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Abstract

We prove a theorem for the existence of solutions to minimum time control problems, under assumptions that do not require the convexity
of the images and that weaken the assumption of upper semicontinuity. Our result applies to Fermat’s Principle and to the Brachystocrone.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Around 1650, Fermat stated that the light, to pass from a
point to a second point in space, follows the path (among
all the possible paths), that reaches the second point in min-
imum time.

In 1696, Jakob Bernoulli raised the following question:
find the path from an initial point x0 to a target point xf

such that a body, subject to gravity only, starting from x0

with initial velocity zero, would reach xf in minimum time.
In 1959, Filippov [1] proved the first general theorem on

the existence of solutions to minimum time control problems
of the form

x′(t) = f (x(t), u(t)), u(t) ∈ U(x(t))

requiring that the set-valued map x → U(x) be upper semi-
continuous (with respect to the inclusion) and that the val-
ues F(x)=f (x, U(x)) be compact and convex. In Theorem
2.2 of the present paper, we prove the existence of solutions
to minimum time problems for differential inclusions, under
assumptions that do not require the convexity of the images
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F(x) = f (x, U(x)) and, at the same time, weaken the as-
sumption of upper semicontinuity of F. In Sections 3 and 4,
we show that our result applies to Fermat’s Principle and to
the Brachystocrone.

2. The existence of solutions to minimum time problems

For a compact subset A ⊂ Rd , set co(A) be its convex
hull. For basic results relating to solutions to differential in-
clusions, measurable selections and properties of set-valued
maps we refer to any standard text on the subject. The proof
of the existence theorem is based on the following lemma.
In it, no assumptions on F are required.

Lemma 2.1. Let x : [0, t∗] → Rd be absolutely continuous
and such that x′(t) = 0 on a subset E of [0, t∗] of positive
measure; let X = {x(t) : t ∈ [0, t∗]} and let F, defined on
X, be such that, for almost every t ∈ [0, t∗],
x′(t) ∈ F(x(t)).

Then, there exist �∗, 0 < �∗ < t∗ and an absolutely con-
tinuous function x̃ : [0, �∗] → X, such that x̃(0) = x(0),
x̃(�∗) = x(t∗) and

x̃′(t) ∈ F(x̃(t))

for almost every � ∈ [0, �∗].
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Proof. (a) It follows from the assumptions that there exists a
closed subset K of E of positive measure. The complement of
K consists of at most countably many open non-overlapping
intervals (ai, bi), i ∈ I . Since the intervals (ai, bi) are dis-
joint, we must have that �∗ = ∑

i∈I (bi − ai) < t∗. For each
i ∈ I , set

�(bi) =
∑

j∈I :bj <bi

(bj − aj ).

From this definition we infer that, when bl > bm, we have
that �(bl)��(bm) + (bm − am).

Consider the family of intervals (�(bi), �(bi) + bi − ai);
they are disjoint, since in case we had (�(bl), �(bl) + bl −
al)∩ (�(bm), �(bm)+bm −am) �= ∅ with bl > bm, we would
obtain �(bm) + (bm − am) > �(bl), a contradiction to the
inequality obtained above. Consider T, the open subset of
[0, t∗] defined by T = ⋃

i∈I (�(bi), �(bi) + bi − ai); since,
for every � ∈ T , we have ��

∑
i∈I (bj −aj )=�∗, we obtain

that T ⊂ [0, �∗]. Moreover, the measure of T equals �∗, in
fact

m(T ) =
∑
i∈I

(bi − ai) = �∗.

(b) Define the absolutely continuous function x̃ :
[0, �∗] → Rd by x̃(�) = x(0) + ∫ �

0 x̃′(s) ds, where

x̃′(s)

=
{

x′(s + ai − �(bi)), s ∈ (�(bi), �(bi)

+bi − ai), i ∈ I,

0, s ∈ [0, �∗]\T ,

in particular, we have x̃(0) = x(0).
Fix � ∈ T , there exists a unique i ∈ I such that � ∈

(�(bi), �(bi)+bi−ai). Notice that � ∈ (�(bi), �(bi)+bi−ai)

if and only if � + ai − �(bi) ∈ (ai, bi). We have

x̃(�) − x(0) =
∫ �(bi )

