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Abstract

The sliced-Wasserstein flow is an evolution equation where a probability density evolves
in time, advected by a velocity field computed as the average among directions in the unit
sphere of the optimal transport displacements from its 1D projections to the projections of a
fixed target measure. This flow happens to be the gradient flow in the usual Wasserstein space
of the squared sliced-Wasserstein distance to the target. We consider the question whether
in long-time the flow converges to the target (providing a positive result when the target is
Gaussian) and the question of the long-time limit of the flow map obtained by following the
trajectories of each particle. We prove that this limit is in general not the optimal transport
map from the starting measure to the target. Both questions come from the folklore about
sliced-Wasserstein and had never been properly treated.

1 Introduction

Solving problems related to optimal transport, such as computing optimal transport maps and
Wasserstein distances, is in general very expensive from the numerical point of view, when we
consider measures on Rd with d ≥ 2. The one-dimensional case, on the contrary, can be treated
easily: explicit formulas for optimal transport maps, for example, are given by the cumulative
distribution functions of the starting and target densities and their pseudo-inverses; also, the
usually highly non linear Monge-Ampére equation, becomes an ODE in this case. Any kind of
transport construction where the multi-dimensional computation of optimal transport maps is
replaced by (many) one-dimensional computations are therefore of extreme interest. Among
the first idea of this type we mention, for instance, the Knothe-Rosenblatt transport map (see [8]
or [18, Section 2.3]).

A different construction was inspired by the so called Iterative Distribution Transfer (IDT)
algorithm (first proposed in [15]), which was based on a sequence of one-dimensional optimal
matchings between projections of the measures along different axes, chosen randomly at each
time step. In order to avoid the dependence of this approximation scheme on the choice of the
axes, M. Bernot later proposed an homogenization of the IDT procedure. We will see later that
this approach is quite related to the notion of sliced-Wasserstein distance, which has been the
object of many works in the last decade, starting from [16]. Yet, not a lot can be found in the
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literature about this evolutionary procedure, which is now called sliced-Wasserstein flow and
which we try to describe here, mainly based on [3] and [18, Section 2.5.2].

Suppose that ρ0 and ν are absolutely continuous probability measures inRd (we will use the
same notation to indicate both an absolutely continuous probability and its density with respect
to the Lebesgue measure L d), both with finite second moment. For any unitary directionϑ ∈ Sd−1

we can define ρϑ0 = (πϑ)#ρ0 and νϑ = (πϑ)#ν, where πϑ:Rd
→ R is the canonical projection on

the line ϑR and the symbol # indicates the push-forward of the measure. Since ρϑ0 and νϑ are
one-dimensional probability measures (absolutely continuous, hence atomless), computing the
optimal transport map Tϑ between them is not difficult. Then, for every point x ∈ spt(ρ0) and
any direction ϑ, we want to move the point x in the direction ϑ of a displacement given by the
displacement of the map Tϑ at the point x · ϑ, and combine these displacements for all values of
ϑ. We then define a vector field v via

v(x) :=
?
Sd−1

(
Tϑ(x · ϑ) − x · ϑ

)
ϑdH d−1(ϑ). (1)

When needed, this vector field will be denoted by v[ρ, ν], as it depends on both the current
measure ρ and on the target one ν, but when there is no ambiguity we will just use the notation
v.

Fixing a small time step τ > 0, we can define ρτ1 B (id+τv)#ρ0 and, iterating the construction,
we can obtain a sequence {ρτn}n∈N. Letting τ → 0+ we recover an (absolutely continuous with
respect to the 2–Wasserstein metric) curve of probabilities (ρt)t≥0 solving the continuity equation

∂tρ + ∇ · (ρv) = 0, (2)

where v = v[ρ, ν] is obtained using the construction in (1).
The difference compared to the Iterative Distribution Transfer procedure is that in IDT we

fix τ = 1 and we only use finitely many ϑ, and more precisely we choose an orthonormal basis
of Rd. This continuous-in-time procedure is for sure smoother and more isotropic.

It can be seen that the above equation is indeed a gradient flow for the Wasserstein distance
W2 (see [1, 17]) of the following functional

ρ 7→
SW2

2(ρ, ν)
2

,

where SW2(ρ, ν) is the 2–sliced-Wasserstein distance from ρ to ν, for which we refer to section 3.
From now on, we will call Sliced-Wasserstein Flow (SWF) the curve (ρt)t≥0 obtained above.

If the distance SW2 has received much attention in the recent applied literature (because of its
better computability than the standard W2 or because of its better statistical properties, see for
instance [16, 5, 2, 13] as well as [18, Section 5.5.4]), the flow itself has not. It was informally
introduced by Bernot as a way to converge to the target measure, and few results are available on
it: in [5] Bonnotte proved the existence of solutions to the SWF via JKO methods, and the same
flow is also mentioned in [18, Sections 2.5.2 and 8.4.2], but uniqueness and questions related to
the asymptotic behaviour of the flow still remain open. We cite [11] for a related flow, where
diffusion is also added, and applications to generative flows. Yet, the presence of diffusion
strongly changes the mathematical nature of these questions.

