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Abstract. The fundamental gap conjecture proved by Andrews and Clutterbuck in
2011 provides the sharp lower bound for the difference between the first two Dirichlet
Laplacian eigenvalues in terms of the diameter of a convex set in RN . The question
concerning the rigidity of the inequality, raised by Yau in 1990, was left open. Go-
ing beyond rigidity, our main result strengthens Andrews-Clutterbuck inequality, by
quantifying geometrically the excess of the gap compared to the diameter in terms of
flatness. The proof relies on a localized, variational interpretation of the fundamen-
tal gap, allowing a dimension reduction via the use of convex partitions à la Payne-
Weinberger: the result stems by combining a new sharp result for one dimensional
Schrödinger eigenvalues with measure potentials, with a thorough analysis of the ge-
ometry of the partition into convex cells. As a by-product of our approach, we obtain
a quantitative form of Payne-Weinberger inequality for the first nontrivial Neumann
eigenvalue of a convex set in RN , thus proving, in a stronger version, a conjecture from
2007 by Hang-Wang.

Contents

1. Introduction and statement of the results 1
2. The sharp one-dimensional lower bound 7
3. Weighted equipartitions à la Payne-Weinberger 24
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1. Introduction and statement of the results

Given an open bounded domain Ω ⊂ RN , the difference λ2(Ω) − λ1(Ω) between its
second and first Dirichlet Laplacian eigenvalues is usually referred to as the fundamental
gap of Ω. It has several important implications in different areas of both mathematics
and physics, e.g. heat diffusion, statistical mechanics, quantum field theory, numerical
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analysis. Finding sharp lower bounds for the fundamental gap is a problem whose history
covers several decades, so that we summarize it without any attempt of completeness.
In the pioneering work [54], van den Berg first observed that, for many convex domains

Ω, the gap is bounded from below by 3π2

D2
Ω

, where DΩ is the diameter of Ω. The validity

of such inequality for any convex domain Ω was then conjectured by Yau [55] and by
Ashbaugh-Benguria [4], in the more general case of a Schrödinger operator of the form
−∆+V , being V a convex potential on Ω. This more general formulation of the problem
is meaningful also in the one-dimensional case, which was solved by Lavine [40] see also
[4, 32]. A breakthrough in higher dimensions is due to Singer-Wong-Yau-Yau [50], who

obtained the lower bound π2

4D2
Ω

, later improved into π2

D2
Ω

by Yu-Zhong [58] and Smits

[51]. These lately non-optimal lower bounds rely on the earlier fundamental result by
Brascamp-Lieb [10], which states that the first Dirichlet eigenfunction is log-concave on
any convex domain (different proofs were given by Korevaar [36] and Singer-Wong-Yau-

Yau [50]). Let us also mention the lower bound (log 2)2

D2
Ω

obtained by Bobkov [9, inequality

(2.8)] when the Lebesgue measure in the Rayleigh quotient is replaced by any absolutely
continuous measure with log-concave density. In the early 2000s, the expected optimal

lower bound 3π2

D2
Ω

has been obtained in some particular cases when Ω satisfies specific

geometric assumptions [5, 6, 19]. An excellent survey up to that date is the paper by
Ashbaugh [3], where more related references can be found. Further advances based on
upper bounds for ∇2 log u1 were given in [57, 41]. The conjecture was finally proved in
2011 by Andrews-Clutterbuck in [2] (see also [1]): their groundbreaking new idea is the
following refinement of Brascamp-Lieb result into an improved log-concavity inequality
for the first Dirichlet eigenfunction

(1)
(
∇ log u1(y)−∇ log u1(x)

)
· y − x
‖y − x‖

≤ −2
π

DΩ
tan

( π

DΩ

‖y − x‖
2

)
∀x, y ∈ Ω .

This estimate is obtained by a parabolic approach and, combined with a method to
control the modulus of continuity of solutions to parabolic equations, allows them to

prove the conjectured lower bound 3π2

D2
Ω

. Afterwards, still exploiting the improved-log-

concavity estimate (1), Ni recovered the sharp control of the gap by an elliptic argument
(see also the nice review by Carron in [14]). A further valuable reading, summarizing
also the literature about extensions of the result to manifolds, is the paper [16]. Let
us also mention that the behaviour of the fundamental gap on particular situations of
collapsing domains has been investigated in [42].
The fundamental gap conjecture is then fully solved, except for the saturation of the
equality case. Indeed, the strategies above left unanswered a delicate question, which
was formulated in 1990 by Yau himself, see problem no. 44 in his “Open problems in
geometry” paper [56]: Is the gap inequality always strict in dimension N ≥ 2? In
case of an affirmative answer, since the sharp lower bound is attained on a sequence of
rectangular parallelepipeds converging to a line segment, the following natural question
arises: Is it possible to evaluate the excess of the gap in terms of the flatness of the
convex set? Equivalently, this amounts to investigate the validity of a quantitative form
of the fundamental gap inequality, a problem which differs from the spectral quantitative
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inequalities studied in the past two decades (see [30, Chapter 7]) under several aspects,
including in particular the nonexistence of an optimal domain (see also [46]).
The same questions have been raised for a closely related inequality, namely the lower
bound due to Payne-Weinberger [45] for the first nontrivial Neumann eigenvalue µ1(Ω)
(see also [7, 21, 22]). Since µ1(Ω) can also be seen as the Neumann fundamental gap
[3], there is an analogy with the Dirichlet fundamental gap, although the proof of the
latter is much more challenging for a series of reasons which will be soon understood.
In the Neumann case, the saturation question was asked by Sakai [47] (and settled for
smooth compact Riemannian manifolds with nonnegative Ricci curvature [28, 53]), while
the quantitative question has been formulated by Hang-Wang in 2007 [28], along with

the conjecture of a lower bound of the type π2

D2
Ω

+ c
w2

Ω

D4
Ω

, being wΩ the width of Ω.

Aim of our paper is to answer these questions. The strategy we adopt in the Dirichlet
case allows us to solve also the Neumann one, as a simplified variant.
We start from a variational principle for the Dirichlet fundamental gap which was first
observed by Thompson and Kac [52], and later has been exploited by different au-
thors including Kirsch, Simon, Smits [35, 49, 51]. It consists in viewing the Dirichlet
fundamental gap as a weighted Neumann eigenvalue: setting, for any positive weight
p ∈ L1(Ω),

(2) µ1(Ω, p) := inf
{∫

Ω |∇u|
2p dx∫

Ω u
2p dx

: u ∈ H1
loc(Ω) ∩ L2(Ω, p dx) ,

∫
Ω
up dx = 0

}
,

and denoting by u1, u2 the first two Dirichlet eigenfunctions in L2, it holds

λ2(Ω)− λ1(Ω) = µ1(Ω, u2
1), with eigenfunction u :=

u2

u1
.

Thus the problem of bounding from below the Dirichlet fundamental gap can be seen
from the perspective of Payne-Weinberger (see [45]), the main novelty and crucial diffi-
culty being the presence of the weight u2

1 in their partitioning method. The procedure
consists in decomposing Ω as the union of n mutually disjoint convex cells of equal mea-
sure, obtained by successively “cutting” Ω by hyperplanes parallel to a fixed direction,
on which the eigenfunction u has zero integral mean with respect to the measure u2

1 dx.
In the limit as n → +∞, since the cells tend to become arbitrarily narrow in (N − 1)
orthogonal directions, this operation allows to estimate from below µ1(Ω, u2

1) in terms a
one dimensional eigenvalue of the type µ1(I, p), where I is a line segment contained into
Ω, and p = hu2

1, being h the HN−1 measure of the cell’s section orthogonal to I.
In the light of the above, the challenge of determining the size of the fundamental gap
consists in getting first a sharp estimate for the one dimensional eigenvalue µ1(I, p) for
p = hu2

1, and then an insight about the geometric display of the cells of the partition
in 2 and higher dimensions. We achieve this goal by taking into account fine properties
of Dirichlet eigenfunctions: loosely speaking, the sharp one dimensional estimate is
related to the improved log-concavity of the first eigenfunction, and allows to recover
the optimal lower bound in terms of the diameter, whereas the analysis of the partition
strongly interplays between its polygonal structure, the geometry of the cells, and the
localization of the second eigenfunction, ultimately providing an extra term depending
on the width.
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Our main result reads:

Theorem 1. Let N ≥ 2. There exists a dimensional constant c > 0 such that, for every
open bounded convex domain Ω in RN with diameter DΩ and width wΩ, we have

(3) λ2(Ω)− λ1(Ω) ≥ 3π2

D2
Ω

+ c
w6

Ω

D8
Ω

.

In order to deal with the Neumann gap, we have to replace the weight u2
1 by a constant.

Then, in the same vein of Theorem 1, we obtain the following result. It encompasses
Hang-Wang conjecture, as it shows that their expected lower bound holds in any space
dimension with the second largest John semi-axis in place of the width. Recall that, up
to a translation and rotation, for any convex domain Ω ⊂ RN there exists an ellipsoid

E = {
∑N

i=1
x2
i

a2
i
< 1}, called John ellipsoid, such that E ⊆ Ω ⊆ NE (see e.g. [20]).

Theorem 2. Let N ≥ 2. There exists a dimensional constant c > 0 such that, for every
open bounded convex domain Ω in RN with diameter DΩ and John ellipsoid of semi-axes
a1 ≥ · · · ≥ aN , we have

(4) µ1(Ω) ≥ π2

D2
Ω

+ c
a2

2

D4
Ω

.

