SETS WITH FINITE H-PERIMETER
AND CONTROLLED NORMAL

ROBERTO MONTI AND DAVIDE VITTONE

ABSTRACT. In the Heisenberg group, we prove that the boundary of sets with finite
H-perimeter and having a bound on the measure theoretic normal is an H-Lipschitz
graph. Then we show that if the normal is, on the boundary, the restriction of a

continuous mapping, then the boundary is an H-regular surface.

1. INTRODUCTION

We identify the Heisenberg group H", n > 1, with C" x R. A point p € H" has the
coordinates p = (z,t) with z = (z1, ..., z,) € C" and t € R. The group law is

(z,8) - (2, t) = (2 4+ 2/, t + ¢/ + 2Im(27")),

where Im(22’) = Im(z, 2] + ...+ 2, Z),). A basis of left-invariant horizontal vector fields
is given by
0 0 0 0

Xi=—+4+2y—, Y, =——22,— =1,.. 1.1
J 81'J+ y]8t7 J ay] I]at’ .] ) ’n’ ( )

where z; = x; +1y;. We also let X; =Y]_, for j =n+1,...,2n. The H-divergence of
a vector field ¥ = (11, ..., 9,) € CH{H"; R*") is

2n
divgy) = > Xj;.
j=1

A Lebesgue measurable set £ C H" is of finite H-perimeter in the open set 2 C H"
if

sup{/EdiVdezdt c ) = (Y1, .., o) € Ci(Q;RQn)7 100 < 1} < 4oo.

Here, dzdt is the Lebesgue measure element in H"”. The structure of sets with finite
H-perimeter is described in the fundamental paper [6]. If E has finite H-perimeter in

€2, then by Riesz’ Theorem there exist a finite Borel measure |0E|y in €2 and a Borel
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mapping vg : Q — S**~1 the unit sphere of R?", such that for any ¢ € C(Q; R*?)

we have
/diVdezdt— —/(z/J,uE>d|8E\H.
E 0

The mapping vg is called measure theoretic inward normal of E. Here and in the
following, we denote by (-, -) the standard scalar product of R** and H" = R***1,

We are interested in the following question: which regularity for OF can be deduced
from the regularity of the measure theoretic normal vg? In the setting of R”, the
continuity of the measure theoretic normal w.r.t. the classical perimeter implies the
C! regularity of OF, the topological boundary of E, upon modifying £ in a Lebesgue
negligible set. Here, we obtain some results in the same spirit, and namely we prove
that: 1) if one component of the measure theoretic normal vy is bounded away from 0,
then OF has an intrinsic cone property, i.e. it is the intrinsic graph of an H-Lipschitz
function; 2) if vg is |0F|g-a.e. the restriction of a continuous mapping, then JF is an
H-regular surface.

Theorems 1.1 and 1.2 below are part of a program on the regularity of H-perimeter
minimizing sets in H". It is conjectured that the measure theoretic normal of a
minimizer is continuous. Indeed, the Holder continuity of the normal is the basic step
in De Giorgi’s regularity theorem for perimeter minimizing sets in R™ (see e.g. [10]).
In H" the problem is still open. Theorem 1.2 can be used also to prove the full
result in the isoperimetric inequality in [11]. Namely, the requirement that OE be an
H-regular surface made in Theorem 3.1 of [11] can be dropped.

Let us state our results in a more precise way. Define the homogeneous norm of
p=(z,t) €C"xRas

Ipll = max{]=], £]*/*}. (1.2)

The ball centered at p € H" with radius r > 0 is denoted by B,(p) = {¢ € H" :
lp~ - q|| <7}. When p =0 we simply let B, = B,(0).

Let v € $?"7! ie. v € R*™ and |v| = 1. By abuse of notation, we identify
v=(vi,...v) € R v = (V) + iUpi1, ..., Un + il2,) € C", and v = (v,0) € H".
Given p € H" we let v(p) = (p,v)v € H" and we define v*(p) € H" as the unique
point such that

p=v"(p)-v(p). (1.3)

The set {g € H" : |lv-(p" - ¢)|| < allv(p™ - ¢)||} is an “intrinsic cone” with vertex
p, opening o > 0, and axis specified by v.

Theorem 1.1. Let E C H" be a set with finite H-perimeter in B,, r > 0, vg be the
measure theoretic inward normal of E, and v € S*"7'. Assume there exists k € (0, 1]
such that (vg(p),v) < —k for |0E|g-a.e. p € B,. Then there ezists o > 0 such that,
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possibly modifying E in a negligible set, we have for all p € OFE N B,

{aeB, v 9l <—alp™ - qu}CE (1.4)

[geB, V' 9l <alp™ q.v)} CH'\E. (1.5)

Here and in the following, 0F denotes the topological boundary of E.

