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Abstract. This paper deals with the positive mass theorem and the existence of isoperimetric
sets on 3-manifolds endowed with continuous complete metrics having nonnegative scalar curvature
in a suitable weak sense.

We prove that if the manifold has an end that is C0-locally asymptotically flat, and the metric
is the local uniform limit of smooth metrics with vanishing lower bounds on the scalar curvature
outside a compact set, then Huisken’s isoperimetric mass is nonnegative. This addresses a version
of a recent conjecture of Huisken about positive isoperimetric mass theorems for continuous metrics
satisfying Rg ≥ 0 in a weak sense. As a consequence, any fill-in of a truncation of a Schwarzschild
space with negative ADM mass has nonnegative isoperimetric mass.

Moreover, in case the whole manifold is C0-locally asymptotically flat and the metric is the local
uniform limit of smooth metrics with vanishing lower bounds on the scalar curvature outside a
compact set, we prove that, as a large scale effect, isoperimetric sets with arbitrarily large volume
exist.
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1. Introduction

1.1. Statement of the result. The classical positive mass theorem (PMT) in 3 dimensions,
originally due to Schoen-Yau [77], asserts that the ADM mass of a 3-dimensional smooth complete
asymptotically flat manifold with nonnegative scalar curvature is nonnegative. This seminal result
has been later rediscovered, generalized, improved and exploited in a number of ways. Without
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any attempt to be complete, we refer to [83, 78, 1, 16] for different proofs and extensions to higher
dimensions, and to [45, 15] for its main refinement, i.e., the Riemannian Penrose inequality.

In this paper we prove an extension of the PMT for continuous metrics with weakly nonnegative
scalar curvature on 3-manifolds. First, we introduce the notions of mass and nonnegative scalar
curvature we are going to adopt. We say that (M, g) is a C0-Riemannian manifold if M is a
smooth differentiable manifold, and g is a C0-metric on M . For a Borel set E ⊂ M , let |E|, P (E)
denote the volume, and perimeter of E, see Section 2.2 for precise definitions. The following notion
has been introduced by Huisken [43].

Definition 1.1 (Isoperimetric mass, Huisken [43]). Let (M, g) be a C0-Riemannian 3-manifold,
possibly with boundary. Then, its isoperimetric mass is

miso := sup
{

lim sup
j→+∞

2
P (Ωj)

(
|Ωj| − P (Ωj)3/2

6
√
π

)
: Ωj ⊂ M,P (Ωj) < +∞ ∀ j,

P (Ωj) −→ +∞
}
.

(1.1)

For asymptotically flat 3-manifolds with nonnegative scalar curvature, the isoperimetric mass
coincides with the ADM mass whenever the boundary is minimal: see, e.g., [47, Theorem 3], [26,
Theorem C.2]. In [12, Theorem 4.13] such an equality is proved in the C1,1/2+ε-asymptotically flat
regime, which is the sharp one to show that the ADM mass is independent of the chart at infinity
[9, 27]. The fact that the ADM mass can be detected through the isoperimetric deficit of large
coordinate spheres was first observed in the Schwarzschild space in [14], and in asymptotically flat
manifolds in [33, Corollary 2.3].

Huisken has conjectured [44] that a weak (isoperimetric) PMT should hold true for continuous
Riemannian metrics if one interprets the notion of nonnegative scalar curvature (shortly, Rg ≥ 0)
in an appropriate weak sense, see Section 1.3.1 for more details. In this paper we prove a version
of this conjecture under the following weak notion of nonnegative scalar curvature.

Definition 1.2 (Rg ≥ 0 in the approximate sense). Let (M, g) be a complete C0-Riemannian
manifold without boundary, and let Ω ⊂ M be an open set. We say that Rg ≥ 0 in the approximate
sense on Ω if there exist smooth complete Riemannian metrics gj on M , such that:

(1) gj converges to g locally uniformly on M ;
(2) There exists a sequence (εj)j∈N of positive numbers such that εj → 0, and Rgj

≥ −εj on Ω.

By a result of Gromov, recalled below in Theorem 1.7, a smooth Riemannian manifold has
nonnegative scalar curvature if and only if Rg ≥ 0 holds in the approximate sense on M . Before
stating the main theorems of this paper, we make clear what it means that an end of a C0-manifold
is C0

loc-asymptotic to Rn.

Definition 1.3. Let K ⊂ M be a compact set (possibly empty) of a C0-Riemannian manifold
(M, g). We say that an unbounded connected component Ω of M \ K is C0

loc-asymptotic to a
C0-Riemannian manifold (N, h) if the following holds. For every diverging sequence Ω ∋ pi → +∞
there exists a point o ∈ N such that (M, gi, pi) → (N, h, o) in the C0-sense, see Definition 2.3.

Theorem 1.4. Let (M, g) be a complete 3-dimensional C0-Riemannian manifold without boundary.
Let K ⊂ M be a compact set, and let Ω be an unbounded connected component M \K. Assume
that Ω is C0

loc-asymptotic to R3, see Definition 1.3, and that Rg ≥ 0 in the approximate sense on
Ω \K ′, see Definition 1.2, where K ′ ⊂ M is a compact set.

Then miso ≥ 0.

The PMT for the isoperimetric mass in the C0
loc-asymptotically flat case with nonnegative scalar

curvature only outside a compact set in a given end, is, to our knowledge, a new result even in the
smooth setting. In fact, one can immediately draw out of Theorem 1.4 the following surprising
consequence.
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Remark 1.5. Any fill-in of the truncated spacelike slice of a Schwarzschild spacetime of negative
ADM mass has nonnegative isoperimetric mass. Namely, any complete fill-in of the noncompact,
scalar-flat, asymptotically flat manifold with boundary [s0,+∞) × S2, for s0 > 0, endowed with
the metric

g = 1
1 − ms−1 ds⊗ ds+ s2gS2 ,

with m < 0, enjoys miso ≥ 0. For such manifolds, we presently do not know neither the shape of
isoperimetric regions nor the exact value of miso.

The observation above shows that without some additional assumption on the boundary, like
minimality (see [12, Theorem 4.13]), the identification between the two notions of mass in general
fails. Moreover, this is coherent with the cross-sections being unstable constant mean curvature
surfaces, a property showed in [29, Section 5], where the question about the shape of isoperimetric
regions is also raised.

Theorem 1.4 applies also to manifolds possibly having more than one end, for which there is
a distinguished end that has Rg ≥ 0 (outside a compact set), and that is C0

loc-asymptotic to R3.
Positive mass theorems on manifolds with arbitrary ends, except for a globally asymptotically
flat one, have been recently considered e.g. in [57, 55, 25, 28], see also references therein. Our
distinguished end might not be globally asymptotically flat: for example, our result applies to
asymptotically conical ends, and in particular to ALE ends.

On smooth 3-dimensional asymptotically flat manifolds the condition Rg ≥ 0, which governs
the local isoperimetric structure around each point, has also a global effect in the existence of
isoperimetric sets for arbitrarily large volumes (see, e.g., [32, Theorem 1.2], [23, Proposition K.1],
[26, Theorem 1.1], and references therein). This can be understood as an interpolation effect
between Rg ≥ 0 and the positivity of the mass at infinity. The next result confirms this heuristic
idea also in the continuous setting.

Theorem 1.6. Let (M, g) be a complete 3-dimensional C0-Riemannian manifold without boundary,
and assume that Rg ≥ 0 in the approximate sense on M \ C, where C is a compact set, see
Definition 1.2. Assume in addition that M is C0

loc-asymptotic to R3, see Definition 1.3.
Then there exists a sequence of isoperimetric sets (Ej)j∈N on M such that |Ej| → +∞.

Very much like Theorem 1.4, even in the smooth setting Theorem 1.6 strongly weakens the
asymptotic assumptions for the existence of isoperimetric sets. The literature on the subject is
very vast, in particular in relation to the study of canonical foliations of stable CMC: we refer to
the seminal [46] and to [31, 32, 70, 26, 85], as well as to the references therein, for a fairly complete
picture.

In the setting of Theorem 1.6 it is an interesting open problem to analyze existence of isoperimetric
sets for any (large) volume, uniqueness or foliation properties of such isoperimetric sets, as in [70,
26, 85] (see also the survey [10]). Under the additional assumption that the isoperimetric profile I
is strictly increasing, we can actually prove existence of isoperimetric sets for every volume, see
Proposition 4.3.

1.2. Strategy. We briefly discuss the strategy of the proof of Theorem 1.4, and Theorem 1.6,
referring the reader to Section 3, and Section 4 for more details.

The starting point in the proof of Theorem 1.4 is the following consequence of a result due to
Shi [79], after important insights by Brendle–Chodosh [18]: in a smooth 3-dimensional asymp-
totically flat manifold with nonnegative scalar curvature the level sets of the weak inverse mean
curvature flow (shortly, IMCF, see Definition 3.1) issuing from a point satisfy a reverse Euclidean
isoperimetric inequality with the sharp constant, as long as their boundaries are connected. Hence
the isoperimetric deficit appearing on the right hand side of (1.1) is nonnegative when computed
on such sets, and this directly implies the nonnegativity of the isoperimetric mass by letting the
level sets of the IMCF exhaust the manifold.
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In fact, we will push this heuristic to give an isoperimetric PMT for metrics that are only
continuous. The crux of the argument is to show that on the approximating manifolds (M, gj)
one can define a well-behaved weak IMCF wj on arbitrarily large punctured balls. This is done
by taking scaled limits of the logarithms of p-Green functions on punctured balls, for p → 1+, as
pioneered by R. Moser [66]. In fact, we build on the sharp gradient estimate obtained in [51], and
on the Harnack inequality with explicit constants in [74], to get a weak IMCF wj on punctured
balls Bj in (M, gj) that is bounded below explicitly with constants that stay bounded when Bj is
C0-close enough to a Euclidean ball. This is the content of the new quantitative existence result for
local IMCFs in Theorem 3.6. The latter allows to pass to the limit the level sets of these IMCFs,
obtaining sets satisfying the (sharp) reverse Euclidean isoperimetric inequality with arbitrarily
large perimeters, see Proposition 4.2.

The proof of the existence of isoperimetric sets in Theorem 1.6 is not constructive, and it is based
on a novel contradiction argument. One notices that if after a certain volume threshold isoperimetric
sets do not exist, then the isoperimetric profile is strictly increasing for large volumes: this is a
consequence of a generalized existence theorem for the isoperimetric problem, see Theorem 2.16.
In addition, arguing as in the previous paragraph, we construct sets that satisfy the reverse sharp
Euclidean isoperimetric inequality with arbitrarily large volumes and perimeters, and that avoid
any compact set. This is enough to show, again using Theorem 2.16 and that the isoperimetric
profile is increasing, that isoperimetric sets with arbitrarily large volumes must exist, thus resulting
in a contradiction.

1.3. Comments and comparison with related literature. We collect here some comments
and perspectives on the main results of this paper.

1.3.1. Other notions of weak scalar curvature bounds, and relations with the works [19, 20]. Several
notions of scalar curvature lower bounds for smooth manifolds endowed with C0-Riemannian
metrics have been proposed in the recent years. In [37] Gromov proposes a definition based on
nonexistence of suitable small polyhedra on the manifold, see the recent works [58, 17] motivated
by this study; a definition by using a regularization through Ricci flow has been suggested by
Burkhardt-Guim in [19]; and a definition using volumes of small balls has been hinted by Huisken
[44]. Let us compare our result in Theorem 1.4 with the framework in [19, 20].

Assume that a complete C0-Riemannian manifold (M, g) is globally C0-asymptotic to R3 outside
a compact set K ⊂ M , see Definition 1.8. Hence, for β ∈ (0, 1/2), we claim that if Rg ≥ 0 in the
β-weak sense [20, Definition 2.3] on M \K, then Rg ≥ 0 in the approximate sense on M \K, up
to possibly enlarging K. Indeed, this is due to the fact that under the C0-asymptotic hypothesis
at infinity one can first define a Ricci-deTurck flow (M, gt) starting from g which C0-converges to
(M, g) locally uniformly by using [81, Theorem 1.1]. Then, since Rg ≥ 0 in the β-weak sense on
M \K, [20, Lemma 5.1] implies that, up to possibly enlarging K, Rgt ≥ −o(1) on M \K as t → 0,
which in turn implies that Rg ≥ 0 in the approximate sense on M \K by definition. In the case
M is a compact manifold, the previous reasoning has been explicitly recorded in [19, Corollary
1.6]. Related to this, it would be interesting to understand whether a non-compact C0-manifold
(M, g) that has Rg ≥ 0 in the approximate sense on M admits a smooth metric g̃ with Rg̃ ≥ 0.
The compact case has been settled in [19, Corollary 1.8]. Taking into account the discussion above,
this seems likely to hold when (M, g) is, in addition, C0-asymptotic to R3 (Definition 1.8).

As a consequence of the above discussion, under the stronger assumption that (M, g) is C0-
asymptotic to R3 (Definition 1.8), one gets that miso ≥ 0 provided that Rg ≥ 0 in the β-weak
sense outside a compact set, for some β ∈ (0, 1/2) ([20, Definition 2.3]). It is yet to be understood
whether, in such setting, the isoperimetric mass coincides with the (weak notion of) ADM mass
defined in the work [20], see [20, Question 1]. If the latter holds, then Theorem 1.4 would answer
the question about the nonnegativity of such mass [20, Question 2] in the positive.
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As a side note, we point out that as of today it is not known whether the definitions in [37]
and [19] are equivalent, compare with the discussion [19, Page 1707-1708], nor any relation with
Huisken’s notion in [44] has been investigated yet.

We conclude this section by mentioning a result according to which the notion of Rg ≥ 0 in the
approximate sense is consistent with Rg ≥ 0 for smooth metrics. In fact, as a consequence of a
result of Gromov [37, page 1118] (see [8] for a proof using the Ricci flow) the following holds.

Theorem 1.7 ([37, 8]). Let M be a smooth manifold and κ : M → R be a continuous function on
M . Suppose gi is a sequence of C2-metrics on M that converges locally uniformly to a C2-metric
g on M . If Rgi

≥ κ on M , then Rg ≥ κ everywhere on M as well.

