SETS WITH FINITE \mathbb{H}-PERIMETER AND CONTROLLED NORMAL

ROBERTO MONTI AND DAVIDE VITTONE

Abstract

In the Heisenberg group, we prove that the boundary of sets with finite \mathbb{H}-perimeter and having a bound on the measure theoretic normal is an \mathbb{H}-Lipschitz graph. Then we show that if the normal is, on the boundary, the restriction of a continuous mapping, then the boundary is an \mathbb{H}-regular surface.

1. Introduction

We identify the Heisenberg group $\mathbb{H}^{n}, n \geqslant 1$, with $\mathbb{C}^{n} \times \mathbb{R}$. A point $p \in \mathbb{H}^{n}$ has the coordinates $p=(z, t)$ with $z=\left(z_{1}, \ldots, z_{n}\right) \in \mathbb{C}^{n}$ and $t \in \mathbb{R}$. The group law is

$$
(z, t) \cdot\left(z^{\prime}, t^{\prime}\right)=\left(z+z^{\prime}, t+t^{\prime}+2 \operatorname{Im}\left(z \bar{z}^{\prime}\right)\right)
$$

where $\operatorname{Im}\left(z \bar{z}^{\prime}\right)=\operatorname{Im}\left(z_{1} \bar{z}_{1}^{\prime}+\ldots+z_{n}^{\prime} \bar{z}_{n}^{\prime}\right)$. A basis of left-invariant horizontal vector fields is given by

$$
\begin{equation*}
X_{j}=\frac{\partial}{\partial x_{j}}+2 y_{j} \frac{\partial}{\partial t}, \quad Y_{j}=\frac{\partial}{\partial y_{j}}-2 x_{j} \frac{\partial}{\partial t}, \quad j=1, \ldots, n \tag{1.1}
\end{equation*}
$$

where $z_{j}=x_{j}+i y_{j}$. We also let $X_{j}=Y_{j-n}$ for $j=n+1, \ldots, 2 n$. The \mathbb{H}-divergence of a vector field $\psi=\left(\psi_{1}, \ldots, \psi_{2 n}\right) \in \mathbf{C}^{1}\left(\mathbb{H}^{n} ; \mathbb{R}^{2 n}\right)$ is

$$
\operatorname{div}_{\mathbb{H}} \psi=\sum_{j=1}^{2 n} X_{j} \psi_{j} .
$$

A Lebesgue measurable set $E \subset \mathbb{H}^{n}$ is of finite \mathbb{H}-perimeter in the open set $\Omega \subset \mathbb{H}^{n}$ if

$$
\sup \left\{\int_{E} \operatorname{div}_{\mathbb{H}} \psi d z d t: \psi=\left(\psi_{1}, \ldots, \psi_{2 n}\right) \in \mathbf{C}_{c}^{1}\left(\Omega ; \mathbb{R}^{2 n}\right),\|\psi\|_{\infty} \leqslant 1\right\}<+\infty
$$

Here, $d z d t$ is the Lebesgue measure element in \mathbb{H}^{n}. The structure of sets with finite \mathbb{H}-perimeter is described in the fundamental paper [6]. If E has finite \mathbb{H}-perimeter in Ω, then by Riesz' Theorem there exist a finite Borel measure $|\partial E|_{\mathbb{H}}$ in Ω and a Borel

Date: May 4, 2009.
R.M. supported by GNAMPA (MIUR, Italy), University of Padova, Mathematics Institute of Bern.
D.V. supported by GALA project of the Sixth Framework Programme of European Community, GNAMPA of MIUR (Italy) and University of Padova.
mapping $\nu_{E}: \Omega \rightarrow \mathbb{S}^{2 n-1}$, the unit sphere of $\mathbb{R}^{2 n}$, such that for any $\psi \in \mathbf{C}_{c}^{1}\left(\Omega ; \mathbb{R}^{2 n}\right)$ we have

$$
\int_{E} \operatorname{div}_{\mathbb{H}} \psi d z d t=-\int_{\Omega}\left\langle\psi, \nu_{E}\right\rangle d|\partial E|_{\mathbb{H}} .
$$

The mapping ν_{E} is called measure theoretic inward normal of E. Here and in the following, we denote by $\langle\cdot, \cdot\rangle$ the standard scalar product of $\mathbb{R}^{2 n}$ and $\mathbb{H}^{n}=\mathbb{R}^{2 n+1}$.

We are interested in the following question: which regularity for ∂E can be deduced from the regularity of the measure theoretic normal ν_{E} ? In the setting of \mathbb{R}^{n}, the continuity of the measure theoretic normal w.r.t. the classical perimeter implies the \mathbf{C}^{1} regularity of ∂E, the topological boundary of E, upon modifying E in a Lebesgue negligible set. Here, we obtain some results in the same spirit, and namely we prove that: 1) if one component of the measure theoretic normal ν_{E} is bounded away from 0 , then ∂E has an intrinsic cone property, i.e. it is the intrinsic graph of an \mathbb{H}-Lipschitz function; 2) if ν_{E} is $|\partial E|_{\mathbb{H}}$-a.e. the restriction of a continuous mapping, then ∂E is an \mathbb{H}-regular surface.

Theorems 1.1 and 1.2 below are part of a program on the regularity of \mathbb{H}-perimeter minimizing sets in \mathbb{H}^{n}. It is conjectured that the measure theoretic normal of a minimizer is continuous. Indeed, the Hölder continuity of the normal is the basic step in De Giorgi's regularity theorem for perimeter minimizing sets in \mathbb{R}^{n} (see e.g. [10]). In \mathbb{H}^{n} the problem is still open. Theorem 1.2 can be used also to prove the full result in the isoperimetric inequality in [11]. Namely, the requirement that ∂E be an \mathbb{H}-regular surface made in Theorem 3.1 of [11] can be dropped.

Let us state our results in a more precise way. Define the homogeneous norm of $p=(z, t) \in \mathbb{C}^{n} \times \mathbb{R}$ as

$$
\begin{equation*}
\|p\|=\max \left\{|z|,|t|^{1 / 2}\right\} \tag{1.2}
\end{equation*}
$$

The ball centered at $p \in \mathbb{H}^{n}$ with radius $r>0$ is denoted by $B_{r}(p)=\left\{q \in \mathbb{H}^{n}\right.$: $\left.\left\|p^{-1} \cdot q\right\|<r\right\}$. When $p=0$ we simply let $B_{r}=B_{r}(0)$.

Let $\nu \in \mathbb{S}^{2 n-1}$, i.e. $\nu \in \mathbb{R}^{2 n}$ and $|\nu|=1$. By abuse of notation, we identify $\nu=\left(\nu_{1}, \ldots, \nu_{2 n}\right) \in \mathbb{R}^{2 n}, \nu=\left(\nu_{1}+i \nu_{n+1}, \ldots, \nu_{n}+i \nu_{2 n}\right) \in \mathbb{C}^{n}$, and $\nu=(\nu, 0) \in \mathbb{H}^{n}$. Given $p \in \mathbb{H}^{n}$ we let $\nu(p)=\langle p, \nu\rangle \nu \in \mathbb{H}^{n}$ and we define $\nu^{\perp}(p) \in \mathbb{H}^{n}$ as the unique point such that

$$
\begin{equation*}
p=\nu^{\perp}(p) \cdot \nu(p) \tag{1.3}
\end{equation*}
$$

The set $\left\{q \in \mathbb{H}^{n}:\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\|<\alpha\left\|\nu\left(p^{-1} \cdot q\right)\right\|\right\}$ is an "intrinsic cone" with vertex p, opening $\alpha>0$, and axis specified by ν.

Theorem 1.1. Let $E \subset \mathbb{H}^{n}$ be a set with finite \mathbb{H}-perimeter in $B_{r}, r>0, \nu_{E}$ be the measure theoretic inward normal of E, and $\nu \in \mathbb{S}^{2 n-1}$. Assume there exists $k \in(0,1]$ such that $\left\langle\nu_{E}(p), \nu\right\rangle \leqslant-k$ for $|\partial E|_{\mathbb{H}}$-a.e. $p \in B_{r}$. Then there exists $\alpha>0$ such that,
possibly modifying E in a negligible set, we have for all $p \in \partial E \cap B_{r}$

$$
\begin{gather*}
\left\{q \in B_{r}:\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\|<-\alpha\left\langle p^{-1} \cdot q, \nu\right\rangle\right\} \subset E \tag{1.4}\\
\left\{q \in B_{r}:\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\|<\alpha\left\langle p^{-1} \cdot q, \nu\right\rangle\right\} \subset \mathbb{H}^{n} \backslash E . \tag{1.5}
\end{gather*}
$$

Here and in the following, ∂E denotes the topological boundary of E.
The proof of (1.4) is based on the following observation: if we start from a point of $E \cap B_{r}$ with positive lower density and we move for a short time along a horizontal direction near ν, then we remain in the set of positive lower density of E. We can then show that for any $p \in E \cap B_{r}$ there is a truncated lateral cone with fixed opening that is contained in E. The construction is in two steps and it is analogous to the one used in [2]. The technical estimates are in Proposition 2.2.

The intrinsic cone property (1.4) and (1.5) is equivalent to the fact that $\partial E \cap B_{r}$ is the intrinsic graph of an \mathbb{H}-Lipschitz function. This is explained in Corollary 2.1. Intrinsic Lipschitz functions have been introduced recently by Franchi, Serapioni and Serra Cassano in the setting of Carnot groups [7] (see also [3]). In the Heisenberg group there is a Rademacher-type theorem for \mathbb{H}-Lipschitz functions [8].

