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Abstract. The Cheeger constant of an open set of the Euclidean space is defined by minimiz-

ing the ratio “perimeter over volume”, among all its smooth compactly contained subsets. We
consider a natural variant of this problem, where the volume of admissible sets is raised to any

positive power. We show that for sublinear powers, all these generalized Cheeger constants are

equivalent to the standard one, by means of a universal two-sided estimate. We also show that
this equivalence breaks down for superlinear powers. In this case, some weird phenomena appear.

We finally consider the case of convex planar sets and prove an existence result, under optimal

assumptions.
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1. Introduction

1.1. Cheeger’s constant. We recall that the Cheeger constant of an open set Ω ⊆ RN is defined
by the following constrained isoperimetric–type problem

(1.1) h1(Ω) = inf

{
HN−1(∂E)

|E|
: E b Ω open set with smooth boundary

}
.

Here the symbol | · | stands for the N−dimensional Lebesgue measure, while HN−1 is the (N −
1)−dimensional Hausdorff measure. This constant and the minimization problem that goes with
it have attracted an increasing interest along the years. We cite for example [8, 6, 17, 18, 20, 23,
28, 29, 32, 33] and [35] for some studies on this topic. Without any attempt of describing here the
main known results or listing all the papers connected with this problem, we refer to the survey [31]
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by Leonardi. There, the interested reader will find some motivations and some auxiliary problems
leading to the study of this constant, together with an account of the main achievements on the
minimization problem.

Apart for being interesting in itself, Cheeger’s constant plays a particularly intriguing role in
Spectral Geometry. This was the original motivation to introduce it in [21] (see also [16]). In order
to explain this point, let us define the following sharp Poincaré constant

λ(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u|2 dx :

ˆ
Ω

|u|2 dx = 1

}
.

Whenever the space W 1,2
0 (Ω) is compactly embedded in L2(Ω), we know that this quantity gives the

first eigenvalue of the Dirichlet-Laplacian on Ω. More generally, this coincides with the bottom of
the spectrum of the Dirichlet-Laplacian on Ω (see for example [5, Chapter 10, Section 1.1]). Then,
we have the following celebrated lower bound

(1.2)

(
h1(Ω)

2

)2

≤ λ(Ω),

usually called Cheeger’s inequality, see for example [34, Chapter 4, Section 2] for a proof.
It is quite remarkable that (1.2) gives a lower bound on the spectrum of the Dirichlet-Laplacian

on an open set, which holds without any assumption on the open set and with a constant having
an intrinsic geometric content. These features already explain quite neatly the interest gained by
the Cheeger constant along the years.

1.2. A variation on the theme. From the mathematical point of view, in principle there is no
reason to confine ourselves to consider the ratio “perimeter/volume” in the definition of h1. One
could for example consider different powers of the volume of the admissible sets. In other words,
for an exponent 0 < q < N/(N − 1), we could consider the following generalized Cheeger constant

hq(Ω) = inf

{
HN−1(∂E)

|E|
1
q

: E b Ω open set with smooth boundary

}
,

associated to every open set Ω ⊆ RN . In the case q = 1, we are back with the familiar Cheeger
constant (1.1). We observe that the restrictions on the exponent q are those making the constant
hq non-trivial (see Remark 2.1 below).

As one may expect, we have not been the first ones to consider this kind of generalization. We
cite for example [3, 7, 25] and [26], where these constants have been considered. More recently, a
systematic study of these constants has been started in the papers [19] and [36].

Nevertheless, it seems that many interesting questions on hq are still not fully understood. We
wish to list some of them, here below: the present paper will then focus on answering (at least
partially) some of them.

A first question which may arise is the following one:

(Q1) can one still prove “universal” lower bounds like (1.2), with hq in place of h1?

Another natural question, which is somehow connected to the previous one, reads as follows:

(Q2) is it possible to compare h1(Ω) and hq(Ω) with q 6= 1?

Finally, let us consider one more question, which appears quite reasonable and interesting: this
concerns the relation of hq(Ω) with sharp functional inequalities. In order to formulate the question,
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we recall that h1(Ω) coincides with the following sharp Poincaré constant

λ1,1(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u| dx :

ˆ
Ω

|u| dx = 1

}
,

see for example [34, Theorem 2.1.3]. Then, by introducing the more general quantity

λ1,q(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u| dx :

ˆ
Ω

|u|q dx = 1

}
,

one could ask the following question:

(Q3) is it true that λ1,q(Ω) = hq(Ω), for every 0 < q <
N

N − 1
?

Actually, for q > 1 we already know that the answer is yes, still by1 [34, Theorem 2.1.3]. One may
wonder what happens for 0 < q < 1.

The previous questions were more focused on the constant hq(Ω) itself. One could try to have a
closer look at the minimization problem which defines it and study for example: the behaviour of
minimizing sequences, existence of a (possibly relaxed) solution, its regularity and so on. Some
interesting results of this type have been obtained by Pratelli and Saracco in [36], we will comment
below on these results.

Let us first make a couple of preliminary observations:

(1) if E1, E2 b Ω are disjoint open subsets with smooth boundary, then we have

HN−1(∂(E1 ∪ E2)) = HN−1(∂E1) +HN−1(∂E2),

while

|E1 ∪ E2|
1
q


> |E1|

1
q + |E2|

1
q , if 0 < q < 1,

= |E1|+ |E2|, if q = 1,

< |E1|
1
q + |E2|

1
q , if q > 1.

This in particular implies that for q > 1, as observed in [36], we have

HN−1(∂(E1 ∪ E2))

|E1 ∪ E2|
1
q

>
HN−1(∂E1) +HN−1(∂E2)

|E1|
1
q + |E2|

1
q

≥ min

{
HN−1(∂E1)

|E1|
1
q

,
HN−1(∂E2)

|E2|
1
q

}
.

Thus, in the minimization process for q > 1, sets prefer not to break into multiple pieces.
The previous argument obviously breaks down for q < 1;

1In order to help the reader, we point out that one should use the result of [34] with the following choices

µ(g) = |g|, σ(∂g) = HN−1(∂g), β = 0, Φ(x,∇u) = |∇u|,

and g b Ω has smooth boundary.
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(2) for a cylindrical set, i.e. for a set of the form E = ω × (0, L) for some ω ⊆ RN−1 open and
bounded, we have

HN−1(∂E)

|E|
1
q

∼ L1− 1
q →

 0, if 0 < q < 1,
1, if q = 1,
+∞, if q > 1.

Thus, in particular, if the open set Ω is unbounded in some direction and contains a “tube”,
minimizing sequences for hq(Ω) may have the interest to “stretch” as much as possible in
the case q < 1, eventually preventing the existence of an optimal set. On the contrary,
in light of the previous computation, for q > 1 minimizing sequences should rather stay
uniformly bounded, thus gaining some form of compactness.

These rough and clumsy observations may suggest that some new phenomena could appear in the
minimization problem and that the two regimes 0 < q < 1 and q > 1 should give rise to qualitatively
different “results”, at least for disconnected sets and/or very elongated sets. Not surprisingly, we
will see that this is exactly what happens.

1.3. Main results. After this lengthy presentation of the aims and scopes of the paper, we list
below the main achievements of our discussion on the generalized Cheeger constant hq. They are
essentially of three different types:

(1) Comparison of Cheeger’s constants: here we answer the question (Q2). For every
1 < q < N/(N − 1) and every Ω ⊆ RN open set, we have

(1.3) C1

(
h1(Ω)

)N
q −(N−1)

≤ hq(Ω) ≤ C2

(
h1(Ω)

)N
q −(N−1)

,

for two constants C1, C2 > 0 depending on N and q, only (see Theorem 4.1). On the other
hand, for every 0 < q < 1 and and every Ω ⊆ RN open set, we have

(1.4) hq(Ω) ≤ C3

(
h1(Ω)

)N
q −(N−1)

,

for a constant C3 > 0 depending on N and q, only. Moreover, the estimate can not be
reverted: indeed, we have

h1(RN−1 × (−1, 1)) > 0 and hq(RN−1 × (−1, 1)) = 0,

see Proposition 4.3.
Observe that by combining (1.2) and (1.3) or (1.4), we can answer the question (Q1),

as well. Indeed, we obtain the following generalized Cheeger inequality

(1.5)
1

C

(
hq(Ω)

) 2
N
q
−(N−1) ≤ λ(Ω),

with a constant C > 0 depending on N and q, only. This holds for every open set Ω ⊆ RN
and every 0 < q < N/(N − 1).

(2) Poincaré constants: for every 1 < q < N/(N − 1), the constant hq(Ω) always coincides
with a sharp Poincaré-Sobolev constant, i.e.

hq(Ω) = λ1,q(Ω) := inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u| dx :

ˆ
Ω

|u|q dx = 1

}
.

On the other hand, for every 0 < q < 1, in general we only have

hq(Ω) ≥ λ1,q(Ω),
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see Lemma 2.2 and the equality breaks down for some particular shapes, see Example 3.5.
This gives an answer to (Q3);

(3) Existence of extremals for convex sets: in dimension N = 2 and for every 1 < q < 2,
if Ω ⊆ R2 is an open convex set (not necessarily bounded), then

hq(Ω) = inf

{
H1(∂E)

|E|
1
q

: E ⊆ Ω open bounded convex set

}
,

a fact already observed in [36]. Here we prove that the infimum is attained if and only if
the high ridge set of Ω is not empty, see Theorem 5.4. We recall that the high ridge set is
the following subset

M(Ω) :=
{
x ∈ Ω : BrΩ(x) ⊆ Ω

}
,

where rΩ is the inradius of Ω.
On the other hand, for every 0 < q < 1, for unbounded convex sets we always have

hq(Ω) = 0 and thus existence of a minimizer fails, see Lemma 5.6. The borderline case
q = 1 is particular: here, it may happen that h1(Ω) > 0 but the infimum is not attained,
as for Ω = R× (−1, 1) (see for example [30, Theorem 3.1]).

Some remarks are in order, for each of the previous results. We also list some open questions, that
we think are quite interesting.

Remark 1.1. We notice that the generalized Cheeger inequality (1.5) improves that of [3, Theorem
3.1]. While the latter depends on the volume term |Ω|, the estimate (1.5) holds for general open
sets, even having infinite volume. As for estimates (1.3) and (1.4), we point out that the constants
C1 and C3 are explicit and sharp. On the contrary, the constant C2 is explicit, but determining the
value of the sharp constant is an intriguing open problem.