1.3.2. Comparison with the literature related to weak PMT. Weak positive mass theorems (PMT)
have been thoroughly studied in the last two decades. We briefly discuss some contributions
without the aim of being exhaustive, and refer the interested reader to the references therein.

In [64, Theorem 1] the author proves a PMT for asymptotically flat Lipschitz metrics that are
smooth away from a compact hypersurface, and such that Rg ≥ 0 in an appropriate weak sense
(i.e., a condition on the exterior/interior mean curvatures of the hypersurface is required). See
also [63, Theorem 1] for a proof of the result in [64, Theorem 1] using Ricci flow. Then, in [80,
Theorem 1.3], the authors prove a PMT for n-dimensional manifolds that carry an asymptotically
flat C0 ∩W 1,n metric that is smooth away from a compact set Σ of codimension at least 2, and
for which Rg ≥ 0 outside Σ. See also [48, Theorem 1.1] for an improvement of [80, Theorem 1.3],
where a weaker condition on the codimension of Σ (depending on the integrability of the derivatives
of the metric) is asked. Similar results, but with global L∞ metrics which satisfy appropriate
conditions close to Σ, are in [59, Theorem 1.8, Theorem 1.9].

In all of the papers discussed above, the manifolds considered are smooth and with nonnegative
scalar curvature outside a compact set, and thus, in dimension 3, Theorem 1.4 implies they
enjoy nonnegative isoperimetric mass. Finally, in [54, Theorem 1.1] the authors prove a PMT
for a carefully generalized ADM mass in the setting of C0 ∩ W 1,n metrics with weak decays at
infinity, and for which a notion of distributional scalar curvature is nonnegative. By means of a
mollification procedure, see, e.g., [48, Lemma 2.6], these metrics have nonnegative scalar curvature
in the approximate sense. Moreover, their asymptotic constraints imply C0-asymptotic flatness.
In particular, Theorem 1.4 holds in this case as well. To our knowledge, it is not known whether
the isoperimetric mass and the ADM mass agree in the setting of the results described above.

1.3.3. Another notion of isoperimetric mass. On a C0-Riemannian 3-manifold (M, g), it is also
common to consider another notion of isoperimetric mass given in terms of exhaustions [47, 26,
12], namely

m̃iso := sup
{

lim sup
j→+∞

2
P (Ωj)

(
|Ωj| − P (Ωj)3/2

6
√
π

)
: (Ωj)j∈N is an exhaustion of M ,

P (Ωj) < +∞ ∀ j
}
.

As a by-product of the proof in [47, Proposition 37] one gets that if (M, g) satisfies a global Euclidean-
like isoperimetric inequality, i.e., P (E) ≥ C|E|2/3 for some C > 0 for any |E| < +∞, then
m̃iso = miso. This holds, for instance, when M is globally C0-asymptotic to R3, see Definition 1.8
for the precise definition. In particular, Theorem 1.4 implies that on 3-dimensional C0-Riemannian
manifolds that are C0-asymptotic to R3 (Definition 1.8) and that satisfy Rg ≥ 0 in the approximate
sense out of a compact set, there holds m̃iso ≥ 0.

1.4. The question of rigidity. In the smooth PMT [77], one gets that the mass is zero if and
only the metric is flat. In this paper, we do not address the issue of rigidity in Theorem 1.4. We
pose it as a problem, which is likely to require the use of new techniques tailored for the C0-setting,
or some refined approximation procedure. We state it in the most basic asymptotically flat case.
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Definition 1.8 (Manifold C0-asymptotic to Rn). We say that an n-dimensional C0-Riemannian
manifold (M, g) is C0-asymptotic to Rn if there exists a compact set K ⊂ M such that the following
holds. There exists R > 0, and a diffeomorphism Φ : Rn \BRn

R (0) → M \K, such that
|(Φ∗g)ij − δij|x = o(1) as |x| → +∞.

Question 1.9. Let (M, g) be a complete C0-manifold of dimension 3 without boundary. Assume
that M has Rg ≥ 0 in the approximate sense everywhere, and that M is C0-asymptotic to R3. If
miso = 0, is it true that (M, g) is isometric to (R3, geu)?

Notice one cannot expect rigidity in the general formulation of Theorem 1.4, not even in the
smooth case: indeed, it can be showed by a direct computation that any metric that is flat outside
a compact set in R3 has miso = 0. We finally point out that Question 1.9 may be related to the
study of the stability of the PMT with respect to nonsmooth notions of convergence. Stability
results in this direction have been proved, for instance, in [30] with respect to pointed measure
Gromov–Hausdorff convergence, in [56] for rotationally symmetric metrics, and in [41, 42] for
graphs with respect to (intrinsic) convergence in the sense of currents (see [82] and Conjecture
10.1 therein for more details on the problem).
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2. Preliminaries

We gather in this section a number of fundamental properties of C0-Riemannian manifolds,
possibly endowed with C0-asymptotics.
2.1. Basic definitions and properties of C0-metrics.

Definition 2.1 (C0-Riemannian manifold). A C0-Riemannian manifold is a couple (M, g), where
M is a smooth n-dimensional differentiable manifold (possibly with boundary) and g is a continuous
metric tensor. More precisely, in any local chart (U,φ) on M , the metric tensor in local coordinates
is represented by a symmetric positive definite matrix with components gij ∈ C0(φ(U)).

We briefly recall some metric properties of C0-Riemannian manifolds (M, g), and we refer the
reader to [21, 72] for a more detailed discussion. As in the smooth case, the continuous Riemannian
metric g defines a length structure on absolutely continuous curves on M , which in turn gives raise
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to a distance d that induces the manifold topology. We always assume that (M, d) is a complete
metric space, so that by Hopf–Rinow Theorem the distance d is geodesic, and every closed ball is
compact.

The volume form induced by g in a local chart induces integration with respect to vol :=√
det gLn, where Ln denotes Lebesgue measure. It can be proved that vol = Hn, where Hn is the

n-dimensional Hausdorff measure relative to d, and that Hn is a Radon measure. Hence (M, d,Hn)
is a complete and separable metric measure space. We will often denote |E| := Hn(E). In the
following, if E is a measurable set, integrals over E are tacitly understood to be taken with respect
to Hn.

Given f ∈ C∞(M), one can define ∇f as in the smooth case by setting g(∇f,X) = df(X) for
every vector field X on M . Hence, in a local chart {∂i}i=1,...,n, we have |∇f |2 := g(∇f,∇f) =
gij∂if∂jf . Notice that by the classical Rademacher Theorem applied in chart, if f ∈ Liploc(M),
then ∇f exists Hn-almost everywhere.

From now on we will always assume that C0-Riemannian manifolds are complete. We recall
that a map between metric spaces F : (X, dX) → (Y, dY ) is said to be L-biLipschitz, with L ≥ 1,
when L−1dX(a, b) ≤ dY (F (a), F (b)) ≤ LdX(a, b) for every a, b ∈ X.

Lemma 2.2. Fix n ∈ N with n ≥ 2. Then for any δ > 0 there exists ε > 0 such that the following
holds. Let (M, g) be a C0-Riemannian manifold and let o ∈ M and R > 0. Denote by d the
Riemannian distance on M . Let N be a differentiable manifold and let Ω ⊂ N be an open set.
Suppose that there exists a diffeomorphism F : B10R(o) → Ω and a C0-Riemannian metric h on Ω
such that |(F ∗h− g)(v, v)| ≤ εg(v, v) for any v ∈ TxM and any x ∈ B10R(o).

Then, letting

d̃(x, y) := inf
{ˆ 1

0
|γ′|h : γ : [0, 1] → Ω, γ(0) = x, γ(1) = y

}
,

the map F |BR(o) : (BR(o), d) → (F (BR(o)), d̃) is (1 + δ)-biLipschitz with its image.

Proof. Denote o′ := F (o). Let x, y ∈ BR(o). A constant speed geodesic γ : [0, 1] → M from x to y
has image contained in B5R(o). Hence we can estimate

d̃(F (x), F (y)) ≤
ˆ 1

0
h ((F ◦ γ)′, (F ◦ γ)′)

1
2 dt ≤

√
1 + ε

ˆ 1

0
g(γ′, γ′) 1

2 dt ≤
√

1 + ε d(x, y).

Denoting G = F−1, by assumptions we have that

|G∗g(w,w) − h(w,w)| ≤ εG∗g(w,w),

for any w ∈ TzN and z ∈ Ω. Taking now p, q ∈ F (BR(o)) and a constant speed curve σ : [0, 1] → Ω
from p to q such that

´ 1
0 |σ′|h ≤ (1 + η)d̃(p, q) for η ∈ (0, 1), we can similarly estimate

d(G(p), G(q)) ≤
ˆ 1

0
g((G ◦ σ)′, (G ◦ σ)′) 1

2 dt ≤ 1√
1 − ε

ˆ 1

0
h(σ′, σ′) 1

2 dt ≤ 1 + η√
1 − ε

d̃(p, q).

Sending η → 0, for ε small enough the claim follows. □

Definition 2.3 (C0-convergence). We say that pointed C0-Riemannian manifolds (Mi, gi, pi)
C0-converge to (M, g, p) if the following holds. For every R, ε > 0 there exist i0 := i0(R, ε) and an
open set Ω ⊂ M such that we have:

(1) BR(p) ⊂ Ω;
(2) for every i ≥ i0 there exists an embedding Fi : Ω → Mi such that

• Fi(p) = pi;
• BR(pi) ⊂ Fi(Ω);
• |(F ∗

i gi − g)x(v, v)| ≤ εgx(v, v) for every x ∈ BR(p) and v ∈ TxM .
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Remark 2.4. In the notation of Definition 2.3, arguing as in the proof of Lemma 2.5, it follows that
for any R, ε > 0 the map Fi : (BR(p), d) → (Fi(BR(p)), di) is (1 + ε)-biLipschitz with its image for
any i large enough.

Lemma 2.5. Let (M, g) be a C0-Riemannian manifold, let x0 ∈ M \ ∂M , and denote by d the
Riemannian distance on M . Then the following holds.

• The metric tangent space of M at x0 is isometric to the Euclidean space Rn, i.e., the
rescalings (M, δ−2g, x0) converges to (Rn, geu, 0) in C0-sense as δ ↘ 0.

• For any δ > 0 there is r = r(x0, δ) > 0 and a local chart φ : (Br(x0), d) → (φ(Br(x0)), deu) ⊂
Rn such that φ is (1 + δ)-biLipschitz with its image, where deu denotes Euclidean distance.

Proof. Passing in local coordinates we can identify a neighborhood of x0 in M with (Ω, g), where
Ω ⊂ Rn is open and g = (gij) is the metric in local coordinates. Also we can identify x0 with
the origin 0 ∈ Ω. Let rk ↘ 0. For the first part of the statement, it is sufficient to prove that
(Ω, r−2

k g, 0) C0
loc-converges to (Rn, g0, 0), where g0 is the constant metric given by g evaluated

at the origin. The diffeomorphism Φk : (r−1
k Ω, g0) → (Ω, r−2

k g) given by Φk(x) = rk x satisfies
(Φ∗

k(r−2
k g))x(v, v) = grk x(v, v) for any tangent vector v. Hence, given any R > 0 and ε > 0, for k

large enough we have that

1 − ε ≤ (Φ∗
k(r−2

k g))x(v, v)
g0(v, v)

≤ 1 + ε,

for any x ∈ Bg0
R (0) ⊂ (r−1

k Ω, g0) and any tangent vector v ̸= 0. This establishes the convergence in
C0 to Rn as k → ∞.

Concerning the second part of the statement, let r > 0 to be chosen small and fix a local chart
φ : B10r(x0) → φ(B10r(x0)) =: Ω ⊂ Rn such that φ(x0) = 0, and denote g0 := geu. We identify
B10r(x0) with (Ω, g) in the local chart. Let d̃ be as in Lemma 2.2 with N = Rn. By continuity
of the metric tensor, for any ε > 0 we can take r so small that |gx(v, v) − g0(v, v)| ≤ εg0(v, v) for
any x ∈ Ω and any v ∈ Rn. For ε small enough, it follows from Lemma 2.2 that the identity
id : (Bg

r (0), d) → (Bg
r (0), d̃) is (1 + δ)-biLipschitz. It remains to observe that d̃ = deu on Bg

r (0).
Indeed, fix p, q ∈ Bg

r (0) and let γi : [0, 1] → Ω be a sequence of constant speed curves such that´ 1
0 |γ′

i|eu → d̃(p, q). It follows that γi([0, 1]) ⊂ Bg
9r(0) for large i. Indeed, taking σ : [0, 1] → Bg

5r(0)
a constant speed geodesic for d from p to q, we know that

d̃(p, q) ≤
ˆ 1

0
|σ′|eu ≤ 1√

1 − ε

ˆ 1

0
|σ′|g = 1√

1 − ε
d(p, q) ≤ 2r 1√

1 − ε
.

Therefore, if γi([0, 1]) ̸⊂ Bg
9r(0) for some i, we would get
ˆ 1

0
|γ′

i|eu ≥ 1√
1 + ε

ˆ 1

0
|γ′

i|g ≥ 1√
1 + ε

16r,

leading to a contradiction for large i, provided ε is small enough. Hence we can pass to the limit
γi to a curve γ : [0, 1] → B

g
9r(0) such that d̃(p, q) =

´ 1
0 |γ′|eu. Hence γ is a critical point for the

length functional on (Bg
10r(0), geu). Then γ is a straight segment from p to q and in particular

d̃(p, q) = deu(p, q). □

2.2. BV functions and sets of finite perimeter. Let (M, g) be a complete C0-Riemannian
manifold of dimension n. Then we can consider the complete and separable metric measure
space (M, d,Hn). Following [65, 3], we define the total variation |Df |(B) ∈ [0,+∞] of a function
f ∈ L1

loc(M) in a Borel set B ⊆ M as

|Df |(B) := inf
B⊆Ω open

inf
{

lim inf
n→∞

ˆ
Ω

|∇fn|
∣∣∣∣∣ (fn)n∈N ⊂ Liploc(Ω), fn → f in L1

loc(Ω)
}
. (2.1)
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Remark 2.6. On a C0-Riemannian manifold, the previous definition of total variation is equivalent
to the usual one adopted on metric measure spaces. More precisely, defining the slope of a locally
Lipschitz function f by

lipf(x) := lim sup
y→x

|f(x) − f(y)|
d(y, x) , (2.2)

then plugging lip fn in place of |∇fn| in (2.1) yields the same quantity. Indeed, if f ∈ Liploc(M),
then lip f = |∇f | almost everywhere, see Lemma A.1.

