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AND CONTROLLED NORMAL
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Abstract. In the Heisenberg group, we prove that the boundary of sets with finite
H-perimeter and having a bound on the measure theoretic normal is an H-Lipschitz
graph. Then we show that if the normal is, on the boundary, the restriction of a
continuous mapping, then the boundary is an H-regular surface.

1. Introduction

We identify the Heisenberg group Hn, n > 1, with Cn×R. A point p ∈ Hn has the

coordinates p = (z, t) with z = (z1, ..., zn) ∈ Cn and t ∈ R. The group law is

(z, t) · (z′, t′) =
(
z + z′, t+ t′ + 2Im(zz̄′)

)
,

where Im(zz̄′) = Im(z1z̄
′
1 + ...+z′nz̄

′
n). A basis of left-invariant horizontal vector fields

is given by

Xj =
∂

∂xj
+ 2yj

∂

∂t
, Yj =

∂

∂yj
− 2xj

∂

∂t
, j = 1, ..., n, (1.1)

where zj = xj + iyj. We also let Xj = Yj−n for j = n+ 1, ..., 2n. The H-divergence of

a vector field ψ = (ψ1, ..., ψ2n) ∈ C1(Hn; R2n) is

divHψ =
2n∑
j=1

Xjψj.

A Lebesgue measurable set E ⊂ Hn is of finite H-perimeter in the open set Ω ⊂ Hn

if

sup
{∫

E

divHψ dzdt : ψ = (ψ1, ..., ψ2n) ∈ C1
c(Ω; R2n), ‖ψ‖∞ 6 1

}
< +∞.

Here, dzdt is the Lebesgue measure element in Hn. The structure of sets with finite

H-perimeter is described in the fundamental paper [6]. If E has finite H-perimeter in

Ω, then by Riesz’ Theorem there exist a finite Borel measure |∂E|H in Ω and a Borel
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mapping νE : Ω → S2n−1, the unit sphere of R2n, such that for any ψ ∈ C1
c(Ω; R2n)

we have ∫
E

divHψ dzdt = −
∫

Ω

〈ψ, νE〉d|∂E|H.

The mapping νE is called measure theoretic inward normal of E. Here and in the

following, we denote by 〈·, ·〉 the standard scalar product of R2n and Hn = R2n+1.

We are interested in the following question: which regularity for ∂E can be deduced

from the regularity of the measure theoretic normal νE? In the setting of Rn, the

continuity of the measure theoretic normal w.r.t. the classical perimeter implies the

C1 regularity of ∂E, the topological boundary of E, upon modifying E in a Lebesgue

negligible set. Here, we obtain some results in the same spirit, and namely we prove

that: 1) if one component of the measure theoretic normal νE is bounded away from 0,

then ∂E has an intrinsic cone property, i.e. it is the intrinsic graph of an H-Lipschitz

function; 2) if νE is |∂E|H-a.e. the restriction of a continuous mapping, then ∂E is an

H-regular surface.

Theorems 1.1 and 1.2 below are part of a program on the regularity of H-perimeter

minimizing sets in Hn. It is conjectured that the measure theoretic normal of a

minimizer is continuous. Indeed, the Hölder continuity of the normal is the basic step

in De Giorgi’s regularity theorem for perimeter minimizing sets in Rn (see e.g. [10]).

In Hn the problem is still open. Theorem 1.2 can be used also to prove the full

result in the isoperimetric inequality in [11]. Namely, the requirement that ∂E be an

H-regular surface made in Theorem 3.1 of [11] can be dropped.

Let us state our results in a more precise way. Define the homogeneous norm of

p = (z, t) ∈ Cn × R as

‖p‖ = max{|z|, |t|1/2}. (1.2)

The ball centered at p ∈ Hn with radius r > 0 is denoted by Br(p) =
{
q ∈ Hn :

‖p−1 · q‖ < r
}

. When p = 0 we simply let Br = Br(0).

Let ν ∈ S2n−1, i.e. ν ∈ R2n and |ν| = 1. By abuse of notation, we identify

ν = (ν1, ..., ν2n) ∈ R2n, ν = (ν1 + iνn+1, ..., νn + iν2n) ∈ Cn, and ν = (ν, 0) ∈ Hn.

Given p ∈ Hn we let ν(p) = 〈p, ν〉ν ∈ Hn and we define ν⊥(p) ∈ Hn as the unique

point such that

p = ν⊥(p) · ν(p). (1.3)

The set
{
q ∈ Hn : ‖ν⊥(p−1 · q)‖ < α‖ν(p−1 · q)‖

}
is an “intrinsic cone” with vertex

p, opening α > 0, and axis specified by ν.

Theorem 1.1. Let E ⊂ Hn be a set with finite H-perimeter in Br, r > 0, νE be the

measure theoretic inward normal of E, and ν ∈ S2n−1. Assume there exists k ∈ (0, 1]

such that 〈νE(p), ν〉 6 −k for |∂E|H-a.e. p ∈ Br. Then there exists α > 0 such that,
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possibly modifying E in a negligible set, we have for all p ∈ ∂E ∩Br{
q ∈ Br : ‖ν⊥(p−1 · q)‖ < −α 〈p−1 · q, ν〉

}
⊂ E, (1.4)

{
q ∈ Br : ‖ν⊥(p−1 · q)‖ < α 〈p−1 · q, ν〉

}
⊂ Hn \ E. (1.5)

Here and in the following, ∂E denotes the topological boundary of E.

The proof of (1.4) is based on the following observation: if we start from a point of

E ∩ Br with positive lower density and we move for a short time along a horizontal

direction near ν, then we remain in the set of positive lower density of E. We can

then show that for any p ∈ E∩Br there is a truncated lateral cone with fixed opening

that is contained in E. The construction is in two steps and it is analogous to the

one used in [2]. The technical estimates are in Proposition 2.2.