Remark 1.2. As we said above, the fact that λ1,q(Ω) = hq(Ω) for 1 < q < N/(N − 1) was already
known. On this point, the main new fact is the counter-example showing that in general we can
not have the same result, for 0 < q < 1. The counter-example crucially exploits the fact that for
disconnected sets “something strange” could happen, as previously exposed. In light of this fact,
one could (very) bravely guess that for convex sets, we could still have the equivalence between λ1,q

and hq, even for 0 < q < 1. This is an aspect that deserves to be investigated in the future.

Remark 1.3. We point out that our existence theorem for 1 < q < 2 partially superposes with [36,
Theorem 4.2]. On the one hand, the latter is more general, since it deals with a class of open planar
sets, not necessarily convex; on the other hand, it is more restrictive, since the class considered is
that of “strips”, i.e. neighborhoods of regular curves (possibly infinite).

Our existence proof is different from that of [36] and it is based on a “four terms” geometric
inequality for convex sets, linking diameter, inradius, perimeter and area. This is taken from
our previous paper [9]. We point out that this argument, needed is order to infer compactness
of minimizing sequences of convex sets, would work verbatim in every dimension N ≥ 2. The
restriction to the case of N = 2 is needed in order to assure that we can restrict to convex subsets,
without affecting the infimum hq(Ω). As observed in [36], in dimension N = 2 this can be obtained
by using that the convex hull of a connected set decreases the perimeter, while enlarging its area.
In higher dimensions this fails to be true and thus more sophisticated arguments would be needed,
maybe inspired to those used for the case q = 1 (see for example [1]). This is certainly an interesting
point, that we leave for future research, as well.
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1.4. Plan of the paper. The paper consists of five sections, plus two appendices. In Section 2 we
recall some basic facts about hq and the Poincaré-Sobolev constants λ1,q. Section 3 is devoted to
briefly discuss the case of disconnected sets. We discuss the equivalence of generalized Cheeger’s
constants in Section 4. Finally, in Section 5 we present the case of convex planar sets. Appendix A
contains a classical local L∞ −Lq estimate for the so-called p−torsion function, while Appendix B
records a simple approximation results for convex sets.

Acknowledgements. It is a pleasure to acknowledge some conversations with Giorgio Saracco,
who also pointed out the references [1] and [3]. We thank Nicola Fusco and Paolo Salani, for their
insights on a couple of points of this paper. Remark 5.5 comes from a conversation with Simon
Larson at the Institute Mittag-Leffler, in September 2022: we wish to thank him. Finally, some of
the contents of this paper have been presented during a seminar in Bielefeld in January 2024: we
wish to thank Anna Balci and Lars Diening for their kind invitation and the friendly atmosphere
provided during the staying.

2. Preliminaries

We indicate by BR(x0) the N−dimensional open ball centered at x0 ∈ RN , having radius R > 0.
For balls centered at the origin, we will simply write BR. By ωN we mean the volume of B1.
Occasionally, we will also need to work with cubes: we will use the symbol

QR(x0) =

N∏
i=1

(xi0 −R, xi0 +R), with x0 = (x1
0, . . . , x

N
0 ).

Here as well, we will simply write QR when the center x0 is the origin.
For an open set Ω ⊆ RN and a pair of exponents 1 < p < ∞, 0 < q < ∞, we will use the

following notation

λp,q(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u|p dx :

ˆ
Ω

|u|q dx = 1

}
.

As exposed above, in this paper we want to consider the following geometric constant

hq(Ω) = inf

{
HN−1(∂E)

|E|
1
q

: E b Ω open set with smooth boundary

}
,

for every 0 < q < N/(N − 1). We notice that if Ω = BR(x0), by the Isoperimetric Inequality we
get that

(2.1) hq(BR(x0)) =
HN−1(∂BR(x0))

|BR(x0)|
1
q

= N ω
1− 1

q

N RN−1−Nq ,

as already observed in [36, Section 2]. We now briefly explain the restrictions on q (see also [36,
Remark 2.1]).

Remark 2.1 (Limit cases). For N ≥ 2, in the case q = N/(N − 1) the constant hq(Ω) is not
interesting. Indeed, it does not depend on Ω and it simply coincides with

h N
N−1

(Ω) = N ω
1
N

N ,

i.e. this is the sharp Euclidean isoperimetric constant.
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Analogously, for q > N/(N −1) the constant hq(Ω) is not interesting, as well: in this case, taken
Br0(x0) ⊆ Ω, we have Br(x0) b Ω for every 0 < r < r0 and thus by (2.1)

hq(Ω) ≤ lim
r↘0

HN−1(∂Br(x0))

|Br(x0)|
1
q

= N ω
1− 1

q

N lim
r↘0

rN−1−Nq = 0.

Finally, in the case N = 1, we could allow q to take the limit value q =∞, with the understanding
that 1/q = 0 and |E|0 = 1. In this case, for every non-empty open set Ω ⊆ R we have

h∞(Ω) = inf
{
H0(∂E) : E b Ω open set with smooth boundary

}
= 2.

The infimum is attained by any interval (a, b) ⊆ Ω.

We start with a standard result, showing the relation between Cheeger constants and principal
frequencies. As recalled in in the Introduction, this is well-known: however, we reproduce the proof
for the reader’s convenience. This will also permit us to highlight a first difference between the two
regimes q < 1 and q > 1.

Lemma 2.2. Let Ω ⊆ RN be an open set and 0 < q < N(N − 1). Then we have

hq(Ω) ≥ λ1,q(Ω).

Moreover, if 1 ≤ q < N/(N − 1) the two quantities coincide.

Proof. For every E b Ω with smooth boundary, there exists a sequence {ϕn}n∈N ⊆ C∞0 (Ω) such
that

(2.2) lim
n→∞

‖ϕn − 1E‖Lq(Ω) = 0 and lim
n→∞

‖∇ϕn‖L1(Ω) = |∇1E |(RN ) = HN−1(∂E).

Here 1E is the characteristic function of E. Such a sequence can be constructed by means of
standard convolution methods: we set

ϕn = 1E ∗ %n,

where {%n}n≥1 is the usual family of standard mollifiers. By observing that %n ∈ C∞0 (B2/n) and
that E b Ω, we get

ϕn ∈ C∞0 (Ω), for n large enough.

The first property in (2.2) easily follows from the properties of convolutions, while by [2, page 121]
we have

lim
n→∞

‖∇ϕn‖L1(Ω) = lim
n→∞

|∇ϕn|(RN ) = |∇1E |(RN ),

and the last term coincides with HN−1(∂E) by [2, Proposition 3.62]. We thus get from (2.2)

HN−1(∂E)

|E|
1
q

= lim
n→∞

ˆ
Ω

|∇ϕn| dx(ˆ
Ω

|ϕn|q dx
) 1
q

≥ λ1,q(Ω).

By arbitrariness of E, we get the inequality hq(Ω) ≥ λ1,q(Ω).

We now assume that 1 ≤ q < N/N(N −1) and prove the converse inequality. Let ϕ ∈ C∞0 (Ω)\{0},
by using the Coarea Formula, Sard’s Theorem and the definition of hq(Ω), we getˆ

Ω

|∇ϕ| dx =

ˆ +∞

0

HN−1
({
x ∈ Ω : |ϕ(x)| = t

})
dt ≥ hq(Ω)

ˆ +∞

0

∣∣∣{x ∈ Ω : |ϕ(x)| > t
}∣∣∣ 1

q

dt.
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By using Cavalieri’s principle and [34, Section 1.3.5, Lemma 1], we get2(ˆ
Ω

|ϕ|q dx
) 1
q

=

(
q

ˆ +∞

0

tq−1
∣∣∣{x ∈ Ω : |ϕ(x)| > t

}∣∣∣ dt) 1
q

≤
ˆ +∞

0

∣∣∣{x ∈ Ω : |ϕ(x)| > t
}∣∣∣ 1

q

dt.

The two estimates above prove that ˆ
Ω

|∇ϕ| dx(ˆ
Ω

|ϕ|q dx
) 1
q

≥ hq(Ω).

By arbitrariness of ϕ, this gives that λ1,q(Ω) ≥ hq(Ω), as well. �

Remark 2.3 (The case 0 < q < 1). We observe that for 0 < q < 1 the previous proof does not
permit to infer that

λ1,q(Ω) ≥ hq(Ω).

There is a good reason for this fact: actually, in general the two quantities do not coincide. We
refer to Example 3.5 for a counter-example.

The next result is quite classical, as well. However, we try to keep the assumptions on the open
sets at a minimal level.

Lemma 2.4. Let Ω ⊆ RN be an open set. For every 0 < q < N/(N − 1), we have

lim sup
p↘1

λp,q(Ω) ≤ λ1,q(Ω).

Moreover, if Ω has finite volume, then we also have

(2.3) lim inf
p↘1

λp,q(Ω) ≥ λ1,q(Ω).

Proof. For every ϕ ∈ C∞0 (Ω) not identically vanishing, we have

lim sup
p↘1

λp,q(Ω) ≤ lim
p↘1

ˆ
Ω

|∇ϕ|p dx(ˆ
Ω

|ϕ|q dx
) p
q

=

ˆ
Ω

|∇ϕ| dx(ˆ
Ω

|ϕ|q dx
) 1
q

.

By taking the infimum over C∞0 (Ω), we thus get

lim sup
p↘1

λp,q(Ω) ≤ λ1,q(Ω).

We now assume that |Ω| < +∞. To prove the lim inf inequality, we take ϕ ∈ C∞0 (Ω)\{0} and then
observe that by Hölder’s inequality

λ1,q(Ω) ≤

ˆ
Ω

|∇ϕ| dx(ˆ
Ω

|ϕ|q dx
) 1
q

≤ |Ω|1−
1
p

(ˆ
Ω

|∇ϕ|p dx
) 1
p

(ˆ
Ω

|ϕ|q dx
) 1
q

.

