|, t, s ≥ ε, x ∈ K.

Notice that the estimates given in Theorem 1.3 do not contain any constant depending on H
or on γ and appear to be of a structural nature. In the particular case γ ∈ P2(H) we have:
H(νx

t |γ) ≤ 1
2t W

2
2 (δx, γ) < +∞, ∀t > 0.

We consider now a sequence (γn) of log-concave probability measures on H such that γn

converge weakly to γ. We denote Kn := K(γn), An := A(γn), Hn := H0(γn), in the notation of
(1.3). We want to consider situations where each Hn is an Hilbert space endowed with a scalar
product 〈·, ·〉Hn and an associated H-continuous norm ‖ · ‖Hn possibly different from the scalar
product and the norm induced by H. In order to ensure that this family of norms converges (in
a suitable sense) to the norm of H as n→∞, we will make the following assumption:

Assumption 1.4 There exists a constant κ ≥ 1 such that

1
κ
‖h‖H ≤ ‖h‖Hn ≤ κ‖h‖H ∀h ∈ Hn, n ∈ N. (1.9)

Furthermore, denoting by πn : H → Hn the orthogonal projections induced by the scalar product
of H, we have

lim
n→∞

‖πn(h)‖Hn = ‖h‖H ∀h ∈ H. (1.10)
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This assumption guarantees in some weak sense that the geometry of Hn converges to the
geometry of H; the case when all the scalar products coincide with 〈·, ·〉H , Hn ⊂ Hn+1 and
∪nHn is dense in H is obviously included and will play an important role in the paper.

Let (Pn
x : x ∈ Kn) (respectively (Px : x ∈ K)) be the Markov process in [0,+∞[Kn associated

to γn (resp. in [0,+∞[K associated to γ) given by Theorem 1.2. We denote by Pn
γn

:=
∫

Pn
x dγn(x)

(resp. Pγ :=
∫

Px dγ(x)) the associated stationary measures.
With an abuse of notation, we say that a sequence of measures (Pn) on C([a, b];H) converges

weakly in C([a, b];Hw) if, for allm ∈ N and h1, . . . , hm ∈ H, the process (〈X·, hi〉H , i = 1, . . . ,m)
under (Pn) converges weakly in C([a, b]; Rm) as n→∞.

In this setting we have the following stability and tightness result:

Theorem 1.5 (Stability and tightness) Suppose that γn → γ weakly in H and that the
norms of Hn satisfy Assumption 1.4. Then, for all xn ∈ Kn such that xn → x ∈ K in H:

(a) Pn
xn
→ Px weakly in H [0,+∞[ as n→∞;

(b) for all 0 < ε ≤ T < +∞, Pn
xn
→ Px weakly in C([ε, T ];Hw);

(c) for all 0 ≤ T < +∞, Pn
γn
→ Pγ weakly in C([0, T ];Hw).

This stability property means that the weak convergence of the invariant measures γn and
a suitable convergence of the norms ‖ · ‖Hn to ‖ · ‖H imply the convergence in law of the
associated processes, starting from any initial condition. Notice also statement (b) makes sense,
because Theorem 1.2(c) gives that our processes have continuous modifications in C(]0,+∞[;H)
(however, we are able to prove tightness only for the weak topology of H).

Finally, our approach yields naturally the following

Theorem 1.6 (Uniqueness in P2(H) of the invariant measure) Let γ ∈ P2(H). If µ ∈
P2(H) is an invariant measure of (Pt)t≥0, i.e. µ(Ptf) = µ(f) for all f ∈ Cb(K) and t ≥ 0,
then µ = γ.

1.2 Motivations and a survey of the literature

Existence and uniqueness for stochastic equations like (1.5) and (1.6) in finite dimension are
classical problems in probability theory, starting from [28] and [31]. In [10], existence and
uniqueness of strong solutions are proven for a general convex potential V . The Dirichlet form
approach is detailed in [16].

Natural generalizations of (1.5) to the infinite dimension are provided by stochastic partial
differential equations (SPDEs): see Chap. 8 of [13] and [12]. SPDEs with reflection, which
generalize (1.6), have also been studied: see [24], [33], [34], [11]. Unlike the finite-dimensional
case, no general result of existence and uniqueness is known, and in fact it is not even clear how
to define a general notion of solution.

The main result of this paper is the general stability property of this class of stochastic
processes, given by Theorem 1.5: if the log-concave invariant measures γn converge, then the
laws Pn

x of the associated stochastic processes also converge. In order to appreciate the strength
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of this result, notice that convergence of γn is a much weaker information than convergence (in
any sense) of the drift ∇Vn in (1.5). In fact, every approach based either on the SDE or on the
generator and the Dirichlet form associated with the process, seems bound to give only weaker
results.

In the stability result, the limit process is identified by the associated Dirichlet form (1.4):
however, in the general case, we can not write a stochastic equation for the limit, although
this can be (and has been) done in many interesting situations. Our approach yields existence
of stochastic processes associated with any Dirichlet form of the gradient type (1.4) with log-
concave reference measure: this also seems to be a new result (see [1]).

Stochastic equations of the form (1.5) and (1.6) are used as models for the random evolution
of interfaces; in these cases the invariant measure is typically a Gibbs measure on a lattice with
convex interaction: see [29], [19] and [17] for the physical background.

In many interesting cases, the Gibbs measure converges, under a proper rescaling, to a non-
degenerate Gaussian (or related) measure on some function or distribution space. Convergence
in law of the associated stationary dynamics to the solution of a stochastic partial differential
equation is interpreted as convergence of the equilibrium fluctuations of the interface around its
macroscopic hydrodynamic limit: see [20] and [18].

Such convergence results are obtained only in the stationary case and the proofs use very
particular properties of the model. For instance, the techniques of [18] are based on monotonicity
properties and can not be applied to many interesting situations. Our Theorem 1.5 extends the
convergence result to more general initial conditions and, being based only on the log-concavity
of the invariant measures, can be applied to a large class of models. For a different (and weaker)
approach based on infinite dimensional integration by parts, see [35] and [36].

Finally, we notice that log-concave measures are still widely used as models for random
interfaces: see [27] and references therein.

1.3 Plan of the paper

We conclude this introduction with a short description of the plan of the paper: Section 2
is devoted to the introduction of some basic concepts and terminology, while in Section 3 we
illustrate the model case when H = Rk and ∇V is smooth, bounded and Lipschitz: here almost
no technical issue arises and the basic heuristic ideas can be presented much better. In Section 4
we show the basic convexity properties of the relative Entropy functional needed to build in
Section 5, by implicit time discretization, a “Fokker-Planck” semigroup in the Wasserstein space
of probability measures. Section 6 is devoted to the quite strong stability properties of this
semigroup, and these are used in Section 7 to establish, starting from the smooth case, the link
with Dirichlet forms. Finally, in Section 8 we canonically build our process in K [0,+∞[, and
deduce its continuity properties from the continuity properties of its transition probabilities,
provided by the Wasserstein semigroup. Finally, we adapt to our case some general results from
[23] on the existence of Markov processes associated to Dirichlet forms to obtain the results
stated in Theorem 1.2(c).
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2 Notation and preliminary results

In this section we fix our main notation and recall the main results on Wasserstein distance and
optimal couplings.

Throughout the paper we consider a real separable Hilbert space H. For J ⊂ H closed we
denote by Lipb(J) the space of all bounded ϕ : J 7→ R such that:

[ϕ]Lip(J) := sup
{
|ϕ(x)− ϕ(y)|
‖x− y‖

: x, y ∈ J, x 6= y

}
< +∞.

Measure-theoretic notation. If H is a separable Hilbert space, we shall denote by B(H)
the Borel σ-algebra of H, and by P(H) the set of (Borel) probability measures in H. Given a
Borel map r : H → H, the push forward r#µ ∈ P(H) of µ ∈ P(H) is defined by r#µ(B) :=
µ(r−1(B)) for all B ∈ B(H).

The set of non-degenerate Gaussian measures on H, which all belong to P2(H), will be
denoted by G(H). Analogously, we shall denote by BG(H) the σ-ideal of Gaussian null sets,
i.e. the sets B ∈ B(H) such that µ(B) = 0 for all µ ∈ G(H). Lebesgue measure in Rk will be
denoted by L k.
Wasserstein distance, optimal couplings and maps. We have already defined the class of
couplings between two probability measures µ and ν onH and the Wasserstein distanceW2(µ, ν):
see (1.8). Existence of a minimizing Σ in (1.8) is a simple consequence of the tightness of Γ(µ, ν);
the class of optimal couplings will be denoted by Γo(µ, ν):

Γo(µ, ν) :=
{

Σ ∈ Γ(µ, ν) :
∫

H×H
‖y − x‖2 dΣ = W 2

2 (µ, ν)
}
. (2.1)

In the special case when µ vanishes on all Gaussian null sets (that corresponds to absolute
continuity with respect to Lebesgue measure in finite dimensions) it has been proved in Theo-
rem 6.2.10 of [3] that there exists a unique optimal coupling Σ, and it is induced by an optimal
transport map t, namely Σ = (i × t)#µ (the proof is based on the fact that the non-Gateaux
differentiability set of a Lipschitz function in H is Gaussian null, see e.g. Theorem 5.11.1 in
[6]). We shall denote this optimal transport map by tν

µ. This is one of the infinite-dimensional
generalizations (see also [15] for another result in Wiener spaces) of the finite-dimensional result
ensuring that whenever µ ∈ P2(Rk) is absolutely continuous with respect to L k, then there
exists a unique optimal transport map that is also the gradient of a convex function.

When we have a sequence (γn) ⊂ P2(H) as in Assumption 1.4, we can introduce Wasserstein
distances in P2(An) using two different scalar products: 〈·, ·〉H and 〈·, ·〉Hn . The Wasserstein
distance with respect to the former one is indicated in the standard way W2(·, ·), while we
introduce the notation:

W 2
2,Hn

(µ, ν) := inf
{∫

An×An

‖y − x‖2
Hn

dΣ : Σ ∈ Γ(µ, ν)
}
, µ, ν ∈ P2(An); (2.2)

notice that if x, y ∈ An then x− y ∈ Hn, so that ‖x− y‖Hn makes sense. If µ, ν are supported
in An we also denote the class of optimal couplings in Γ(µ, ν) with respect to the Hn-distance
by ΓHn,o(µ, ν). By (1.9) the two distances are equivalent.
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Convergence of measures. We will use two notions convergence of measures: first the weak
convergence in P(H), induced by the duality with Cb(H); second, the convergence in P2(H)
induced by the Wasserstein distance. The two definitions are related by the following result (see
[3], Theorem 5.1.13 and Remark 7.1.11):

Lemma 2.1 If (µn) ⊂ P2(H), then µn → µ in P2(H) if and only if µn → µ weakly and

lim
n→∞

∫
H
‖x‖2 dµn =

∫
H
‖x‖2 dµ. (2.3)

Notice that, for weakly converging sequences (µn), the convergence of the second moments (2.3)
is easly seen to be equivalent to

lim
R↑∞

lim sup
n→∞

∫
{‖x‖≥R}

‖x‖2 dµn = 0. (2.4)

We recall that weak convergence of µn to µ implies

lim inf
n→∞

∫
H
f dµn ≥

∫
H
f dµ, (2.5)

for every lower semicontinuous function f : H → (−∞,+∞] bounded from below. We shall also
often use the following extension, involving integration with respect to a variable function: if fn

are uniformly bounded from below and equi-continuous, we have

lim inf
n→∞

∫
H
fn dµn ≥

∫
H

lim inf
n→∞

fn dµ. (2.6)

The proof immediately follows by (2.5), with the monotone approximation with the continuous
functions gk = inf

n≥k
fn.

Log-concave probability measures and Entropy. The concept of log-concavity has been
introduced in Assumption 1.1. Since this concept is crucial in this paper, we recall the following
result.

Proposition 2.2 ([7], [3], Theorem 9.4.11) Let H = Rk. Then γ ∈ P(H) is log-concave if
and only if it admits the following representation:

γ(B) =
∫

B∩{V <+∞}
e−V dH d ∀B ∈ B(Rk), (2.7)

where V : Rk → (−∞,+∞] is a suitable convex and lower semicontinuous function, d ≥ 0 is the
dimension of A(γ), and H d is the d-dimensional Hausdorff measure.

If the dimension of H is infinite, then γ ∈ P(H) is log-concave if and only if all the finite
dimensional projections of γ are log-concave and therefore admit the representation (2.7) for
some V and d.
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If γ is log-concave, the relative Entropy functional H(·|γ) (1.7) enjoys a crucial convexity prop-
erty in terms of Wasserstein distance, which has been discovered by McCann in [25] and further
extended to the infinite dimensional case in [3].

Proposition 2.3 (Displacement convexity of the relative Entropy) Let γ ∈ P(H) be
log-concave and let µ0, µ1 ∈ P2(H) with finite relative entropy. Then there exists an optimal
coupling Σ ∈ Γo(µ0, µ1) such that the curve in P2(H)

µt :=
(
(1− t)π0 + tπ1

)
#

Σ,
(
πi : (x0, x1) ∈ H ×H 7→ xi ∈ H, i = 0, 1

)
(2.8)

satisfies
H(µt|γ) ≤ (1− t)H(µ0|γ) + tH(µ1|γ) ∀ t ∈ [0, 1]. (2.9)

When H = Rk is finite dimensional and µ0 is absolutely continuous w.r.t. the Lebesgue measure
then the optimal coupling Σ = (i× t)#µ0 is unique, so that

µt =
(
(1− t)i + t t

)
#
µ0. (2.10)

3 From Fokker-Planck equation to Wasserstein gradient flows

In this section we illustrate the known connections between solutions of the SDE (1.5), solutions
to Fokker-Planck equations, Dirichlet semigroups and Wasserstein gradient flows in the model
case when the drift term in the SDE is the bounded gradient ∇V of a smooth function V : Rk →
R satisfying:

‖∇V (x)−∇V (y)‖ ≤ L‖x− y‖ ∀x, y ∈ Rk

for some L > 0. We shall also assume that all derivatives of V are bounded and that γ =
exp(−V ) L k is a log-concave probability measure in Rk. Notice that this implies that V is
convex, and also (see Appendix A) that there exist constants A ∈ R and B > 0 such that
V (x) ≥ A+B‖x‖ for all x ∈ Rk.

All theories mentioned above have a much larger realm of validity (for instance, much less
regular drift terms in the SDE (1.5) are allowed), but for our purposes it suffices to show con-
nections and a few a priori estimates in the smooth, bounded, Lipschitz case: more general cases
will follows thanks to the stability Theorem 1.5 (or its Wasserstein counterpart Theorem 6.1).

