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We characterize the solution to the entropically regularized optimal trans-
port problem by a well-posed ordinary differential equation (ODE). Our ap-
proach works for discrete marginals and general cost functions, and in addi-
tion to two marginal problems, applies to multi-marginal problems and those
with additional linear constraints. Solving the ODE gives a new numerical
method to solve the optimal transport problem, which has the advantage
of yielding the solution for all intermediate values of the ODE parameter
(which is equivalent to the usual regularization parameter). We illustrate this
method with several numerical simulations. The formulation of the ODE also
allows one to compute derivatives of the optimal cost when the ODE param-
eter is 0, corresponding to the fully regularized limit problem in which only
the entropy is minimized.
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1. Introduction

Given probability measures µ1 and µ2 on domains X1, X2 ⊆ Rd, respectively, and a
cost function c : X1×X2 → R, the Monge-Kantorovich optimal transport problem is to
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minimize ∫
X1×X2

c(x1, x2)dγ(x1, x2) (1.1)

over the set Π(µ1, µ2) of joint measures on X1 × X2 having the µi as marginals. This
simply stated problem has grown exponentially in recent years. It has an extremely wide
variety of applications and has spawned many extensions and variants; see the books of
Villani [34,35] and Santambrogio [33] for detailed surveys.
A particularly popular modification of optimal transport is entropic regularization,

which arises when one penalizes the entropy,

Hµ1⊗µ2(γ) =

∫
X1×X2

dγ

d(µ1 ⊗ µ2)
log
( dγ

d(µ1 ⊗ µ2)

)
d(µ1 ⊗ µ2),

(H is taken to be +∞ when γ is not absolutely continuous with respect to µ1 ⊗ µ2)
in the transport functional, and so minimizes

∫
X1×X2 c(x

1, x2)dγ(x1, x2) + ηHµ1⊗µ2(γ)
for some small η > 0. As the regularization parameter η goes to 0, solutions are well
known to tend to solutions of the unregularized problem. Much of the early motivation
for entropic regularization was computational; in contrast to the linear unregularized
problem, the optimization problem is now strictly convex, and the unique solution can
be efficiently computed via the celebrated Sinkhorn algorithm [7, 16]. The theoretical
properties of the curve γη of solutions, as a function of the regularization parameter η,
including its rate of convergence and Taylor expansion about η = 0, are also topics of
current research interest [8, 11,14,23,26,30].
In this paper, we show that, for discrete marginals1, solutions to the regularized prob-

lem can be characterized via a well-posed ordinary differential equation (ODE); see The-
orem 3.2. In fact, we do this for problems that are considerably more general than (1.1)
in two ways: we allow multiple marginals, as reviewed in [18, 31] and additional linear
constraints as formulated in [36]. This general framework includes many applications in
addition to the classical, unconstrained two marginal problem, including multi-marginal
problems arising in the evaluation of Wasserstein barycenters [2] and in density func-
tional theory [9, 15], for example, as well as constrained problems such as martingale
optimal transport, vectorial martingale optimal transport, adapted optimal transport
and relaxed weak optimal transport, among others [1, 3, 5, 6, 20,21]. The precise general
problem we address, after regularizing as above, is formulated in (2.3) below.
The development of our ODE results in two distinct contributions. First, it yields a

new numerical method to compute solutions to entropically regularized optimal transport
and its linearly constrained variants, by solving the corresponding ODE. This is similar
in spirit to the method proposed by two of the present authors in [25], but applies to
much more general cost functions. Note that the work in [25] applies only to multi-
marginal problems with pairwise cost functions, and that the initial condition for the
ODE derived there requires solving n − 1 two marginal optimal transport problems,
whereas the initial condition in our formulation here has a simple closed form solution

1General marginals will be dealt with in a separate, forthcoming paper.
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(at least for problems without extra constraints). In particular, the approach in [25]
does not apply to the two marginal problem, and additional linear constraints were not
addressed there. In fact, we would like to emphasize that the ODE approach seems very
promising for computing other curves of measures. To illustrate this point, we show in
Section 5.5 below that a slight modification of our general framework here can be used
to compute (and provide a new perspective on) Wasserstein geodesics (also known as
displacement interpolants [24]) and barycenters [2].
We verify, through several numerical simulations, the feasability of the method pre-

sented here to compute solutions to a variety of problems. A key computational advan-
tage of our approach is that it yields the entire curve γ(ε) of solutions, which interpolates
between product measure and optimal transport as the ODE variable ε varies (ε is es-
sentially equivalent to 1/η – see (2.5) below for the precise definition). This curve is of
potential independent interest, due to current research on the behaviour of γ as a func-
tion of η; constructing it using the Sinkhorn method would require a separate Sinkhorn
calculation for each ε and would therefore be much less efficient.
A second contribution arising from the formulation of the ODE is that it allows one

to calculate derivatives of the optimal cost around ε = 0 (the fully regularized limit,
corresponding to η → ∞). Taylor expansions of the cost around the fully unregularized,
optimal transport limit (ε→ ∞, or η → 0) have been an active topic of recent research,
whereas expansions around the fully regularized limit have received relatively limited
attention (see [14] for a first order expansion). The ODE formulation easily allows one
to calculate derivatives (albeit with discrete marginals) in closed form. We illustrate
this by obtaining a formula for the second derivative C ′′(0) of the optimal cost for
unconstrained, two marginal, optimal transport.
Our work here has another, modest and somewhat incidental, consequence. Aside

from developing a general ODE method to solve linearly constrained optimal transport
problems, we also provide a general framework for applying the Sinkhorn algorithm to
this class of problems, unifying and extending previous work on particular cases [17,19].
The key to this are two general lemmas on the strong convexity of the objective functional
after an appropriate reduction in the variables (Lemmas 2.3 and 3.1 below), enabling the
implementation of the general Sinkhorn algorithm (also known as the block coordinate
descent method), found, for instance, in [29] – see Proposition 3.4 below. This fact also
justifies the use of the Sinkhorn algorithm in Section 5 to generate reference solutions
(especially for the multi-period martingale problem in Section 5.4, as to the best of our
knowledge, a version of the Sinkhorn algorithm has not been developed for this type of
problem before).
This paper is structured as follows. In Section 2, we introduce optimal transport

with extra linear constraints and the entropic regularization of the corresponding linear
programming problem. In this setting, we derive the ODE and prove its well-posedness
in Section 3. In Section 4, we derive formulas for higher-order derivatives of the optimal
value of unconstrained optimal transport as a function of ε. Finally, in Section 5, we
demonstrate several numerical examples based on our ODE methodology and compare
them with the traditional Sinkhorn algorithm.
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2. Optimal Transport with Extra Linear constraints

2.1. The basic problem

Let µ1, ..., µn be probability measures2 on respective bounded domains X1, ..., Xn in
Rd. Set X := X1 × ... × Xn. Let P(X) be the set of probability measures on X and
Π(µ1, ..., µn) be the set of couplings of µ1, ..., µn; that is, measures γ ∈ P(X) whose
marginals are the µi. Let Q ⊂ Cb(X) be a subspace of bounded continuous functions.

If c : X → R is the cost function, then the optimal transport problem with extra linear
constraints is the following optimization problem:

inf
γ∈ΠQ(µ1,...,µn)

∫
X
cdγ, (2.1)

where ΠQ(µ1, ..., µn) ⊂ Π(µ1, ..., µn) is the set of couplings such that
∫
qdγ = 0 for all

q ∈ Q.

Remark 2.1. The marginal constraints themselves can be represented within the linear
constraint context; letting Qi = {f i −

∫
f idµi|f i ∈ Cb(X

i)}, the subspace Q := ⊕Qi of
functions enforces the marginal constraints. We choose here to distinguish these con-
straints, denoting them by Π(µ1, ..., µn), to emphasize our focus on optimal transporta-
tion. This is contrast to the notational convention in [4], where they include the marginal
constraints within the subspace Q.

Remark 2.2. Note that if Q = {0}, then the problem reduces to unconstrained, multi-
marginal optimal transport.

It is easy to see that the existence of an optimizer is equivalent to the non-emptiness
of the feasible set, provided that the function c satisfies certain mild conditions [36].
The corresponding dual problem is:

sup
(ψ,q)∈Ψ(Q,c)

n∑
i=1

∫
Xi

ψidµi, (2.2)

where Ψ(Q, c) := {(ψ, q)|
∑n

i=1 ψ
i + q ≤ c, ψ = (ψ1, ..., ψn), ψi ∈ L1(µi), q ∈ Q}

As proven in [36], no duality gap exists between the primal (2.1) and dual (2.2) prob-
lems; that is, the optimal values in the two problems coincide.
For a given η > 0, we are interested here in the following entropically regularized

version of (2.1):

inf
γ∈ΠQ(µ1,...,µn)

∫
X
cdγ + ηH⊗n

i=1µ
i(γ), (2.3)

2From here on, the superscript index will denote various marginals or spaces, or different linear con-
straints, while the subscript index will represent the elements within certain marginals or spaces.
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where H⊗n
i=1µ

i(γ) denotes the relative entropy of γ with respect to the product measure

⊗n
i=1µ

i of the corresponding marginals, defined as:

H⊗n
i=1µ

i(γ) =

∫
X

dγ

d(⊗n
i=1µ

i)
log

(
dγ

d(⊗n
i=1µ

i)

)
d(⊗n

i=1µ
i),

when γ is absolutely continuous with respect to the product measure, and +∞ other-
wise. This regularization has been studied extensively in the classical optimal transport
problem and many variants. The dual of (2.3) is the unconstrained optimization problem:

sup
(ψ,q)∈Ψ(Q,c)

n∑
i=1

∫
Xi

ψidµi − η

∫
X
exp

(∑n
i=1 ψ

i + q − c

η

)
d(⊗n

i=1µ
i). (2.4)