0
x̃′(s) ds +

∫ �

�(bi )

x̃′(s) ds

=
∑

j :�(bj )+bj −aj ��(bi )

∫ �(bj )+bj −aj

�(bj )

× x̃′(s) ds +
∫ �

�(bi )

x̃′(s) ds

=
∑

j :�(bj )+bj −aj ��(bi )

×
∫ �(bj )+bj −aj

�(bj )

x′(s + aj − �(bj )) ds

+
∫ �

�(bi )

x′(s + ai − �(bi)) ds

=
∑

j :�(bj )+bj −aj ��(bi )

∫ bj

aj

x′(s) ds

+
∫ �+ai−�(bi )

ai

x′(s) ds.

Notice that we have∑
j :�(bj )+bj −aj ��(bi )

∫ bj

aj

x′(s) ds

=
∑

j :bj <bi

∫ bj

aj

x′(s) ds.

in fact, by the definition, �(bj )+ bj − aj ��(bi) if and only
if �(bj ) < �(bi). Hence

x̃(�) − x(0) =
∑

j :bj <bi

∫ bj

aj

x′(s) ds

+
∫ �+ai−�(bi )

ai

x′(s) ds

=
∫ ai

0
x′(s)�{[0,t∗]\K}(s) ds

+
∫ �+ai−�(bi )

ai

x′(s) ds

= x(� + ai − �(bi)) − x(0).

The previous equality implies that the function x̃ is a solution
to the differential inclusion. In fact, we have that, almost
everywhere in [0, �∗],
x̃′(�) = x′(� + ai − �(bi)) ∈ F(x(� + ai − �(bi))

= F(x̃(�)).

(c) Set B = sup{bi}. Then either the supremum is attained
or it is not. In the first case, for some j̃ , B = b

j̃
and �(b

j̃
)+

(b
j̃
−a

j̃
)=�∗. From (b), for every t ∈ [a

j̃
, b

j̃
], we have that

x(t)= x̃(t −a
j̃
+�(b

j̃
)), in particular x(B)=x(b

j̃
)= x̃(b

j̃
−

aj
k̃
+ �(b

j̃
)) = x̃(�∗). On the other hand, since x′(t) = 0 on

[B, t∗], we have that x(t∗) = x(B), so that x(t∗) = x̃(�∗).
In the second case, let {bjk

} be an increasing sequence,
converging to B. From

|x(t∗) − x(ajk
)| =

∣∣∣∣∣
∫ B

ajk

x′(s) ds

∣∣∣∣∣
�

∣∣∣∣∣∣
∑

{j∈I :bj >bjk−1 }

∫
(aj ,bj )

x′(s) ds

∣∣∣∣∣∣
it follows that x(ajk

) → x(t∗), while from∑
{j∈I :bj >bjk

}
bj − aj < B − bjk

and

�∗ =
∑
j∈I

bj − aj = �(bjk
) +

∑
j∈I :bj �bjk

bj − aj

we obtain that �(bjk
) → �∗. By the previous point (b) we

have that x̃(�(bjk
)) = x(ajk

) and by continuity we infer that
x(t∗) = x̃(�∗). �

In what follows we shall consider the following minimum
time problem for solutions to a differential inclusion: X and
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S are closed subset of Rd , S ⊂ X, x0 ∈ X\S and F is a set-
valued map. Consider the problem of reaching the target set
S from x0, satisfying the constraint x(t) ∈ X, where x(·) is
a solution to the differential inclusion

x′(t) ∈ F(x(t)).

Theorem 2.2. Let X ⊂ Rd be closed and let F be a set-
valued map defined on X with compact non-empty images,
linearly bounded, i.e. such that, for some � and �, for every
x ∈ X and for every � ∈ F(x), we have ‖�‖��‖x‖ + �. In
addition, assume that

(i) x → co(F (x)) is upper semicontinuous, and
(ii) for every x ∈ X, for every � ∈ co(F (x)), with � �= 0,

there exists ��1 such that �� ∈ F(x).

Assume that there exists t̃ > 0 and a solution x to

x′(t) ∈ co(F (x(t))), x(0) = x0

such that x(t) ∈ X for every t ∈ [0, t̃] and that x(t̃) ∈ S.
Then the minimum time problem for

x′(t) ∈ F(x(t))

admits a solution.