A set $S \subset \mathbb{H}^{n}$ is said to be an \mathbb{H}-regular surface if for any $p \in S$ there exist an open neighborhood U of p and a function $f \in \mathbf{C}_{\mathbb{H}}^{1}(U)$ such that $\nabla_{\mathbb{H}} f(p) \neq 0$ and $S \cap U=\{q \in U: f(q)=0\}$. The vector $\nabla_{\mathbb{H}} f=\left(X_{1} f, \ldots, X_{2 n} f\right)$ is called the horizontal gradient of f. Recall that,

$$
\mathbf{C}_{\mathbb{H}}^{1}(U)=\left\{f \in \mathbf{C}(U): \nabla_{\mathbb{H}} f \in \mathbf{C}\left(U ; \mathbb{R}^{2 n}\right) \text { exists in distributional sense }\right\} .
$$

Our second result is the following
Theorem 1.2. Let $E \subset \mathbb{H}^{n}$ be a set with finite \mathbb{H}-perimeter in $B_{r}, r>0$. Suppose there exists a continuous mapping $\widetilde{\nu}: B_{r} \rightarrow \mathbb{S}^{2 n-1}$ such that $\nu_{E}(p)=\widetilde{\nu}(p)$ for $|\partial E|_{\mathbb{H}^{-}}$ a.e. $p \in B_{r}$. Then, possibly modifying E in a $\mathcal{L}^{2 n+1}$-negligible set, $\partial E \cap B_{r}$ is an \mathbb{H}-regular surface.

If ν_{E} is continuous in B_{r}, then $\partial E \cap B_{r}$ is locally an intrinsic graph, i.e. we can assume there exist $\nu \in \mathbb{S}^{2 n-1}$, an open set ω contained in the orthogonal complement of ν and $\phi: \omega \rightarrow \mathbb{R}$ such that

$$
\partial E \cap B_{r}=\operatorname{gr}(\phi):=\left\{p \cdot \phi(p) \nu \in \mathbb{H}^{n}: p \in \omega\right\}
$$

The function ϕ is \mathbb{H}-Lipschitz, by Theorem 1.1. Consider the case $\nu=(1,0, \ldots, 0)$. The intrinsic gradient of ϕ is then defined as

$$
\begin{equation*}
\nabla^{\phi} \phi=\left(X_{2} \phi, \ldots, X_{n} \phi, W^{\phi} \phi, Y_{2} \phi, \ldots, Y_{n} \phi\right) \tag{1.6}
\end{equation*}
$$

This gradient has to be understood in distributional sense. Here, X_{2}, \ldots, X_{n} and Y_{2}, \ldots, Y_{n} are the restrictions of the vector fields in (1.1) to $\nu^{\perp}=\left\{p=\left(p_{1}, \ldots, p_{2 n+1}\right) \in\right.$ $\left.\mathbb{H}^{n}: p_{1}=0\right\}$, whereas $W^{\phi} \phi$ is the distribution acting on $\psi \in \mathbf{C}_{c}^{1}(\omega)$ as

$$
\left\langle W^{\phi} \phi, \psi\right\rangle=-\int_{\omega}\left(\phi \frac{\partial \psi}{\partial y_{1}}-2 \phi^{2} \frac{\partial \psi}{\partial t}\right) d \widehat{z} d t
$$

where $d \widehat{z}=d x_{2} \ldots d x_{n} d y_{1} \ldots d y_{n}$. We prove that there exist a sequence $\left(\phi_{\ell}\right)_{\ell \in \mathbb{N}}$ in $\mathbf{C}^{1}(\omega)$ and a function $w \in \mathbf{C}\left(\omega ; \mathbb{R}^{2 n-1}\right)$ such that:
i) $\phi_{\ell} \rightarrow \phi$ as $\ell \rightarrow+\infty$ locally uniformly in ω;
ii) $\nabla^{\phi_{\ell}} \phi_{\ell} \rightarrow w$ as $\ell \rightarrow+\infty$ locally uniformly in ω.

In fact, it is $\nabla^{\phi} \phi=w$ in distributional sense. By the characterization theorem for \mathbb{H}-regular surfaces in [1], it then follows that $\operatorname{gr}(\phi)=\partial E \cap B_{r}$ is an \mathbb{H}-regular surface. One technically important step in the argument is showing that the sequence $\left(\phi_{\ell}\right)_{\ell \in \mathbb{N}}$ is locally uniformly $\frac{1}{2}$-Hölder continuous. This is done in Lemma 3.2, whose proof is inspired by some ideas contained in [1] and [4].

The characterization of \mathbb{H}-regular surfaces of [1] has been generalized recently in [4] and [5]. Roughly speaking, the authors prove that, given continuous functions $\phi: \omega \rightarrow \mathbb{R}$ and $w: \omega \rightarrow \mathbb{R}^{2 n-1}$, the graph $\operatorname{gr}(\phi)$ is \mathbb{H}-regular if and only if the system of equations $\nabla^{\phi} \phi=w$ is solved in the broad* sense [4], and in distributional sense [5], respectively. In [5], the authors also give a characterization of \mathbb{H}-Lipschitz graphs. A description of \mathbb{H}-regular surfaces in terms of uniform intrinsic differentiability is given in [3].

Acknowledgments. We gratefully acknowledge the interest of F. Serra Cassano and the many stimulating discussions we had with him.

2. Sets with a bound on the normal

In this section, we prove Theorem 1.1. First notice that for $p=(z, t) \in \mathbb{H}^{n}$ and $\nu \in \mathbb{S}^{2 n-1}$, the point $\nu^{\perp}(p)$ defined through the identity (1.3) is given by

$$
\begin{equation*}
\nu^{\perp}(p)=(z-\langle z, \nu\rangle \nu, t-2\langle z, \nu\rangle \operatorname{Im}(z \bar{\nu})) . \tag{2.1}
\end{equation*}
$$

We denote by $\nu^{\perp}=\left\{p=(z, t) \in \mathbb{H}^{n}:\langle z, \nu\rangle=0\right\}$ the orthogonal complement of ν in \mathbb{H}^{n}. It is clearly $\nu^{\perp}(p) \in \nu^{\perp}$ for all $p \in \mathbb{H}^{n}$. We define the projection $\operatorname{pr}_{\nu}: \mathbb{H}^{n} \rightarrow \nu^{\perp}$ on letting $\operatorname{pr}_{\nu}(p)=\nu^{\perp}(p)$.

Proof of Theorem 1.1. Possibly modifying E in a $\mathcal{L}^{2 n+1}$-negligible set, we assume that E coincides with the set of points where E has positive lower density, and precisely

$$
\begin{equation*}
E=\left\{p \in \mathbb{H}^{n}: \liminf _{\varrho \downarrow 0} \frac{\mathcal{L}^{2 n+1}(E \cap G(p, \varrho))}{\mathcal{L}^{2 n+1}(G(p, \varrho))}>0\right\} \tag{2.2}
\end{equation*}
$$

where $G(p, \varrho)$ is the Euclidean ball centered at p having radius ϱ.

Let $\alpha>0$ be a number, depending on k, given by Proposition 2.2 below. We show that for any $p \in E$ we have

$$
\begin{equation*}
\left\{q \in B_{r}:\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\| \leqslant-\alpha\left\langle p^{-1} \cdot q, \nu\right\rangle\right\} \subset E . \tag{2.3}
\end{equation*}
$$

To this aim, consider the set of directions $\mathbb{S}_{k}^{2 n-1}=\left\{\mu \in \mathbb{S}^{2 n-1}:\langle\mu, \nu\rangle \leqslant-\sqrt{1-k^{2}}\right\}$ and the left invariant vector fields

$$
Z_{\mu}=\mu_{1} X_{1}+\ldots+\mu_{2 n} X_{2 n}, \quad \mu \in \mathbb{S}_{k}^{2 n-1}
$$

For any $\psi \in \mathbf{C}_{c}^{1}\left(B_{r}\right)$ such that $\psi \geqslant 0$ and for all $\mu \in \mathbb{S}_{k}^{2 n-1}$, we have

$$
\int_{E} Z_{\mu} \psi d p=-\int_{B_{r}} \psi\left\langle\mu, \nu_{E}\right\rangle d|\partial E|_{\mathbb{H}} \leqslant 0
$$

because $\left\langle\mu, \nu_{E}(p)\right\rangle \geqslant 0$ for $|\partial E|_{\mathbb{H}^{-}}$a.e. $p \in B_{r}$. This follows from $\langle\mu, \nu\rangle \leqslant-\sqrt{1-k^{2}}$ and $\left\langle\nu_{E}, \nu\right\rangle \leqslant-k$.

By Lemma 2.1 below, it follows that if $p \in E \cap B_{r}, s>0$ is such that $\exp s Z_{\mu}(p) \in$ B_{r}, and $\varrho>0$ is small enough, then we have

$$
\mathcal{L}^{2 n+1}\left(E \cap \exp s Z_{\mu}(G(p, \varrho))\right) \geqslant \mathcal{L}^{2 n+1}(E \cap G(p, \varrho))
$$

Also using $\mathcal{L}^{2 n+1}\left(\exp s Z_{\mu}(G(p, \varrho))\right)=\mathcal{L}^{2 n+1}(G(p, \varrho))$, we deduce that

$$
\begin{equation*}
\liminf _{\varrho \downarrow 0} \frac{\mathcal{L}^{2 n+1}\left(E \cap \exp s Z_{\mu}(G(p, \varrho))\right)}{\mathcal{L}^{2 n+1}\left(\exp s Z_{\mu}(G(p, \varrho))\right)} \geqslant \liminf _{\varrho \downarrow 0} \frac{\mathcal{L}^{2 n+1}(E \cap G(p, \varrho))}{\mathcal{L}^{2 n+1}(G(p, \varrho))}>0 \tag{2.4}
\end{equation*}
$$

This implies that the point $q=\exp s Z_{\mu}(p)$ satisfies

$$
\liminf _{\varrho \downarrow 0} \frac{\mathcal{L}^{2 n+1}(E \cap G(q, \varrho))}{\mathcal{L}^{2 n+1}(G(q, \varrho))}>0
$$

and thus $q \in E$.
Now assume that $p=0 \in E$ and define the truncated cone

$$
\begin{aligned}
A & =\left\{\exp s Z_{\mu}(0) \in B_{r}: s \geqslant 0, \mu \in \mathbb{S}_{k}^{2 n-1}\right\} \\
& =\left\{(\zeta, 0) \in \mathbb{H}^{n}:\langle\zeta, \nu\rangle \leqslant-|\zeta| \sqrt{1-k^{2}},|\zeta|<r\right\} .
\end{aligned}
$$

The previous argument shows that $A \subset E$. Now consider the three conditions in (2.7) below and define the set

$$
\begin{aligned}
B & =\left\{\exp s Z_{\mu}(\zeta, 0) \in B_{r}: s \geqslant 0, \mu \in \mathbb{S}_{k}^{2 n-1},(\zeta, 0) \in A\right\} \\
& =\left\{(z, t) \in B_{r}: \text { there is } \zeta \in \mathbb{C}^{n},|\zeta|<r, \text { such that }(2.7) \text { holds }\right\} .
\end{aligned}
$$

The previous argument proves that $B \subset E$.
By Proposition 2.2, we have $\left\{q \in B_{r}:\left\|\nu^{\perp}(q)\right\| \leqslant-\alpha\langle q, \nu\rangle\right\} \subset B$, and our claim (2.3) follows in the case $p=0$. The claim (2.3) for any $p \in E$ follows from the case $p=0$ by a left translation.