The proof of (1.4) is based on the following observation: if we start from a point of
E N B, with positive lower density and we move for a short time along a horizontal
direction near v, then we remain in the set of positive lower density of E. We can
then show that for any p € N B, there is a truncated lateral cone with fixed opening
that is contained in E. The construction is in two steps and it is analogous to the
one used in [2]. The technical estimates are in Proposition 2.2.

The intrinsic cone property (1.4) and (1.5) is equivalent to the fact that 0E N B,
is the intrinsic graph of an H-Lipschitz function. This is explained in Corollary 2.1.
Intrinsic Lipschitz functions have been introduced recently by Franchi, Serapioni and
Serra Cassano in the setting of Carnot groups [7] (see also [3]). In the Heisenberg
group there is a Rademacher-type theorem for H-Lipschitz functions [8].

A set S C H" is said to be an H-regular surface if for any p € S there exist an
open neighborhood U of p and a function f € Cg(U) such that Vigf(p) # 0 and
SNU = {q e U: flqg = 0}. The vector Vigf = (le,...,Xgnf) is called the
horizontal gradient of f. Recall that,

Cu(U)={f € CU) : Viuf € C(U;R*™) exists in distributional sense}.
Our second result is the following

Theorem 1.2. Let E C H" be a set with finite H-perimeter in B,., r > 0. Suppose
there exists a continuous mapping U : B, — S*~1 such that vg(p) = v(p) for |OE|x-
a.e. p € B,.. Then, possibly modifying E in a L* T -negligible set, OE N B, is an

H-regular surface.

If vg is continuous in B,., then OFN B, is locally an intrinsic graph, i.e. we can assume
there exist v € S**!, an open set w contained in the orthogonal complement of v
and ¢ : w — R such that

OEN B, =gr(¢) :=={p-¢p(p)v e H" : p € w}.

The function ¢ is H-Lipschitz, by Theorem 1.1. Consider the case v = (1,0,...,0).
The intrinsic gradient of ¢ is then defined as

v¢¢ = (X2¢7 R 7Xn¢7 W¢¢7 Yv2¢7 <. 7Yn¢> (16)
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This gradient has to be understood in distributional sense. Here, X5, ..., X, and
Ys, ..., Y, are the restrictions of the vector fields in (1.1) to vt = {p = (p1, .-y P2nt1) €
H" : p; = 0}, whereas W?%¢ is the distribution acting on ¢ € Cl(w) as

<WW¢¢O=—1A( %%—2&%%)&&,

where dz = dxs...dx,dy; ...dy,. We prove that there exist a sequence (¢y)pen in
C!(w) and a function w € C(w; R*~1) such that:

i) ¢y — ¢ as { — +oo locally uniformly in w;

ii) V?¢, — w as £ — +oo locally uniformly in w.

In fact, it is V?¢ = w in distributional sense. By the characterization theorem for
H-regular surfaces in [1], it then follows that gr(¢) = OE'N B, is an H-regular surface.
One technically important step in the argument is showing that the sequence (¢y)sen
is locally uniformly %—Hb’lder continuous. This is done in Lemma 3.2, whose proof is
inspired by some ideas contained in [1] and [4].

The characterization of H-regular surfaces of [1] has been generalized recently in
[4] and [5]. Roughly speaking, the authors prove that, given continuous functions
¢:w— Rand w:w — R*! the graph gr(¢) is H-regular if and only if the system
of equations V?¢ = w is solved in the broad* sense [4], and in distributional sense [5],
respectively. In [5], the authors also give a characterization of H-Lipschitz graphs. A
description of H-regular surfaces in terms of uniform intrinsic differentiability is given
in [3].

Acknowledgments. We gratefully acknowledge the interest of F. Serra Cassano and
the many stimulating discussions we had with him.

2. SETS WITH A BOUND ON THE NORMAL

In this section, we prove Theorem 1.1. First notice that for p = (z,¢) € H" and
v € S ! the point v (p) defined through the identity (1.3) is given by

v(p) = (z — (z,v)v, t — 2(z,v)Im(20)). (2.1)

We denote by v+ = {p = (z,t) € H" : (2,v) = 0} the orthogonal complement of v in
H"™. Tt is clearly v*(p) € vt for all p € H*. We define the projection pr, : H* — v+
on letting pr,(p) = v*(p).

Proof of Theorem 1.1. Possibly modifying £ in a £2"*1-negligible set, we assume that
E coincides with the set of points where E has positive lower density, and precisely

L7 ENG(p, o))
aee)

where G(p, o) is the Euclidean ball centered at p having radius p.