Proof. (a) Let Aco
x0(t) be the attainable set at time t of the

Cauchy problem for the convexified inclusion, and set t∗ =
inf{t : Aco

0 (t) ∩ S �= ∅}. We notice that t∗ > 0, since x0 /∈ S

and co(F (x)) is bounded in a neighborhood of x0. Let (tn)

be decreasing to t∗ and le xn be solutions to the differential
inclusion

x′(t) ∈ co(F (x(t)))

such that xn(0) = x0 and x(tn) ∈ S, x(t) ∈ X for t ∈
[0, tn]. A subsequence of this sequence converges uniformly,
on [0, t∗], to x∗. Clearly, x∗(0) = x0 and x∗(t) ∈ X for
t ∈ [0, t∗]. It is known that, under the assumptions of the
theorem, x∗ is again a solution to

x′(t) ∈ co(F (x(t))).

Hence, x∗ is a solution to the convexified problem that
reaches S in minimum time, and t∗ is the value of the min-
imum time for the convexified problem.

(b) It cannot be that m{t : x′∗(t) = 0} = t∗, since x0 /∈ S.
Then, applying Lemma 1, we infer that x′∗(t) �= 0 for a.e.
t ∈ [0, t∗]. In fact, otherwise, we could define a different
solution to the convexified differential inclusion, defined on
an interval [0, �∗] with �∗ < t∗, having the same initial and
final point: hence t∗ would not be the value of the minimum
time for the convexified problem.

(c) By the previous point and the assumption on F(x), for
almost every t there exists a non-empty set �(t) such that
� ∈ �(t) implies �x′∗(t) ∈ F(x∗(t)) and ��1. Reasoning as
in [2], we obtain that �(·) is measurable on [0, t∗], hence, by

standard arguments, that there exists a measurable selection
�(·) from �(·). Define the absolutely continuous map s by
s(0)=0 and s′(t)=1/�(t): s is an increasing map and maps
[0, t∗] onto [0, s∗], where s∗ � t∗. Let t = t (s) be its inverse
and consider the map x̃(s)=x∗(t (s)). We obtain in particular
that x̃(0) = x∗(0) and that x̃(s∗) = x∗(t (s∗)) = x∗(t∗). We
also have

d

ds
x̃(s) = x′∗(t (s))t ′(s) = x′∗(t (s))

1

s′(t (s))
= x′∗(t (s))�1(t (s)) ∈ F(x∗(t (s)))
= F(x̃(s)).

Hence, we have obtained that x̃ is at once a solution to the
original differential inclusion and a minimum time solution
to the convexified inclusion. Since every solution to the orig-
inal problem is also a solution to the convexified problem,
the infimum of the times needed to reach S along the solu-
tions to the original problem cannot be lesser than the mini-
mum time for the convexified problem. Hence x̃ is a solution
to the minimum time problem for the original differential
inclusion. �

The following is a result on the existence of solutions to
initial value problems for differential inclusions with non-
convex right-hand side. Besides being non-convex-valued,
the map F need not be upper semicontinuous: this assump-
tion is replaced by the weaker assumption that the map co(F )

be upper semicontinuous.

Theorem 2.3. Let � be open, x0 ∈ � and let F be as in
Theorem 2.2. Assume that there exists t∗ > 0 such that, on
[0, t∗], the Cauchy Problem

x′(t) ∈ co F(x(t)), x(0) = x0

admits a solution x /≡ x0. Then the Cauchy Problem

x′(t) ∈ F(x(t)), x(0) = x0

admits a solution on some interval [0, �∗].

Proof. Since x /≡ x0, there exists t1 ∈ [0, t∗] such that
x(t1) �= x0. Consider the minimum time problem for the
convexified inclusion, with target set S ={x(t1)}. This prob-
lem has a solution with minimum time �∗, where 0 < �∗ � t1.
By Theorem 2.2, the original non-convexified problem has
a solution on [0, �∗]. �

3. Fermat’s Principle

Fermat’s Principle states that, among the virtual paths
the light could follow to pass from point P1 to point P2
in a medium with speed 	(x), it actually follows the one
that minimizes the time needed to pass from P1 to P2. In
mathematical terms, set �B = {x : ‖x‖ = 1}: a virtual path
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followed by the light is a solution to the differential inclusion

x′(t) ∈ 	(x(t))�B, or ‖x′(t)‖ = 	(x(t)).