If for some open cover (Ωn)n∈N of M we have that |Df |(Ωn) < +∞ holds for every n ∈ N,
then |Df | is a locally finite Borel measure on M . We say that a Borel set E ⊆ M is of locally
finite perimeter if P (E, ·) := |DχE| is a locally finite measure, called the perimeter measure of
E. When P (E) := P (E,M) < +∞, we say that E is of finite perimeter. If f ∈ L1(M) satisfies
|Df |(M) < +∞, then we say that f ∈ BV (M).

Given any f ∈ Liploc(M), it holds that |Df | is a locally finite measure and |Df | = lip fHn =
|∇f |Hn, see Lemma A.1. Moreover, we recall the coarea formula in our setting,

Theorem 2.7 (Coarea formula [65, Proposition 4.2]). Let (M, g) be a complete C0-Riemannian
manifold. Let f ∈ L1

loc(M) be such that |Df | is a locally finite measure. Fix a Borel set E ⊆ M .
Then R ∋ t 7→ P ({f < t}, E) ∈ [0,+∞] is a Borel measurable function and it holds that

|Df |(E) =
ˆ
R
P ({f < t}, E) dt.

Let us finally introduce the notion of isoperimetric profile.

Definition 2.8. Let (M, g) be a complete C0-Riemannian manifold with |M | = +∞. The
isoperimetric profile function is the function I : (0,+∞) → [0,+∞] defined as follows

I(V ) := inf{P (E) : E ⊂ M,Hn(E) = V }.

2.3. Technical Lemmas on C0-Riemannian manifolds. In this section we prove several
technical lemmas about C0-Riemannian manifolds we are going to use throughout the paper.
Notably, we prove: a precompactness theorem for BV functions on converging sequences of
continuous Riemannian manifolds (Lemma 2.11); the fact that every continuous Riemannian
manifold is PI on every ball (Lemma 2.12); continuity of the isoperimetric profile of continuous
Riemannian manifolds with C0-controlled geometry at infinity (Corollary 2.15); and a generalized
existence theorem for the isoperimetric problem on continuous Riemannian manifolds with C0-
controlled geometry at infinity (Theorem 2.16).

Lemma 2.9. Let (M, g) be a C0-Riemannian manifold. For any p ∈ M , r > 0 and δ > 0 there
exists a Riemannian manifold (N, gδ) with smooth metric gδ such that the inclusion ι : (Br(p), d) →
(N, dδ) is well defined and it is (1 + δ)-biLipschitz with its image, where d, dδ denote Riemannian
distance on (M, g), (N, gδ) respectively.

Proof. For any ε ∈ (0, 1) let gε be a smooth Riemannian metric on B
g

20r(p) such that |g(v, v) −
gε(v, v)| ≤ εg(v, v) for any v ∈ TxM and x ∈ B20r(p). Gluing the boundary of a smooth connected
open domain D such that Bg

10r(p) ⊂ D ⊂⊂ Bg
20r(p) with a half-cylinder [0,+∞) ×∂D and suitably

extending the metric gε, we obtain a smooth complete Riemannian manifold (N, gε). Denote
by dε the Riemannian distance on (N, gε) and by d̃ the distance defined in Lemma 2.2 with
F = ι : Bg

10r(p) → Bg
10r(p) ⊂ (N, gε). Arguing as in the second part of the proof of Lemma 2.5, it

follows that d̃ = dε on Bg
r (p). Indeed, as in the proof of Lemma 2.5 we find that for any x, y ∈ Bg

r (p)
there exists a constant speed curve γ : [0, 1] → Bg

10r(p) such that d̃(x, y) =
´ 1

0 |γ′|gε , hence γ is a
geodesic for the metric gε. For every x ∈ Bg

r (p), we have that for almost every y ∈ Bg
r (p) there

exists a unique, hence minimizing, geodesic in (N, gε) from x to y. Then, for every x ∈ Bg
r (p), we

have that for almost every y ∈ Bg
r (p) the curve γ just obtained must be the minimizing geodesic

from x to y in (N, gε). Hence, given x ∈ Bg
r (p), there holds d̃(x, y) = dε(x, y) for almost every
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y ∈ Bg
r (p). Thus by continuity d̃ = dε on Bg

r (p). Therefore choosing ε small enough and eventually
renaming gε into gδ, the conclusion follows from Lemma 2.2. □

Remark 2.10 (Representation of the perimeter). Let (M, g) be an n-dimensional C0-Riemannian
manifold, and let E be a set of finite perimeter. Then P (E, ·) = Hn−1⌞∂eE, being ∂eE :=
M \ (E(0) ∪ E(1)) the so-called essential boundary, where

E(1) :=
{
x ∈ M

∣∣∣∣∣ lim
r→0

|E ∩Br(x)|
|Br(x)| = 1

}
, E(0) :=

{
x ∈ M

∣∣∣∣∣ lim
r→0

|E ∩Br(x)|
|Br(x)| = 0

}
. (2.3)

Indeed, fix on a compact ball B ⊂ M a sequence gi of smooth metrics such that gi → g uniformly
on B (see, e.g., Lemma 2.9). Then, up to subsequences, ∂eE ∩B does not depend on the metrics
gi, g chosen in the definition (2.3) (compare also with item (1) in Lemma 2.12). Moreover, by the
very definition of Hausdorff measure, (1 − oi(1))Hn−1

gi
⌞B ≤ Hn−1

g ⌞B ≤ (1 + oi(1))Hn−1
gi

⌞B. From
the classical De Giorgi-Federer’s theorem, |DχE|i(Ω) = Hn−1

gi
(∂eE ∩ Ω) for every Ω ⊂⊂ B. Thus,

taking into account Lemma A.1 one has that |DχE|i(Ω) → |DχE|(Ω) for every Borel Ω ⊂⊂ B,
and thus we conclude |DχE|⌞B = Hn−1⌞(∂eE ∩ B). Since B was arbitrary, we get the sought
claim. In the following, if E is a set of locally finite perimeter, integrals over its essential boundary
are tacitly understood to be taken with respect to the perimeter measure.

Lemma 2.11. Let (Mi, gi, pi) be a sequence of pointed C0-Riemannian manifolds of dimension n
converging in C0-sense to a pointed C0-manifold (M, g, p). Denote by d, di the Riemannian distances
on (M, g), (Mi, gi) respectively. Let fi ∈ BV (Mi) be such that supi ∥fi∥L1(Mi) + |Dfi|(Mi) < +∞.
Then, up to subsequence, there exist f ∈ BV (M), Ri ↗ +∞ and (1 + 1/i)-biLipschitz embeddings
Fi : (BRi

(p), d) → (Mi, di) with Fi(p) = pi such that the functions fi ◦Fi converge to f in L1
loc(M).

Moreover
|Df |(M) ≤ lim inf

i
|Dfi|(Mi).

If also sptfi ⊂ BR(pi) for some R > 0 and for every i, then the convergence occurs in L1(M).

Proof. By a diagonal argument, up to passing to a subsequence, by Remark 2.4 there existRi ↗ +∞
and (1 + 1/i)-biLipschitz embeddings Fi : BRi

(p) → Mi with Fi(p) = pi. Denote hi := fi ◦ Fi. For
any r > 0, for i large we have that hi ∈ BV (Br(p)) with supi ∥hi∥L1(Br(p)) + |Dhi|(Br(p)) < +∞.
If we show that hi admits a subsequence converging in L1(Br/2(p)), the first part of the statement
follows. Indeed, by Lemma 2.9 we can find a smooth Riemannian manifold (N, gδ) such that it
is well defined the inclusion ι : (Br(p), d) → (N, dδ) and ι is 2-biLipschitz with its image. Hence
hi can be seen as an equibounded sequence in BV (Bg

r (p), gδ). By classical precompactness we
can extract a subsequence converging in L1(Bg

r/2(p),Hn
gδ). Since Hn

gδ and Hn
g are equivalent, the

subsequence converges in L1(Br/2(p)) as well.
The lower semicontinuity inequality readily follows since, for any r > 0 for i large enough we

have
|Dhi|(Bg

r (p)) ≤ (1 + o(1))|Dfi|(Bgi

2(1+1/i)r(pi)) ≤ (1 + o(1))|Dfi|(Mi),
where o(1) → 0 as i → ∞. □

Lemma 2.12. Let (M, g) be a C0-Riemannian manifold of dimension n. Fix R > 0, p ∈ M .
Then there exists C := C(p,R) > 1 such that the following hold.

(1) For any x ∈ BR(p) and 0 < r ≤ R there holds
|B2r(x)|
|Br(x)| ≤ C, C−1rn ≤ |Br(x)| ≤ Crn.

(2) For any x ∈ BR(p), any r ≤ R, and any f ∈ Liploc(M) there holds 
Br(x)

∣∣∣∣∣f −
 

Br(x)
f

∣∣∣∣∣ ≤ Cr

 
B2r(x)

|∇f |. (2.4)
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(3) For any E ⊂⊂ BR(p) there holds

|E|
n−1

n ≤ CP (E). (2.5)

Proof. The claims are well-known to hold true on manifolds with smooth Riemannian metrics as a
consequence of the fact that one can always find a lower bound for the Ricci curvature on compact
sets. In fact, on a smooth manifold, (1) is a consequence of the Bishop–Gromov comparison
theorem [71, Lemma 7.1.4], (2) follows from [22, 73], and (3) is a consequence of (1) and (2) by
[38, Theorem 9.7] and [2, Theorem 4.3, Remark 4.4]. Therefore claims (1) and (3) in the setting of
the statement readily follow from Lemma 2.9 applied with r sufficiently large.

It remains to prove (2). Let (N, gδ) be given by Lemma 2.9 with δ = 1/4 and radius equal to 3R.
Letting now f ∈ Liploc(M), for x ∈ BR(p) and r ≤ R, we have h := f ◦ ι−1 ∈ Liploc(ι(B2r(p)), dδ),
for ι as in Lemma 2.9 where dδ is the distance on (N, gδ). Since |∇h(y)|gδ ≤ 2|∇f(y)|g for any
y ∈ B2r(p), we find

ˆ
Bg

r (x)

∣∣∣∣∣f −
 

Bg
r (x)

f dHn
g

∣∣∣∣∣ dHn
g ≤ 2

ˆ
Bg

r (x)

∣∣∣∣∣∣∣f −
 

Bgδ

5
4 r

(x)
h dHn

gδ

∣∣∣∣∣∣∣ dHn
g

≤ C

ˆ
Bgδ

5
4 r

(x)

∣∣∣∣∣∣∣h−
 

Bgδ

5
4 r

(x)
h dHn

gδ

∣∣∣∣∣∣∣ dHn
gδ

≤ Cr

ˆ
Bgδ

5
4 r

(x)
|∇h|gδ dHn

gδ

≤ Cr

ˆ
Bg

2r(x)
|∇f(y)|g dHn

g ,

where in the third inequality we applied a Poincaré inequality as in (2.4), recalling that on smooth
manifolds it is possible to take the integral on the right hand side on the ball of the same radius
that appears on the left hand side [76, Corollary 5.3.5]. □

What observed so far implies that C0-Riemannian manifolds locally asymptotic at infinity to
space forms are PI spaces, see the forthcoming Corollary 2.14. We recall their definition, leaving
the interested reader to the seminal [38, 24] and to the survey [50].

Definition 2.13 (PI space). Let (X, d,m) be a complete and separable metric measure space,
where m is a Radon measure. We say that m is uniformly locally doubling if for every R > 0 there
exists CD(R) > 0 such that the following holds

m(B2r(x)) ≤ CD(R)m(Br(x)), ∀x ∈ X ∀r ≤ R.

We say that a weak local (1, 1)-Poincaré inequality holds on (X, d,m) if there exists λ such that
for every R > 0 there exists CP (R) such that for every f ∈ Lip(X), the following inequality holds: 

Br(x)
|f − f(x)| dm ≤ CP (R)r

 
Bλr(x)

lipf dm,

for every x ∈ X and r ≤ R, where f(x) :=
ffl

Br(x) f dm, and

lipf(x) := lim sup
y→x

|f(x) − f(y)|
d(y, x) , (2.6)

if x is an accumulation point, or lipf(x) = 0 if x is not an accumulation point.
We say that (X, d,m) is a PI space when m is uniformly locally doubling and a weak local

(1, 1)-Poincaré inequality holds on (X, d,m).
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Corollary 2.14. Let (M, g) be a C0-Riemannian manifold of dimension n that is C0
loc-asymptotic

to the n-dimensional simply connected complete model Hn
K of constant sectional curvature K ≤ 01.

Then (M, d,Hn) is a PI space.

Proof. Let R > 0 and fix o ∈ M . By assumptions and recalling Remark 2.4, we can fix ρ > R
such that for any x ∈ M \Bρ(o) there exists a diffeomorphism Fx : (B3R(x), g) → (Hn

K , gK) that is
2-biLipschitz with its image, where gK is the metric on Hn

K , and whose image contains BR(Fx(x)).
Since Hn

K is PI, arguing as in the proof of Lemma 2.12 it follows that there exist C > 0 such that

|B2r(x)|
|Br(x)| ≤ C,

 
Br(x)

∣∣∣∣∣f −
 

Br(x)
f

∣∣∣∣∣ ≤ Cr

 
B2r(x)

|∇f |,

for any x ∈ M \Bρ(o), any r ≤ R, and any f ∈ Liploc(M).
Next apply Lemma 2.12 with p = o and R = 2ρ. Hence for any x ∈ M we have that either

x ∈ B2ρ(o), or x ∈ M \Bρ(o). Hence the fact that (M, d,Hn) is PI follows putting together the
previous inequalities with those given by Lemma 2.12. □

The next corollary states the local Hölder continuity of the isoperimetric profile of C0-Riemannian
manifolds that are C0-locally asymptotic to a model of constant curvature. The proof essentially
follows a classical path, see e.g. [5, Lemma 2.23]. However in this context we do not have an
explicit asymptotic rate for the perimeter of balls of infinitesimal radii, which are often used to
perturb competitors. In place of ball, we shall employ images of Euclidean balls through biLipschitz
maps into the manifold, so to get a one-parameter increasing family of sets whose perimeter has
an explicit rate as the parameter goes to zero.