The intrinsic cone property (1.4) and (1.5) is equivalent to the fact that ∂E ∩ Br

is the intrinsic graph of an H-Lipschitz function. This is explained in Corollary 2.1.

Intrinsic Lipschitz functions have been introduced recently by Franchi, Serapioni and

Serra Cassano in the setting of Carnot groups [7] (see also [3]). In the Heisenberg

group there is a Rademacher-type theorem for H-Lipschitz functions [8].

A set S ⊂ Hn is said to be an H-regular surface if for any p ∈ S there exist an

open neighborhood U of p and a function f ∈ C1
H(U) such that ∇Hf(p) 6= 0 and

S ∩ U =
{
q ∈ U : f(q) = 0

}
. The vector ∇Hf =

(
X1f, ..., X2nf

)
is called the

horizontal gradient of f . Recall that,

C1
H(U) =

{
f ∈ C(U) : ∇Hf ∈ C(U ; R2n) exists in distributional sense

}
.

Our second result is the following

Theorem 1.2. Let E ⊂ Hn be a set with finite H-perimeter in Br, r > 0. Suppose

there exists a continuous mapping ν̃ : Br → S2n−1 such that νE(p) = ν̃(p) for |∂E|H-

a.e. p ∈ Br. Then, possibly modifying E in a L2n+1-negligible set, ∂E ∩ Br is an

H-regular surface.

If νE is continuous in Br, then ∂E∩Br is locally an intrinsic graph, i.e. we can assume

there exist ν ∈ S2n−1, an open set ω contained in the orthogonal complement of ν

and φ : ω → R such that

∂E ∩Br = gr(φ) :=
{
p · φ(p)ν ∈ Hn : p ∈ ω

}
.

The function φ is H-Lipschitz, by Theorem 1.1. Consider the case ν = (1, 0, . . . , 0).

The intrinsic gradient of φ is then defined as

∇φφ = (X2φ, . . . , Xnφ,W
φφ, Y2φ, . . . , Ynφ). (1.6)
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This gradient has to be understood in distributional sense. Here, X2, ..., Xn and

Y2, ..., Yn are the restrictions of the vector fields in (1.1) to ν⊥ =
{
p = (p1, ..., p2n+1) ∈

Hn : p1 = 0
}

, whereas W φφ is the distribution acting on ψ ∈ C1
c(ω) as

〈W φφ, ψ〉 = −
∫
ω

(
φ
∂ψ

∂y1

− 2φ2∂ψ

∂t

)
dẑdt,

where dẑ = dx2 . . . dxndy1 . . . dyn. We prove that there exist a sequence (φ`)`∈N in

C1(ω) and a function w ∈ C(ω; R2n−1) such that:

i) φ` → φ as `→ +∞ locally uniformly in ω;

ii) ∇φ`φ` → w as `→ +∞ locally uniformly in ω.

In fact, it is ∇φφ = w in distributional sense. By the characterization theorem for

H-regular surfaces in [1], it then follows that gr(φ) = ∂E∩Br is an H-regular surface.

One technically important step in the argument is showing that the sequence (φ`)`∈N

is locally uniformly 1
2
-Hölder continuous. This is done in Lemma 3.2, whose proof is

inspired by some ideas contained in [1] and [4].

The characterization of H-regular surfaces of [1] has been generalized recently in

[4] and [5]. Roughly speaking, the authors prove that, given continuous functions

φ : ω → R and w : ω → R2n−1, the graph gr(φ) is H-regular if and only if the system

of equations ∇φφ = w is solved in the broad∗ sense [4], and in distributional sense [5],

respectively. In [5], the authors also give a characterization of H-Lipschitz graphs. A

description of H-regular surfaces in terms of uniform intrinsic differentiability is given

in [3].

Acknowledgments. We gratefully acknowledge the interest of F. Serra Cassano and

the many stimulating discussions we had with him.

2. Sets with a bound on the normal

In this section, we prove Theorem 1.1. First notice that for p = (z, t) ∈ Hn and

ν ∈ S2n−1, the point ν⊥(p) defined through the identity (1.3) is given by

ν⊥(p) =
(
z − 〈z, ν〉ν, t− 2〈z, ν〉Im(zν̄)

)
. (2.1)

We denote by ν⊥ =
{
p = (z, t) ∈ Hn : 〈z, ν〉 = 0

}
the orthogonal complement of ν in

Hn. It is clearly ν⊥(p) ∈ ν⊥ for all p ∈ Hn. We define the projection prν : Hn → ν⊥

on letting prν(p) = ν⊥(p).

Proof of Theorem 1.1. Possibly modifying E in a L2n+1-negligible set, we assume that

E coincides with the set of points where E has positive lower density, and precisely

E =
{
p ∈ Hn : lim inf

%↓0

L2n+1(E ∩G(p, %))

L2n+1(G(p, %))
> 0
}
, (2.2)

where G(p, %) is the Euclidean ball centered at p having radius %.
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Let α > 0 be a number, depending on k, given by Proposition 2.2 below. We show

that for any p ∈ E we have{
q ∈ Br : ‖ν⊥(p−1 · q)‖ 6 −α 〈p−1 · q, ν〉

}
⊂ E. (2.3)

To this aim, consider the set of directions S2n−1
k =

{
µ ∈ S2n−1 : 〈µ, ν〉 6 −

√
1− k2

}
and the left invariant vector fields

Zµ = µ1X1 + ...+ µ2nX2n, µ ∈ S2n−1
k .