In these authors’ opinion, the remarkable interest of the
problem consists in the fact that Fermat’s aim was to explain
the phenomena occurring when 	, the velocity of light, is
discontinuous, as in passing from air to water. A differential
inclusion with discontinuous right hand side is essential to
describe the problem.

Theorem 3.1. Let X be closed and convex, let the scalar-
valued function 	 be upper semicontinuous, linear bounded
and such that, on each compact C ⊂ X, there is � > 0 such
that 	(x)�� on C. Let P1 and P2 be in X, P1 �= P2. Then
there exists a path followed by the light to travel from P1 to
P2 in minimum time.

Proof. The assumptions on 	 imply that the set-valued map
	(x)B = co(	(x)�B) is upper semicontinuous: notice how-
ever that, under the same assumptions, in general the map
	(x)�B is not upper semicontinuous. Consider co{P1, P2},
the (compact) segment joining P1 and P2. Since an upper
semicontinuous map attains its maximum on a compact set,
there exists R such that 	(x)�R on co{P1, P2}, so that, on
this segment, ��	(x)�R; in turn, this implies that there is
t̃ > 0 and a solution x to

x′(t) ∈ co(	(x(t))�B), x(0) = P1

such that x(t̃) = P2. Assumption (ii) of Theorem 2.2 is
clearly satisfied, thus an application of Theorem 2.2 proves
the present theorem. �

The assumption 	(x)�� > 0 cannot be removed, other-
wise, first, an opaque barrier could completely prevent the
light to travel from P1 to P2 or, second, by allowing 	 to go
to zero fast enough, there could be no solution reaching P2
in finite time.

Remark. Assume we have two media, A and B, medium A
in the plane region y > 0 and B in the region y < 0, with
velocities 	A=1 and 	B =2. Assigning the boundary surface
y=0 to either medium is probably a physically meaningless
operation. Mathematically, the choice of assigning it to A,
makes the velocity 	 lower semicontinuous while, assigning
it to B, means making it upper semicontinuous. Our theorem
above assures the existence of a minimum time solution,
no matter what P1 and P2 are, when we make the second
choice. We claim that, to the opposite, the first choice would
make our result false.

In fact, let us define 	A = 1 on the line y = 0, choose the
points P1 = (0, 0) and P2 = (2, 0), and assume that there
exists a solution �̃ = (x̃, ỹ) to the corresponding minimum
time problem. We claim that �̃ cannot take all of its values in
the half plane y�0: in this case the time needed to pass from

P1 to P2, is at least 2. Fix an angle � < 0; set T = 1/ cos �.
The trajectory

��(t) = (t cos �, t sin �)2�[0,T /2] + (t cos �, t sin �

− T sin �)2�[T/2,T ]

satisfies ‖�′
�(t)‖ = 2 a.e., and passes from P1 to P2 in time

T = 1/ cos �

that is less than 2 for � small, a contradiction. So the solution
�̃ has to enter the half plane y < 0. Let (a, b) a maximal
open interval where ỹ(t) < 0, so that ỹ(a) = ỹ(b) = 0, and
we can assume that x(a) > x(b); at a certain time t̃ ∈ (a, b),
x̃ will take the value (x(a) + x(b))/2; define the angle �̃
by tan �̃ = ỹ(t̃ )/x̃(t̃). By the previous reasoning, the time
needed to pass from (x(a), 0) to (x(b), 0) through the point
�̃(t̃) is at least (x(b) − x(a)) /2 cos �̃, so that

b − a� x(b) − x(a)

2 cos �̃
.

However, by chosing a smaller (in absolute value) angle �,
we have a trajectory that passes from (x(a), 0) to (x(b), 0)

in less than b − a. We have reached a contradiction, hence,
a solution cannot exist.