Let us fix k independent standard Brownian motions {W 1, . . . ,W k} on a probability space.
We consider the Rk-valued Brownian motion (Wt)t≥0, where W = (W 1, . . . ,W k). Since ∇V is
bounded and Lipschitz continuous, it is well known that, for all x ∈ Rk, there exists a unique
solution (Xt(x) : t ≥ 0) of the SDE

dXt = −∇V (Xt) dt+
√

2 dW, X0(x) = x. (3.1)

Notice that (Xt(x) −Xt(y), t ≥ 0) solves almost surely an ordinary differential equation, since
the stochastic terms dW cancel out; then one easily obtains from the convexity of V that
t 7→ ‖Xt(x)−Xt(y)‖2 is non-increasing in [0,+∞[ almost surely. As a consequence, a.s.

‖Xt(x)−Xt(y)‖2 ≤ ‖x− y‖2, ∀x, y ∈ Rk, t ≥ 0. (3.2)
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For all x ∈ Rk, t ≥ 0 and µ0 ∈ P(Rk) we set:

νx
t := law of Xt(x), µt :=

∫
νx

t dµ0(x) ∈ P(Rk). (3.3)

By (3.2), the map x 7→ νx
t is weakly continuous, and therefore µt is well defined. Moreover, the

continuity of the process (Xt(x))t≥0 yields weak continuity of t 7→ νx
t and t 7→ µt.

It is a trivial consequence of Itô’s formula that µt solves the Fokker-Planck equation in the
sense of distributions in ]0,+∞[×Rk:

d

dt
µt = ∆µt +∇ · (∇V µt); (3.4)

this means that

d

dt

∫
Rk

ϕ dµt =
∫

Rk

(∆ϕ− 〈∇V,∇ϕ〉) dµt ∀ϕ ∈ C∞
c (Rk), (3.5)

and the initial condition at t = 0 is attained in the following weak sense:

lim
t↓0

∫
Rk

ϕdµt =
∫

Rk

ϕdµ0, ∀ϕ ∈ C∞
c (Rk). (3.6)

Equivalently, (3.5) and (3.6) can be grouped by saying that for every T > 0 and ϕ ∈ C∞
c ([0, T ]×

Rk) we have ∫
Rk

ϕT dµT =
∫

Rk

ϕdµ0 +
∫ T

0

∫
Rk

(
∂tϕt + ∆ϕt − 〈∇V,∇ϕt〉

)
dµt dt. (3.7)

Proposition 3.1 (Uniqueness and stability of FP solutions) For any µ0 ∈ P(Rk), the
Fokker-Planck equation (3.7) has a unique solution in the class of weakly continuous maps
t 7→ µt ∈ P(Rk). If µ0 ∈ P2(Rk), then the unique solution [0,+∞[3 t 7→ µt ∈ P2(Rk) is
continuous. In addition, µt is stable: µn

0 → µ0 in P2(Rk) implies µn
t → µt in P2(Rk) for all

t ≥ 0.

Proof. We consider first the case µ0 = δx: it only remains to prove that [0,∞) 3 t 7→ νx
t ∈

P2(H) is continuous. Taking (2.4) into account, it is enough to prove that

sup
0≤t≤T

E
[
‖Xt(x)‖2

]
≤ C(1 + ‖x‖2) < +∞, (3.8)

sup
0≤t≤T

E
[
‖Xt(x)‖21{‖Xt(x)‖≥R}

]
≤ ω(R)(1 + ‖x‖2) with ω(R) ↓ 0 as R ↑ +∞, (3.9)

where C and ω depend only on T and sup ‖∇V ‖. We apply Itô’s formula to ‖Xt(x)‖ and find
that

‖Xt‖ ≤ ‖x‖+ T sup ‖∇V ‖+ (k − 1)
∫ t

0

1
‖Xs(x)‖

ds+
√

2 B̂t, ∀ t ∈ [0, T ],
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where B̂ is a standard Brownian motion in R. We define now the process (bt), unique non-
negative solution of

bt = ‖x‖+ T sup ‖∇V ‖+ (k − 1)
∫ t

0

1
bs
ds+

√
2 B̂t, ∀ t ≥ 0.

Then (bt) is a Bessel process of dimension k, i.e. (bt, t ≥ 0) is equal in law to (‖b0 ·h+
√

2Wt‖, t ≥
0), where h ∈ Rk with ‖h‖ = 1: see [26]. By Itô’s formula, ‖Xt‖ ≤ bt for all t ∈ [0, T ], almost
surely. Then (3.8) and (3.9) follow from standard Gaussian estimates.

Existence of FP solutions, as we have seen, is provided by (3.3). Uniqueness can for instance
be obtained by a classical duality argument: let µ1

t , µ
2
t be two weakly continuous solutions of

(3.5), and let σ := µ1
t − µ2

t be their difference, satisfying∫
Rk

ϕT dσT =
∫ T

0

∫
Rk

(
∂tϕt + ∆ϕt − 〈∇V,∇ϕt〉

)
dσt dt (3.10)

for every T > 0 and ϕ ∈ C∞
c ([0, T ]×Rk). By a mollification technique, it is not difficult to check

that (3.10) holds even for every function ϕ ∈ C([0, T ]× Rk) with ∂tϕ, ∇ϕ and ∇2ϕ continuous
and bounded in [0, T ] × Rk. For given ψ ∈ C∞

c (Rk) we consider the solution ϕt of the time
reversed (adjoint) parabolic equation

∂tϕt + ∆ϕt − 〈∇V,∇ϕt〉 = 0 in (0, T )× Rk, ϕT = ψ. (3.11)

Standard parabolic regularity theory (it suffices to use the maximum principle [21] and the fact
that the first and second order spatial derivatives of ϕ solve an analogous equation) shows that
ϕ is sufficiently regular to be used as a test function in (3.10): this leads to

∫
ψ dσT = 0. As ψ

is arbitrary, we obtain that µ1
T = µ2

T .
The representation µt =

∫
νx

t dµ0(x), given in (3.3), and the uniform estimates (3.8), (3.9)
easily imply the stability property. �

Notice that the measure γ provides a stationary solution of (3.4) (and it can be actually
shown that all solutions µt weakly converge to γ as t→ +∞); it is also natural to consider initial
conditions µ0 = ρ0γ ∈ P(H) with ρ0 ∈ L2(γ). In this class of initial data, one can consider the
variational formulation of the FP equation induced by the symmetric Dirichlet form

Eγ(ρ, η) :=
∫

Rk

〈∇ρ,∇η〉 dγ, ρ, η ∈W 1,2
γ (Rk), (3.12)

where W 1,2
γ (Rk) is the weighted Sobolev space

W 1,2
γ (Rk) :=

{
ρ ∈ L2(γ) ∩W 1,1

loc (Rk) :
∫

Rk

‖∇ρ‖2 dγ < +∞
}
. (3.13)

Proposition 3.2 For every ρ0 ∈ L2(γ):
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1. there exists a unique ρ· ∈W 1,2
loc

(
]0,+∞[;L2(γ)

)
such that

d

dt
〈ρt, η〉L2(γ) + Eγ(ρt, η) = 0, ∀ η ∈W 1,2

γ (Rk), lim
t↓0

ρt = ρ0 in L2(γ); (3.14)

if ρmin ≤ ρ0 ≤ ρmax, then ρt satisfies the same uniform bounds;

2. if ρ0 ≥ 0 and
∫
ρ0 dγ = 1, then µt = ρtγ ∈ P(H) provides the unique solution of (3.5)

starting from µ0 = ρ0γ;

3. if ρ0 ∈ Cb(Rk), then, for all t ≥ 0, the function

Ptρ0(x) := E(ρ0(Xt(x))) =
∫
ρ0 dν

x
t , ∀x ∈ Rk, (3.15)

provides a continuous version of ρt, i.e. Ptρ0(x) = ρt(x) for γ-a.e. x; moreover Pt acts
on Lipb(Rk) and

[Ptρ]Lip(Rk) ≤ [ρ]Lip(Rk) t ≥ 0, ρ ∈ Lipb(Rk); (3.16)

4. (Pt)t≥0 has an extension to a symmetric strongly continuous semigroup in L2(γ).

Proof. Existence of a unique solution of (3.14) follows by the well-known theory of variational
evolution equations, as well as the uniform lower and upper bounds on ρt, being Eγ a Dirichlet
form: this proves point 1. Now, for ϕ ∈ C∞

c (Rk) we can choose η = ϕ exp(V ) in (3.14) and
integrate by parts in space to obtain (3.5): this shows that µt is the unique solution of the FP
equation, as stated in point 2. Continuity of Ptρ0 and (3.16) follow from (3.2); in order to prove
that ρt = Ptρ0 γ-a.e., we can reduce by linearity to the case ρ0γ ∈ P(Rk) and then point 3
follows from point 2. Point 4 follows from standard L2(γ) estimates for equation (3.14). �

Using the convexity inequality Eγ(η, η) ≥ Eγ(ρ, ρ) + 2Eγ(ρ, η − ρ), it is not difficult to show
that an equivalent formulation of (3.14) is (this kind of formulation first appeared in [5], in
connection with nonlinear evolution problems in Banach spaces)

d

dt

1
2
‖ρt − η‖2

L2(γ) +
1
2
Eγ(ρt, ρt) ≤

1
2
Eγ(η, η), ∀ η ∈W 1,2

γ (Rk). (3.17)

We are going to show an analogous property of the solutions µt of the Fokker-Planck equation
(3.7), obtained just replacing L2 norm with Wasserstein distance and 1

2Eγ(ρ, ρ) with the relative
Entropy functional H(ργ|γ) with respect to γ. This provides the key connection with the
variational theory of gradient flows in Wasserstein spaces. To this aim, let us first establish the
analogue of the convexity inequality for the relative Entropy:

Lemma 3.3 (Energy inequality) Let ρ ∈ C1(Rk) ∩W 1,2
γ (Rk), with 0 < ρmin ≤ ρ ≤ ρmax <

+∞. Then:

H(ηγ|γ) ≥ H(ργ|γ) +
∫

Rk

〈∇ρ, t− i〉 dγ, ∀ ηγ ∈ P2(Rk), (3.18)

where t is the optimal transport map between ργ and ηγ.
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Proof. We just sketch the proof, referring to [3, Lemma 10.4.4, Lemma 10.4.5] or to [9] for
more general results and detailed arguments. Let t = ∇φ, with φ convex, and u = ρ exp(−V ).
Defining µ0 = ργ, µ1 = ηγ and µt as in (2.8), taking (2.9) into account it suffices to bound from
below d

dt+
H(µt|γ) at t = 0 with

∫
〈∇ρ, t− i〉 dγ. Now, a computation based on the area formula

(that provides an explicit expression for the density of µt with respect to L k, see also the proof
of Lemma A.1 in the Appendix) gives

d

dt+
H(µt|γ)

∣∣∣∣
t=0

= −
∫

Rk

trace (∇2φ− I)u(x) dx+
∫

Rk

〈∇V, t− i〉 ρ dγ,

where ∇2φ is the Alexandrov pointwise second derivative of φ and I is the identity matrix. By
the convexity of φ we can bound the matrix of absolutely continuous measures ∇2φL k from
above with the distributional derivative of ∇φ = t (which, in general, is a measure, by the
convexity of φ) to obtain

d

dt+
H(µt|γ)

∣∣∣∣
t=0

≥ −〈∇ · (t− i), u〉+
∫

Rk

〈∇V, t− i〉 ρ dγ.

Finally, we integrate by parts to obtain (3.18): although u is not compactly supported, this
formal integration can be justified by approximation of u with uψR, where ψR ∈ C∞

c (Rk),
0 ≤ ψR ≤ 1, ‖∇ψR‖ ≤ 1, ψR ↑ 1 and ∇ψR → 0 as R→ +∞. �

Proposition 3.4 For all µ0 ∈ P2(Rk) the solution (µt) of the FP equation (3.4), characterized
in Proposition 3.1, satisfies the family of variational evolution inequalities

d

dt

1
2
W 2

2 (µt, ν) +H(µt|γ) ≤ H(ν|γ) (3.19)

in the sense of distributions in ]0,+∞[, for all ν ∈ P2(Rk).

Proof. First of all, we notice that the variational evolution inequalities (3.19) are stable with
respect to pointwise convergence in P2(Rk): indeed, if µn

t → µt for all t, then d
dtW

2
2 (µn

t , ν) →
d
dtW

2
2 (µt, ν) in the sense of distributions, and the lower semicontinuity of H(·|γ) allows to pass

to the limit as n→∞.
Thanks to this remark and to the stability properties of solutions to FP equations, we need

only to show the property when µ0 = ρ0γ with ρ0 ∈ C2
b (Rk), ρ0 ≥ ρmin > 0. Then, we know from

Proposition 3.2 that µt = ρtγ, with ρt smooth, ρt ≥ ρmin. In addition, writing ut = ρt exp(−V ),
since u0 = ρ0 exp(−V ) belongs to C2

b (Rk) as well, standard parabolic regularity theory for
the FP equation whose drift is bounded, together will all its derivatives, gives ∂tu, ∇u, ∇2u ∈
Cb

(
[0, T ]× Rk

)
for all T > 0.

We are interested in getting pointwise bounds for the velocity field vt := −(∇ρt)/ρt; it
appears in a natural way in this problem because, by (3.4), µt solve the classical continuity
equation

d

dt
µt +∇ · (vtµt) = 0 in ]0,+∞[×Rk,
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describing the evolution of a time-dependent mass distribution µt under the action of a velocity
field vt. Since ρt = ut exp(V ), and exp(V ) is not bounded above, we can not use directly the C2

b

bounds on ut. However, we can use the fact that ρt solve the linear PDE ∂tρt = ∆ρt−〈∇ρt,∇V 〉,
to obtain

∂t∇ρ = ∆∇ρ−∇2V∇ρ−∇2ρ∇V.

Taking the scalar product with ∇ρ and using the identity ∆‖∇ρ‖2 = 2〈∆∇ρ,∇ρ〉 + 2‖∇2ρ‖2,
we can neglect the nonnegative terms ‖∇2ρ‖2 and 〈∇2V∇ρ,∇ρ〉 to get

∂t‖∇ρt‖2 ≤ ∆‖∇ρt‖2 − 〈∇V,∇‖∇ρt‖2〉.