For any ψ ∈ C1
c(Br) such that ψ > 0 and for all µ ∈ S2n−1

k , we have∫
E

Zµψ dp = −
∫
Br

ψ〈µ, νE〉d|∂E|H 6 0,

because 〈µ, νE(p)〉 > 0 for |∂E|H-a.e. p ∈ Br. This follows from 〈µ, ν〉 6 −
√

1− k2

and 〈νE, ν〉 6 −k.

By Lemma 2.1 below, it follows that if p ∈ E ∩Br, s > 0 is such that exp sZµ(p) ∈
Br, and % > 0 is small enough, then we have

L2n+1(E ∩ exp sZµ(G(p, %))) > L2n+1(E ∩G(p, %)).

Also using L2n+1(exp sZµ(G(p, %))) = L2n+1(G(p, %)), we deduce that

lim inf
%↓0

L2n+1(E ∩ exp sZµ(G(p, %)))

L2n+1(exp sZµ(G(p, %)))
> lim inf

%↓0

L2n+1(E ∩G(p, %))

L2n+1(G(p, %))
> 0. (2.4)

This implies that the point q = exp sZµ(p) satisfies

lim inf
%↓0

L2n+1(E ∩G(q, %))

L2n+1(G(q, %))
> 0,

and thus q ∈ E.

Now assume that p = 0 ∈ E and define the truncated cone

A =
{

exp sZµ(0) ∈ Br : s > 0, µ ∈ S2n−1
k

}
=
{

(ζ, 0) ∈ Hn : 〈ζ, ν〉 6 −|ζ|
√

1− k2, |ζ| < r
}
.

The previous argument shows that A ⊂ E. Now consider the three conditions in (2.7)

below and define the set

B =
{

exp sZµ(ζ, 0) ∈ Br : s > 0, µ ∈ S2n−1
k , (ζ, 0) ∈ A

}
=
{

(z, t) ∈ Br : there is ζ ∈ Cn, |ζ| < r, such that (2.7) holds
}
.

The previous argument proves that B ⊂ E.

By Proposition 2.2, we have
{
q ∈ Br : ‖ν⊥(q)‖ 6 −α 〈q, ν〉

}
⊂ B, and our claim

(2.3) follows in the case p = 0. The claim (2.3) for any p ∈ E follows from the case

p = 0 by a left translation.
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Now consider the complement Hn \E. We have νHn\E = −νE in Br. We can repeat

the previous argument and obtain, for any p where Hn \E has positive lower density,{
q ∈ Br : ‖ν⊥(p−1 · q)‖ 6 α 〈p−1 · q, ν〉

}
⊂ Hn \ E. (2.5)

In particular, (2.5) holds for any p ∈ Br \ E because Hn \ E has density 1 at such p.

Approximating a point p ∈ ∂E∩Br with a sequence of points in E∩Br, from (2.3)

we get (1.4). Approximating the point p with a sequence of points in Br \ E, from

(2.5) we get (1.5). Possibly, we have to take a smaller α. �

Let ω ⊂ ν⊥ be an open set. The intrinsic graph (along ν ∈ S2n−1) of a function

φ : ω → R is the set gr(φ) =
{
p · φ(p)ν ∈ Hn : p ∈ ω

}
. The function φ is said to be

H-Lipschitz, if there exists a constant 0 6 L < +∞ such that for all p ∈ gr(φ)

gr(φ) ∩
{
q ∈ Hn : ‖ν(p−1 · q)‖ > L‖ν⊥(p−1 · q)‖

}
= ∅.

Corollary 2.1. Let E ⊂ Hn be a set with finite H-perimeter in Br, r > 0, and let νE
be the measure theoretic inward normal. Assume there exists k ∈ (0, 1] and ν ∈ S2n−1

such that 〈νE(p), ν〉 6 −k for |∂E|H-a.e. p ∈ Br. Then, possibly modifying E on a

L2n+1-negligible set, the set ∂E∩Br is the intrinsic graph of an H-Lipschitz function.

Proof. Consider the projection prν : Hn → ν⊥. From (2.3) it follows that the set

prν(E ∩Br) is open in prν(Br), which is relatively open in ν⊥. Consider the set

ω =
{
p ∈ prν(E ∩Br) : there is s ∈ R such that exp sZν(p) ∈ Br \ E

}
.

From (2.3) and (2.5), it follows that ω is relatively open in prν(E ∩Br), and so in ν⊥.

By Theorem 1.1, the function φ : ω → R

φ(p) = sup
{
s ∈ R : exp sZν(p) ∈ Br and χE(exp sZν(p)) = 1

}
, p ∈ ω,

is H-Lipschitz and we have ∂E ∩Br =
{
p · φ(p)ν ∈ Hn : p ∈ ω

}
.

�

Proposition 2.2. Let k ∈ (0, 1] and n > 1. There exists α > 0 such that for all

ν ∈ S2n−1, z ∈ Cn and t ∈ R satisfying

‖ν⊥(z, t)‖ = max
{
|z − 〈z, ν〉ν|, |t− 2〈z, ν〉Im(zν̄)|1/2

}
6 −α〈z, ν〉, (2.6)

there exists ζ ∈ Cn such that

〈ζ, ν〉 6 −
√

1− k2|ζ|, 〈z − ζ, ν〉 6 −
√

1− k2|z − ζ|, and t = 2Im(ζz̄). (2.7)

Proof. We prove the case n = 1 first. Without loss of generality, we can assume that

ν = (1, 0) ∈ S1. This can be achieved by a rotation in the plane. For h > 0 and

z = x+ iy ∈ C such that |y| 6 −hx consider the set

Rz(h) =
{
ξ + iη ∈ C : |η| 6 −hξ and |y − η| 6 −h(x− ξ)

}
.
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For z 6= 0 and h > 0, the set Rz(h) is a parallelogram with vertices 0, z = x+ iy, z1,

and z2 where

z1 =
y + hx

2h
(1 + ih) and z2 =

hx− y
2h

(1− ih).