As the objective function in (2.3) is strictly convex with respect to γ for η > 0, the
optimization problem has a unique optimal solution, denoted by γη. Similarly, as we show
below (in the discrete case – see Lemmas 2.3 and 3.1), if we restrict to an appropriate
subspace of Ψ(Q, c) then the objective function in (2.4) is strictly concave with respect
to (ψ, q), also resulting in a unique solution (ψη, qη) when η > 0. It is well known in
the unconstrained setting Q = {0} that cluster points of solutions of γη as η → 0 solve
the unregularized problem (2.1); furthermore, under strong additional assumptions, γη
converges to the unique measure γ0 having minimal entropy among all minimizers of
(2.1) (see Theorem 18 in [22] for a fairly general result in this direction). These results
carry over easily to the more general problem with nontrival Q; we provide a proof
in Appendix A for the sake of completeness. We also show there that cluster points
of (ψη, qη) solve (2.2), at least in the discrete setting that we specialize to below (for
convergence in the unconstrained case, see, for example, [28]). We are interested here in
the curve η 7→ γη, which interpolates between the optimal transport γ0 at η = 0 and the
entropy minimizing element of ΠQ(µ1, ..., µn) as η → ∞. In fact, it will be convenient
for us to view this interpolation in a slightly different (but equivalent) way: we fix η and
introduce a second parameter ε ≥ 0 to obtain the problem

inf
γ∈ΠQ(µ1,...,µn)

∫
X
εcdγ + ηH⊗n

i=1µ
i(γ).3 (2.5)

For a fixed η, as ε→ 0, this becomes equivalent to finding the couplings that satisfy the
extra linear constraints while minimizing the relative entropy:

inf
γ∈ΠQ(µ1,...,µn)

H⊗n
i=1µ

i(γ).

Note that in the unconstrained problem Q = {0}, a trivial solution arises—the product

3One could of course more simply set ε = 1/η in the original problem (2.3), which corresponds to
taking η = 1 in (2.5). However, we find it more convenient to retain the parameter η here was well.
In particular, below we will characterize solutions by an ODE in ε. Keeping η will allow us to solve
(2.3) by solving the ODE up to ε = 1 for any value of η, instead of having to consider all values of ε
from 0 up to ∞.
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measure γ ∈ ΠQ(µ1, ..., µn) itself.
Conversely, if we let ε → ∞, the problem reverts to one equivalent to the original

unregularized optimal transport problem with extra linear constraints (2.1), while at
ε = 1 we recover (2.3). We are interested here in the minimmizer γ(ε) in (2.5) as a
function of ε, and will show in Section 3 below that for discrete marginals it can be
characterized by an ODE in ε.

The dual of (2.5) is simply (2.4) with the cost function εc replacing c:

sup
(ψ,q)∈Ψ(Q,c)

n∑
i=1

∫
Xi

ψidµi − η

∫
X
exp

(∑n
i=1 ψ

i + q − εc

η

)
d(⊗n

i=1µ
i). (2.6)

2.2. The discrete regularized problem

We now specialize to the discrete marginal setting. Assume that each µi =
∑

xi∈Xi µixiδxi

is supported on a finite subset Xi ⊆ Rd; in this case, Cb(X) is finite dimensional. The
constraint subspace Q becomes finite dimensional with basis {qj}Kj=1 for some K ≥ 0
(K = 0 is unconstrained optimal transport). The cost function c = (cx)x∈X , constraint
vectors qj = (qjx)x∈X and product measure µ = (µx)x∈X = (⊗n

i=1µ
i
xi
)x∈X become vectors

in Rm for m = Πni=1N
i = |X|, where N i = |Xi|. Problem (2.5) then becomes

min
∑

x∈X εcxγx +η
∑

x∈X log
(
γx
µx

)
γx

subject to
∑

x∈X|xi
γx = µixi ∀xi ∈ Xi, i = 1, ..., n∑

x∈X q
j
xγx = 0 j = 1, ...,K
γx ≥ 0 ∀x ∈ X,

(2.7)

while its corresponding dual problem becomes an unconstrained optimization problem:

max
ψ,p

n∑
i

∑
xi∈Xi

ψixiµ
i
xi − η

∑
x∈X

exp

(∑n
i ψ

i
xi +

∑K
j=1 q

j
xpj − εcx

η

)
µx. (2.8)

Note that in this setting, (2.7) is known as an exponentially penalized linear program, and
duality is well known (see for instance [13]). It will be convenient to express the problem
more compactly; we enumerateX = {xℓ}mℓ=1, concatenate φ := (ψ, p) and denote product
measure by µ := ⊗n

i=1µ
i, so that µℓ = ⊗n

i=1µ
i
xil

for all xl = (x1l , x
2
l , ..., x

n
l ) ∈ X. We then

note that
∑n

i=1 ψ
i
xiℓ
+
∑K

j=1 q
j
xℓp

j = Bℓ ·ψ+Cℓ · p = Aℓ ·φ for a vector Aℓ = [Bℓ, Cℓ] and

define the matrix A = [B,C] whose rows are the Aℓ:

A =

A1
...
Am

 . (2.9)

It is easy to see that the above primal problem (2.7) can be expressed as:
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min εcTγ + η
∑m

ℓ=1 log(
γℓ
µℓ
)γℓ

subject to ATγ = b
γ ≥ 0 ,

(2.10)

and the corresponding dual (2.8) as:

max
φ

bTφ− η
m∑
ℓ=1

exp

(
Aℓφ− εcℓ

η

)
µℓ, (2.11)

where b = [µ, 0]T = [µ1µ2...µn, 0, ..., 0]T is the vector formed by concatenating the vectors
µi ∈ RN i

with a 0 vector of dimension K (the dimension of Q).
The dual program (2.11) is not strictly concave in general. A common strategy is to

restrict the variable φ to a subspace where strict concavity holds. As we will see in the
subsequent section, the following lemma implies that this can always be done without
affecting the maximum in (2.11) by fixing some components of φ to be 0 or, equivalently,
removing some columns from A and considering the reduced problem on the remaining
corresponding components of φ. In the argument below, it will be useful to note that
the matrix B arises from marginal constraints and C from additional linear constraints.
Therefore, for any γ ∈ ΠQ(µ1, ..., µn) we have µ = γTB and 0 = γTC.

Lemma 2.3. Assume that ΠQ(µ1, µ2, ..., µn) is non-empty. Then there is a matrix Â =
[B̂, Ĉ] and vector b̂ = [µ̂, 0]T of the corresponding dimensions such that the function

φ̂ 7→ b̂T φ̂− η
m∑
ℓ=1

exp

(
Âℓφ̂− εcℓ

η

)
µℓ (2.12)

has the same range as the objective function in (2.11), and Â has full column rank.
Furthermore, B̂ and Ĉ are obtained by removing some columns of B and C respectively
and b̂ by removing the corresponding entries of b.

Proof. It is easy to see that (2.11) and (2.12) have the same range provided the matrices

P =

[
bT

A

]
=

[
µ 0
B C

]
and P̂ =

[
b̂T

Â

]
have the same column space.
We first claim that if we drop columns of B until the resulting matrix B̂ has full column

rank and the same range as B, and drop the corresponding entries of µ to obtain µ̂, then[
µ̂

B̂

]
has the same range as

[
µ
B

]
. To see this, it suffices to show that if ψ is in the null

space of B, it is also orthogonal to µ. Noting that as B captures the marginal constraints,
we have Bℓψ =

∑n
i=1 ψxiℓ

, where xℓ = (x1ℓ , x
2
ℓ , ..., x

n
ℓ ), so if Bψ = 0,

∑n
i=1 ψxiℓ

= 0 for
each l.
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Multiplying by µℓ and summing over l, we have

0 =
m∑
l=1

µℓ

n∑
i=1

ψxiℓ
=

n∑
i=1

∑
l:xiℓ=x

i

µℓψxi =
n∑
i=1

µixiψxi = µψ,

establishing the claim.
We now claim that we can drop a subset of the columns of C to obtain a matrix Ĉ

such that

[
µ̂ 0

B̂ C

]
and

[
µ̂ 0

B̂ Ĉ

]
have the same range while [B̂, Ĉ] has full column rank.

Take q1 as the first column of C. If q1 does not belongs to the column space of B̂, we set

Ĉ1 = q1. Otherwise, we claim that

[
µ̂

B̂

]
and

[
µ̂ 0

B̂ q1

]
have the same range. If B̂φ = q1

and γ ∈ ΠQ(µ1, ..., µn), then B̂Tγ = µ̂T and q1
T
γ = 0 by the marginal constraints and

extra linear constraints, respectively. Hence we have

µ̂φ = γT B̂φ = γT q1 = 0.