In this work we partially answer to two natural questions regarding the asymptotic behavior
of the SWF:

• Question 1. (Long-time asymptotics of the flow) Is it true that the limit ρ∞ = limt→∞ ρt (in
any suitable weak sense) exists and that we have ρ∞ = ν?
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• Question 2. (Optimality of the flow map) Fix an initial particle x ∈ Rd and consider the
flow map describing the characteristics of the flow. This map is obtained by solving, for
every inital point x, the following systemẏx = v(t, yx),

yx(0) = x,
(3)

where v is the velocity field defined in (1). Assume that yx(t), solution of the system above,
exists and is well defined for any t ≥ 0 and for every x ∈ Rd, we will denote by Yt the
map x 7→ yx(t). Moreover, assume that the limit Y∞ B limt→∞ Y(t) is well defined and
that limt→∞ ρt = ν. Is it true that the map Y∞ is optimal in the sense of optimal transport
between the initial datum ρ0 and the target measure ν?

A similar question concerning the optimality of the flow map was already studied in the
case of another flow map, the one obtained for the Fokker Planck equation. Negative results
were produced first in [19], and then in [9]. The latter result also included the case where the
target distribution is the standard Gaussian. Similarly to the problem studied in [19, 9], the flow
map of the sliced-Wasserstein flow has also been the object of numerical investigation: in the
case of discrete measures [15] suggests that the map Y∞ obtained as in Conjecture 2 is a good
approximation of the optimal one, but does not coincide with it in general. A similar result was
also conjectured by Bernot [3].

This work is structured as follows: in the next section we recall some basic facts about optimal
transport and Wasserstein spaces, then we present the definition and first properties of the sliced-
Wasserstein distance and of the sliced-Wasserstein flow. In section 4 we prove estimates for the
long-time behavior of the flow, and we discuss Conjecture 1, furnishing examples that show
the flow may or may not converge, depending on the starting and target measures chosen:
in particular, we prove convergence of the flow provided the target measure is the Gaussian
distribution. This positive result, together with the nature of the negative ones suggest that one
could have convergence to the target as soon as the initial measure is of finite entropy, but this
general result is unfortunately unproven. Finally, section 5 contains the counterexample which
shows that Conjecture 2 is false.

2 Notations and some results in optimal transport

For a function u : Rd
7→ R, we denote by ∇u its gradient and D2u its Hessian matrix. Moreover,

for a map T : Rd
7→ Rd, its Jacobian matrix is denoted by DT. Given any open subset Ω ⊂ Rd,

we denote with P(Ω) the set of probability measures with support inΩ. We denote with Pp(Ω)
the set of probability measures onΩwith finite moment of order p (in caseΩ is unbounded), so
that we have Pp(Ω) = {µ ∈P(Ω) :

∫
|x|pdµ < +∞}.

Givenµ, ν ∈P(Ω), we say that T is a transport map fromµ to ν, and that ν is the pushforward
of µ via T (and we write ν = T#µ) if for every Borel set A ⊂ Ωwe have

ν(A) = µ(T−1(A))

or, equivalently, if for any Borel map ϕ:Ω→ R it holds∫
Ω

ϕ(x)dν(x) =
∫
Ω

ϕ(T(x))dµ(x).
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Definition 2.1. Let µ, ν ∈P (Ω) and a continuous cost function c : Ω×Ω→ R. The map T : Rd
→ Rd

is said to be an optimal transport map for the cost c if it solves the problem

min
T

{∫
Ω

c(x,T(x))dµ(x), T Borel map such that T#µ = ν

}
. (4)

The map φ : Rd
→ R is said to be a Kantorovich potential if it solves the problem

max
φ

{∫
Ω

φ(x)dµ(x) +
∫
Ω

φc(x)dν(x)
}
, (5)

where φc(x) B infy∈Rd
{
c(x, y) − φ(y)

}
.

Remark. Problems (4) and (5) do not always admit a solution. However, when they exist, the
two quantities defined by (4) with “min” replaced by “inf”, and (5) with “max” replaced by
“sup” coincide.

We are in particular interested in the caseΩ = Rd and c(x, y) = 1
2 |x− y|2. In this case we have

a relation between the optimal T and the optimal φ (which is a Lipschitz function, and hence
diffentiable a.e.) which is

T(x) = x − ∇φ(x). (6)

In particular, we have T = ∇u where u(x) = 1
2 |x|

2
−φ(x), and one can check that u is convex. This

is summarized in the following celebrated theorem.

Theorem 2.1 (Brenier’s theorem, see [6]). Let µ, ν be two absolutely continuous probability measures
in P2(Rd). A map T:Rd

→ Rd such that T#µ = ν is optimal for the optimal transport problem (4) with
the cost c(x, y) = 1

2 |x − y|2 if and only if there exists a convex function u:Rd
→ R such that T = ∇u

a.e. This is equivalent to DT being a symmetric positive semi-definite matrix valued measure on Rd.
Moreover if it is the case, then u must satisfy the Monge-Ampére equation

det D2u(x) =
ν(x)

µ(T(x))

everywhere onRd. Finally, optimal transport maps are stable by “inversion”: T:Rd
→ Rd is the optimal

transport map from µ to ν if and only if T−1 is the optimal transport map from ν to µ.

For the one-dimensional problem, we are able to characterize optimal transport maps:

Theorem 2.2 (Brenier’s theorem in d = 1, see [18], Chapter 2). Let µ, ν be two probability densities
with finite second moments. If µ is atomless, then there exist a unique non-decreasing transport map
from µ to ν, which is optimal and given by

T(x) = F[−1]
ν

(
Fµ(x)

)
,

where Fµ(x) = µ((−∞, x]) and F[−1](y) = inf{t ∈ R: F(t) ≥ y}.