The function ϕz : Rz(h) → R, ϕz(ζ) = 2Im(ζz̄), is linear and attains the maximum

and the minimum on ∂Rz(h), and actually at z1 and z2, respectively:

max
Rz(h)

ϕz = ϕz(z1) =
h2x2 − y2

h
and min

Rz(h)
ϕz = ϕz(z2) =

y2 − h2x2

h
.

Consider the set

Dh =
{

(x+ iy, t) ∈ C× R : |y| < −hx, y2 − h2x2 6 ht 6 h2x2 − y2
}
.

By continuity, ϕz attains all the values between the maximum and the minimum.

Then, for any (z, t) ∈ Dh there exists ζ ∈ Rz(h) such that t = 2Im(ζz̄).

Now let α > 0 be a number satisfying the following two conditions

α2 + 2α 6
h

2
, with h =

√
k2

2− k2
, (2.8)

α2 6
k2

2− 2k2
. (2.9)

From now on, h is fixed depending on k by (2.8).

Let z = x + iy ∈ C and t ∈ R be such that (2.6) holds with n = 1 and ν = (1, 0),

i.e.

max{|y|, |t− 2xy|1/2} 6 −αx. (2.10)

We claim that (z, t) ∈ Dh. In fact, on the one hand it is |y| 6 −αx 6 −hx/2. On

the other hand, (2.10) also implies

−α2x2 + 2xy 6 t 6 2xy + α2x2. (2.11)

The last inequality in (2.11) yields t 6 (2α + α2)x2 6 hx2/2, by (2.8), and thus

ht + y2 6 h2x2. The estimate ht − y2 > −h2x2 is obtained in the same way. This

proves that (z, t) ∈ Dh. Notice that, by the choice of h made in (2.8), ζ ∈ Rz(h)

implies

〈ζ, ν〉 6 −
√

1− k2/2 |ζ| and 〈z − ζ, ν〉 6 −
√

1− k2/2 |z − ζ|. (2.12)

Now we prove the proposition in the general case, i.e. for any n > 2. We reduce

the general case to the case n = 1.

Let z ∈ Cn be such that z 6= 0. We denote be πz the complex line through z. With

the notation Jz = iz, this complex line is πz = {az + bJz ∈ Cn : a, b ∈ R}. We

denote the orthogonal projection of ν onto πz by

πzν =
1

|z|2
{
〈z, ν〉z + 〈Jz, ν〉Jz

}
,
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and we let

ν̂ =
πzν

γ
, with γ = |πzν| =

√
〈z, ν〉2 + 〈Jz, ν〉2

|z|
.

Notice that γ 6 1. Moreover, by (2.6) we have

γ >
|〈z, ν〉|
|z|

>
1√

1 + α2
. (2.13)

We show that if (z, t) satisfies (2.6) relatively to ν, then (z, t̂) with t̂ = t/γ2 satisfies

(2.6) relatively to ν̂ with the same α. In fact, on the one hand we have

|z| 6 −
√

1 + α2〈z, ν〉 ⇒ |z| 6 −γ
√

1 + α2〈z, ν̂〉 6 −
√

1 + α2〈z, ν̂〉 (2.14)

implying |z − 〈z, ν̂〉ν̂| 6 −α〈z, ν̂〉. Moreover, using the identity

Im(z¯̂ν) =
〈Jz, ν〉Im(zJz)

γ|z|2
= −〈Jz, ν〉

γ
=

Im(zν̄)

γ
,

we get

|t− 2〈z, ν〉Im(zν̄)|1/2 6 −α〈z, ν〉 ⇔ |t̂− 2〈z, ν̂〉Im(z¯̂ν)|1/2 6 −α〈z, ν̂〉. (2.15)

By the proof of the proposition in the n = 1 case, there exists ζ̂ ∈ πz such that

t̂ = 2Im(ζ̂ z̄) and (2.12) holds, i.e.

〈ζ̂ , ν̂〉 6 −
√

1− k2/2 |ζ̂|, 〈z − ζ̂ , ν̂〉 6 −
√

1− k2/2 |z − ζ̂|. (2.16)

Then ζ = γ2ζ̂ solves t = 2Im(ζz̄). Moreover, by (2.16), (2.13) and (2.9) we obtain

〈ζ, ν〉 = 〈ζ, πzν〉 = γ〈ζ, ν̂〉 6 −γ
√

1− k2/2|ζ| 6 −
√

1− k2/2√
1 + α2

|ζ| 6 −
√

1− k2|ζ|.

It remains to check the second inequality in (2.7). First notice that

〈z − ζ, ν〉 = 〈z − γ2ζ̂ , ν〉 = γ2〈z − ζ̂ , ν〉+ (1− γ2)〈z, ν〉

= γ3〈z − ζ̂ , ν̂〉+ (1− γ2)〈z, ν〉.

By the second inequality in (2.16), the first one in (2.14), (2.9), and the triangle

inequality, we have

〈z − ζ, ν〉 6 −γ3
√

1− k2/2|z − ζ̂| − (1− γ2)
|z|√

1 + α2

6 −
√

1− k2/2√
1 + α2

|γ2z − ζ| − 1√
1 + α2

|(1− γ2)z|
}

6 −
√

1− k2
{
|γ2z − ζ|+ |(1− γ2)z|

}
6 −
√

1− k2 |z − ζ|.

This finishes the proof of the proposition.