Corollary 2.15. Let (M, g) be a C0-Riemannian manifold of dimension n that is C0
loc-asymptotic

to the n-dimensional simply connected complete model Hn
K of constant sectional curvature K ≤ 0.

Denote by I (resp., IK) the isoperimetric profile of M (resp., Hn
K).

Then I ≤ IK, and I is locally n−1
n

-Hölder continuous on (0,+∞).

Proof. We start by proving that I ≤ IK . Let BK
t (0) ⊂ Hn

K be a ball with volume V ∈ (0,+∞)
in Hn

K . If qi ∈ M is a diverging sequence of points, for large i, up to subsequence, there exist
diffeomorphisms F : (B2t(0), gK) → F (B2t(0)) ⊂ (M, g) such that F (0) = qi and F is (1 + 1/i)-
biLipschitz. Hence, there exists ti such that ti → t, Ei := F (Bti

(0)) has volume V in M , and
P (Ei) → P (BK

t (0)) = IK(V ). Therefore I(V ) ≤ limi P (Ei) = IK(V ).
Fix o ∈ M . Since M is C0

loc-asymptotic to Hn
K , there exists r > 0 such that for any p ∈ M \Br(o)

there exists a 2-biLipschitz map Fp from a Euclidean ball of sufficiently small radius to M with
Fp(0) = p. Combining with Lemma 2.9, we conclude that there exists r ∈ (0, 1) such that for any
p ∈ M there exists a 2-biLipschitz map Fp : (Beu

r (0), deu) → Fp(Beu
r (0)) ⊂ M such that Fp(0) = p.

Hence we define the one-parameter family of sets Et(p) := Fp(Beu
t (0)), for any p ∈ M and t ∈ (0, r].

In particular, recalling also the representation of the perimeter Remark 2.10 and the fact that the
essential boundary is biLipschitz invariant,

P (Et(p)) ≤ Ctn−1,
1
C
tn ≤ |Et(p)| ≤ Ctn, (2.7)

for any p ∈ M and t ∈ (0, r], for some C independent of p, t.
Combining again the fact that M is C0

loc-asymptotic to Hn
K with item (1) in Lemma 2.12 we

get that for any R > 0 there exists a constant CR > 0 such that C−1
R rn ≤ |Br(x)| ≤ CRr

n for any
x ∈ M and r ∈ (0, R). Hence recalling that (M, d,Hn) is also PI by Corollary 2.14, then it is
well-known that there holds a relative isoperimetric inequality in balls of M , see [38, Theorem
5.1] and [2, Remark 4.4]. Since also infx∈M |B1(x)| > 0 thanks to the asymptotic assumption, it is
readily checked that the proof of [5, Lemma 2.10] can be repeated in our setting, yielding that: for

1Hn
K = Rn if K = 0, while Hn

K is the n-dimensional hyperbolic space of constant sectional curvature K if K < 0.
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any R > 0 there exists C̃ = C̃(R) > 0 such that for any E ⊂ M with |E| ∈ (0,+∞) there exists
xE such that

|E ∩Br(xE)| ≥ C̃ min
{

|E|n

P (E)n
, rn

}
, (2.8)

for any r ∈ (0, R].
Fix now V ∈ (0,+∞) and η ∈ (0, V ). Let also V0 ∈ (max{V − 1, η}, V + 1) and for any ε > 0

let E ⊂ M be a bounded set such that |E| = V0 and P (E) ≤ I(V0) + ε (it is readily checked that,
arguing as in [4, Lemma 2.17], the isoperimetric profile is achieved by bounded sets).

Let
v := min

{
min
x∈M

|Er(x)|, 1
}

≥ min{C−1
rn, 1} > 0.

Since E is bounded, for any V ∈ [V0, V0 + v) there exist xV ∈ M and rV ≤ r such that
|E ∪ ErV

(xV )| = V and |ErV
(xV )| = V − V0. Therefore

I(V ) ≤ P (E) + P (ErV
(xV )) ≤ I(V0) + ε+ Crn−1

V .

Since rn
V ≤ C(V − V0), letting ε → 0 we conclude that

I(V ) ≤ I(V0) + C
2− 1

n (V − V0)
n−1

n . (2.9)
We next consider volumes smaller than V0. By (2.8) we know that there exists a constant

C̃ = C̃(r) independent of E and a point xE such that

|E ∩ Et(xE)| ≥ |E ∩B t
2
(xE)| ≥ C̃

2n
min

{
|E|n

P (E)n
, tn
}

≥ C̃

2n
min

{
V n

0
(IK(V0) + ε)n

, tn
}

= C̃

2n
tn,

for any t ≤ t0 for some t0 = t0(V , η, n,K, r) ∈ (0, r). Let C̃2 := C̃2−ntn0 > 0. Up to decrease t0, we
can assume that C̃2 < V .

If V0 > V − C̃2, let V ∈ (max{V − 1, η, V − C̃2}, V + 1) such that V < V0. Hence there exists
t ∈ (0, t0) such that |E \ Et(xE)| = V . Similarly as before, we have

I(V ) ≤ P (E) + P (Et(xE)) ≤ I(V0) + ε+ Ct
n−1 ≤ I(V0) + ε+ 2n−1C

C̃
n−1

n

(V0 − V )n−1
n ,

which letting ε → 0 yields

I(V ) ≤ I(V0) + 2n−1C

C̃
n−1

n

(V0 − V )n−1
n . (2.10)

Putting together (2.9) and (2.10), we have proved that there exist v, CH(M) > 0 and C̃2 =
C̃2(M,V , η) such that for any V0 ∈ (max{V −1, η, V − C̃2}, V +1), for any V ∈ (max{V −1, η, V −
C̃2},min{V + 1, V0 + v}) there holds

I(V ) ≤ I(V0) + CH |V − V0|
n−1

n . (2.11)
The dependence of the previous constants imply that there exists a neighborhood U of V such
that (2.11) holds for any choices of V, V0 ∈ U . This implies the desired local Hölder continuity. □

The next theorem is based on a concentration-compactness argument that has been used several
times in the literature, applied to the study of the isoperimetric problem in noncompact manifolds.
In the smooth setting it has been first obtained in [69, Theorem 2]. See also [75, Theorem 4.48]
and references therein for a complete account. Results analogous to Theorem 2.16 have been
worked out also in the setting of nonsmooth spaces with bounds below on the curvature, see [4,
Theorem 4.6] and [5, Theorem 3.3 & Theorem 1.1].

Theorem 2.16 (Asymptotic mass decomposition under C0
loc-asymptotic assumptions). Let (M, g)

be an n-dimensional complete C0-Riemannian manifold and assume that M is C0
loc-asymptotic to

the n-dimensional simply connected complete model Hn
K of constant sectional curvature K ≤ 0.



14 G. ANTONELLI, M. FOGAGNOLO, S. NARDULLI, AND M. POZZETTA

Fix o ∈ M . Let V > 0 and let Ei ⊂ M be a sequence of bounded sets such that |Ei| = V for any i
and limi P (Ei) = I(V ).

Then, up to subsequence, one of the following alternatives holds true.
• The sequence Ei converges in L1(M) to an isoperimetric set E of volume V .
• There exist two sequences of radii Ri, ri ↗ +∞ with Ri < ri and a diverging sequence

of points pi ∈ M \ BRi(o) such that Ec
i := Ei ∩ BRi

(o) converges in L1(M) to a (possibly
empty) isoperimetric set E, and Ed

i := Ei ∩Bri
(pi) \BRi

(o) converges to a ball B ⊂ Hn
K in

the sense that
lim

i
P (Ed

i ) = P (B), lim
i

|Ed
i | = |B|.

Moreover
V = |E| + |B|, I(V ) = P (E) + P (B).

Proof. Since the proof of Theorem 2.16 is standard and follows closely the strategy of [4, 5] we
just sketch it.

At first, one gets the analogue of Ritoré–Rosales’ result [5, Theorem 3.3] in the setting of
Theorem 2.16. Indeed, the proof of [5, Theorem 3.3] uses the coarea formula, the precompactness
of BV in L1

loc, and the existence, around every point p ∈ M , of a one-parameter family {Bp,r}r∈(0,ε)
of sets such that r 7→ |Bp,r| is continuous and vanishing as r → 0, and P (Bp,r) → 0 as r → 0.
The first two come from Lemma 2.11, and Theorem 2.7, while for the last one it suffices to take
pre-images of small Euclidean balls under the map in the second item of Lemma 2.5, as it has
been done in the proof of Corollary 2.15. Once this is done, one follows verbatim the proof of
[4, Theorem 4.6], which additionally needs that (M, d,Hn) is PI, and |Br(p)| ≥ ζr3 for every
r ∈ (0, R], and every p ∈ M , where ζ, R > 0 are constants depending on M : these two properties
come from Corollary 2.14 and from its proof (compare also with item (1) in Lemma 2.12).

Following [4, Theorem 4.6] until (4.20), and then jumping to Step 5 in there, one finally gets
the following. There is N ∈ N ∪ {+∞} and radii Ri → +∞, Ti,j →i +∞ for 1 ≤ j < N + 1, and
there are mutually (with respect to j) diverging pi,j ∈ M \BRi

(o) such that

Ec
i −→

i
E in L1(M), (Ei \BRi

(o)) ∩BTi,j
(pi,j) −→

i
Bj in L1(M),

where Bj is a ball in Hn
K for any j < N + 1, and E is an isoperimetric set in M . The convergence

in L1 to the Bj’s has to be intended as in the statement of Lemma 2.11, after the composition
with biLipschitz embeddings. Moreover one has

|E| +
N∑

j=1
|Bj| = V, P (E) +

N∑
j=1

IK(|Bj|) = P (E) +
N∑

j=1
P (Bj) = I(V ),

where IK is the isoperimetric profile of Hn
K . Hence either N = 0 and the first item holds, or N ≥ 1.

In the latter case, we want to show that N = 1, completing the proof of the second item. By
coarea formula we can fix a sequence ρi ↗ +∞ such that P (E ∩Bρi

(o)) ≤ P (E) + 1/i. For any i
we find balls Bsi

(qi) ⊂ M \Bρi+1(o) such that |Bsi
(qi)| = V − |E ∩Bρi

(o)| and such that Bsi
(qi)

converges to a ball B ⊂ Hn
K with limi P (Bsi

(qi)) = P (B) and |B| = V − |E|. If by contradiction
N > 1, since the isoperimetric profile IK is a strictly subadditive function, we get

P (E) +
N∑

j=1
IK(|Bj|) = P (E) +

N∑
j=1

P (Bj) = I(V ) ≤ lim inf
i

P (E ∩Bρi
(o)) + P (Bsi

(qi))

= P (E) + IK(|B|) ≤ P (E) + IK

 N∑
j=1

|Bj|

 < P (E) +
N∑

j=1
IK(|Bj|),

which is a contradiction. □
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3. Local inverse mean curvature flow

We start by recalling the definition of weak inverse mean curvature flow (IMCF) as introduced
in [45].
Definition 3.1 (Weak IMCF - Level set formulation). Let (M, g) be a smooth Riemannian
manifold. Given a precompact K ⊂ M , a locally Lipschitz function u : M → R, and a set of
locally finite perimeter E, define

JK
u (E) := P (E,K) −

ˆ
E∩K

|∇u|.

Let Ω ⊂ M be an open set. A function u ∈ Liploc(Ω) is called a weak solution (resp., subsolution,
supersolution) to the inverse mean curvature flow (IMCF) in Ω if

JK
u ({u < t}) ≤ JK

u (E),
for all t ∈ R, all K ⊂⊂ Ω, and all sets E (resp., E ⊃ {u < t}, E ⊂ {u < t}) such that
E∆{u < t} ⊂ K.
Remark 3.2. By virtue of [45, Lemma 1.1], a function u ∈ Liploc(Ω) is a weak solution the IMCF
in Ω if and only if ˆ

K

|∇u| + u|∇u| ≤
ˆ

K

|∇v| + v|∇u|, (3.1)

for all K ⊂⊂ Ω, and all v ∈ Liploc(Ω) such that {u ̸= v} ⊂ K.
The aim of this section is to show Theorem 3.6, stating that on every punctured ball B centered

at o on a smooth complete Riemannian manifold one can define a weak IMCF that is bounded
from below explicitly in terms of constants that will nicely behave on metrics C0-close to the flat
one. We also gather useful properties of this flow in Section 3.1, and Section 3.2.
Definition 3.3. Let (M, g) be an n-dimensional complete C0-Riemannian manifold, and let
1 ≤ p < n. Let Ω ⊂ M be an open set. We say that Ω supports a (p, p∗)-Sobolev inequality if there
exists a constant C > 0 such that(ˆ

M

|ψ|
np

n−p

)n−p
n

≤ C

ˆ
M

|∇ψ|p for all ψ ∈ Lipc(Ω). (3.2)

We denote Cp,Sob(Ω) the smallest constant C for which the latter inequality holds.
Remark 3.4. It is known that (3.2) with p = 1 is equivalent to

|E|
n−1

n ≤ CP (E), for all bounded measurable E ⊂⊂ Ω.
Indeed, one implication readily comes from the very definition in (2.1), while the other comes from
an application of the coarea formula in Theorem 2.7. The latter implication is classical and dates
back at least to works of Federer–Fleming and Maz’ya in the 60s, see, e.g., [34, page 488].

We now provide solutions to the weak IMCF in punctured balls BR(o) \ {o}. The weak IMCF
is obtained in the limit, as p → 1+, of functions wR

p := −(p− 1) logGR
p , where GR

p , for p ∈ (1, n)
denotes the p-harmonic Green function on BR(o) with Dirichlet boundary conditions. Namely, GR

p

is the solution to −∆pG
R
p = |Sn−1|

(
n−p
p−1

)p−1
δo on BR(o),

GR
p = 0 on ∂BR(o),

(3.3)

where δo is the Dirac delta supported at o, and |Sn−1| is the measure of the (n− 1)-dimensional
unit sphere. With the above choice of normalization, it follows from the blow-up procedure leading
to [49, Theorem 1.1] that∣∣∣∣∣ GR

p (x)
r(x)−(n−p)/(p−1) − 1

∣∣∣∣∣ → 0,
∣∣∣∣∣∣

∣∣∣∇GR
p (x)

∣∣∣
r(x)−(n−1)/(p−1) − n− p

p− 1

∣∣∣∣∣∣ → 0 (3.4)
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as r(x) → 0, where we let r(x) := d(o, x). We recall that the relative p-capacity of a compact
K ⋐ BR(o) is defined as

Capp(K,BR(o)) := inf
{ˆ

BR(o)\K

|∇v|p : v ∈ Lipc(BR(o)), v ≥ χK

}
. (3.5)

The following lemma is well known, and consists essentially in [40, Lemma 3.8].