2This passage crucially exploits the fact that q ≥ 1. For 0 < q < 1 the inequality is reverted. This inequality can
be rephrased by saying that the we have the following continuous embedding Lq,1(Ω) ↪→ Lq,q(Ω) = Lq(Ω) between

Lorentz spaces. This holds only for q ≥ 1. For 0 < q < 1, the situation is reverted and the Lorentz space Lq,1(Ω) is
actually larger than Lq(Ω).
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This shows that

λ1,q(Ω) ≤ |Ω|1−
1
p

(
λp,q(Ω)

) 1
p

.

By taking the lim inf as p goes to 1, we conclude. �

Remark 2.5. The assumption |Ω| < +∞ is probably not optimal for (2.3) to hold, but we may
notice that for general open sets this result can not hold. For example, for q = 1 and

Ω = RN−1 × (−1, 1),

we have
λp,1(Ω) = 0, for every 1 < p <∞, while λ1,1(Ω) > 0.

Thus, in this case (2.3) can not hold. We recall that the equality λp,1(Ω) = 0 follows from the fact
that3

λp,1(Ω) > 0 ⇐⇒ D1,p
0 (Ω) ↪→ L1(Ω) is compact,

see [34, Theorem 15.6.2] and also [10, Theorem 1.2]. For the set Ω = RN−1× (−1, 1), the invariance
by translation in the first N − 1 directions makes such an embedding non-compact.

3. Disconnected sets

We begin with a very simple result for a particular class of real functions of one variable. The
proof is omitted, it is just based on very standard facts.

Lemma 3.1. Let a, b ≥ 0 and c, d > 0, for β > 0 we define the function

φβ(t) =
a+ t b

(c+ tβ d)
1
β

, for every t > 0.

For β ≥ 1, we have

φβ(t) > min
{
φβ(0), lim

t→+∞
φβ(t)

}
= min

{
a

c
1
β

,
b

d
1
β

}
, for every t > 0.

For 0 < β < 1, we have

φβ(t) ≥

(c 1
β

a

) β
1−β

+

(
d

1
β

b

) β
1−β


β−1
β

, for every t > 0,

with equality if and only if

t = tβ :=

(
a

c

d

b

) 1
1−β

.

The previous result permits us to compute λ1,q for disconnected sets.

Lemma 3.2 (Case q ≥ 1). Let Ω1,Ω2 ⊆ RN be two open sets, such that Ω1 ∩ Ω2 = ∅. Then for
1 ≤ q < N/(N − 1), we have

hq(Ω1 ∪ Ω2) = λ1,q(Ω1 ∪ Ω2) = min
{
λ1,q(Ω1), λ1,q(Ω2)

}
= min

{
hq(Ω1), hq(Ω2)

}
.

3We denote by D1,p
0 (Ω) the homogeneous Sobolev space obtained as the completion of C∞0 (Ω) with respect to

the norm

ϕ 7→ ‖∇ϕ‖Lp(Ω).

We also recall that the property λp,1(Ω) > 0 entails that D1,p
0 (Ω) coincides with the more familiar W 1,p

0 (Ω) (see for

example [12, Proposition 2.4]), the latter being the closure of C∞0 (Ω) in the usual Sobolev space W 1,p(Ω).
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Proof. It is sufficient to prove the second equality for λ1,q(Ω1∪Ω2), the others being a consequence
of Lemma 2.2. We take ϕ1 ∈ C∞0 (Ω1) \ {0} and ϕ2 ∈ C∞0 (Ω2) \ {0}. Then we have ϕ1 + t ϕ2 ∈
C∞0 (Ω1 ∪ Ω2), for every t > 0. Accordingly, we get

λ1,q(Ω1 ∪ Ω2) ≤

ˆ
Ω1

|∇ϕ1| dx+ t

ˆ
Ω2

|∇ϕ2| dx(ˆ
Ω1

|ϕ1|q dx+ tq
ˆ

Ω2

|ϕ2|q dx
) 1
q

.

We can now minimize with respect to t > 0: thanks to Lemma 3.1, for 1 ≤ q < N/(N − 1) we get

λ1,q(Ω) ≤ min


ˆ

Ω1

|∇ϕ1| dx(ˆ
Ω1

|ϕ1|q dx
) 1
q

,

ˆ
Ω2

|∇ϕ2| dx(ˆ
Ω2

|ϕ2|q dx
) 1
q

 .

By arbitrariness of ϕ1 and ϕ2, we thus get

λ1,q(Ω1 ∪ Ω2) ≤ min
{
λ1,q(Ω1), λ1,q(Ω2)

}
.

In order to prove the reverse inequality, we take ϕ ∈ C∞0 (Ω1 ∪ Ω2) \ {0}. We call ϕ1 and ϕ2 the
restrictions of ϕ to Ω1 and Ω2, respectively. Of course, we have ϕi ∈ C∞0 (Ωi), for i = 1, 2. Let us
suppose at first that ϕ1 6≡ 0 and ϕ2 6≡ 0. Then, if we set

φq(t) :=

ˆ
Ω1

|∇ϕ1| dx+ t

ˆ
Ω2

|∇ϕ2| dx(ˆ
Ω1

|ϕ1|q dx+ tq
ˆ

Ω2

|ϕ2|q dx
) 1
q

, for t > 0,

again by Lemma 3.1 we haveˆ
Ω1

|∇ϕ1| dx+

ˆ
Ω2

|∇ϕ2| dx(ˆ
Ω1

|ϕ1|q dx+

ˆ
Ω2

|ϕ2|q dx
) 1
q

= φq(1) ≥ inf
t>0

φq(t) = min


ˆ

Ω1

|∇ϕ1| dx(ˆ
Ω1

|ϕ1|q dx
) 1
q

,

ˆ
Ω2

|∇ϕ2| dx(ˆ
Ω2

|ϕ2|q dx
) 1
q


≥ min

{
λ1,q(Ω1), λ1,q(Ω2)

}
.

On the other hand, it is easily seen that the same lower bound holds if ϕ1 ≡ 0 or ϕ2 ≡ 0, as well.
By arbitrariness of ϕ ∈ C∞0 (Ω1 ∪ Ω2), we thus get the claimed equality for λ1,q(Ω). �

In a similar way, we can cover the case 0 < q < 1, as well. In particular, we extend to the case
p = 1 and 0 < q < 1 a formula obtained in [10, Corollary 2.4]. As simple as it is, it will be useful
in order to construct some counter-examples.

Lemma 3.3 (Case 0 < q < 1). Let Ω1,Ω2 ⊆ RN be two open sets, such that Ω1 ∩ Ω2 = ∅. Then
for 0 < q < 1:

• if λ1,q(Ω1) > 0 and λ1,q(Ω2) > 0 we have

(3.1) λ1,q(Ω1 ∪ Ω2) =

((
1

λ1,q(Ω1)

) q
1−q

+

(
1

λ1,q(Ω2)

) q
1−q
) q−1

q

;
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• if λ1,q(Ω1) = 0 or λ1,q(Ω2) = 0, then we have

λ1,q(Ω1 ∪ Ω2) = 0.

Proof. We assume at first that both λ1,q(Ω1) and λ1,q(Ω2) are positive. The upper bound

λ1,q(Ω1 ∪ Ω2) ≤

((
1

λ1,q(Ω1)

) q
1−q

+

(
1

λ1,q(Ω2)

) q
1−q
) q−1

q

,

can be obtained as in the first part of proof of Lemma 3.2, by using this time Lemma 3.1 for
0 < β = q < 1.

In order to prove the reverse inequality, it is now useful to observe that the right-hand side is
strictly smaller than both values λ1,q(Ω1) and λ1,q(Ω2). This is due to the fact that the function
of two real variables

(t, s) 7→
(
t
q

1−q + s
q

1−q

) q−1
q

, for (t, s) ∈ (0,+∞)× (0,+∞),

is decreasing in both variables, thanks to the fact that q − 1 < 0. In particular, we have(
t
q

1−q + s
q

1−q

) q−1
q

<
1

t
and

(
t
q

1−q + s
q

1−q

) q−1
q

<
1

s
,

for every t, s > 0. This very simple observation shows that λ1,q(Ω1∪Ω2) can be equivalently defined,
by restricting the minimization to functions ϕ ∈ C∞0 (Ω1 ∪ Ω2) \ {0} such that both the restriction
of ϕ to Ω1 and that to Ω2 are not identically vanishing. In light of this fact, we can now run the
same argument as in the second part of the proof of Lemma 3.2.

We now suppose that λ1,q(Ω2) = 0, for example. We set Ωi,n = Ωi ∩ Bn for i = 1, 2, which are
not empty for n large enough. By assumption and using that {Ωi,n}n∈N is an exhaustion of Ωi, we
get

lim
n→∞

λ1,q(Ωi,n) = λ1,q(Ωi), for i = 1, 2,

and

lim
n→∞

λ1,q(Ω1,n ∪ Ω2,n) = λ1,q(Ω1 ∪ Ω2).

By observing that Ωi,n is an open bounded set, we have that λ1,q(Ωi,n) > 0, for every n large
enough. We can thus apply formula (3.1) to Ω1,n ∪ Ω2,n and pass to the limit, in order to get

λ1,q(Ω1 ∪ Ω2) = lim
n→∞

λ1,q(Ω1,n ∪ Ω2,n) = lim
n→∞

((
1

λ1,q(Ω1,n)

) q
1−q

+

(
1

λ1,q(Ω2,n)

) q
1−q
) q−1

q

.

By using that q − 1 < 0 and that λ1,q(Ω2,n) converges to 0, we conclude. �

Remark 3.4. The previous results can be easily iterated. Thus, for an open set of the form

Ω =
⋃
n∈N

Ωn, with Ωi ∩ Ωj = ∅ for i 6= j,

we get for 1 ≤ q < N/(N − 1)

λ1,q(Ω) = hq(Ω) = inf
{
hq(Ωn) : n ∈ N

}
= inf

{
λ1,q(Ωn) : n ∈ N

}
,
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and for 0 < q < 1

λ1,q(Ω) =

(∑
n∈N

(
1

λ1,q(Ωn)

) q
1−q
) q−1

q

,

provided that λ1,q(Ωn) > 0, for every n ∈ N.

Thanks to the formula of Lemma 3.3, we can highlight some weird phenomena of λ1,q and hq,
for 0 < q < 1. In particular, we show that in general it is no more true that λ1,q = hq.