3 Sliced-Wasserstein distance and sliced-Wasserstein flow

3.1 Wasserstein spaces

Let Ω ⊂ Rd. Thanks to the transport value associated with the costs of the form c(x, y) = |x − y|p

for 1 ≤ p < ∞, we can define a distance called p–Wasserstein distance over Pp(Ω), the space of
probability measures with support contained in Ω and finite p-moment.

Wasserstein distances play a key role in many fields of applications, and seem to be a natural
way to describe distances between equal amounts of mass distributed on the same space.
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Definition 3.1 (Wasserstein distance). Let 1 ≤ p < ∞, Ω ⊂ Rd. Given two absolutely ontinuous
measures µ, ν ∈Pp(Ω) we define

Wp(µ, ν) = inf
{∫
Ω

|x − T(x)|pdµ(x) : T Borel map such that T#µ = ν

} 1
p

.

The above definition could actually be extended to the whole set of measures in Pp(Ω) (with-
out the restriction to be absolutely continuous) but this requires to re-formulate the transport
problem in terms of transport plans instead of transport maps. However, in this article this
aspect will not be crucial and the only cases where non-absolutely continuous measures will be
used concern some counter-examples where it is easy to understand the adaptations that need
to be performed.

As a refence on the distance Wp we refer the reader to [18, Chapter 5] where it is proven, in
particulat, that Wp is indeed a distance over Pp(Ω). Moreover, the following theorem holds:

Theorem 3.1. Fix p ≥ 1, q > p and c > 0. Then the set

K B
{
µ ∈Pp

(
Rd

)
:
∫
Rd
|x|qdµ(x) ≤ c

}
is sequentially compact in the metric space

(
Pp

(
Rd

)
,Wp

)
.

3.2 Sliced-Wasserstein

The following definition was introduced in [16], and provides a notion of distance on P2(Rd),
alternative to the usual W2 distance, based on the behavior of the measures “direction by
direction”.

Definition 3.2 (Sliced-Wasserstein distance). Given µ, ν ∈P2(Rd), we define

SW2 B

(?
Sd−1

W2
2((πϑ)#µ, (πϑ)#ν)dH d−1(ϑ)

)1/2

,

where πϑ:Rd
→ R is the projection on the axis directed according to the unit vector ϑ, namely πϑ(x) =

x · ϑ, and H d−1 is the surface measure on Sd−1.

It is not difficult to prove that, for any Ω ⊂ Rd, this is a distance on P2(Ω), that is always
less than the usual 2-Wasserstein distance. The two distances generate the same topology (see
[2]), with Hölder relation on compact sets (see [5], Chapter 5). Many interesting properties,
pointing out surprising difference in the behavior of SW2 compared to W2, have been stud-
ied in the recent paper [14]. We also mention the possibility to define a distance SWp, via

SWp :=
(>
Sd−1 Wp

p((πϑ)#µ, (πϑ)#ν)dH d−1(ϑ)
)1/p

, which is sometimes more convenient for sharp
comparisons with the standard Wasserstein distances (see [7]).

To show that equation (2) derived in the introduction, describing the one-dimensional ap-
proximation scheme for a transport map, can be seen as the gradient flow of the functional
F :ρ 7→ 1

2 SW2
2(ρ, ν) in the Wasserstein space (P(Rd),W2) we need to convince ourselves that

vt = −∇
δF
δρ (ρt), where δF

δρ (ρ) is the first variation of F , defined by

d
dε

∣∣∣∣
ε=0

F (ρ + εχ) =
∫

δF
δρ

(ρ)dχ
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for any perturbation χ = µ−ρwith µ ∈ L∞(Rd)∩P(Rd) and compactly supported. Since the first
variation of the functional ρ 7→ 1

2 W2
2(ρ, ν) is the Kantorovich potential for the transport problem

from µ to ν (see [18], proposition 7.17), we get

δF
δρ

(ρ)(x) =
?
Sd−1

1
2
δW2

2(ρϑ, νϑ)
δρ

(x)dH d−1(ϑ) =
?
Sd−1

φϑ(x · ϑ)dH d−1(ϑ),

where we denoted by φϑ the Kantorovich potential between ρϑ B (πϑ)#ρ and νϑ B (πϑ)#ν.
Using also (6), this in turns leads to

−∇
δF
δρ

(ρ) =
?
Sd−1

(
Tϑt (x · ϑ) − x · ϑ

)
ϑdH d−1(ϑ),

which is precisely the velocity field derived in (1).

4 Long-time asymptotics of the SWF

The question of the limit as t→∞ of the distribution ρt is very natural but surprisingly difficult,
even if the SWF was probably mainly introduced as a way to approach the target distribution
ν. Section 5.7 in [5] explains the difficulty of this question as it is not clear, except in the case
of strictly positive densities, that critical points should coincide with the target. Note that [10]
proves convergence results for a discrete (in time) version of a similar procedure, but among its
assumption there is a very restrictive one: the existence of a compact set in the space of measures
where the evolution takes place and which contains no other critical point than ν.