Remark 3. In our proofs of Theorems 1 and 2 there is no evident loss of sharpness at any
step. This leads to the power 6 for the width in (3) and to the power 2 for the second
dimension of the John ellipsoid in (4). In the latter case, the power 2 is optimal: taking
Ωε = (0, d)× (0, ε)N−1, the second John axis of Ωε equals ε, and we have

µ1(Ωε) =
π2

d2
=

π2

D2
Ωε

+
π2

D4
Ωε

(N − 1)ε2 + o(ε2) .

On the other hand, in the former case, we can neither prove, nor disprove, the optimality
of the power 6. The loss of sharpness in the Dirichlet case, if true, might be related to a
possibly suboptimal knowledge of the geometry of the first Dirichlet eigenfunction near
the boundary and of its localization (see [8, 24, 25, 33]). In a somewhat similar fashion,
the fact that (non) localization estimates are more controllable for the first nontrivial
Neumann eigenfunction than for the second Dirichlet eigenfunction is the reason why,
in the Neumann case, the width (which is of the same order as the lowest John-semiaxis
aN ) can be successfully replaced by the second John semi-axis a2.

Remark 4. An explicit estimate of the constant c appearing in (4), without any attempt
of optimality, might be rather easily given just by tracking it in all steps of the proof. A
similar target for the constant c in (3) seems to be more delicate.

Remark 5. We point out that Theorem 1 does not hold unaltered for the Schrödinger
equation with a convex potential V

u ∈ H1
0 (Ω), −∆u+ V u = λk(Ω, V )u in Ω .

Actually, while the gap inequality λ2(Ω, V )− λ1(Ω, V ) ≥ 3π2

D2
Ω

is still true [2], its quanti-

tative form (3) cannot hold keeping the same positive constant c independent of Ω and
V . This can be easily seen by looking at the following example in dimension N = 2. Let



5

Ω = {(x, y) ∈ R2 : |x|+ |y| < 1} and Vε,δ(x, y) = 1
δ

(
|y|−ε

)+
. We write the inequality (3)

and we first pass to the limit as δ → 0+ at fixed ε. Since λk(Ω, Vε,δ) → λk(Ωε), where

Ωε := {Ω ∩ {(x, y) : |y| < ε}, we obtain λ2(Ωε) − λ1(Ωε) ≥ 3π2

4 + c
32 . Then, by using

the monotonicty of the eigenvalues with respect to inclusions and passing to the limit as
ε→ 0+, we obtain

3π2

4
+

c

32
≤ λ2(Ωε)− λ1(Ωε) ≤

4π2

(2− 2ε)2
+
π2

4ε2
−
(π2

4
+
π2

4ε2

)
→ 3π2

4
,

which leads to c = 0.

Strategy of the proof. We give a short overview of the proof of Theorem 1. We
refer to Section 6 for the specific modifications required for the proof of Theorem 2,
including in particular a geometrically explicit L∞ estimate for Neumann eigenfunctions,
see Proposition 38. Our proof is developed along three main lines described below.

I. A sharp 1D lower bound stemming from the improved log-concavity of u1. As a first
delicate job we have to estimate from below a weigthed Neumann eigenvalue of the type
µ1(I, p), where I is a line segment contained into Ω, and p = hu2

1, being h the HN−1

measure of the cell’s section orthogonal to I. To that aim, special attention must be
paid to the concavity features of the weight p.
A first basic feature is that, from the log-concavity of both u1 and h, p itself is log-

concave. This yields thatmp := 3
4

(p′
p

)2−1
2
p′′

p is a positive measure and that the inequality

µ1(I, p) ≥ λ1(I,mp) holds (see [45]), being, for any positive measure q,

λ1(I, q) := inf
{∫

I |u
′|2dx+

∫
I |u|

2 dq∫
I u

2 dx
: u ∈ H1

0 (I) ∩ L2(I, q)
}
.

But the more subtle key feature coming from the factor u2
1 in the weight p, is that p itself

satisfies the improved log-concavity estimate (1). Hence the function ψp := −1
2(log p)′

belongs to the following class of functions, which are thought for convenience as functions
with extended real values defined on the fixed interval Iπ = (−π

2 ,
π
2 ):

A(Iπ) :=
{
ψ increasing, ψ(y)− ψ(x) ≥ 2 tan

(y − x
2

)
if x < y in dom(ψ)

}
.

Since the measure mp can be written as mp = ψ′p + ψ2
p, we arrive at the following novel

1D problem, which encodes in the class of competitors the log-concavity modulus of u1:

inf
{
λ1(Iπ, ψ

′ + ψ2) : ψ ∈ A(Iπ)
}
.

Surprisingly, the above infimum can not only be estimated, but exactly computed: in
Theorem 8 we prove that it equals 3, and it is attained uniquely at the function ψ(x) =
tan(x) (which corresponds to the weight p = φ2

1, being φ1(x) = cosx the first Dirichlet

eigenfunction of Iπ). A noticeable feature is that the optimal function ψ = tan(x) does
not saturate pointwise the equality sign in the definition of A(Iπ). The key of the proof
is a new sophisticated, non standard and ad-hoc procedure of stratified rearrangement
(see Definifion 13) which allows to handle the modulus of concavity constraint imposed
on the functions in the admissible class A(Iπ).
The value 3 given by Theorem 8 is clearly the good one in order to recover Andrews-
Clutterbuck gap inequality for a convex domain Ω, taken for convenience of diameter
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π. But, looking farther, Theorem 8 also paves the way towards the estimate of the gap
excess. Indeed, it admits two distinct refinements, which are stated in Theorem 21,
holding when the weight p = hu2

1 enjoys some additional properties.
The first refinement has the target of handling cells of “small” diameter: for these cells
the additional property of the weight is that the function ψ = −1

2(log p)′ in A(Iπ) has
finiteness domain of length d < π. This leads to an improved lower bound of the following
type, for an absolute constant C:

(5) λ1(Iπ, ψ
′ + ψ2) ≥ 3 + C(π − d)3 .

Here the power 3 is obtained via a perturbation argument. Within the class A(Iπ) the
power 3 is sharp: this is precisely the point leading to the power 6 of the width in
Theorem 1.
The second refinement has the target of handling cells of “large” diameter. A careful
analysis of the polygonal structure of the partition will reveal that, in 2D, it is enough
to analyse only such cells for which the height h in orthogonal direction to a diameter
is an affine function away from the endpoints. Then, denoting by hmin and hmax the
extrema of the affine function h, we obtain an improved lower bound of the following
type, for an absolute constant K:

(6) λ1(Id, ψ
′ + ψ2) ≥ 3 +K

(
1− hmin

hmax

)2
.

II. Localized version and rigidity of Andrews-Clutterbuck inequality. Exploiting the one-
dimensional estimate (5), we prove a new “localized version” of Andrews-Clutterbuck
inequality, namely a lower bound for µ1(ω, p), where as above p = hu2

1, being u1 the
first eigenfunction of Ω and h a power-concave function, but now ω is any convex subset
of Ω, possibly of lower dimension (the Andrews-Clutterbuck inequality is recovered for
ω = Ω and p = u1). Denoting by d and D the diameters of ω and Ω, the result reads
(see Proposition 29)

(7) µ1(ω, p) ≥ 3π2

D2
+ C

(D − d)3

D5
.

As a consequence, in Theorem 31 we derive the rigidity of Andrews-Clutterbuck in-

equality. The idea is the following: if by contradiction λ2(Ω) − λ1(Ω) = 3π2

D2 , taking a
partition of Ω into n mutually disjoint convex sets Ωi having the mean value property
µ1(Ω, u2

1) ≥ 1
n

∑n
i=1 µ1(Ωi, u

2
1), we get

3π2

D2
= µ1(Ω, u2

1) ≥ 1

n

n∑
i=1

µ1(Ωi, u
2
1) ≥ 3π2

D2
+ C

n∑
i=1

(D −Di)
3

D5
,

where Di denotes the diameter of Ωi. This implies that all the Di’s are equal to D, which
yields a contradiction: for N = 2, the contradiction comes from a geometric argument,
because the equality of all the diameters forces Ω to be a circular sector, for N ≥ 3 the
same argument applies to a suitable two-dimensional section of Ω.
We stress that, in order to gain the above mentioned mean value property of the cells,
we need to work with a new kind of partitions, which are distinct from the classi-
cal ones by Payne-Weinberger not only for the presence of the weight u2

1, but also for
the equipartition request: the measure equipartition condition |Ωi| = 1

n |Ω| is replaced
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by the L2-equipartition condition
∫

Ωi
u2u2

1 =
∫

Ωi
u2

2 = 1
n . The use of such kind of

L2-equipartitions allows to prove the quantitative inequality by individuating a good
proportion of cells for which some particular geometric property is fulfilled. Another
relevant observation is that, thanks to the rigidity result, we are reduced to work with
convex sets having arbitrarily small width.

III. A play of cells based on the assessment of their geometry. For N = 2, we consider
a weighted L2 equipartition of Ω of the kind described above, enjoying the mean value
property µ1(Ω, u2

1) ≥ 1
n

∑n
i=1 µ1(Ωi, u

2
1). This ensures that the required estimate of the

excess is fulfilled as soon as, for a fixed proportion of cells, the eigenvalue µ1(Ωi, u
2
1) is

sufficiently large with respect to 3π2

D2
Ω

, with a controlled increment. So we distinguish a

list of binary crossroads in cascade, depending on different geometric features holding
for a fixed proportion of cells. The main distinction is made by looking at the size
of the cell’s diameter: if most of the cells have “small” diameter (in the sense that the
difference between the diameter of Ω and the diameter of the cell is controlled from below
by the width), applying to such cells the localized inequality (7) we get the estimate of
the excess. Otherwise, if most of the cells have “large” diameter, assuming that the
quantitative inequality does not occur, a contradiction is obtained through a geometric
argument which can be intuitively sketched as follows. Since we are dealing with the
situation in which most cells are thin and long, they can be vertically piled over a
diameter of Ω, and they have a profile function which is affine away from the endpoints
(if this was not the case, the quantitative inequality would hold as well, by analyzing the
position of vertices in the partition and the consequent presence of other cells with small
diameter). Then, the one-dimensional refined inequality (6) applies to such cells, i.e., to
the one dimensional problem set on their diameter and, if the extra term is small, we get
the geometric information that the cells have to be “almost” rectangular (see Figure 4).
At this point, we obtain a uniform control on the height of each cell, related to the non
localization of the second eigenfunction (see Remark 33). This leads to the conclusion
that the pile of the cells is, in a sense, “too high”, because the actual diameter would be
strictly larger than DΩ, finally yielding a contradiction.
For N ≥ 3, the result is obtained by a partial slicing procedure, reducing ourselves to
a two-dimensional analysis involving a modified weight, which can be carried over by
similar arguments as the ones used to treat the case N = 2.

