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Abstract. We revisit the proof of the existence of the (unique) admissible solution
to a class of non-strictly hyperbolic 2 ˆ 2 system of conservation laws with triangular
structure. We show that this solution can be obtained as the limit of the one of a nonlocal
system (involving a convolution term) when the kernel tends to a Dirac delta.

1. Introduction and main result

We consider the following 2 ˆ 2 system of conservation laws:

Btu ` Bxfpuq “ 0, Btv ` Bxpapuqvq “ 0,(1.1)

where f : R Ñ R and a : R Ñ R are smooth functions.
In what follows, we are particularly interested in the case a “ f 1, which makes the

systems hyperbolic, but not strictly hyperbolic (since the Jacobian matrix has a double
real eigenvalue). We will consider non-negative initial data for the two equations (which are
functions of bounded variation and bounded Borel measures, respectively) and focus on the
prototypical case of the Burgers flux, i.e., fpuq :“ u2 and, correspondingly, apuq :“ f 1puq “

2u. With minor changes to the assumptions and arguments presented in this paper, we
could consider the Greenshields–Lighthill–Whitham–Richards flux, which is common in
traffic flow modeling (see [21]), i.e., fpuq :“ up1 ´ uq and apuq :“ f 1puq “ 1 ´ 2u.

The system (1.1) has a particular triangular structure. For this reason, a natural ap-
proach to deal with it is to solve the first equation, which is a scalar conservation law in
the unknown u : R` ˆR Ñ R, and then the linear continuity equation in v : R` ˆR Ñ R,
keeping u fixed. This method works well for smooth solutions; however, when a shock wave
appears in u, the velocity apuq becomes discontinuous and several difficulties arise. Yet,
the well-posedness of (a suitable notion of weak solution for) this system was established
in [26, Theorems 4.1 & 4.2].

The suitable notion of solution for the conservation law is the entropy-admissible one,
in the sense of Kružkov (see [25]).

On the other hand, for the linear continuity equation, we consider the notion of measure
solution (introduced in [31]) or, equivalently, of (conservative) duality solution (as in [5])1.

While Kružkov’s entropy condition guarantees uniqueness for the conservation law (e.g.,
with an initial condition of bounded variation), the uniqueness problem for transport
equation with discontinuous velocity is more delicate and requires further assumptions. A
sufficient condition for uniqueness is a one-sided Lipschitz bound (in the space variable)
on the velocity for t ŕ 0. To achieve it, in [26, Theorems 4.2], the flux is assumed to
be strongly convex2 and a one-sided Lipschitz condition on the initial datum up0, ¨q is
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1We notice that [26] actually studies both (1.1) and a non-conservative system and relies on yet another

notion of solution, based on Volpert’s product (see [32]), later generalized by Dal Maso, Le Floch, and
Murat in [19]. However, in the case under consideration, this definition coincides with ones of [31, 5].

2Alternatively, one can make analogous arguments assuming the flux is strongly concave.
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imposed (cf. assumption (1.4) in Theorem 1.1 below); under these assumptions, a one-
sided Lipschitz bound, up to time t “ 0, follows from Olĕınik’s inequality (see [30]). On
the other hand, we point to [26, p. 137] for examples illustrating non-uniqueness.

In [26], it was also observed that the solution of the continuity equation in (1.1) is
explicitly provided by the following formula (to be interpreted in the sense of distributions):

vpt, xq :“ Bx

ż x̄

´8

v0

ˆ

y ´ ξpt, yq

t

˙

dy,

where ξ : p0,`8q ˆ R Ñ R is the function characterized by the property

min
yPR

Gpt, x, yq “ Gpt, x, ξpt, xqq, pt, xq P p0,`8q ˆ R,

Gpt, x, yq :“

ż y

´8

u0pzq dz ` t g

ˆ

x ´ y

t

˙

, pt, x, yq P p0,`8q ˆ R2,

and g is the Legendre transform of the (convex) function f .
For (more general and possibly multi-dimensional) triangular systems of conservation

laws, solutions have also been constructed in the literature via the vanishing viscosity
approximation and numerical schemes of Engquist–Osher type (see, e.g., [8, 9]).