4.1 Bounds on the moments along the flow

In this section we provide some uniform bounds to the p-moments of the sliced-Wasserstein
flow. We start by computing the derivative with respect to time of the p–moment (p ≥ 2) of the
sliced-Wasserstein flow ρt associated with a given target measure ν. We distinguish the case
p = 2 and p > 2

For p = 2, using the equality

x · ϑ
(
Tϑ(x · ϑ) − x · ϑ

)
= −
|Tϑ(x · ϑ) − x · ϑ|2

2
−
|x · ϑ|2

2
+
|Tϑ(x · ϑ)|2

2
,

we have

∂t

∫
|x|2

2
ρt = ∂t

∫
|x|2

2
ρt = −

∫
|x|2

2
∇ · (vρt) =

∫
x · vρt

=

? ∫
x · ϑ

(
Tϑ(x · ϑ) − x · ϑ

)
ρt =

? ∫
R

|Tϑt (y)|2

2
ρϑt (y)

−

? ∫
R

r2

2
ρϑt (y) −

1
2

? ∫
R

|Tϑt (y) − y|2ρϑt (y)

=

? ∫
R

|Tϑt (y)|2

2
ρϑt (y) −

? ∫
R

r2

2
ρϑt (y) −

1
2

SW2
2(ρt, ν)

=

? ∫
R

r2

2
νϑ(r) −

? ∫
R

r2

2
ρϑt (y) −

1
2

SW2
2(ρt, ν)

(7)
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For p > 2, on the other hand, we have (definingMp(ρ) B
∫
|x|pρ)

∂tMp(ρt) = ∂t

∫
|x|p

p
ρt = −

∫
|x|p

p
∇ · (vρt) =

∫
|x|p−2x · vρt

=

∫
|x|p−2x ·

(?
(Tϑt (x · ϑ) − x · ϑ)ϑ

)
ρt =

? ∫
|x|p−2x · ϑ(Tϑt (x · ϑ) − x · ϑ)ρt

≤ −

? ∫
|x|p−2 |x · ϑ|

2

2
ρt +

? ∫
|x|p−2 |T

ϑ
t (x · ϑ)|2

2
ρt

where we used the inequality

a · (b − a) ≤
1
2
|b|2−

1
2
|a|2.

Thus

∂tMp(ρt) ≤ −
1
2

∫
|x|p−2

(?
|x · ϑ|2

)
ρt +

1
2

? ∫
|x|p−2

|Tϑt (x · ϑ)|2ρt

≤ −

∫
|x|p−2 |x|

2

2d
ρt +

1
2

? 
(∫
|x|pρt

) p−2
p

(∫
|Tϑt (x · ϑ)|pρt

) 2
p


using the equality ?

Sd−1
|x · ϑ|2dH d−1(ϑ) =

|x|2

d
.

This is a particular case of a more general family of equalities,?
|x · ϑ|p= cp,d|x|p,

which are true for certain constants cp,d < 1 (and indeed we have c2,d = 1/d). Hence, finally,
using Jensen’s inequality, we get

∂tMp(ρt) ≤ −
1
2d
Mp(ρt) +

1
2
Mp(ρt)

1− 2
p

(∫ ?
|y · ϑ|pν

) 2
p

≤ −
1
2d
Mp(ρt) +

1
2
Mp(ρt)

1− 2
p c

2
p

p,dMp(ν)
2
p .

(8)

We deduce
Mp(ρt) ≤ max

{
Mp(ρ0), dp/2cp,dMp(ν)

}
, (9)

since (8) gives a differential inequality of the form

x′ ≤ −
1

2d
x + x1−2/p C2/p

2
,

and the left hand side is negative for
x ≥ Cdp/2.

By Theorem 3.1 we deduce that, if the target and starting measure have finite p-moments, the
flow describes a compact curve in Wq for any q < p. Moreover, denoting by

R(µ) B inf
{
r > 0: supp(µ) ⊂ {|x|≤ r}

}
= lim

p→∞
M

1/p
p (µ),
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we can see that we have

R(ρt) = lim
p→∞
Mp(ρt)1/p

≤ max
{

lim
p→∞
Mp(ρ0)1/p, d1/2 lim

p→∞
c1/p

p,dMp(ν)1/p
}

= max
{
R(ρ0),

√

dR(ν)
}
,

since
lim
p→∞

cd,p = lim
p→∞
∥ϑ∥Lp(Sd−1) = ∥ϑ∥L∞(Sd−1) = 1.

Obviously this estimate is useless when the initial and target measures are not compactly
supported. This estimate is not sharp, and one can show that the constant

√
d can be improved

by finer arguments on the direction of the velocity field v on large balls far from the support of
the target measure.

4.2 Gaussian-target case

We prove here that when the target measure ν is the standard Gaussian distribution, then
limt→∞ ρt in the Wasserstein topology exists and coincides with the Gaussian distribution ν itself.
The argument we present can be adapted to isotropic Gaussian measures of arbitrary variance,
but unfortunately does not generalize to other Gaussian distribution (whose covariance matrix
is not a scalar multiple of the identity).

Let the entropy function E: P(R)→ R be defined by

E(ρ) =


∫
Rd ρ logρ if ρ≪ L d,

+∞ otherwise.

Theorem 4.1. Let ν be the standard Gaussian distribution on Rd. If ρ0 has finite entropy and finite
second moment, then the flow (ρt)t≥0 is well posed and we have

SW2
2(ρt, ν) ≤

C
t

where C = C(ρ0) = 2(E(ρ0) +M2(ρ0)).

To prove this theorem we need the following preliminary result.

Lemma 4.2. Given two absolutely continuous probability measures µ, ν ∈P2(R), consider the optimal
transport map T from µ to ν. Then we have∫

R

∂yµ(y)
(
T(y) − y

)
dy ≤ E(ν) − E(µ).