(2.2)

E = {p € H" : liminf
0l0
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Let @ > 0 be a number, depending on k, given by Proposition 2.2 below. We show
that for any p € E we have

{q €EB, : vrp Q)| < —alp g, 1/}} C E. (2.3)

To this aim, consider the set of directions ;" = {p € S~ : (u,v) < —V1 —k?}

and the left invariant vector fields
Z# = ,u1X1 + ...+ MQnXQn, n e Sin_l.

For any ¢ € CL(B,) such that ¢ > 0 and for all u € S7"!, we have
[ zwdn=— [ wtwvsyaorr <o
B B,

because (i, vp(p)) = 0 for |0E|g-a.e. p € B,. This follows from (i1,v) < —/1 — k2
and (vg,v) < —k.

By Lemma 2.1 below, it follows that if p € EN B,, s > 0 is such that exp sZ,(p) €
B,, and o > 0 is small enough, then we have

L2 E Nexp sZ,(G(p, o) = L THENG(p,0)).
Also using £ (exp sZ,(G(p, 0))) = L2 (G(p, 0)), we deduce that

LT ENexpsZu(Gp,0) Ly LTHENG(R, 0)
1 f " ’ >1 f ’
Y0 T L (expsZ,(Glp. o) el L2(G(p, o))

> 0. (2.4)

This implies that the point ¢ = exp sZ,,(p) satisfies

.. LTHENG(q,0))
1 f !
Y0 T L (G(g, 0))

> 0,

and thus g € FE.

Now assume that p =0 € E and define the truncated cone

A={expsZ,(0)€B, : s>0, peS"}
= {(Ca()) e H" : <C7V> < _‘C| v 1 _kZﬂ ’C’ < T}'
The previous argument shows that A C E. Now consider the three conditions in (2.7)
below and define the set
B={expsZ,((,0)€B,:s>0, peS;" " (¢,0) €A}
= {(z,t) € B, : there is ¢ € C", || < r, such that (2.7) holds}.

The previous argument proves that B C E.

By Proposition 2.2, we have {q € B, : [[v*(q)|| < —a{g,v)} C B, and our claim

(2.3) follows in the case p = 0. The claim (2.3) for any p € E follows from the case
p = 0 by a left translation.
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Now consider the complement H"\ E. We have vgm\g = —Vg in B,. We can repeat
the previous argument and obtain, for any p where H"\ E has positive lower density,

{q € B, : HuL(p_l Q)] € « (p_l - q, 1/)} CH"\ E. (2.5)

In particular, (2.5) holds for any p € B, \ E because H" \ E has density 1 at such p.

Approximating a point p € 9F N B, with a sequence of points in £ N B, from (2.3)
we get (1.4). Approximating the point p with a sequence of points in B, \ E, from
(2.5) we get (1.5). Possibly, we have to take a smaller a. O

Let w C v+ be an open set. The intrinsic graph (along v € S?"~1) of a function
¢ :w — Ris the set gr(¢) = {p- ¢(p)v € H" : p € w}. The function ¢ is said to be
H-Lipschitz, if there exists a constant 0 < L < +oo such that for all p € gr(¢)

gr(p)N{g e H" : v~ - gl > LIv*(p~" - g)lI} = 0.

Corollary 2.1. Let E C H" be a set with finite H-perimeter in B,, r > 0, and let vg
be the measure theoretic inward normal. Assume there exists k € (0,1] and v € $**!
such that (vg(p),v) < —k for |0E|g-a.e. p € B,. Then, possibly modifying E on a
L2 _negligible set, the set OE N B, is the intrinsic graph of an H-Lipschitz function.

Proof. Consider the projection pr, : H* — v+. From (2.3) it follows that the set
pr,(E N B,) is open in pr,(B,), which is relatively open in v*. Consider the set

w = {p € pr,(EN B,) : there is s € R such that exp sZ,(p) € B, \ E}.