Example 3.5. In dimension N = 2, we take the open set

Ω = Br(x0) ∪BR(y0), with 0 < r,R and |x0 − y0| > r +R.

We take the following restriction

(3.2)
r

R
<

√
7− 2

3
.

For q = 1/2, we are going to show that for this set we have

λ1, 12
(Ω) < h 1

2
(Ω).

By definition, we have

h 1
2
(Ω) = inf

H1(∂E1) +H1(∂E2)

(|E1|+ |E2|)2 :
E1 b Br(x0) open set with smooth boundary
E2 b BR(y0) open set with smooth boundary

E1 ∪ E2 6= ∅
,

 .

By using the Isoperimetric Inequality, we immediately see that this is the same as

h 1
2
(Ω) = inf

{
H1(∂Br1(x1)) +H1(∂Br2(y1))

(|Br1(x1)|+ |Br2(y1)|)2 :
Br1(x1) b Br(x0) ball
Br2(y1) b BR(y0) ball

, r1 + r2 > 0

}

=
2

π
inf

{
r1 + r2

(r2
1 + r2

2)
2 : r1 + r2 > 0, r1 < r and r2 < R

}
.

In order to determine this infimum, we need to find the infimum of the function

ψ(t, s) =
t+ s

(t2 + s2)
2 , for (t, s) ∈

(
[0, r)× [0, R)

)
\ {(0, 0)}.

We first observe that ψ has no internal critical points: indeed, we have

∇ψ(t, s) = (0, 0) ⇐⇒
{
t2 + s2 = 4 (t+ s) t
t2 + s2 = 4 (t+ s) s

Since t+s > 0, the last two equations imply that each critical point should have t = s. By spending
this information in one of the two equations, we would get

2 t2 = 8 t2.

Thus, the only critical point would be (0, 0), which however lays on the boundary. We now study
the restriction of ψ to the boundary of its domain of definition. We first observe that

ψ(t, 0) =
1

t3
≥ 1

r3
= ψ(r, 0), for 0 < t ≤ r,

and

ψ(0, s) =
1

s3
≥ 1

R3
= ψ(0, R), for 0 < s ≤ R.
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Since by (3.2) we have r < R, points of the form (t, 0) can not be minimizers of ψ. We now study
the restriction ψ(t, R): we have

d

dt
ψ(t, R) ≥ 0 ⇐⇒ t2 +R2 ≥ 4 (t+R) t

⇐⇒ 3 t2 + 4R t−R2 ≤ 0

⇐⇒ −2 +
√

7

3
R ≤ t ≤ −2 +

√
7

3
R.

By recalling that t ∈ (0, r] and the restriction (3.2), we obtain that the last condition is always
satisfied. Thus, the function t 7→ ψ(t, R) is increasing, which implies that

ψ(0, R) < ψ(t, R) < ψ(r,R), for t ∈ (0, r).

Thus, points of the form (t, R) can not be minimizers of ψ. Finally, we need to study the restriction
ψ(r, s): by symmetry, we have

d

ds
ψ(r, s) ≥ 0 ⇐⇒ −2 +

√
7

3
r ≤ s ≤ −2 +

√
7

3
r.

Thus, on (0, R) we have two intervals of monotonicity: first ψ(r, s) increases, and then it decreases.
In particular, we get

ψ(r, s) > min{ψ(r, 0), ψ(r,R)}, for s ∈ (0, R).

By the previous discussion, the last two values have already been shown not to correspond to the
minimum of ψ. At last, we get

ψ(t, s) ≥ ψ(0, R) =
1

R3
, for (t, s) ∈

(
[0, r)× [0, R)

)
\ {(0, 0)},

that is the function ψ is minimal for t = 0 and s = R. By going back to our Cheeger constant
h1/2(Ω), we found that

h 1
2
(Ω) =

2

π R3
= h 1

2
(BR(y0)),

where the last identity follows from (2.1) with N = 2 and q = 1/2. By relying on this identity, we
can finally prove that λ1,1/2(Ω) < h1/2(Ω). Indeed, by Lemma 3.3 with q = 1/2, we have

λ1, 12
(Ω) =

(
1

λ1, 12
(Br(x0))

+
1

λ1, 12
(BR(y0))

)−1

< λ1, 12
(BR(y0)).

Finally, we can estimate the last term by Lemma 2.2, this entails that

λ1, 12
(Ω) < λ1, 12

(BR(y0)) ≤ h 1
2
(BR(y0)) = h 1

2
(Ω).

This gives the desired conclusion.

Remark 3.6. Though in general λ1,q(Ω) does not coincide with hq(Ω) for 0 < q < 1, we recall that
it is possible to give a characterization of sets for which λ1,q(Ω) is positive, in terms of isoperimetric–
like constants. This is due to Maz’ya, we refer to [34, Theorem 2.1.4] for more details.
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4. Comparison of generalized Cheeger’s constants

The next result shows that for an open set, all the generalized Cheeger constants are actually
equivalent, provided q > 1. In light of Lemma 2.2, this result is implicitly contained in [34, Theorem
15.4.1]. We give however a different proof, based on PDE methods. This also produces an explicit
constant, which is very likely not optimal.

Theorem 4.1 (The case q > 1). Let N ≥ 2. For every 1 < q < N/(N − 1), there exists an explicit
constant C = C(N, q) > 0 such that for every open set Ω ⊆ RN we have(

N ω
1
N

N

)N−Nq (
h1(Ω)

)N
q −(N−1)

≤ hq(Ω) ≤ C
(
h1(Ω)

)N
q −(N−1)

.

The leftmost inequality is sharp, equality being attained for N−dimensional balls.

Proof. The first inequality is quite easy, it is a straightforward consequence of the Isoperimetric
Inequality. Indeed, for every E b Ω with smooth boundary, we can write

(4.1)
HN−1(∂E)

|E|
1
q

=

(
HN−1(∂E)

|E|

)N
q −(N−1)

(
HN−1(∂E)

|E|N−1
N

)N−Nq
.

By using the Isoperimetric Inequality for the second term and the fact that N −N/q > 0 for q > 1,
we have (

HN−1(∂E)

|E|N−1
N

)N−Nq
≥
(
N ω

1
N

N

)N−Nq
.

This immediately gives the leftmost inequality, together with the equality cases, in light of (2.1).

The converse inequality is more delicate. We will adapt an idea taken from [4, Theorem 9], which
involves an L∞ bound for the so-called p−torsion function of a set.

We first suppose that Ω ⊆ RN is bounded, with smooth boundary. For every 1 < p < 2, we take
wΩ,p to be the p−torsion function of Ω, i.e. wp,Ω ∈W 1,p

0 (Ω) is the unique weak solution belonging

to W 1,p
0 (Ω) of the equation

−∆pu = 1, in Ω.

In other words, we haveˆ
Ω

〈|∇wΩ,p|p−2∇wΩ,p,∇ϕ〉 dx =

ˆ
Ω

ϕdx, for every ϕ ∈W 1,p
0 (Ω).

We observe that wΩ,p ∈ L∞(Ω), by standard regularity results (see for example [13, Proposition
3.1] or [15, Proposition 6] for an explicit estimate). Moreover, since we are assuming that Ω is
smooth, we have that wΩ,p is continuous up to the boundary (see for example [38, Corollary 4.2]).
It is well-known that if we extend wΩ,p by zero outside Ω, we get that this extension weakly verifies

−∆pwΩ,p ≤ 1, in RN ,

i.e.

(4.2)

ˆ
RN
〈|∇wΩ,p|p−2∇wΩ,p,∇ϕ〉 dx ≤

ˆ
RN

ϕdx, for every ϕ ∈W 1,p
0 (RN ), ϕ ≥ 0.
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Accordingly, for4 1 < q < N/(N − 1) by Proposition A.1 it satisfies the following L∞ − Lq local
bound

(4.3) ‖wΩ,p‖L∞(QR/2(x0)) ≤ CN,p,q

( 
QR(x0)

(wΩ,p)
q dx

) 1
q

+R
p
p−1

 ,
for every cube

QR(x0) =

N∏
i=1

(xi0 −R, xi0 +R), with x0 = (x1
0, . . . , x

N
0 ).

We now set
M = ‖wΩ,p‖L∞(RN ) = ‖wΩ,p‖L∞(Ω).

We observe that there exists a point x ∈ Ω such that

M = wΩ,p(x).

We fix such a point x and, without loss of generality, we can assume that it coincides with the
origin and we will omit to indicate it.

Finally, we take η to be a Lipschitz cut-off function such that

0 ≤ η ≤ 1, η ≡ 1 on QR/2, η ≡ 0 on RN \QR,
and

‖∇η‖L∞ ≤
2

R
,

for a radius R > 0 whose choice will be declared in a while. We use ϕ = η wΩ,p/‖η wΩ,p‖Lq(Ω) as a
test function in the definition of λp,q(Ω). This yields

(
λp,q(Ω)

) 1
p ≤

(ˆ
QR

|∇wΩ,p|p ηp dx
) 1
p

+

(ˆ
QR

|∇η|p (wΩ,p)
p dx

) 1
p

(ˆ
QR

|η wΩ,p|q dx
) 1
q

.

We now observe that (ˆ
QR

|∇η|p (wΩ,p)
p dx

) 1
p

≤ 21+N
p M R

N−p
p ,

thanks to the properties of η. For the first term in the numerator, we use the following Caccioppoli
inequality

(4.4)

ˆ
QR

|∇wΩ,p|p ηp dx ≤ pp
ˆ
QR

|∇η|p (wΩ,p)
p dx+ p

ˆ
QR

ηp wΩ,p dx.

This easily follows from (4.2), by inserting the test function ϕ = ηp wΩ,p. Indeed, with such a choice
we get ˆ

QR

|∇wΩ,p|p ηp dx+ p

ˆ
QR

〈|∇wΩ,p|p−2∇wΩ,p,∇η〉 ηp−1 wΩ,p dx ≤
ˆ
QR

ηp wΩ,p dx.

4Observe that if 1 < p < 2 ≤ N , then

q <
N

N − 1
<

N p

N − p
= p∗.
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On the left-hand side, by using Young’s inequality we get for every δ > 0

p

ˆ
QR

〈|∇wΩ,p|p−2∇wΩ,p,∇η, 〉ηp−1 wΩ,p dx ≥ −δ (p− 1)

ˆ
QR

|∇wΩ,p|p ηp dx

− δ1−p
ˆ
QR

|∇η|p (wΩ,p)
p dx.