The paper is organized as follows. Section 2 is devoted to the analysis of the 1D-
eigenvalue problem associated with the measure potentials issued from restrictions of
first eigenfunctions to line segments contained into a convex set. In Section 3 we intro-
duce the modified Payne-Weinberger partitions and in Section 4 we prove the localized
version of the Andrews-Clutterbuck inequality and establish the rigidity property of
the gap inequality. Section 5 contains the proof of Theorem 1 while in Section 6 we
prove Theorem 2. In the Appendix we collect some useful results about eigenfunctions
associated with weighted Neumann eigenvalues.

2. The sharp one-dimensional lower bound

Let I be a one-dimensional open bounded interval. Given a positive weight p in L1(I)
and a nonnegative Borel measure q possibly taking the value +∞, consider the following
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weighted Neumann eigenvalue and Dirichlet eigenvalue with potential:

µ1(I, p) := inf
{∫

I |v
′|2p dx∫

I v
2p dx

: v ∈ H1
loc(I) ∩ L2(I, p dx) ,

∫
I
vp = 0

}

λ1(I, q) := inf
{∫

I |v
′|2dx+

∫
I |v|

2 dq∫
I v

2 dx
: v ∈ H1

0 (I) ∩ L2(I, q)
}
.

Let us mention that eigenvalues associated with potentials which are measures, such as
λ1(I, q), have been extensively studied in the context of shape optimization in dimension
N ≥ 2, see for instance [12, Section 4.3].
If p is log-concave, we can introduce the positive measure mp defined by

(8) mp :=
[3

4

(p′
p

)2
− 1

2

p′′

p

]
= ψ′p + ψ2

p , with ψp := −(log p
1
2 )′ .

Here ψ′p = [1
2

(
p′

p

)2
− 1

2
p′′

p ] is the distributional derivative of the non-decreasing function

ψp, which is a nonnegative measure thanks to the log-concavity of p, while ψ2
p denotes

with a slight abuse of notation the nonnegative measure ψ2
p dx.

For simplicity, also in the sequel we denote measures which are absolutely continuous
simply by writing their density with respect to the Lebesgue measure.

Lemma 6. For any positive log-concave weight p ∈ L1(I), if mp is given by (8) it holds

µ1(I, p) ≥ λ1(I,mp) .

Proof. Under the additional assumptions p ∈ W 1,∞(I) and infx∈I p(x) > 0, an eigen-
function v for µ1(Iπ, p) exists in H2(I) and satisfies{

−(pv′)′ = µ1(I, p)pv in I

pv′(−π
2 ) = pv′(π2 ) = 0 .

Then the function w := p1/2v′ belongs to H1
0 (I) and solves−w′′ +

[
3
4

(
p′

p

)2
− 1

2
p′′

p

]
w = µ1(Iπ, p)w in I

w(−π
2 ) = w(π2 ) = 0 ,

yielding the inequality µ1(I, p) ≥ λ1(I,mp).
Assume now p ∈ L1(I) is positive and log-concave. Letting Iε be intervals compactly
included in I and increasingly converging to I, we have infx∈Iε p(x) > 0 and p|Iε ∈
W 1,∞(I). Consequently, the Neumann eigenvalue problem µ1(Iε, p) is well-posed and
the inequality µ1(Iε, p) ≥ λ1(Iε,mp) is satisfied. Then we obtain that the same inequality
holds true for the interval I by observing that

λ1(I,mp) = lim
ε→0

λ1(Iε,mp) and µ1(I, p) ≥ lim sup
ε→0

µ1(Iε, p).

Indeed, the first assertion follows from the inclusion Iε ⊆ I and the fact that Iε is in-
creasingly converging to I. The second assertion follows from the monotone convergence
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theorem, since, for any admissible test function for µ1(I, p), its restriction to Iε, cor-
rected by a small constant so to make it orthogonal to p in L2(Iε), becomes an admissible
test function for µ1(Iε, p). �

By Lemma 6, we are led to deal with Dirichlet eigenvalues of the type λ1(I,mp), with
p = hu2

1 and mp given by (8). The corresponding function ψp has the form

ψp = −(log u1)′ − 1

2
(log h)′ .

The heart of the matter is that, by the improved log-concavity estimate (1), the function
ψp turns out to belong to the class of functions defined hereafter in (9). To formulate
the problem, without any loss of generality we work on the interval

Iπ :=
(
− π

2
,
π

2

)
,

and we introduce the following class of functions defined on Iπ with values in R =
R ∪ {±∞} and finiteness domain dom(ψ)

(9) A(Iπ) :=
{
ψ increasing, ψ(y)− ψ(x) ≥ 2 tan

(y − x
2

)
if x < y in dom(ψ)

}
.

For functions ψ ∈ A(Iπ), we tacitly extend the measures ψ2 and ψ′ to +∞ in Iπ\dom(ψ).
Then our target can be precisely expressed as the study of the minimization problem

(10) min
{
λ1(Iπ, q) : q = ψ′ + ψ2 for some ψ ∈ A(Iπ)

}
,

The remaining of this section is entirely devoted to that goal. It is divided in two parts:

– in the first part we give the sharp lower bound for λ1(Iπ, ψ
′ + ψ2) for ψ ∈ A(Iπ),

namely we fully solve the minimisation problem (10), see Theorem 8;

– in the second part, for ψ ∈ A(Iπ) with dom(ψ) = (−d
2 ,

d
2) =: Id, being d < π, we give

some lower bounds for λ1(Id, ψ
′+ψ2) with extra terms involving the difference (π−d), see

Theorem 21. Here and in the sequel, for d < π, if m is a nonnegative Borel measure on
Id, we identify the eigenvalue λ1(Id,m) with λ1(Iπ, m̃), where m̃ is the measure obtained
extending m to +∞ on Iπ \ Id.
Let us start with an elementary observation:

Remark 7. The function ψ(x) = tanx belongs to A(Iπ). The corresponding weight
q(x) = 1 + 2 tan2x is equal to mp for p = φ2

1, being φ1(x) = cosx the first Dirichlet
eigenvalue on Iπ, and we have the following equalities for eigenvalues, all of them with
eigenfunction cos2x:

λ1(Iπ, 2ψ
2
) = λ1(Iπ, 2 tan2x) = 2

λ1(Iπ, 2ψ
′
) = λ1(Iπ, 2(1 + tan2x)) = 4

λ1(Iπ, ψ
′
+ ψ

2
) = λ1(Iπ, 1 + 2 tan2x) = 3 .

It is somehow natural to wonder whether the weight q associated with the one-dimensional
eigenfunction φ1 is optimal for the minimization problem (10). Our result below states
that this exactly is the case. In addition, q is the unique solution.
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Theorem 8. Let q = ψ′ + ψ2, with ψ ∈ A(Iπ). Then

(11) λ1(Iπ, q) ≥ 3 ,

with equality if and only if q(x) = 1 + 2 tan2x (and in this case an eigenfunction is
cos2x).

The proof of Theorem 8 is built upon the following two independent propositions.

Proposition 9. For every ψ ∈ A(Iπ), it holds

(12) λ1(Iπ, 2ψ
2) ≥ 2 ,

with equality if and only if ψ(x) = tanx (and in this case an eigenfunction is cos2x).

Proposition 10. For every ψ ∈ A(Iπ), it holds

(13) λ1(Iπ, 2ψ
′) ≥ 4 .

In particular, equality occurs if ψ(x) = tanx (and in this case an eigenfunction is cos2x).

Let us first show how the above propositions imply Theorem 8, and then turn back to
their proof.

Proof of Theorem 8. It is easy to check that the map q 7→ λ1(Iπ, q) is concave. Indeed,
for every pair of weights q1, q2, every t ∈ [0, 1], and every v ∈ H1

0 (Iπ) we have∫
Iπ

(v′)2 + v2 ((1− t)dq1 + tdq2)∫
Iπ
u2

= (1− t)
∫
Iπ

(v′)2 + v2 dq1∫
Iπ
v2

+ t

∫
Iπ

(v′)2 + v2 dq2∫
Iπ
v2

≥ (1− t)λ1(Iπ, q1) + tλ1(Iπ, q2) .

Therefore, for every ψ ∈ A(Iπ), we have

(14) λ1(Iπ, ψ
′ + ψ2) ≥ λ1(Iπ, 2ψ

′) + λ1(Iπ, 2ψ
2)

2
.

Then the inequality (11) follows immediately from Proposition 9 and Proposition 10.
Concerning the equality case, when q(x) = 1 + 2 tan2x, we have λ1(Iπ, q) = 3, with
eigenfunction cos2x (cf. Remark 7). Viceversa, if λ1(Iπ, q) = 3, for some q = ψ′+ψ2 with
ψ ∈ A(Iπ), it follows from the inequalities (12), (13), and (14), that λ1(Iπ, 2ψ

′) = 4 and
λ1(Iπ, 2ψ

2) = 2. By the last assertion in Proposition 9, we conclude that ψ(x) = tanx,
and hence q(x) = 1 + 2 tan2 x. �

For later use, we state below a rigidity result for the Neumann eigenvalue µ1(Iπ, p),
which is a straightforward by-product of Theorem 8.