The main aim of this note is to provide an alternative existence proof by introducing a
nonlocal regularization of (1.1). We define a convolution kernel γ satisfying

γpxq ě 0 for every x P R, γpxq “ 0 for every x P p´8, 0q,

ż

R
γpxqdx “ 1,

γ P Lippr0,`8qq, γpxq ď ´Dγ1pxq, for a.e. x P p0,`8q,

(1.2)

for some D ą 0, its rescaling γε :“ ε´1γp¨{εq, and introduce the system

Btuε ` Bxppuε ˚ γεquεq “ 0, Btvε ` 2 Bxppuε ˚ γεqvεq “ 0,(1.3)

for a given ε ą 0. The assumptions in (1.2) are analogous to those used in [14].
When the flux f of (1.1) is given by fpuq :“ uV puq and V is monotone non-decreasing,

and the convolution kernel is supported and non-increasing on the positive axis r0,`8q,
strong analytic results are available for the nonlocal conservation law in (1.3) with non-
negative initial condition, including global well-posedness and a maximum principle (see
Lemma 2.1 below and also, e.g., [23, 12]). These assumptions on the kernel express the
fact that the velocity is adjusted on the basis of the density upstream. The situation is
similar when V is monotone non-increasing and the convolution kernel is supported and
non-decreasing on the negative axis p´8, 0s, i.e., when the velocity is adjusted based on
the density downstream, which is the typical setting in traffic flow models.

We will show that the (unique) weak solution of (1.3) converges to the admissible one
of (1.1) as ε Ñ 0, i.e., as the convolution kernel converges to a Dirac delta.

Theorem 1.1 (Nonlocal–to–local convergence). Let us assume that the convolution kernel
γε satisfies (1.2) and let us consider u0 P L8pR;R`q X BVpR;R`q and v0 P L1pRq such
that

u1
0pxq ď κ0(1.4)

holds in the sense of distributions.
Let puε, vεq P L8pp0,`8q; BVpR;R`qqˆL8pp0,`8q;L1pRqq be the unique weak solution

of the nonlocal system
$

’

’

’

&

’

’

’

%

Btuε ` Bxppuε ˚ γεquεq “ 0, pt, xq P p0,`8q ˆ R,
Btvε ` 2 Bxppuε ˚ γεqvεq “ 0, pt, xq P p0,`8q ˆ R,
uεp0, xq “ u0,εpxq, x P R,
vεp0, xq “ v0,εpxq, x P R,

(1.5)
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where u0,ε :“ mintu0 ˚ ρε2{3 , c0 ε
1{3u, v0,ε :“ v0 ˚ ρε, ρε :“ ε´1ρp¨{εq, ρ : R Ñ R` is a fixed

smooth convolution kernel, and c0 is a suitable positive constant.
Then puε, vεq converges to the unique admissible solution pu, vq P

L8pp0,`8q; BVpR;Rqq ˆ L8pp0,`8q;M1pRqq of the local system
$

’

’

’

&

’

’

’

%

Btu ` Bxpu2q “ 0, pt, xq P p0,`8q ˆ R,
Btv ` 2 Bxpu vq “ 0, pt, xq P p0,`8q ˆ R,
up0, xq “ u0pxq, x P R,
vp0, xq “ v0pxq, x P R.

(1.6)

Here, M1pRq denotes the space of bounded Borel measures on R.

The study of nonlocal–to–local singular limits for scalar conservation laws has received
much attention recently (we mention, in particular, [24, 14, 11, 15, 10, 13]). On the
other hand, for systems, the only available result is contained in [7], which, however, only
studies a system with a very weak coupling—namely, in a (well-behaved) source term
instead of in the fluxes—modeling multi-lane traffic. A different issue is the convergence
of the (incompressible) α-Euler system to the classical Euler equations, which has been
extensively studied (see, e.g., [28, 1, 29, 6]).