4. The Brachystocrone

Bernoulli’s problem of the Brachystocrone can be stated
as follows: in the plane, an initial condition (�0

1, �
0
2) is given;

consider all the possible oriented rectifiable curves pass-
ing through it. Each such curve is defined by assigning
(u1(.), u2(.)), a unit vector describing the direction of its
(oriented) tangent. In this way, the parameter t is the arc-
length parametrization of the curve.

The system of equations

�′
1 = u1�3,

�′
2 = u2�3,

�′
3 = −gu2,

(B)

where the maps u1(.) and u2(.) are measurable and u2
1(t) +

u2
2(t) = 1 a.e., describes the motion of a body in the plane,

defined by the coordinates (�1(t), �2(t)), with (scalar) ve-

locity �3(t)=
√

(�′
1(t))

2 + (�′
2(t))

2, along a curve identified
assigning the direction of its tangent vector (u1(.), u2(.)),
subject to the gravity g.

Hence, the problem raised by Bernoulli can be stated as
the following minimum time control problem:

The Brachystocrone Minimum Time Problem: find a solu-
tion to the control system

�′
1 = u1�3,

�′
2 = u2�3,

�′
3 = −gu2
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(�1(0), �2(0), �3(0)) = (�0
1, �

0
2, 0), subject to the constraint

�3 �0, with control set

U = {(u1, u2) : u2
1 + u2

2 = 1)},
that would reach the target set S = (�f

1 , �f
2 , R+), where

�f
2 ��0

2, in minimum time.

Theorem 4.1. The Brachystocrone Minimum Time Problem
admits a solution.

Proof. Let x = (�1, �2, �3), X={�3 �0}, S = (�f
1 , �f

2 , R+);
let f (x, u) be the right-hand side of (B) and set F(x) =
f (x, U). Then, as one can check, F(x) satisfies the assump-
tions of Theorem 2.2. Hence, to apply the Theorem, it is
enough to show that there are solutions x(t) issuing from
x0 = (�0

1, �
0
2, 0) with �3(t)�0 and such that, at some finite

time t∗, �1(t
∗) = �f

1 , �2(t
∗) = �f

2 .

This is so in the case where �f
2 < �0

2. In fact, in this case
we have that, by choosing the constant control

u1 = �f
1 − �0

1√
(�f

1 − �0
1)

2 + (�f
2 − �0

2)
2
,

u2 = �f
2 − �0

2√
(�f

1 − �0
1)

2 + (�f
2 − �0

2)
2
,

we obtain that

�1(t) = u1

(
−gu2

t2

2

)
+ �0

1,

�2(t) = u2

(
−gu2

t2

2

)
+ �0

2,

so that �1(t
f ) = �f

1 and �2(t
f ) = �f

2 for tf =
√

2/g

√
(�f

1 − �0
1)

2 + (�f
2 − �0

2)
2/ − (�f

2 − �0
2). We also

obtain that �3(t) > 0 on (0, tf ) and that �3(t
f ) =√

−2g(�f
2 − �0

2).

Consider the case �f
2 = �0

2. We can assume that �f
1 �= 0,

otherwise t∗=0 is the solution to the minimum time problem.

In the case �f
1 > �0

1, consider the solution with the constant

control u1 = 1/
√

2, u2 = −1/
√

2 on

[
0,

√
2(�f

1 − �0
1)/g

]
.

At time t̃ =
√

2(�f
1 − �0

1)/g, we have that �1(t̃)−�0
1 =(�f

1 −
�0

1)/2, �2(t̃)−�0
2 =−(�f

1 −�0
1)/2 and �3(t̃)=

√
g(�f

1 − �0
1).

The solution with constant control u1=1/
√

2, u2 =1/
√

2 on
theinterval (t̃ , 2t̃ ), with initial conditions �1(t̃)=(�f

1 +�0
1)/2,

�2(t̃) = �0
2 − (�f

1 − �0
1)/2 and �3(t̃) =

√
g(�f

1 − �0
1) is such

that at t=2t̃ , �1(2t̃ )=�f
1 and �2(2t̃ )=�f

2 . Hence tf =2t̃ and

�3(t) > 0 on (0, tf ). Analogously for the case �f
1 < �0

1. �

The Brachystocrone as a minimum time control problem
has already been discussed in [3–5]. The model presented
in these papers has a right-hand side that is not Lipschitz in
all its variables, to the opposite of the model proposed here.
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