Corollary 11. If µ1(Iπ, p) = 3 for a positive log-concave weight p such that ψp ∈ A(Iπ),
we have ψp(x) = tanx, and p(x) = k cos2x for some positive constant k.

Proof. If µ1(Iπ, p) = 3, by Lemma 6 and Proposition 10, we have

3 = µ1(Iπ, p) ≥ λ1(Iπ, ψ
′
p+ψ2

p) ≥
1

2

(
λ1(Iπ, 2ψ

′
p) +λ1(Iπ, 2ψ

2
p)
)
≥ 2 +

1

2
λ1(Iπ, 2ψ

2
p)
)
≥ 3 .

We infer that λ1(Iπ, 2ψ
2
p) = 2. Therefore, by Proposition 9 we conclude that ψp(x) =

tanx, and hence p(x) = k cos2x for some positive constant k. �
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We now provide the proofs of Propositions 9 and 10.

Proof of Proposition 9. We first prove the following claim: for every function ψ ∈ A(Iπ),

there exists another function ψ̃ ∈ A(Iπ) which changes sign once in Iπ, and satisfies

λ1(Iπ, ψ
2) ≥ λ1(Iπ, ψ̃

2). We search for ψ̃ in the subclass of A(Iπ) given by functions of
the type ψ+ c, for c ∈ R. If v denotes an eigenfunction for λ1(Iπ, ψ

2), normalized in L2,
we have

λ1(Iπ, ψ
2) =

∫
Iπ

|v′|2dx+

∫
Iπ

ψ2|v|2 dx ≥ inf
c∈R

∫
Iπ

|v′|2dx+

∫
Iπ

(ψ + c)2|v|2 dx .

By differentiating with respect to c, we see that the above infimum is attained at c̃ =

−
∫
Iπ
ψ|v|2. The function ψ̃ := ψ + c̃ satisfies

∫
Iπ
ψ̃|v|2 = 0, so that it changes sign at

least one time, and exactly one time, because ψ̃ ∈ A(Iπ), so that it is strictly increasing.
Moreover,

λ1(Iπ, ψ
2) ≥

∫
Iπ

|v′|2dx+

∫
Iπ

(ψ + c̃)2|v|2 dx ≥ λ1(Iπ, ψ̃) .

In view of the claim just proved, it is not restrictive to prove the inequality (12) under
the assumption that the function ψ changes sign exactly one time in Iπ.
Consider the function |ψ|. Thanks to the assumption that ψ has exactly one zero x0 ∈ Iπ,
we know that the function |ψ| vanishes at x0, is strictly decreasing for x ≤ x0, and strictly
increasing for x ≥ x0. So, for almost every t > 0, the level set {|ψ| < t} is an interval
(containing x0). We rearrange the function |ψ| into the even function |ψ|∗ defined by

{|ψ|∗ < t} := {|ψ| < t}∗ ∀t ∈ (0, ‖ψ‖∞] ,

where {|ψ| < t}∗ denotes the translation of the interval {|ψ| < t} which sends its mid-
point to the origin. (Notice that this is a kind of “symmetric increasing rearrangement”,
which is the analogue of the classical symmetric decreasing rearrangement, just replacing

super-levels with sub-levels). By construction, for every x ∈
(
0, |dom(ψ)|

2

)
, we have

|ψ|∗(x) = |ψ|(bx) = |ψ|(ax) x =
bx − ax

2
, with ax < x0 < bx and ψ(ax) = −ψ(bx) .

Thus the assumption ψ ∈ A(Iπ) be expressed as a pointwise inequality for |ψ|∗:

(15) |ψ|∗(x) =
1

2

(
ψ(bx)− ψ(ax)

)
≥ tan

(bx − ax
2

)
= tanx ∀x ∈

(
0,
|dom(ψ)|

2

)
.

Let now v ∈ H1
0 (Iπ). Denoting by v∗ its classical symmetric decreasing rearrangement,

and by dom(ψ)∗ the interval of length |dom(ψ)| centred at the origin, it holds

(16)

∫
dom(ψ)

|v′|2 ≥
∫

dom(ψ)∗
|(v∗)′|2 and

∫
dom(ψ)

ψ2|v|2 ≥
∫

dom(ψ)∗
|ψ|2∗|v∗|2 .

Indeed, the first inequality is the classical Pólya-Szegö inequality for the decreasing re-
arrangement (see e.g. [34, Section II.4]), while the second one follows from the classical
Hardy-Littlewood inequality (see e.g. [29, Chapter 10]), the sign of the inequality be-
ing reversed because for one of the two involved functions (|ψ|) we take the increasing
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rearrangement |ψ|∗ defined above in place of |ψ|∗. Then, we have

(17)

∫
dom(ψ)|v

′|2+2ψ2v2∫
dom(ψ)|v|2

≥

∫
dom(ψ)∗|(v

∗)′|2+2|ψ|2∗|v∗|2∫
dom(ψ)∗|v∗|2

≥
∫
Iπ
|(v∗)′|2+2 tan2x|v∗|2∫

Iπ
|v∗|2

≥ 2 ,

where in the second and third inequality we have used respectively the estimate (15)
and Remark 7.
Concerning the equality case, if ψ(x) = tanx, we have λ1(Iπ, 2ψ

2) = 2, with eigenfunc-
tion cos2x (cf. Remark 7). Viceversa, assume that the equality λ1(Iπ, 2ψ

2) = 2 holds
for some function ψ. Then, if v is an eigenfunction for λ1(Iπ, 2ψ

2), all the inequalities
in (16) and (17) must hold with equality sign. From the fact that the last inequality in
(17) holds with equality sign, we infer that v∗ = k cos2 x.
In particular, v∗ does not have critical level sets of positive Lebesgue measure. Then
the fact that the first inequality in (16) holds with equality sign implies that v = v∗ [11,
Theorem 1.1] (see also [27, Theorem 4.1]).
In turn, since the second inequality in (17) holds with equality sign, we infer that |ψ|2∗ =
tan2x a.e. By the monotonicity of ψ, we have ψ(x) = tanx for every x ∈ R. �

We now turn to the proof of Proposition 10, which requires some preliminaries. Given
a function ψ ∈ A(Iπ), in order to estimate from below λ1(Iπ, 2ψ

′), we need to find lower
bounds for integrals of the following type, for v ∈ H1

0 (Iπ):∫
Iπ

v2 dνψ′ .

Here and in the sequel, we use the notation dνψ′ when writing an integral with respect
to the measure ψ′. We have:

(18)

∫
Iπ

v2 dνψ′ =

∫
Iπ

∫ +∞

0
χ{v2>s} ds dνψ′ =

∫ +∞

0

∫
Iπ

χ{v2>s} dνψ′ ds

=

∫ +∞

0
νψ′
(
{v >

√
s}
)
ds =

∫ +∞

0
νψ′
(
{v > t}

)
2t dt .

On the other hand, the constraint ψ ∈ A(Iπ) can be equivalently expressed as the
following inequality holding for all intervals [a, b] ⊂ Iπ ∩ dom(ψ):

(19) νψ′([a, b]) ≥ 2 tan
(b− a

2

)
=

∫ b

a

(
1 + tan2

(
x− a+ b

2

))
dx .

Condition (19) cannot be applied directly to estimate the integral (18), because not
all level sets of u are intervals. Thus we are going to exploit condition (19) in a more
subtle way, passing through the introduction of new notions of stratified rearrangement
and stratified potential; they are obtained by finitely many applications of elementary
constructions that we call respectively blocked rearrangement and blocked potential.
Below we introduce these definitions on a generic bounded open interval I, for v in the
space X (I) of functions which are continuous on the closure of I, attain their global
minimum at both the endpoints of I, and have finitely many local minima in I, each one
attained at a single point. (Notice that H1

0 (I) ∩ X (I) is a dense subspace of H1
0 (I)).

We denote by [v∗, I] the symmetric decreasing rearrangement of v with respect to the
mid-point xI of I.
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Definition 12 (blocked rearrangement). Let v ∈ X (I). The blocked rearrangement of

v in I is the function [v[, I] defined on I as follows (see Figure 1):

(i) If v does not have any local minimum in I,

[v[, I] := [v∗, I] .

(ii) If v has some local minimum in I, letting ` be the smallest level of local minimum
(so that {v > `} is the union of two consecutive open intervals), and denoting

respectively by xI and x` the midpoints of I and of the closed interval {v > `} ,

[v[, I](x) :=

{
[v∗, I](x) if [v∗, I](x) ≤ `
v(x− x` + xI) otherwise

 

 

Figure 1. The blocked rearrangement given by Definition 12: case (i)
on the left, case (ii) on the right (the graph of v is in dashed line, the

graph of [v[, I] in continuous line).

Definition 13 (stratified rearrangement). Let v ∈ X (I). Its stratified rearrangement is
the function ṽ defined on I via a finite number of blocked rearrangements as follows:

– Set I1 := I, and v1 := [v[, I1]. Two cases may occur:

(i) If v does not have any local minimum in I1, define ṽ := v1 in the whole
interval I1, and the definition stops here.

(ii) If v has some local minimum in I1, letting `1 be the smallest value of local
minimum for v in I1, define ṽ := v1 only on the set [v∗, I1] ≤ `1, and for the
definition on its complement in I1 go to the next step.