The last two equations in display give

(1− δ (p− 1))

ˆ
QR

|∇wΩ,p|p ηp dx ≤ δ1−p
ˆ
QR

|∇η|p (wΩ,p)
p dx+

ˆ
QR)

ηp wΩ,p dx.

By choosing δ = 1/p, we then obtain (4.4), as claimed. In turn, from (4.4) and the properties of η,
we get (ˆ

QR

|∇wΩ,p|p ηp dx
) 1
p

≤
(
2p+N ppRN−pMp + 2N pM RN

) 1
p

= R
N−p
p
(
2p+N ppMp + 2N pM Rp

) 1
p .

Finally, for the denominator we use that(ˆ
QR

|η wΩ,p|q dx
) 1
q

≥

(ˆ
QR/2

(wΩ,p)
q dx

) 1
q

≥ 1

CN,p,q
M R

N
q −R

p
p−1 R

N
q ,

thanks to (4.3) with R/2 in place of R and thanks to the choice of the cube, which is centered at
the maximum point of wΩ,p. By collecting all the estimates, we obtained(

λp,q(Ω)
) 1
p ≤ R

N−p
p −

N
q

(
2p+N ppMp + 2N pM Rp

) 1
p

1

CN,p,q
M − R

p
p−1

.

It is now time to declare the choice of R: we choose it in such a way that

M

CN,p,q
− R

p
p−1 = θ

M

CN,p,q
,

for 0 < θ < 1, that is

R =

(
(1− θ) M

CN,p,q

) p−1
p

.

This finally gives

(
λp,q(Ω)

) 1
p ≤

((
(1− θ) M

CN,p,q

) p−1
p

)N−p
p −

N
q

(
2p+N pp + 2N p

(
1− θ
CN,p,q

)p−1
) 1
p

θ

CN,p,q

.

We can now observe that

M = ‖wΩ,p‖L∞(Ω) ≥
(

1

λp(Ω)

) 1
p−1

,
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thanks to [13, Theorem 1.3] (see also [15, Proposition 6]). By using this estimate and the fact that

N − p
p
− N

q
< 0,

we get (
λp,q(Ω)

) 1
p ≤ ΘN,p,q,θ

(
λp(Ω)

) 1
p (Nq −

N−p
p )

,

where

ΘN,p,q,θ =

((
1− θ
CN,p,q

) p−1
p

)N−p
p −

N
q

(
2p+N pp + 2N p

(
1− θ
CN,p,q

)p−1
) 1
p

θ

CN,p,q

,

for every 0 < θ < 1. By taking the limit as p goes to 1 and using Lemma 2.4, Lemma 2.2 and
Proposition A.1, we get

hq(Ω) ≤ ΘN,1,q,θ

(
h1(Ω)

)N
q −(N−1)

,

with

ΘN,1,q,θ =
3 · 2N CN,1,q

θ
.

We can finally let θ go to 1 and obtain the claimed estimate, under the assumption that Ω is
bounded, with constant given by

C = 3 · 2N CN,1,q.

Finally, in order to remove the boundedness and smoothness assumption on Ω, it is sufficient to
take an exhaustion {Ωn}n∈N of Ω made of open bounded smooth sets, see [22, Proposition 8.2.1]
for the existence of such an exhaustion. By using that

lim
n→∞

hq(Ωn) = hq(Ω), for every 1 ≤ q < N

N − 1
,

we can pass to the limit in the estimate previously obtained and conclude. �

Remark 4.2. It would be interesting to compute the sharp constant C for the inequality

hq(Ω) ≤ C
(
h1(Ω)

)N
q −(N−1)

, 1 < q <
N

N − 1
,

among all possible open sets. The constant obtained with the previous proof is probably quite
rough: its precise expression can be obtained by looking at the value of CN,1,q obtained in the proof
of Proposition A.1.

For 0 < q < 1, the previous result holds only partially. More precisely, we have the following

Proposition 4.3 (The case 0 < q < 1). Let N ≥ 2, for every 0 < q < 1 and every open set Ω ⊆ RN
we have

hq(Ω) ≤
(
N ω

1
N

N

)N−Nq (
h1(Ω)

)N
q −(N−1)

,

with equality for N−dimensional balls. Moreover, there exists an open set Ω ⊆ RN such that

h1(Ω) > 0 and hq(Ω) = 0.
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Proof. The upper bound on hq(Ω) can be proved as the lower bound in Theorem 4.1. It is sufficient
to observe that in the right-hand side of (4.1), the exponent N − N/q is now negative. Thus, by
using the Isoperimetric Inequality as above, this time we get an upper bound (still sharp).

We now take Ω = RN−1 × (−2, 2). Since Ω is bounded in the direction eN , by using that
λ1,1(Ω) = h1(Ω), we immediately get that h1(Ω) > 0. In order to prove that hq(Ω) = 0, we take
the ellipsoid

EL =

{
x = (x1, . . . , xN ) ∈ RN :

N−1∑
i=1

x2
i

L2
+ x2

N < 1

}
,

for L > 1. Its volume is simply given by |EL| = ωN L
N−1. The surface measure of its boundary is

given by

HN−1(∂EL) = 2

ˆ
B′L(0)

√
1 + |∇f(x′)|2 dx′,

where x′ = (x1, . . . , xN−1) and B′L(0) is the (N−1)−dimensional ball centered at the origin, having
radius L. The function f is given by

f(x′) =

√
1− |x

′|2
L2

, for |x′| < L.

With simple computations, we see that

HN−1(∂EL) = 2

ˆ
B′L(0)

√
1 + |∇f(x′)|2 dx′ = 2

ˆ
B′L(0)

√
1 +

1

L2

|x′|2
L2 − |x′|2

dx′

= 2 (N − 1)ωN−1

ˆ L

0

√
1 +

1

L2

%2

L2 − %2
%N−2 d%

= 2 (N − 1)ωN−1 L
N−1

ˆ 1

0

√
1 +

1

L2

t2

1− t2
tN−2 dt

≤ 2 (N − 1)ωN−1 L
N−1

ˆ 1

0

√
1

1− t2
tN−2 dt.

We thus get

hq(Ω) ≤ H
N−1(∂EL)

|EL|
1
q

= CN,q L
(N−1) (1− 1

q ).

By taking the limit as L goes to +∞ and using that 0 < q < 1, we get the desired conclusion. �

5. Generalized Cheeger’s constants for convex planar sets

5.1. Unbounded convex sets. For an open set Ω ( RN , we will use the following notation

dΩ(x) = min
y∈∂Ω

|x− y|, for x ∈ Ω,

for the distance function. We also introduce the notation

rΩ = sup
x∈Ω

dΩ(x).

We recall that such a quantity is called inradius. This coincides with the supremum of the radii of
open balls entirely contained in Ω. Finally, we define

M(Ω) :=
{
x ∈ Ω : BrΩ(x) ⊆ Ω

}
,
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Figure 1. The construction in Lemma 5.1: the leftmost point is x, while the
rightmost one is xm, with m ≥ n+ 1. In dashed line, the radius r. The black dot
is xn, whose distance from the boundary ∂Ω is at least the length of the segment
in bold line.

the high ridge set of Ω.
The following technical result will be useful in a while. This should be well-known.

Lemma 5.1. Let Ω ⊆ RN an unbounded open convex set. For every 0 < r < rΩ, there exists a
sequence of points {xn}n∈N ⊆ Ω, all laying on the same line, such that

lim
n→∞

|xn| = +∞ and Br(xn) ⊆ Ω.

Moreover, if M(Ω) 6= ∅, the previous result is valid for r = rΩ, as well.

Proof. Let us take 0 < r < rΩ, by definition there exists a point x ∈ Ω such that Br(x) ⊆ Ω. For
every ω ∈ SN−1 we set

Lω(x) =
{
x ∈ RN : x = x+ t ω for some t ≥ 0

}
,

i.e. the half-line originating from x, with direction ω. By convexity, we have that Lω(x) ∩ Ω is a
segment. Since Ω is unbounded, there exists a direction ω0 ∈ SN−1 such that

Lω0(x) ∩ Ω = Lω0(x).

We now choose the following sequence of points

xn = x+ n r ω0 ∈ Ω, for every n ∈ N.

We have to prove that Br(xn) ⊆ Ω: at this aim, we are going to show that dΩ(xn) ≥ r. We fix
n ∈ N \ {0} and take m ≥ n + 1. We then consider the convex hull Tm of the disk Br(x) and the
point xm. Of course, we have that Tm ⊆ Ω, by convexity of the latter. We then have

dΩ(xn) ≥ dist(xn, ∂Tm).

By simple geometric considerations (see Figure 1), we see that

dist(xn, ∂Tm) ≥
(

1− n

m

)
r, for m ≥ n+ 1.

By joining the last two estimates and taking the limit as m goes to ∞, we get the conclusion. �
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In the next geometric results, we restrict ourselves to dimension N = 2 and we study the
properties of unbounded convex sets, with finite inradius. In higher dimension, the picture would
be slightly more complicate. It is useful to recall that for a convex set, the high ridge set M(Ω),
if it is not empty, is a closed convex set, with empty interior. Actually, it coincides with the set of
maximum points of the distance function

dΩ(x) = min
y∈∂Ω

|x− y|, for x ∈ Ω,

which is concave, by convexity of Ω.

Lemma 5.2. Let Ω ⊆ R2 be an unbounded open convex set, with rΩ < +∞. Let us suppose that
M(Ω) 6= ∅. Then, up to a rigid movement, it holds

(5.1) [0,+∞)× (−rΩ, rΩ) ⊆ Ω ⊆ R× (−rΩ, rΩ).

Proof. We first observe that in this case, since Ω is unbounded, we must have that M(Ω) is
unbounded as well. This is a plain consequence of Lemma 5.1 applied with r = rΩ and the
convexity of M(Ω). This yields that M(Ω) must contain a half-line. Up to a rigid movement, we
can suppose that this coincides with [0,+∞)× {0}. Since this half-line is made of centers of disks
with maximal radius contained in Ω, we also get that

[0,+∞)× (−rΩ, rΩ) ⊆ Ω.