Now consider the complement $\mathbb{H}^{n} \backslash E$. We have $\nu_{\mathbb{H}^{n} \backslash E}=-\nu_{E}$ in B_{r}. We can repeat the previous argument and obtain, for any p where $\mathbb{H}^{n} \backslash E$ has positive lower density,

$$
\begin{equation*}
\left\{q \in B_{r}:\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\| \leqslant \alpha\left\langle p^{-1} \cdot q, \nu\right\rangle\right\} \subset \mathbb{H}^{n} \backslash E . \tag{2.5}
\end{equation*}
$$

In particular, (2.5) holds for any $p \in B_{r} \backslash E$ because $\mathbb{H}^{n} \backslash E$ has density 1 at such p.
Approximating a point $p \in \partial E \cap B_{r}$ with a sequence of points in $E \cap B_{r}$, from (2.3) we get (1.4). Approximating the point p with a sequence of points in $B_{r} \backslash E$, from (2.5) we get (1.5). Possibly, we have to take a smaller α.

Let $\omega \subset \nu^{\perp}$ be an open set. The intrinsic graph (along $\nu \in \mathbb{S}^{2 n-1}$) of a function $\phi: \omega \rightarrow \mathbb{R}$ is the set $\operatorname{gr}(\phi)=\left\{p \cdot \phi(p) \nu \in \mathbb{H}^{n}: p \in \omega\right\}$. The function ϕ is said to be \mathbb{H}-Lipschitz, if there exists a constant $0 \leqslant L<+\infty$ such that for all $p \in \operatorname{gr}(\phi)$

$$
\operatorname{gr}(\phi) \cap\left\{q \in \mathbb{H}^{n}:\left\|\nu\left(p^{-1} \cdot q\right)\right\|>L\left\|\nu^{\perp}\left(p^{-1} \cdot q\right)\right\|\right\}=\emptyset
$$

Corollary 2.1. Let $E \subset \mathbb{H}^{n}$ be a set with finite \mathbb{H}-perimeter in $B_{r}, r>0$, and let ν_{E} be the measure theoretic inward normal. Assume there exists $k \in(0,1]$ and $\nu \in \mathbb{S}^{2 n-1}$ such that $\left\langle\nu_{E}(p), \nu\right\rangle \leqslant-k$ for $|\partial E|_{\mathbb{H}}$-a.e. $p \in B_{r}$. Then, possibly modifying E on a $\mathcal{L}^{2 n+1}$-negligible set, the set $\partial E \cap B_{r}$ is the intrinsic graph of an \mathbb{H}-Lipschitz function.

Proof. Consider the projection $\operatorname{pr}_{\nu}: \mathbb{H}^{n} \rightarrow \nu^{\perp}$. From (2.3) it follows that the set $\operatorname{pr}_{\nu}\left(E \cap B_{r}\right)$ is open in $\operatorname{pr}_{\nu}\left(B_{r}\right)$, which is relatively open in ν^{\perp}. Consider the set

$$
\omega=\left\{p \in \operatorname{pr}_{\nu}\left(E \cap B_{r}\right): \text { there is } s \in \mathbb{R} \text { such that } \exp s Z_{\nu}(p) \in B_{r} \backslash E\right\} .
$$

From (2.3) and (2.5), it follows that ω is relatively open in $\operatorname{pr}_{\nu}\left(E \cap B_{r}\right)$, and so in ν^{\perp}. By Theorem 1.1, the function $\phi: \omega \rightarrow \mathbb{R}$

$$
\phi(p)=\sup \left\{s \in \mathbb{R}: \exp s Z_{\nu}(p) \in B_{r} \text { and } \chi_{E}\left(\exp s Z_{\nu}(p)\right)=1\right\}, \quad p \in \omega
$$

is \mathbb{H}-Lipschitz and we have $\partial E \cap B_{r}=\left\{p \cdot \phi(p) \nu \in \mathbb{H}^{n}: p \in \omega\right\}$.

Proposition 2.2. Let $k \in(0,1]$ and $n \geqslant 1$. There exists $\alpha>0$ such that for all $\nu \in \mathbb{S}^{2 n-1}, z \in \mathbb{C}^{n}$ and $t \in \mathbb{R}$ satisfying

$$
\begin{equation*}
\left\|\nu^{\perp}(z, t)\right\|=\max \left\{|z-\langle z, \nu\rangle \nu|,|t-2\langle z, \nu\rangle \operatorname{Im}(z \bar{\nu})|^{1 / 2}\right\} \leqslant-\alpha\langle z, \nu\rangle \tag{2.6}
\end{equation*}
$$

there exists $\zeta \in \mathbb{C}^{n}$ such that

$$
\begin{equation*}
\langle\zeta, \nu\rangle \leqslant-\sqrt{1-k^{2}}|\zeta|, \quad\langle z-\zeta, \nu\rangle \leqslant-\sqrt{1-k^{2}}|z-\zeta|, \quad \text { and } \quad t=2 \operatorname{Im}(\zeta \bar{z}) \tag{2.7}
\end{equation*}
$$

Proof. We prove the case $n=1$ first. Without loss of generality, we can assume that $\nu=(1,0) \in \mathbb{S}^{1}$. This can be achieved by a rotation in the plane. For $h \geqslant 0$ and $z=x+i y \in \mathbb{C}$ such that $|y| \leqslant-h x$ consider the set

$$
R_{z}(h)=\{\xi+i \eta \in \mathbb{C}:|\eta| \leqslant-h \xi \text { and }|y-\eta| \leqslant-h(x-\xi)\}
$$

For $z \neq 0$ and $h>0$, the set $R_{z}(h)$ is a parallelogram with vertices $0, z=x+i y, z_{1}$, and z_{2} where

$$
z_{1}=\frac{y+h x}{2 h}(1+i h) \quad \text { and } \quad z_{2}=\frac{h x-y}{2 h}(1-i h)
$$

The function $\varphi_{z}: R_{z}(h) \rightarrow \mathbb{R}, \varphi_{z}(\zeta)=2 \operatorname{Im}(\zeta \bar{z})$, is linear and attains the maximum and the minimum on $\partial R_{z}(h)$, and actually at z_{1} and z_{2}, respectively:

$$
\max _{R_{z}(h)} \varphi_{z}=\varphi_{z}\left(z_{1}\right)=\frac{h^{2} x^{2}-y^{2}}{h} \quad \text { and } \quad \min _{R_{z}(h)} \varphi_{z}=\varphi_{z}\left(z_{2}\right)=\frac{y^{2}-h^{2} x^{2}}{h}
$$

Consider the set

$$
D_{h}=\left\{(x+i y, t) \in \mathbb{C} \times \mathbb{R}:|y|<-h x, y^{2}-h^{2} x^{2} \leqslant h t \leqslant h^{2} x^{2}-y^{2}\right\}
$$

By continuity, φ_{z} attains all the values between the maximum and the minimum. Then, for any $(z, t) \in D_{h}$ there exists $\zeta \in R_{z}(h)$ such that $t=2 \operatorname{Im}(\zeta \bar{z})$.

Now let $\alpha>0$ be a number satisfying the following two conditions

$$
\begin{gather*}
\alpha^{2}+2 \alpha \leqslant \frac{h}{2}, \quad \text { with } h=\sqrt{\frac{k^{2}}{2-k^{2}}}, \tag{2.8}\\
\alpha^{2} \leqslant \frac{k^{2}}{2-2 k^{2}} . \tag{2.9}
\end{gather*}
$$

From now on, h is fixed depending on k by (2.8).
Let $z=x+i y \in \mathbb{C}$ and $t \in \mathbb{R}$ be such that (2.6) holds with $n=1$ and $\nu=(1,0)$, i.e.

$$
\begin{equation*}
\max \left\{|y|,|t-2 x y|^{1 / 2}\right\} \leqslant-\alpha x . \tag{2.10}
\end{equation*}
$$

We claim that $(z, t) \in D_{h}$. In fact, on the one hand it is $|y| \leqslant-\alpha x \leqslant-h x / 2$. On the other hand, (2.10) also implies

$$
\begin{equation*}
-\alpha^{2} x^{2}+2 x y \leqslant t \leqslant 2 x y+\alpha^{2} x^{2} \tag{2.11}
\end{equation*}
$$

The last inequality in (2.11) yields $t \leqslant\left(2 \alpha+\alpha^{2}\right) x^{2} \leqslant h x^{2} / 2$, by (2.8), and thus $h t+y^{2} \leqslant h^{2} x^{2}$. The estimate $h t-y^{2} \geqslant-h^{2} x^{2}$ is obtained in the same way. This proves that $(z, t) \in D_{h}$. Notice that, by the choice of h made in (2.8), $\zeta \in R_{z}(h)$ implies

$$
\begin{equation*}
\langle\zeta, \nu\rangle \leqslant-\sqrt{1-k^{2} / 2}|\zeta| \quad \text { and } \quad\langle z-\zeta, \nu\rangle \leqslant-\sqrt{1-k^{2} / 2}|z-\zeta| . \tag{2.12}
\end{equation*}
$$

Now we prove the proposition in the general case, i.e. for any $n \geqslant 2$. We reduce the general case to the case $n=1$.