�

In the proof of Theorem 1.1, we used the following lemma.
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Lemma 2.1. Let E ⊂ Hn be a set with finite H-perimeter in Br, r > 0, and let Z be

a horizontal left invariant vector field such that∫
E

Zψ(p) dp 6 0 for all ψ ∈ C1
c(Br) with ψ > 0. (2.17)

Then, for any L2n+1-measurable set A ⊂ Br we have L2n+1(E ∩ A) 6 L2n+1(E ∩
exp sZ(A)) for all s > 0 such that exp sZ(A) ⊂ Br.

Proof. Without loss of generality, we can assume that Z = X1. This can be obtained

by a rotation on the space of horizontal left invariant vector fields and by multiplica-

tion with a positive scalar. The map Θ : Hn → Hn, Θ(q) = exp q1X1(0, q2, ..., q2n+1),

is a global diffeomorphism. It satisfies

det JΘ(q) = 1 and Θ∗

( ∂

∂q1

)
= X1. (2.18)

Letting F = Θ−1(E) and B = Θ−1(A), we have

Θ(se1 +B) = exp sX1(A), s ∈ R, (2.19)

where e1 = (1, 0, ..., 0) ∈ Hn. For a given test function ϑ ∈ C1
c(Θ

−1(Br)) with ϑ > 0,

define ψ(p) = ϑ(Θ−1(p)). Then, by (2.17) and (2.18), we have∫
F

∂ϑ

∂q1

(q) dq =

∫
E

X1ψ(p) dp 6 0. (2.20)

By Fubini-Tonelli Theorem and by a standard approximation argument, from (2.20)

it follows that the function s 7→ χF (q + se1) is increasing for L2n+1-a.e. q ∈ Θ−1(Br),

as long as q + se1 ∈ Θ−1(Br). Then for such an s > 0, we have, by Fubini-Tonelli

Theorem,

L2n+1(F ∩B) =

∫
R2n

∫
R
χF (q)χB(q)dq1 dq2 . . . dq2n+1

6
∫

R2n

∫
R
χF (se1 + q)χB(q)dq1 dq2 . . . dq2n+1

=

∫
R2n

∫
R
χF (q)χse1+B(q)dq1 dq2 . . . dq2n+1

= L2n+1(F ∩ (se1 +B)).

(2.21)

From (2.18), (2.19), and (2.21) we get L2n+1(E ∩ A) 6 L2n+1(E ∩ exp sZ(A)). �

3. Sets with continuous normal

Proof of Theorem 1.2. Possibly modifying E in a L2n+1-negligible set, we can assume

that E coincides with its set of positive lower density, as in (2.2). Possibly modifying

νE in a |∂E|H-negligible set, we can assume that νE(p) = ν̃(p) for all p ∈ Br.

Let us fix a point p̄ ∈ Br and let ν = −νE(p̄). For any k ∈ (0, 1), by the continuity of

νE in Br there exists % > 0 such that 〈νE(p), ν〉 6 −k for all p ∈ B%(p̄). By Corollary
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2.1, the set ∂E ∩B%(p̄), if nonempty, is the intrinsic graph of an H-Lipschitz function

φ : ω → R, for some bounded open set ω ⊂ ν⊥. Denote by

F :=
{
p · sν ∈ Hn : s < φ(p), p ∈ ω

}
the intrinsic subgraph of φ.

Let U b ω be an open set such that p̄ ∈ U ·Rν and, for R > 0, consider the intrinsic

cylinders

Ω : = ω · Rν and ΩR := ω · (−R,R)ν,

Υ : = U · Rν and ΥR := U · (−R,R)ν.

Upon a localization argument, we can assume that ∂F ∩ Ω = ∂E ∩ Ω ∩ B%(p̄). The

normals νF = νE are continuous on ∂E ∩ Ω.

Step 1: Mollification of χF . Without loss of generality, we can assume that ν =

(1, 0, ..., 0) ∈ S2n−1. This can be achieved by an orthogonal transformation. Since φ

is H-Lipschitz and ω is bounded, we have M := ‖φ‖L∞(ω) <∞. Thus

χF (p) = 1 for any p ∈ Ω with p1 6 −M,

χF (p) = 0 for any p ∈ Ω with p1 >M.
(3.1)

Here, p1 is the first coordinate of p = (p1, ..., p2n+1) ∈ Hn.

For ε > 0, consider mollification kernels gε ∈ C∞c (Hn) such that

gε > 0, gε > 0 in Bε, spt gε = B̄ε,

∫
Bε

gε(p) dp = 1. (3.2)

For 0 < ε < dist(∂Ω; Υ3M), we can define the functions fε : Υ3M → [0, 1]

fε(p) =

∫
Bε

gε(q)χF (q−1 · p)dq. (3.3)

If ε > 0 is sufficiently small, it follows from (3.1) that

fε(p) = 1 for all p ∈ Υ3M with p1 6 −2M,

fε(p) = 0 for all p ∈ Υ3M with p1 > 2M.
(3.4)

We can therefore extend fε to a smooth function defined in Υ on setting

fε(p) = 1 if p1 6 −3M, fε(p) = 0 if p1 > 3M. (3.5)

Clearly, we have ∇Hfε(p) = 0 if |p1| > 2M .

Step 2: Estimates on ∇Hfε. Let p ∈ Υ be a point such that 0 < fε(p) < 1. We

claim that for all small enough ε > 0 we have

|∇Hfε(p)| 6
1

k
|X1fε(p)|. (3.6)
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To this aim, we study the behaviour of Xjfε, j = 1, ..., 2n, as a distributions acting

on test functions ϕ ∈ C∞c (Υ3M). We have

〈Xjfε, ϕ〉 = −
∫

Υ3M

fε(p
′)Xjϕ(p′) dp′

= −
∫
Bε

gε(p)

∫
Υ3M

χF (p−1 · p′)Xjϕ(p′) dp′ dp

= −
∫
Bε

gε(p)

∫
p−1·Υ3M

χF (q)Xjϕ(p · q) dq dp.