The classical maximum principle can now be applied, thanks to the fact that ‖∇ρt‖2 grows at
most exponentially [21, Page 216] to obtain ‖∇ρt‖2 ≤ ‖∇ρ0‖2 for all t ≥ 0. By the uniform
lower bound on ρt, ‖vt‖ is uniformly bounded.

Now, let us show first that t 7→ µt is a Lipschitz map in [0,+∞[ with values in P2(Rk). Let
0 ≤ t1 ≤ t2 < +∞; the smoothness and the just proved boundedness of vt ensure the existence
of a unique flow Y (t, x) : [0,+∞[×Rk → Rk associated to vt, i.e. Y (0, x) = x and d

dtY (t, x) =
vt(Y (t, x)) in [0,+∞[. Then, the method of characteristics (see e.g. [3, Proposition 8.1.8]) for
solutions to the continuity equation shows that µt is given by Y (t, ·)#µ0 for all t ∈ [0,+∞[.
Therefore we can use the coupling (Y (t2, ·), Y (t1, ·))#µ0 to estimate W2(µt1 , µt2) as follows:

W 2
2 (µt1 , µt2) ≤

∫
Rk

‖Y (t2, x)− Y (t1, x)‖2 dµ0 =
∫

Rk

‖
∫ t2

t1

vt(Y (t, x)) dt‖2 dµ0 ≤ C(t2 − t1)2.

This proves that t 7→ µt is Lipschitz in [0,+∞[.
To conclude the proof, it suffices to check (3.19) at any differentiability point t̄ ∈ [0,+∞[ of

the map t 7→ W 2
2 (µt, ν). Let t be the optimal transport map between µt̄ and ν, and let h > 0;

since Σ = (Y (t̄+ h, ·), t ◦ Y (t̄, ·))#µ0 is a coupling between µt̄+h and ν, we can estimate (using
the identity ‖a‖2 − ‖b‖2 = 〈a+ b, a− b〉):

W 2
2 (µt̄+h, ν)−W 2

2 (µt̄, ν)
h

≤ 1
h

∫
Rk

‖t(Y (t̄, x))− Y (t̄+ h, x)‖2 dµ0 −
1
h

∫
Rk

‖t(y)− y‖2 dµt̄

=
1
h

∫
Rk

[
‖t(Y (t̄, x))− Y (t̄+ h, x)‖2 − ‖t(Y (t̄, x))− Y (t̄, x)‖2

]
dµ0

= −
∫

Rk

〈2t(Y (t̄, x))− Y (t̄+ h, x)− Y (t̄, x),
1
h

(Y (t̄+ h, x)− Y (t̄, x))〉 dµ0

−→ −2
∫

Rk

〈t(Y (t̄, x))− Y (t̄, x),vt̄(Y (t̄, x))〉 dµ0 = −2
∫

Rk

〈t(y)− y,vt̄(y)〉 dµt̄,

as h ↓ 0, by dominated convergence. From the energy inequality (3.18) we obtain (3.19). �

Starting from (3.4), we have derived a new relation (3.19) satisfied by solutions to FP equa-
tions, at least when H = Rk and V is smooth, with ∇V bounded and Lipschitz. The idea
of [3] is to consider (3.19) as the definition of a differential equation in a space of probability
measures endowed with the Wasserstein distance even when either V is less regular or H is
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infinite-dimensional: more precisely, (µt)t≥0 is said to solve the gradient flow of the functional
H(·|γ); the choice of δx as initial measure is the one that provides the link with the laws νx

t of
the solution Xt(x) of the SDE (3.1).

Notice that (3.19) is defined only in terms of the Wasserstein distance and the relative en-
tropy, namely of objects which make perfectly sense on an arbitrary Hilbert space H. Motivated
by Proposition 3.4, we set the following:

Definition 3.5 (Gradient flows)
Let F : P2(H) 7→ [0,+∞] and set D(F ) = {F < +∞}. We say that a continuous map
µt : ]0,+∞[ 7→ P2(H) is a gradient flow of F if

d

dt

1
2
W 2

2 (µt, ν) + F (µt) ≤ F (ν) in the sense of distributions in ]0,+∞[, for all ν ∈ D(F ).

(3.20)
We say that µt starts from µ0 if µt → µ0 in P2(H) as t ↓ 0.

The terminology “gradient flow” can be justified, by appealing to Otto’s formal differential
calculus on P2(Rk); since this calculus will not play a significant role in our paper we will
not discuss this issue, and refer to [22], [3], [32] for much more heuristics on this subject.
Here we just point out that existence of gradient flows can be obtained (see Section 5) by the
analogue in the Wasserstein setting of the Euler scheme for the approximation of gradient flows
ẋ(t) = −∇F (x(t)): namely, given a time step τ > 0, we build a sequence (xk) by minimizing

y 7→ 1
2τ
‖y − xk‖2 + F (y)

recursively (i.e., given xk, we choose xk+1 among the minimizers of the variational problem
above). Looking at the discrete Euler equation, (xk+1 − xk)/τ = −∇F (xk+1), it is clear that
xk ∼ x(kτ).

Notice also that (3.20) implies that µt ≡ µ0 ∈ P2(H) is a constant gradient flow if and only
if µ0 minimizes F ; in the case F (µ) = H(µ|γ), since t 7→ t ln t is strictly convex, the unique
minimizer of F is µ = γ. So, from the gradient flow viewpoint, we easily see that the unique
invariant measure in P2(H) is γ if γ ∈ P2(H): see Theorem 1.6 and its proof in section 8.

In the next sections we are going to adopt the “gradient flow” point of view, and prove that
the results of Theorems 1.2, 1.3 and 1.5 are relatively easy consequences of this approach.

4 Implicit Euler scheme

In this section we construct a discrete approximation of the gradient flow. Such construction
is based on the following convexity property, which is a stronger version of the one given in
Proposition 2.3.

Definition 4.1 We say that F : P2(H) → [0,+∞] is strongly displacement convex if for any
µ̄, ν0, ν1 ∈ P2(H) there exists a continuous curve ν : [0, 1] 7→ P2(H) such that ν|t=i = νi,
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i = 0, 1, such that:{
W 2

2 (νt, µ̄) ≤ (1− t)W 2
2 (ν0, µ̄) + tW 2

2 (ν1, µ̄)− t(1− t)W 2
2 (ν0, ν1)

F (νt) ≤ (1− t)F (ν0) + tF (ν1)
∀t ∈ [0, 1]. (4.1)

In this paper we consider only the case F (µ) := H(µ|γ), where γ is a log-concave probability
measure on H. In fact the following results are true for much more general classes of strongly
displacement convex functionals F : P2(H) → (−∞,+∞] with essentially the same proof (under
suitable lower semicontinuity and coercivity assumptions). However at one point we shall take
advantage of a particular feature of the relative entropy functional H(·|γ), namely the entropy
inequality (4.4), in order to simplify the proof. For more general cases, see Chapter 4 in [3].

In order to build gradient flows, we use an implicit Euler scheme, at least when µ̄ ∈ D(F );
then, suitable Cauchy-type estimates provide existence up to initial data in D(F ), as in the
Hilbertian theory. The scheme can be described as follows: given a time step τ > 0, we define a
“discrete” solution µk

τ setting µ0
τ = µ̄ and, given µk

τ , we choose µk+1
τ as the unique minimizer of

ν 7→ H(ν|γ) +
1
2τ
W 2

2 (ν, µk
τ ). (4.2)

The fact that this is possible is a consequence of the following

Proposition 4.2 Let τ > 0. For all µ ∈ P2(H) there exists a unique µτ ∈ P2(H) such that:

H(µτ |γ) +
1
2τ
W 2

2 (µτ , µ) ≤ H(ν|γ) +
1
2τ
W 2

2 (ν, µ) ∀ ν ∈ P2(H). (4.3)

The existence part of this result is rather standard and relies on tightness and lower semicon-
tinuity arguments. The uniqueness statement is based on the strong displacement convexity of
the relative Entropy functional, proved in Proposition 4.3.

Proof. Existence. Let νk = fkγ ∈ P2(H) be such that:

lim
k→∞

[
F (νk) +

1
2τ
W 2

2 (νk, µ)
]

= inf
ν∈P2(H)

{
F (ν) +

1
2τ
W 2

2 (ν, µ)
}
< +∞.

In particular we have that (νk) is bounded in P2(H) and lim supk H(νk|γ) <∞. By using first
the inequality t ln t ≥ −e−1 and then Jensen inequality we get

1
e
γ(H \ E) +H(νk|γ) ≥

∫
E
fk ln fk dγ ≥ νk(E) ln

νk(E)
γ(E)

∀ E ∈ B(H), (4.4)

so that γ(E) → 0 implies supk νk(E) → 0. It follows that (νk) is tight in H, so that we can
extract a subsequence, that we can still denote by (νk), converging weakly to some µτ ∈ P2(H).

If we prove that both F and W 2
2 (·, µ) are lower semicontinuous with respect to weak conver-

gence, then we have that µτ realizes the minimum in (4.3): indeed by lower semicontinuity:

F (µτ ) +
1
2τ
W 2

2 (µτ , µ) ≤ lim inf
k→∞

[
F (νk) +

1
2τ
W 2

2 (νk, µ)
]

= inf
ν∈P2(H)

{
F (ν) +

1
2τ
W 2

2 (ν, µ)
}
.
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A nice representation of the relative entropy functional is provided by the duality formula (see
for instance Lemma 9.4.4 of [3]):

H(µ|γ) = sup
{∫

H
S dµ−

∫
H

(eS − 1) dγ : S ∈ Cb(H)
}
. (4.5)

This formula immediately implies that H(·|γ) is sequentially lower semicontinuous with respect
to the weak convergence.

Let now Σk ∈ Γo(νk, µ) and assume with no loss of generality that W2(νk, µ) converges to
some limit; since (νk) is tight in H, (Σk) is tight in H×H and we can assume that (Σk) converges
weakly to Σ ∈ P(H ×H). Obviously Σ ∈ Γ(ν, µ) and the weak convergence of Σn gives∫

H×H
‖x− y‖2 dΣ ≤ lim inf

k→∞

∫
H×H

‖x− y‖2 dΣk. (4.6)

Bounding W 2
2 (µ, ν) from above with

∫
‖x− y‖2 dΣ we obtain the lower semicontinuity property.

A similar argument also proves the joint lower semicontinuity of (µ, ν) 7→W2(µ, ν) (we will use
this fact at the end of the proof of Proposition 4.3).

Uniqueness. Suppose that µ̃τ 6= µτ realize the minimum in (4.3), denoted by m. Let νt be
a curve between µ̃τ and µτ given by Proposition 4.3 below, with the choice µ̄ = µ. Then we
obtain:

F (ν1/2) +
1
2τ
W 2

2 (ν1/2, µ) ≤ m− 1
4
W 2

2 (µ̃τ , µτ ) < m,

which is a contradiction. �

Proposition 4.3 Let γ ∈ P(H) be log-concave. Then the functional H(·|γ) : P2(H) →
[0,+∞] is strongly displacement convex.

Proof. As shown in [3], it is often enough to build the interpolating curves only for a dense
subset D of measures µ̄. In the case of the relative entropy functional (but also for more general
classes of functionals, see [3]) the set D is made by finite convex combinations of non-degenerate
Gaussian measures; as D is easily seen to contain finite convex combinations of Dirac masses, D
is dense in P2(H). Moreover, any measure in D vanishes on the class BG(H) of Gaussian null
sets; hence, for any µ̄ ∈ D and ν0, ν1 ∈ P2(H) we can find optimal transport maps ri between
µ̄ and νi, i = 0, 1. We define

νt := ((1− t)r0 + tr1)# µ. (4.7)

Let us first check the Lipschitz continuity of t 7→ νt ∈ P2(H): for s, t ∈ [0, 1], the coupling

Σst := ((1− s)r0 + sr1, (1− t)r0 + tr1)# µ̄

belongs to Γ(νs, νt), so that

W 2
2 (νs, νt) ≤

∫
H×H

‖x− y‖2 dΣst = |t− s|2
∫

H
‖r1 − r0‖2 dµ̄

≤ 2|t− s|2
(
W 2

2 (ν1, µ̄) +W 2
2 (ν0, µ̄)

)
.
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Now, let us check the convexity of t 7→W 2
2 (νt, µ̄):

W 2
2 (νt, µ̄) ≤

∫
H
‖(1− t)(r0 − i) + t(r1 − i)‖2 dµ̄

= (1− t)
∫

H
‖r0 − i‖2 dµ̄+ t

∫
H
‖r1 − i‖2 dµ̄− t(1− t)

∫
H
‖r0 − r1‖2 dµ̄

≤ (1− t)W 2
2 (ν0, µ̄) + tW 2

2 (ν1, µ̄)− t(1− t)W 2
2 (ν0, ν1).

In the last inequality we used the fact that (r0, r1)#µ̄ ∈ Γ(ν0, ν1). For the convexity of t 7→ F (νt),
achieved through a finite-dimensional approximation, we refer to [3, Theorem 9.4.11].

Having built the interpolating curves when µ̄ ∈ D , in the general case, we can approximate
any µ̄ ∈ P2(H) by measures µ̄n ∈ D ; notice that the interpolating curves t 7→ νn

t between ν0

and ν1 are equi-Lipschitz and, for t fixed, the same tightness argument used in the existence
part of Proposition 4.2 shows that (νn

t ) is tight. Therefore, thanks to a diagonal argument, we
can assume that νn

t → νt weakly for all t ∈ [0, 1]∩Q, with t 7→ νt Lipschitz in [0, 1]∩Q. Passing
to the limit as n → ∞ in the convexity inequalities relative to νn

t , and using the weak lower
semicontinuity of F (·) and W 2

2 (·, ·) we get{
W 2

2 (νt, µ̄) ≤ (1− t)W 2
2 (ν0, µ̄) + tW 2

2 (ν1, µ̄)− t(1− t)W 2
2 (ν0, ν1)

F (νt) ≤ (1− t)F (ν0) + tF (ν1)
(4.8)

for all t ∈ [0, 1]∩Q. By a density argument, based on the completeness of P2(H), we can obtain
a Lipschitz curve νt defined in the whole of [0, 1], still retaining the inequalities above. �

We prove now an important estimate which plays a key role in the sequel, see the proof of
Theorem 5.1 below.

Proposition 4.4 Let F : P2(H) → [0,+∞] be strongly displacement convex, let µ̄ ∈ P2(H)
and let µτ be a minimizer of

µ 7→ F (µ) +
1
2τ
W 2

2 (µ, µ̄).