– Set I1,j the two consecutive open intervals such that
{
v1 > `1

}
= I1,1∪ I1,2, and

v1,j := [v[1, I
1,j ], for j = 1, 2. For a fixed j ∈ {1, 2}, two cases may occur:

(i) If v1 does not have any local minimum in I1,j , define ṽ := v1,j in the whole
interval I1,j , and the definition on the interval I1,j stops here.

(ii) If v1 has some local minimum in I1,j , letting `2 be the smallest value of
local minimum for v1 in I1,j , define ṽ := v1,j only on the set [v∗1, I

1,j ] ≤ `2, and
for the definition on its complement in I1,j go to the next step.



14

– Set I1,j,1 and I1,j,2 the two consecutive open intervals such that
{
v1,j > `2

}
=

I1,j,1∪ I1,j,2, and proceed as in the previous steps. After finitely many steps, the
procedure stops because by assumption the number of local minima is finite.

Remark 14. The open intervals constructed in Definition 13 can be labeled by a family
F of multi-indices α = (α1, . . . , αk), with α1 = 1 and αi ∈ {1, 2} for i ≥ 2, and k
less than or equal to the number of levels of local minimum of v in I. We denote by
Γ the subfamily of F of multi-indices α such that Iα contains a local minimum of ṽ.
Equivalently, we set

(20) Γ :=
{
α ∈ F such that (α, 1) and (α, 2) belong to F

}
.

Then by construction the stratified rearrangement ṽ enjoys the following symmetry prop-
erty with respect to the mid-point xα of each interval Iα: if α 6∈ Γ, ṽ is symmetric with
respect to xα on the whole interval Iα; if α ∈ Γ, ṽ is symmetric with respect to xα just
on Iα \ (Iα,1 ∪ Iα,2).

Definition 15 (blocked potential). Let v ∈ X (I), and assume |I| ≤ π. The blocked
potential of u on I is defined as the function 1 + tan2(x − xI), with definition domain

equal to the subset of I where [v[, I] = [v∗, I].

Definition 16 (stratified potential). Let v ∈ X (I), and assume |I| ≤ π. Let Iα be
the family of open intervals constructed in Definition 13, labeled as in Remark 14. The
stratified potential of v is the function V defined on I by glueing all the blocked potentials
of v on the intervals Iα. Equivalently, for any x ∈ I, pick the longest multiindex α such
that x ∈ Iα, and set

V (x) = 1 + tan2
(x− xα

2

)
, xα := midpoint of Iα.

Remark 17. With the notation introduced in Remark 14, the stratified potential V can
be identified as follows: if α 6∈ Γ, then V (x) = 1 + tan2(x − xα) on the whole interval
Iα; if α ∈ Γ, then V (x) = 1 + tan2(x− xα) just on Iα \ (Iα,1 ∪ Iα,2).

Example 18. Let v ∈ X (I) be the function whose graph is represented in Figure 2. Since
the intervals I1 and I1,2 contain a local minimum, while the intervals I1,1, I1,2,1, I1,2,2

do not, for the stratified rearrangement ṽ and the stratified potential V we have that:

– on I1 \ (I1,1 ∪ I1,2), ṽ is symmetric with respect to x1 and V (x) = 1 + tan2
(
x−x1

2

)
;

– on I1,1, ṽ is symmetric with respect to x1,1 and V (x) = 1 + tan2
(
x−x1,1

2

)
;

– on I1,2\(I1,2,1∪I1,2,2), ṽ is symmetric with respect to x1,2 and V (x) = 1+tan2
(
x−x1,2

2

)
;

– on I1,2,1, ṽ is symmetric with respect to x1,2,1 and V (x) = 1 + tan2
(
x−x1,2,1

2

)
;

– on I1,2,2, ṽ is symmetric with respect to x1,2,2 and V (x) = 1 + tan2
(
x−x1,2,2

2

)
.

The next two lemmas, relying on the definitions of stratified rearrangement and poten-
tials, provide the intermediate results needed for the proof of Proposition 10.
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I1,2,1 I1,2,2

I1,1 I1,2

I1

Figure 2. The stratified rearrangement given by Definition 13 (the
graph of v is in dashed line, the graph of ṽ in continuous line).

Lemma 19. Let ψ ∈ A(Iπ) and let v ∈ H1
0 (Iπ)∩X (Iπ). Denoting by ṽ and V respectively

the stratified rearrangement and potential associated with v, it holds

(21)

∫
Iπ

v2(x) dνψ′ ≥
∫
Iπ

V (x)ṽ2(x) dx .

Proof. If dom(ψ) is strictly contained into Iπ and v 6∈ H1
0 (dom(ψ)), then the l.h.s. of (21)

is +∞, and the inequality is trivially true. So we only have to consider the situation
when v ∈ H1

0 (dom(ψ)). Denoting by νψ′ and νV the absolutely continuous measures
with densities ψ′ and V , and recalling (18), we have∫

Iπ

v2(x) dνψ′ −
∫
Iπ

V (x)ṽ2(x) dx =

∫ ‖v‖∞
0

2t
[
νψ′
(
{v > t}

)
− νV ({ṽ > t}

)]
dt

Let us distinguish two cases, according to whether the family of multi-indices Γ intro-
duced in (20) is empty or not.
When Γ = ∅ (or equivalently, v does not have any local minimum in Iπ), the set {v > t}
is an interval for every t ∈ (0, ‖u‖∞). Then (21) is satisfied because, by (19), it holds

νψ′
(
{v > t}

)
≥ 2 tan

( |{v > t}|
2

)
= 2 tan

( |{ṽ > t}|
2

)
= νV

(
{ṽ > t}

)
.

When Γ 6= ∅, not all level sets {v > t} are intervals. Therefore, in order to exploit the
estimate (19), we decompose the set {v > t} (and accordingly {ṽ > t}) as a finite union

of disjoint intervals Jn(t) (and of their translations J̃n(t))

{v > t} =

N(t)⋃
n=1

Jn(t) , {ṽ > t} =

N(t)⋃
n=1

J̃n(t) .
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We focus attention on a fixed interval J̃n(t). Since we are working under the assumption

that Γ 6= ∅, we have that J̃n(t) is contained into some interval Iα with α ∈ Γ. Among

these intervals Iα containing J̃n(t), we choose the one with multiindex α = α(n, t) having
the maximum number of components.
By applying the estimate (19) to the interval Jn(t), we obtain

(22) νψ′
(
Jn(t)

)
≥ 2 tan

( |Jn(t)|
2

)
= 2 tan

( |J̃n(t)|
2

)
,

We observe that

2 tan
( |J̃n(t)|

2

)
= 2 tan

( |J̃n(t)|
2

)
− 2 tan

( |Iα,1 ∪ Iα,2|
2

)
+ 2 tan

( |Iα,1 ∪ Iα,2|
2

)
= 2 tan

( |J̃n(t)|
2

)
− 2 tan

( |Iα,1 ∪ Iα,2|
2

)
+ 2 tan

( |Iα,1|
2

)
+ 2 tan

( |Iα,2|
2

)
+Rα ,

where

Rα := 2 tan
( |Iα,1 ∪ Iα,2|

2

)
− 2 tan

( |Iα,1|
2

)
− 2 tan

( |Iα,2|
2

)
≥ 0 ,

the last inequality being due to the super-additivity of the tangent function on (0, π2 ).
In case the multiindices (α, 1) and (α, 2) do not belong to Γ, we have

(23)

νV
(
J̃n(t)

)
= νV

(
J̃n(t) \ (Iα,1 ∪ Iα,2)

)
+ νV (Iα,1) + νV (Iα,2)

= 2
[

tan
( |J̃n(t)|

2

)
− tan

( |Iα,1 ∪ Iα,2|
2

)]
+ 2 tan

( |Iα,1|
2

)
+ 2 tan

( |Iα,2|
2

)
.

From (22) and (23) we obtain the estimate

νψ′
(
Jn(t)

)
− νV

(
J̃n(t)

)
≥ Rα .

Otherwise, if one or both the multiindices (α, 1) and (α, 2) belong to Γ, the left hand

side of (23) does not correspond to the measure νV
(
J̃n(t)

)
. Assume for definiteness that

(α, 1) ∈ Γ and (α, 2) 6∈ Γ. Then we split Iα,1 as Iα,1,1 ∪ Iα,1,2, and we rewrite the left
hand side of (23) as

(24)

2 tan
(
|J̃n(t)|

2

)
− 2 tan

(
|Iα,1∪Iα,2|

2

)
+ 2 tan

(
|Iα,1|

2

)
+ 2 tan

(
|Iα,2|

2

)
=

2 tan
(
|J̃n(t)|

2

)
− 2 tan

(
|Iα,1∪Iα,2|

2

)
+ 2 tan

(
|Iα,2|

2

)
+2 tan

(
|Iα,1,1|

2

)
+ 2 tan

(
|Iα,1,2|

2

)
+Rα,1 ,

with

Rα,1 := 2 tan
( |Iα,1,1 ∪ Iα,1,2|

2

)
− 2 tan

( |Iα,1,1|
2

)
− 2 tan

( |Iα,1,2|
2

)
≥ 0 .

In case the multiindices (α, 1, 1) and (α, 1, 2) do not belong to Γ, we have

2 tan
( |J̃n(t)|

2

)
− 2 tan

( |Iα,1 ∪ Iα,2|
2

)
+2 tan

( |Iα,2|
2

)
+ 2 tan

( |Iα,1,1|
2

)
+ 2 tan

( |Iα,1,2|
2

)
= νV

(
J̃n(t)

)
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Hence from (22) and (24) we obtain the estimate

νψ′
(
Jn(t)

)
− νV

(
J̃n(t)

)
≥ Rα +Rα,1 .