From (2.3) and (2.5), it follows that w is relatively open in pr,(E'N B,), and so in v+.
By Theorem 1.1, the function ¢ : w — R
¢(p) = sup {s €R:expsZ,(p) € B, and yg(expsZ,(p)) = 1}, pE w,
is H-Lipschitz and we have 9EN B, = {p- ¢p(p)v € H" : p € w}.
0

Proposition 2.2. Let k € (0,1] and n > 1. There ezists o > 0 such that for all
veS™ 1l 2eC" andt € R satisfying

[ (2, )] = max {|z — (z,v)v], |t — 2(z, u)Im(zD)\l/Z} < —afz,v), (2.6)
there exists ¢ € C" such that
(C,v) < —V1—=F(|, (z—Cv)y<—V1I—Fk?z—], and t=2Im(Cz). (2.7)

Proof. We prove the case n = 1 first. Without loss of generality, we can assume that
v = (1,0) € S'. This can be achieved by a rotation in the plane. For h > 0 and
z =z + 1y € C such that |y| < —hax consider the set

R.(h)={¢+ineC:|n < —hfand |y —n| < —h(z—&)}.
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For z # 0 and h > 0, the set R,(h) is a parallelogram with vertices 0, z = = + iy, 21,

and z, where
y+ hx hx —y

2h 2h
The function ¢, : R.(h) — R, ¢.(¢) = 2Im((Z2), is linear and attains the maximum

(14¢h) and 29 = (1 —ih).

21 =

and the minimum on OR,(h), and actually at z; and z, respectively:

h222 — 42 2 _ p2,2
maxp, = ¢.(51) = ——2 and  min . = p.(z) = L
R.(h) h R-(h) h

Consider the set
Dy = {@‘*‘@%ﬂ e CxR: |yl < —haz, 2 — W22 < ht < h2a? _yQ}.

By continuity, ¢, attains all the values between the maximum and the minimum.
Then, for any (z,t) € D), there exists ( € R,(h) such that t = 2Im((Z2).
Now let o > 0 be a number satisfying the following two conditions

oﬂ+2@<ﬁ with h = 4/ i (2.8)
S 2 oV 2—kY '

2 k?
< —.
C ST
From now on, h is fixed depending on k by (2.8).
Let z = x 4+ iy € C and ¢t € R be such that (2.6) holds with n = 1 and v = (1,0),

1.e.

(2.9)

max{|y|, [t — 2zy|"?} < —aw. (2.10)

We claim that (z,t) € Dj. In fact, on the one hand it is |y| < —az < —hz/2. On
the other hand, (2.10) also implies

—a?z? 4 2zy < t < 2y + o’ (2.11)

The last inequality in (2.11) yields ¢ < (2a + a?)z? < hz?/2, by (2.8), and thus
ht + y?> < h?2z%. The estimate ht — y* > —h?z? is obtained in the same way. This
proves that (z,t) € D,. Notice that, by the choice of h made in (2.8), ( € R,(h)

implies
vy < —v/1—Fk2/2|¢| and (z—(,v) < —1—-Fk?/2]|z—(|. (2.12)

Now we prove the proposition in the general case, i.e. for any n > 2. We reduce
the general case to the case n = 1.

Let z € C" be such that z # 0. We denote be 7, the complex line through z. With
the notation Jz = iz, this complex line is 7, = {az + bJz € C" : a,b € R}. We
denote the orthogonal projection of v onto m, by

1
TV = W{(z, Wz + (Jz,v)Jz},
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and we let

TV

\/<z, )2+ (Jz, V>2.

D=
2|

. with vy =|mv| =

Notice that v < 1. Moreover, by (2.6) we have
el 1
2l T VI+a?
We show that if (z,t) satisfies (2.6) relatively to v, then (z,1) with t = t /4? satisfies
(2.6) relatively to 7 with the same «. In fact, on the one hand we have
2| < —V1+2(z,v) = |z2| < —VI+a2(z0) < —VI+a2(z,7)  (2.14)
implying |z — (z,7)V| < —a(z, 7). Moreover, using the identity
(Jz,v)Im(zJ2) (Jz,v)  Im(zp)
WP Ty Ty

(2.13)

Im(20) =

we get
It —2(z, ) Im(20)|Y? < —a(z,v) & [t —2(z,0)Im(z0)|"? < —a(z, D). (2.15)

By the proof of the proposition in the n = 1 case, there exists Z € m, such that
t = 2Im(¢Z) and (2.12) holds, i.e.

—V1=k/2[0), (z=C0) < —1-k2/2]z (). (2.16)
Then ¢ = 72 solves ¢ = 2Im(¢z). Moreover, by (2.16), (2.13) and (2.9) we obtain

(62} = (6 m) = 6.9 < /T 72K < ~ L =22 < —vI= Rl

It remains to check the second inequality in (2.7). First notice that
(z=Cv)=(z=7Cr) =7z = Cv) + (1= 7)(zv)
- 73<Z - C7§> + (1 - 72)<Z7V>'
By the second inequality in (2.16), the first one in (2.14), (2.9), and the triangle
inequality, we have

(z = Cv) < =7’ V1 - k2/2]z — —72)\/%
1—k2/2
é—WW%—Q \/7| 7*)zl}
< V1= {2 = ¢ +](1 —~?)z]}
<—V1I—k|z— (|

This finishes the proof of the proposition.