Then
W 2

2 (µτ , ν)−W 2
2 (µ̄, ν) ≤ 2 τ [F (ν)− F (µτ )], ∀ ν ∈ D(F ). (4.9)

Proof. Let ν0 = µτ , ν1 = ν and consider the interpolating curve νt : [0, 1] → P2(H) along
which (4.1) holds. The minimality of µτ and (4.1) give

F (µτ ) +
1
2τ

W 2
2 (µτ , µ̄) ≤ F (νt) +

1
2τ

W 2
2 (νt, µ̄)

≤ (1− t)
[
F (µτ ) +

1
2τ

W 2
2 (µτ , µ̄)

]
+ t

[
F (ν) +

1
2τ

W 2
2 (ν, µ̄)

]
− t(1− t)

1
2τ

W 2
2 (µτ , ν).

Subtracting F (µτ ) +W 2
2 (µτ , µ̄)/2τ from the left hand side of the first inequality and from the

right hand side of the second inequality, and dividing by t > 0 we obtain:

F (ν)− F (µτ ) ≥ 1
2τ

W 2
2 (µτ , µ̄) − 1

2τ
W 2

2 (ν, µ̄) +
1− t

2τ
W 2

2 (µτ , ν)

≥ 1
2τ

[
(1− t)W 2

2 (µτ , ν) − W 2
2 (ν, µ̄)

]
.
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Letting t ↓ 0 we have

W 2
2 (µτ , ν)−W 2

2 (ν, µ̄) +W 2
2 (µτ , µ̄) ≤ 2τ

(
F (ν)− F (µτ )

)
, (4.10)

which yields (4.9) by neglecting the nonnegative term W 2
2 (µτ , µ̄). �

5 Existence and uniqueness of gradient flows

In this section we prove existence and uniqueness of gradient flows and convergence of the
approximations (4.2). Again the results of this section hold for more general classes of strongly
displacement convex functionals, but we are only interested here in the case F (·) = H(·|γ),
where we consider a fixed log-concave probability measure γ on H.

We go back to the sequence (µk
τ )k defined recursively by (4.2) with µ0

τ = µ ∈ P2(H), the
existence of (µk

τ )k being granted by Proposition 4.2. We shall denote the “discrete” semigroup
induced by µk

τ by Sτ µ̄(t), precisely

Sτ µ̄(t) := µk+1
τ ∀t ∈ (kτ, (k + 1)τ ]. (5.1)

Theorem 5.1 (Existence and uniqueness of gradient flows) For any µ̄ ∈ P2(K) there
exists a unique gradient flow starting from µ̄. The induced semigroup S µ̄(t) satisfies

W2(S µ̄(t),S µ̄(s)) ≤
√

2F (µ̄)
√
|t− s|, t, s ≥ 0, µ̄ ∈ P2(K) (5.2)

and the following properties:

(i) (Uniform discrete approximation) W2(S µ̄(t),Sτ µ̄(t)) ≤ C
√
τF (µ̄) if µ̄ ∈ D(F ),

with C = 2(2
√

2 + 1);

(ii) (Contractivity) W2(S µ̄(t),S ν̄(t)) ≤W2(µ̄, ν̄);

(iii) (Regularizing effect) F (S µ̄(t)) ≤ inf
ν∈D(F )

1
2tW

2
2 (µ̄, ν) + F (ν) < +∞ for all t > 0,

µ̄ ∈ D(F ).

Proof. We first sketch the proof of uniqueness of gradient flows, referring to [3, Corollary 4.3.3]
for all technical details: if µ1(t), µ2(t) are gradient flows starting from µ̄, setting ν = µ1(t) into

d

dt

1
2
W 2

2 (µ2(t), ν) ≤ F (ν)− F (µ2(t))

and ν = µ2(t) into
d

dt

1
2
W 2

2 (µ1(t), ν) ≤ F (ν)− F (µ1(t)),

one obtains that d
dtW

2
2 (µ1(t), µ2(t)) ≤ 0, whence the identity of µ1 and µ2 follows.
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In order to show existence of gradient flows, we consider first the case when µ̄ ∈ D(F ).
Notice that µk+1

τ satisfies

F (µk+1
τ ) +

1
2τ
W 2

2 (µk+1
τ , µk

τ ) ≤ F (ν) +
1
2τ
W 2

2 (ν, µk
τ ) ∀ν ∈ D(F ) (5.3)

and, choosing in particular ν = µk
τ , we obtain that F (µk+1

τ ) ≤ F (µk
τ ) and

W2(µk+1
τ , µk

τ ) ≤
√

2τ [F (µk
τ )− F (µk+1

τ )]. (5.4)

This inequality easily leads to the discrete C1/2 estimate

W2(Sτ µ̄(t),Sτ µ̄(s)) ≤
√

2F (µ̄)
√
|t− s+ τ |. (5.5)

Moreover a crucial role is played by the formula

W 2
2 (Sτ µ̄((k + 1)τ), ν)−W 2

2 (Sτ µ̄(kτ), ν) ≤ 2τ [F (ν)− F (Sτ µ̄((k + 1)τ))] (5.6)

for all ν ∈ D(F ), which follows from Proposition 4.4.

Proof of (i). We start proving the estimate

W 2
2 (Sτ µ̄(t),S τ

2
ν̄(t))−W 2

2 (µ̄, ν̄) ≤ 2τF (ν̄) (5.7)

for all τ > 0 and all times t that are integer multiples of τ . To this aim, from (5.6) we obtain
the inequalities

W 2
2 (S τ

2
ν̄( τ

2 ), θ)−W 2
2 (ν̄, θ) ≤ τ

[
F (θ)− F (S τ

2
ν̄(
τ

2
))

]
, (5.8)

W 2
2 (S τ

2
ν̄(τ), θ)−W 2

2 (S τ
2
ν̄( τ

2 ), θ) ≤ τ
[
F (θ)− F (S τ

2
ν̄(τ))

]
, (5.9)

for all θ ∈ D(F ), whose sum gives

W 2
2 (S τ

2
ν̄(τ), θ)−W 2

2 (ν̄, θ) ≤ τ
[
2F (θ)− F (S τ

2
ν̄(
τ

2
))− F (S τ

2
ν̄(τ))

]
(5.10)

for all θ ∈ D(F ). Still from (5.6) we get

W 2
2 (Sτ µ̄(τ), θ)−W 2

2 (µ̄, θ) ≤ 2τ [F (θ)− F (Sτ µ̄(τ))] ∀θ ∈ D(F ). (5.11)

Setting θ = Sτ µ̄(τ) in (5.10) and θ = ν̄ in (5.11), we can add the resulting inequalities to obtain

W 2
2 (Sτ µ̄(τ),S τ

2
ν̄(τ))−W 2

2 (Sτ µ̄(0),S τ
2
ν̄(0)) ≤ τ

(
2F (ν̄)− F (S τ

2
ν̄(
τ

2
))− F (S τ

2
ν̄(τ))

)
≤ 2τ

(
F (ν̄)− F (S τ

2
ν̄(τ))

)
. (5.12)

Notice that (5.12) corresponds to (5.7) with t = τ ; by adding the inequalities analogous to (5.12)
between consecutive times mτ , (m+ 1)τ , for m = 0, . . . , N − 1, we obtain

W 2
2 (Sτ µ̄(Nτ),S τ

2
ν̄(Nτ))−W 2

2 (µ̄, ν̄) ≤ 2τ
(
F (ν̄)− F (S τ

2
ν̄(Nτ)

)
, (5.13)
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that yields (5.7) because F is nonnegative. Now, from (5.7) with µ̄ = ν̄ we get

W2(S τ
2m
µ̄(t),S τ

2m+1
µ̄(t)) ≤ 2−m/2

√
2τF (µ̄)

for all t that are integer multiples of τ/2m, so that

W2(S τ
2m
µ̄(t),S τ

2n
µ̄(t)) ≤

n−1∑
i=m

2−i/2
√

2τF (µ̄) (5.14)

for all n > m ≥ j and all t that is an integer multiple of τ/2j . For any such t (and therefore on
a dense set of times) the sequence (S τ

2n
µ̄(t)) has the Cauchy property and converges in P2(H)

to some limit, that we shall denote by S(τ)µ̄(t).
Using the discrete C1/2 estimate (5.5) we obtain convergence for all times, as well as the

uniform Hölder continuity (5.2) of t 7→ S(τ)µ̄(t).
We prove now that (S(τ)µ̄(t))t≥0 is a gradient flow starting from µ̄. Indeed, we can read

(5.6) as follows:
d

dt

1
2
W 2

2 (Sτ µ̄(t), ν) ≤ τ
∞∑
i=1

[F (ν)− F (Sτ µ̄(iτ))]δ i
τ

for all ν ∈ D(F ), in the sense of distributions. Passing to the limit as n → ∞ in the previous
inequality with τ replaced by τ/2n, the lower semicontinuity of F gives

d

dt

1
2
W 2

2 (S(τ)µ̄(t), ν) ≤ [F (ν)− F (S(τ)µ̄(t))] ∀ν ∈ D(F )

in the sense of distributions. This proves that S(τ)µ̄(t) is a gradient flow starting from µ̄, and
since we proved that gradient flows are uniquely determined by the initial condition, from now
on we shall denote S µ̄(t) = S(τ)µ̄(t).
Proof of (i). Passing to the limit as n → ∞ in (5.14), with m = j = 0, we obtain that
W2(S µ̄(t),Sτ µ̄(t)) can be estimated with 2(

√
2 + 1)

√
τF (µ̄) when t/τ is an integer. From

(5.5), (5.2) and the triangle inequality we obtain (i).
Proof of (ii) when µ̄ ∈ D(F ). It suffices to pass to the limit as τ ↓ 0 in (5.7).

Proof of (iii) when µ̄ ∈ D(F ). By adding the inequalities

W 2
2 (Sτ µ̄((i+ 1)τ), ν)−W 2

2 (Sτ µ̄(iτ), ν) ≤ 2τ [F (ν)− F (Sτ µ̄((i+ 1)τ))]
≤ 2τ [F (ν)− F (Sτ µ̄(Nτ))]

for i = 0, . . . , N − 1 we get

W 2
2 (Sτ µ̄(Nτ), ν)−W 2

2 (µ̄, ν) ≤ 2Nτ [F (ν)− F (Sτ µ̄(Nτ))].

Replacing now τ by τ/2m in this inequality, and defining N as the integer part of 2mt/τ (so
that Nτ/2m → t), we can let m→∞ to obtain (iii), neglecting the term W 2

2 (Sτ µ̄(Nτ), ν).
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In order to prove (ii) and (iii) when µ̄ ∈ D(F ) we use a density argument. Indeed, let µ̄n ∈ D(F )
be converging to µ̄ ∈ D(F ) in P2(H): by (ii) we obtain that S µ̄n(t) is a Cauchy sequence for
all t ≥ 0, and therefore converges to some limit, that we shall denote by S µ̄(t). It is not difficult
to prove by approximation that S µ̄(t) is a gradient flow, and it remains to show that it starts
from µ̄. We have indeed W2(S µ̄(t),S µ̄n(t)) ≤W2(µ̄n, µ̄), so that

lim sup
t↓0

W2(S µ̄(t), µ̄) ≤ 2W2(µ̄n, µ̄) + lim sup
t↓0

W2(S µ̄n(t), µ̄n) = 2W2(µ̄n, µ̄).

Letting n→∞ we obtain that S µ̄(t) → µ̄ as t ↓ 0. �

6 Γ-convergence and stability properties

In this section we consider a sequence (γn) of log-concave probability measures on H weakly
converging to γ and a sequence of Hilbertian norms on Hn = H0(γn) satisfying Assumption 1.4.
We are going to prove that the gradient flows associated with H(·|γn) with respect to W2,Hn

converge to the gradient flow associated with H(·|γ) with respect to W2, where the notation
W2,Hn has been introduced in (2.2).

This result is natural in view of Theorem 5.1, since the discrete approximating flow S n
τ µ̄

n(·)
of H(·|γn) are defined only in terms of γn and W2,Hn . However, the same result is much less
obvious in view of the connection with the Fokker-Planck equation (3.4) and the associated
stochastic process (Xt)t≥0: see Sections 7 and Section 8.

The main result of this section is the following:

Theorem 6.1 (Stability of gradient flows) Suppose that (γn) ⊂ P(H) is a sequence of log-
concave probability measures converging weakly to γ ∈ P(H) and that Assumption 1.4 holds.
Let µ̄n ∈ P2(An) and let (µn

t )t≥0 be the gradient flows associated with H(·|γn) in P2(An) with
respect to W2,Hn.
If µ̄n converge to µ̄ ∈ P2(A) in P2(H) then µn

t → µt in P2(H) for every t ∈ [0,+∞), where
(µt)t≥0 is the gradient flow associated with H(·|γ) in P2(A) with respect to W2.

The crucial property in the proof of this stability result is the Γ-convergence of the functionals
H(·|γn) to H(·|γ). The concept of Γ-convergence is due to De Giorgi and is a classical tool of
Calculus of Variations.

Lemma 6.2 (Convergence of entropy functionals) If γn ∈ P(H) converge weakly to γ ∈
P(H) then H(·|γn) : P2(H) → [0,+∞] Γ-converge to H(·|γ) : P2(H) → [0,+∞], i.e.

(i) for any sequence (µn) ⊂ P2(H) converging weakly to µ ∈ P2(H), we have

lim inf
n→∞

H(µn|γn) ≥ H(µ|γ); (6.1)

(ii) for any µ ∈ P2(H) there exist µn ∈ P2(H) converging to µ in P2(H) such that

lim sup
n→∞

H(µn|γn) ≤ H(µ|γ). (6.2)
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Proof. The “liminf” inequality (i) in the definition of Γ-convergence follows directly from the
duality formula (4.5): if µn → µ weakly, for all bounded continuous S : H → R we have∫

H
S dµ−

∫
H

(eS − 1) dγ = lim
n→∞

[∫
H
S dµn −

∫
H

(eS − 1) dγn

]
≤ lim inf

n→∞
H(µn|γn).