(3.7)

With the notation ϕp(q) = ϕ(p · q), we have Xjϕ(p · q) = Xjϕp(q), because Xj is left

invariant. Then, by an integration by parts, we obtain from (3.7)

〈Xjfε, ϕ〉 =

∫
Bε

gε(p)

∫
p−1·Υ3M

νjF (q)ϕ(p · q) d|∂F |H(q) dp. (3.8)

As ϕ is compactly supported in Υ3M , for all small enough ε > 0 we can replace the

integration domain p−1 ·Υ3M in (3.8) with Υ3M . By Fubini-Tonelli theorem, a change

of variable, and Fubini-Tonelli theorem again, we get

〈Xjfε, ϕ〉 =

∫
Υ3M

∫
Hn

gε(p)ν
j
F (q)ϕ(p · q) dp d|∂F |H(q)

=

∫
Υ3M

νjF (q)

∫
Hn

gε(p · q−1)ϕ(p) dp d|∂F |H(q)

=

∫
Hn

ϕ(p)

∫
Υ3M

gε(p · q−1)νjF (q) d|∂F |H(q) dp.

(3.9)

This shows that for any p ∈ Υ3M and for all small enough ε > 0 we have

Xjfε(p) =

∫
BR

ε (p)

νjF (q)gε(p · q−1) d|∂F |H(q), (3.10)

where, here and in the following, we let BR
ε (p) = Bε · p.

Let p ∈ Υ3M be a point such that 0 < fε(p) < 1. Then we have L2n+1(BR
ε (p)∩F ) >

0 and L2n+1(BR
ε (p) \ F ) > 0 and the isoperimetric inequality (see [9]) implies

|∂F |H(BR
ε (p)) > 0. (3.11)

Let us introduce the quantity

∆ε(p) :=

∫
BR

ε (p)

gε(p · q−1) |∂F |H(q). (3.12)

By (3.11) and (3.2), we have ∆ε(p) > 0 and from (3.10) with j = 1 we get

X1fε(p) 6 −k∆ε(p). (3.13)



12 ROBERTO MONTI AND DAVIDE VITTONE

Letting ∇̂Hfε := (X2fε, . . . , X2nfε) and ν̂F := (ν2
F , . . . , ν

2n
F ), we have

|∇̂Hfε(p)| =
∣∣∣∣∫
BR

ε (p)

ν̂F (q)gε(p · q−1) |∂F |H(q)

∣∣∣∣
6
∫
BR

ε (p)

|ν̂F (q)|gε(p · q−1) |∂F |H(q)

6
√

1− k2∆ε(p).

(3.14)

Then, by (3.13) we obtain

|∇̂Hfε(p)| 6
√

1− k2∆ε(p) 6

√
1− k2

k
|X1fε(p)|. (3.15)

Now (3.6) follows from (3.15).

Step 3: Approximation of φ. Let Fε := {p ∈ Υ : fε(p) > 1/2}. Since X1fε(p) < 0

for any p ∈ ∂Fε ∩ Υ, Fε is the intrinsic subgraph of a smooth function φε : U →
[−2M, 2M ], i.e.

Fε =
{
p · sν ∈ Hn : s < φε(p), p ∈ U

}
.

This follows by an Implicit Function Theorem argument as in [6, Theorem 6.5]. Recall

the relation between the inner normal νFε = (ν1
Fε
, ..., ν2n

Fε
) and the horizontal gradient

∇Hfε

νFε(p) =
∇Hfε(p)

|∇Hfε(p)|
, p ∈ ∂Fε ∩Υ.

By (3.6) and X1fε(p) < 0 for any p ∈ ∂Fε ∩Υ, we thus have

−1 6 ν1
Fε

(p) =
X1fε(p)

|∇Hfε(p)|
6 −k. (3.16)

By the definition of Fε, we have

fε − χF > 1/2 in Fε \ F and χF − fε > 1/2 in F \ Fε,

and thus ∫
Υ

|fε − χF |dp >
1

2
L2n+1(Fε∆F ).

Since limε→0 ‖fε − χF‖L1(Υ) = 0 we also have limε→0 ‖χFε − χF‖L1(Υ) = 0. Straight-

forward computations show that

‖φε − φ‖L1(U) = ‖χFε − χF‖L1(Υ),

and thus φε → φ in L1(U).

Step 4: Local uniform convergence of φε. The relation between νFε , the inner

normal to ∂Fε, and the intrinsic gradient ∇φεφε (defined as in (1.6)) is

νFε =
( −1√

1 + |∇φεφε|2
,

∇φεφε√
1 + |∇φεφε|2

)
, (3.17)
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where the right hand side is evaluated at p ∈ U and the left hand side is evaluated

at Φε(p) = p · φε(p)ν. For this formula, see e.g. [1]. From equation (3.16), we deduce

that

|∇φεφε| 6
√

1− k2

k
in U.

By Lemma 3.1, for any open set V b U the functions φε are 1
2
-Hölder continuous

on V with Hölder constant independent from ε. By Ascoli-Arzelà’s theorem, there

exists a subsequence (φε`
)`∈N converging locally uniformly on U to φ. For the sake of

simplicity, we omit the subscript ` and by ε→ 0 we mean `→∞.

Step 5: Local uniform convergence of ∇φεφε. Let us define the continuous map

w : ω → R2n−1

w := −
(
ν2
F ◦ Φ, . . . , ν2n

F ◦ Φ
)

ν1
F ◦ Φ

,

where Φ(p) = p · φ(p)ν for p ∈ ω. We claim that for any V b U we have

∇φεφε → w in L∞(V ; R2n−1). (3.18)

The (locally) uniform convergence in (3.18) implies the equality w = ∇φφ in distribu-

tional sense in U . Then, by Theorem 5.1 in [1] the intrinsic graph of φ is an H-regular

surface and the proof is accomplished.