In this paper, we study the nonlocal–to–local limit in the presence of a coupling in the
advective terms. The system under consideration enjoys a very particular structure that
allows for a (relatively) straightforward analysis. However, because of the significance of
such special systems and the directness of the approach, we feel it worthwhile to put for-
ward this contribution and defer the examination of more general models to a forthcoming
work.

1.1. Strategy of the proof. To prove the main result, we take advantage of the trian-
gular structure of the system and split our analysis into two parts.

First, we study the conservation law. Since, owing to the local theory recalled above,
we need to consider initial data satisfying u1

0 ď κ0, we can exploit the Olĕınik-type one-
sided Lipschitz estimate on uε (uniform with respect to ε) proven in [14, Theorem 3]
(cf. Lemma 2.2 below) to gain the (strong) convergence of the family tuεuεą0 to the
(unique) entropy-admissible solution.

Second, we analyze the linear continuity equation. Since the velocity field satisfies a
(uniform) one-sided Lipschitz bound, we can apply a stability result obtained by Poupaud
and Rascle in [31, Theorem 3.6] to deduce the convergence of the family tvεuεą0 to the
(unique) measure solution.

1.2. Generalizations of Theorem 1.1. We stress that, as it emerges from an analysis
of the key ingredients of the argument, we can actually prove Theorem 1.1 in a more
general setting: namely, considering

$

’

’

’

&

’

’

’

%

Btuε ` BxpV puε ˚ γεquεq “ 0, pt, xq P p0,`8q ˆ R,
Btvε ` Bxpapuε ˚ γεqvεq “ 0, pt, xq P p0,`8q ˆ R,
uεp0, xq “ u0,εpxq, x P R,
vεp0, xq “ v0,εpxq, x P R,

(1.7)

where

(1) u ÞÑ fpuq :“ uV puq strongly convex (in order for Olĕınik’s estimate to hold for
(1.1)) and satisfying the hypotheses needed in Lemma 2.2 to deduce a one-sided
Lipschitz bound for the nonlocal conservation law3;

3Alternatively, the flux could be taken strongly concave, up to suitably changing the assumptions on V
and γ (see [14]).
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(2) u ÞÑ apuq locally (one-sided) Lipschitz continuous and monotone (in order for the
velocity of the transport equation to satisfy a one-sided Lipschitz bound, recalling
the chain rule for BV functions from [32, 2, 19, 27]). This is automatically verified
if a “ f 1 and f P C2 is strongly convex.

2. Proof of the main result

We start by recalling a well-posedness result for the Cauchy problem
#

Btuε ` Bxppuε ˚ γεquεq “ 0, pt, xq P p0,`8q ˆ R,
uεp0, xq “ u0pxq, x P R,

(2.1)

which is essentially contained, up to minor changes, in [13, Proposition 2.1 & Corollary
2.2] and [14, Proposition 8].

Lemma 2.1 (Well-posedness of the nonlocal conservation law). Let us suppose that u0 P

L8pR;R`q X BVpR;R`q. Then, for every ε ą 0, there exists a unique weak solution uε P

C
`

r0,`8q;L1pRq
˘

X L8pp0,`8q;L8pRqq of (2.1) and the following maximum principle
holds:

ess infxPR u0pxq ď uεpt, xq ď ess supxPR u0pxq, pt, xq P r0,`8q ˆ R.(2.2)

Moreover, if u0 P CkpRq, then uε P Ckpp0,`8q ˆ Rq for k ě 0. Finally,

wε :“ uε ˚ γε P W 1,8 pp0,`8q ˆ Rq

and

ess infxPR u0pxq ď wεpt, xq ď ess supxPR u0pxq, pt, xq P r0,`8q ˆ R.(2.3)

As a consequence of Lemma 2.1, since wε is Lipschitz continuous, we note that the
solution vε of the linear continuity equation in (1.5) can be defined classically (i.e., by
relying on the Cauchy–Lipschitz theory; see [17, Chapter 1, Section 2]).

Second, we present a small modification of the Olĕınik-type estimate in [14, Theorem 3
& Corollary 4].