Taking the supremum in the left hand side the lim inf inequality is achieved.
In order to show the lim sup inequality we first notice that, by diagonal arguments, we

need only to show it for a dense subset R ⊂ D(H(·|γ)); here density should be understood
in the sense that for any ν ∈ D(H(·|γ)) there exist νn ∈ R converging to ν in P2(H) with
H(νn|γ) → H(ν|γ). Let us check that

R :=
{
e−ε‖·‖2Hfγ ∈ P2(H) : f ∈ Cb(H), f ≥ 0, ε > 0

}
has these properties: indeed, in this case, given µ = gγ ∈ R with g(x) = e−ε‖x‖2Hf(x), we can
simply take µn = Z−1

n gγn, with Zn :=
∫
H g dγn, to achieve the lim sup inequality. The “density

in energy” of R in the sense described above can be achieved as follows: first, using the density
of Cb(H) in L1(γ) and the dominated convergence theorem, we see that any µ = ργ ∈ P2(H)
with ρ ∈ L∞(γ) can be approximated by elements of R. A truncation argument then gives that
any µ ∈ D(H(·|γ)) can be approximated. �

In order to clarify the structure of the proof of Theorem 6.1, it is useful to introduce the
following concept: we say that µn ∈ P(Hn) converge with moments to µ ∈ P(H) if µn → µ
weakly in P(H) and

∫
Hn
‖x‖2

Hn
dµn →

∫
H ‖x‖2

H dµ. Notice that for any open set A ⊂ H we
can use (2.6) to obtain

lim inf
n→∞

∫
A
‖x‖2

Hn
dµn = lim inf

n→∞

∫
A
‖πn(x)‖2

Hn
dµn ≥

∫
A
‖x‖2

H dµ (6.3)

whenever µn → µ weakly in P(H). Therefore, in the proof of convergence with moments, only
the lim sup needs to be proved.

Lemma 6.3 Convergence with moments is equivalent to convergence in P2(H).

Proof. If µn → µ with moments, (6.3) with A = {‖x‖H < R} gives

lim
R→∞

lim sup
n→∞

∫
{‖x‖H≥R}

‖x‖2
H dµn ≤ κ2 lim

R→∞
lim sup

n→∞

∫
{‖x‖H≥R}

‖πn(x)‖2
Hn

dµn

≤ κ2 lim
R→∞

∫
{‖x‖H≥R}

‖x‖2
H dµ = 0.

We obtain the convergence in P2(H) from (2.4). Conversely, if µn → µ weakly, (2.6) gives

lim
n→∞

∫
Hn

‖πn(x)‖2
Hn

∧R2 dµn =
∫

H
‖x‖2

H ∧R2 dµ ∀R > 0. (6.4)

If µn → µ in P2(H), we can use (2.4) and (1.9) to obtain lim supn

∫
{‖x‖Hn≥R} ‖x‖

2
Hn

dµn → 0 as
R→∞, and if we combine this information with (6.4) we obtain the convergence with moments.

�
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Lemma 6.4 Assume that µn, νn ∈ P(Hn), that Σn ∈ Γ(µn, νn) is converging to Σ ∈ Γ(µ, ν)
weakly and that µn → µ with moments, while

∫
Hn
‖y‖2

Hn
dνn is bounded. Then

lim
n→∞

∫
Hn×Hn

〈x, y〉Hn
dΣn =

∫
H×H

〈x, y〉H dΣ.

Proof. We prove the lim inf inequality only, the proof of the other one being similar. With the
notation of (1.10), we have 〈πn(x), πn(y)〉Hn

→ 〈x, y〉H as n→∞ for all x, y ∈ H. For all ε > 0
the functions

1
2ε
‖πn(x)‖2

Hn
+
ε

2
‖πn(y)‖2

Hn
+ 2〈πn(x), πn(y)〉Hn

are nonnegative, and these functions are equi-continuous in H × H by (1.9). Therefore (2.6),
thanks to the convergence assumption on µn, gives

lim inf
n→∞

∫
H×H

ε

2
‖πn(y)‖2

Hn
+ 2〈πn(x), πn(y)〉Hn

dΣn ≥
∫

H×H

ε

2
‖y‖2

H + 2〈x, y〉H dΣ.

Using the boundedness assumption on (νn) we can obtain the lim inf inequality letting ε ↓ 0.
�

In the proof of Theorem 6.1 we need some continuity/lower semicontinuity properties of the
Wasserstein distance.

Lemma 6.5 Let µn, νn ∈ P2(Hn) be such that µn → µ ∈ P2(H), νn → ν ∈ P2(H) weakly in
P(H). Then:

(i) W2(µ, ν) ≤ lim inf
n→∞

W2,Hn(µn, νn);

(ii) if µn → µ and νn → ν in P2(H), then W2,Hn(µn, νn) →W2(µ, ν).

Proof. (i) Without loss of generality, we can assume that the lim inf is a limit. Let Σn ∈
ΓHn,o(µn, νn). Notice that tightness of (µn) and (νn) in H implies tightness of (Σn) in H ×H.
Let Σ ∈ Γ(µ, ν) be a weak limit point of (Σn), which obviously belongs to Γ(µ, ν). Then, taking
into account the equi-continuity in H×H of the maps ‖πn(x−y)‖Hn , ensured by (1.9), by (2.6)
we get:

W 2
2 (µ, ν) ≤

∫
H×H

‖y − x‖2
H dΣ ≤ lim inf

n→∞

∫
H×H

‖πn(x− y)‖2
Hn

dΣn

= lim inf
n→∞

∫
Hn×Hn

‖y − x‖2
Hn

dΣn = lim inf
n→∞

W 2
2,Hn

(µn, νn).

(ii) We choose optimal couplings Σn between µn and νn, relative to Hn, and prove that any
weak limit Σ (which exists, possibly passing to subsequences) is optimal. The same truncation
argument used in Lemma 6.3 to show that convergence in P2(H) implies convergence with
moments shows that

lim
n→∞

∫
Hn×Hn

‖y − x‖2
Hn

dΣn =
∫

H×H
‖y − x‖2

H dΣ.
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In order to prove the optimality of Σ we recall that Σ ∈ Γ(λ, ν) is an optimal coupling (relative
to the cost c(x, y) = ‖x− y‖2

H) if and only if for any ` ∈ N, any (xi, yi)i=1,...,` in the support of
Σ and any permutation σ of {1, . . . , `} the following inequality holds:

∑̀
i=1

‖xi − yσ(i)‖2
H ≥

∑̀
i=1

‖xi − yi‖2
H , (6.5)

see for instance [3, Theorem 6.1.4]. Since Σn is optimal, a similar inequality holds with ‖ · ‖Hn

instead of ‖ · ‖H for all (xn
i , y

n
i )i=1,...,` in the support of Σn. Since Σn converge to Σ weakly,

for any (xi, yi)i=1,...,` in the support of Σ there exist (xn
i , y

n
i )i=1,...,` in the support of Σn with

(xn
i , y

n
i ) → (xi, yi) in H ×H. Then (6.5) follows taking limits as n→∞ and using the fact that

zn ∈ Hn and ‖zn − z‖H → 0 implies ‖zn‖Hn → ‖z‖H . �

We can now prove Theorem 6.1. With no loss of generality we can assume (possibly making
translations) that A(γn) = Hn.

Proof. Set Fn(·) := H(·|γn). We consider the case when Fn(µ̄n) is bounded first. In this
case, property (i) in Theorem 5.1 and (1.9) ensure the uniform (in time, and with respect to
n) estimate W 2

2 (µn
t ,S

n
τ µ̄

n(t)) ≤ Cτ . Here S n
τ µ̄

n(t) is the discrete approximation (5.1) of the
gradient flow, obtained by the recursive minimization scheme (4.3): i.e. we define recursively
µn,0

τ := µ̄n, µn,k+1
τ is the unique minimizer of

P2(Hn) 3 ν 7→ Fn(ν) +
1
2τ
W 2

2,Hn
(ν, µn,k

τ ),

and we define S n
τ µ̄

n(t) := µn,k+1
τ for all t ∈ (kτ, (k+1)τ ]. Therefore, taking also Lemma 6.3 into

account, in this case it suffices to show that, with τ > 0 fixed, the convergence with moments is
preserved by the minimization scheme. So, let us assume that µn converge to µ with moments
and Fn(µn) is bounded; we consider the minimizers νn of the problems

P2(Hn) 3 σ 7→ Fn(σ) +
1
2τ
W 2

2,Hn
(σ, µn),

and show that they converge with moments to the minimizer ν of the problem

P2(H) 3 σ 7→ F (σ) +
1
2τ
W 2

2 (σ, µ). (6.6)

Notice first we can use λ = µn in the inequality

Fn(νn) +
1
2τ
W 2

2,Hn
(νn, µn) ≤ Fn(λ) +

1
2τ
W 2

2,Hn
(λ, µn) (6.7)

to obtain that both
∫
Hn
‖y‖2

Hn
dνn and Fn(νn) are bounded. Since (γn) is tight and H(νn|γn)

is bounded, then (νn) is tight as well, by the entropy inequality (4.4). Therefore (νn) has limit
points with respect to the weak convergence. We will prove that any limit point is a minimizer
of (6.6), so that it must be ν.
Let ν ′ = limk νn(k) in the weak convergence, let λ ∈ P2(H) and let λk be converging to λ
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in P2(H), with lim supk Fn(k)(λk) ≤ F (λ), whose existence is ensured by condition (ii) in the
definition of Γ-convergence. Setting λ = λk, n = n(k) in (6.7), and using also condition (i) in
the definition of Γ-convergence to bound Fn(k)(νn(k)) from below, we get from (i) and (ii) of
Lemma 6.5

F (ν ′) +
1
2τ
W 2

2 (ν ′, µ) ≤ lim sup
k→∞

[
Fn(k)(νn(k)) +

1
2τ
W 2

2 (νn(k), µn(k))
]

≤ lim sup
k→∞

[
Fn(k)(λk) +

1
2τ
W 2

2 (λk, µn(k))
]

≤ F (λ) +
1
2τ
W 2

2 (λ, ν). (6.8)

As λ is arbitrary, this proves that ν ′ is a minimizer, therefore ν ′ = ν.
Now, setting λ = µ in (6.8), we obtain that all inequalities must be equalities, so that

limk W
2
2 (µn(k), νn(k)) = W 2

2 (µ, ν). Indeed, if lim supk(ak + bk) ≤ a + b, lim infk ak ≥ a and
lim infk bk ≥ b, then limk ak = a and limk bk = b.

We shall denote in the sequel by Σn optimal couplings between µn and νn. Let Σ ∈ Γ(µ, ν)
a limit point in the weak convergence of Σn, and assume just for notational simplicity that the
whole sequence Σn weakly converges to Σ. By (2.6) we get∫

H×H
‖x− y‖2

H dΣ ≤ lim inf
n→∞

∫
H×H

‖x− y‖2
Hn

dΣn = W 2
2 (µ, ν),

therefore Σ ∈ Γo(µ, ν). We can now apply Lemma 6.4 to obtain that
∫
Hn×Hn

〈x, y〉Hn
dΣn →∫

H×H 〈x, y〉 dΣ; from the identity

W 2
2 (µ, ν) =

∫
H
‖x‖2

H dµ+
∫

H
‖y‖2

H dν − 2
∫

H×H
〈x, y〉H dΣ,

and from the analogous one with the Hilbert spacesHn we obtain that νn converge with moments
to ν.

In the general case when Fn(µ̄n) is not bounded we can find, for any ε > 0, ν̄ ∈ D(F ) with
W2(µ̄, ν̄) < ε. By the definition of Γ-convergence we can also find ν̄n converging to ν̄ in P2(H)
with lim supn Fn(ν̄n) ≤ F (ν̄). For n large enough we still have W2,Hn(µ̄n, ν̄n) < ε, so that the
contracting property of gradient flows (see Theorem 5.1 (ii)) gives

W2(S µ̄n(t),S ν̄n(t)) +W2(S µ̄(t),S ν̄(t))
≤ κW2,Hn(S µ̄n(t),S ν̄n(t)) +W2(S µ̄(t),S ν̄(t)) < (κ+ 1)ε, ∀t ≥ 0.

By applying the local uniform convergence property to ν̄n we get

lim sup
n→∞

sup
t∈[0,T ]

W2(S µ̄n(t),S µ̄(t)) ≤ (κ+ 1)ε ∀T > 0.

�
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7 Wasserstein semigroup and Dirichlet forms

In this section we establish a general link between the Wassertein semigroups and the semigroups
arising from natural “gradient” Dirichlet forms, extending Proposition 3.2 to the general case of
a log-concave measure γ in H. We denote by K the support of γ (a closed convex set, coinciding
with {V < +∞} when H = Rk and γ = exp(−V )L k) and, without a real loss of generality, we
consider the case when

A(γ) = H0(γ) = H. (7.1)

We consider, recalling (1.3), the bilinear form

Eγ(u, v) :=
∫

H
〈∇u,∇v〉 dγ, u, v ∈ C1

b (H). (7.2)

Accordingly, we define the induced scalar product and norm on C1
b (H):

Eγ,1(u, v) :=
∫

H
u v dγ + Eγ(u, v), ‖u‖Eγ,1 :=

√
Eγ,1(u, u). (7.3)

We start proving that Eγ is closable. We recall that closability means the following: for all
sequences (un) ⊂ C1

b (H) which are Cauchy with respect to ‖·‖Eγ,1 and such that un → 0 in L2(γ),
we have ‖un‖Eγ,1 → 0. This is equivalent to saying that the operator ∇ : C1

b (H) 7→ L2(γ;H) is
closable in L2(γ).

Lemma 7.1 (Closability) The bilinear form (Eγ , C
1
b (H)) is closable in L2(γ).

Proof. Let us denote by Cyl(H) the subspace of C1
b (H) made by cylindrical functions; by a

simple density argument we can assume that the sequence (un) is contained in Cyl(H). We
claim that closability follows by the lower semicontinuity of v 7→ Eγ(v, v) on Cyl(H): indeed, if
this lower semicontinuity property holds, we can pass to the limit as m → ∞ in the inequality
Eγ(un−um, un−um) < ε, for n, m ≥ n(ε), to obtain Eγ(un, un) < ε for n ≥ n(ε), i.e. ‖un‖Eγ,1 →
0.

So, let (vn) ⊂ Cyl(H) be converging in L2(γ) to v ∈ Cyl(H) and let us prove that the
inequality lim infn Eγ(vn, vn) ≥ Eγ(v, v) holds.

We show first that we can assume with no loss of generality that γ ∈ P2(H), so that
fγ ∈ P2(H) for all bounded Borel functions f . Indeed, we can approximate γ by the log-
concave measures γε := exp(−ε‖x‖2)γ/Zε ∈ P2(H), where Zε ↑ 1 are normalization constants,
and use the fact that γε ≤ γ/Zε and Zεγε ↑ γ to obtain the lower semicontinuity of Eγ(v, v)
from the lower semicontinuity of all Eγε(v, v). The log-concavity of γε can be obtained by
approximation: if (ei) is an orthonormal system in H, then all measures

γε,N :=
1

Zε,N
exp(−

N∑
i=1

〈x,ei〉2)γ

are log-concave because their projections on any finite-dimensional subspace L ⊃ (e1, . . . , eN )
have the form Z−1

ε,M exp(−ε
∑N

1 〈x,ei〉2−V ), where exp(−V ) is the density of (πL)#γ. Therefore
Proposition 2.2 can be applied.