Then for any

[
u
v

]
of the appropriate dimension, we have

[
µ̂ 0

B̂ q1

] [
u
v

]
=

[
µ̂u

B̂u+ q1v

]
=

[
µ̂(u+ φv)

B̂(u+ φv)

]
=

[
µ̂

B̂

] [
u+ φv

]
, (2.13)

where we have used the fact that µ̂φ = 0 and B̂φ = q1 in the second last equation.
Therefore, we can conclude that it is safe to drop this column without changing the
range. Continuing in this way, assume Ĉj is a matrix formed by the columns we keep
after considering the first j columns of C. If the j+1th column qj+1 of C does not belong
to the column space of [B̂, Ĉj ], then we keep it and form a new matrix Ĉj+1. Otherwise,
we can write B̂φ + Ĉjψ = qj+1 for some φ and ψ. Then, given that B̂Tγ = µ̂T and
ĈjTγ = 0

µ̂φ+ 0ψ = γT B̂φ+ γT Ĉjψ = γT qj+1 = 0. (2.14)

Then with the similar argument as above,

[
µ̂ 0

B̂ Ĉj

]
and

[
µ̂ 0 0

B̂ Ĉj qj+1

]
have the same

range. Then we can set Ĉj+1 = Ĉj and in any case, [B̂, Ĉj+1] has full column rank.
We continuous this process until we check all columns of C to obtain the final matrix
Ĉ = ĈK . By construction, [B̂, Ĉ] has full column rank and

P =

[
µ 0
B C

]
and P̂ =

[
µ̂ 0

B̂ Ĉ

]
have the same range. Now, we set b̂T = [µ̂, 0] and Â = [B̂, Ĉ], and the result follows.
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3. ODE for entropic Optimal Transport

3.1. Formulation of the ODE

We now formulate a system of ODEs characterizing the optimal dual Kantorovich po-
tential for problem (2.11). For a fixed η > 0, we define the function:

Φ(φ, ε) = −bTφ+ η
m∑
ℓ=1

exp

(
Aℓφ− εcℓ

η

)
µℓ. (3.1)

By Lemma 2.3, we can from now on always assume that A has full column rank. We
then consider the optimization problem:

min
φ

Φ(φ, ε). (3.2)

Then, (2.11) is equivalent to (3.2) with the sign inverted. The first order optimality
condition necessitates that at the minimizing φ:

∇φΦ(φ, ε) = 0. (3.3)

It is evident that Φ(φ, ε) is smooth in φ and ε. The lemma below implies its strict
convexity in φ, and therefore, for each ε, uniqueness of the solution φ(ε) to (3.3). Invert-
ibility of the Hessian (also implied by the following lemma) then ensures φ(ε) is smooth,
by the implicit function theorem.

Lemma 3.1. The function Φ(φ, ε) = −bTφ + η
∑m

ℓ exp( 1η (Aℓφ − εcℓ))µℓ is uniformly
convex in φ over any compact domain V × T ⊂ Re × R where e is the dimension of φ.

Proof. A straightforward calculation shows that the gradient and Hessian of Φ(φ, ε) in
φ are given by:

∇φΦ(φ, ε) = −bT +
m∑
ℓ=1

ATℓ exp(
1

η
(Aℓφ− εcℓ))µℓ

D2
φφΦ(φ, ε) =

1

η

m∑
ℓ=1

ATℓ exp(
1

η
(Aℓφ− εcℓ))Aℓµℓ.

The Hessian can be rewritten as:

D2
φφΦ(φ, ε) =

1

η
ATDA, (3.4)

where D is a diagonal matrix with the (ℓ, ℓ) th element being exp( 1η (Aℓφ− εcℓ))µℓ. This
implies thatD and therefore ATDA is positive definite, and as the entries are continuous,
uniformly bounded below ATDA ≥ d > 0 on the compact domain V × T .
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Differentiating (3.3) with respect to ε we obtain:

∂

∂ε
∇φΦ(φ(ε), ε) +D2

φφΦ(φ(ε), ε)
dφ

dε
(ε) = 0.

Using the lemma, we obtain the Cauchy problem that governs the behavior of the optimal
potential under the change of ε:{

dφ
dε (ε) = −

[
D2
φφΦ(φ(ε), ε)

]−1 ∂
∂ε∇φΦ(φ(ε), ε)

φ(0) = ϕ0.
(3.5)

Here, ϕ0 represents the initial condition of the ODE corresponding to the optimal φ
solving (3.2) when ε = 0. This corresponds to finding the measure γ which minimizes
the relative entropy among the admissable class ΠQ(µ1, µ2, ..., µn), and is often easier to
find than the solution to (3.2) for ε > 0. In particular, note that when Q = {0}, repre-
senting the unconstrained (multi-marginal) optimal transport problem, the minimizer γ0
is product measure, making it straightforward to verify that ϕ0 = 0. It is straightforward
to calculate:

∂

∂ε
∇φΦ(φ, ε) = −1

η

m∑
ℓ=1

cℓA
T
ℓ exp(

1

η
(Aℓφ− εcℓ))µℓ.

Combined with equation (3.4) for the Hessian, the ODE (3.5) can be written explicitly.

3.2. Well-posedness of the ODE

We now establish that the ODE (3.5) has a unique solution. This is a straightforward
application of the Cauchy-Lipschitz Theorem, after the verification of a few preliminary
properties.
As φ(ε) is clearly continuous, there exist an M > 0 such that ||φ(ε)|| ≤ M, ε ∈ [0, 1].

Therefore, we aim to prove the well-posedness of (3.2) over V × [0, 1] where:

V := {φ ∈ Re| ||φ|| ≤M} .

Theorem 3.2. Let φ(ε) be the solution of (3.2) for ε ∈ [0, 1]. Then the trajectory
ε 7→ φ(ε) is smooth and is characterized as the unique solution to the initial value
problem: {

dφ
dε (ε) = −

[
D2
φφΦ(φ(ε), ε)

]−1 ∂
∂ε∇φΦ(φ(ε), ε)

φ(0) = ϕ0
. (3.6)

Here, ϕ0 is the solution to the problem:

min
φ

Φ(φ, 0), (3.7)

corresponding to the dual solution to the entropic minimization with respect to the product
measure satisfying the extra linear constraints.

Proof. The smoothness of φ(ε) and the fact that it satisfies the ODE is demonstrated
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in section 3.1.
For existence and uniqueness, to apply the Cauchy-Lipschitz Theorem, we only need

that the function

(φ, ε) 7→ −
[
D2
φφΦ(φ(ε), ε)

]−1 ∂

∂ε
∇φΦ(φ(ε), ε)

is Lipschitz with respect to φ and continuous with respect to ε on the domain V × [0, 1].
This follows immediately from the smoothness and uniform convexity of Φ (noting that
the latter property ensures an upper bound on [D2

φφΦ(φ(ε), ε)]
−1).

Remark 3.3. Due to the algebraic properties of the entropy, we can recover the curve
of the solution to the primal γ(ε) by using the optimal dual variables, that is

γ(ε) = exp

(∑n
i ψ

i(ε) +
∑K

j=1 q
jpj(ε)− εc

η

)
d(⊗n

i=1µ
i).

The convergence of the Sinkhorn algorithm for unconstrained two or multi-marginal
problems is well known [10]. On the other hand, while the Sinkhorn algorithm has been
applied to various linearly constrained variants [17], [19], there does not seem to be a
general convergence result in this context. The generalization of the Sinkhorn algorithm
to this setting is a block coordinate descent method, and our Lemma’s 2.3 and 3.1 imply
that the entropic dual problem (2.11) can always be formulated in a way that this scheme
converges, as the following result confirms.

Proposition 3.4. For any initial ϕ0, the block coordinate descent iteration (Sinkhorn
algorithm) will converge to the unique optimal solution of (3.2) with fixed ε ≥ 0.

Proof. Recall that we are assuming that A has full column rank (and that this assump-
tion is justified by Lemma 2.3). By Lemma 3.1, Φ(φ, ε) is strongly convex in φ for fixed
ε ≥ 0. Together with the differentiability of Φ in φ, by Theorem 14.6.7 of [29], the result
follows.

In particular, note that this result will be crucial in Section 5.4 below, as, to the best
of our knowledge, a version of the Sinkhorn algorithm has not been implemented on
multi-period martingale optimal transport problems before.

4. Derivatives of the optimal cost

In this section, we illustrate how the ODE (3.5) can be used to compute derivatives of the
optimal cost at ε = 0. For simplicity, we restrict our attention to the unconstrained two
marginal optimal transport problem (that is, n = 2, Q = {0}), although the techniques
apply more generally. In this setting, adopting slightly different notation than before,
the primal problem is

P (ε) := inf
γ∈Π(µ,ν)

∫
X×Y

εc(x, y)dγ(x, y) + ηHµ⊗ν(γ), (4.1)

11



while the dual is:

D(ε) := sup
u,v

∫
X
udµ+

∫
Y
vdν − η

∫
X⊗Y

e
u+v−εc

η dµdν. (4.2)

For the discrete marginals {µr}, {νs}, if we denote crs = c(xr, ys), then the dual can be
written as an equivalent problem:

C(ε) := inf
u,v

Φ(u, v, ε) = −D(ε) = −P (ε), (4.3)

where

Φ(u, v, ε) = −
∑
r

urµr −
∑
s

vsνs + η
∑
r,s

exp

[
1

η
(ur + vs − εcrs)

]
µrνs. (4.4)

We will see that one can use the ODE approach to evaluate all derivatives of C(ε) at
ε = 0 in closed form (we provide the explicit calculations for derivatives up to order 2,
but it will be clear that higher order derivatives can be calculated similarly). A potential
application is a Taylor expansion for C(ε) around ε = 0 to arbitrary order.

In this setting, it is actually simpler to eliminate v and express the problem in terms
of u only. Letting (u(ε), v(ε)) be the minimizer in (4.4), or equivalently, solutions to our
ODE, we have, at (u, v) = (u(ε), v(ε)), by the first order optimality condition, ∀j,

∂

∂vj
Φ = −νj +

∑
r

exp

[
1

η
(ur + vj − εcrj)

]
µrνj = 0.

Hence we have

vj = −η log

[∑
r

exp

[
1

η
(ur − εcrj)

]
µr

]
. (4.5)

After we substitute (4.5) in (4.4), we get:

Φ(u, ε) := −
∑
r

urµr + η
∑
s

log

[∑
r

exp

[
1

η
(ur − εcrs)

]
µr

]
νs − η, (4.6)

where we have abused the notation for Φ; note that we can now write C(ε) = infuΦ(u, ε).