Let us now suppose that there exists a point z ∈ Ω \ (R × (−rΩ, rΩ)). By convexity, then Ω must
contain the convex hull of {z} and [0,+∞) × (−rΩ, rΩ). It is easy to see that such a set contains
a disk with radius strictly larger than rΩ. This would violate the maximality of rΩ. In conclusion,
we get that

Ω \ (R× (−rΩ, rΩ)) = ∅,
and thus (5.1) follows. �

We now inquire about the structure of an unbounded planar convex set with finite inradius, hav-
ing empty high ridge set. We have the following result, whose proof is lenghty, though elementary.

Lemma 5.3. Let Ω ⊆ R2 be an unbounded open convex set, with rΩ < +∞. Let us suppose that
M(Ω) = ∅. Then there exists a convex function f : (−rΩ, rΩ) → R with at least one of the two
limits

lim
t→(−rΩ)+

f(t), lim
t→(rΩ)−

f(t),

equal to +∞, such that, up to a rigid movement, we have

Ω =
{

(x1, x2) ∈ R2 : −rΩ < x2 < rΩ and x1 > f(x2)
}
.

Proof. We set S1
+ = {ω = (cosϑ, sinϑ) : ϑ ∈ [0, π)}. For every ω ∈ S1

+, we define Πω : R2 → 〈ω⊥〉
the orthogonal projection on 〈ω⊥〉, given by

Πω(x) = x− 〈x, ω〉ω, for every x ∈ R2.

We need to show at first that, under the standing assumptions on Ω, the following property holds
true:

(5.2) there exists a unique ω0 ∈ S1
+ such that Πω0

(Ω) is bounded.

Indeed, assume this were not true, then we would have two possibilities:
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(i) either there exist (at least) two distinct ω1, ω2 ∈ S1
+ such that both Πω1(Ω) and Πω2(Ω) are

bounded;

(ii) or the projection Πω(Ω) is unbounded, for every ω ∈ S1
+.

In case (i), let us set Ωi = Πωi(Ω), for i = 1, 2. By assumption, these are two non-collinear segments.
Accordingly, we have that Π−1

ωi (Ωi) are two non-parallel strips. By construction, we would have

Ω ⊆ Π−1
ω1

(Ω1) ∩Π−1
ω2

(Ω2),

and the latter is a bounded set. This would contradict the fact that Ω is unbounded and thus case
(i) can not hold.

We now suppose that case (ii) holds. By Lemma 5.1, we get in particular that Ω must contain
a half-line L1. Up to a rigid movement, we can suppose that L1 has direction e1 = (1, 0). We now
consider the projection Πe1(Ω), by assumption this is a one-dimensional unbounded convex set, i.e.
it contains a half-line. By convexity, this entails that Ω must contain another half-line L2, such that
L1 6= L2. More precisely, L1 and L2 are not parallel, since the image through Πe1

of every half-line
parallel to L1 would be a single point. Since Ω is convex, it must contain the convex hull of L1∪L2.
The latter contains arbitrarily large disks, since L1 and L2 are not parallel. This contradicts the
fact that rΩ < +∞.

In conclusion, we established the validity of (5.2). Without loss of generality, we can suppose
that ω = e1 and that Πe1

(Ω) = (−a, a), for a suitable a > 0. Thus, we have that

Ω ⊆ R× (−a, a).

Observe that a ≥ rΩ: indeed, for every ε > 0, we have that Ω contains at least a disk of radius
rΩ− ε. The orthogonal projection of this disk along the direction e1 is a segment of length 2 rΩ− ε,
thus (−a, a) must contain a segment having this length. By arbitrariness of ε, we get that a ≥ rΩ,
as claimed.

We have already observed that Ω must contain at least a half-line L1. On the other hand, it can
not contain a line, otherwise Ω would coincide with a strip. Since for a strip the high ridge set is
not empty, we would get a contradiction with the assumption M(Ω) = ∅.

For every x2 ∈ (−a, a), we now define

f(x2) = inf{x1 : (x1, x2) ∈ Ω} and g(x2) = sup{x1 : (x1, x2) ∈ Ω}.

By construction, we have (f(x2), g(x2)) × {x2} ⊆ Ω. Since Ω can not contain a line, for every
x2 ∈ (−a, a) we have that either f(x2) > −∞ or g(x2) < +∞. Let us fix x2 ∈ (−a, a), without loss of
generality we suppose that f(x2) > −∞. Then we must have g(x2) = +∞: indeed, if g(x2) < +∞,
then Ω has to contain the convex hull of the half-line L1 and the segment (f(x2), g(x2)) × {x2}.
Such a convex hull contains in particular the half-line (f(x2),+∞) × {x2}, thus contradicting the
definition of g(x2).

We pick t ∈ (−a, a) such that t 6= x2, we show that we must have f(t) > −∞ and g(t) = +∞,
as well. We already know that these quantities can not be both infinite or both finite. We have
to exclude the case f(t) = −∞ and g(t) < +∞. In this case, Ω would contain the convex hull of
the two half-lines (−∞, g(t))×{t} and (f(x2),+∞)×{x2}. Such a convex hull is given by a strip,
thus Ω would contain a line, which is not possible.

From this discussion, we finally obtain that

f(x2) > −∞ and g(x2) = +∞, for every − a < x2 < a.
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It is not difficult to see that f is convex: let us take τ ∈ (0, 1) and x2, t2 ∈ (−a, a). Let x1 and t1 be
such that (x1, x2) ∈ Ω and (t1, t2) ∈ Ω. By convexity, we have (τ x1+(1−τ) t1, τ x2+(1−τ) t2) ∈ Ω,
as well. Thus, by definition of f we get

f(τ x2 + (1− τ) t2) ≤ τ x1 + (1− τ) t1.

By taking first the infimum over the admissible x1 and then over the admissible t1, we finally obtain

f(τ x2 + (1− τ) t2) ≤ τ f(x2) + (1− τ) f(t2).

The fact that Ω coincides with the epigraph of f follows by its construction and the convexity of
Ω. We also observe that actually it holds a = rΩ. Indeed, we already proved that a ≥ rΩ: on the
other hand, if a > rΩ by the previous properties we would get that Ω contains the two half-lines

(f(rΩ),+∞)× {rΩ} and (f(−rΩ),+∞)× {−rΩ}.
Then it must contain their convex hull, as well. In particular, Ω would contain an open disk of
radius rΩ, violating the fact that M(Ω) = ∅.

Finally, the fact that f must blow-up in at least one of the extrema rΩ or −rΩ follows from a
similar argument: if both limits were finite, then Ω would contain an open half-strip with width
2 rΩ. In particular, we would have again M(Ω) 6= ∅. �

5.2. An existence result. The main result of this section is the following

Theorem 5.4. Let Ω ⊆ R2 be an open convex set with rΩ < +∞. Then, for every 1 < q < 2 we
have

(5.3) hq(Ω) = inf

{
H1(∂E)

|E|
1
q

: E ⊆ Ω is a bounded open convex set with |E| > 0

}
.

Moreover, the infimum is attained if and only if

M(Ω) :=
{
x ∈ Ω : BrΩ(x) ⊆ Ω

}
6= ∅.

Proof. We divide the proof in 4 parts, for ease of readability.

Part 1: reduction to connected sets. Let us take an open set E b Ω with smooth boundary
and let us suppose that E = E1 ∪ E2, with E1 and E2 disjoint. Without loss of generality, we can
suppose that

H1(∂E1)

|E1|
1
q

≤ H
1(∂E2)

|E2|
1
q

.

By using the subadditivity of the concave map τ 7→ τ1/q and Lemma 3.1 with β = 1, we have

H1(∂E1) +H1(∂E2)

(|E1|+ |E2|)
1
q

>
H1(∂E1) +H1(∂E2)

|E1|
1
q + |E2|

1
q

> min

{
H1(∂E1)

|E1|
1
q

,
H1(∂E2)

|E2|
1
q

}
=
H1(∂E1)

|E1|
1
q

.

This estimate guarantees that we can restrict the minimization to connected open sets with smooth
boundary E b Ω.

Part 2: reduction to convex sets. As already observed in [36, Theorem 1.2], if we take an open
connected set E b Ω with smooth boundary, then the convex hull Ech of E is such that

|Ech| ≥ |E| and H1(∂Ech) ≤ H1(∂E).
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In the latter, we crucially used that we are in dimension N = 2. See for example [24, Proposition
5] for a proof of this result in the wider context of finite perimeter sets. This shows that

hq(Ω) ≥ inf

{
H1(∂E)

|E|
1
q

: E ⊆ Ω is a bounded open convex set with |E| > 0

}
.

In order to prove the reverse equality, we take an admissible convex set E ⊆ Ω. We fix x0 ∈ Ω and
for every t ∈ (0, 1) define the rescaled set Et = t (E − x0) + x0. By construction, we have Et b Ω,
for every t ∈ (0, 1). We now use that for the open convex set Et, there exists a sequence {Et,n}n≥n0

of smooth open convex sets, such that

lim
n→∞

|Et,n| = |Et| and lim
n→∞

H1(∂Et,n) = H1(∂Et).

Moreover, since Et b Ω, this sequence can be constructed so that Et,n b Ω for n large enough
(depending on t), see Lemma B.1 below for these properties, for example. Thus, we obtain

hq(Ω) ≤ lim
n→∞

H1(∂Et,n)

|Et,n|
1
q

=
H1(∂Et)

|Et|
1
q

= t1−
2
q
H1(∂E)

|E|
1
q

.

By arbitrariness of both 0 < t < 1 and E, this is enough to get (5.3).

Part 3: existence. We do not assume that Ω is bounded, but only that Ω contains at least a ball
of maximal radius rΩ. We recall that M(Ω) is a convex closed set, with empty interior. We have
two distinguish two cases:

(i) either M(Ω) is bounded;

(ii) or M(Ω) is unbounded.

In case (i), it is not difficult to see that Ω must be bounded, as well. Indeed, suppose by contradiction
that Ω is unbounded. From Lemma 5.1, we could infer existence of a infinite sequence of disks
BrΩ(xn) with centers diverging at infinity, all contained in Ω. Thus, {xn}n∈N ⊆ M(Ω) and this
would violate the boundedness of M(Ω).