We prove (3.18). To this aim, let us introduce the left and right invariant homoge-

neous distances

dL(p, q) = ‖p−1 · q‖ and dR(p, q) = ‖q · p−1‖, p, q ∈ Hn.

Both dL and dR satisfy the triangle inequality. Moreover, for any compact set K ⊂ Hn

there exists a constant C > 0 such that for all p, q ∈ K we have

dR(p, q) 6 CdL(p, q)1/2 and dL(p, q) 6 CdR(p, q)1/2. (3.19)

Consider a modulus of continuity β : R+ → R+ for νF on ∂F ∩Υ with respect to the

metric dR, i.e. |νF (p)− νF (q)| 6 β(dR(p, q)) for p, q ∈ ∂F ∩Υ and β(s)→ 0 as s→ 0.

Fix ε = ε` and v ∈ V . Let pε = Φε(v) = v · φε(v)ν and p = Φ(v) = v · φ(v)ν. By

the argument in (3.11) and (3.12), we have ∆ε(pε) > 0. By the triangle inequality

and by (3.19), we obtain for any q ∈ BR
ε (pε)

dR(q, p) 6 dR(q, pε) + dR(pε, p) 6 dR(q, pε) + CdL(pε, p)
1/2 6 ε+ C‖φε − φ‖1/2

L∞(V ),

that implies, for q ∈ ∂F ∩BR
ε (pε) ∩Υ,

|νF (q)− νF (p)| 6 β
(
ε+ C‖φε − φ‖1/2

L∞(V )

)
.
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From (3.10), we thus get∣∣∇Hfε(pε)− νF (p)∆ε(pε)
∣∣ =

∣∣∣∣∫
BR

ε (pε)

(
νF (q)− νF (p)

)
gε(pε · q−1) d|∂F |H(q)

∣∣∣∣
6 β

(
ε+ C‖φε − φ‖1/2

L∞(V )

)
∆ε(pε)

(3.20)

In particular, we have

|∇Hfε(pε)| = (1 + o(1))∆ε(pε), (3.21)

where o(1)→ 0 as ε→ 0 uniformly in v ∈ V , and thus∣∣∇Hfε(pε)− νF (p)∆ε(pε)
∣∣ 6 2β

(
ε+ C‖φε − φ‖1/2

L∞(V )

)
|∇Hfε(pε)|. (3.22)

Starting from∣∣νFε(pε)− νF (p)
∣∣ =

∣∣∣∣ ∇Hfε(pε)

|∇Hfε(pε)|
− νF (p)

∣∣∣∣
6

∣∣∣∣∇Hfε(pε)− νF (p)∆ε(pε)

|∇Hfε(pε)|

∣∣∣∣+

∣∣∣∣νF (p)
∆ε(pε)− |∇Hfε(pε)|

|∇Hfε(pε)|

∣∣∣∣ ,
(3.23)

and using (3.20), (3.21), and (3.22), we deduce that

νFε ◦ Φε → νF ◦ Φ as ε→ 0, uniformly on V. (3.24)

Finally, from ν1
Fε
6 −k and recalling (3.17), we get

∇φεφε = −
(
ν2
Fε
◦ Φε, . . . , ν

2n
Fε
◦ Φε

)
ν1
Fε
◦ Φε

→ w as ε→ 0, uniformly on V.

This is our claim (3.18), and the proof of the Theorem is concluded. �

The following Lemma 3.1 has been used in the proof of Theorem 1.2. It can

be proved by means of Lemma 3.2 and of a standard compactness argument. In

both Lemmata, we identify R2n with the orthogonal complement of (1, 0, . . . , 0) in

Hn = R2n+1.

Lemma 3.1. Let U ⊂ R2n be an open set and let φ : U → R be a function of class

C1 such that |φ| 6M < +∞ and |∇φφ| 6 N < +∞ on U , and let V b U be an open

set. Then there exists a constant L = L(N,M,U, V ) such that

|φ(A)− φ(B)|
|A−B|1/2

6 L for any A,B ∈ V.

Lemma 3.2. Let I ⊂ R2n be a bounded open rectangle and φ ∈ C1(Ī) be such

that |∇φφ| 6 N on I. Then for any rectangle J b I there exists a constant L =

L(N, ‖φ‖L∞(I), I, J) such that

|φ(A)− φ(B)|
|A−B|1/2

6 L for all A,B ∈ J. (3.25)
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Proof. Since the proof can be easily adapted to the case n = 1, we discuss only the

case n > 2. Let

K := sup
A∈I
|A| and M := ‖φ‖L∞(I),

and fix two open rectangles I ′, I ′′ such that J b I ′ b I ′′ b I.

In R2n we use the following coordinates: (y, v, t) ∈ R × R2(n−1) × R with v =

(v2, ..., vn, vn+2, ..., v2n). The point (y, v, t) ∈ R2n is also identified with (iy, v2 +

ivn+2, . . . , vn + iv2n, t) ∈ Hn.

Let W φ be the vector field in I

W φ =
∂

∂y
− 4φ

∂

∂t
,

and for a point A = (y, v, t) ∈ I ′′ let γA ∈ C1([y − ε, y + ε], I) be the solution of the

Cauchy problem γ̇A(s) = W φ(γA(s))

γA(y) = A.