12



For simplicity, we denote eij = exp[ 1η (ui − εcij)]µi. Note that,

−P ′(ε) = −D′(ε) = C ′(ε) =
d

dε
Φ(u(ε), ε)

= ∇uΦ(u(ε), ε)
du

dε
+

∂

∂ε
Φ(u(ε), ε)

=
∂

∂ε
Φ(u(ε), ε)

= −
∑
s

[∑
r erscrs∑
r ers

]
νs, (4.7)

where we have used the first order optimality condition ∇uΦ(u(ε), ε) = 0, ∀ε ≥ 0. Since
it is easy to verify that ∀i, ui(0) = 0, we have eij = µi when ε = 0, therefore:

C ′(0) = −
∑
s

[∑
r crsµr∑
r µr

]
νs = −E[c(X,Y )]. (4.8)

The expectation in (4.8) is taken with respect to the product measure µ⊗ ν. 4

For the second order derivative,

C ′′(ε) =
d

dε

(
∂

∂ε
Φ(u(ε), ε)

)
=

[
∇u

∂

∂ε
Φ(u(ε), ε)

]T du
dε

+
∂2

∂ε2
Φ(u(ε), ε)

=

[
∇u

∂

∂ε
Φ(u(ε), ε)

]T [
−D2

uuΦ(u(ε), ε)
]−1

[
∇u

∂

∂ε
Φ(u(ε), ε)

]
+

∂2

∂ε2
Φ(u(ε), ε).

(4.9)

The last equality is due to the ODE (3.5). We note that evaluating this quantity at the
point ε = 0 (where u(0) = 0 is known) involves only derivatives of Φ. We relegate the
detailed calculation to Appendix B and provide only the result here:

C ′′(0) =
1

η

(
(E[c(X,Y )])2 + E[c2(X,Y )]− E

[
(E[c(X,Y )|X])2

]
− E

[
(E[c(X,Y )|Y ])2

])
,

(4.10)
where the expectations are with respect to product measure µ⊗ ν, or, equivalently,

4Note that (4.8) could more easily be seen by applying the envelope theorem to the primal problem
(4.1) and noting the unique optimality of product measure at ε = 0 in that equation. However, we
will require (4.7) to compute higher order derivatives.
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C ′′(0) =
1

η

((∫
X×Y

c(x, y)dµ(x)dν(y)

)2

+

∫
X×Y

c2(x, y)dµ(x)dν(y)

−
∫
Y

(∫
X
c(x, y)dµ(x)

)2

dν(y)−
∫
X

(∫
Y
c(x, y)dν(y)

)2

dµ(x)

)
.

We note that higher order derivatives can be evaluated similarly; for instance, one can
find C ′′′(ε) by differentiating (4.9) using the chain rule, and then use the ODE (3.5)
to eliminate the du

dε terms and substitute u(0) = 0 to determine C ′′′(0). The result is
a closed form expression involving only derivatives of the function Φ at (u, ε) = (0, 0),
which can readily be computed.

Remark 4.1. P (ε) as defined by (4.1) is clearly concave, as an infimum of affine func-
tions. Therefore, we must have C ′′(0) = −P ′′(0) ≥ 0.

We do not see another way to prove that the expression in (4.10) is non-negative.
However, the fact that expectations are taken with respect to product measure is crucial,
as the expression can in fact be negative for more general couplings. To see this, note
that

Var[E[c(X,Y )|X]] = E[(E[c(X,Y )|X])2]− (E[c])2

E[Var[c(X,Y )|X]] = E[c2]− E[(E[c(X,Y )|X])2],

and consider the case µ = ν such that µ is supported on more than one point, c(x, y) =
x+y and the coupling is given by X = Y . In this case, E[(E[c(X,Y )|Y ])2] = E[(E[c(X,Y )|X])2]
and the non-negativity of the quantity in (4.10) becomes

E[Var[c(X,Y )|X]] ≥ Var[E[c(X,Y )|X]].

However, it is easy to calculate that E[Var[c(X,Y )|X]] = 0 but Var[E[c(X,Y )|X]] =
4Var[X] ̸= 0, which violates the above inequality.

5. Numerical examples

In this section we exploit the ODE (3.5) to compute numerical approximations of solu-
tions to the optimal transport problem and several variants. In all the examples below,
we discretize the ODE in ε and solve using a 4th-order Runge-Kutta method.

To verify the accuracy of our new numerical method, we also compute solutions via
the Sinkhorn algorithm in each example in the first four subsections below; in all cases,
the values of the optimal costs obtained from the Sinkhorn are very close to the values
obtained from the ODE method5. Furthermore, we have chosen examples for which
explicit solutions γ0 of the unregularized problem (2.1) are known. This then yields a

5A similar comparison is not provided for the example in the last subsection, since its purpose is
somewhat different; in particular, one of the marginals of the curve γ(ε) is in fact the main object of
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lower bound on the optimal value in (2.3). Since γ0 is a competitor in (2.3), it can also
be used to compute an upper bound for this problem; thus, we obtain an interval in
which the optimal value must fall:∫

X
cdγ0 ≤ inf

γ∈ΠQ(µ1,...,µn)

∫
X
cdγ + ηH⊗n

i=1µ
i(γ) ≤

∫
X
cdγ0 + ηH⊗n

i=1µ
i(γ0). (5.1)

In the examples in the first four subsections below, the values obtained via both the
Sinkhorn and ODE method do indeed fall with this interval.
Throughout this section, we will consider problems with at most three marginals which

will be represented by the symbols µ, ν and θ. We will denote the corresponding spaces
X, Y and Z. We perform all numerical calculations in Python on 13th Gen Intel(R)
Core(TM) i7-13620H 2.40 GHz Notebook.

5.1. Two marginal optimal transport

We begin with the two marginal optimal transport problem. Let µ =
∑

r µrδxr , ν =∑
s νsδys be discrete measures and let the cost matrix be crs = c(xr, ys). For fixed η > 0,

we aim to solve:
inf
u,v

Φ(u, v, ε), (5.2)

where

Φ(u, v, ε) = −
∑
r

urµr −
∑
s

vsνs + η
∑
r,s

exp

[
1

η
(ur + vs − εcrs)

]
µrνs. (5.3)

It well known that if we fix u0 = v0 = 0, then there will be a unique minimizer of (5.3).
This corresponds to removing the corresponding column to the A in (3.1) so that the
reduced version has full column rank, as discussed more generally in Lemma 2.3.
As in the previous section, it will be convenient to further reduce the number of

variables, using the first order optimality condition:

vj = −η log

[∑
r

exp

[
1

η
(ur − εcrj)

]
µr

]
=: vj(u). (5.4)

We simplify by substituting (5.4) into (5.3) to yield the new dual objective function:

Φ̄(u, ε) = Φ(u, v(u), ε) = −
∑
r

urµr+η
∑
s

log

[∑
r

exp

[
1

η
(ur − εcrs)

]
µr

]
νs+η. (5.5)

The unique minimizer u(ε) of u 7→ Φ̄(u, ε) will clearly still satisfify the ODE (3.5) (with
Φ̄ in place of Φ).

interest there, rather than the final value γ(1), and this curve of marginals is not as readily obtained
by the Sinkhorn method.
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Remark 5.1. The ODE induced by the function (5.5) inherits the well-posedness related
to the original function (5.3). The gradient and the Hessian of the function (5.5) are:

∇Φ̄(u, ε) = ∇uΦ(u, v(u), ε) +∇vΦ(u, v(u), ε)Dv(u)

D2Φ̄(u, ε) = D2
uuΦ(u, v(u), ε) +D2

uvΦ(u, v(u), ε)Dv(u) +Dv(u)TD2
vuΦ(u, v(u), ε)

+Dv(u)TD2
vvΦ(u, v(u), ε)Dv(u) +∇vΦ(u, v(u), ε)D

2v(u).

The last term vanishes since ∇vΦ = 0. Therefore, we have:

D2Φ̄ = [I,DvT ]D2Φ

[
I
Dv

]
. (5.6)

D2Φ̄ then inherits lower bounds from D2Φ, and so Φ̄ is uniformly convex on compact
sets. The well posedness of the ODE satisfied by u then follows exactly as in Theorem 3.2.
We will abuse notation below by referring to the function of u and ε only as Φ (rather
than Φ̄ as above), and, in subsequent subsections, we will make similar reductions in the
number of variables; the well-posedness of the corresponding ODEs will follow similarly
and we will not comment on it in detail.

Let

eij = exp

[
1

η
(ui − εcij)

]
µi, ecij = exp

[
1

η
(ui − εcij)

]
cijµi.

Then the Hessian matrix for Φ will be the symmetric matrix:(
D2
uuΦ(u(ε), ε)

)
i1i2

=
1

η

∑
s

[
ei1s∑
r ers

δi1i2 −
ei1s · ei2s
(
∑

r ers)
2

]
νs, (5.7)

where δi1i2 is the Kronecker delta and the mixed derivative is:(
∇u

∂

∂ε
Φ(u(ε), ε)

)
i

= −1

η

∑
s

[
ecis∑
r ers

− eis · ecs
(
∑

r ers)
2

]
νs. (5.8)

It is easy to verify that the initial condition for the system of equations is ui = 0,∀i.
We take η = 0.002 and discretize [0, 1] with 100 time steps for the variable ε. Both

the marginals µ and ν are uniformly supported on 100 evenly spaced grid points on
[0, 1]. We solved the ODE with two costs: the attractive cost c(x, y) = (y − x)2 and
the repulsive cost c(x, y) = − log(0.1 + |x − y|). It is well known that the optimal
measure for the attractive cost is induced by the identity map in our setting. A closed
form for the optimal measure for the repulsive cost is also known [12]. We provide the
evolution of the primal coupling at 16 evenly distributed moments for ε between 0 and
1 for both attractive and repulsive type costs in Figure 1, and 2, respectively. Note
that the solutions at ε = 1 agree qualitatively with the known solutions for both costs.
Tables 1 and 2 summarize the corresponding numerical calculations for the attractive
and repulsive type costs, respectively. In both cases, the optimal values are similar to
those found by the Sinkhorn algorithm, and lie within the range given by (5.1).