Let $z \in \mathbb{C}^{n}$ be such that $z \neq 0$. We denote be π_{z} the complex line through z. With the notation $J z=i z$, this complex line is $\pi_{z}=\left\{a z+b J z \in \mathbb{C}^{n}: a, b \in \mathbb{R}\right\}$. We denote the orthogonal projection of ν onto π_{z} by

$$
\pi_{z} \nu=\frac{1}{|z|^{2}}\{\langle z, \nu\rangle z+\langle J z, \nu\rangle J z\},
$$

and we let

$$
\widehat{\nu}=\frac{\pi_{z} \nu}{\gamma}, \quad \text { with } \quad \gamma=\left|\pi_{z} \nu\right|=\frac{\sqrt{\langle z, \nu\rangle^{2}+\langle J z, \nu\rangle^{2}}}{|z|} .
$$

Notice that $\gamma \leqslant 1$. Moreover, by (2.6) we have

$$
\begin{equation*}
\gamma \geqslant \frac{|\langle z, \nu\rangle|}{|z|} \geqslant \frac{1}{\sqrt{1+\alpha^{2}}} . \tag{2.13}
\end{equation*}
$$

We show that if (z, t) satisfies (2.6) relatively to ν, then (z, \widehat{t}) with $\widehat{t}=t / \gamma^{2}$ satisfies (2.6) relatively to $\widehat{\nu}$ with the same α. In fact, on the one hand we have

$$
\begin{equation*}
|z| \leqslant-\sqrt{1+\alpha^{2}}\langle z, \nu\rangle \quad \Rightarrow \quad|z| \leqslant-\gamma \sqrt{1+\alpha^{2}}\langle z, \widehat{\nu}\rangle \leqslant-\sqrt{1+\alpha^{2}}\langle z, \widehat{\nu}\rangle \tag{2.14}
\end{equation*}
$$

implying $|z-\langle z, \widehat{\nu}\rangle \widehat{\nu}| \leqslant-\alpha\langle z, \widehat{\nu}\rangle$. Moreover, using the identity

$$
\operatorname{Im}(z \overline{\widehat{\nu}})=\frac{\langle J z, \nu\rangle \operatorname{Im}(z \overline{J z})}{\gamma|z|^{2}}=-\frac{\langle J z, \nu\rangle}{\gamma}=\frac{\operatorname{Im}(z \bar{\nu})}{\gamma}
$$

we get

$$
\begin{equation*}
|t-2\langle z, \nu\rangle \operatorname{Im}(z \bar{\nu})|^{1 / 2} \leqslant-\alpha\langle z, \nu\rangle \quad \Leftrightarrow \quad|\widehat{t}-2\langle z, \widehat{\nu}\rangle \operatorname{Im}(z \widehat{\widehat{\nu}})|^{1 / 2} \leqslant-\alpha\langle z, \widehat{\nu}\rangle . \tag{2.15}
\end{equation*}
$$

By the proof of the proposition in the $n=1$ case, there exists $\widehat{\zeta} \in \pi_{z}$ such that $\widehat{t}=2 \operatorname{Im}(\widehat{\zeta} \bar{z})$ and (2.12) holds, i.e.

$$
\begin{equation*}
\langle\widehat{\zeta}, \widehat{\nu}\rangle \leqslant-\sqrt{1-k^{2} / 2}|\widehat{\zeta}|, \quad\langle z-\widehat{\zeta}, \widehat{\nu}\rangle \leqslant-\sqrt{1-k^{2} / 2}|z-\widehat{\zeta}| . \tag{2.16}
\end{equation*}
$$

Then $\zeta=\gamma^{2} \widehat{\zeta}$ solves $t=2 \operatorname{Im}(\zeta \bar{z})$. Moreover, by (2.16), (2.13) and (2.9) we obtain

$$
\langle\zeta, \nu\rangle=\left\langle\zeta, \pi_{z} \nu\right\rangle=\gamma\langle\zeta, \widehat{\nu}\rangle \leqslant-\gamma \sqrt{1-k^{2} / 2}|\zeta| \leqslant-\frac{\sqrt{1-k^{2} / 2}}{\sqrt{1+\alpha^{2}}}|\zeta| \leqslant-\sqrt{1-k^{2}}|\zeta| .
$$

It remains to check the second inequality in (2.7). First notice that

$$
\begin{aligned}
\langle z-\zeta, \nu\rangle & =\left\langle z-\gamma^{2} \widehat{\zeta}, \nu\right\rangle=\gamma^{2}\langle z-\widehat{\zeta}, \nu\rangle+\left(1-\gamma^{2}\right)\langle z, \nu\rangle \\
& =\gamma^{3}\langle z-\widehat{\zeta}, \widehat{\nu}\rangle+\left(1-\gamma^{2}\right)\langle z, \nu\rangle .
\end{aligned}
$$

By the second inequality in (2.16), the first one in (2.14), (2.9), and the triangle inequality, we have

$$
\begin{aligned}
\langle z-\zeta, \nu\rangle & \leqslant-\gamma^{3} \sqrt{1-k^{2} / 2}|z-\widehat{\zeta}|-\left(1-\gamma^{2}\right) \frac{|z|}{\sqrt{1+\alpha^{2}}} \\
& \left.\leqslant-\frac{\sqrt{1-k^{2} / 2}}{\sqrt{1+\alpha^{2}}}\left|\gamma^{2} z-\zeta\right|-\frac{1}{\sqrt{1+\alpha^{2}}}\left|\left(1-\gamma^{2}\right) z\right|\right\} \\
& \leqslant-\sqrt{1-k^{2}}\left\{\left|\gamma^{2} z-\zeta\right|+\left|\left(1-\gamma^{2}\right) z\right|\right\} \\
& \leqslant-\sqrt{1-k^{2}}|z-\zeta|
\end{aligned}
$$

This finishes the proof of the proposition.

In the proof of Theorem 1.1, we used the following lemma.

Lemma 2.1. Let $E \subset \mathbb{H}^{n}$ be a set with finite \mathbb{H}-perimeter in $B_{r}, r>0$, and let Z be a horizontal left invariant vector field such that

$$
\begin{equation*}
\int_{E} Z \psi(p) d p \leqslant 0 \quad \text { for all } \psi \in \mathbf{C}_{c}^{1}\left(B_{r}\right) \text { with } \psi \geqslant 0 \tag{2.17}
\end{equation*}
$$

Then, for any $\mathcal{L}^{2 n+1}$-measurable set $A \subset B_{r}$ we have $\mathcal{L}^{2 n+1}(E \cap A) \leqslant \mathcal{L}^{2 n+1}(E \cap$ $\exp s Z(A))$ for all $s \geqslant 0$ such that $\exp s Z(A) \subset B_{r}$.

Proof. Without loss of generality, we can assume that $Z=X_{1}$. This can be obtained by a rotation on the space of horizontal left invariant vector fields and by multiplication with a positive scalar. The map $\Theta: \mathbb{H}^{n} \rightarrow \mathbb{H}^{n}, \Theta(q)=\exp q_{1} X_{1}\left(0, q_{2}, \ldots, q_{2 n+1}\right)$, is a global diffeomorphism. It satisfies

$$
\begin{equation*}
\operatorname{det} J \Theta(q)=1 \quad \text { and } \quad \Theta_{*}\left(\frac{\partial}{\partial q_{1}}\right)=X_{1} . \tag{2.18}
\end{equation*}
$$

Letting $F=\Theta^{-1}(E)$ and $B=\Theta^{-1}(A)$, we have

$$
\begin{equation*}
\Theta\left(s e_{1}+B\right)=\exp s X_{1}(A), \quad s \in \mathbb{R} \tag{2.19}
\end{equation*}
$$

where $e_{1}=(1,0, \ldots, 0) \in \mathbb{H}^{n}$. For a given test function $\vartheta \in \mathbf{C}_{c}^{1}\left(\Theta^{-1}\left(B_{r}\right)\right)$ with $\vartheta \geqslant 0$, define $\psi(p)=\vartheta\left(\Theta^{-1}(p)\right)$. Then, by (2.17) and (2.18), we have

$$
\begin{equation*}
\int_{F} \frac{\partial \vartheta}{\partial q_{1}}(q) d q=\int_{E} X_{1} \psi(p) d p \leqslant 0 \tag{2.20}
\end{equation*}
$$

By Fubini-Tonelli Theorem and by a standard approximation argument, from (2.20) it follows that the function $s \mapsto \chi_{F}\left(q+s e_{1}\right)$ is increasing for $\mathcal{L}^{2 n+1}$-a.e. $q \in \Theta^{-1}\left(B_{r}\right)$, as long as $q+s e_{1} \in \Theta^{-1}\left(B_{r}\right)$. Then for such an $s \geqslant 0$, we have, by Fubini-Tonelli Theorem,

$$
\begin{align*}
\mathcal{L}^{2 n+1}(F \cap B) & =\int_{\mathbb{R}^{2 n}} \int_{\mathbb{R}} \chi_{F}(q) \chi_{B}(q) d q_{1} d q_{2} \ldots d q_{2 n+1} \\
& \leqslant \int_{\mathbb{R}^{2 n}} \int_{\mathbb{R}} \chi_{F}\left(s e_{1}+q\right) \chi_{B}(q) d q_{1} d q_{2} \ldots d q_{2 n+1} \tag{2.21}\\
& =\int_{\mathbb{R}^{2 n}} \int_{\mathbb{R}} \chi_{F}(q) \chi_{s e_{1}+B}(q) d q_{1} d q_{2} \ldots d q_{2 n+1} \\
& =\mathcal{L}^{2 n+1}\left(F \cap\left(s e_{1}+B\right)\right) .
\end{align*}
$$

From (2.18), (2.19), and (2.21) we get $\mathcal{L}^{2 n+1}(E \cap A) \leqslant \mathcal{L}^{2 n+1}(E \cap \exp s Z(A))$.