Lemma 2.2 (One-sided Lipschitz bound). Let us consider a convolution kernel γε sat-
isfying (1.2); an initial datum u0 P L8pR;R`q X BVpR;R`q satisfying ess inf u0 ą 0 and
(1.4); and a velocity V P C2pRq such that

V 1pξq ě δ ą 0, V 2pξq ě 0, for all ξ P ress inf u0, ess supu0s.(2.4)

Then, if

ε ă
ess inf u0
2Dκ0

,(2.5)

the solution uε of (2.1) satisfies the one-sided Lipschitz bound

uεpt, xq ´ uεpt, yq

x ´ y
ď

κ0
2κ0t ` 1

ă
1

2t
, t ą 0, x, y P R, with x ‰ y.

Proof. We can additionally assume that u0 P C2pRq. Then, by (a small modification of)
the stability result in [13, Proposition 3.1], we can deduce the general claim.

By differentiating the PDE in (2.1) with respect to the x variable, we have

B2
txuε ` B2

xxuε V puε ˚ γεq ` 2 Bxuε pBxuε ˚ γεqV 1puε ˚ γεq

` uε pBxuε ˚ γεq2 V 2puε ˚ γεq ` uε pB2
xxuε ˚ γεqV 1puε ˚ γεq “ 0.

(2.6)

For t ě 0, let x̄ P R such that

max
xPR

Bxuεpt, xq “ Bxuεpt, x̄q “: mptq.

We can assume that mptq ě 0 (otherwise the proof is done).
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Since V 2 ě 0, B2
xxuεpt, x̄q “ 0, and uε ě 0, from (2.6), we deduce (arguing as in [16,

Theorem 2.1])

d

dt
mptq ď ´V 1puε ˚ γεpt, x̄qq

´

2mptq pBxuε ˚ γεpt, x̄qq ` uεpt, x̄q pB2
xxuε ˚ γpt, x̄qq

¯

“ ´V 1puε ˚ γεpt, x̄qq

˜

2mptq
1

ε

ż x̄

´8

Byupt, yqγ

ˆ

x̄ ´ y

ε

˙

dy

` uεpt, x̄q
1

ε

ż x̄

´8

B2
yyuεpt, yq γ

ˆ

x̄ ´ y

ε

˙

dy

¸

and, integrating by parts,

“ ´V 1puε ˚ γεpt, x̄qq

˜

2mptq
1

ε

ż x̄

´8

Byupt, yqγ

ˆ

x̄ ´ y

ε

˙

dy

`
1

ε
uεpt, x̄qmptqγp0q ` uεpt, x̄q

1

ε2

ż x̄

´8

Byuεpt, yq γ1

ˆ

x̄ ´ y

ε

˙

dy

¸

“ ´V 1puε ˚ γεpt, x̄qq

˜

uεpt, x̄qmptqγp0q

`
1

ε

ż x̄

´8

Byupt, yq

ˆ

2mptqγ

ˆ

x̄ ´ y

ε

˙

`
1

ε
uεpt, x̄q γ1

ˆ

x̄ ´ y

ε

˙˙

looooooooooooooooooooooooooooomooooooooooooooooooooooooooooon

“:Ipt,yq

dy

¸

.

We observe that Ip0, yq ď 0. Indeed, thanks to (1.2), (1.4), and (2.5),

Ip0, yq “ 2Bxu0px̄qγ

ˆ

x̄ ´ y

ε

˙

`
1

ε
u0px̄qγ1

ˆ

x̄ ´ y

ε

˙

ď

ˆ

2κ0 ´
1

εD
ess inf u0

˙

γ

ˆ

x̄ ´ y

ε

˙

ď 0.

Provided that, for some T ą 0,

(2.7) mptq ď κ0, for t P r0, T s.

holds, then we can prove (arguing in the same way as above and using (2.2)) that

(2.8) Ipt, yq ď 0, for pt, yq P r0, T s ˆ R.