27



We can assume, possibly adding and multiplying by constants, that m := inf v > 0 and∫
v2 dγ = 1. By a simple truncation argument we can also assume that inf vn ≥ m/2, sup vn ≤

sup v+1, and set wn = vn/‖vn‖2; obviously wn → v in L2(γ) and, as a consequence, w2
nγ → v2γ

weakly. By Lemma A.1 we get

H(µ|γ) ≥ H(w2
nγ|γ)− 2

√
Eγ(wn, wn)W2(µ,w2

nγ) ∀µ ∈ P2(H).

The uniform upper bound on wn ensures, taking (2.4) into account, that w2
nγ → v2γ in P2(H).

Passing to the limit as n→∞, the lower semicontinuity of the relative Entropy gives

H(µ|γ) ≥ H(v2γ|γ)− 2 lim inf
n→∞

√
Eγ(wn, wn)W2(µ, v2γ) ∀µ ∈ P2(H).

By applying Lemma A.1 again we get lim infn Eγ(wn, wn) ≥ Eγ(v, v), and from the definition of
wn we see that the same inequality holds if we replace wn with vn. �

Being Eγ closable, we shall denote by D(Eγ) its domain (i.e. the closure of C1
b (H) with

respect to the norm ‖ · ‖Eγ,1), which obviously can be identified with a subset of L2(γ), and keep
the notation Eγ for the extension of Eγ to D(Eγ) × D(Eγ). In the next lemma we show that
D(Eγ) contains Lipb(K) and some useful representation formulas for the extension.

Recall that a finite signed measure is a R-valued set function defined on Borel sets that can
be written as the difference of two positive finite measures; by Hahn decomposition, any such
measure µ can be uniquely written as µ = µ+ − µ−, with µ± nonnegative and µ+ ⊥ µ−. The
total variation |µ| is the finite measure defined by µ+ + µ−.

Lemma 7.2 (Eγ is a Dirichlet form) Eγ is a Dirichlet form, Lipb(K) ⊂ D(Eγ) and√
Eγ(u, u) ≤ [u]Lip(K) ∀u ∈ Lipb(K). (7.4)

Moreover, the following properties hold:

(i) if H is finite-dimensional, h ∈ H and `h(x) = 〈h, x〉, there exists a finite signed measure
Σh in H supported on K such that

Eγ(u, `h) =
∫

H
u dΣh ∀u ∈ Lipb(K); (7.5)

(ii) if π : H → L is a finite-dimensional orthogonal projection, then

Eγ(u ◦ π, v ◦ π) = Eπ#γ(u, v) ∀u, v ∈ Lipb(L). (7.6)

Proof. Let u ∈ Lipb(K) and let ũ be a bounded Lipschitz extension of u to the whole of
H. Combining finite-dimensional approximation and smoothing, we can easily find a sequence
(un) ⊂ C1

b (H) converging to ũ pointwise and with [un]Lip(H) bounded. It follows that un → ũ in
L2(γ) and, possibly extracting a subsequence, ∇un → U weakly in L2(γ;H). Then, a sequence
(gn) of convex combinations of un still converges to ũ in L2(γ;H) and is Cauchy with respect
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to ‖ · ‖Eγ,1 . It follows that u ∈ D(Eγ). A similar argument proves (7.4) and the fact that
Eγ(φ(u), φ(u)) is less than Eγ(u, u) whenever u ∈ D(Eγ) and φ : R → R is 1-Lipschitz. This last
property shows that Eγ is a Dirichlet form.

Now, let H = Rk, so that γ = exp(−V )L k, and let us prove (i). By the closability of Eγ , we
need only to prove that ∫

Rk

〈∇u, h〉 dγ =
∫

Rk

u dΣh ∀u ∈ C1
b (Rk) (7.7)

for some finite signed measure Σh. The existence of such a measure Σh (obvious in the case when
∇V is Lipschitz, as an integration by parts gives Σh = −〈∇V, h〉γ) is ensured by Proposition A.2.

Finally, notice that (7.6) trivially holds by the definitions of Eγ and Eπ#γ when u ∈ C1
b (L),

because u ◦ π ∈ C1
b (H). By approximation the equality extends to the case u, v ∈ Lipb(L).

�

By the previous lemma, there exists a unique contraction semigroup Pt in L2(γ) associated
to Eγ . We are now going to compare it with the Wasserstein semigroup S µ(t) of Theorem 5.1,
and we shall denote in the sequel νx

t := S δx(t).

Theorem 7.3 The semigroup Pt is regularizing from L∞(γ) to Cb(K), and the identity

Ptf(x) :=
∫

H
f dνx

t , t > 0, f ∈ L∞(γ), x ∈ K (7.8)

provides a continuous version of Ptf . In addition, Pt acts on Lipb(K):

[Ptf ]Lip(K) ≤ [f ]Lip(K) t ≥ 0, ∀f ∈ Lipb(K). (7.9)

Moreover, for any µ ∈ P2(K), we have the identity

S µ(t) =
∫
νx

t dµ(x), ∀ t ≥ 0. (7.10)

Proof. Assuming (7.8), let us first show why it provides a continuous version of Pt: if xn → x,
and we denote by ρn the densities of νxn

t with respect to γ, whose existence is ensured by the
estimate Theorem 5.1(iii), the contracting property of the semigroup gives that ρnγ → ργ weakly,
where ρ is the density of νx

t with respect to γ. On the other hand, the same estimate shows that
H(ρnγ|γ) are uniformly bounded, therefore ρn are equi-integrable in L1(γ) and weakly converge
in L1(γ) to ρ. This proves that the right hand side in (7.8) is continuous. Finally, (7.9) is a
direct consequence of (7.8) and Theorem 6.1(iii): indeed, choosing Σ ∈ Γo(νx

t , ν
y
t ), we get

|Pf (x)− Ptf(y)| =
∣∣∣∣∫

H
f dνx

t −
∫

H
f dνy

t

∣∣∣∣ =
∣∣∣∣∫

H
(f(u)− f(v)) dΣ(u, v)

∣∣∣∣
≤ [f ]Lip(K)

∫
H
‖u− v‖ dΣ(u, v) ≤ [f ]Lip(K)W2(νx

t , ν
y
t )

≤ [f ]Lip(K)‖x− y‖.
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Step 1: the general finite-dimensional case H = Rk. It suffices to show that the
class of convex V ’s for which the equivalence (7.8) holds for the probability measure γ =
Z−1 exp(−V ) L k, is closed under monotone convergence.

Indeed, if V is smooth with ∇V and all its derivatives bounded, then we know from Section 3
that the Wasserstein semigroup coincides with the FP semigroup; therefore from point 3 of
Proposition 3.2 we obtain (7.8), and (7.9) corresponds to (3.16).

By a convolution approximation, we extend the result to all convex Lipschitz functions V
with

∫
exp(−V ) dx <∞; indeed, if ρn is the density of N (0, n−1I) with respect to L k, where I

is the identity matrix in Rk, then Vn := V ∗ ρn forms an increasing sequence by convexity of V .
Eventually we obtain all convex functions V with

∫
exp(−V ) dx < ∞ using the fact that they

can be represented as the supremum (see for instance [8]) of countably many affine functions
`i, and applying the equivalence to Vn := max1≤i≤n `i (notice that for n large enough Vn has at
least linear growth at infinity).

So, let us consider a log-concave probability measure γ = exp(−V ) L k and a sequence Vn ↑
V , with Vn real-valued and V1 having at least a linear growth at infinity, such that the statement
of the theorem holds for all measures γn = Z−1

n exp(−Vn) L k; obviously the normalization
constants Zn converge to 1 and γn → γ weakly. Notice also that supp γn = Rk.

We will also use the fact that both sides in (7.8) are continuous with respect to γ-almost
sure and dominated convergence, so we need only to check the identity when f ∈ Lipb(K). We
recall that, in general, the semigroup Ptf is related to the resolvent family Rλf by

Rλf(x) =
∫ ∞

0
e−λtPtf(x) dt x ∈ K, f ∈ Cb(K). (7.11)

We define the bilinear form

En(u, v) :=
∫

Rk

〈∇u,∇v〉 dγn, u, v ∈ C1
b (Rk).

Moreover, we denote by Rn
λ the resolvent family of En, again related to the semigroup Pn

t on
Cb(Rk) relative to En by

∫∞
0 exp(−λt)Pn

t dt. Using the representation (7.8) of Pn
t , by Theo-

rem 6.1 we know that, for all f ∈ Cb(Rk), Rn
λf pointwise converge, on K, to the function Fλf

defined by

Fλf(x) :=
∫ ∞

0
e−λt

∫
H
f νx

t dt x ∈ K.

We are going to show that Fλf coincides with Rλf , the resolvent family of Eγ , for all Lipb(K),
so that

Rλf(x) =
∫ ∞

0
e−λt

∫
Rk

f dνx
t dt x ∈ K, f ∈ Lipb(K).

Since, by the injectivity of the Laplace transform, (7.11) uniquely determines the semigroup Pt

on Lipb(K), (7.8) would be achieved.
So, let f ∈ Lipb(K); possibly replacing f by a Lipschitz extension to the whole of Rk with the

same Lipschitz constant, we can assume that f ∈ Lipb(Rk) and [f ]Lip(Rk) = [f ]Lip(K) (indeed,
neither Fλf nor Ptf depend on this extension). By applying (7.9) to γn one obtains that
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λ[Rn
λf ]Lip(Rk) ≤ [f ]Lip(K), hence Fλf ∈ Lipb(K) and Lemma 7.2 gives Fλf ∈ D(Eγ). Now, in

order to prove that Fλf coincides with Rλf , by a density argument it is enough to show that

λ

∫
Rk

Fλf v dγ + Eγ(Fλf, v) =
∫

Rk

f v dγ ∀ v ∈ C2
c (Rk). (7.12)

Our strategy is to pass to the limit as n→∞ in:∫
Rk

fv dγn = λ

∫
Rk

Rn
λf v dγn + En(Rn

λf, v) ∀ v ∈ C2
c (Rk). (7.13)

Let (e1, . . . , ek) be the canonical basis of Rk. By applying the integration by parts formula (7.5)
with h = ei and u = 〈∇v,ei〉Rn

λf , we get∫
Rk

fv dγn =
∫

Rk

Rn
λf(λv −∆v) dγn +

k∑
i=1

∫
Rk

Rn
λf 〈∇v,ei〉 dΣn

ei
(7.14)

where Σn
ei

are associated to the measure γn. The crucial fact is now the following: we can apply
Lemma 7.4 to

σn := (λv −∆v) dγn +
k∑

i=1

〈∇v,ei〉 dΣn
ei
, σ∞ := (λv −∆v) dγ +

k∑
i=1

〈∇v,ei〉 dΣei ,

with ϕn(x) := Rn
λf(x), ϕ∞(x) = Fλf(x) and Σei associated to the measure γ. Indeed, assump-

tions (i) and (ii) of the Lemma 7.4 are guaranteed by Proposition A.3 in the Appendix, while
(iii) and (iv) hold trivially. Therefore, by (7.14) we have:∫

Rk

fv dγ = lim
n→∞

∫
Rk

fv dγn =
∫

Rk

Fλf (λv −∆v) dγ +
k∑

i=1

∫
Rk

Fλf 〈∇v,ei〉 dΣei .

Again, by the integration by parts formula (7.5) shows that the last expression is equal to the
right hand side in (7.12). This proves that Fλf = Rλf on K for all f ∈ Lipb(K).

Notice now that (7.10) holds for smooth V by (3.3) and Proposition 3.4. By approximation,
using the stability result of Theorem 6.1, we obtain the general case.
Step 2: from the finite-dimensional to the infinite-dimensional case. We fix a complete
orthonormal system {ei}i≥1 in H and we set Hn := span{e1, . . . ,en}, denoting as usual by
πn : H → Hn the finite-dimensional projections. Setting γn = (πn)#γ, it is immediate to check
that γn is log-concave in Hn and that H0(γn) = Hn (if not, we would get that H0(γ) is contained
in a proper subspace of H, contradicting (7.1)). We set:

En(u, v) :=
∫

Hn

〈∇u,∇v〉 dγn u, v ∈ C1
b (Hn).

We should rather write ∇Hnu for u ∈ C1
b (Hn), but since the scalar product of Hn is induced

by H there is no ambiguity in writing ∇u : Hn 7→ Hn. We denote by (Rλ)λ>0, Pt (respectively
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(Rn
λ)λ>0, Pn

t ) the resolvent family and the semigroup of Eγ (resp. En). We also know, by the
previous step, that Rn

λf is representable on Cb(Kn) by
∫∞
0 exp(−λt)

∫
Hn

f dνn,x
t dt: here Kn

denotes the support of γn and νn,x
t the associated Wasserstein semigroup in P2(Kn). Since

γn = (πn)#γ, we have πn(x) ∈ Kn for all x ∈ K. As a consequence, by Theorem 6.1 we obtain
that

lim
n→∞

Rn
λf(πn(x)) = lim

n→∞

∫ ∞

0
e−λt

∫
H
f dν

n,πn(x)
t dt =

∫ ∞

0
e−λt

∫
H
f dνx

t dt ∀ x ∈ K

for all f ∈ Cb(H). We shall denote, as in Step 1, by Fλf the right-hand side. Our strategy
will be, again, to show that Rλf(x) =

∫∞
0 exp(−λt)Fλf(x) dt. We assume first that f = g ◦ πk

is cylindrical function, with g ∈ Lipb(Hk); by applying (7.9) to γn one obtains that λ[(Rn
λf) ◦

πn]Lip(K) ≤ [f ]Lip(Kn) ≤ [g]Lip(Hk), hence Fλf ∈ Lipb(K) and Lemma 7.2 gives Fλf ∈ D(Eγ).
Now, let v = u ◦ πl and u ∈ C1

b (Hl); for n ≥ max{k, l}, taking into account (7.6) and the
identities f = f ◦ πn, v = v ◦ πn, we have∫

H
vf dγ =

∫
Hn

vf dγn = λ

∫
Hn

vRn
λf dγn + En(v,Rn

λf)

= λ

∫
H
v(Rn

λf) ◦ πn dγ + Eγ(v, (Rn
λf) ◦ πn). (7.15)

Now, (Rn
λf) ◦ πn converge to Fλf in L2(γ) and is bounded with respect to the norm ‖ · ‖Eγ,1 , by

the uniform Lipschitz bound. Therefore, by the closability of Eγ , (Rn
λf) ◦πn → Fλf in the weak

topology of D(E). Thus, we can passing to the limit as n→∞ in (7.15) to obtain∫
H
vf dγ = λ

∫
H
vFλf dγ + Eγ(v, Fλf) ∀v = u ◦ πl, u ∈ C1

b (Hl).