Lemma 3.5. Let (M, g) be a smooth complete Riemannian manifold, and let o ∈ M , R > 0. Let
ER

t := {wR
p ≤ t} for p ∈ (1, n), where wR

p := −(p− 1) logGR
p and GR

p solves (3.3). Then

Capp(ER
t , BR(o)) =

(
n− p

p− 1

)p−1 ∣∣∣Sn−1
∣∣∣ et, (3.6)

for every t ∈ R.

Proof. In this proof, let Gp := GR
p , and wp := wR

p for the ease of notation. It is well-known that the
p-capacity defined in (3.5) is attained computing the Lp-norm of the gradient of the p-harmonic
function with Dirichlet data equal to 1 on ∂K, and equal to 0 on ∂BR(o) (see [39] for a thorough
account on nonlinear potential theory). In particular, one gets, for every t ∈ (0,+∞),

Capp({Gp ≥ t}, BR(o)) = 1
tp

ˆ
{Gp<t}

|∇Gp|p = 1
tp

ˆ t

0

ˆ
{Gp=s}

|∇Gp|p−1 dHn−1 ds. (3.7)

On the other hand, a straightforward application of the divergence theorem combined with the
p-harmonicity of Gp (see e.g. the computations in [11, Proposition 2.8]) yields that

´
{Gp=s} |∇Gp|p−1

attains the same value for almost every s ∈ (0,+∞). Such constant is computed using (3.4) as
ˆ

{Gp=s}
|∇Gp|p−1 dHn−1 =

(
n− p

p− 1

)p−1 ∣∣∣Sn−1
∣∣∣ ,

for almost every s ∈ (0,+∞). Plugging it into (3.7) leaves us with

Capp({Gp ≥ t}, BR(o)) = 1
tp−1

(
n− p

p− 1

)p−1 ∣∣∣Sn−1
∣∣∣ , (3.8)

for any t ∈ (0,+∞). Rewriting it in terms of wp as stated in (3.6) completes the proof. □

We denote with CP (BR(o)) the Poincaré constant of BR(o), defined as the smallest constant C
such that  

Br(x)

∣∣∣∣∣f −
 

Br(x)
f

∣∣∣∣∣ ≤ Cr

 
B2r(x)

|∇f | (3.9)

holds for every x ∈ BR(o), r ≤ R, and f ∈ Liploc(M). We denote with CA(BR(o)) the Ahlfors
constant of BR(o), defined as the smallest number C ≥ 1 such that

C−1rn ≤ |Br(x)| ≤ Crn, (3.10)
for every x ∈ BR(o), and every 0 < r ≤ R.

Finally, denoting Aρ1,ρ2(o) := Bρ2(o) \Bρ1(o) for ρ2 > ρ1, we denote

Ccov(Bρ(o)) := min
{
N ∈ N : A3r/4,5r/4(o) is covered by N open balls of radius r/2

with centers in A3r/4,5r/4(o) for any 0 < r ≤ ρ
}
.

(3.11)

Observe that on any complete smooth Riemannian manifold (M, g) of dimension n ≥ 2, for any
o ∈ M and R > 0 there exists ρ ∈ (0, R/2] such that

∀0 < r ≤ ρ, ∀p, q ∈ ∂Br(o) ∃ continuous curve γ ⊂ A3r/4,5r/4(o) connecting p and q. (3.12)
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Theorem 3.6. Let (M, g) be a complete smooth Riemannian manifold of dimension n ≥ 2. Fix
o ∈ M , and R > 0, and let p ∈ (1, n). Let w2R

p = −(p − 1) logG2R
p , with G2R

p as in (3.3). Let
ρ ∈ (0, R/2] be such that (3.12) is satisfied. Then, the following hold.

(1) The sequence of functions w2R
p converges, up to subsequence, locally uniformly in B2R(o)\{o}

as p → 1+ to a weak solution w of the IMCF on B2R(o) \ {o}.
(2) The function w satisfies

w(x) ≥ (n− 1) log r(x) − C, for all x ∈ BR(o) \ {o}, (3.13)

where C = C
(
n,C1,Sob(B2R(o)), CP (B2R(o)), CA(B2R(o)), R/ρ, Ccov(Bρ(o))

)
, and r(x) :=

d(o, x).
(3) It holds w(x) → −∞ as x → o.
(4) For every r ≤ R, letting Tr := (n− 1) log r − C − 1, there holds {w ≤ Tr} ⊂ Br(o).

Remark 3.7. If (M, g) in Theorem 3.6 supports a (1, 1∗)-Sobolev inequality, then the existence of a
global proper weak IMCF issuing from a point follows from a careful modification of the proof of
[84]. Yet, we do not know how to obtain the quantitative estimate (3.13) through the procedure
introduced there.

The proof of Theorem 3.6 requires some preliminary steps. The following result is a direct
consequence of [51, Theorem 1.1].

Theorem 3.8. Let (M, g) be a complete smooth Riemannian manifold, and let up be a positive
p-harmonic function defined in an open set U ⊂ M , for p ∈ (1, 2). Let wp = −(p− 1) log up. Then,
for any compact subset K ⊂ U , we have

|∇wp| ≤ C(K), (3.14)
where C(K) does not depend on p ∈ (1, 2).

The constant C(K) in Theorem 3.8 depends on sectional curvature bounds for g on K. The
following observation will be useful also for estimating the asymptotic behavior of the Hawking
mass at o along the IMCF, see Proposition 3.13 below.

Remark 3.9. For p ∈ (1, 2), if up is a positive p-harmonic function on B2R(o) \ {o}, and Sec ≥ −k2

on B2R(o), then there exist two constants η := η(k, n) and ζ := ζ(k, n) such that for every
x ∈ B2R(o) \ {o} with d(x, o) < min{η,R} there holds

|∇wp|(x) ≤ ζ

d(o, x) . (3.15)

Indeed, it suffices to apply [51, Equation (1.5)] on balls B(x, d(o, x)/2). We remark that both η, ζ
can be chosen to be uniform with respect to p → 1+.

The following result yields the uniform lower bound on w2R
p that will result in (3.13). Its core is

in the Harnack inequality for p-harmonic functions that comes with the sharp dependence with
respect to p. The estimate (3.17) below was suggested to the authors by Luca Benatti.

Theorem 3.10. Let (M, g) be a complete smooth Riemannian manifold of dimension n ≥ 2. Fix
o ∈ M , and R > 0, and let p ∈ (1, n). Let w2R

p = −(p − 1) logG2R
p , with G2R

p as in (3.3). Let
ρ ∈ (0, R/2] be such that (3.12) holds.

Then
w2R

p (x) ≥ (n− p) log r(x) − C, for all x ∈ B3R/2(o) \ {o}, (3.16)

for C = C
(
n,C1,Sob(B2R(o)), CP (B2R(o)), CA(B2R(o)), R/ρ, Ccov(Bρ(o))

)
, where r(x) := d(o, x).

Proof. Within this proof let G2R
p =: Gp, and w2R

p =: wp for the ease of notation. Let m(r) =
max∂Br(o) wp for r ∈ (0, 3R/2). Notice that wp(x) → −∞ as x → o. Then, by the maximum
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principle, Br(o) ⊂ {wp ≤ m(r)}, the monotonicity of the p-capacity with respect to inclusion and
(3.6) give

Capp(Br(o), B2R(o)) ≤ Capp({wp ≤ m(r)}, B2R(o)) =
(
n− p

p− 1

)p−1 ∣∣∣Sn−1
∣∣∣ em(r),

that results in

m(r) ≥ log(Capp(Br(o), B2R(o))) − (p− 1) log
(
n− p

p− 1

)
− log

∣∣∣Sn−1
∣∣∣ . (3.17)

It is now well-known that capacities can be estimated exploiting isoperimetric inequalities. More
precisely, setting C = 1/C1,Sob(B2R(o)), we can apply [36, Eq. (7)] to get

Capp(Br(o), B2R(o)) ≥
(ˆ |B2R(o)|

|Br(o)|

1
Cv

p(n−1)
n(p−1)

)1−p

=
(
C

(n− p)
n(p− 1)

)p−1

|Br(o)|
n−p

n

1 −
(

|Br(o)|
|B2R(o)|

) n−p
n(p−1)

1−p

≥
(
C

(n− p)
n(p− 1)

)p−1

|Br(o)|
n−p

n .

We can now estimate |Br(o)|
n−p

n ≥ CA(B2R(o))n−p
n rn−p, and so we get from (3.17) that

m(r) ≥ (n− p) log r − C (3.18)

where now C = C
(
n,C1,Sob(B2R(o)), CA(B2R(o))

)
, and it is independent of p as p → 1+.

Let us consider now y ∈ ∂Br(o) for r ∈ (0, 3
2R). We aim at estimating wp(y) combining (3.18)

with a Harnack inequality. The Harnack inequality for positive p-harmonic functions [74, Theorem
1.28] applied to Gp reads

Gp(y) ≤ C
1

p−1
H (Bs(z))Gp(x), (3.19)

for any x, y ∈ Bs(z) ⊂⊂ B2R(o) \ {o}, and the Harnack constant CH(Bs(z)) can be estimated from
above in terms of n,CP (B2R(o)), CA(B2R(o)) and Cp,Sob(B2R(o)). The interested reader might
consult [62, Theorem 3.4 and Remark 3.5] for the full computations leading to the explicit constant
in the Harnack inequality. Since Cp,Sob(B2R(o)) → C1,Sob(B2R(o)) as p → 1+, then

CH(Bs(z)) ≤ C = C
(
n,CP (B2R(o)), CA(B2R(o)), C1,Sob(B2R(o))

)
for any Bs(z) ⊂⊂ B2R(o) \ {o}.

Fix x, y ∈ ∂Br(o) such that
Gp(x) = min

∂Br(o)
Gp, Gp(y) = max

∂Br(o)
Gp.

We first consider the case r ≤ ρ, where ρ is as in the assumptions. Hence by (3.12) we can connect
x and y with a curve γ ⊂ A3r/4,5r/4(o). Letting N := Ccov(Bρ(o)), we can fix a family of at most
N balls {Br/2(zj)} such that zj ∈ A3r/4,5r/4(o) and A3r/4,5r/4(o) ⊂ ∪jBr/2(zj). The existence of
γ implies that we can find a sequence of points y := x1, . . . , xN ′ =: x such that N ′ ≤ N + 1,
xi, xi+1 ∈ Br/2(zji

) for every i = 1, . . . , N ′ − 1 for some zji
. Thus applying iteratively (3.19) we

deduce (the value of the constant C might change from line to line)

max
∂Br(o)

Gp ≤ C
N′

p−1 min
∂Br(o)

Gp ≤ C
1

p−1 min
∂Br(o)

Gp, (3.20)

for C = C
(
n,CP (B2R(o)), CA(B2R(o)), C1,Sob(B2R(o)), Ccov(Bρ(o))

)
.

If instead r ∈ (ρ, 3
2R), then we consider p1, p2 ∈ ∂Bρ(o) such that p1 (resp. p2) belongs to the
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intersection of ∂Bρ(o) with a minimizing geodesic from y to o (resp. from o to x). By (3.20) we
already know that

Gp(p1) ≤ C
1

p−1Gp(p2).
Applying (3.19) with s = ρ/4 iteratively along the geodesic from y to o we find

Gp(y) ≤ C
N′′
p−1Gp(p1),

with N ′′ ∈ N such that N ′′ ≤ 3
2R/(

ρ
8) + 1. Arguing analogously along the geodesic from o to x, we

finally get that
max
∂Br(o)

Gp ≤ C
1

p−1 min
∂Br(o)

Gp, (3.21)

for C = C
(
n,CP (B2R(o)), CA(B2R(o)), C1,Sob(B2R(o)), Ccov(Bρ(o)), R/ρ

)
. Rewriting (3.21) in

terms of wp and combining with (3.18) yields
min

∂Br(o)
wp = wp(y) ≥ wp(x) − C = max

∂Br(o)
wp − C ≥ (n− p) log r − C,

for C = C
(
n,C1,Sob(B2R(o)), CP (B2R(o)), CA(B2R(o)), R/ρ, Ccov(Bρ(o))

)
. □

In order to pass to the limit wp = −(p− 1) logGp as p → 1+ on compact sets K ⊂ B2R(o) \ {o},
we need also some uniform upper bound on wp. This is a well-known consequence of the Laplacian
comparison theorem and of the asymptotics of the Green function at the pole in (3.4), see [52,
Theorem 1.2].
Proposition 3.11. Let (M, g) be an n-dimensional smooth complete Riemannian manifold, and
let p ∈ (1, n). Let Gp be the solution of (3.3) with Ω in place of BR(o). Let r(x) := d(o, x). Fix
R > 0, and assume BR(o) ⊂ Ω. Suppose that Ric ≥ −(n− 1)a holds on BR(o), for some a > 0.

Then
Gp(x) ≥

ˆ R

r(x)
(va(t))− 1

p−1 dt, (3.22)

for any x ∈ BR(o)\{o}, where va(t) := cn,p

(
(
√
a)−1 sinh(

√
at)
)n−1

, for suitable cn,p > 0. Moreover
cn,p → cn > 0 as p → 1+.

Remark 3.12. In Proposition 3.11, the functionˆ R

r(x)
(va(t))− 1

p−1 dt

is the solution of (3.3) in the space form of constant curvature a.
Proof of Theorem 3.6. Within this proof let G2R

p =: Gp, and w2R
p =: wp for the ease of notation.