3. Sets with continuous normal

Proof of Theorem 1.2. Possibly modifying E in a $\mathcal{L}^{2 n+1}$-negligible set, we can assume that E coincides with its set of positive lower density, as in (2.2). Possibly modifying ν_{E} in a $|\partial E|_{\mathbb{H}}$-negligible set, we can assume that $\nu_{E}(p)=\widetilde{\nu}(p)$ for all $p \in B_{r}$.

Let us fix a point $\bar{p} \in B_{r}$ and let $\nu=-\nu_{E}(\bar{p})$. For any $k \in(0,1)$, by the continuity of ν_{E} in B_{r} there exists $\varrho>0$ such that $\left\langle\nu_{E}(p), \nu\right\rangle \leqslant-k$ for all $p \in B_{\varrho}(\bar{p})$. By Corollary
2.1, the set $\partial E \cap B_{\varrho}(\bar{p})$, if nonempty, is the intrinsic graph of an \mathbb{H}-Lipschitz function $\phi: \omega \rightarrow \mathbb{R}$, for some bounded open set $\omega \subset \nu^{\perp}$. Denote by

$$
F:=\left\{p \cdot s \nu \in \mathbb{H}^{n}: s<\phi(p), p \in \omega\right\}
$$

the intrinsic subgraph of ϕ.
Let $U \Subset \omega$ be an open set such that $\bar{p} \in U \cdot \mathbb{R} \nu$ and, for $R>0$, consider the intrinsic cylinders

$$
\begin{aligned}
& \Omega:=\omega \cdot \mathbb{R} \nu \quad \text { and } \quad \Omega_{R}:=\omega \cdot(-R, R) \nu \\
& \Upsilon:=U \cdot \mathbb{R} \nu \quad \text { and } \quad \Upsilon_{R}:=U \cdot(-R, R) \nu .
\end{aligned}
$$

Upon a localization argument, we can assume that $\partial F \cap \Omega=\partial E \cap \Omega \cap B_{\varrho}(\bar{p})$. The normals $\nu_{F}=\nu_{E}$ are continuous on $\partial E \cap \Omega$.

Step 1: Mollification of χ_{F}. Without loss of generality, we can assume that $\nu=$ $(1,0, \ldots, 0) \in \mathbb{S}^{2 n-1}$. This can be achieved by an orthogonal transformation. Since ϕ is \mathbb{H}-Lipschitz and ω is bounded, we have $M:=\|\phi\|_{L^{\infty}(\omega)}<\infty$. Thus

$$
\begin{array}{ll}
\chi_{F}(p)=1 & \text { for any } p \in \Omega \text { with } p_{1} \leqslant-M \tag{3.1}\\
\chi_{F}(p)=0 & \text { for any } p \in \Omega \text { with } p_{1} \geqslant M
\end{array}
$$

Here, p_{1} is the first coordinate of $p=\left(p_{1}, \ldots, p_{2 n+1}\right) \in \mathbb{H}^{n}$.
For $\varepsilon>0$, consider mollification kernels $g_{\varepsilon} \in \mathbf{C}_{c}^{\infty}\left(\mathbb{H}^{n}\right)$ such that

$$
\begin{equation*}
g_{\varepsilon} \geqslant 0, \quad g_{\varepsilon}>0 \text { in } B_{\varepsilon}, \quad \operatorname{spt} g_{\varepsilon}=\bar{B}_{\varepsilon}, \quad \int_{B_{\varepsilon}} g_{\varepsilon}(p) d p=1 \tag{3.2}
\end{equation*}
$$

For $0<\varepsilon<\operatorname{dist}\left(\partial \Omega ; \Upsilon_{3 M}\right)$, we can define the functions $f_{\varepsilon}: \Upsilon_{3 M} \rightarrow[0,1]$

$$
\begin{equation*}
f_{\varepsilon}(p)=\int_{B_{\varepsilon}} g_{\varepsilon}(q) \chi_{F}\left(q^{-1} \cdot p\right) d q \tag{3.3}
\end{equation*}
$$

If $\varepsilon>0$ is sufficiently small, it follows from (3.1) that

$$
\begin{align*}
& f_{\varepsilon}(p)=1 \text { for all } p \in \Upsilon_{3 M} \text { with } p_{1} \leqslant-2 M \tag{3.4}\\
& f_{\varepsilon}(p)=0 \text { for all } p \in \Upsilon_{3 M} \text { with } p_{1} \geqslant 2 M
\end{align*}
$$

We can therefore extend f_{ε} to a smooth function defined in Υ on setting

$$
\begin{equation*}
f_{\varepsilon}(p)=1 \text { if } p_{1} \leqslant-3 M, \quad f_{\varepsilon}(p)=0 \text { if } p_{1} \geqslant 3 M \tag{3.5}
\end{equation*}
$$

Clearly, we have $\nabla_{\mathbb{H}} f_{\varepsilon}(p)=0$ if $\left|p_{1}\right| \geqslant 2 M$.
Step 2: Estimates on $\nabla_{\mathbb{H}} f_{\varepsilon}$. Let $p \in \Upsilon$ be a point such that $0<f_{\varepsilon}(p)<1$. We claim that for all small enough $\varepsilon>0$ we have

$$
\begin{equation*}
\left|\nabla_{\mathbb{H}} f_{\varepsilon}(p)\right| \leqslant \frac{1}{k}\left|X_{1} f_{\varepsilon}(p)\right| . \tag{3.6}
\end{equation*}
$$

To this aim, we study the behaviour of $X_{j} f_{\varepsilon}, j=1, \ldots, 2 n$, as a distributions acting on test functions $\varphi \in \mathbf{C}_{c}^{\infty}\left(\Upsilon_{3 M}\right)$. We have

$$
\begin{align*}
\left\langle X_{j} f_{\varepsilon}, \varphi\right\rangle & =-\int_{\Upsilon_{3 M}} f_{\varepsilon}\left(p^{\prime}\right) X_{j} \varphi\left(p^{\prime}\right) d p^{\prime} \\
& =-\int_{B_{\varepsilon}} g_{\varepsilon}(p) \int_{\Upsilon_{3 M}} \chi_{F}\left(p^{-1} \cdot p^{\prime}\right) X_{j} \varphi\left(p^{\prime}\right) d p^{\prime} d p \tag{3.7}\\
& =-\int_{B_{\varepsilon}} g_{\varepsilon}(p) \int_{p^{-1} \cdot \Upsilon_{3 M}} \chi_{F}(q) X_{j} \varphi(p \cdot q) d q d p .
\end{align*}
$$

With the notation $\varphi_{p}(q)=\varphi(p \cdot q)$, we have $X_{j} \varphi(p \cdot q)=X_{j} \varphi_{p}(q)$, because X_{j} is left invariant. Then, by an integration by parts, we obtain from (3.7)

$$
\begin{equation*}
\left\langle X_{j} f_{\varepsilon}, \varphi\right\rangle=\int_{B_{\varepsilon}} g_{\varepsilon}(p) \int_{p^{-1} \cdot \Upsilon_{3 M}} \nu_{F}^{j}(q) \varphi(p \cdot q) d|\partial F|_{\mathbb{H}}(q) d p . \tag{3.8}
\end{equation*}
$$

As φ is compactly supported in $\Upsilon_{3 M}$, for all small enough $\varepsilon>0$ we can replace the integration domain $p^{-1} \cdot \Upsilon_{3 M}$ in (3.8) with $\Upsilon_{3 M}$. By Fubini-Tonelli theorem, a change of variable, and Fubini-Tonelli theorem again, we get

$$
\begin{align*}
\left\langle X_{j} f_{\varepsilon}, \varphi\right\rangle & =\int_{\Upsilon_{3 M}} \int_{\mathbb{H}^{n}} g_{\varepsilon}(p) \nu_{F}^{j}(q) \varphi(p \cdot q) d p d|\partial F|_{\mathbb{H}}(q) \\
& =\int_{\Upsilon_{3 M}} \nu_{F}^{j}(q) \int_{\mathbb{H}^{n}} g_{\varepsilon}\left(p \cdot q^{-1}\right) \varphi(p) d p d|\partial F|_{\mathbb{H}}(q) \tag{3.9}\\
& =\int_{\mathbb{H}^{n}} \varphi(p) \int_{\Upsilon_{3 M}} g_{\varepsilon}\left(p \cdot q^{-1}\right) \nu_{F}^{j}(q) d|\partial F|_{\mathbb{H}}(q) d p .
\end{align*}
$$