Proof. Consider the curve of measures ω(t) = ((1− t)id+ tT)#µ. Such a curve is a constant-speed
geodesic (with respect to the W2 distance) connecting µ = ω(0) to ν = ω(1).

Since ω is a geodesic, we know it must solve the the continuity equation

∂tω + ∂y(vtω) = 0,
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where the velocity field is v(t, y) = T(S−1
t (y))− S−1

t (y), with St(y) B (1− t)y+ tT(y). We thus have

∂t

∫
R

ωt logωtdr =
∫
R

∂tωt logωtdr

= −

∫
R

∂r(vtωt) logωtdr =
∫
R

vt∂yωt

=

∫
R

[
T
(
S−1

t (y)
)
− S−1

t (y)
]
∂yωtdy,

and valuating the expression at t = 0, we obtain:

∂t

∣∣∣∣
t=0
E(ω(t)) =

∫
R

∂yµ(y)
(
T(y) − y

)
dy.

We now use the convexity of the function t 7→ E(ω(t)), where ω is a Wasserstein geodesic in
P(Rd). Indeed, the entropy is convex along these geodesics (see [12] and [18, Section 7.3.2]),
and for any convex function f one has f ′(0) ≤ f (1) − f (0). This proves the claim. □

We are now ready to prove theorem 4.1

Proof. Since (ρt)t≥0 solves the continuity equation (2), we have

∂t

∫
ρt logρtdx =

∫
[∂tρt logρt + ∂tρt]dx = −

∫
[∇ · (vtρt) logρt − ∇(vtρt)]dx

= −

∫
∇ · (ρtvt) logρtdx =

∫
ρtvt ·

1
ρt
∇ρtdx =

∫
vt · ∇ρtdx

=

? [∫
∇ρt · ϑ

(
Tϑt (x · ϑ) − x · ϑ

)
dx

]
dH d−1(ϑ)

=

? ∫
R

∂yρ
ϑ
t (y)

(
Tϑt (y) − y

)
dydH d−1(ϑ) ≤

? [
E

(
νϑ

)
− E

(
ρϑ

)]
dH d−1(ϑ).

(10)

The last inequality comes from the inequality in Lemma 4.2. We then obtain

∂tE(ρt) ≤
?
E(νϑ) −

?
E(ρϑ). (11)

Now notice that the Gaussian measure minimizes the functional

ρ 7→ E(ρ) +
∫
|x|2

2
ρ.

Indeed f (s) = s log s is a convex function, and thus f (t) ≥ f (s)+ f ′(s)(t−s) = f (s)+ (log s+1)(t−s).
Thus, for every absolutely continuous ρ, and if ν is the Gaussian distribution,∫

ρ logρ ≥
∫
ν log ν +

∫
log ν(ρ − ν) +

∫
(ρ − ν)

=

∫
ν log ν −

∫
|x|2

2
ρ +

∫
|x|2

2
ν,

and therefore ∫ [
ρ logρ +

|x|2

2
ρ

]
≥

∫ [
ν log ν +

|x|2

2
ν

]
= 0
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Summing Equations (7) and (11), and using the fact that, for any ϑ ∈ Sd−1, νϑ is still a (one-
dimensional) standard Gaussian, we obtain

∂t

(
E(ρt) +

∫
|x|2

2
ρt

)
≤

? (
E

(
νϑ

)
− E

(
ρϑt

))
+

? ∫
|y|2

2
νϑ −

? ∫
|y|2

2
ρϑt −

1
2

SW2
2(ρt, ν)

=

? [(
E

(
νϑ

)
+

∫
|y|2

2
νϑ

)
−

(
E

(
ρϑt

)
+

∫
|y|2

2
ρϑt

)]
−

1
2

SW2
2(ρt, ν)

≤ −
1
2

SW2
2(ρt, ν).

Hence, integrating with respect to time, and recalling that 1
2 SW2

2 is a decrasing quantity along
its gradient flow,

T
2

SW2
2(ρT, ν) ≤

1
2

∫ T

0
SW2

2(ρt, ν)dt ≤ −
[
E(ρT) − E(ρ0)

]
−

∫ [
|x|2

2
ρT −

|x|2

2
ρ0

]
dt

≤ E(ρ0) +
∫
|x|2

2
ρ0 C C

for every T ≥ 0. Thus

SW2
2(ρt, ν) ≤ 2

E(ρ0) +
∫
|x|2
2 ρ0

t
.

□

The above proof is inspired by the proof of convergence of the IDT procedure in [15],
presented as well in [5, Theorem 5.2.2].

Corollary 4.3. Take q ≥ 2. Then, if ρ0 ∈Pq(Rd) has finite entropy, we have

ρt
Wp
−−−→
t→∞

ν,

for all values of p < q.

Proof. The proof is easy once we observe that (9) and Theorem 3.1 provide compactness of
the flow (ρt)t≥0 in the spaces (Pp(Rd),W2) provided ρ0 has finite moments. This turns the
convergence in the distance SW2 into a more standard Wp convergence. for any q < p. □

4.3 The flow may not converge to the target

We can provide examples in which the flow does not converge to the target.