By the L2(γ) density of C1
b cylindrical functions v, we obtain Rλf(x) = Fλf for all Lipschitz and

bounded cylindrical functions f . As a consequence, (7.8) holds for this class of functions. Since
both sides in (7.8) are continuous with respect to γ-almost sure and dominated convergence,
again a density argument shows that the equality (7.8) extends to all f ∈ L∞(γ).

By the previous step, we know that (7.10) holds for the finite-dimensional case. By approxi-
mation, using the stability result of Theorem 6.1, the contractivity of gradient flows of Theorem
5.1 and Lemma 7.4 below, we obtain the general case. �

In the proof of Theorem 7.3 we also used the following result.

Lemma 7.4 Let σn, σ∞ be finite signed measures on H and let ϕn, ϕ∞ : H → R satisfy:

(i) supn |σn|(H) < +∞ and

lim
n→∞

∫
ϕdσn =

∫
ϕdσ∞ ∀ϕ ∈ Cb(H);

(ii) there exist compacts sets Jm ⊂ H such that supn |σn| (H \ Jm) → 0 as m→∞;
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(iii) {ϕn}n∈N∪{∞} is equi-bounded and equi-continuous;

(iv) ϕn converge pointwise to ϕ∞ on suppσ∞.

Then limn

∫
H ϕn dσn =

∫
H ϕ∞ dσ∞.

Proof. Without loss of generality we can assume that limn

∫
H ϕn dσn exists (so that we can freely

extract subsequences) and |ϕn| ≤ 1, |ϕ∞| ≤ 1. Let us fix m and assume, possibly extracting a
subsequence, that ϕn → ψm uniformly on Jm as n→∞; obviously ϕ∞ = ψm on Jm ∩ suppσ∞.
We extend ψm continuously to the whole of H with |ψm| ≤ 1. Then:∣∣∣∣∫

H
ϕn dσn −

∫
H
ϕ∞ dσ∞

∣∣∣∣ ≤
∣∣∣∣∫

H
ϕn dσn −

∫
H
ψm dσn

∣∣∣∣ +
∣∣∣∣∫

H
ψm dσn −

∫
H
ψm dσ∞

∣∣∣∣
+

∣∣∣∣∫
H
ψm dσ∞ −

∫
H
ϕ∞ dσ∞

∣∣∣∣ .
The first term in the right hand side can be estimated, splitting the integration on Jm and on
H \ Jm, with supJm

|ϕn − ψm||σn|(H) + 2|σn|(H \ Jm). The second term tends to 0 as n → ∞
by our first assumption, while the third one can be estimated with 2|σ∞|(H \ Jm). Therefore,
taking first the limsup as n→∞ and then letting m→∞ we have the thesis. �

Remark 7.5 (Continuity of Pt) The P2(H)-continuity of t 7→ S δx(t) in [0,+∞[ shows that
Ptf → f pointwise in K as t ↓ 0 for all functions f ∈ C(K) with at most quadratic growth at
infinity, and in particular for f ∈ Cb(K). Taking (7.9) into account, the convergence is uniform
on compact subsets of H if f ∈ Lipb(K); by density, Ptf → f uniformly on compacts sets as
t ↓ 0 for all f ∈ UCb(K), the space of bounded uniformly continuous functions on H. It is
also possible to show the regularizing effect Pt(Cb(K)) ⊂ UCb(K) for t > 0: indeed, the finite-
dimensional smooth systems are easily seen to be Strong Feller (see section 7.1 of [13]), and this
property extends to the general case by approximation.

8 The Markov process

In this section we complete the proofs of Theorem 1.2, Theorem 1.3, Theorem 1.5 and Theo-
rem 1.6, proving the existence of a unique Markov family of probability measures Px on K [0,+∞[

satisfying
Ptf(x) = Ex[f(Xt)] ∀x ∈ K (8.1)

for all bounded Borel functions f . The continuity of Px will be a consequence of the regularizing
properties of the Wasserstein semigroup S µ(t) (in particular the continuity of x 7→ S δx(t)
will play an important role). The regularity property (8.5), instead, is based on general results
from [23], that provide a Markov family satisfying a weaker property, and on the continuity of
t 7→ S δx(t). As in the previous section we will use the notation νx

t for S δx(t).
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Recall also that the regularizing estimate (iii) in Theorem 5.1 give νx
t � γ for all x ∈ K;

by the uniform bound on the relative Entropy (which yields equi-integrability of the densities),
Dunford-Pettis theorem provides the continuity property

xn ∈ K, ‖xn − x‖ → 0, ρnγ = νxn
t , ργ = νx

t =⇒ ρn ⇀ ρ weakly in L1(γ) (8.2)

for all t > 0.
Proof of Theorem 1.2. We already proved statement (a) in Lemma 7.2. Let us consider the
semigroup Pt induced by Eγ , linked to νx

t by (7.8); the semigroup property of Pt can be read
at the level of νx

t , and gives the Chapman-Kolmogorov equations. Therefore these measures are
the transition probabilities of a time-homogeneous Markov process Px in K [0,+∞[. In particular,
the Markov property gives the explicit formula

Px({Xt1 ∈ A1} ∩ · · · ∩ {Xtn−1 ∈ An−1} ∩ {Xtn ∈ An}) (8.3)

=
∫

A1

· · ·
∫

An−1

∫
An

1 dνyn−1

tn−tn−1
(yn) dνyn−2

tn−1−tn−2
(yn−1) · · · dνy0

t1−t0
(y1)

(with y0 = x, 0 = t0 ≤ t1 < · · · < tn < +∞, A1, . . . , An ∈ B(K)) for these finite-dimensional
distributions. The continuity of x 7→ Px, namely the continuity of all finite-dimensional distri-
butions, is a direct consequence of (8.2) and (8.3).

Now, let us prove (8.5). In order to apply the general results of [23], we need to emphasize two
more properties of Eγ . First, Eγ is tight : this means that there exists a nondecreasing sequence
of compact sets Fm ⊂ H such that capγ(H \ Fm) → 0 ( capγ being the capacity induced by
Eγ , see [23]). This can be proved using (7.4) and the argument in [23, Proposition IV.4.2]: let
(xn) ⊂ H be a dense sequence and define

wn(x) := min
{

1, min
0≤i≤n

‖x− xi‖
}
.

It is immediate to check that 0 ≤ wn ≤ 1, wn ↓ 0 in H and [wn]Lip(H) ≤ 1. Therefore (wn) is
bounded in the weak topology of D(Eγ) and converges to 0 in the weak topology of Eγ . The
Banach-Saks theorem ensures the existence of a subsequence (nk) such that the Cesaro means

vk :=
wn1 + · · ·+ wnk

k

converge to 0 strongly in D(Eγ). This implies [23, Proposition III.3.5] that a subsequence (vk(l))
of (vk) converges to 0 quasi-uniformly, i.e. for all integersm ≥ 1 there exists a closed set Gm ⊂ H
such that capγ(H \ Gm) < 1/m and vk(l) → 0 uniformly on Gm. As wn(k(l))) ≤ vk(l), if we set
Fm = ∪i≤mGi, we have that wn(k(l)) → 0 uniformly on Fm for all m and capγ(H \ Fm) ≤ 1/m.
If ε > 0 and n is an integer such that wn < ε on Fm, the definition of wn implies

Fm ⊂
n⋃

i=1

B(xi, ε).

34



Since ε is arbitrary this proves that Fm is totally bounded, hence compact. This completes the
proof of the tightness of Eγ .

Second, Eγ is local, i.e. Eγ(u, v) = 0 whenever u, v ∈ D(Eγ) have compact and disjoint
support. This can be easily achieved (see also [23, Lemma V.1.3]) taking sequences (un), (vn) ⊂
C1

b (A(γ)) converging to u and v respectively in the norm ‖ · ‖γ,1, and modifying them, without
affecting the convergence, so that un and vn have disjoint supports. One concludes noticing that
Eγ(f, g) = 0 whenever f, g ∈ C1

b (A(γ)) have disjoint supports.
These properties imply, according to [23, Theorem IV.3.5, Theorem V.1.5] the existence of a

Markov family of probability measures {P̃x}x∈K on C([0,+∞[;K) (uniquely determined up to
γ-negligible sets), satisfying

Ptf(x) = Ẽx[f(Xt)] for γ-a.e. x ∈ K (8.4)

for all bounded Borel functions f on K (here Ẽx is the expectation with respect to P̃x). Now,
sinceH is separable we can find a countable familyA of open sets stable under finite intersections
which generates B(H); choosing f = 1A in (8.4) and (7.8), and taking into account that A is
countable, we can find a γ-negligible set N ⊂ K such that νx

t (A) = Ex[1A(Xt)] for all A ∈ A,
t ∈ Q and all x ∈ K \N . As a consequence, νt

x is the law of Xt under P̃x for all x ∈ K \N and
all t ∈ Q. We can now use the continuity of the process Xt and of t 7→ νx

t to obtain that νx
t are

the one-time marginals of P̃x for all x ∈ K \N .
We prove now path continuity under Px for x ∈ K \N , using the property νx

t � γ: we adapt
the approach of [14] to our setting. By the Markov property we obtain that all finite-dimensional
distributions of P̃x and Px coincide; as a consequence, if we denote by i : Ω → K [0,+∞[ the
(obviously measurable) injection map, i#P̃x = Px. By the Ulam lemma, we can find compacts
sets Kn ⊂ Ω with P̃x(Kn) ↑ 1; now, if S ⊂ [0,+∞) is bounded, countable and BS ⊂ K [0,+∞[ is
the measurable set defined by

BS := {ω ∈ Ω : the restriction of ω to S is uniformly continuous} ,

from the inclusion BS ∩Ω ⊃ Kn we obtain Px(BS) ≥ P̃x(Kn), hence Px(BS) = 1. A well known
criterion [30, Lemma 2.1.2] then gives that P∗x(Ω) = 1. This proves that

P∗x(Ω) = 1 for γ-a.e. x ∈ K. (8.5)

In order to show the first part of statement (c), fix x ∈ K, and define BS as above, with
S ⊂]0,+∞[ satisfying ε := inf S > 0 and supS < ∞. Since the law of Xε(x) is absolutely
continuous with respect to γ, we know from (8.5) that PXε(BS−ε) = 1 Px-almost surely. Taking
expectations, and using the Markov property, we get Px(BS) = 1. Again the same argument in
[30, Lemma 2.1.2] shows that P∗x (C(]0,+∞[;H)) = 1.

Finally, we use the representation (7.8) and the fact that Pt is selfadjoint (due to the fact
that Eγ is symmetric) to obtain∫

K

∫
K
ϕ(x)ψ(y) dνy

t (x) dγ(y) =
∫

K

∫
K
ϕ(x)ψ(y) dνx

t (y) dγ(x) ∀ϕ, ψ ∈ L∞(γ). (8.6)

This means that the process Px is reversible.
Proof of Theorem 1.3. It is a direct consequence of the estimates in Theorem 5.1 and of the
coincidence, proved above, of the law of Xt under Px with νx

t . �
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Proof of Theorem 1.5. We shall denote by νn,x
t , En

x (resp. νx
t , Ex) the transition probabilities

and the expectations relative to Pn
x (resp. Px). From Theorem 6.1 we obtain:

xn ∈ Kn, ‖xn − x‖ → 0, x ∈ K =⇒ νn,xn
t → νx

t in P2(H). (8.7)

We shall prove by induction on m that En
xn

[f(Xt1 , . . . , Xtm)] → Ex[f(Xt1 , . . . , Xtm)] for all
f ∈ Cb(Hm). Obviously we can restrict ourselves to f ∈ Lipb(Hm) and the case m = 1
corresponds to (8.7). So, let us assume the statement valid for m ≥ 1 and let us prove it for
m + 1. Let f ∈ Lipb(Hm+1), and let Πn : H → Kn be the canonical projection. By the weak
convergence of γn to γ, we have ‖Πn(y)−y‖ → 0 for all y ∈ K. As a consequence, the induction
assumption gives En

Πn(y)[f(y,Xt2 , . . . , Xtm+1)] → Ey[f(y,Xt2 , . . . , Xtm+1)]. Since f is Lipschitz
we have also

lim
n→∞

En
Πn(y)[f(Πn(y), Xt2 , . . . , Xtm+1)] = Ey[f(y,Xt2 , . . . , Xtm+1)] ∀y ∈ K. (8.8)

Thanks to (8.8) and Lemma 7.4, we can pass to the limit as n→∞ in the identity

En
x[f(Xt1 , . . . , Xtm+1)] =

∫
K

En
y [f(y,Xt2 , . . . , Xtm+1)] dν

n,xn
t1

(y)

=
∫

H
En

Πn(y)[f(Πn(y), Xt2 , . . . , Xtm+1)] dν
n,xn
t1

(y)

to obtain En
x[f(Xt1 , . . . , Xtm+1)] →

∫
K Ey[f(y,Xt2 , . . . , Xtm+1)] dν

x
t1(y) = Ex[f(Xt1 , . . . , Xtm+1)].

This proves statement (a). Statements (b) and (c) follow at once by the tightness Lemma 8.1
below. �

Lemma 8.1 (Tightness) Let γn and γ as in Theorem 1.5, let x ∈ K(γ) and let xn ∈ K(γn)
be such that xn → x. For all 0 < ε ≤ T < +∞, h ∈ H, the laws of (〈Xt, h〉H , t ∈ [ε, T ]) under
Pn

xn
, n ∈ N, form a tight sequence in C([ε, T ]). Moreover the laws of (〈Xt, h〉H , t ∈ [0, T ]) under

Pn
γn

, n ∈ N, form a tight sequence in C([0, T ]).