16



Figure 1: Evolution of the primal coupling at 16 evenly distributed values of ε between
0 and 1 calculated by the ODE method for two marginal optimal transport
with attractive cost c(x, y) = |y − x|2.

ODE Sinkhorn

Computed regularized primal value 0.0050 0.0052

Optimal unregularized primal value 0 0

Optimal unregularized primal value + Entropy 0.0092 0.0092

Iterations 100 324

CPU time (sec) 1.40 0.04

Table 1: Comparison of the performance between 4-th order Runge-Kutta ODE method
and Sinkhorn algorithm for two marginal optimal transport with attractive cost
c(x, y) = (y − x)2.
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Figure 2: Evolution of the primal coupling at 16 evenly distributed values of ε between
0 and 1 calculated by the ODE method for two marginal optimal transport
with repulsive cost c(x, y) = − log(0.1 + |x− y|).

5.2. Multi-marginal optimal transport

We turn now to a three marginal optimal transport problem; in this setting our ap-
proach here is closely related to the work in [25]. However, the present framework can
accommodate completely general cost functions (whereas the work in [25] applies only
to pairwise costs). Even for pairwise costs, the solution γ(ε) as a function of the regu-
larization parameter here is likely of more direct interest than the interpolation between
two and multi-marginal solutions produced by the method in [25].
Let µ =

∑
r µrδxr , θ =

∑
s θsδys , ν =

∑
t νtδzt and crst = c(xr, ys, zt) be the cost
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ODE Sinkhorn

Computed regularized primal value 0.5033 0.5080

Optimal unregularized primal value 0.5024 0.5024

Optimal unregularized primal value + Entropy 0.5117 0.5117

Iterations 100 684

CPU time (sec) 1.49 0.15

Table 2: Comparison of the performance between 4-th order Runge-Kutta ODE method
and Sinkhorn algorithm for two marginal optimal transport with repulsive cost
c(x, y) = − log(0.1 + |x− y|).

tensor. For fixed η > 0, we minimize the following objective function:

Φ(u, v, w, ε) = −
∑
r

urµr−
∑
s

vsθs−
∑
t

wtνt+η
∑
r,s,t

exp

[
1

η
(ur + vs + wt − εcrst)

]
µrθsνt.

(5.9)
As in the previous section, we substitute the first order condition with respect to one
variable,

wk = −η log

[∑
rs

exp

[
1

η
(ur + vs − εcrsk)

]
µrθs

]
, (5.10)

into (5.9) to reduce the number of unknown variables:

Φ(u, v, ε) = −
∑
r

urµr −
∑
s

vsθs + η
∑
t

log

[∑
r,s

exp

[
1

η
(ur + vs − εcrst)

]
µrθs

]
νt + η.

(5.11)
As in the two marginal case (see Remark 5.1) , the minimizers u(ε, v(ε)) will satisfy the
well-posed ODE (3.5).
We refer the reader to appendix B.1 for the Hessian of Φ with respect to the dual

potential variables φ = (u, v) and the mixed derivative with respect to (u, v) and ε.
We set the initial values to be ui = vj = 0,∀i, j which can be verified to be the unique

solution for ε = 0 satisfying our normalization u0 = v0 = 0. For the numerical simulation,
each marginal to be uniform on 99 evenly spaced grid points (for simplicity of calculating
the true optimal measure [12]) on [0, 1], η = 0.006 and ε ∈ [0, 1] with 100 time steps. The
cost function is c(x, y, z) = d(x, y)+d(y, z)+d(x, z) where d(x, y) = − log(0.1+ |x− y|),
which is the same as the first example in [25]. Figure 3 shows the 2D projection to all
the pairs of marginals at ε = 1, which agrees well with the known explicit solution to
the unregularized problem in [12]. From Table 4, the values obtained from the ODE and
Sinkhorn method agree quite well and both fall within the interval given by (5.1). Note
in addition that in this case, the ODE method actually takes less running time and fewer
iterations than the Sinkhorn.
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Figure 3: The optimal measure for three marginal optimal transport with cost
c(x, y, z) = d(x, y) + d(y, z) + d(x, z) where d(x, y) = − log(0.1 + |x − y|)
generated by ODE

ODE Sinkhorn

Computed regularized primal value 1.9163 1.9193

Optimal unregularized primal value 1.9137 1.9137

Optimal unregularized primal value + Entropy 1.9647 1.9647

Iterations 100 1006

CPU time (sec) 12.40 47.46

Table 3: Comparison of the performance between 4-th order Runge-Kutta ODE method
and Sinkhorn algorithm for three marginal optimal transport problem.

5.3. Martingale optimal transport

Given probability measures µ and ν, with µ dominated by ν in convex order (denoted
by µ ⪯c ν), the (one-period) martingale optimal transport falls into the class of optimal
transport problems with extra linear constraints (2.1) when we take the subspace Q to
be the set M of martingale test functions:

M = {g(x)(y − x)|g(x) ∈ Cb(X)}. (5.12)

Note that
∫
mdπ = 0, ∀m ∈M is equivalent to the classical martingale condition:∫

Y
ydπx(y) = x, (5.13)

where π = πx ⊗ µ is the regular disintegration of π with respect to µ, or in probabilistic
notation:

Eπ[Y |X] = X. (5.14)
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The primal problem of martingale optimal transport problem is:

inf
π∈ΠM (µ,ν)

∫
X×Y

c(x, y)dπ(x, y), (5.15)

and the corresponding dual problem:

sup

∫
X
u(x)dµ(x) +

∫
Y
v(y)dν(y), (5.16)

subject to u(x) + v(y) + g(x)(y − x) ≤ c(x, y), among all u ∈ L(µ), v ∈ L(ν), g ∈ C(X).
For the numerical example, let µ =

∑
r µrδxr , ν =

∑
s νsδys be discrete measures such

that µ is less than ν in convex order. Then the cost matrix will be crs = c(xr, ys). The
entropic regularized problem with fixed η will be:

inf
u,v,g

Φ(u, v, g, ε), (5.17)

where

Φ(u, v, ε) = −
∑
r

urµr −
∑
s

vsνs + η
∑
r,s

exp

[
1

η
(ur + vs + gr(ys − xr)− εcrs)

]
µrνs.

(5.18)
The first order optimality condition implies

ui = −η log

[∑
s

exp

[
1

η
(vs + gi(ys − xi)− εcis)

]
νs

]
(5.19)

vj = −η log

[∑
r

exp

[
1

η
(ur + gr(yj − xr)− εcrj)

]
µr

]
(5.20)

0 =
∑
s

exp

[
1

η
(ui + vs + gi(ys − xi)− εcis)

]
(ys − xi)νs. (5.21)

We will use this set of equations in the Sinkhorn algorithm. One important note should
be made towards the fitting of gi from ui and vi is not as straight forward as in the
unconstrained optimal transport. Instead, we need to solve the root of the equation
(5.21) for each i. Slightly longer computation time is expected if we apply Newton’s
method for finding the root.

On the other hand, we can further simplify (5.18) by substituting (5.19) into it. By
abuse of notation, the dual cost becomes

Φ(v, g, ε) := −
∑
s

vsνs + η
∑
r

log

[∑
s

exp

[
1

η
(vs + gr(ys − xr)− εcrs)

]
νs

]
µr + η.

(5.22)
The minimizers v(ε), g(ε) satisfy the well-posed ODE (3.5).
We refer the reader to Appendix B.2 for the Hessian of Φ with respect to the dual
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potential variables v, g and the mixed derivatives with respect to v, g and ε. Unlike in the
unconstrained optimal transport problem, vj = gi = 0 is no longer an initial condition
for the system of equations since the product measure is in general not a martingale
measure (nevertheless, setting v0 = g0 = 0 will reduce A from (2.9) into a full column
rank matrix). Instead, we can solve the initial system of equations, (5.19) - (5.21) with
ε = 0, by the Sinkhorn algorithm. Note that by our numerical experiment, the running
time for the Sinkhorn algorithm is much faster for ε = 0 then ε = 1. This keeps the overall
calculation time for the ODE method competitive with the pure Sinkhorn method to
minimize the ε = 1 objective function.

The cost function is c(x, y) = exp(−x) · y2 which is of martingale Spence–Mirrlees
type, hence the unregularized optimal coupling is the left-monotone coupling [6]. The
x-marginal µ is uniformly distributed on 100 evenly spaced grid points on [−0.3, 0.3]
while the y-marginal ν is uniformly distributed on 200 evenly spaced grid points on
[−1, 1]. We set η = 0.006 and ε = 1 for this numerical example. We employ 25 steps to
discretize ε on [0, 1]. The plot in Figure 4, the plot shows that the ODE method does
indeed approximate the left-monotone measure. From Table 4, we see that both the ODE
method and Sinkhorn algorithm yield comparable optimal values, and both fall inside
the desired interval (5.1). Again, in this case, the ODE method takes fewer iterations
and less running time.

Figure 4: The optimal measure for martingale optimal transport with cost c(x, y) =
exp(−x) · y2 generated by ODE

5.4. Multi-period martingale optimal transport

We consider a 3-period martingale optimal transport problem. Let µ =
∑

r µrδxr ∈
P(X), θ =

∑
s θsδys ∈ P(Y ), ν =

∑
t νtδzt ∈ P(Z) such that µ ⪯c θ ⪯c ν. The linear
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ODE Sinkhorn

Computed regularized primal value 0.2990 0.2990

Optimal unregularized primal value 0.2964 0.2964

Optimal unregularized primal value + Entropy 0.3211 0.3211

Iterations 25 152

CPU time (sec) 1.44 3.38

Table 4: Comparison of the performance between 4-th order Runge-Kutta ODE method
and Sinkhorn algorithm for martingale optimal transport problem.

constraints are:

Q =MM = {g(x)(y − x) + h(x, y)(z − y)|g(x) ∈ Cb(X), h(x, y) ∈ Cb(X,Y )}.