Otherwise, we continue the procedure by splitting one or both the intervals Iα,1,1 and
Iα,1,2. In a finite number of steps, we arrive at the conclusion that

νψ′
(
Jn(t)

)
− νV

(
J̃n(t)

)
≥ δn(t) :=

∑
α

Rα ≥ 0 ,

where the sum is extended to all indices α ∈ Γ of the form (α(n, t), . . . ). Then the
inequality (21) is proved because each term Rα is non-negative, and hence∫ ‖v‖∞

0
2t

N(t)∑
n=1

δn(t) dt ≥ 0 .

�

Lemma 20. Let V be the stratified potential associated with some function v ∈ H1
0 (Iπ)∩

X (Iπ), and let Γ denote the set of indices in (20). For any α ∈ Γ, set Iα,1 ∪ Iα,2 =
(aα1 , a

α
2 )∪(aα2 , a

α
3 ), and consider the following eigenvalue problem with stratified potential

η1(Iπ, 2V ) := inf

{∫
Iπ

(ϕ′)2 + 2V ϕ2∫
Iπ
ϕ2

:ϕ ∈ H1
0 (Iπ) s.t., ∀α ∈ Γ, ϕ(aα1 ) = ϕ(aα2 ) = ϕ(aα3 )

}
.

Then it holds

(25) η1(Iπ, 2V ) ≥ 4 ,

with equality if and only if Γ = ∅, so that V (x) = 1 + tan2 x and an eigenfunction is
cos2x.

Proof. Throughout this proof, since we are going to work with different stratified po-
tentials, in order to avoid any confusion we denote by ΓV the family of multi-indices
associated with a potential V according to (20). Moreover, we write for shortness that ϕ
is an eigenfunction associated with V , if it is an eigenfunction for the eigenvalue problem
η1(Iπ, 2V ). We argue by contradiction. Assume that the family S of stratified potentials
such that η1(Iπ, 2V ) < 4 is nonempty. We proceed in two steps.

Step 1. Since by assumption S 6= ∅, we can select a stratified potential V for which the
cardinality of ΓV is minimal among potentials in S. Clearly, since V ∈ S, card(ΓV ) ≥ 1
(recall that, for V (x) = 1 + tan2 x, we have η1(Iπ, 2V ) = 4, with eigenfunction cos2x).
By suitably perturbing V , we are going to find a potential V ε such that

η1(Iπ, 2V
ε) = 4 and card(ΓV ε) = card(ΓV ) .

To that aim, let −π
2 = a0 < a1 < · · · < aK = π

2 denote an increasing relabelling of the
family of points {aαi , i = 1, 2, 3} associated with V . In particular, for some 2 ≤ j ≤ K−2
we have I1,1 = (a1, aj), I

1,2 = (aj , aK−1), and aK−1 = −a1. We consider a one-parameter
family {V ε} of continuous perturbations of V , given by stratified potentials such that
card(ΓV ) = card(ΓV ε), in which in particular the points a1 and aK−1 are replaced by
a1− ε and aK−1 + ε (inside the interval [a1− ε, aK−1 + ε], the potential V ε can be built

by rescaling the family of points ai into the new family of points aεi = ai
aK−1+ε
aK−1

).
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This operation can be carried over for ε ∈ (0, ε∗), with ε∗ = π
2 − aK−1. Clearly, there

exists ε in such interval such that η1(Iπ, 2V
ε) = 4. Otherwise, it would be η1(Iπ, 2V

ε∗) ≤
4, which implies that an eigenfunction ϕ for V ε∗ must vanish at aε

∗
1 = −π

2 , aε
∗
K−1 = π

2 ,

and at aε
∗
j . Then the interval (−π

2 ,
π
2 ) would be disconnected into the union of the two

disjoint intervals I1,1
∗ := (−π

2 , a
ε∗
j ) and I1,2

∗ := (aε∗j ,
π
2 ). The restriction of the potential

to one of the two intervals, say I1,1
∗ , would give an eigenvalue less than or equal to 4.

Since the length of the interval I1,1
∗ is strictly less than π, this proves the existence of a

stratified potential V̂ on Iπ with card(Γ
V̂

) < card(ΓV ) and η1(Iπ, V̂ ) < 4. (The stratified

potential V̂ can be obtained by centering I1,1
∗ at the origin, and extending V̂ by setting

it equal to 1 + tan2 x on its complement in Iπ.)
We conclude that it is possible to freeze ε so that η1(Iπ, 2V

ε) = 4. The potential V ε

satisfies

(26) η1(Iπ, 2V
ε) = 4 and card(ΓV ) ≥ card(ΓV ε) ∀V ∈ S .

Step 2. Let V ε be a stratified potential satisfying (26). For simplicity of notation, in the
remaining of the proof we drop the index ε and we denote it simply by V . Let ϕ be an
eigenfunction for η1(Iπ, 2V ). By optimality, if −π

2 = a0 < a1 < · · · < aK = π
2 denotes

an increasing relabelling of the family of points {aαi , i = 1, 2, 3} associated with V , ϕ
satisfies the system of equations

−ϕ′′ + 2V ϕ = 4ϕ on (ak, ak+1) ∀k = 0, . . .K − 1 ,

and the following global equality of the boundary terms, where ϕ′+(ak), ϕ
′
−(ak+1) are

the right and left derivatives of ϕ respectively at ak and ak+1:

(27)
K−1∑
k=0

[
ϕ(ak+1)ϕ′−(ak+1)− ϕ(ak)ϕ

′
+(ak)

]
= 0 ,

We are now ready to reach a contradiction, by distinguishing the two cases card(ΓV ) = 1
and card(ΓV ) > 1.
Case a. If card(ΓV ) = 1, a first eigenfunction for η1(Iπ, 2V ) is explicitly determined as

ϕ(x) =



C
cos2 x

cos2(a1)
on (a0, a1)

C
cos2(x− (a1+a2

2 ))

cos2(a2−a1
2 )

on (a1, a2)

C
cos2(x− (a2+a3

2 ))

cos2(a3−a2
2 )

on (a2, a3)

C
cos2 x

cos2(a3)
on (a3, a4) .

Then the sum in (27) can be written as

2C2
[
− tan(a1)− 2 tan

(a2 − a1

2

)
− 2 tan

(a3 − a2

2

)
− tan(a3)

]
.
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Using the elementary inequality

tan(ak+1)− tan(ak) > 2 tan
(ak+1 − ak

2

)
for ak+1 > ak

we see that the equality (27) cannot hold, contradiction.

Case b. If card(ΓV ) > 1, we consider the highest level among the local minima of ϕ, and
denote by ap the point where it is attained. Then there are two consecutive intervals,
say (ap−1, ap) and (ap, ap+1) such that a first eigenfunction for η1(Iπ, 2V ) satisfies, for
some positive constant Cp

ϕ(x) =


Cp

cos2
(
x−

(ap−1+ap
2 )

)
cos2(

ap−ap−1

2 )
∀x ∈ (ap−1, ap)

Cp
cos2

(
x−

(ap+ap+1

2 )
)

cos2(
ap+1−ap

2 )
∀x ∈ (ap, ap+1) .

Since we are assuming that η1(Iπ, 2V ) = 4, we have∫
Iπ

(ϕ′)2 + 2V ϕ2∫
Iπ
ϕ2

= 4 and
K−1∑
k=0

[
ϕ(ak+1)ϕ′−(ak+1)− ϕ(ak)ϕ

′
+(ak)

]
= 0 .

We then modify the potential V into a new potential V which differs from it uniquely
on the interval (ap, ap+1) by setting

V (x) = 1 + tan2
(
x− ap + ap+1

2

)
∀x ∈ (ap, ap+1) .

Accordingly, we modify the function ϕ uniquely on the interval (ap, ap+1) by setting

ϕ(x) = Cp
cos2

(
x−

(ap−1+ap+1

2 )
)

cos2(
ap+1−ap−1

2 )
∀x ∈ (ap−1, ap+1) .

Then, on each of the intervals associated with the potential V , the function ϕ still
satisfies the same PDE as v, namely we have

(28) − ϕ′′ + 2V ϕ = 4ϕ on (a1, a2) ∪ · · · ∪ (ap−1, ap+1) ∪ · · · ∪ (aK−1, aK) .

On the other hand, thanks to (27) and the super-additivity of the tangent function on
(0, π2 ), it holds

(29)

K−1∑
k=0

[
ϕ(ak+1)ϕ′−(ak+1)− ϕ(ak)ϕ

′
+(ak)

]
=

K−1∑
k=0

[
ϕ(ak+1)ϕ′−(ak+1)− ϕ(ak)ϕ

′
−(ak)

]
+2 tan

(
ap−ap−1

2

)
+ 2 tan

(
ap+1−ap

2

)
− 2 tan

(
ap+1−ap−1

2

)
< 0 .
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By combining (28) and (29), we infer that the Rayleigh quotient with potential 2V of
the function ϕ is strictly smaller than 4, i.e.∫

Iπ
(ϕ′)2 + 2V ϕ2∫

Iπ
ϕ2 < 4 .

We conclude that η1(Iπ, 2V ) < 4. Since card(ΓV ) < card(ΓV ), this contradicts condition
(26) satisfied by V , and the proof of inequality (25) is achieved.

Concerning the equality case, assume that η1(Iπ, 2V ) = 4 holds, and assume by contra-
diction that ΓV ≥ 1. If ΓV = 1 by arguing as in Case a. above we obtain a contradiction;
if ΓV > 1, by arguing as in Case b. above we arrive to contradict, for another potential
V , the inequality η1(I, V ) ≥ 4 (that we have already proved). We conclude that ΓV = 0,
namely that V (x) = 1 + tan2 x.

�

Proof of Proposition 10. Let ψ ∈ A(Iπ). Assume by contradiction that

λ1(Iπ, 2ψ
′) = inf

v∈H1
0 (Iπ)

∫
Iπ

(v′)2 dx+ 2
∫
Iπ
v2 dνψ′∫

Iπ
v2

< 4 .