If Ω is bounded, existence can be proved by using the Direct Method in a standard way. We
take {En}n∈N a minimizing sequence made of convex sets contained in Ω, such that |En| > 0 for
every n ∈ N. We can assume that

(5.4)
H1(∂En)

|En|
1
q

< hq(Ω) +
1

n+ 1
, for every n ∈ N.

In particular, the leftmost quantity is uniformly bounded by hq(Ω) + 1. By applying the Isoperi-
metric Inequality to each En, we get

(5.5)
2
√
π

hq(Ω) + 1
< |En|

1
q−

1
2 , for every n ∈ N.

Thanks to the fact that q < 2, this gives a uniform lower bound on |En|. We now observe that, from
the sequence of open sets {En}n∈N contained in the compact set Ω, we can extract a subsequence
(not relabeled) that converges with respect to the Hausdorff complementary topology5 to an open

5We recall that this means that

lim
n→∞

max

{
max

x∈Ω\En
dist(x,Ω \ E), max

x∈Ω\E
dist(x,Ω \ En)

}
= 0,

see for example [27, Définition 2.2.7].
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set E ⊆ Ω (see [27, Corollaire 2.2.24]). Moreover, by [27, point 8, page 33] we know that E is still
convex. We also observe that for convex sets, the Hausdorff convergence implies the convergence
in the sense of characteristic functions, as well. This means that we have

lim
n→∞

‖1En − 1E‖L1(Ω) = 0,

and thus by [27, Proposition 2.3.6] we get

lim
n→∞

|En| = |E| and H1(∂E) = |∇1E |(RN ) ≤ lim inf
n→∞

|∇1En |(RN ) = lim inf
n→∞

H1(∂En).

The first fact, in conjunction with (5.5), shows in particular that |E| > 0. From (5.4) and the
previous limits, we eventually get that E must be a minimizer.

Let us consider the case (ii). In this case Ω is unbounded, as well. By Lemma 5.2, we know that

[0,+∞)× (−rΩ, rΩ) ⊆ Ω ⊆ R× (−rΩ, rΩ),

up to a rigid movement. Once we gained this geometric information on Ω, we can proceed to prove
existence of an optimal set. We start by taking a minimizing sequence {En}n∈N of open convex
sets as above. We still have the bounds (5.4) and (5.5). We need to infer some compactness on
{En}n∈N, by paying attention to the fact that now Ω is unbounded. Here we will crucially exploit
that 1 < q < 2. Indeed, this assumption enables us to use the following “four terms geometric
inequality”

C1 diam(En) ≤
(
rEn

) 1
q−1

(
H1(∂En)

|En|
1
q

) q
q−1

,

for a constant C1 = C1(q) > 0 which degenerates as q ↗ 2, see [9, Proposition B.6]. By using that
rEn ≤ rΩ < +∞, the fact that 1 < q < 2 and (5.4), we finally obtain that

diam(En) ≤ C2, for every n ∈ N,

with C2 not depending on n. In particular, by (5.1), we get that {En}n∈N is a sequence of convex
sets with equi-bounded diameters contained in the strip R × (−rΩ, rΩ). Thus, for every n ∈ N,

there exists a translated copy Ẽn of En such that

Ẽn ⊆ (0, C2)× (−rΩ, rΩ) ⊆ Ω,

where we used again (5.1). We can now repeat the argument of the case (i) above, applied to the

sequence {Ẽn}n∈N, to infer existence.

Step 4: non-existence. We are left with proving that if M(Ω) = ∅, then the minimization
problem does not admit a solution. We first observe that this condition assures that Ω is unbounded.
According to Lemma 5.3, the set Ω has a very peculiar form: up to a rigid movement, it is given by

Ω =
{

(x1, x2) ∈ R2 : −rΩ < x2 < rΩ and x1 > f(x2)
}
,

for some convex function f : (−rΩ, rΩ) → R, which blows-up to +∞ at (at least) one of the two
boundary points x2 = rΩ or x2 = −rΩ. Thus, if E ⊆ Ω would be an optimal set, we could translate
it rightward and slightly scale it by a factor t > 1, without exiting from Ω (see Figure 2). By the
scaling properties of the ratio H1(·)/| · |1/q, this would violate the minimality of E. �
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E

Figure 2. An unbounded convex sets with finite inradius, such that the high
ridge set M(Ω) is empty. The subset E ⊆ Ω can be moved “rightward” and then
“inflated”, without exiting from Ω.

Remark 5.5 (Generalized principal frequencies). The previous existence result for hq(Ω) = λ1,q(Ω)
is a bit surprising, since an analogous statement does not hold for

λp,q(Ω) = inf
u∈C∞0 (Ω)

{ˆ
Ω

|∇u|p dx :

ˆ
Ω

|u|q = 1

}
= inf
u∈W 1,p

0 (Ω)

{ˆ
Ω

|∇u|p dx :

ˆ
Ω

|u|q = 1

}
,

with 1 < p < q. Indeed, let us consider the half-strip

Ω = (0,+∞)× (−1, 1),

for which we haveM(Ω) 6= ∅. We can show that this time the infimum value λp,q(Ω) is not attained

in W 1,p
0 (Ω). To see this, it is sufficient to notice that

λp,q(Ω) = λp,q(Ω + a e1),

for every a ∈ R, since sharp Poincaré-Sobolev constants are invariant by translations. On the other
hand, for a > 0 we have

Ω + a e1 ( Ω.

Assume that u ∈ W 1,p
0 (Ω) is a minimizer for λp,q(Ω). Without loss of generality, we can assume

this to be positive. Then

v(x, y) = u(x, y − a),

would be a positive minimizer for λp,q(Ω + a e1), as well. By extending v to 0 to Ω \ (Ω + a e1), we
would get

v ∈W 1,p
0 (Ω),

and ˆ
Ω

|∇v|p dx = λp,q(Ω)

(ˆ
Ω

|v|q dx
) p
q

.

This shows that v is a positive minimizer for λp,q(Ω). By optimality, it must be a weak solution of

−∆pv = λp,q(Ω) ‖v‖p−qLq(Ω) v
q−1, in Ω.

In particular, v is a weakly p−superhamonic function in Ω, not identically vanishing. By the strong
minimum principle, we get a contradiction, since v is identically zero on the set

Ω \ (Ω + a e1),
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which has positive measure.

We conclude this section, by showing that for 0 < q < 1 the situation abruptly changes. Indeed,
for unbounded sets the problem hq(Ω) never has a solution.

Lemma 5.6. Let Ω ⊆ R2 be an unbounded open convex set, with rΩ < +∞. If 0 < q < 1, then we
have

hq(Ω) = 0.

Proof. By appealing to Lemma 5.1, there exists a sequence of disks Br(xn) ⊆ Ω with fixed radius
and centers diverging at infinity. In particular, by taking as En the convex hull of Br(x0) and
Br(xn), we get

hq(Ω) ≤ lim
n→∞

H1(En)

|En|
1
q

= lim
n→∞

2π r + 2 |x0 − xn|
(π r2 + 2 r |x0 − xn|)

1
q

= 0,

thanks to the fact that 1/q > 1. Thus, if Ω is an unbounded open set, we have hq(Ω) = 0.
Accordingly, we can not have existence of an optimal set. �

Appendix A. An a priori local L∞ bound

In what follows, for 1 ≤ p < N we will indicate by TN,p the sharp constant in the Sobolev
inequality, that is

TN,p = sup
ϕ∈C∞0 (RN )

{
‖ϕ‖Lp∗ (RN ) : ‖∇ϕ‖Lp(RN ) = 1

}
.

Its explicit expression can be found for example in [37, equation (2)]. For our scopes, it is useful to
recall that

(A.1) lim
p↘1

TN,p = TN,1 =
1

N ω
1
N

N

,

where on the right-hand side we can recognize the reciprocal of the sharp Euclidean isoperimetric
constant. The following result is well-known, but we need to keep track of the relevant constant,
as p goes to 1.

Proposition A.1. Let 1 < p < 2 and let u ∈ W 1,p
loc (RN ) ∩ L∞loc(RN ) be a non-negative local weak

subsolution of

−∆pu = 1, in RN .
Then, for every p ≤ q ≤ p∗ there exists a constant CN,p,q > 0 such that for every cube QR0

(x0) we
have

‖u‖L∞(QR0/2(x0)) ≤ CN,p,q

( 
QR(x0)

|u|q dx

) 1
q

+R
p
p−1

0

 .
Moreover, for every fixed 1 < q < N/(N − 1) the constant CN,p,q > 0 has a finite positive limit
CN,1,q, as p goes to 1.

Proof. We will use the standard Moser iteration technique, by paying due attention to the constants
appearing in the estimates, exactly as in [11, Lemma A.1]. We fix R0/2 ≤ r < R ≤ R0 and a pair of
concentric cubes Qr(x0) ⊆ QR(x0). For simplicity, from now on we will omit indicating the center
x0. We take η to be a standard Lipschitz cut-off function, such that

0 ≤ η ≤ 1, η ≡ 1 on Qr, η ≡ 0 on RN \QR,
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and

‖∇η‖L∞ =
1

R− r
.

We then use the test function

ϕ = ηp (u+ t)β ,

where t > 0 and β ≥ 1. We get

β

ˆ
|∇u|p (u+ t)β−1 ηp dx+ p

ˆ
〈|∇u|p−2∇u,∇η〉 (u+ t)β−1 ηp−1 dx

≤
ˆ
ηp (u+ t)β dx.

Observe that by Young’s inequality, we have for every δ > 0

p

ˆ
〈|∇u|p−2∇u,∇η〉 (u+ t)β−1 ηp−1 dx ≥ −(p− 1) δ

ˆ
|∇u|p (u+ t)β−1 ηp dx

− δ1−p
ˆ
|∇η|p (u+ t)β+p−1 dx.

In particular, by choosing δ = β/p we get

β

p

ˆ
|∇u|p (u+ t)β−1 ηp dx ≤

(
p

β

)p−1 ˆ
|∇η|p (u+ t)β+p−1 dx+

ˆ
ηp (u+ t)β dx.

We now observe that

|∇u|p (u+ t)β−1 =

(
p

β + p− 1

)p ∣∣∣∇(u+ t)
β+p−1
p

∣∣∣p ,
and

(u+ t)β ≤ (u+ t)β+p−1 1

tp−1
.