Note that

Eπ[Y |X] = X, Eπ[Z|X,Y ] = Y ⇐⇒ π ∈ ΠMM (µ, θ, ν).

With the cost tensor cijk = c(xi, yj , zk), the entropic regularized problem with fixed η
for the dual problem is

inf
u,v,w,g,h

Φ(u, v, w, g, h, ε)

where

Φ(u, v, w, g, h, ε) =−
∑
r

urµr −
∑
s

vsθs −
∑
t

wtνt (5.23)

+ η
∑
r,s,t

exp

[
1

η

(
ur + vs + wt + gr(ys − xr)

+ hrs(zt − ys)− εcrst
)]
µrθsνt.

To implement the Sinkhorn algorithm, we need the first order optimality condition:

ui = −η log

[∑
st

exp

[
1

η
(vs + wt + gi(ys − xi) + his(zt − ys)− εcist)

]
θsνt

]
(5.24)

vj = −η log

[∑
rt

exp

[
1

η
(ur + wt + gr(yj − xr) + hrj(zt − yj))− εcrjt

]
µrνt

]

wk = −η log

[∑
rs

exp

[
1

η
(ur + vs + gr(ys − xr) + hrs(zk − ys)− εcrsk)

]
µrθs

]
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0 =
∑
s,t

exp

[
1

η
(ui + vs + wt + gi(ys − xi) + his(zt − ys)− εcist)

]
(ys − xi)θsνt

0 =
∑
t

exp

[
1

η
(ui + vj + wt + gi(yj − xi) + hij(zt − yj))− εcijt

]
(zt − yj)νt.

The fitting of ui, vj , wk are straight forward while we use Newton’s method to solve for
gi and hij in each of the iteration.
On the other hand, by combining (5.23) and (5.24), with a slight abuse of notation

again we set:

Φ(v, w, g, h, ε) =−
∑
s

vsθs −
∑
t

wtνt + η
∑
r

log

[∑
s,t

exp

[
1

η

(
vs + wt (5.25)

+ gr(ys − xr) + hrs(zt − ys)− εcrst
)]
θsνt

]
µr + η,

and note that the minimizing v(ε), w(ε), g(ε), h(ε) solve the well-posed ODE (3.5) after
we fix v0, w0, g0 and h00 all to be 0. We refer the reader to Appendix B.3 for the Hessian
of Φ with respect to the dual potential variables v, w, g, h and the mixed derivatives with
respect to v, w, g, h and ε.

For the numerical experiment, we took the marginals to be uniform on 30, 60 and
90 evenly spaced grid points on X = [−0.1, 0.1], Y = [−0.4, 0.4] and Z = [−1, 1],
respectively. We set η = 0.006 and ε ∈ [0, 1] with 25 time steps. The cost function is
c(x, y, z) = y2 exp(−x) + z2 exp(−x) which is of martingale Spence-Mirrlees type. It is
known that the optimal measure is the multi-period left-monotone coupling [27]. Since
µ is a discrete measure, the multi-period left-monotone coupling is non-unique, but we
know from Lemma A.2, the optimal measures for regularized problems will converge to
the left-monotone coupling with minimal entropy. Explicitly, the left-monotone condition
uniquely determines the two fold marginals γxy = γyx ⊗ µ, γxz = γzx ⊗ µ, and so the only
degrees of freedom are in the conditional probabilities γyzx of γ = γyzx ⊗ µ, which must
all be martingale couplings of γyx and γzx. We compute the marginal couplings of these
conditional probabilities withe minimal entropy and use these values in Table 5.
In Figure 5, we compare the optimal measures calculated by the ODE and Sinkhorn

algorithms. The top row of sub-graphs represents 2D projections of pairs of marginals
obtained using the ODE method. The bottom row shows sub-graphs generated using
the Sinkhorn algorithm. Theoretically, both the xy and xz projections are left mono-
tone couplings for these particular marginals (at least in the unregularized limit, by the
Lemma 6.5 of [27] and the definition of multi-period left-monotone coupling), and so the
conditional probabilities γyx and γzx are supported on two disjoint consecutive intervals
for each x. Although the xy projection looks a little bit spread for the ODE generated
measure, we encounter a similar situation for the measure generated by Sinkhorn algo-
rithm. Nevertheless, as shown in the table 5, the values generated by both methods still
fall in the desired range.
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Figure 5: 2D projections for pairs of marginals of the optimal measures for multi-period
martingale transport problem. Top: generated by ODE method. Bottom: gen-
erated by Sinkhorn algorithm

ODE Sinkhorn

Computed regularized primal value 0.3807 0.3807

Optimal unregularized primal value 0.3767 0.3767

Optimal unregularized primal value + Entropy 0.4127 0.4127

Iterations 25 60

CPU time (sec) 8.71 7.40

Table 5: Comparison of the performance between 4-th order Runge-Kutta ODE method
and Sinkhorn algorithm for multi-period martingale transport problem.

5.5. Wasserstein geodesics and barycenters

A slight variant of the theory developed in this paper can be used to compute, and provide
a new perspective on, Wasserstein geodesics (also known as displacement interpolants
[24]) and barycenters [2]. Let us consider, firstly, the computation of a geodesic (since
we are considering a regularized problem, it would be more appropriate to refer to it
as the entropic interpolant) between two measures µ1 and µ2. The geodesic at time ε
can be obtained as the second marginal of a coupling γ ∈ P(X1 × Z ×X2) whose first
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and third marginals are µ1 and µ2, respectively, and such that it minimizes an optimal
transport problem with cost

cε(x
1, z, x2) = (1− ε)|x1 − z|2 + ε|z − x2|2.

After regularizing, we minimize∫
X1×Z×X2

cεdγ + ηHµ1⊗U⊗µ2(γ).

6 Note that our formulation of the geodesic problem actually falls slightly outside the
general ODE framework developed in Section 3 in two ways. First, the problem is not a
typical optimal transport problem, since the marginal of the variable z is not prescribed
(this, the displacement interpolant, is in fact what we are trying to find). Secondly,
the cost takes the form cε = c0 + εc, rather than the form cε = εc dealt with above.
Nonetheless, the development of the ODE (3.5) and proof of its well posedness follow
almost exactly as above, and so we can solve the ODE to approximate the displacement
interpolant. Notice that now the parameter ε plays the role of the time. In Figure 6 we
plot the interpolant, between the uniform on [0, 1] and the sum of two gaussians, com-
puted by using the ODE approach. In a very similar way one can extend this approach

Figure 6: Entropic interpolant at different time steps ε

to the computation of Wasserstein barycenter [2]: in this case we look for a coupling
γ ∈ P(×n

i=1X
i × Z) having n fixed marginals equal to µi such that it minimizes the

optimal transport problem with cost

c(x1, . . . , xn, z) =

n∑
i=1

λi(ε)|xi − z|2,

where λi(ε) are the usual weights such that λi(ε) ≥ 0 and
∑

i λi(ε) = 1 for every ε. In
this case the ODE returns the barycenter for every weights λi(ε) as they vary in ε.

Remark 5.2 (Initial condition). One difference with the theory we have developed above
concerns the initial condition for the Cauchy problem: here, one has to solve a simpli-
fied entropic optimal transport problem where the cost is not zero. For instance, in the
geodesic case, one should solve a three marginal problem with cost |x1−z|2. In particular,

6Note that here, since the z marginal of γ is not prescribed in the problem, we take the second marginal
of the reference measure to be uniform U.

26



by the optimality conditions, the optimal dual variable u associated to the marginal µ1

has the following explicit form

ur = −η log

[∑
s

Z exp

[
1

η
(−εcrs)

]]
, (5.26)

where crs is the cost cε above evaluated at ε = 0. Notice that since the potential associated
to the marginal µ2 is a constant we can easily set it to be equal to 0 (or, equivalently,
Z = 1).

As for the barycenter problem, choose λi such that at ε = 0 there is only one weight
equals to 1, so that the curve starts at one of the marginal measures; say µ1. The cost
function then becomes |x1 − z|2, and the initial potentials can be determined similarly to
above; that is, all potentials are equal to 0 except for the one corresponding to x1, which
is determined again by formula (5.26)above with Z = 1.
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A. Convergence of entropic optimal transport with extra linear
constraints to the unregularized limit

We aim to show that the optimal measure for the entropic optimal transport problem
with extra linear constraints will converge to an optimal solution of the unregularized
problem that has the minimum entropy relative to the product measure.

Lemma A.1. ΠQ(µ1, ..., µn) is compact in the weak topology.

Proof. Since Π(µ1, ..., µn) is a weakly compact set, we only need to show that ΠQ is a
closed subset of Π. If γk → γ∞ ∈ Π weakly, then∫

X
qdγ∞ = lim

k→∞

∫
X
qdγk = 0, ∀q ∈ Q

since Q ⊂ Cb(X). Hence γ∞ ∈ ΠQ.

Given a lower semi-continuous cost c. Let ηk ↓ 0 and γηk solve:

inf
γ∈ΠQ(µ1,...,µn)

∫
X
cdγ + ηkH⊗n

i=1µ
i(γ). (A.1)
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Note that for general marginals, it is often the case that all minimizers of (A.1) have
infinite entropy. To make sense of the statement that cluster points minimize the en-
tropy among solutions to the unregularized problem, we therefore require an additional
assumption (uniform boundedness of the entropy in the Lemma below). This assumption
is certainly satisfied in the discrete case, which is the main focus of this paper.