In the proof of Theorem 1.1, we used the following lemma.
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Lemma 2.1. Let E C H" be a set with finite H-perimeter in B,., r > 0, and let Z be

a horizontal left invariant vector field such that

/ Z(p)dp <0 for all b € CL(B,) with ¢ > 0. (2.17)

Then, for any L>"T'-measurable set A C B, we have L*THE N A) < L2TH(E N
exp sZ(A)) for all s > 0 such that exp sZ(A) C B,.

Proof. Without loss of generality, we can assume that Z = X;. This can be obtained
by a rotation on the space of horizontal left invariant vector fields and by multiplica-
tion with a positive scalar. The map © : H" — H", ©(q) = exp ¢1.X1(0, g2, -, ¢2n+1),
is a global diffeomorphism. It satisfies

det JO(q) =1 and O, (ai ) — X, (2.18)
1

Letting F = ©7(E) and B = ©7!(A), we have

O(se; + B) = expsXi(A), seR, (2.19)
where e; = (1,0, ...,0) € H". For a given test function ¥ € CL(©71(B,)) with ¥ > 0,
define ¥ (p) = 19(@ 1(p)). Then, by (2.17) and (2.18), we have

q)dg= [ Xy 2.2
6q1 q/1 )dp < (2.20)

By Fubini-Tonelli Theorem and by a standard approximation argument, from (2.20)
it follows that the function s — Y r(q + se;) is increasing for £L**1-a.e. ¢ € ©71(B,),
as long as ¢ + se; € ©71(B,). Then for such an s > 0, we have, by Fubini-Tonelli
Theorem,

£2n+1(F M B) = / / XF(Q)XB(Q)dQ1 dgs . .. dQ2n+1
R2n JR

</ /XF(361+Q)XB(Q)dQl dgs . .. dgons1
r2n JR (2.21)

= / / XF (@) Xser+B(q)dqr dg - . . dgania
R2" JR
= L2T(F N (se; + B)).
From (2.18), (2.19), and (2.21) we get L* " (EN A) < L (ENexpsZ(A)). O

3. SETS WITH CONTINUOUS NORMAL

Proof of Theorem 1.2. Possibly modifying E in a £2"*!-negligible set, we can assume
that F coincides with its set of positive lower density, as in (2.2). Possibly modifying
vg in a |0E|g-negligible set, we can assume that vg(p) = v(p) for all p € B,.

Let us fix a point p € B, and let v = —vg(p). For any k € (0, 1), by the continuity of
vg in B, there exists o > 0 such that (vg(p),v) < —k for all p € B,(p). By Corollary
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2.1, the set OE N B,(p), if nonempty, is the intrinsic graph of an H-Lipschitz function
¢ : w — R, for some bounded open set w C v*. Denote by

F::{p-syeH” : s<¢(p),p€w}

the intrinsic subgraph of ¢.
Let U € w be an open set such that p € U-Rv and, for R > 0, consider the intrinsic
cylinders

Q:=w-Rry and Qp:=w-(—R,R)y,
YT:=U-Rv and Ygr:=U-(—R,R)v.
Upon a localization argument, we can assume that 0F NQ = 0E N QN B,(p). The

normals vy = vg are continuous on OF N €.

Step 1: Mollification of xr. Without loss of generality, we can assume that v =
(1,0,...,0) € S*~1. This can be achieved by an orthogonal transformation. Since ¢
is H-Lipschitz and w is bounded, we have M := ||¢|| () < 0o. Thus

1 for any p € Q with p; < —M,
0 for any p € Q with p; > M.

xr(p)

xr(p) (3.1

Here, p; is the first coordinate of p = (py, ..., pani1) € H™.
For £ > 0, consider mollification kernels g. € C(H") such that

g- =20, g.>0in B., sptg. = B, / g-(p) dp = 1. (3.2)
For 0 < e < dist(0€; Y3ar), we can define the functions f. : Tsp — [0, 1]

fip) = / g (@)xr(a - p)da. (3.3)

£

If £ > 0 is sufficiently small, it follows from (3.1) that

fe(p) =1 for all p € T3y, with p; < —2M

<
N ’ 3.4
fe(p) =0 for all p € T3y, with p; > 2M. (3.4)

We can therefore extend f. to a smooth function defined in T on setting
fs(p)zlifpl < —3M, fa(p) =0if py > 3M. (35)
Clearly, we have Vg f.(p) =0 if |p1| > 2M.