Let K ⊂ B2R(o) \ {o} be compact. We first show that wp is equibounded on K as p → 1+. Indeed
by (3.16) we know that wp ≥ (n − p) log(r(x)) − C on B3R/2(o) \ {o} for C as in Theorem 3.10.
On the other hand, taking r ∈ (0, 2R) such that K ⊂ Br(o) \ {o} ⊂⊂ B2R(o), if Ric ≥ −(n− 1)a
on B2R(o) for some a > 0, by (3.22) we have that for all x ∈ Br(o) \ {o} there holds

wp(x) ≤ − log
(ˆ r

r(x)
(va(t))− 1

p−1 dt
)(p−1)

≤ − log
(

|r(x) − r|p−2
ˆ r

r(x)
(va(t))−1 dt

)
. (3.23)

Hence the above upper bound is uniform with respect to p → 1+ for any x ∈ K. Thus wp is
bounded on K ∩ B3R/2(o) uniformly with respect to p → 1+. Therefore, applying the gradient
bound (3.14) on K, we deduce that wp is bounded on K uniformly with respect to p → 1.
Exhausting B2R(o) \ {o} with a sequence of increasing compact sets, by Ascoli–Arzelà and by a
diagonal argument, we get that wp converges to some function w locally uniformly on B2R(o) \ {o},
up to passing to a subsequence with respect to p.

We claim that w satisfies the weak formulation of the IMCF on B2R(o) \ {o}. Indeed, arguing
as in [66, Equation (9)], one gets that |∇wp|pHn converges to |∇w|Hn in duality with bounded



20 G. ANTONELLI, M. FOGAGNOLO, S. NARDULLI, AND M. POZZETTA

continuous functions on compact subsets contained in B2R(o) \ {o}, along the suitable sequence
pi → 1+ for which wpi

converges. Using again [66, Equation (9)] this is enough to conclude that w
is a weak solution of the IMCF on B2R(o) \ {o}.

The lower bound (3.16) passes to the limit and gives (3.13). The upper bound (3.23) is preserved
on compact subsets of B3R/2(o) \ {o} for the limit w as well, hence it shows that w → −∞ as
x → o.

Therefore we proved items (1), (2) and (3) of the statement. It remains to show that {w ≤
(n− 1) log r − C − 1} ⊂ Br(o) for every r ≤ R. Fix r ∈ (0, R]. By Theorem 3.10 there exists

C = C
(
n,C1,Sob(B2R(o)), CP (B2R(o)), CA(B2R(o)), R/ρ, Ccov(Bρ(o))

)
,

such that wp ≥ (n − p) log r − C on ∂Br(o). Denoting Tr := (n − 1) log r − C − 1, it follows
that wp ≥ Tr + 1

2 on ∂Br(o) for any p sufficiently close to 1. By (3.13), it follows that {w ≤
Tr} ∩ ∂Br(o) = ∅. Suppose by contradiction that there exists z ∈ B2R(o) \ Br(o) such that
w(z) ≤ Tr. Then wpi

(z) ≤ Tr + 1
4 for a sequence pi → 1+ such that wpi

converges to w, and for
i large enough. Since wpi

≥ Tr + 1
2 on ∂Br(o) and wpi

(x) → +∞ as r(x) → 2R, then wpi
would

have an interior minimum on B2R(o) \Br(o), which is a contradiction to the maximum principle
for p-harmonic functions. □

3.1. Properties of the weak IMCF. Let us collect in this section few known properties on the
weak IMCF constructed in Theorem 3.6.

Let (M, g) be a smooth complete Riemaniann manifold. Let o ∈ M,R > 0 and let w be given
by Theorem 3.6. Let T ∈ R be such that {w ≤ T} ⊂ BR(o) (such a T exists by Theorem 3.6).
For every t ∈ (−∞, T ], set Ωt := {w < t}. Then the following hold.

(1) If n ≤ 7, then for every t ∈ (−∞, T ] both the set Ωt and the set {w ≤ t} have C1,α

boundary, for some α > 0. Indeed, as a direct consequence of Definition 3.1, the previous
sets are local (Λ, r0)-minimizers in BR(o) \ {o}, see, e.g., [61, Example 21.2]; thus by (the
Riemannian analogue of) [61, Theorem 21.8] one gets the sought claim.
It follows that ∂Ωt = ∂{w ≤ t} = {w = t} for almost every t ≤ T , and that ∂Ωs → ∂Ωt in
C1 as s ↗ t, for every t ≤ T , cf. [45, Eq. (1.10)].
Moreover, it is meaningful to speak about the weak mean curvature H on ∂Ωt, see, e.g.,
[45, page 16]. Moreover, H = |∇w| > 0 Hn−1-almost everywhere on ∂Ωt for almost every
t ∈ (−∞, T ], see [45, Equation (1.12)], and [45, Lemma 5.1].

(2) For almost every t ∈ (−∞, T ], the boundary ∂Ωt has weak second fundamental form A
(see [67, Definition 1.3], or [45, pages 401–405]), andˆ

∂Ωt

|A|2 < +∞.

The last inequality is a consequence of [67, Theorem 1.1(vi)].
The following Proposition gathers some key properties of the weak IMCF in dimension 3 constructed
through the procedure of the previous section; most notably the Geroch monotonicity formula of
Huisken–Ilmanen through such flow.

Proposition 3.13. Let (M, g) be a smooth complete Riemaniann manifold of dimension n = 3.
Let o ∈ M,R > 0 and let w be given by Theorem 3.6. Denote Ωt := {w < t}. Let T be such that
{w ≤ T} ⊂ BR(o). Let H be the weak mean curvature of the boundary ∂Ωt. Then the following
hold.

• There exist t̄ ∈ R, C1 > 0 such that

P (Ωt) = 4πet for all t ∈ (−∞, T ], and
ˆ

∂Ωt

H2 ≤ C1, for almost every t ∈ (−∞, t̄).

(3.24)
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• For t ∈ (−∞, T ], define the Hawking mass

mH(∂Ωt) := P (Ωt)1/2

(16π)3/2

(
4π −

ˆ
∂Ωt

H2

4

)
. (3.25)

Then mH(∂Ωt) → 0 for almost every t → −∞. Moreover, for every −∞ < r < s ≤ T , if
∂Ωt is connected for every t ∈ [r, s], then

mH(∂Ωs) ≥ mH(∂Ωr) + 1
(16π)3/2

ˆ s

r

P (Ωt)1/2
ˆ

∂Ωt

Rg dt. (3.26)

Proof. Denote Et := {w ≤ t} and let Ep
t := {w2R

p ≤ t} for w2R
p as in Theorem 3.6. We shall omit

the superscript 2R in the sequel, as R is fixed. We know from Theorem 3.6 that wp converges to
w locally uniformly on B2R(o) \ {o} along a sequence pi → 1.

We claim that for any σ ∈ (−∞, T ), ε > 0 there exists p̃ > 1 such that Epi
t−ε ⊂ Et ⊂ Epi

t+ε for
any pi ∈ (1, p̃) and t ∈ [σ, T ].
We prove the containment Epi

t−ε ⊂ Et first. Assume by contradiction that there exist σ ∈ (−∞, T ),
ε > 0 such that, up to subsequence, there exist ti ∈ [σ, T ] such that Epi

ti−ε ̸⊂ Eti
for any

i. Then there exist points xi ∈ B2R(o) \ {o} such that wpi
(xi) ≤ ti − ε but w(xi) > ti for

any i. Hence lim infi d(xi, o) > 0, for otherwise −∞ = lim infi w(xi) ≥ σ by Theorem 3.6.
Moreover, there exists η > 0 such that wpi

> T + η on ∂BR(o) for large i, for otherwise
{w ≤ T} ∩ ∂BR(o) would be nonempty. Hence xi ∈ BR(o) for large i, for if xi ∈ B2R(o) \BR(o),
since wpi

(xi) ≤ T − ε and wpi
(x) → +∞ as r(x) → 2R, then wpi

would have an interior minimum
on B2R(o) \BR(o), contradicting the maximum principle for p-harmonic functions. Hence, up to
subsequence, ti → τ ∈ [σ, T ] and xi → x ∈ BR(o) \ {o}. But this contradicts the local uniform
convergence, as this implies τ − ε ≥ limi wpi

(xi) = w(x) = limi w(xi) ≥ τ .
The containment Et ⊂ Epi

t+ε follows by an analogous contradiction argument. This time the
contradicting sequence of points xi ∈ B2R(o) \ {o} satisfies wpi

(xi) > ti + ε and w(xi) ≤ ti, for
ti ∈ [σ, T ]. Hence xi ∈ {w ≤ T} ⊂ BR(o). Also xi ̸→ o because of the uniform upper bound (3.23).
Hence we have again the convergence xi → x ∈ BR(o) \ {o}, up to subsequence, and one derives a
contradiction as in the previous case.

Recalling Lemma 3.5, for any σ ∈ (−∞, T ), ε > 0 there exists p̃ > 1 such that

4π
(

3 − pi

pi − 1

)pi−1

et−ε = Cappi
(Epi

t−ε, B2R(o)) ≤ Cappi
(Et, B2R(o)) ≤ Cappi

(Epi
t+ε, B2R(o))

= 4π
(

3 − pi

pi − 1

)pi−1

et+ε,

for any pi ∈ (1, p̃) and t ∈ [σ, T ]. Letting first pi → 1 and then ε → 0 and σ → −∞, we find that
lim

i
Cappi

(Et, B2R(o)) = 4πet,

for any t ∈ (−∞, T ]. Then the first equality in (3.24) will follow if we prove that
lim
p→1

Capp(Et, B2R(o)) = P (Ωt), (3.27)

for any t ∈ (−∞, T ].
Fix t ∈ (−∞, T ]. It follows from the very definition of weak IMCF as in [45, Minimizing Hull
Property 1.4] that Et is strictly outward minimizing relatively to B2R(o); meaning that whenever
Et ⊊ F ⊂⊂ B2R(o), then P (Et) < P (F ). It is readily checked that the proof of [35, Theorem 1.2]
can be localized in the ball B2R(o), thus yielding that

lim
p→1

Capp(Et, B2R(o)) = P (Et).

Finally, as in [45, Minimizing Hull Property 1.4(iv)], there holds P (Et) = P (Ωt), so that (3.27)
follows.
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We show the second property in (3.24). By applying (3.23) with r = 2r(x) and sending p = pi →
1+, we get that there exists η̃, ϑ > 0 such that if r(x) < η̃, then w(x) ≤ 2 log(r(x)) + ϑ. On the
other hand, for t̄ small enough we have Ωt ⊂ Be(t+C)/2(o) for every t < t̄, see item (4) in Theorem 3.6.
Up to possibly taking a smaller t̄, for every t < t̄ we have ∂Ωt ⊂ {w = t} ⊂ M \Be(t−ϑ)/2 . Thus

esssup∂Ωt
|∇w| ≤ esssup∂Ωt

ζ

d(o, x) ≤ ζeϑ/2e−t/2,

for almost every t < t̄, where the first inequality comes from the fact that (3.15) passes to the
limit as pi → 1+. Thus, for almost every t ∈ (−∞, t̄), there holdsˆ

∂Ωt

|∇w|2 ≤ |∂Ωt|ζ2eϑe−t = 4πζ2eϑ =: C1 < +∞,

and then the first item is proved recalling that H = |∇w| Hn−1-almost everywhere on ∂Ωt for
almost every t ∈ (−∞, t̄).

The fact that mH(∂Ωt) → 0 for almost every t → −∞ is a direct consequence of the first item
and the definition of Hawking mass. The last part of the second item is a consequence of the
analogue of [45, Geroch Monotonicity Formula 5.8] in our setting. A detailed proof the Geroch
Monotonicity Formula for weak IMCFs defined through limits of p-harmonic functions as in our
setting will be provided in the forthcoming [13]. □

3.2. Connectedness of level sets of the weak IMCF. In the following lemma we collect some
facts about connectedness of level set of the weak IMCF. This is analogous to [45, Connectedness
Lemma 4.2], we provide a proof for the convenience of the reader.

Lemma 3.14. Let Ω be an open set with Lipschitz boundary in a smooth complete n-dimensional
Riemannian manifold (M, g) with n ≤ 7, and let o ∈ Ω. Let Ω ⊂⊂ U , where U is an open set, and
let w ∈ Liploc(U \ {o}) be a weak solution of the IMCF on U \ {o}, see Definition 3.1. Then the
following hold.

(1) Let t ∈ R. Then every connected component of {w < t} ∩ Ω (resp., {w > t} ∩ Ω) is not
relatively compact in Ω \ {o}.

(2) Assume further that ∂Ω is connected, and there exist t0 < t1 such that:
• {w < t1} ⊂⊂ Ω;
• there exists an open set Ω′′ ∋ o, such that Ω′′\{o} is connected, and Ω′′\{o} ⊂ {w < t0}.

Then for every t ∈ (t0, t1) we have that both {w < t} and {w > t} ∩ Ω are connected.
(3) Let the hypotheses of (2) above be satisfied. Assume further that Ω is connected, and

H1(Ω;Z) = {0}. Then ∂{w < t} is connected for every t ∈ (t0, t1).

Proof of Lemma 3.14. The proof of item (1) follows verbatim as in [45, Connectedness Lemma
4.2(i)]. Let us repeat it here for the ease of the reader. Assume by contradiction a connected
component C of {w > t} ∩ Ω is relatively compact in Ω \ {o}. Then consider the function v := w
on U \ (C ∪ {o}) and v := t on C. By (3.1) we getˆ

C

|∇w| + w|∇w| ≤
ˆ

C

t|∇w|.

Since C ⊂ {w > t}, the latter implies that |∇w| = 0 on C, and thus w = t on C, which is a
contradiction.

Now assume by contradiction a connected component C ′ of {w < t} ∩ Ω is relatively compact in
Ω \ {o}. Take t̄ := minC′ w. Then for 0 < η < 1 small enough there is a connected component
C ′′ of {w < t̄+ η} ∩ Ω inside C ′. Notice that w ≥ t̄ > t̄+ η − 1 on C ′′. Repeating the previous
argument with t̄+ η in place of t and C ′′ in place of C gives again a contradiction.

The item (2) follows from item (1). First, by the assumption in the first bullet, for t ∈ (t0, t1) every
connected component of {w < t} stays away from ∂Ω. Then, from item (1), for every t ∈ (t0, t1),
o is in the closure of any connected component of {w < t}. Then every connected component of
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M

U

Ω

o

Ωt1

Ωt0

Ω′′

Figure 1. The picture sketches the assumptions of Lemma 3.14.