Thus, from the previous estimate, we obtainˆ ∣∣∣∇(u+ t)
β+p−1
p

∣∣∣p ηp dx ≤ (β + p− 1

β

)p ˆ
|∇η|p (u+ t)β+p−1 dx

+

(
β + p− 1

p

)p
p

β

1

tp−1

ˆ
ηp (u+ t)β+p−1 dx.

In order to simplify a bit the estimate, we use that(
β + p− 1

β

)p
≤
(
β + p− 1

p

)p−1

p,

and (
β + p− 1

p

)p
p

β
≤
(
β + p− 1

p

)p−1

p.

This yields

(A.2)

ˆ ∣∣∣∇(u+ t)
β+p−1
p

∣∣∣p ηp dx ≤ (β + p− 1

p

)p−1

p

ˆ [
|∇η|p +

ηp

tp−1

]
(u+ t)β+p−1 dx.
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By combining Minkowski’s inequality and (A.2), we can infer(ˆ ∣∣∣∇((u+ t)
p+β−1
p η

)∣∣∣p dx) 1
p

≤
(ˆ ∣∣∣∇(u+ t)

β+p−1
p

∣∣∣p ηp dx) 1
p

+

(ˆ
|∇η|p (u+ t)p+β−1 dx

) 1
p

≤
(
β + p− 1

p

) p−1
p

p
1
p

(ˆ [
|∇η|p +

ηp

tp−1

]
(u+ t)β+p−1 dx

) 1
p

+

(ˆ
|∇η|p (u+ t)p+β−1 dx

) 1
p

.

We can bound from below the leftmost integral by using Sobolev’s inequality. This yields

1

TN,p

(ˆ (
(u+ t)

p+β−1
p η

)p∗
dx

) 1
p∗

≤
(
β + p− 1

p

) p−1
p

p
1
p

(ˆ [
|∇η|p +

ηp

tp−1

]
(u+ t)β+p−1 dx

) 1
p

+

(ˆ
|∇η|p (u+ t)p+β−1 dx

) 1
p

.

It is now time to use the properties of η. These lead us to

1

TN,p

(ˆ
Qr

(
(u+ t)

p+β−1
p

)p∗
dx

) 1
p∗

≤
(
β + p− 1

p

) p−1
p

p
1
p

[
1

(R− r)p
+

1

tp−1

] 1
p
(ˆ

QR

(u+ t)β+p−1 dx

) 1
p

+
1

R− r

(ˆ
QR

(u+ t)p+β−1 dx

) 1
p

.

(A.3)

We also observe that

1

R− r
≤
(
β + p− 1

p

) p−1
p

p
1
p

[
1

(R− r)p
+

1

tp−1

] 1
p

.

By using this elementary observation, from (A.3) we get(ˆ
Qr

(
(u+ t)

p+β−1
p

)p∗
dx

) 1
p∗

≤ 2TN,p

(
β + p− 1

p

) p−1
p

p
1
p

[
1

(R− r)p
+

1

tp−1

] 1
p
(ˆ

QR

(u+ t)β+p−1 dx

) 1
p

.

We now set ϑ = (β+ p− 1)/p in the previous estimate and raise both sides to the power 1/ϑ. This
gives

‖u+ t‖Lp∗ϑ(Qr) ≤
(
ϑ
p−1
p

) 1
ϑ

(2p p T pN,p)
1
p ϑ

[
1

(R− r)p
+

1

tp−1

] 1
p ϑ

‖u+ t‖Lp ϑ(QR).(A.4)
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We want to iterate the estimate (A.4), on a sequence of shrinking cubes. At this aim, we take
p ≤ q ≤ p∗ and set

ϑ0 =
q

p
, ϑi+1 =

p∗

p
ϑi =

(
p∗

p

)i+1
q

p
, i ∈ N,

and

Ri =
R0

2
+
R0

2i
, i ∈ N,

where R0 has been fixed at the beginning. From (A.4), we get

‖u+ t‖Lp ϑi+1 (QRi+1
) ≤

(
ϑ
p−1
p

i

) 1
ϑi

(2p p T pN,p)
1
p ϑi

×
[(

2i+1

R0

)p
+

1

tp−1

] 1
p ϑi

‖u+ t‖Lp ϑi (QRi ).

We now choose the free parameter t: we take it to be

(A.5) t = R
p
p−1

0 .

With simple manipulations, we then obtain

‖u+ t‖Lp ϑi+1 (QRi+1
) ≤

(
ϑ
p−1
p

i

) 1
ϑi

(
2p p T pN,p
Rp0

) 1
p ϑi

2
i+2
ϑi ‖u+ t‖Lp ϑi (QRi ).

We start from i = 0 and iterate infinitely many times this estimate. By using that

1

p

∞∑
i=0

1

ϑi
=

1

q

∞∑
i=0

(
p

p∗

)i
=
N

q p
,

together with

∞∏
i=0

(
ϑ
p−1
p

i

) 1
ϑi

= lim
n→∞

exp

(
p− 1

p

n∑
i=0

1

ϑi
log ϑi

)

= lim
n→∞

exp

(
p− 1

q

n∑
i=0

(
p

p∗

)i [
i log

p∗

p
+ log

q

p

])

= exp

(
p− 1

q

N (N − p)
p2

log
p∗

p

)
· exp

(
N

p

p− 1

q
log

q

p

)
=: AN,p,q,

and
∞∏
i=0

2
i+2
ϑi = lim

n→∞
exp

(
n∑
i=0

i+ 2

ϑi
log 2

)

= exp

(
p

q

∞∑
i=0

(i+ 2)

(
p

p∗

)i
log 2

)

≤ exp

(
p

q

∞∑
i=0

(i+ 2)

(
1− 1

N

)i
log 2

)
=: BN,p,q,
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we finally get the estimate

‖u+ t‖L∞(QR0/2) ≤ AN,p,q BN,p,q

(
2p p T pN,p

) N
p q

R
N
q

0

(ˆ
QR0

(u+ t)q dx

) 1
q

.

In particular, by recalling that u ≥ 0 and using Minkowski’s inequality, we get

‖u‖L∞(QR0/2) ≤ 2
N
q AN,p,q BN,p,q

(
2p p T pN,p

) N
p q

[( 
QR

|u|q dx
) 1
q

+ t

]
.

By recalling the choice (A.5) of t, we conclude.
Finally, we observe that for every fixed 1 < q < N/(N − 1), we can take 1 < p < 2 such that

p ≤ q. In particular, since p > 1, we have q < p∗. Moreover, it holds

lim
p↘1

2
N
q AN,p,q BN,p,q

(
2p p T pN,p

) N
p q

= BN,1,q

(
4

N ω
1
N

N

)N
q

.

In the last identity, we used the definitions of AN,p,q, BN,p,q and (A.1). �

Remark A.2. We observe that the constant BN,1,q is given by

BN,1,q = exp

(
1

q

∞∑
i=0

(i+ 2)

(
1− 1

N

)i
log 2

)
.

This has the following asymptotic behaviour

BN,1,q ∼ 2
N2

q ,

as the dimension N goes to ∞.

Appendix B. A simple approximation lemma for convex sets

Lemma B.1. Let N ≥ 2 and let E ⊆ RN be an open bounded convex set. Then there exists a
sequence of smooth open bounded convex sets {En}n≥n0 ⊆ RN and a constant CE > 0, such that

(B.1)

(
1− CE

n

)
E ⊆ En ⊆

(
1 +

CE
n

)
E, for every n ≥ n0.

Moreover, we have

lim
n→∞

HN−1(∂En) = lim
n→∞

HN−1(∂E).

Proof. We first show that the last property follows from (B.1). Indeed, since all the sets involved
are convex, by using the monotonicity of the HN−1 measure of the boundaries with respect to set
inclusion (see [14, Lemma 2.2.2]), we have(

1− CE
n

)N−1

HN−1(∂E) ≤ HN−1(∂En) ≤
(

1 +
CE
n

)N−1

HN−1(∂E), for every n ≥ n0.

By taking the limit as n goes to ∞, we get the desired conclusion.
In order to construct the sequence {En}n∈N, we suppose for simplicity that 0 ∈ E and introduce

the Minkowski functional of E, i.e.

j(x) = inf
{
λ > 0 : x ∈ λE

}
.
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This is a positively 1−homogeneous convex function, which is globally Lipschitz continuous and
such that for every ` > 0 we have

j(x) < ` if and only if x ∈ `E.
Moreover, we have j(x) ≥ 0 for every x ∈ RN and j(x) = 0 if and only if x = 0. We then
set jn = j ∗ %n, where {%n}n≥1 is the usual family of standard mollifiers. Observe that this is a
non-negative smooth convex function. We define

En =
{
x ∈ RN : jn(x) < 1

}
.

Let us call CE the Lipschitz constant of j. Then we take x ∈ (1− CE/n)E, so that

j(x) <

(
1− CE

n

)
.

By using the definition of jn, we have

jn(x) =

ˆ
B 1
n

(0)

j(x− y) %n(y) dy =

ˆ
B 1
n

(0)

[j(x− y)− j(x)] %n(y) dy + j(x)

≤ CE
n

+ j(x) <
CE
n

+

(
1− CE

n

)
= 1.

This shows the validity of the leftmost inclusion in (B.1). In a similar way, if x ∈ En then we have

1 > jn(x) =

ˆ
B 1
n

(0)

[j(x− y)− j(x) %n(y)] dy + j(x) ≥ −CE
n

+ j(x),

that is j(x) < 1 + CE/n, which shows the validity of the rightmost inequality in (B.1), as well.
We are left with observing that ∂En coincides with the level line {x ∈ RN : jn(x) = 1}. Such

a level line is smooth, since it does not contain critical points of jn: indeed, we recall that for a
convex function every critical point is automatically a global minimum point. On the other hand,
by using the Lipschitz character of j and the fact that j(0) = 0, we have

jn(0) =

ˆ
B 1
n

(0)

j(−y) %n(y) dy ≤ CE
n
,

and the latter is strictly less than 1, for n large enough. This shows that the value 1 can not be
the minimum of jn and thus ∂En = {x ∈ RN : jn(x) = 1} does not contain any critical value of
jn. �
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