Example 1. Consider the following construction in R2: let the starting measure be

ρ0 =
δ(−1,0)

2
+
δ(1,0)

2

and the target measure

ν =
δ(0,a)

2
+
δ(0,−a)

2
,

10



for a certain a > 0 to be defined. We can show that there exists a > 0 such that the configuration ρ0 is
stationary, i.e. the velocity field associated with the SWF at time zero is v0 = 0 and therefore the gradient
flow is ρt = ρ0 for any t ≥ 0, so that the flow does not converge to the target. Calling Tϑ the optimal
transport map from ρϑ and νϑ, we have

v0 =

? (
Tϑ(x · ϑ) − x · ϑ

)
ϑ

= 2
? π

2

0
(a sinϑ − cosϑ)

(
cosϑ
sinϑ

)
− 2
? 0

−
π
2

(cosϑ + a sinϑ)
(
cosϑ
sinϑ

)
= 2
? π

2

0

(
a sinϑ cosϑ − cos2 ϑ
a sin2 ϑ − cosϑ sinϑ

)
− 2
? 0

−π
2

(
cos2 ϑ + a cosϑ sinϑ
cosϑ sinϑ + a sin2 ϑ

)
=

(
a
> 2π

0
sin(2ϑ)

2 sgn(ϑ) −
> 2π

0 cos2 ϑ
0

)
.

All we have to do now is imposing the first row of the above matrix equal to zero, obtaining:

a =
π
2
.

Note that the above example is not new at all and similar computations on the case where both
the target and the starting measure are composed of two symmetric atoms are also illustrated
in [20, Section 1.6] or [4, Figure 2].

Example 2. Consider the following construction in R2: let the starting measure be

ρ0 =
H 1 ((a, b) × {0})

|b − a|

and the target measure ν be any radial distribution. Then, by the symmetry in the construction, we can
see that we always have supp(ρt) ⊂ R × {0}. Thus, in general, this flow will not converge to the target
measure.

Notice that in both these examples we cannot assume ρ0 to be absolutely continuous with
respect to the Lebesgue measure. This is indeed coherent with the strategy used to prove the
convergence of the Gaussian-target case, which relied on entropy methods.

5 The flow map of the SWF does not provide optimal transport

This section contains a counterexample to Conjecture 2 presented in the introduction. We show
the following:

It is not true that, for any initial distribution ρ0 and any target distribution ν, the sliced-Wasserstein
flow converges to the target measure ν itself and the limit of the flow map arising from the Lagrangian

description of the model exists and is the optimal transport map from ρ0 to ν.

Using the idea developed in [9], we can write a necessary condition which must hold if we want
Conjecture 2 to be true: take ρ0 sufficiently smooth and quickly decaying at infinity, and assume
that Conjecture 2 holds not only for ρ0 but for all (ρt)t≥0. This means that the flow Yt is well
defined for any t ≥ 0, that the limit limt→∞ Yt C T exists, and that it is the optimal transport
map between ρ0 and ν. Under these assumptions, we have that for any t ≥ 0 the SWF provides

11



optimal transport from ρt to ν. That is, the map T ◦ Y−1
t is an optimal transport map between ρt

and ν. Thus, Yt ◦ T−1 is also an optimal transport map between ν and ρt. Let us denote by S the
map T−1. Making use of theorem (2.1), we have that the following condition must hold

∀t ≥ 0,∀x ∈ Rd, the Jacobian of Yt ◦ S(x) is a symmetric matrix . (12)

This Jacobian matrix reads DYt(S)DS. Moreover, differentiating (3) with respect to x, we see that

∂DYt

∂t
= −

(?
Sd−1

φ′′t,ϑ(x · ϑ)ϑ ⊗ ϑ dϑ
)
,

together with DY0 = Id. Thus, differentiating the Jacobian of Yt ◦S with respect to time, we have
that condition (12) implies

∀t ≥ 0,∀x ∈ Rd,

[?
Sd−1

φ′′t,ϑ (S(x) · ϑ)ϑ ⊗ ϑ
]

DS(x) is a symmetric matrix.

Evaluating this expression at t = 0 and remembering that DS(x) is symmetric for any x (since
our assumption is that S is an optimal transport map between ν and ρ0) we conclude that the
matrices ?

Sd−1
φ′′ϑ (S(x) · ϑ)ϑ ⊗ ϑ and DS(x)

should commute for any x. Composing both the matrices with S−1 = T on the right hand side
and using the identity DS(S−1) = [DT]−1, and the fact that a symmetric matrix A commutes with
an invertible matrix B if and only if it commutes with B−1, we conclude that:

∀x ∈ Rd,

?
Sd−1

φ′′ϑ (x · ϑ)ϑ ⊗ ϑ and DT(x) commute.

Using again Theorem 2.1, namely the fact that T = Du for a convex map u:Rd
→ R, we can write

∀x ∈ Rd,

?
Sd−1

φ′′ϑ (x · ϑ)ϑ ⊗ ϑ and D2u(x) commute.

For the sake of simplicity we will call ρ0 = ρ in the following. Denote also by uϑ:R→ R the
map whose derivative is the transport map Tϑ between ρϑ and νϑ. Writing the Monge-Ampére
equation for ρϑ and νϑ we have

u′′ϑ (z) =
ρϑ(z)

νϑ (Tϑ(z))
∀z ∈ R.

Since we have the equality φ′′ϑ (z) = 1 − u′′ϑ (z), we get

Mi, j(x) B
? (

1 −
ρϑ(x · ϑ)

νϑ (Tϑ(x · ϑ))

)
ϑiϑ j =

δi j

d
−

?
ρϑ(x · ϑ)

νϑ(Tϑ(x · ϑ))
ϑiϑ j.