Lemma A.2. Suppose that ηk is a sequence converging to 0 such that the minimizers
γηk in (A.1) converge weakly to some γ0 = lim γηk , and that the entropy of the γηk is
uniformly bounded, that is, ∃M > 0 such that ∀k,H⊗n

i=1µ
i(γηk) < M . Then γ0 solves the

unregularized optimal transport problem with additional linear constraints (2.1). More-
over, γ0 has minimal entropy among all solutions of (2.1):

γ0 ∈ argminγ solves (2.1)H⊗n
i=1µ

i(γ).

Proof. By the assumption of γηk , for any measure γ ∈ ΠQ such that H⊗n
i=1µ

i(γ) < ∞,
we have ∫

X
cdγηk + ηkH⊗n

i=1µ
i(γηk) ≤

∫
X
cdγ + ηkH⊗n

i=1µ
i(γ).

By taking the limit of both side for k, with the lower semi-continuity of the cost and
uniformly boundedness of the relative entropy of γηk , we thus have:∫

X
cdγ0 ≤

∫
X
cdγ.

Note that by Lemma A.1, γ0 ∈ ΠQ. Therefore γ0 solve the original optimal transport
problem with extra linear constraints.
Now, suppose γ̄ ∈ ΠQ is another optimal measure that solves the unregularized prob-

lem with H⊗n
i=1µ

i(γ̄) <∞. Again by the optimality assumption of γηk ,∫
X
cdγηk + ηkH⊗n

i=1µ
i(γηk) ≤

∫
X
cdγ̄ + ηkH⊗n

i=1µ
i(γ̄). (A.2)

The optimality assumption for γ̄ to the unregularized problem implies∫
X
cdγηk ≥

∫
X
cdγ̄. (A.3)

Combining (A.2) and (A.3) we get

H⊗n
i=1µ

i(γηk) ≤ H⊗n
i=1µ

i(γ̄).

Taking the limit on both sides again and by the lower semi-continuity of the relative
entropy functional [32], we deduce that

H⊗n
i=1µ

i(γ0) ≤ H⊗n
i=1µ

i(γ̄).

This means γ0 has the minimum relative entropy among all optimal measures.
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In the following, we prove the convergence of the dual potentials on discrete domain.
We adapt to the simplified notation to represent the entropic optimal transport problem
with extra linear constraints introduced in section 2.2:

min−bT v + η
m∑
ℓ=1

exp

(
Aℓv − εcℓ

η

)
µℓ, (A.4)

where the matrix A has full column rank. We assume the set of solutions to the dual
unregularized optimal transport problem with extra linear constraints is non-empty and
bounded in the sense that if

D0 = inf −bT v (A.5)

subject to Aℓv ≤ cℓ and

V0 :=
{
v ∈ Rd|Aℓv ≤ cℓ,−bT v = D0

}
,

then there exist an M > 0 such that ||v|| < M,∀v ∈ V0. Moreover we assume that
∀ℓ, cℓ ≥ 0. Let vη be the optimal solution to the (A.4) with parameter η and ηk ↓ 0. We
denote vk = vηk for simplicity.

Proposition A.3. The sequence {vk}k is bounded. If it converges to some v0 = lim vk,
then v0 is optimal in (A.5).

Proof. Let v̄ ∈ V0. Then for all k,

−bT vk+ηk
m∑
ℓ=1

exp

(
Aℓvk − cℓ

ηk

)
µℓ ≤ −bT v̄+ηk

m∑
ℓ=1

exp

(
Aℓv̄ − cℓ

ηk

)
µℓ ≤ −bT v̄+ηk ≤ M̄

(A.6)
for some M̄ > 0. The second inequality comes from the fact that Aℓv̄ ≤ cℓ and hence the
exponential term is less than 1. Since exponential function and µℓ are always positive,
from (A.6) we obtain for all ℓ:

Aℓvk ≤ ηk log

[
1

ηk
(M̄ + bT vk)

]
+ cℓ.

If {vk}k is unbounded and ||vk|| → ∞ as k → ∞ and without loss of generality if
vk/||vk|| → v̂ ̸= 0, then

Aℓ
vk

||vk||
≤ ηk

||vk||
log

[
1

ηk
(M̄ + bT vk)

]
+

cℓ
||vk||

→ 0.

We can conclude that Av̂ ≤ 0. Moreover, the positive of exponential function and µi
also implies that −bT û ≤ 0 by the same argument. Therefore, ū+ λû is also an optimal
solution to the unregularized problem which violate the boundedness of V0.
Assuming vk → v0 as k → ∞. Since {vk}k is bounded, we can find another constant
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M̂ > 0 such that

ηk
∑
ℓ

exp

(
Aℓvk − εcℓ

ηk

)
µℓ ≤ M̂

Aℓvk ≤ ηk log

(
M̂

ηk

)
+ cℓ.

By taking k → ∞ for both sides, we deduce that Aiu0 ≤ ci. Again, by (A.6):

−bT v0 ≤ lim sup
k→∞

−bT vk + ηk

m∑
ℓ=1

exp

(
Aℓvk − cℓ

ηk

)
µℓ ≤ −bT v̄.

Therefore, we can conclude that v0 is also an optimal solution to the unregularized
problem.

B. Calculation of the second derivatives of C(ε)

Recall:

C ′′(ε) =

[
∇u

∂

∂ε
Φ(u(ε), ε)

]T [
−D2

uuΦ(u(ε), ε)
]−1

[
∇u

∂

∂ε
Φ(u(ε), ε)

]
+

∂2

∂ε2
Φ(u(ε), ε).

(B.1)
Let

ers = exp

[
1

η
(ur − εcrs)

]
µr

and ecrs = erscrs, e
c2
rs = ersc

2
rs. It is easy to deduce all the second derivative of Φ:

∂2

∂ε2
Φ(u(ε), ε) =

1

η

∑
s

[∑
r e

c2
rs∑

r ers
−
∑

r e
c
rs ·
∑

r e
c
rs

(
∑

r ers)
2

]
νs(

∇u
∂

∂ε
Φ(u(ε), ε)

)
i

= −1

η

∑
s

[
ecis∑
r ers

−
eis ·

∑
r e

c
rs

(
∑

r ers)
2

]
νs(

D2
uuΦ(u(ε), ε)

)
i1i2

=
1

η

∑
s

[
ei1s∑
r ers

δi1i2 −
ei1s · ei2s
(
∑

r ers)
2

]
νs,

where δip is the Kronecker delta.
Let us calculate the (B.1) separately. For the second part, since eij = µi when ε = 0,

then:
∂2

∂ε2
Φ(u(0), 0) =

1

η

(
E[c2(X,Y )]− E

[
(E[c(X,Y )|Y ])2

])
. (B.2)

Let’s deal with the first part of (B.1). With the assumption that u0 ≡ 0, then when
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ε = 0, for every i ̸= 0(
∇u

∂

∂ε
Φ(u(0), 0)

)
i

=
µi
η

(
E[c(X,Y )]− E[c(X,Y )|X = xi]

)
and

−D2
uuΦ(u(0), 0) =

1

η

(
−diag(µ̄) + µ̄µ̄T

)
,

where µ̄ = {µi}i ̸=0. Note that, by Sherman-Morrison formula, we have:

[
−D2

uuΦ(u(0), 0)
]−1

= η

(
−diag−1(µ̄)− diag−1(µ̄)µ̄µ̄Tdiag−1(µ̄)

1− µ̄Tdiag−1(µ̄)µ̄

)
= η

(
−diag−1(µ̄)− 11

T

µ0

)
,

where 1 is a vector with all entries 1 and diag−1(µ̄) is a diagonal matrix where each
diagonal entry is the inverse of µi. Therefore[

−D2
uuΦ(u(0), 0)

]−1
[
∇u

∂

∂ε
Φ(u(0), 0)

]
=η

(
−diat−1(µ̄)− 11

T

µ0

)(
µi
η

(
E[c(X,Y )]− E[c(X,Y )|X = xi]

))
i ̸=0

=

(
E[c(X,Y )|X = xi]− E[c(X,Y )]

)
i ̸=0

+

 1

µ0

∑
n̸=0

[E[c(X,Y )|X = xi]− E[c(X,Y )]]


i ̸=0

=
(
E[c(X,Y )|X = xi]− E[c(X,Y )] + E[c(X,Y )]− E[c(X,Y )|X = x0]

)
i ̸=0

=
(
E[c(X,Y )|X = xi]− E[c(X,Y )|X = x0]

)
i ̸=0
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and [
∇u

∂

∂ε
Φ(u(ε), ε)

]T [
−D2

uuΦ(u(ε), ε)
]−1

[
∇u

∂

∂ε
Φ(u(ε), ε)

]
=

(
µi
η

(
E[c(X,Y )]− E[c(X,Y )|X = xi]

))T
i ̸=0

·
(
E[c(X,Y )|X = xi]− E[c(X,Y )|X = x0]

)
i ̸=0

=
1

η

∑
i ̸=0

[
E[c(X,Y )]E[c(X,Y )|X = xi]− E[c(X,Y )]E[c(X,Y )|X = x0]

− (E[c(X,Y )|X = xi])
2 + E[c(X,Y )|X = x0]E[c(X,Y )|X = xi]

]
=
1

η

{
E[c(X,Y )]

∑
i

E[c(X,Y )|X = xi]µi − E[c(X,Y )]
∑
i

E[c(X,Y )|X = x0]µi

−
∑
i

(E[c(X,Y )|X = xi])
2 µi + E[c(X,Y )|X = x0]

∑
i

E[c(X,Y )|X = xi]µi

}
− 1

η

{
E[c(X,Y )]E[c(X,Y )|X = x0]− E[c(X,Y )]E[c(X,Y )|X = x0]

− (E[c(X,Y )|X = x0])
2 + E[c(X,Y )|X = x0]E[c(X,Y )|X = x0]

}
µ0

=
1

η

(
(E[c(X,Y )])2 − E

[
(E[c(X,Y )|X])2

])
. (B.3)

Hence, summing (B.2) and (B.3) we get:

C ′′(0) =
1

η

(
(E[c(X,Y )])2 + E[c2(X,Y )]− E

[
(E[c(X,Y )|X])2

]
− E

[
(E[c(X,Y )|Y ])2

])
.