Step 2: Estimates on Vyf.. Let p € T be a point such that 0 < f.(p) < 1. We
claim that for all small enough € > 0 we have

Viefto)| < 71X 7)) (36)
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To this aim, we study the behaviour of X, f., 7 = 1,...,2n, as a distributions acting
on test functions ¢ € C°(Y3pr). We have

(Xjfe,0) = — f-(0") X0(p") dp’

REYYS

_ / 0:(p) / et 0 X;0() dp dp (3.7)
:—/ gs(p)/l_T xr(q)X;0(p - q) dq dp.

With the notation ¢,(¢) = ¢(p - q), we have X,;p(p- q) = X;p,(q), because X; is left
invariant. Then, by an integration by parts, we obtain from (3.7)

<Xjf6790>—/ ge(p)/_w( vh(q)e(p - ) d|OF |u(q) dp. (3.8)

As ¢ is compactly supported in Ys3p;, for all small enough € > 0 we can replace the
integration domain p~!- Y3, in (3.8) with T3,,. By Fubini-Tonelli theorem, a change
of variable, and Fubini-Tonelli theorem again, we get

Koo = [ [ atmi@et- o dpdoFis)
= [ vt [ oo e dpaiorito) 3.9)
= /nw(p) /TSM 9:(p- ¢ "wi(q) d|OF |ia(q) dp.
This shows that for any p € T3), and for all small enough € > 0 we have
X0 = [ vh@a a7 doFlaa) (3.10)
BE(p)

where, here and in the following, we let BX(p) = B. - p.
Let p € T3 be a point such that 0 < f.(p) < 1. Then we have £>"*1(BE(p)NF) >
0 and £ (BE(p) \ F) > 0 and the isoperimetric inequality (see [9]) implies

OF|(BR(p) > 0. (3.11)
Let us introduce the quantity
o) = [ gl )I0FIa(o) (312
BE(p)
By (3.11) and (3.2), we have A.(p) > 0 and from (3.10) with j = 1 we get

X1f(p) < =k Ac(p). (3.13)
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Letting @Hfa = (Xofe, ..., Xonf:) and U := (v%, ..., v2"), we have

Far =| [ #r@tp-a) 0F1(0)
< / Pe(0) - (0 4) [0F s (a) (3.14)
BL(p)

<V1—k2A(p).
Then, by (3.13) we obtain

V1 —k?

Vaafo(p)| < VI=RPA(p) <

Now (3.6) follows from (3.15).

[ X1f(p)]- (3.15)

Step 3: Approximation of ¢. Let F.:={p € T : f.(p) > 1/2}. Since X;f.(p) <0
for any p € OF. NY, F, is the intrinsic subgraph of a smooth function ¢. : U —
[—2M, 2M], i.e.

Fo={p-svel":s<¢p),peU}.

This follows by an Implicit Function Theorem argument as in [6, Theorem 6.5]. Recall
the relation between the inner normal vp, = (vj,, ..., v3") and the horizontal gradient
VHf €
VHf € (p)
VE\P) = 7o 7710
) Rt )
By (3.6) and X f.(p) < 0 for any p € F. N T, we thus have

—1< v (p) = Afelp) —k. (3.16)

|va6<p)| h

peIF.NT.

By the definition of F., we have
fe=xrp>1/2in F,\F and xp—f.>1/21in F\ F,
and thus |
/ |f- — xrldp = 552”+1(F8AF).
T

Since lim._o || f: = Xr|lz1(r) = 0 we also have lim._¢ ||[xr. — xr#|/z1(r) = 0. Straight-
forward computations show that

¢ = Ol ) = lIxr. = xpllren),
and thus ¢. — ¢ in L' (U).

Step 4: Local uniform convergence of ¢.. The relation between vg , the inner
normal to OF., and the intrinsic gradient V¢, (defined as in (1.6)) is

-1 Voo,
= ) ; 3.17
VR, (\/1 T+ |v¢5¢6|2 \/1+ |v¢5¢6|2> ( )
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where the right hand side is evaluated at p € U and the left hand side is evaluated
at ®.(p) = p- ¢-(p)v. For this formula, see e.g. [1]. From equation (3.16), we deduce
that

1 — k2

(V9. | < —— I U.

By Lemma 3.1, for any open set V' @ U the functions ¢. are %—Hélder continuous
on V with Holder constant independent from . By Ascoli-Arzela’s theorem, there
exists a subsequence (¢, )seny converging locally uniformly on U to ¢. For the sake of

simplicity, we omit the subscript ¢ and by ¢ — 0 we mean ¢ — oc.