Proof. Let Hn = H0(γn), Kn = K(γn) and Pn
γn

=
∫
Hn

Pn
x dγn(x). For any h ∈ Hn we have by

the Lyons-Zheng decomposition, see e.g. [16, Th. 5.7.1] that, under Pn
γn

,

〈h,Xt −X0〉Hn
=

1
2
Mt −

1
2

(NT −NT−t), ∀t ∈ [0, T ],

where M , respectively N , is a Pn
γn

-martingale with respect to the natural filtration of (Xt, t ∈
[0, T ]), respectively of (XT−t, t ∈ [0, T ]). Moreover, the quadratic variations 〈M〉t, 〈N〉t are
both equal to t · ‖h‖2

Hn
. By the Burkholder-Davis-Gundy inequality we can find, for all p > 1,

a constant cp ∈ (0,+∞) such that

En
γn

[∣∣〈h,Xt −Xs〉Hn

∣∣p] ≤ cp‖h‖p
Hn
|t− s|p/2, t, s ∈ [0, T ]. (8.9)

Let us denote by Πn : H → Hn the duality map satisfying 〈Πn(h), v〉Hn = 〈h, v〉H for all h ∈ Hn.
Then, choosing v = Πn(h), from (1.9) we get ‖Πn(h)‖Hn ≤ κ‖h‖H , so that (8.9) gives

En
γn

[|〈h,Xt −Xs〉H |
p] ≤ κpcp‖h‖p

H |t− s|p/2, t, s ∈ [0, T ].
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Then tightness of the laws of 〈Xt, h〉H under Pn
γn

in C([0, T ]) follows e.g. by [30, Exercise 2.4.2].
Let ε > 0 and let us prove that supnH(νn,xn

ε |γn) < +∞. Since x ∈ K there exist Rε > 0
such that γ(BRε(x)) > 1/2, so that there exists nε such that γn(BRε(xn)) ≥ 1/2 for all n ≥ nε.
Let νn := γn(·|BRε(xn)); then for n ≥ nε we have W 2

2,Hn
(δxn , νn) ≤ κ2W 2

2 (δxn , νn) ≤ 2κ2R2, and
since H(νn|γn) = − ln γn(BRε(xn)), by (iii) of Theorem 5.1 we get

H(νxn
ε |γn) ≤ 2κ2R2

ε
+ ln 2 ∀n ≥ nε.

Let Pn (resp. Pn) be the law of (Xt, t ∈ [ε, T ]) under Pn
xn

(resp. Pn
γn

). Let us prove that
Pn � Pn and

dPn

dPn

= ρn
ε (Xε) Pn-almost surely, (8.10)

where ρn
ε is the density of νn,xn

ε with respect to γn. For any bounded and Borel functional
Φ : C([0, T − ε];H) 7→ R, we have by the Markov property:

En
xn

(Φ(Xε+·)) = En
xn

(En
Xε

(Φ)) =
∫
dνn,xn

ε (y) En
y (Φ) =

∫
dγn(y) ρn

ε (y) En
y (Φ)

= En
γn

(ρn
ε (X0) Φ(X·)) = En

γn
(ρn

ε (Xε) Φ(Xε+ ·)),

where in the last equality we use stationarity, and (8.10) is proven.
Let now h ∈ H and let Ph

n (resp. Ph
n) be the law of (〈Xt, h〉H , t ∈ [ε, T ]) under Pn

xn
(resp.

Pn
γn

); since the relative Entropy does not increase under marginals [3, 9.4.5], from (8.10) we get

H(Ph
n|P

h
n) ≤ H(Pn|Pn) = H(νxn

ε |γn).

It follows that supnH(Ph
n|P

h
n) is finite. By applying the entropy inequality (4.4), tightness of

(Ph
n) implies tightness of (Ph

n). �

Proof of Theorem 1.6. Let µ ∈ P2(H) be an invariant measure for (Pt)t≥0. Then, by (7.10),
S µ(t) ≡ µ is a constant gradient flow of H(·|γ) and therefore, by (3.20), H(µ|γ) ≤ H(ν|γ) for
all ν ∈ P2(H). Since t 7→ t ln t is strictly convex, the unique minimizer of H(·|γ) in P2(H) is
γ, and therefore µ = γ. �

A Some properties of log-concave measures

In this appendix we state and prove some useful properties of log-concave measures and of convex
functions used throughout the paper.

First of all, for lower semicontinuous convex functions V : Rk → R ∪ {+∞} (i.e. the
typical densities of log-concave measures), we recall that the properties

∫
exp(−V ) dx < +∞,

V (x) → +∞ as ‖x‖ → +∞ and V (x) → +∞ at least linearly as ‖x‖ → +∞ are all equivalent:
indeed, the equivalence between the second and the third one simply follows by the monotonicity
of difference quotients along radial directions, and clearly a linear growth at infinity implies
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finiteness of the integral. On the other hand, if the integral is finite, a crude growth estimate on
V can be obtained as follows: assuming with no loss of generality that {V < +∞} has nonempty
interior, we can find a ball B and M < +∞ such that V ≤ M on B; then, on the convex cone
Cx generated by x and B, we have the inequality V ≤M + V +(x). Changing signs and taking
exponentials we can integrate on Cx to obtain

eV
+(x)+M ≥

(∫
Rk

e−V (y) dy

)−1

L k(Cx) → +∞ as |x| → +∞.

Lemma A.1 (Variational characterization of Eγ(u, u)) Let γ ∈ P2(H) be a non-degenerate
log-concave measure, and let u be a bounded C1 cylindrical function, with inf u > 0 and

∫
u2 dγ =

1. Then
√
Eγ(u, u) is the smallest constant S satisfying

H(µ|γ) ≥ H(u2γ|γ)− 2SW2(µ, u2γ), ∀µ ∈ P2(H). (A.1)

Proof. First, we realize that this is essentially a finite-dimensional statement. Indeed, if
π : H → L is a finite-dimensional orthogonal projection such that u = u◦π, a simple application
of Jensen’s inequality gives [3, Lemma 9.4.5] H(µ|γ) ≥ H(π#µ|π#γ). Since W2(π#µ, u

2π#γ) =
W2(π#µ, π#(u2γ)) ≤ W2(µ, u2γ) and Eγ(u, u) = Eπ#γ(u, u), we need only to check the analog
of (A.1) with γ replaced by π#γ and H replaced by L. So, from now on we shall assume that
H = Rk for some integer k.

In Lemma 3.3 we proved that

H(µ|γ) ≥ H(u2γ|γ)− 2
√
Eγ(u, u)W2(µ, u2γ), ∀µ ∈ P2(Rk)

when γ = exp(−V )L k with V smooth, convex, and ∇V and all its derivatives are bounded (it
suffices to use the Schwartz inequality to estimate from below the scalar product in (3.18)). By
monotone approximation (see Step 2 in the proof of Theorem 7.3) the same inequality holds for
all log-concave γ in Rk.

It remains to show that
√
Eγ(u, u) is the smallest constant with this property. In order to

prove this fact, we fix s ∈ C∞
c (Rk; Rk) with support contained in the interior of {V < +∞},

and consider the maps tε := i + εs and the measures µε = (tε)#(u2γ), so that W 2
2 (µε, u

2γ) ≤
ε2

∫
‖s‖2u2 dγ. On the other hand, the area formula gives that the density of µε with respect to

L k is given by fε, where

fε :=
u2 exp(−V )
|det∇tε|

◦ t−1
ε

(notice that for ε small enough tε is a diffeomorphism which leaves {V < +∞} invariant). Since

H(µε|γ) =
∫

Rk

fε ln fε dx+
∫

Rk

fεV dx =
∫

Rk

ln(fε ◦ tε)u2 dγ +
∫

Rk

(V ◦ tε)u2 dγ

= H(u2γ|γ)− ε

∫
Rk

(∇ · s)u2 exp(−V )− 〈∇V, s〉u2 exp(−V ) dx+ o(ε)

= H(u2γ|γ) + 2ε
∫

Rk

u〈∇u, s〉 dγ + o(ε)
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from (A.1) we get ∫
Rk

u〈∇u, s〉 dγ ≥ −S

√∫
Rk

‖s‖2u2 dγ.

Since u2γ is concentrated in the interior of {V < +∞}, we can approximate in L2(u2γ; Rk) the
function −∇ lnu with s it follows that S ≥

√
Eγ(u, u). �

In the next two propositions, borrowed essentially from [36], we show that, for convex func-
tions U : Rk → R, the growth at infinity of ∇U is always balanced by the factor e−U ; this leads
to uniform bounds and tightness estimates for the measures |∇U |e−UL k, under uniform lower
bounds on U .

Proposition A.2 Let U : Rk → R ∪ {+∞} be convex and lower semicontinuous, with U(x) →
+∞ as ‖x‖ → +∞, {U < +∞} having a nonempty interior, and set γ = exp(−U)L k. Then,
for all unit vectors h ∈ Rk there exists a unique finite signed measure ΣU

h in Rk supported on
{U < +∞} such that ∫

Rk

∂u

∂h
dγ =

∫
Rk

u dΣh ∀u ∈ C1
b (Rk). (A.2)

Moreover, we have |ΣU
h |(Rk) = 2

∫
h⊥ exp(−min

t∈R
U(y + th)) dy.

Proof. Assume first k = 1; the function t 7→ exp(−U(t)) is infinitesimal at infinity, non-
decreasing on a half-line (−∞, t0) and non-increasing on (t0,+∞), where t0 is any point in the
interior of {U < +∞} where U attains its minimum value. Then exp(−U) has bounded variation
on R and the total variation of its distributional derivative d

dt exp(−U) is representable by:∣∣∣∣ ddt e−U

∣∣∣∣ = 1(t<t0)
d

dt
e−U − 1(t>t0)

d

dt
e−U .

It follows that | d
dt exp(−U)|(R) = 2 exp(−U(t0)) = 2 exp(−min

R
U); by definition of distribu-

tional derivative, ΣU = − d
dt exp(−U) fulfils (A.2) when the function u is compactly supported,

and a simple density argument gives the general case.
In the case k > 1 we denote Uy(t) := U(y+ th); since U has at least linear growth at infinity,

it is easy to check that exp(−min
R
Uy) is integrable on h⊥. Now, notice that Fubini’s theorem

implies the existence of ΣU
h and its coincidence with the measure

∫
h⊥ ΣUy dy, i.e.∫

Rk

∂u

∂h
e−U dy dt =

∫
h⊥

(∫
R

d

dt
u(y + th)e−Uy(t) dt

)
dy, u ∈ C1

b (Rk).

On the other hand, if we denote by A the projection on h⊥ of the interior of the convex set
{U < +∞}, and by C the projection of {U < +∞}, we have that {Uy < +∞} has nonempty
interior for all y ∈ A, while Uy is identically equal to +∞ for all y ∈ h⊥ \ C; points y in
C \ A correspond to projections of boundary points of {U < +∞} where h is tangential to
the boundary, and the co-area formula gives that this set of points is L k−1-negligible in h⊥.
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As a consequence, |ΣUy |(R) = 2 exp(−minUy) for L k−1-a.e. y ∈ h⊥. A general result [2,
Corollary 2.29] allows to commute total variation and integral, so that

|
∫

h⊥
ΣUy dy|(Rk) =

∫
h⊥
|ΣUy |(R) dy = 2

∫
h⊥

exp(−min
t∈R

U(y + th)) dy.

�

Proposition A.3 (Continuity and tightness) Let Vn : Rk → R∪{+∞} be convex and lower
semicontinuous function, with Vn ↑ V and

∫
exp(−V1) < +∞. Then for all unit vectors h ∈ Rk

there exist compact sets Jm ⊂ Rk such that:

|ΣVn
h |(Rk \ Jm) ≤ 1

m
∀ n, m ≥ 1. (A.3)

Furthermore, ΣVn
h → ΣV

h in the duality with Cb(Rk).

Proof. Let A ∈ R, B > 0 be such that V1(x) ≥ A + B‖x‖ for all x ∈ Rk. We set Σn := ΣVn
h ,

Σ := ΣV
h . We first notice that Vn(y + th) ≥ V1(y + th) ≥ A + B‖y‖ for all y ∈ h⊥. Therefore,

taking into account the representation of |ΣU
h |(Rk) given by the previous proposition, we obtain

that |Σn|(Rk) is uniformly bounded. On the other hand, since exp(−Vn)L k weakly converge to
exp(−V )L k (by the dominated convergence theorem) from (A.2) we infer that Σn → Σ weakly
in the duality with C1

c (Rk), and then in the duality with Cc(Rk).
We will prove that

lim
n→∞

|Σn|(Rk) = |Σ|(Rk). (A.4)

Before proving (A.4), we show that it implies (A.3): consider a dense sequence (xj) in Rk and
set, for p, l ≥ 1 integers, Ap

l := ∪l
j=1B(xj , 1/p). It is enough to prove that for all p there exists

l = l(p) such |Σn|(Rk \ Ap
l ) ≤ 2−p/m for all n: indeed, in this case Jm := ∩pA

p
l(p) is a compact

set such that |Σn|(Rk \ Jm) ≤ 1/m for all n ≥ 1. If, for some p, we can not find such l, then
for all l there exists n(l) such that |Σn(l)|(Ap

l ) ≤ |Σn(l)
h |(Rk) − 2−p/m. Since n(l) must tend to

+∞ as l →→ ∞, and any open ball Br(0) is contained in Ap
l for l large enough, by the lower

semicontinuity of the total variation on open sets (see for instance [2, Proposition 1.62(b)]) we
find:

|Σ|(Br(0)) ≤ lim inf
l→∞

|Σn(l)|(Br(0)) ≤ lim inf
l→∞

|Σn(l)|(Ap
l ) ≤ |Σ|(Rk)− 2−p/m.

Letting r ↑ ∞ we obtain a contradiction. Therefore (A.3) is proven.
In order to prove (A.4), taking again into account the representation of |ΣU

h |(Rk) given by
the previous proposition and the dominated convergence theorem, it suffices to show that, with
y ∈ h⊥ fixed, min

t∈R
Vn(y + th) converges as n → ∞ to min

t∈R
V (y + th). By monotonicity we need

only to show that
lim inf

n
min
t∈R

Vn(y + th) ≥ min
t∈R

V (y + th). (A.5)

Let n(k) be a subsequence along which the liminf is achieved, let tk be minimizers of t 7→
Vn(k)(y + th), and assume (possibly extracting one more subsequence) that tk → t. The lower
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semicontinuity of Vn(p) gives limk Vn(k)(y+ tkh) ≥ lim infk Vn(p)(y+ tkh) ≥ Vn(p)(y+ th). Letting
p → ∞ we obtain (A.5). Finally, the tightness estimate allows to pass from convergence of Σn

in the duality with Cc(Rk) to the convergence in the duality with Cb(Rk). �
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[4] L. Ambrosio, G. Savaré (2007), Gradient flows in spaces of probability measures. Hand-
book of Differential Equations. Evolutionary equations III, North Holland 2007.
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