Now, if (2.8) holds, we deduce, for t P r0, T s,

d

dt
mptq ď ´V 1puε ˚ γεpt, x̄qq

˜

uεpt, x̄qmptqγp0q

`
1

ε

ż x̄

´8

mptq

ˆ

2mptqγ

ˆ

x̄ ´ y

ε

˙

`
1

ε
uεpt, x̄q γ1

ˆ

x̄ ´ y

ε

˙˙

dy

¸

“ ´2V 1puε ˚ γεpt, x̄qqm2ptq

ď ´2δ m2ptq,

that is

(2.9)
d

dt
mptq ď ´2δ m2ptq, for t P r0, T s.
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Owing to the comparison principle for the Riccati-type ODE above, we conclude that

mptq ď
κ0

2δκ0t ` 1
, for t P r0, T s.(2.10)

As a consequence,

mpT q ď
κ0

2δκ0T ` 1
ă κ0.

By continuity, we have that

mptq ď κ0, for t P r0,`8q;

therefore

Ipt, yq ď 0, for pt, yq P r0,`8q ˆ R.
As a consequence, (2.9) and (2.10) holds for every t ě 0. □

We are now ready to prove the main result.

Proof of Theorem 1.1. We need to prove that tuεuεą0 converges to the (unique) entropy-
admissible solution of the conservation law in (1.6) and tvεuεą0 converges to the (unique)
measure solution of the (conservative) transport equation in (1.6).

By Lemma 2.1, for ε ą 0, there exists a unique weak solution uε P Cpr0,`8q;L1
locpRqqX

L8pp0,`8q;L8pRqq X L8pp0,`8q; BVpRqq of the Cauchy problem associated with the
nonlocal conservation law in (1.5) and the uniform bound (2.2) holds.

As in [14, Remark 5], the particular regularization of the initial data chosen in the
statement of Theorem 1.1 is motivated by the assumption (2.5) in Lemma 2.2. Due to
Lemma 2.2, we have that

uεpt, xq ´ uεpt, yq

x ´ y
ď

κ0
2κ0t ` 1

ă
1

2t
, t ą 0, x, y P R, with x ‰ y,(2.11)

holds for a sufficiently small ε ą 0. As a consequence, we deduce that the family4 tuεuεą0

converges strongly in L1 to the (unique) entropy-admissible solution of the scalar con-
servation law in (1.6), which, in particular, satisfies Olĕınik’s entropy condition (since
fpuq :“ u2 is strictly convex):

upt, xq ´ upt, yq

x ´ y
ď

κ0
2κ0t ` 1

ă
1

2t
, t ą 0, x, y P R, with x ‰ y.(2.12)

Here, by using [18, Lemma 1.3.3], we could assume, without loss of generality, that the
functions t ÞÑ uεpt, ¨q is continuous from R` to L8pRq endowed with the L8-weak-˚ and
the strong L1

loc topology, respectively.
To conclude the proof of Theorem 1.1, it remains to show that tvεuεą0 converges to the

solution of the transport equation in (1.6). By Lemma 2.1, we notice that wε belongs to
W 1,8 pp0,`8q ˆ R;R`q and satisfies (2.3). Moreover, owing to (2.11), we have

wεpt, xq ´ wεpt, yq

x ´ y
ď

κ0
2κ0t ` 1

, t ą 0, x, y P R, with x ‰ y.(2.13)

Owing to the bounds (2.3) and (2.13), we can apply [31, Theorem 3.6] and deduce that
there exists a sub-sequence of vεkpt, ¨q “ Xεkptq#v0,εk that converges in C pr0,`8q;M1pRqq

to the unique measure solution vpt, ¨q “ Xptq#v0 of the transport equation in (1.6). Here,
X denotes the unique Filippov flow associated with u. Such flow X and the corresponding

4By Urysohn’s sub-sequence principle, owing to the uniqueness of entropy solutions for the scalar
conservation law in (1.6), the whole family converges, not just up to sub-sequences.
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solution v are indeed unique5, owing to [31, Theorems 2.2, 3.1, & 3.2], because u satisfies
the one-sided Lipschitz bound in (2.12).

This concludes the proof. □
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