Step 5: Local uniform convergence of V% ¢.. Let us define the continuous map
w:w— RL
(y%oé,...,u%”oé)

W= —
1 )
vipo®

where ®(p) = p- ¢(p)v for p € w. We claim that for any V' € U we have
V%¢. —w in L®(V;R*™1). (3.18)

The (locally) uniform convergence in (3.18) implies the equality w = V?¢ in distribu-
tional sense in U. Then, by Theorem 5.1 in [1] the intrinsic graph of ¢ is an H-regular
surface and the proof is accomplished.

We prove (3.18). To this aim, let us introduce the left and right invariant homoge-

neous distances

d"(p,q) =|lp~" ¢l and d¥p,q)=|lg-p ", p.q€H"

Both d* and d* satisfy the triangle inequality. Moreover, for any compact set K C H"
there exists a constant C' > 0 such that for all p,q € K we have

d"(p,q) < Cd"(p,q)'* and d"(p,q) < Cd"(p,q)">. (3.19)

Consider a modulus of continuity 5 : Ry — R, for vp on F N'Y with respect to the
metric d%, i.e. |[vp(p) —vr(q)| < B(dE(p, q)) for p,q € OFNY and B(s) — 0 as s — 0.

Fixe=¢,and v € V. Let p. = &.(v) = v- ¢ (v)v and p = ®(v) = v - p(v)v. By
the argument in (3.11) and (3.12), we have A.(p.) > 0. By the triangle inequality
and by (3.19), we obtain for any q € BZ(p,)

d*(q,p) < d"(q,p) + d"(p..p) < d"(q,p.) + Cd"(p.,p)/* < £ + Cllg. — 0] /2 1,
that implies, for ¢ € 9F N BE(p.) N 7T,

vr(q) = ve(p)| < B(e + Cllge — 3llF2 )
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From (3.10), we thus get

‘VHfg(ps) - VF<p)Ae(pe)| =

f (@) = o)l 9P

(3.20)
< Ble+ Cllo- — o112 ) Aalpe)
In particular, we have
|VHfs(p€)’ = (1 + O<1))A€<p8)7 (321>
where o(1) — 0 as € — 0 uniformly in v € V, and thus
Vi folpe) = ve(0)Ac(p2)| < 28(c + Cllg- — 6lI2 ) [Viafe(p)]- (3.22)
Starting from
V]HIfe(I)s) ‘
Vr.\Pe) —VF\D)| = 7o _ 7 /..y — Vr\P
‘vae(ps) - VF(p>As(ps) + VF(p) Az—:(pe) - |VIHIfs(p€>|
|vas(p€)‘ |va€(pe)‘ ’
(3.23)
and using (3.20), (3.21), and (3.22), we deduce that
vp.o®. —vpod as ¢ — 0, uniformly on V. (3.24)
Finally, from v, < —k and recalling (3.17), we get
.,...,v 0P, _
V¢, = — (VFE ° : UF ° ) — w as ¢ — 0, uniformly on V.
vy, o D,
This is our claim (3.18), and the proof of the Theorem is concluded. U

The following Lemma 3.1 has been used in the proof of Theorem 1.2. It can
be proved by means of Lemma 3.2 and of a standard compactness argument. In
both Lemmata, we identify R?" with the orthogonal complement of (1,0,...,0) in
Hn — RQn'H.

Lemma 3.1. Let U C R*® be an open set and let ¢ : U — R be a function of class
C! such that |¢| < M < +oo and |V9¢| < N < 400 on U, and let V € U be an open
set. Then there exists a constant L = L(N, M,U, V') such that

[9(A) — ¢(B)|
A—ppe St

forany A,B € V.

Lemma 3.2. Let I C R® be a bounded open rectangle and ¢ € CY(I) be such
that [V9¢| < N on I. Then for any rectangle J € I there exists a constant L =
L(N,||¢||o(ry, I, J) such that

[9(A) — o(B)]

A_Be <L forall A,Be€ J. (3.25)
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Proof. Since the proof can be easily adapted to the case n = 1, we discuss only the

case n = 2. Let

K :=sup|A| and M :=||¢||r~),
A€l

and fix two open rectangles I’, I” such that J € I' € I" € I.

In R?" we use the following coordinates: (y,v,t) € R x R2"™ Y x R with v =
(V9 -y Upy Uty o, Vo). The point (y,v,t) € R* is also identified with (iy,ve +
Wty .Uy + 109y, ) € H™.