By a density argument, we can find a function v ∈ H1
0 (Iπ) ∩ X (Iπ) such that∫

Iπ
(v′)2 dx+ 2

∫
Iπ
v2 dνψ′∫

Iπ
v2

< 4 .

Let ṽ and V denote the stratified rearrangement and potential associated with v.
By exploiting, at each step of the construction of ṽ, the well-known behaviour under
decreasing rearrangement of the L2-norm of a function and of its first derivative, we
infer that ∫

Iπ

v2 =

∫
Iπ

ṽ2 and

∫
Iπ

(v′)2 ≥
∫
Iπ

(ṽ′)2 .

Then, by Lemma 19, we have ∫
Iπ

(ṽ′)2 + 2V ṽ2∫
Iπ
ṽ2

< 4 .

Therefore, for the stratified potential V , the eigenvalue η1(Iπ, 2V ) introduced in Lemma
20 would be strictly smaller than 4, contradicting such lemma. �

We now turn attention the problem of estimating from below λ1(Id, q), where the weight
is still of the form q = ψ′ + ψ2 for ψ ∈ A(Iπ), and the finiteness domain of ψ is an
interval Id = (−d

2 ,
d
2) with d ≤ π.

Theorem 21. Inequality (11) can be refined as follows:

(i) There exists an absolute constant C > 0 such that, for any q = ψ′ + ψ2, being
ψ ∈ A(Iπ) with dom(ψ) = Id (d ≤ π), it holds

(30) λ1(Id, q) ≥ 3 + C(π − d)3 .
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(ii) There exists an absolute constant K such that, for any q = ψ′ + ψ2, with ψ ∈
A(Iπ) of the form ψ = (f + g

2

)
, being f ∈ A(Iπ) with dom(f) = Id (d ≤ π), and

g = −(log h)′ on Id, for some ( 1
m)-concave function h, affine on an interval [a, b]

with Iπ
4
⊆ [a, b] ⊆ Id, the following implication holds:

(31) λ1(Id, q) ≤ 7 ⇒ λ1(Id, q) ≥ 3 +
8K

mπ2

[
1− min{h(a), h(b)}

max{h(a), h(b)}

]2
.

Theorem 21 is obtained by an analogue strategy as Theorem 8, replacing the use of
Propositions 9 and 10 by their refined versions stated respectively in Propositions 22
and 23 below. More precisely, one needs first to apply the inequality λ1(Id, q) ≥
1
2

[
λ1(Id, 2ψ

′) + λ1(Id, 2ψ
2)
]
. Then: inequality (30) follows by using Proposition 10 to

estimate λ1(Id, 2ψ
′) and Proposition 22 below to estimate λ1(Id, 2ψ

2); inequality (31)
follows by using Proposition 9 to estimate λ1(Id, 2ψ

2), and Propostion 23 below to esti-
mate λ1(Id, 2ψ

′).

Proposition 22. There exists an absolute constant C > 0 such that, for any ψ ∈ A(Iπ)
with dom(ψ) = Id (d ≤ π), it holds

(32) λ1(Id, 2ψ
2) ≥ 2 + C(π − d)3 .

Proof. By following the proof of Proposition 9, we arrive at the inequality

λ1(Id, 2ψ
2) ≥ λd := min

v∈H1
0 (Id)

∫
Id

(v′)2 + 2(tan2x)v2∫
Id
v2

.

Thus we are reduced to prove that there exists an absolute constant C > 0 such that
λd ≥ 2 +C(π− d)3 for every d ∈ (0, π]. We observe that it is enough to prove that there
exists ε > 0 and an absolute constant C > 0 such that λd ≥ 2 + C(π − d)3 for every
d ∈ [π − ε, π]. Indeed in this case, since the map d 7→ λd is nonincreasing, for every
d ∈ (0, π − ε) we have

λd ≥ λπ−ε ≥ 2 + C ε3 = 2 + C ′(π − d)3 with C ′ = C
ε3

(π − d)3
≥ C ε

3

π3
,

so that the required inequality is satisfied (for another absolute constant) also for d ∈
(0, π − ε). Hence, in the remaining of the proof, we focus attention on the estimate of
λπ−ε, for ε sufficiently small. Denoting by vε ∈ H1

0 (Iπ−ε) an eigenfunction for λπ−ε, we
have

−(cos2x)′′ + 2(tan2x)(cos2x) = 2 cos2x in Iπ(33)

−v′′ε + 2(tan2 x)vε = λπ−εvε in Iπ−ε .(34)

We multiply (33) by vε (extended to 0 on Iπ \Iπ−ε), and (34) by cos2 x, and we integrate,
respectively, on Iπ and on Iπ−ε. We get:∫

Iπ

(cos2 x)′v′ε + 2

∫
Iπ

(sin2 x)vε = 2

∫
Iπ

(cos2 x)vε∫
Iπ−ε

(cos2 x)′v′ε − 2v′ε
(π − ε

2

)
cos2

(π − ε
2

)
+

∫
Iπ−ε

2(sin2 x)vε = λπ−ε

∫
Iπ−ε

(cos2 x)vε .
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By subtraction, we obtain

(λπ−ε − 2)

∫
Iπ−ε

(cos2x)vε = −2
(

sin2 ε

2

)
v′ε
(π − ε

2

)
.

Since it is easily checked that vε converges weakly to cos2x in H1
0 (Iπ), we have that

lim
ε→0

∫
Iπ−ε

(cos2x)vε =

∫
Iπ

(cos4x) ∈ (0,+∞) .

Therefore, to prove (32), it is enough to show that

(35) lim
ε→0

1

ε
v′ε
(π − ε

2

)
∈ (0,+∞) .

To that aim, we multiply equation (34) by 1
cosx , and we integrate on Iπ−ε. We obtain∫

Iπ−ε

sinx

cos2x
v′ε − 2

v′ε
(
π−ε

2

)
cos
(
π−ε

2

) + 2

∫
Iπ−ε

sin2x

cos3x
vε = λπ−ε

∫
Iπ−ε

vε
cosx

Since ∫
Iπ−ε

sinx

cos2x
v′ε = −

∫
Iπ−ε

vε
cosx

−
∫
Iπ−ε

2
sin2x

cos3x
vε ,

we end up with

(36) − 2
v′ε
(
π−ε

2

)
cos
(
π−ε

2

) = (λπ−ε + 1)

∫
Iπ−ε

vε
cosx

.

Finally, we observe that

(37) lim
ε→0

∫
Iπ−ε

vε
cosx

∈ (0,+∞) .

Indeed, since vε converges to cos2 x a.e. on Iπ, we have

lim inf
ε→0

∫
Iπ−ε

vε
cosx

≥
∫
Iπ

cosx > 0 .

On the other hand, by Hölder inequality we have

lim sup
ε→0

∫
Iπ−ε

vε
cosx

≤ π
1
2 lim sup

ε→0

[ ∫
Iπ−ε

v2
ε

cos2x

] 1
2
< +∞ ,

where the last inequality is obtained by observing that, normalizing vε in L∞, and
recalling from (34) that supε

∫
Iπ−ε

2(tan2 x)v2
ε ≤ π supε(λεv

2
ε) < +∞, it holds∫

Iπ−ε

v2
ε

cos2x
≤
∫
Iπ−ε∩{|x|≤π4 }

1

cos2x
+

∫
Iπ−ε∩{|x|>π

4
}
(tan2x)

v2
ε

sin2x

≤
∫
Iπ−ε∩{|x|≤π4 }

1

cos2x
+

∫
Iπ−ε∩{|x|>π

4
}

2(tan2x)v2
ε ≤ C .

From (36) and (37), we see that (35) is satisfied, so that our proof is achieved. �
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Proposition 23. There exists an absolute constant K such that, for any ψ ∈ A(Iπ) of
the form ψ = (f + g

2

)
, being f ∈ A(Iπ) with dom(f) = Id ⊆ Iπ, and g = −(log h)′ on Id,

for some ( 1
m)-concave function h, affine on an interval [a, b] with Iπ

4
⊆ [a, b] ⊆ Id, the

following implication holds:

(38) λ1(Id, 2ψ
′) ≤ 15 ⇒ λ1(Id, 2ψ

′) ≥ 4 +
16K

mπ2

[
1− min{h(a), h(b)}

max{h(a), h(b)}

]2
.

Proof. We claim that, for ψ as in the assumptions, denoting by v ∈ H1
0 (Id) an eigen-

function for λ1(Id, 2ψ
′), normalized in L2(Id), it holds

(39) λ1(Id, 2ψ
′) ≥ 4 + δh , with δh :=

1

m

∫
Id

v2
(h′
h

)2
.

Indeed, we have

(40) λ1(Id, 2ψ
′) =

∫
Id

(v′)2 + (2f ′ + g′)v2 ≥ 4 +

∫
Id

g′v2 ,

where the inequality follows by applying Proposition 10 to the function f ∈ A(Iπ)
(actually, v is an admissible test function for λ1(Iπ, 2f

′) when extended to 0 on Iπ \ Id).
Then the inequality (39) follows from (40) provided

(41) g′ ≥ 1

m

(h′
h

)2
on Id .

From the assumption g = −(log h)′ on Id, we have (in the sense of measures)

(42) g′ =
(h′
h

)2
− h′′

h
on Id .

The power-concavity assumption on h implies that (h
1
m )
′′ ≤ 0. The latter inequality, by

an elementary computation, implies that the right hand side of (42) is larger than or
equal to the right hand side of (41). In view of (39), we have

λ1(Id, 2ψ
′) ≥ 4 +

1

m

[h(a)− h(b)

a− b

]2 1

[max{h(a), h(b)}]2

∫
Iπ

4

v2

≥ 4 +
16

mπ2

[ h(a)− h(b)

max{h(a), h(b)}

]2
∫
Iπ

4

v2 .