If we choose ρ and ν to be even measures (ρ(x) = ρ(−x), ν(x) = ν(−x) for all x ∈ Rd), we have
Tϑ(0) = 0 for all ϑ ∈ Sd−1. Moreover, we also choose ν to be radial (which is stronger than even),
so that the value νϑ(0) does not depend on ϑ. Our goal can be rewritten as follows: we want to
show that, in general, the following two matrices do not commute:

Id
d
−M(0) =

?
ρϑ(0)
νϑ(0)

(ϑ ⊗ ϑ)dϑ = c
?
ρϑ(0)(ϑ ⊗ ϑ)dϑ and D2u(0). (13)

12



Since we are free to choose any even initial measure ρ, let us impose ρ = (∇u)−1
# ν, for

u(x) = |x|2/2 + εφ(x), where φ is a smooth, compactly supported and even function. It is well
known that, for ε small enough, u is convex and ∇u is a C∞ diffeomorphism that coincides
with the identity outside of a compact set which moreover, by Brenier’s theorem, is the optimal
transport map from ρ to ν. Finally the Monge-Ampére equation guarantees that, if φ is even,
so is ρ. We seek now for the expression of ρϑ(0) in terms of φ. Again by the Monge-Ampére
equation for the transport problem from ρ to ν, we deduce that, for any x ∈ Rd, we have

ρ(x) = det D2u(x)ν(∇u(x)).

In our case ∇u(x) = x + ε∇φ(x) and det D2u(x) = 1 + ε∆φ(x) + O(ε2). We deduce that for any
x ∈ Rd

ρ(x) =
(
1 + ε∆φ + O(ε2)

) (
ν(x) + εDν(x) · ∇φ(x)

)
+ O(ε2)

=ν(x) + ε
(
Dν(x) · ∇φ(x) + ∆φ(x)ν(x)

)
+ O(ε2).

By the definition of ρϑ, we get

ρϑ(0) =
∫
ϑ⊥
ρ(y)dy =

∫
ϑ⊥

(
ν(y) + ε

(
Dν(y) · ∇φ(y) + ∆φ(y)ν(y)

))
dy + O(ε2).

We now impose φ(x) = εψ(x) + η(x), with ψ, η even functions (so that φ is even) and such
that supp(ψ) ⊆ B(0, 1) and supp(η) ⊆ B(Red, 1) ∪ B(−Red, 1) for a fixed R >> 1, ed being the last
vector of the canonical basis in Rd. In this way D2u(0) = Id + ε2D2ψ(0) and so, by (13), our aim
becomes to prove that the matrix

>
ρϑ(0)ϑ ⊗ ϑ does not commute with D2ψ(0). We have

ρϑ(0) =
∫
ϑ⊥
ν(y)dy + ε

∫
ϑ⊥

(
Dν(y) · ∇η(y) + ∆η(y)ν(y)

)
dy + O(ε2)

=

∫
ϑ⊥
ν(y)dy + ε

∫
ϑ⊥
ν(y)ηϑϑ(y)dy + O(ε2),

after integration by parts. We deduce that our goal becomes now to prove the following fact:
“D2ψ(0) does not commute with A”, where

A =
? ∫

ϑ⊥
ν(y)ηϑϑ(y)(ϑ ⊗ ϑ)dydϑ

=

? ∫
ϑ⊥
ν(y)(ϑ ⊗ ϑ)D2η(y)(ϑ ⊗ ϑ)dydϑ

=2
? ∫

ϑ⊥
ν(y)(ϑ ⊗ ϑ)D2η̃(y)(ϑ ⊗ ϑ)dydϑ,

and η̃ is the restriction of η to B(Red, 1). For convenience, with a slight abuse of notation, in the
following we will call η this very function. Notice in particular that η(x) = 0 if xd ≤ 0. Since ψ
is any even function, in order to get our claim we just have to ensure that the matrix A is not a
multiple of the identity matrix. To do so, we can for example check that the diagonal elements
of A are not equal.

In the remaining part of this counterexample, for simplicity, we restrict to the case d = 2. In
this case, we can just check that we have A11−A22 ̸= 0: take η(y1, y2) = ηr(y1, y2) = ar(y1)b(y2) for
ar and b positive functions, even on their support and of unitary integrals, supported respectively
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in [−r, r], [R,R+1/2] (so that, if r is small, supp(ηr) ⊆ B(Re2, 1)). Observe that ar ⇀ δ0 when r→ 0.

Using the notation ηr
i j = (D2ηr)i j, we have

A11 = 2
? ∫

ϑ⊥
ϑ2

1(ϑ2
1η

r
11 + 2ϑ1ϑ2η

r
12 + ϑ

2
2η

r
22)ν(y)dydϑ,

A22 = 2
? ∫

ϑ⊥
ϑ2

2(ϑ2
1η

r
11 + 2ϑ1ϑ2η

r
12 + ϑ

2
2η

r
22)ν(y)dydϑ.

Since in dimension d = 2, for any y ∈ ϑ⊥ one has

(ϑ1, ϑ2) =
(
−

y2

|y|
,

y1

|y|

)
,

we have

A11 =2
? ∫

ϑ⊥

y2
2

|y|4
(y2

2η
r
11 − 2y1y2η

r
12 + y2

1η
r
22)ν(y)dydϑ,

A22 =2
? ∫

ϑ⊥

y2
1

|y|4
(y2

2η
r
11 − 2y1y2η

r
12 + y2

1η
r
22)ν(y)dydϑ.