This shows that for any $p \in \Upsilon_{3 M}$ and for all small enough $\varepsilon>0$ we have

$$
\begin{equation*}
X_{j} f_{\varepsilon}(p)=\int_{B_{\varepsilon}^{R}(p)} \nu_{F}^{j}(q) g_{\varepsilon}\left(p \cdot q^{-1}\right) d|\partial F|_{\mathbb{H}}(q) \tag{3.10}
\end{equation*}
$$

where, here and in the following, we let $B_{\varepsilon}^{R}(p)=B_{\varepsilon} \cdot p$.
Let $p \in \Upsilon_{3 M}$ be a point such that $0<f_{\varepsilon}(p)<1$. Then we have $\mathcal{L}^{2 n+1}\left(B_{\varepsilon}^{R}(p) \cap F\right)>$ 0 and $\mathcal{L}^{2 n+1}\left(B_{\varepsilon}^{R}(p) \backslash F\right)>0$ and the isoperimetric inequality (see [9]) implies

$$
\begin{equation*}
|\partial F|_{\mathbb{H}}\left(B_{\varepsilon}^{R}(p)\right)>0 . \tag{3.11}
\end{equation*}
$$

Let us introduce the quantity

$$
\begin{equation*}
\Delta_{\varepsilon}(p):=\int_{B_{\varepsilon}^{R}(p)} g_{\varepsilon}\left(p \cdot q^{-1}\right)|\partial F|_{\mathbb{H}}(q) \tag{3.12}
\end{equation*}
$$

By (3.11) and (3.2), we have $\Delta_{\varepsilon}(p)>0$ and from (3.10) with $j=1$ we get

$$
\begin{equation*}
X_{1} f_{\varepsilon}(p) \leqslant-k \Delta_{\varepsilon}(p) \tag{3.13}
\end{equation*}
$$

Letting $\widehat{\nabla}_{\mathbb{H}} f_{\varepsilon}:=\left(X_{2} f_{\varepsilon}, \ldots, X_{2 n} f_{\varepsilon}\right)$ and $\widehat{\nu}_{F}:=\left(\nu_{F}^{2}, \ldots, \nu_{F}^{2 n}\right)$, we have

$$
\begin{align*}
\left|\widehat{\nabla}_{\mathbb{H}} f_{\varepsilon}(p)\right| & =\left.\left|\int_{B_{\varepsilon}^{R}(p)} \widehat{\nu}_{F}(q) g_{\varepsilon}\left(p \cdot q^{-1}\right)\right| \partial F\right|_{\mathbb{H}}(q) \mid \\
& \leqslant \int_{B_{\varepsilon}^{R}(p)}\left|\widehat{\nu}_{F}(q)\right| g_{\varepsilon}\left(p \cdot q^{-1}\right)|\partial F|_{\mathbb{H}}(q) \tag{3.14}\\
& \leqslant \sqrt{1-k^{2}} \Delta_{\varepsilon}(p) .
\end{align*}
$$

Then, by (3.13) we obtain

$$
\begin{equation*}
\left|\widehat{\nabla}_{\mathbb{H}} f_{\varepsilon}(p)\right| \leqslant \sqrt{1-k^{2}} \Delta_{\varepsilon}(p) \leqslant \frac{\sqrt{1-k^{2}}}{k}\left|X_{1} f_{\varepsilon}(p)\right| . \tag{3.15}
\end{equation*}
$$

Now (3.6) follows from (3.15).
Step 3: Approximation of ϕ. Let $F_{\varepsilon}:=\left\{p \in \Upsilon: f_{\varepsilon}(p)>1 / 2\right\}$. Since $X_{1} f_{\varepsilon}(p)<0$ for any $p \in \partial F_{\varepsilon} \cap \Upsilon, F_{\varepsilon}$ is the intrinsic subgraph of a smooth function $\phi_{\varepsilon}: U \rightarrow$ $[-2 M, 2 M]$, i.e.

$$
F_{\varepsilon}=\left\{p \cdot s \nu \in \mathbb{H}^{n}: s<\phi_{\varepsilon}(p), p \in U\right\} .
$$

This follows by an Implicit Function Theorem argument as in [6, Theorem 6.5]. Recall the relation between the inner normal $\nu_{F_{\varepsilon}}=\left(\nu_{F_{\varepsilon}}^{1}, \ldots, \nu_{F_{\varepsilon}}^{2 n}\right)$ and the horizontal gradient $\nabla_{\mathbb{H}} f_{\varepsilon}$

$$
\nu_{F_{\varepsilon}}(p)=\frac{\nabla_{\mathbb{H}} f_{\varepsilon}(p)}{\left|\nabla_{\mathbb{H}} f_{\varepsilon}(p)\right|}, \quad p \in \partial F_{\varepsilon} \cap \Upsilon .
$$

By (3.6) and $X_{1} f_{\varepsilon}(p)<0$ for any $p \in \partial F_{\varepsilon} \cap \Upsilon$, we thus have

$$
\begin{equation*}
-1 \leqslant \nu_{F_{\varepsilon}}^{1}(p)=\frac{X_{1} f_{\varepsilon}(p)}{\left|\nabla_{\mathbb{H}} f_{\varepsilon}(p)\right|} \leqslant-k . \tag{3.16}
\end{equation*}
$$

By the definition of F_{ε}, we have

$$
f_{\varepsilon}-\chi_{F}>1 / 2 \text { in } F_{\varepsilon} \backslash F \quad \text { and } \quad \chi_{F}-f_{\varepsilon} \geqslant 1 / 2 \text { in } F \backslash F_{\varepsilon},
$$

and thus

$$
\int_{\Upsilon}\left|f_{\varepsilon}-\chi_{F}\right| d p \geqslant \frac{1}{2} \mathcal{L}^{2 n+1}\left(F_{\varepsilon} \Delta F\right) .
$$

Since $\lim _{\varepsilon \rightarrow 0}\left\|f_{\varepsilon}-\chi_{F}\right\|_{L^{1}(\Upsilon)}=0$ we also have $\lim _{\varepsilon \rightarrow 0}\left\|\chi_{F_{\varepsilon}}-\chi_{F}\right\|_{L^{1}(\Upsilon)}=0$. Straightforward computations show that

$$
\left\|\phi_{\varepsilon}-\phi\right\|_{L^{1}(U)}=\left\|\chi_{F_{\varepsilon}}-\chi_{F}\right\|_{L^{1}(\Upsilon)}
$$

and thus $\phi_{\varepsilon} \rightarrow \phi$ in $L^{1}(U)$.
Step 4: Local uniform convergence of ϕ_{ε}. The relation between $\nu_{F_{\varepsilon}}$, the inner normal to ∂F_{ε}, and the intrinsic gradient $\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}$ (defined as in (1.6)) is

$$
\begin{equation*}
\nu_{F_{\varepsilon}}=\left(\frac{-1}{\sqrt{1+\left|\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}\right|^{2}}}, \frac{\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}}{\sqrt{1+\left|\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}\right|^{2}}}\right) \tag{3.17}
\end{equation*}
$$

where the right hand side is evaluated at $p \in U$ and the left hand side is evaluated at $\Phi_{\varepsilon}(p)=p \cdot \phi_{\varepsilon}(p) \nu$. For this formula, see e.g. [1]. From equation (3.16), we deduce that

$$
\left|\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}\right| \leqslant \frac{\sqrt{1-k^{2}}}{k} \quad \text { in } U
$$

By Lemma 3.1, for any open set $V \Subset U$ the functions ϕ_{ε} are $\frac{1}{2}$-Hölder continuous on V with Hölder constant independent from ε. By Ascoli-Arzelà's theorem, there exists a subsequence $\left(\phi_{\varepsilon_{\ell}}\right)_{\ell \in \mathbb{N}}$ converging locally uniformly on U to ϕ. For the sake of simplicity, we omit the subscript ℓ and by $\varepsilon \rightarrow 0$ we mean $\ell \rightarrow \infty$.

Step 5: Local uniform convergence of $\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}$. Let us define the continuous map $w: \omega \rightarrow \mathbb{R}^{2 n-1}$

$$
w:=-\frac{\left(\nu_{F}^{2} \circ \Phi, \ldots, \nu_{F}^{2 n} \circ \Phi\right)}{\nu_{F}^{1} \circ \Phi}
$$

where $\Phi(p)=p \cdot \phi(p) \nu$ for $p \in \omega$. We claim that for any $V \Subset U$ we have

$$
\begin{equation*}
\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon} \rightarrow w \quad \text { in } L^{\infty}\left(V ; \mathbb{R}^{2 n-1}\right) \tag{3.18}
\end{equation*}
$$

The (locally) uniform convergence in (3.18) implies the equality $w=\nabla^{\phi} \phi$ in distributional sense in U. Then, by Theorem 5.1 in [1] the intrinsic graph of ϕ is an \mathbb{H}-regular surface and the proof is accomplished.

We prove (3.18). To this aim, let us introduce the left and right invariant homogeneous distances

$$
d^{L}(p, q)=\left\|p^{-1} \cdot q\right\| \quad \text { and } \quad d^{R}(p, q)=\left\|q \cdot p^{-1}\right\|, \quad p, q \in \mathbb{H}^{n}
$$

Both d^{L} and d^{R} satisfy the triangle inequality. Moreover, for any compact set $K \subset \mathbb{H}^{n}$ there exists a constant $C>0$ such that for all $p, q \in K$ we have

$$
\begin{equation*}
d^{R}(p, q) \leqslant C d^{L}(p, q)^{1 / 2} \quad \text { and } \quad d^{L}(p, q) \leqslant C d^{R}(p, q)^{1 / 2} \tag{3.19}
\end{equation*}
$$

Consider a modulus of continuity $\beta: \mathbb{R}_{+} \rightarrow \mathbb{R}_{+}$for ν_{F} on $\partial F \cap \Upsilon$ with respect to the metric d^{R}, i.e. $\left|\nu_{F}(p)-\nu_{F}(q)\right| \leqslant \beta\left(d^{R}(p, q)\right)$ for $p, q \in \partial F \cap \Upsilon$ and $\beta(s) \rightarrow 0$ as $s \rightarrow 0$.