Let W be the vector field in I

9, 9,
We = 2 — o

and for a point A = (y,v,t) € I" let v4 € C'([y — €,y + €], I) be the solution of the
Cauchy problem

Ya(s) = W?(va(s))
’YA(Z/) = A

By standard considerations, we may assume that ¢ > 0 depends only on I, I”, and
M. We may also assume that y4([y — e,y +¢]) C I” for all A € I'. The curve 4 is
of the form v4(s) = (y + s,v,ta(s)), where

j_;tA(S) = —4%¢(7A(S)) = —AW?¢(7a(s))- (3.26)

Step 1. We claim that if A = (y,v,t),B = (y,v,t') € I” differ only in the last
coordinate, then we have

[9(A) —o(B)| _ . (2K)Y2 2N
Wgé._ maX{T,%}. (3.27)

Without loss of generality we assume ¢ > t'. Consider the curves v4 and vg. By
(3.26), we have for s € [y — e,y + €]

Fa(s) — tp(s) = £ —# + / ialy) — inly) + / [ialo) ~ F5(0)]do}dr
v A ) [0(A) - o(B)) +
—a [ [ et - weot(o))] dodr
<t—t' —4(s . y)y[¢(z4) — ¢(B)] +4N(s —y)*.
We are going to evaluate the previous inequality at the point

_ oy =)/, if ¢(A) — ¢(B) > 0,
o oy (= t)2/s, otherwise.
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Notice that v4(s) and yz(s) € I are well defined because |s — y| = (t — t)1/2/§ <
(2K)'/2/§ < e. With this choice of s we obtain
t—t

52

_ $1\1/2
ta(s) — tols) < (1~ 1) — 1" Do) — o) +

4 |9(A) —é(B)| | AN
5 ’t—t/‘1/2 52 :

=t=1)

Since t4(y) =t > t' = tp(y), the uniqueness of the solutions to the Cauchy problem
implies that t4(s) —tp(s) > 0, i.e.

4 |¢(A) —¢(B)| | AN

1_3 It — t/[1/2 52 >0,
and in turn
[9(A) — ¢(B)| 4N
—— < = |14+ — | <9,
|t—t/’1/2 < 4 + 52 0

the latter inequality following from ‘g—g < 3.

Step 2. Now we consider the case when A = (y,v,t) and B = (¢, v,t) are points
in [’ differing only in the coordinate y. We will prove that

A) —¢(B
ly—y''/?
whenever |y — | < e. This will be sufficient to show that
A) —¢(B
[9A) =B 5 k. (3.28)
ly—y''/?
for all A, B € I’ differing only in the coordinate y. Since |y — /| < &, the point
C :=v5(y) = (y,v,t") is well defined and belongs to I”. Therefore

[6(B) — ¢(C)| = <Ny =]

| weotns)is

Moreover, since A, C' € I” differ only in the last coordinate, we have by (3.27)

1/2

ol) = o(C)] < ol = ¢12 = [ otm(eas| < 20V Nly

It follows that
[0(A) — ¢(B)| < [¢(A) — o(C)] + [o(B) — ¢(C)]
<26VMy — /' + Ny — o/|
< 28V + NVE) Iy — /|2,

as claimed.
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Step 3. Thanks to (3.27) and (3.28), for any A = (y,v,t), B = (¢,v,t') € I
differing only in the coordinates y, t, we have

[¢(A) = ¢(B)| _ [6(A) = ()] | [6(C) — &(B)|
A-B[7 S y-yP |t — |2

where C':= (v, v,1).

<O+, (3.29)

Step 4. Finally, in order to prove (3.25), let us consider two points A = (y,v,t), B =
(¢, v, t") € J. We use the following notation. The point v = (v, ..., Up, Unt2, ..., Vop) €
R2("=1) is identified with v = (vy + Vny2, ..., Uy + iV2,) € C* 1. Let C = (y,',t")
with t” =t + 2Im(v?’). Notice that

C = exp (D (1) = 0)X; + (U, = v2)Y; ) (A). (3.30)
j=2
The points C' and B differ only in the coordinates y,t and moreover

" — ] < |t — ] + 2|Im((v — )7)| < |t — '] + 2K v — /| < Cx|A— B,

where we let Cr = v/2(2K + 1). Notice that we have C' € I’ provided that |v —v'| <
c¢=c(K,J,I') is sufficiently small. If this is the case, we deduce from (3.30) that

[6(A) = ¢(C)] < NJv —v'| < N|A — B] < NV2K|A - B|'?, (3.31)
and by (3.31) and (3.29) we can conclude

6(4) ~ 6(B)] _ Jol) - 5(0) - 4()
|A B‘l/Q < ’A B|1/2 \/_K ‘t" t/‘l/Q \/_N—i—\/_(s_}_ﬁ

The general case, i.e. without the assumption [v —v'| < ¢, can be easily deduced from
the previous inequality.
]
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