By standard considerations, we may assume that ε > 0 depends only on I, I ′′, and

M . We may also assume that γA([y − ε, y + ε]) ⊂ I ′′ for all A ∈ I ′. The curve γA is

of the form γA(s) =
(
y + s, v, tA(s)

)
, where

d2

ds2
tA(s) = −4

d

ds
φ(γA(s)) = −4W φφ(γA(s)). (3.26)

Step 1. We claim that if A = (y, v, t), B = (y, v, t′) ∈ I ′′ differ only in the last

coordinate, then we have

|φ(A)− φ(B)|
|t− t′|1/2

6 δ := max

{
(2K)1/2

ε
,
2N√

3

}
. (3.27)

Without loss of generality we assume t > t′. Consider the curves γA and γB. By

(3.26), we have for s ∈ [y − ε, y + ε]

tA(s)− tB(s) = t− t′ +
∫ s

y

{
ṫA(y)− ṫB(y) +

∫ r

y

[
ẗA(σ)− ẗB(σ)

]
dσ
}
dr

= t− t′ − 4(s− y)
[
φ(A)− φ(B)

]
+

− 4

∫ s

y

∫ r

y

[
W φφ(γA(σ))−W φφ(γB(σ))

]
dσ dr

6 t− t′ − 4(s− y)
[
φ(A)− φ(B)

]
+ 4N(s− y)2.

We are going to evaluate the previous inequality at the point

s :=

{
y + (t− t′)1/2/δ, if φ(A)− φ(B) > 0,

y − (t− t′)1/2/δ, otherwise.
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Notice that γA(s) and γB(s) ∈ I are well defined because |s − y| = (t − t′)1/2/δ 6

(2K)1/2/δ 6 ε. With this choice of s we obtain

tA(s)− tB(s) 6 (t− t′)− 4
(t− t′)1/2

δ

∣∣φ(A)− φ(B)
∣∣+ 4N

t− t′

δ2

= (t− t′)
[
1− 4

δ

|φ(A)− φ(B)|
|t− t′|1/2

+
4N

δ2

]
.

Since tA(y) = t > t′ = tB(y), the uniqueness of the solutions to the Cauchy problem

implies that tA(s)− tB(s) > 0, i.e.

1− 4

δ

|φ(A)− φ(B)|
|t− t′|1/2

+
4N

δ2
> 0,

and in turn
|φ(A)− φ(B)|
|t− t′|1/2

<
δ

4

(
1 +

4N

δ2

)
6 δ,

the latter inequality following from 4N
δ2
6 3.

Step 2. Now we consider the case when A = (y, v, t) and B = (y′, v, t) are points

in I ′ differing only in the coordinate y. We will prove that

|φ(A)− φ(B)|
|y − y′|1/2

6 η := 2δ
√
M +N

√
ε,

whenever |y − y′| < ε. This will be sufficient to show that

|φ(A)− φ(B)|
|y − y′|1/2

6 ϑ = ϑ(K, η) (3.28)

for all A,B ∈ I ′ differing only in the coordinate y. Since |y − y′| < ε, the point

C := γB(y) = (y, v, t′′) is well defined and belongs to I ′′. Therefore

|φ(B)− φ(C)| =
∣∣∣∣∫ y

y′
W φφ(γB(s))ds

∣∣∣∣ 6 N |y − y′|.

Moreover, since A,C ∈ I ′′ differ only in the last coordinate, we have by (3.27)

|φ(A)− φ(C)| 6 δ|t′′ − t′|1/2 = δ

∣∣∣∣4∫ y

y′
φ(γB(s)) ds

∣∣∣∣1/2 6 2δ
√
M |y − y′|1/2.

It follows that

|φ(A)− φ(B)| 6 |φ(A)− φ(C)|+ |φ(B)− φ(C)|

6 2δ
√
M |y − y′|1/2 +N |y − y′|

6
(

2δ
√
M +N

√
ε
)
|y − y′|1/2,

as claimed.
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Step 3. Thanks to (3.27) and (3.28), for any A = (y, v, t), B = (y′, v, t′) ∈ I ′

differing only in the coordinates y, t, we have

|φ(A)− φ(B)|
|A−B|1/2

6
|φ(A)− φ(C)|
|y − y′|1/2

+
|φ(C)− φ(B)|
|t− t′|1/2

6 δ + ϑ, (3.29)

where C := (y′, v, t).

Step 4. Finally, in order to prove (3.25), let us consider two points A = (y, v, t), B =

(y′, v′, t′) ∈ J . We use the following notation. The point v = (v2, ..., vn, vn+2, ..., v2n) ∈
R2(n−1) is identified with v = (v2 + ivn+2, ..., vn + iv2n) ∈ Cn−1. Let C := (y, v′, t′′)

with t′′ = t+ 2Im(vv̄′). Notice that

C = exp
( n∑
j=2

(v′j − vj)Xj + (v′j+n − vj+n)Yj

)
(A). (3.30)

The points C and B differ only in the coordinates y, t and moreover

|t′′ − t′| 6 |t− t′|+ 2|Im((v − v′)v̄′)| 6 |t− t′|+ 2K|v − v′| 6 CK |A−B|,

where we let CK =
√

2(2K + 1). Notice that we have C ∈ I ′ provided that |v− v′| <
c = c(K, J, I ′) is sufficiently small. If this is the case, we deduce from (3.30) that

|φ(A)− φ(C)| 6 N |v − v′| 6 N |A−B| 6 N
√

2K|A−B|1/2, (3.31)

and by (3.31) and (3.29) we can conclude

|φ(A)− φ(B)|
|A−B|1/2

6
|φ(A)− φ(C)|
|A−B|1/2

+
√
CK
|φ(C)− φ(B)|
|t′′ − t′|1/2

6
√

2KN +
√
CK(δ + ϑ).

The general case, i.e. without the assumption |v−v′| < c, can be easily deduced from

the previous inequality.

�
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