(14)

To conclude we need the following

Lemma 5.1. Given f :Rd
→ R such that the following integrals are well defined, we have?
Sd−1

∫
ϑ⊥

f (y)dydϑ =
(d − 1)ωd−1

dωd

∫
Rd

f (x)
|x|

dx

where ωk stands for the measure of the unit ball in dimension k.

Proof. First restricting to compactly supported functions f and then removing this restriction,
it is clear, by the Riesz representation theorem for the dual of C0, that there exists a locally
finite measure µ on Rd such that

>
Sd−1

∫
ϑ⊥

f (y)dydϑ =
∫

f dµ. It is also clear by symmetry reason
that µ is a radial measure. Hence, in order to identify µ it is enough to compute the mass
that it gives to every ball B(0,R). Taking for f the indicator function of such a ball we obtain
µ(B(0,R)) = ωd−1Rd−1. This is the same as taking for µ the measure with density (d−1)ωd−1

dωd

1
|x| , which

concludes the proof. □

Applying Lemma 5.1 to Equations (14), we deduce?
S1

∫
ϑ⊥

f (y)dydϑ =
1
π

∫
Rd

f (x)
|x|

dx.

Using this formula, the difference between the diagonal elements of the 2 × 2 - matrix A, up to
multiplication by the constant π, reads

A11 − A22 =

∫
R2

x2
2 − x2

1

|x|5
(x2

2η
r
11 − 2x1x2η

r
12 + x2

1η
r
22)

 ν(x)dx1dx2.

Since

hi(x) B
x2

i

|x|5
ν(x)
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can be assumed smooth enough in R2
\ {0}, when r→ 0 the integrals defining A11 and A22 stay

bounded (remembering that ηr is compactly supported). Setting

f (x1, x2) B h2(x) − h1(x) =
x2

2 − x2
1

|x|5
ν(x1, x2),

we have

A11 − A22 =

∫
R2

f (x)(x2
2∂11arb − 2x1x2∂1ar∂2b + x2

1ar∂22b)dx1dx2.

We need to be sure that this quantity is not zero as soon as r → 0. Integrating by parts with
respect to the variable x1, we obtain

A11 − A22 =

∫ (
x2

2b
∫
∂11 f ar + 2x2∂2b

∫
(∂1 f x1 + f )ar + ∂22b

∫
f x2

1ar
)

dx2.

Sending r→ 0, this gives

A11 − A22 =

∫
x2

2b∂11 f (0, x2) + 2x2∂2b f (0, x2)dx2.

Integrating by parts with respect to x2,

A11 − A22 =

∫
b
(
∂11 f (0, x2)x2

2 − 2 f (0, x2) − 2x2∂2 f (0, x2)
)

dx2.

Remembering that x2 can be assumed strictly positive (due to the fact that ηr is symmetric and
supported away from zero), we have

∂1 f = νx1
−2|x|2 − 5x2

2 + 5x2
1

|x|7
+

x2
2 − x2

1

|x|5
ν1,

then
f11(0, x2) = −7

ν

|x|5
+
ν11

|x|3

and, by similar computations,
f2(0, x2) = −3

ν

|x|4
+
ν2

|x|3
.

Therefore

A11 − A22 =

∫
b

−3
ν

x3
2

+
ν11

x2
− 2

ν2

x2
2

 dx2.

Considering that ν has been chosen to be radial, we make use of the relations

νi = ν
′

xi

|x|

(where ν′ – and later ν′′ – stands for the derivative of ν in the radial direction), and

νi j =
ν′

|x|
δi j +

(
ν′′

|x|2
−
ν′

|x|3

)
xix j,
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to get that A11 − A22 = 0 for any choice of b if and only if

−3
ν

|x|3
−
ν′

|x|2
= 0

holds for any x ∈ {0}×R+: indeed, since b is free to be chosen, so is its support (which we defined
to be of the form [R,R+ 1/2]). Still remembering that x2 can be assumed strictly positive, we get
that this is equivalent to

(15)3ν + |x|ν′ = 0.

To conclude the counterexample it is sufficient to choose a radial target measure ν not satisfying
(15). By the way, no probability density can solve (15) since a solution ν should satisfy ν ∝ |x|−3,
which implies that ν is not a probability distribution, as it is not integrable.
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[15] François Pitié, Anil C Kokaram, and Rozenn Dahyot. “Automated colour grading using
colour distribution transfer”. In: Computer Vision and Image Understanding 107.1-2 (2007),
pp. 123–137.

[16] Julien Rabin et al. “Wasserstein barycenter and its application to texture mixing”. In: Scale
Space and Variational Methods in Computer Vision: Third International Conference, SSVM 2011,
Ein-Gedi, Israel, May 29–June 2, 2011, Revised Selected Papers 3. Springer. 2012, pp. 435–446.

[17] Filippo Santambrogio. “{Euclidean, metric, and Wasserstein}gradient flows: an overview”.
In: Bulletin of Mathematical Sciences 7 (2017), pp. 87–154.

[18] Filippo Santambrogio. Optimal transport for applied mathematicians. Vol. 55. 58-63. Springer,
2015.

[19] Anastasiya Tanana. “Comparison of transport map generated by heat flow interpolation
and the optimal transport Brenier map”. In: Communications in Contemporary Mathematics
23.06 (2021), p. 2050025.
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