Fix $\varepsilon=\varepsilon_{\ell}$ and $v \in V$. Let $p_{\varepsilon}=\Phi_{\varepsilon}(v)=v \cdot \phi_{\varepsilon}(v) \nu$ and $p=\Phi(v)=v \cdot \phi(v) \nu$. By the argument in (3.11) and (3.12), we have $\Delta_{\varepsilon}\left(p_{\varepsilon}\right)>0$. By the triangle inequality and by (3.19), we obtain for any $q \in B_{\varepsilon}^{R}\left(p_{\varepsilon}\right)$

$$
d^{R}(q, p) \leqslant d^{R}\left(q, p_{\varepsilon}\right)+d^{R}\left(p_{\varepsilon}, p\right) \leqslant d^{R}\left(q, p_{\varepsilon}\right)+C d^{L}\left(p_{\varepsilon}, p\right)^{1 / 2} \leqslant \varepsilon+C\left\|\phi_{\varepsilon}-\phi\right\|_{L^{\infty}(V)}^{1 / 2}
$$

that implies, for $q \in \partial F \cap B_{\varepsilon}^{R}\left(p_{\varepsilon}\right) \cap \Upsilon$,

$$
\left|\nu_{F}(q)-\nu_{F}(p)\right| \leqslant \beta\left(\varepsilon+C\left\|\phi_{\varepsilon}-\phi\right\|_{L^{\infty}(V)}^{1 / 2}\right)
$$

From (3.10), we thus get

$$
\begin{align*}
\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)-\nu_{F}(p) \Delta_{\varepsilon}\left(p_{\varepsilon}\right)\right| & =\left.\left|\int_{B_{\varepsilon}^{R}\left(p_{\varepsilon}\right)}\left(\nu_{F}(q)-\nu_{F}(p)\right) g_{\varepsilon}\left(p_{\varepsilon} \cdot q^{-1}\right) d\right| \partial F\right|_{\mathbb{H}}(q) \mid \tag{3.20}\\
& \leqslant \beta\left(\varepsilon+C\left\|\phi_{\varepsilon}-\phi\right\|_{L^{\infty}(V)}^{1 / 2}\right) \Delta_{\varepsilon}\left(p_{\varepsilon}\right)
\end{align*}
$$

In particular, we have

$$
\begin{equation*}
\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right|=(1+o(1)) \Delta_{\varepsilon}\left(p_{\varepsilon}\right), \tag{3.21}
\end{equation*}
$$

where $o(1) \rightarrow 0$ as $\varepsilon \rightarrow 0$ uniformly in $v \in V$, and thus

$$
\begin{equation*}
\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)-\nu_{F}(p) \Delta_{\varepsilon}\left(p_{\varepsilon}\right)\right| \leqslant 2 \beta\left(\varepsilon+C\left\|\phi_{\varepsilon}-\phi\right\|_{L^{\infty}(V)}^{1 / 2}\right)\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right| . \tag{3.22}
\end{equation*}
$$

Starting from

$$
\begin{align*}
\left|\nu_{F_{\varepsilon}}\left(p_{\varepsilon}\right)-\nu_{F}(p)\right| & =\left|\frac{\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)}{\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right|}-\nu_{F}(p)\right| \\
& \leqslant\left|\frac{\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)-\nu_{F}(p) \Delta_{\varepsilon}\left(p_{\varepsilon}\right)}{\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right|}\right|+\left|\nu_{F}(p) \frac{\Delta_{\varepsilon}\left(p_{\varepsilon}\right)-\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right|}{\left|\nabla_{\mathbb{H}} f_{\varepsilon}\left(p_{\varepsilon}\right)\right|}\right|, \tag{3.23}
\end{align*}
$$

and using (3.20), (3.21), and (3.22), we deduce that

$$
\begin{equation*}
\nu_{F_{\varepsilon}} \circ \Phi_{\varepsilon} \rightarrow \nu_{F} \circ \Phi \quad \text { as } \varepsilon \rightarrow 0 \text {, uniformly on } V \text {. } \tag{3.24}
\end{equation*}
$$

Finally, from $\nu_{F_{\varepsilon}}^{1} \leqslant-k$ and recalling (3.17), we get

$$
\nabla^{\phi_{\varepsilon}} \phi_{\varepsilon}=-\frac{\left(\nu_{F_{\varepsilon}}^{2} \circ \Phi_{\varepsilon}, \ldots, \nu_{F_{\varepsilon}}^{2 n} \circ \Phi_{\varepsilon}\right)}{\nu_{F_{\varepsilon}}^{1} \circ \Phi_{\varepsilon}} \rightarrow w \quad \text { as } \varepsilon \rightarrow 0, \text { uniformly on } V \text {. }
$$

This is our claim (3.18), and the proof of the Theorem is concluded.
The following Lemma 3.1 has been used in the proof of Theorem 1.2. It can be proved by means of Lemma 3.2 and of a standard compactness argument. In both Lemmata, we identify $\mathbb{R}^{2 n}$ with the orthogonal complement of $(1,0, \ldots, 0)$ in $\mathbb{H}^{n}=\mathbb{R}^{2 n+1}$.

Lemma 3.1. Let $U \subset \mathbb{R}^{2 n}$ be an open set and let $\phi: U \rightarrow \mathbb{R}$ be a function of class \mathbf{C}^{1} such that $|\phi| \leqslant M<+\infty$ and $\left|\nabla^{\phi} \phi\right| \leqslant N<+\infty$ on U, and let $V \Subset U$ be an open set. Then there exists a constant $L=L(N, M, U, V)$ such that

$$
\frac{|\phi(A)-\phi(B)|}{|A-B|^{1 / 2}} \leqslant L \quad \text { for any } A, B \in V
$$

Lemma 3.2. Let $I \subset \mathbb{R}^{2 n}$ be a bounded open rectangle and $\phi \in \mathbf{C}^{1}(\bar{I})$ be such that $\left|\nabla^{\phi} \phi\right| \leqslant N$ on I. Then for any rectangle $J \Subset I$ there exists a constant $L=$ $L\left(N,\|\phi\|_{L^{\infty}(I)}, I, J\right)$ such that

$$
\begin{equation*}
\frac{|\phi(A)-\phi(B)|}{|A-B|^{1 / 2}} \leqslant L \quad \text { for all } A, B \in J \tag{3.25}
\end{equation*}
$$

Proof. Since the proof can be easily adapted to the case $n=1$, we discuss only the case $n \geqslant 2$. Let

$$
K:=\sup _{A \in I}|A| \quad \text { and } \quad M:=\|\phi\|_{L^{\infty}(I)},
$$

and fix two open rectangles $I^{\prime}, I^{\prime \prime}$ such that $J \Subset I^{\prime} \Subset I^{\prime \prime} \Subset I$.
In $\mathbb{R}^{2 n}$ we use the following coordinates: $(y, v, t) \in \mathbb{R} \times \mathbb{R}^{2(n-1)} \times \mathbb{R}$ with $v=$ $\left(v_{2}, \ldots, v_{n}, v_{n+2}, \ldots, v_{2 n}\right)$. The point $(y, v, t) \in \mathbb{R}^{2 n}$ is also identified with $\left(i y, v_{2}+\right.$ $\left.i v_{n+2}, \ldots, v_{n}+i v_{2 n}, t\right) \in \mathbb{H}^{n}$.

Let W^{ϕ} be the vector field in I

$$
W^{\phi}=\frac{\partial}{\partial y}-4 \phi \frac{\partial}{\partial t},
$$

and for a point $A=(y, v, t) \in I^{\prime \prime}$ let $\gamma_{A} \in \mathbf{C}^{1}([y-\varepsilon, y+\varepsilon], I)$ be the solution of the Cauchy problem

$$
\left\{\begin{array}{l}
\dot{\gamma}_{A}(s)=W^{\phi}\left(\gamma_{A}(s)\right) \\
\gamma_{A}(y)=A
\end{array}\right.
$$

By standard considerations, we may assume that $\varepsilon>0$ depends only on $I, I^{\prime \prime}$, and M. We may also assume that $\gamma_{A}([y-\varepsilon, y+\varepsilon]) \subset I^{\prime \prime}$ for all $A \in I^{\prime}$. The curve γ_{A} is of the form $\gamma_{A}(s)=\left(y+s, v, t_{A}(s)\right)$, where

$$
\begin{equation*}
\frac{d^{2}}{d s^{2}} t_{A}(s)=-4 \frac{d}{d s} \phi\left(\gamma_{A}(s)\right)=-4 W^{\phi} \phi\left(\gamma_{A}(s)\right) \tag{3.26}
\end{equation*}
$$

Step 1. We claim that if $A=(y, v, t), B=\left(y, v, t^{\prime}\right) \in I^{\prime \prime}$ differ only in the last coordinate, then we have

$$
\begin{equation*}
\frac{|\phi(A)-\phi(B)|}{\left|t-t^{\prime}\right|^{1 / 2}} \leqslant \delta:=\max \left\{\frac{(2 K)^{1 / 2}}{\varepsilon}, \frac{2 N}{\sqrt{3}}\right\} \tag{3.27}
\end{equation*}
$$

Without loss of generality we assume $t>t^{\prime}$. Consider the curves γ_{A} and γ_{B}. By (3.26), we have for $s \in[y-\varepsilon, y+\varepsilon]$

$$
\begin{aligned}
t_{A}(s)-t_{B}(s)= & t-t^{\prime}+\int_{y}^{s}\left\{\dot{t}_{A}(y)-\dot{t}_{B}(y)+\int_{y}^{r}\left[\ddot{t}_{A}(\sigma)-\ddot{t}_{B}(\sigma)\right] d \sigma\right\} d r \\
= & t-t^{\prime}-4(s-y)[\phi(A)-\phi(B)]+ \\
& -4 \int_{y}^{s} \int_{y}^{r}\left[W^{\phi} \phi\left(\gamma_{A}(\sigma)\right)-W^{\phi} \phi\left(\gamma_{B}(\sigma)\right)\right] d \sigma d r \\
\leqslant & t-t^{\prime}-4(s-y)[\phi(A)-\phi(B)]+4 N(s-y)^{2} .
\end{aligned}
$$