{w < t} intersects Ω′′ \ {o}. Since Ω′′ \ {o} is connected, and Ω′′ \ {o} ⊂ {w < t0} ⊂ {w < t},
thus every connected component of {w < t} contains Ω′′ \ {o}. Thus, there exists at most one
connected component of {w < t}, because every connected component contains Ω′′ \ {o}, which
is itself connected. Similarly, from the hypotheses of the second bullet, for every t ∈ (t0, t1), we
have ∂Ω ⊂ {w > t}, and {w > t} ∩ Ω ⊂ Ω \ Ω′′. Thus, every connected component of {w > t} ∩ Ω
avoids o, and then, from item (1), its closure must then intersect ∂Ω. Since ∂Ω is connected, there
exists at most one connected component of {w > t} ∩ Ω, arguing as before.

The item (3) is inspired by [45, Connectedness Lemma 4.2(ii)]. Analogous arguments have
appeared in [68, Lemma 2.3], [60, Lemma 6.1], and [53, Lemma 4.46]. We give here a self-contained
proof using item (2) and the Mayer–Vietoris sequence.

Recall from item (1) of Section 3.1 that ∂{w < t} is C1,α for every t ∈ (t0, t1), and that
∂{w < t} = {w = t} for almost every t ∈ (t0, t1). It is sufficient to prove that ∂{w < t} is connected
for t such that ∂{w < t} = {w = t}. Indeed, for τ ∈ (t0, t1) such that ∂{w < τ} ≠ {w = τ}, there
exists a sequence ti ↗ τ such that ∂{w < ti} = {w = ti}. From item (1) of Section 3.1 we know
that ∂{w < ti} → ∂{w < τ} in C1, hence connectedness will be preserved in the limit.

Hence we can assume by contradiction that there exists t ∈ (t0, t1) such that ∂{w < t} = {w = t}
is not connected. Since ∂{w < t} is C1,α, it has a finite number m ≥ 2 of connected components.
Since ⋂η>0{t − η < w < t + η} = {w = t} = ∂{w < t}, there exists η small enough such
that [t − η, t + η] ⊂ (t0, t1) and {t − η < w < t + η} has m′ ≥ 2 connected components. Call
A := {w < t+ η} ∪ {o} and B := {w > t− η} ∩ Ω. Notice that A and B are open, and by item
(2) they are both connected.

Finally notice that A ∩ B = {t − η < w < t + η} is not connected, and A ∪ B = Ω. The
Mayer–Vietoris exact sequence (where homology is understood with integer coefficients) ends with

. . . → H1(Ω) → H0(A ∩B) → H0(A) ⊕H0(B) → H0(Ω) → 0.

Recall that for a topological space X there holds H0(X;Z) ∼= Zℓ, where ℓ is the number of
connected components of X. Thus by using the assumptions of item (3) the previous exact
sequence becomes

. . . → 0 → Zm′ → Z2 → Z → 0,

from which Z ∼= Z2/Zm′ , and thus m′ = 1, which results in a contradiction. □



24 G. ANTONELLI, M. FOGAGNOLO, S. NARDULLI, AND M. POZZETTA

4. Proof of the main results

In this section we prove the main theorems Theorem 1.6, Theorem 1.4.

4.1. Producing a set satisfying the reverse Euclidean isoperimetric inequality. In this
section we show how, in the hypotheses of Theorem 1.4, we can produce sets with arbitrarily
large perimeter and volume that satisfy the Euclidean reserve isoperimetric inequality with sharp
constant, see Proposition 4.2.

Lemma 4.1. Let (M, g) be a smooth complete Riemannian manifold of dimension 3. Let o ∈ M
and R > 0. Let w be given by Theorem 3.6. Let T ∈ R be such that {w < T} ⊂⊂ Bρ(o) for some
ρ ≤ R. Suppose that ∂{w < t} is connected for any t < T . If Rg ≥ −δ on Bρ(o), for some δ > 0,
then

|Ωt| ≥ 1√
1 + 2

3δe
T

P (Ωt)3/2

6
√
π

∀t < T,

where Ωt := {w < t}.

Proof. We recall that Ωt has C1,α boundary, ∂Ωt admits weak mean curvature H for all t < T ,
and H = |∇w| > 0 H2-a.e. for a.e. t ∈ (−∞, T ), see item (1) of Section 3.1. The Hawking mass
of a set Ω with C1 boundary ∂Ω possessing weak mean curvature H is given by

mH(∂Ω) = P (Ω)1/2

(16π)3/2

(
4π −

ˆ
∂Ω

H2

4

)
.

As {w ≤ T ′} ⊂⊂ Bρ(o) for any T ′ < T , we can apply Proposition 3.13, which yields that
P (Ωt) = 4πet for any t < T , and that mH(∂Ωt) → 0 for almost every t → −∞. Hence the Geroch
Monotonicity formula (3.26) with r → −∞ and s = t, together with the fact that Rg ≥ −δ on
Bρ(o), gives that for all t ∈ (−∞, T ) there holds

mH(∂Ωt) ≥ − δ

(16π)3/2

ˆ t

−∞
P (Ωt)3/2 = − δ

(16π)3/2

ˆ t

−∞
(4π)3/2e3t/2 = − δ

12e
3t/2.

Since mH(∂Ωt) = 2π1/2et/2

64π3/2

(
4π −

´
∂Ωt

H2

4

)
, for every t ∈ (−∞, T ), we find

ˆ
∂Ωt

H2 ≤ 16π + 32
3 δπe

t. (4.1)

By Hölder inequality we get that for almost every t ∈ (−∞, T ) there holds

P (Ωt) ≤
(ˆ

∂Ωt

|∇w|2
)1/3 (ˆ

∂Ωt

1
|∇w|

)2/3

. (4.2)

Hence, by recalling that
´

∂Ωt
|∇w|2 =

´
∂Ωt

H2 is finite by (4.1) for almost all t ∈ (−∞, T ), recalling
that |∇w| > 0 H2-a.e. on ∂Ωt for a.e. t ∈ (−∞, T ), and by using the coarea formula together
with (4.2) and (4.1), for any t < T we obtain

|Ωt| ≥
ˆ

Ωt∩{|∇w|>0}

1
|∇w|

|∇w| =
ˆ t

−∞

(ˆ
∂Ωτ ∩{|∇w|>0}

1
|∇w|

)
dτ

=
ˆ t

−∞

(ˆ
∂Ωτ

1
|∇w|

)
dτ ≥

ˆ t

−∞

P (Ωτ )3/2
(ˆ

∂Ωτ

|∇w|2
)−1/2


≥
ˆ t

−∞

2πe3t/2√
1 + 2

3δe
t

≥
ˆ t

−∞

2πe3t/2√
1 + 2

3δe
T

= 1√
1 + 2

3δe
T

4
3πe

3t/2 = 1√
1 + 2

3δe
T

P (Ωt)3/2

6
√
π

.

□
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In the following proposition we construct sets with arbitrarily large perimeter and volume that
satisfy the reverse Euclidean isoperimetric inequality. This represents the crucial step for the proof
of the main results.

Proposition 4.2. Let (M, g) be a 3-dimensional complete C0-Riemannian manifold without
boundary, let K ⊂ M be a compact set, and let Ω be an unbounded connected component of M \K.
Assume that Ω is C0

loc-asymptotic to R3 (Definition 1.3), and that Rg ≥ 0 in the approximate
sense on Ω \K ′ (Definition 1.2), where K ′ ⊂ M is a compact set. Then, there exists a universal
constant ϑ ∈ (0, 1) such that the following holds.

For every P > 0, there exists a set of finite perimeter E ⊂⊂ Ω \K ′ such that
ϑP ≤ P (E) ≤ P,

and
|E| ≥ 1

6
√
π

P3/2 ≥ 1
6
√
π
P (E)3/2. (4.3)

Proof. Let ρ > 1, η < 1/2 to be chosen. The choice of ρ, only depending on P and on geometric
constants on R3, will be made clear during the proof in (4.8). We do not insist on the precise
choice of η for the sake of readability; however, it will be clear from the proof that choosing
η < 10−3 is sufficient. In this proof we will repeatedly use the elementary metric results recorded
in Lemma 2.2, and in the last part of the proof of Lemma 2.12.

By applying a contradiction argument and Remark 2.4 (see also the beginning of the proof of
Corollary 2.14) we can find a compact set C ⊃ (K ∪K ′) such that for every x ∈ Ω \ C there exists
Fx : (B64ρ+64(x), g) → (R3, geu) which is a (1 + η)-biLipschitz diffeomorphism with its image, with
Fx(x) = 0, and whose image contains BR3

32ρ+32(0). Let us now fix o such that
B64ρ+64(o) ⊂⊂ Ω \ C.

Let gi be a sequence of smooth Riemannian metrics on M converging to g locally uniformly with
Rgi

≥ −εi on Ω \ C. We will frequently pass to subsequences with respect to i in the course of the
proof, without relabeling. We will denote Bs(p), Bi

s(p) the open balls of radius s and center p in
the metrics g, gi, respectively. Up to passing to a subsequence with respect to i, we can assume
that

Bi
ρ−1(o) ⊂⊂ Bρ(o) ⊂ F−1

o (BR3

2ρ (0)) ⊂⊂ Bi
4ρ+4(o) ⊂⊂ Ω \ C for all i ∈ N. (4.4)

Notice that (see Definition 2.3) the compact C can be chosen such that, additionally, we have
|(g − F ∗

o geu)x(v, v)| ≤ η(F ∗
o geu)x(v, v), (4.5)

for every x ∈ B64ρ+64(o), and every v ∈ TxM . Then, for i large enough, we have
|(gi − F ∗

o geu)x(v, v)| ≤ 2η(F ∗
o geu)x(v, v), (4.6)

for every x ∈ Bi
32ρ+32(o), and every v ∈ TxM . As a consequence, the map Fx : (Bi

16ρ+16(x), gi) →
(R3, geu) is (1 + 3η)-biLipschitz with its image. Notice also that the image of this map contains
the ball BR3

8ρ+8(0).
As a consequence of (4.6), if η is small enough, the constants

C1,Sob(Bi
4ρ+4(o)), CP (Bi

4ρ+4(o)), CA(Bi
4ρ+4(o))

appearing in Theorem 3.6 (and defined in (3.2), (3.9), (3.10)), are uniformly bounded from above
by a universal constant multiplied by the value of the corresponding constants on R3, which are
independent on ρ. Moreover, since Fx : (Bi

16ρ+16(x), gi) → (R3, geu) is (1 + 3η)-biLipschitz with its
image, and contains the ball BR3

8ρ+8(0), the following holds: for every r ≤ ρ + 1 we can connect
any two points p, q ∈ ∂Bi

r(o) with a continuous curve γ in the annulus Ai
3r/4,5r/4(o). Indeed, it

suffices to connect Fx(p) with Fx(q) with a curve γ̃ ⊂ R3 in the annulus AR3

7r/8,9r/8(0), and take
γ := F−1

x (γ̃). Moreover, with the same reasoning, the constant Ccov(Bρ+1(o)) defined in (3.11) is
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bounded above by a universal constant which only depends on the following universal constant
independent on ρ:

C̃ := min
{
N ∈ N : AR3

r/2,3r/2(0) is covered by N open balls of radius r/4

with centers in AR3

r/2,3r/2(o) for any 0 < r ≤ ρ+ 1
}
.

(4.7)

Hence, we can apply Theorem 3.6 on the ball Bi
2R(o) := Bi

4ρ+4(o), where the radius ρ+ 1 in this
proof corresponds to the number ρ in the statement of Theorem 3.6. As a result of the discussion
above, the constant C appearing in Theorem 3.6 when applied to the ball Bi

4ρ+4(o) is bounded
above by a universal constant ξ > 1 independent of i, ρ, for i large enough.

Now let wi be the weak IMCF issuing from o in Bi
4ρ+4(o), given by Theorem 3.6. Denote

Ωi
t := {wi < t}. Let Tρ,ξ := 2 log(ρ− 1) − ξ − 1, and take ρ > 1 such that

4πeTρ,ξ = 4πe2 log(ρ−1)−ξ−1 = P. (4.8)
Notice that the choice of ρ only depends on P and on the universal constant ξ. By the last
assertion of Theorem 3.6, applied with r := ρ− 1, we have that

{wi < Tρ,ξ} = Ωi
Tρ,ξ

⊂ Bi
ρ−1(o) ⊂⊂ Bρ(o).

Now we aim at applying item (3) of Lemma 3.14 with the choices U := Bi
4ρ+4(o), Ω :=

F−1
o (BR3

2ρ (0)), and t1 := Tρ,ξ. We stress that {wi < Tρ,ξ} ⊂⊂ F−1
o (BR3

2ρ (0)), and

F−1
o (BR3

2ρ (0)), and ∂F−1
o (BR3

2ρ (0)) = F−1
o (∂BR3

2ρ (0)) are connected.
Moreover, for any arbitrary t0 < Tρ,ξ, one can define Ω′′ to be a sufficiently small ball so that all
the hypotheses of item (2) in Lemma 3.14 are met, since we have wi(x) → −∞ as x → o. Finally
noticing that H1(F−1

o (BR3
2ρ (0));Z) = {0}, one gets that all the hypotheses of item (2) and (3) in

Lemma 3.14 are met, and thus ∂{wi < t} is connected for every t < Tρ,ξ.
Therefore, recalling that Rgi

≥ −εi on Bi
4ρ+4(o), by Lemma 4.1 we get

|Ωi
Tρ,ξ

|i ≥ 1√
1 + 2

3εieTρ,ξ

Pi(Ωi
Tρ,ξ

)3/2

6
√
π

= 1√
1 + 2

3εieTρ,ξ

(4πeTρ,ξ)3/2

6
√
π

= 1√
1 + 2

3εi
P
4π

P3/2

6
√
π
, (4.9)

where we used that Pi(Ωi
t) = 4πet, see Proposition 3.13, where Pi(·) denotes perimeter computed

with respect to the metric gi.
Now, since Ωi

Tρ,ξ
⊂⊂ Bρ(o), and the perimeters Pi(Ωi

Tρ,ξ
) are equibounded, we can use the

precompactness and lower semicontinuity result in Lemma 2.11 to get a set Eρ ⊂ Bρ(o) such that
Ωi

Tρ,ξ
→ Eρ ⊂⊂ Ω \ C in L1, P (Eρ) ≤ P, and, by passing (4.9) to the limit, such that

|Eρ| ≥ P3/2

6
√
π
, (4.10)

which completes the proof of (4.3).
Finally, notice that Eρ ⊂⊂ Bρ+1(o). Moreover (4.5) holds. This implies that, if η < 1 is small

enough, on Bρ+1(o) there holds a (1, 1∗)-Sobolev inequality (3.2) with C1,Sob(Bρ+1(o)) bounded
from above by a universal constant only depending on the constant in the Euclidean (1, 1∗)-
Sobolev inequality. By Remark 3.4, this implies that P (E) ≥ ϑ̃|E|2/3 for a universal ϑ̃, for every
E ⊂⊂ Bρ+1(o). Applying the latter inequality on Eρ, and using again (4.10), we finally get
P (Eρ) ≥ ϑP2/3 for a universal ϑ, concluding the proof. □

4.2. Proof of the main results and consequences. We are now ready to prove the main
results of the paper.
Proof of Theorem 1.4. It is a direct consequence of Proposition 4.2 and the definition of isoperi-
metric mass in Definition 1.1. □
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Proof of Theorem 1.6. Suppose by contradiction that there exists v0 > 0 such that for every
v ∈ (v0,+∞) there are no isoperimetric sets of volume v in M . We claim that then I is strictly
increasing on (2v0,+∞).