B.1. The second order derivatives of Φ(u, v, ε) for multi marginal optimal
transport

Recall:

Φ(u, v, ε) = −
∑
r

urµr−
∑
s

vsθs+ η
∑
t

log

[∑
r,s

exp

[
1

η
(ur + vs − εcrst)

]
µrθs

]
νrst− η.

Let us denote

eijk = exp

[
1

η
(ui + vj − εcijk)

]
, ecijk = exp

[
1

η
(ui + vj − εcijk)

]
cijk.
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The the Hessian matrix of Φ will be the symmetric matrix:

D2Φ =

[
D2
uuΦ D2

uvΦ
D2
vuΦ D2

vvΦ

]
,

where: (
D2
uuΦ(u(ε), v(ε), ε)

)
i1i2

=
1

η

∑
t

[∑
s ei1st∑
r,s erst

δi1i2 −
∑

s ei1st ·
∑

s ei2st
(
∑

r,s erst)
2

]
νt(

D2
vvΦ(u(ε), v(ε), ε)

)
j1j2

=
1

η

∑
t

[ ∑
r erjt∑
r,s erst

δj1j2 −
∑

r erj1t ·
∑

r erj2t
(
∑

r,s erst)
2

]
νt(

D2
uvΦ(u(ε), v(ε), ε)

)
ij

=
1

η

∑
t

[
eijt∑
r,s erst

−
∑

s eist ·
∑

r erjt
(
∑

r,s erst)
2

]
νt

and the mixed derivative is:

∇ ∂

∂ε
Φ =

[
∇u

∂
∂εΦ

∇v
∂
∂εΦ

]
, (B.4)

where: (
∇u

∂

∂ε
Φ(u(ε), v(ε), ε)

)
i

= −1

η

∑
t

[ ∑
s e

c
ist∑

r,s erst
−
∑

s eist ·
∑

r,s e
c
rst

(
∑

r,s erst)
2

]
νt(

∇v
∂

∂ε
Φ(u(ε), v(ε), ε)

)
j

= −1

η

∑
t

[ ∑
r e

c
rjt∑

r,s erst
−
∑

r erjt ·
∑

r,s e
c
rst

(
∑

r,s erst)
2

]
νℓ.

B.2. The second order derivatives of Φ(v, g, ε) for martingale optimal
transport

Recall:

Φ(v, g, ε) := −
∑
m

vmνm + η
∑
n

log

[∑
m

exp

[
1

η
(vm + gn(ym − xn)− εcnm)

]
νm

]
µn − η.

Let denote

eij = exp

[
1

η
(vj + hi(yj − xi)− εcij)

]
νj

and exyij = eij(yj − xi), e
xy2
ij = eij(yj − xi)

2, ecij = eijcij and e
xyc
ij = eij(yj − xi)cij

The Hessian matrix for Φ will be the symmetric matrix:

D2Φ =

[
D2
vvΦ D2

vhΦ
D2
hvΦ D2

hhΦ

]
,
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where: (
D2
vvΦ(v(ε), h(ε), ε)

)
j1j2

=
1

η

∑
r

[
erj∑
s ers

δj1j2 −
erj1 · erj2
(
∑

s ers)
2

]
µr(

D2
hhΦ(v(ε), h(ε), ε)

)
i1i2

=
1

η

[∑
s e

xy2
i1s∑

s ei1s
−
∑

s e
xy
i1s

·
∑

s e
xy
i2s

(
∑

s ei1s)
2

]
µi1δi1i2(

D2
vhΦ(v(ε), h(ε), ε)

)
ij

=
1

η

[
eij∑
s eis

−
eij ·

∑
s e

xy
is

(
∑

s eis)
2

]
µi,

where δiℓ is the Kronecker delta. While the mixed derivative:

∇ ∂

∂ε
Φ =

[
∇v

∂
∂εΦ

∇h
∂
∂εΦ

]
,

where: (
∇v

∂

∂ε
Φ(v(ε), h(ε), ε)

)
j

= −1

η

∑
r

[
ecrj∑
s ers

−
erj ·

∑
s e

c
rs

(
∑

s ers)
2

]
νj(

∇h
∂

∂ε
Φ(v(ε), h(ε), ε)

)
i

= −1

η

[∑
s e

xyc
is∑

s eis
−
∑

s e
xy
is ·

∑
s e

c
is

(
∑

s eis)
2

]
µi.

B.3. The second order derivatives of Φ(v, w, g, h, ε) for multi-period optimal
transport

Recall:

Φ(v, w, g, h, ε) =−
∑
s

vsθs −
∑
t

wtνt + η
∑
r

log

[∑
s,t

exp

[
1

η

(
vs + wt

+ gr(ys − xr) + hrs(zt − ys)− εcrst
)]
θsνt

]
νr − η.

By denoting eijk = exp[ 1η (vj +wk + gi(yj − xi) + hij(zk − yj)− εcijk)]θjνk and exyijk =

eijk(yj−xi), eyzijk = eijk(zk−yj), exy2ijk = eijk(yj−xi)2, exyzijk = eijk(yj−xi)(zk−yj), eyz2ijk =

eijk(zk − yj)
2, ecijk = eijkcijk, e

xyc
ijk = eijk(yj − xi)cijk, e

yzc
ijk = eijk(zk − yj)cijk,

the Hessian of Φ will be the symmetric matrix:

D2Φ =


D2
vvΦ D2

vwΦ D2
vgΦ D2

vhΦ

D2
wvΦ D2

wwΦ D2
wgΦ D2

whΦ

D2
gvΦ D2

gwΦ D2
ggΦ D2

ghΦ

D2
hvΦ D2

hwΦ D2
hgΦ D2

hhΦ

 ,
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where

(
D2
vvΦ
)
j1j2

=
1

η

∑
r

[∑
t erj1t∑
s,t erst

δj1j2 −
∑

t erj1t ·
∑

t erj2t
(
∑

s,t erst)
2

]
µr

(
D2
vwΦ

)
jk

=
1

η

∑
r

[
erjk∑
s,t erst

−
∑

t erjt ·
∑

s ersk
(
∑

s,t erst)
2

]
µr

(
D2
vgΦ
)
ji
=

1

η

[ ∑
t eijt∑
s,t eist

−
∑

t eijt ·
∑

s,t e
xy
ist

(
∑

s,t eist)
2

]
µi

(
D2
vhΦ

)
j1,(ij2)

=
1

η

[ ∑
t e
yz
ij2∑

s,t eist
δj1j2 −

∑
t eij1 ·

∑
t e
yz
ij2

(
∑

s,t eist)
2

]
νi

(
D2
wwΦ

)
k1k2

=
1

η

∑
r

[ ∑
s erk1∑
s,t erst

δk1k2 −
∑

s ersk1 ·
∑

s ersk2
(
∑

s,t erst)
2

]
µr

(
D2
wgΦ

)
ki

=
1

η

[ ∑
s e

xy
isk∑

s,t eist
−
∑

s eisk ·
∑

s,t e
xy
ist

(
∑

s,t eist)
2

]
µi

(
D2
whΦ

)
k,(ij)

=
1

η

[
eyzijk∑
s,t eist

−
∑

s eisk ·
∑

t e
yz
ijt

(
∑

s,t eist)
2

]
µi

(
D2
ggΦ
)
i1i2

=
1

η

[∑
s,t e

xy2
i1st∑

s,t ei1st
−
∑

s,t e
xy
i1st

·
∑

s,t e
xy
i2st

(
∑

s,t ei1st)
2

]
µi1δi1i2

(
D2
ghΦ

)
i1,(i2j)

=
1

η

[∑
t e
xyz
i1jt∑

s,t eist
−
∑

s,t e
xy
i1st

·
∑

t e
yz
i2jt

(
∑

s,t eist)
2

]
µi1δi1i2

(
D2
hhΦ

)
(i1j1),(i2j2)

=
1

η

[∑
t e
yz2
i1j1t∑

s,t ei1st
δj1j2 −

∑
t e
yz
i1j1t

·
∑

t e
yz
i2j2t

(
∑

s,t eist)
2

]
µi1δi1i2 .

Here we flatten the matrix {hij} into a long vector and abuse the notation that we still
call it with the index (ij). For the mixed second order derivatives:

∇ ∂

∂ε
Φ =


∇v

∂
∂εΦ

∇w
∂
∂εΦ

∇g
∂
∂εΦ

∇h
∂
∂εΦ

 ,
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where (
∇v

∂

∂ε
Φ

)
j

= −1

η

∑
r

[ ∑
t e
c
rjt∑

s,t erst
−
∑

t erjt ·
∑

s,t e
c
rst

(
∑

s,t erst)
2

]
µr(

∇g
∂

∂ε
Φ

)
i

= −1

η

[∑
s,t e

xyc
ist∑

s,t eist
−
∑

s,t e
xy
ist ·

∑
s,t e

c
ist

(
∑

s,t eist)
2

]
µi(

∇w
∂

∂ε
Φ

)
k

= −1

η

∑
r

[ ∑
s e

c
rsk∑

s,t erst
−
∑

s ersk ·
∑

st e
c
rst

(
∑

s,t erst)
2

]
µr(

∇h
∂

∂ε
Φ

)
(ij)

= −1

η

[ ∑
t e
yzc
ijt∑

s,t eist
−
∑

t e
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ijt ·

∑
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c
ist

(
∑
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2

]
µi.
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