We are going to evaluate the previous inequality at the point

$$
s:= \begin{cases}y+\left(t-t^{\prime}\right)^{1 / 2} / \delta, & \text { if } \phi(A)-\phi(B)>0 \\ y-\left(t-t^{\prime}\right)^{1 / 2} / \delta, & \text { otherwise }\end{cases}
$$

Notice that $\gamma_{A}(s)$ and $\gamma_{B}(s) \in I$ are well defined because $|s-y|=\left(t-t^{\prime}\right)^{1 / 2} / \delta \leqslant$ $(2 K)^{1 / 2} / \delta \leqslant \varepsilon$. With this choice of s we obtain

$$
\begin{aligned}
t_{A}(s)-t_{B}(s) & \leqslant\left(t-t^{\prime}\right)-4 \frac{\left(t-t^{\prime}\right)^{1 / 2}}{\delta}|\phi(A)-\phi(B)|+4 N \frac{t-t^{\prime}}{\delta^{2}} \\
& =\left(t-t^{\prime}\right)\left[1-\frac{4}{\delta} \frac{|\phi(A)-\phi(B)|}{\left|t-t^{\prime}\right|^{1 / 2}}+\frac{4 N}{\delta^{2}}\right]
\end{aligned}
$$

Since $t_{A}(y)=t>t^{\prime}=t_{B}(y)$, the uniqueness of the solutions to the Cauchy problem implies that $t_{A}(s)-t_{B}(s)>0$, i.e.

$$
1-\frac{4}{\delta} \frac{|\phi(A)-\phi(B)|}{\left|t-t^{\prime}\right|^{1 / 2}}+\frac{4 N}{\delta^{2}}>0
$$

and in turn

$$
\frac{|\phi(A)-\phi(B)|}{\left|t-t^{\prime}\right|^{1 / 2}}<\frac{\delta}{4}\left(1+\frac{4 N}{\delta^{2}}\right) \leqslant \delta,
$$

the latter inequality following from $\frac{4 N}{\delta^{2}} \leqslant 3$.
Step 2. Now we consider the case when $A=(y, v, t)$ and $B=\left(y^{\prime}, v, t\right)$ are points in I^{\prime} differing only in the coordinate y. We will prove that

$$
\frac{|\phi(A)-\phi(B)|}{\left|y-y^{\prime}\right|^{1 / 2}} \leqslant \eta:=2 \delta \sqrt{M}+N \sqrt{\varepsilon}
$$

whenever $\left|y-y^{\prime}\right|<\varepsilon$. This will be sufficient to show that

$$
\begin{equation*}
\frac{|\phi(A)-\phi(B)|}{\left|y-y^{\prime}\right|^{1 / 2}} \leqslant \vartheta=\vartheta(K, \eta) \tag{3.28}
\end{equation*}
$$

for all $A, B \in I^{\prime}$ differing only in the coordinate y. Since $\left|y-y^{\prime}\right|<\varepsilon$, the point $C:=\gamma_{B}(y)=\left(y, v, t^{\prime \prime}\right)$ is well defined and belongs to $I^{\prime \prime}$. Therefore

$$
|\phi(B)-\phi(C)|=\left|\int_{y^{\prime}}^{y} W^{\phi} \phi\left(\gamma_{B}(s)\right) d s\right| \leqslant N\left|y-y^{\prime}\right| .
$$

Moreover, since $A, C \in I^{\prime \prime}$ differ only in the last coordinate, we have by (3.27)

$$
|\phi(A)-\phi(C)| \leqslant \delta\left|t^{\prime \prime}-t^{\prime}\right|^{1 / 2}=\delta\left|4 \int_{y^{\prime}}^{y} \phi\left(\gamma_{B}(s)\right) d s\right|^{1 / 2} \leqslant 2 \delta \sqrt{M}\left|y-y^{\prime}\right|^{1 / 2}
$$

It follows that

$$
\begin{aligned}
|\phi(A)-\phi(B)| & \leqslant|\phi(A)-\phi(C)|+|\phi(B)-\phi(C)| \\
& \leqslant 2 \delta \sqrt{M}\left|y-y^{\prime}\right|^{1 / 2}+N\left|y-y^{\prime}\right| \\
& \leqslant(2 \delta \sqrt{M}+N \sqrt{\varepsilon})\left|y-y^{\prime}\right|^{1 / 2}
\end{aligned}
$$

as claimed.

Step 3. Thanks to (3.27) and (3.28), for any $A=(y, v, t), B=\left(y^{\prime}, v, t^{\prime}\right) \in I^{\prime}$ differing only in the coordinates y, t, we have

$$
\begin{equation*}
\frac{|\phi(A)-\phi(B)|}{|A-B|^{1 / 2}} \leqslant \frac{|\phi(A)-\phi(C)|}{\left|y-y^{\prime}\right|^{1 / 2}}+\frac{|\phi(C)-\phi(B)|}{\left|t-t^{\prime}\right|^{1 / 2}} \leqslant \delta+\vartheta \tag{3.29}
\end{equation*}
$$

where $C:=\left(y^{\prime}, v, t\right)$.
Step 4. Finally, in order to prove (3.25), let us consider two points $A=(y, v, t), B=$ $\left(y^{\prime}, v^{\prime}, t^{\prime}\right) \in J$. We use the following notation. The point $v=\left(v_{2}, \ldots, v_{n}, v_{n+2}, \ldots, v_{2 n}\right) \in$ $\mathbb{R}^{2(n-1)}$ is identified with $v=\left(v_{2}+i v_{n+2}, \ldots, v_{n}+i v_{2 n}\right) \in \mathbb{C}^{n-1}$. Let $C:=\left(y, v^{\prime}, t^{\prime \prime}\right)$ with $t^{\prime \prime}=t+2 \operatorname{Im}\left(v \bar{v}^{\prime}\right)$. Notice that

$$
\begin{equation*}
C=\exp \left(\sum_{j=2}^{n}\left(v_{j}^{\prime}-v_{j}\right) X_{j}+\left(v_{j+n}^{\prime}-v_{j+n}\right) Y_{j}\right)(A) \tag{3.30}
\end{equation*}
$$

The points C and B differ only in the coordinates y, t and moreover

$$
\left|t^{\prime \prime}-t^{\prime}\right| \leqslant\left|t-t^{\prime}\right|+2\left|\operatorname{Im}\left(\left(v-v^{\prime}\right) \bar{v}^{\prime}\right)\right| \leqslant\left|t-t^{\prime}\right|+2 K\left|v-v^{\prime}\right| \leqslant C_{K}|A-B|
$$

where we let $C_{K}=\sqrt{2}(2 K+1)$. Notice that we have $C \in I^{\prime}$ provided that $\left|v-v^{\prime}\right|<$ $c=c\left(K, J, I^{\prime}\right)$ is sufficiently small. If this is the case, we deduce from (3.30) that

$$
\begin{equation*}
|\phi(A)-\phi(C)| \leqslant N\left|v-v^{\prime}\right| \leqslant N|A-B| \leqslant N \sqrt{2 K}|A-B|^{1 / 2} \tag{3.31}
\end{equation*}
$$

and by (3.31) and (3.29) we can conclude

$$
\frac{|\phi(A)-\phi(B)|}{|A-B|^{1 / 2}} \leqslant \frac{|\phi(A)-\phi(C)|}{|A-B|^{1 / 2}}+\sqrt{C_{K}} \frac{|\phi(C)-\phi(B)|}{\left|t^{\prime \prime}-t^{\prime}\right|^{1 / 2}} \leqslant \sqrt{2 K} N+\sqrt{C_{K}}(\delta+\vartheta) .
$$

The general case, i.e. without the assumption $\left|v-v^{\prime}\right|<c$, can be easily deduced from the previous inequality.

References

[1] L. Ambrosio, F. Serra Cassano \& D. Vittone, Intrinsic regular hypersurfaces in Heisenberg groups, J. Geom. Anal. 16 (2006), no. 2, 187-232
[2] G. Arena, A. O. Caruso, R. Monti, Regularity properties of H-convex sets, Preprint 2009
[3] G. Arena, R. Serapioni, Intrinsic regular submanifolds in Heisenberg groups are differentiable graphs, Calc. Var. Partial Differential Equations 35 (2009), no. 4, 517-536
[4] F. Bigolin, F. Serra Cassano, Intrinsic regular graphs in Heisenberg groups vs. weak solutions of non linear first-order PDEs, Preprint 2008
[5] F. Bigolin, F. Serra Cassano, Distributional solutions of Burgers' equation and intrinsic regular graphs in Heisenberg groups, in preparation
[6] B. Franchi, R. Serapioni \& F. Serra Cassano, Rectifiability and perimeter in the Heisenberg group, Math. Ann. 321 (2001), 479-531
[7] Franchi, B.; Serapioni, R.; Serra Cassano, F., Intrinsic Lipschitz graphs in Heisenberg groups. J. Nonlinear Convex Anal. 7 (2006), no. 3, 423-441
[8] B. Franchi, R. Serapioni \& F. Serra Cassano, Differentiability of intrinsic Lipschitz functions within Heisenberg groups, Preprint 2008
[9] N.Garofalo \& D.M.Nhieu, Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces, Comm. Pure Appl. Math. 49 (1996), 1081-1144
[10] E. Giusti, Minimal surfaces and functions of bounded variation, Birkhäuser, Boston, 1984
[11] M. Ritoré, A proof by calibration of an isoperimetric inequality in the Heisenberg group \mathbb{H}^{n}, Preprint 2008

Roberto Monti: Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste, 63, 35121 Padova, Italy

E-mail address: monti@math.unipd.it
Davide Vittone: Dipartimento di Matematica Pura ed Applicata, Università di Padova, Via Trieste, 63, 35121 Padova, Italy

E-mail address: vittone@math.unipd.it