Let v ∈ (2v0,+∞). By Theorem 2.16 there is an isoperimetric set E ⊂ M with |E| ≤ v0
(possibly empty) and a ball B ⊂ R3 with |B| ≥ v − v0 ≥ v/2 such that

v = |E| + |B|eu, I(v) = P (E) + Peu(B).
Let now ε > 0 be such Bε is a ball in R3 concentric to B and with volume |Bε|eu = |B|eu −ε. Notice
that, by approximating Bε ⊂ R3 with sets diverging along the manifold, arguing as in the proof of
the upper bound for the isoperimetric profile in Corollary 2.15, we get I(v − ε) ≤ P (E) + Peu(Bε).
Thus, taking ε → 0, we find

I(v) − I(v − ε)
ε

≥ Peu(B) − Peu(Bε)
ε

−−→
ε→0

2
(4π

3

)1/3
|B|−1/3

eu ≥ 2
(4π

3

)1/3
v−1/3.

Thus we get that the lower left Dini derivative satisfies

D−I(v) := lim inf
ε→0+

I(v) − I(v − ε)
ε

≥ 2
(4π

3

)1/3
v−1/3 > 0, ∀v ∈ (2v0,+∞).

Since I is continuous by Corollary 2.15, the latter implies that I is strictly increasing on (2v0,+∞).
Thus the sought claim is proved.

We aim now at showing that there exists an isoperimetric set with volume strictly greater than
2v0, thus reaching a contradiction. Fix v > 2v0. By Theorem 2.16 there is an isoperimetric set
E ⊂ M with |E| ≤ v0 and a ball B ⊂ R3 with |B| ≥ v − v0 > 0 such that

v = |E| + |B|eu, I(v) = P (E) + Peu(B).
By Theorem A.2 we know that E is bounded.

We apply Proposition 4.2 with K = ∅ and K ′ = Br(o) for some ball Br(o) with r > 1 such that
E ∪ C ⊂ Br−1(o). Then there is a set F ⊂ M such that F ⊂⊂ M \K ′, P (F ) ≤ Peu(B), and

|F | ≥ 1
6
√
π
Peu(B)3/2 = |B|eu.

Thus the set E ∪ F is such that
|E ∪ F | = |E| + |F | ≥ |E| + |B|eu = v.

Hence, since I is strictly increasing on (2v0,+∞), one gets
I(|E ∪ F |) ≥ I(v) = P (E) + Peu(B),

but at the same time
I(|E ∪ F |) ≤ P (E ∪ F ) = P (E) + P (F ) ≤ P (E) + Peu(B).

Hence all the inequalities in the previous formula are equalities, and then E ∪F is an isoperimetric
set with volume > 2v0, which is a contradiction. □

In the proof of Theorem 1.6 we argued that, if for some v0 > 0 no isoperimetric sets exist for
volumes v ≥ v0, then the isoperimetric profile is strictly increasing for large volumes. This implied
that some isoperimetric set of large volume must exist, resulting in a contradiction. In fact, if the
isoperimetric profile is strictly increasing, then one can deduce that isoperimetric sets exist for any
volume. This is what happens in a smooth asymptotically flat 3-manifold of nonnegative scalar
curvature that is complete with no closed minimal surfaces or endowed with a horizon boundary.
For this reason, the following result can be seen as a generalization of the existence result for any
volume obtained in [23, Proposition K.1] (see also [10, Theorem 3.6]). Moreover, when in addition
the isoperimetric profile diverges at infinity, such isoperimetric sets realize the isoperimetric mass
in the sense of (4.11). The isoperimetric profile diverges at infinity for instance when a global
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Euclidean-like isoperimetric inequality is in force. The latter happens, for example, when the
manifold is C0-asymptotic to R3 according to Definition 1.8.

Proposition 4.3. Let (M, g) be a C0-Riemannian manifold that is C0
loc-asymptotic to R3, and

such that Rg ≥ 0 in the approximate sense on M \K, where K ⊂ M is a compact set. Assume
that its isoperimetric profile I(v) is strictly increasing. Then, for every volume v, there exists an
isoperimetric set Ev of volume v on M . If in addition limv→+∞ I(v) = +∞, then

miso = lim sup
v→+∞

2
P (Ev)

(
|Ev| − P (Ev)3/2

6
√
π

)
. (4.11)

Proof. We assume by contradiction that, for some v > 0, there exists no isoperimetric sets of
volume v. By Theorem 2.16, we have I(v) = P (E) +Peu(B) for a possibly empty E ⊂ M realizing
P (E) = I(|E|) and B ⊂ R3 a nonempty ball, such that |E| + |B|eu = v. The proof of Theorem 1.6
shows that we can find a set F ⊂⊂ M \ Br+1(o), for some ball such that E ⊂ Br(o), with
P (F ) ≤ Peu(B) and with volume |F | ≥ |B|eu. If |F | = |B|eu, then E ∪ F is an isoperimetric set of
volume v, giving a contradiction. If |F | > |B|eu, we derive a contradiction with strict monotonicity
of I. Indeed, on the one hand we would have

I(|E| + |F |) > I(|E| + |B|eu) = I(v),
and on the other hand there holds

I(|E| + |F |) ≤ P (E) + P (F ) ≤ P (E) + Peu(B) = I(v).
This proves the existence of isoperimetric sets of any volume.

We are left to prove (4.11). Observe that, since the isoperimetric profile diverges at infinity, the
isoperimetric sets Ev have perimeter diverging to infinity as v → +∞, and thus they are valid
competitors in the definition (1.1) of miso. Hence

miso ≥ lim sup
v→+∞

2
P (Ev)

(
|Ev| − P (Ev)3/2

6
√
π

)
.

On the other hand, let (Ωj)j∈N be any other sequence of finite perimeter sets such that P (Ωj) → +∞.
Let Ej be an isoperimetric set of volume Vj = |Ωj|. Then, the sequence (Ej)j∈N satisfies

2
P (Ωj)

(
|Ωj| − P (Ωj)3/2

6
√
π

)
≤ 2
P (Ej)

(
|Ej| − P (Ej)3/2

6
√
π

)
,

implying (4.11). □

Appendix A. Auxiliary results

In this appendix we collect two technical results we used in the paper.

Lemma A.1. Let (M, g) be an n-dimensional complete C0-Riemannian manifold. Then the
following hold.

• Let f ∈ Liploc(M). Then lip f = |∇f | almost everywhere.
• Let Ω ⊂ M be an open set and suppose that gi is a sequence of smooth Riemannian metrics

converging to g uniformly on Ω. Then for any f ∈ L1
loc(Ω, g) there holds

lim
i

|Df |i(Ω) = |Df |(Ω),

where |Df |i denotes the total variation of f as a function in L1
loc(Ω, gi).

• For any f ∈ Liploc(M), there holds |Df | = lip f Hn = |∇f | Hn. In particular

|Ddx0| = Hn,

for any x0 ∈ M , where dx0 denotes distance from x0.
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Proof. Let f ∈ Liploc(M). Recall that the identity lip f = |∇f | almost everywhere readily follows
on smooth Riemannian manifolds exploiting the exponential map. Fix x ∈ M and let gi be a
sequence of smooth Riemannian metrics converging to g in C0-sense on a neighborhood A of x.
We can write (1 − εi)2g(v, v) ≤ gi(v, v) ≤ (1 + εi)2g(v, v) for any tangent vector v on A, for some
εi → 0. Denote by di the distance function on (A, gi) defined by taking infimum of lengths of
curves contained in A. For any i, let yj ∈ A such that limj di(x, yj) = 0 and

lipif(x) = lim
j

|f(x) − f(yj)|
di(x, yj)

,

where lipif denotes the slope of f as a function in (A, gi). For j large, di(x, yj) is realized by a
curve contained in Ω. Hence di(x, yj) ≥ (1 − εi)d(x, yj) for any j large. Thus

lipf(x) ≥ lim sup
j

|f(x) − f(yj)|
d(x, yj)

≥ (1 − εi) lim
j

|f(x) − f(yj)|
di(x, yj)

= (1 − εi)lipif(x).

A symmetric argument implies that limi lip if(x) = lip f(x). Since lip if = |∇gif |gi
almost

everywhere, and norms of gradients clearly pass to the limit, then lip f(x) = limi |∇gif |gi
= |∇f |

almost everywhere.
Let now f, gi be as in the second item. We can write again that (1 − εi)2g(v, v) ≤ gi(v, v) ≤

(1 + εi)2g(v, v) for any tangent vector v on Ω, for some εi → 0. Denote by di the distance
function on (Ω, gi) defined by taking infimum of lengths of curves contained in Ω and by |D(·)|i
the corresponding total variation. Let fk ∈ Liploc(Ω) be a sequence converging to f in L1

loc on
(Ω, g) such that |Df |(Ω) = limk

´
Ω lipfk. As before, one estimates

lipfk(x) ≥ (1 − εi)lipifk(x).
Therefore

|Df |(Ω) = lim
k

ˆ
Ω

lipfk ≥ (1 − ε̃i) lim inf
k

ˆ
Ω

lipifk dHn
gi

≥ (1 − ε̃i)|Df |i(Ω),

for suitable ε̃i → 0. Hence |Df |(Ω) ≥ lim supi |Df |i(Ω). An analogous argument shows that
|Df |(Ω) ≤ lim infi |Df |i(Ω).

Now let f ∈ Liploc(M). For any x0 ∈ M there exist r0 > 0 and a sequence of smooth metrics gi

on Br0(x0) uniformly converging to g on Br0(x0). The above argument also shows that lipif → lipf
pointwise on Br0(x0), hence in L1

loc on (Br0(x0), g), being f locally Lipschitz. Using the second
item, and since |Df |i = lipif Hn

gi
we have

|Df |(Br0(x0)) = lim
i

ˆ
Br0 (x0)

lipif dHn
gi

=
ˆ

Br0 (x0)
lipf dHn.

Taking into account the first item, the third one follows as well. □

Boundedness of isoperimetric sets usually follows from a suitable deformation lemma, see e.g.
[4, Theorem B.1]. It is not completely clear how to work out such an argument in the C0 setting,
yet one can slightly modify the argument, taking advantage of the asymptotic behavior imposed,
to obtain the following weaker version, that still suffices for our aims.

Theorem A.2. Let (M, g) be an n-dimensional complete C0-Riemannian manifold that is C0
loc-

asymptotic to Rn. Assume that for some V > 0 there exist E ⊂ M and a nonempty Euclidean
ball B ⊂ Rn such that |E| + |B|eu = V and I(V ) = P (E) + Peu(B). Then E has a bounded
representative.

Proof. Without loss of generality, we can assume that E has positive volume. Take p ∈ M . Let
V (r) = |E \Br(p)|. Call A(r) = P (E,M \ Br(p)). By coarea (see Theorem 2.7), and since by
Lemma A.1 we have |Ddp| = Hn, notice that V ′(r) = −P (Br(p), E). Moreover, a Euclidean-like
isoperimetric inequality holds for small volumes. Indeed, the proof of Corollary 2.14 (compare also
with item (1) in Lemma 2.12) shows that there is a constant ζ such that |Br(p)| ≥ ζr3 for every
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r ∈ (0, 1], and every p ∈ M . Thus [6, Proposition 3.20] gives that I(v) ≥ ξv2/3 for every v ∈ (0, η)
for some η, ξ > 0. Now arguing verbatim as after [4, Equation (B.1)], we can reduce ourselves to
show that, for some constant C, there holds

A(r) ≤ −V ′(r) + CV (r), (A.1)
for almost all large enough r. Assuming by contradiction that V (r) > 0 for any r > 0, the latter
would result in a contradiction by ODE comparison on V (r), see [4, Theorem B.1]. To this aim,
let Br be a smooth deformation of B ⊂ Rn of volume |B| + V (r) such that

Peu(Br) ≤ Peu(B) + CV (r), (A.2)
where C only depends on B. Notice it is enough to take Br to be a ball containing B. Then,
|E ∩Br(p)| + |Br|eu = V and thus, by using the analogue of [4, Proposition 3.2], which can be
proved analogously as in [4] (again exploiting that, arguing as in [4, Lemma 2.17], the isoperimetric
profile is achieved by bounded sets), we get
P (E) + Peu(B) = I(V ) ≤ I(|E| − V (r)) + IRn(|B| + V (r)) ≤ P (E ∩Br(p)) + Peu(Br). (A.3)

On the other hand, for almost every radius, we have (see [7, Proposition 2.6], which can be applied
thanks to Corollary 2.14) that

P (E ∩Br(p)) ≤ P (E) − P (E,M \Br(p)) + P (Br(p), E). (A.4)
Plugging (A.2) and (A.4) into (A.3), we are left with (A.1). So the proof is concluded. □
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