Hence, to conclude the proof of (38), it is enough to show that there exists an absolute
constant K > 0 such that

λ1(Id, 2ψ
′) ≤ 15 ⇒

∫
Iπ

4

v2 ≥ K .

Assume by contradiction this is false. Then it would be possible to find a sequence of
functions ψn and a sequence of segments Idn as in the assumptions of the Lemma such
that the eigenfunctions vn ∈ H1

0 (Idn) for λ1(Idn , 2ψ
′
n), normalized in L2(Idn), satisfy∫

Iπ
4

v2
n ≤

1

n
.
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By the assumption λ1(Idn , 2ψ
′
n) ≤ 15, we have

∫
Iπ
|v′n|2 ≤ 15, and hence up to subse-

quences vn converges, weakly in H1(Iπ) and strongly in L2(Iπ), to a function v∞ which
has unit norm in L2(Iπ) and vanishes on Iπ

4
. This leads to a contradiction, as

15 ≥ lim inf
n

∫
Iπ

|v′n|2 ≥
∫
Iπ

|v′∞|2 ≥ λ1(Iπ
4
) = 16 .

�

3. Weighted equipartitions à la Payne-Weinberger

The key idea in the proof of Payne-Weinberger inequality in [45] is a partition procedure
of the set Ω into convex cells of equal measure, such that, on each cell, the first Neumann
eigenfunction has to have zero integral mean. While this procedure is still useful if
adapted to a weighted Neumann problem, in order to obtain a quantitative estimate it is
necessary to keep track of the L2-norm of the eigenfunctions rather than of the measures
of the cells. Consequently, we are going to work with two different types of p-weighted
equipartitions, each one playing a specific role in the estimate of weighted Neumann
eigenvalues in higher dimensions. Such estimate will be based the one-dimensional lower
bounds given in Theorem 21. Thus we are going to handle line segments contained into
RN : for simplicity, in this section and in the remaining of the paper, the notation I`
is adopted for any line segment of length ` in RN , say with generic direction and not
necessarily centred at the origin (as it was the case in Section 2). In the few cases when
we have to consider a centred interval in a fixed frame, this will be explicitly indicated,
by writing e.g. (− `

2 ,
`
2)× {0}.

Definition 24. Given an open bounded convex set ω ⊂ RN , a positive weight p ∈ L1(ω),
and a function u ∈ L2(ω, p dx) satisfying

∫
ω up = 0, we call:

– a p-weighted measure equipartition of u in ω a family Pn = {ω1, . . . , ωn}, where
ωi are mutually disjoint convex sets such that ω = ω1 ∪ · · · ∪ ωn and∫

ωi

up = 0 and |ωi| =
1

n
|ω| ∀i = 1, . . . , n .

– a p-weighted L2 equipartition of u in ω a family Pn = {ω1, . . . , ωn}, where ωi are
mutually disjoint convex sets such that ω = ω1 ∪ · · · ∪ ωn and∫

ωi

up = 0 and

∫
ωi

u2p =
1

n

∫
ω
u2p ∀i = 1, . . . , n .

Remark 25. (i) The existence of p-weighted L2 (or measure) equipartitions of u in ω given
by two cells is obtained by the analogue argument as in [45] (see also [7]). Namely, for
every α ∈ [0, 2π], there exists a unique hyperplane with normal (cosα1, sinα1, 0, . . . , 0)
which divides ω into two subsets ω′α and ω′′α such that

∫
ω′α
u2p =

∫
ω′′α
u2p. Since the

function I(α) =
∫
ω′α
up is continuous and satisfies I(α) = −I(α + π), there exists

an angle α such that I(α) = 0. Applying repeatedly the above argument yields the
existence of a p-weighted L2 equipartition of u in ω given by n cells, each of them being
contained into a narrow strip, determined by two hyperplanes with normal of the form
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(cosα1, sinα1, 0, . . . , 0) at infinitesimal distance from each other as n→ +∞. The latter
property follows from the fact that the volume of all the elements of the partition is
infinitesimal as n→ +∞, thanks to the assumption p > 0 a.e. in ω.
(ii) If the above procedure is repeated overall (N − 2) times, using as a last package of
cutting hyperplanes those with normals of the form (0, . . . , 0, cosαN−2, sinαN−2, 0), we
obtain a p-weighted L2 equipartition of u in ω into mutually disjoint convex cells which
are narrow in N − 2 directions, each one orthogonal to eN . If the procedure is repeated
once more, we arrive at a p-weighted L2 equipartition of ω into mutually disjoint convex
cells of one dimensional type, being narrow in (N − 1) orthogonal directions.

Motivated by the above remark, we state the following single-cell estimate, holding for
a set ωε ⊂ ω which is narrow in (N − 1) orthogonal directions.

Lemma 26. Let ω ⊂ RN be an open bounded convex set, and let p be a positive uniformly
continuous weight defined in ω. Given ε > 0, let ωε ⊂ ω be an open bounded convex set
of diameter dε, which satisfies, in a suitable orthogonal coordinates system and for some
ε > 0, the inclusion

(43) ωε ⊂
{

(x1, y) ∈ R× RN−1 : |x1| ≤
dε
2
, |yj | ≤ ε ∀j = 1, . . . , N − 1} .

For every function u ∈ W 2,∞(ω) whose restriction to ωε is an admissible test function
for µ1(ωε, p), setting h(x) := HN−1(ωε ∩ {x1 = x}), it holds

(44)

∫
ωε
|∇u|2p∫

ωε
|u|2p

≥
{
µ1(Idε , hp)−

α(ε)|ωε|∫
ωε
|u|2p

[
1 + µ1(Idε , hp)

(
1 + β(ε)|ωε|

)]}
,

where α(ε) and β(ε) are infinitesimal as ε → 0, depending only from ‖u‖W 2,∞(ω),
‖p‖L∞(ω), and from the modulus of continuity of p at ε in ω.

Proof. Let M be a positive constant such that ‖u‖W 2,∞(ω) ≤M and ‖p‖L∞(ω) ≤M , and
let δε > 0 be such that |p(x)− p(y)| < ε for every x, y ∈ ω with |x− y| < δε.
We have

∣∣∣ ∫
ωε

( ∂u
∂x1

)2
p−

∫
Idε

[u(x, 0)′]2hp dx
∣∣∣ ≤ (2M3ε+M2δε)|ωε| =: δ1∣∣∣ ∫

ωε

u2p−
∫
Idε

u(x, 0)2hp dx
∣∣∣ ≤ (2M3ε+M2δε)|ωε| =: δ2(= δ1)∣∣∣ ∫

Idε

u(x, 0)hp dx
∣∣∣ =

∣∣∣ ∫
ωε

up−
∫
Idε

u(x, 0)hp dx
∣∣∣ ≤ (M2ε+Mδε)|ωε| =: δ3 .
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Then, setting u :=
∫
Idε

u(x, 0)hp, we have∫
ωε

|∇u|2p ≥
∫
ωε

( ∂u
∂x1

)2
p ≥

∫
Idε

[u(x, 0)′]2hp dx− δ1

≥ µ1(Idε , hp)
[ ∫

Idε

u(x, 0)2hp− u2
]
− δ1

≥ µ1(Idε , hp)
[ ∫

ωε

u2p dx− δ2 − δ2
3

]
− δ1

= µ1(Idε , hp)
[ ∫

ωε

u2p dx
]
− δ1

[
1 + µ1(Idε , hp)

(
1 +

δ2
3

δ1

)]
.

The result follows by inserting the expressions of δ1 and δ3 in the above estimate. �

The next two lemmas contain lower bounds of different nature for µ1(ω, p) (or, more
generally, for Rayleigh quotients). The first lower bound, stated in Lemma 27, is given
in terms of one dimensional eigenvalues: it is in fact obtained working with measure
equipartitions and applying the single cell estimate of Lemma 26. The second lower
bound, stated in Lemma 28, is given in terms of the average of the eigenvalues of the
cells of the partition, and is obtained working with L2 equipartitions.

Lemma 27. Let ω be an open bounded convex set, and let p be a positive uniformly
continuous weight in ω. Let u ∈ W 2,∞(ω) satisfy

∫
ω up = 0. Assume that, for every n

sufficiently large, there exists a p-weighted measure equipartition Pn = {ω1, . . . , ωn} of
u in ω such that µ1(Idi , hip) ≥ c for every i = 1, . . . , n, where Idi is a diameter for ωi,
and hi(x) is the HN−1-measure of the sections of ωi as in Lemma 26. Then∫

ω |∇u|
2p∫

ω |u|2p
≥ c .

In particular, in case ω is smooth and p is smooth and strictly positive in ω, taking u
equal to a first eigenfunction for µ1(ω, p), we obtain that µ1(ω, p) ≥ c.

Proof. For a given ε > 0, for n large enough each of the sets ωi satisfies in a suitable
orthogonal coordinates system the inclusion (43) (cf. Remark 25). Moreover, the re-
striction of u to ωi is an admissible test function for µ1(ωi, p). Then by Lemma 26 the
inequality (44) is fulfilled for every i = 1, . . . , n, for some infinitesimal α(ε) and β(ε)
which are independent of i. (Indeed, as stated in Lemma 26, α(ε) and β(ε) depend only
on ‖u‖W 2,∞(ω), ‖p‖L∞(ω), and on the the modulus of continuity of p at ε in ω).

Writing the inequality (44) for each of the sets ωi, and recalling that |ωi| = |ω|
n , we obtain∫

ωi

|u|2p ≤ 1

µ1(Idi , hip)

∫
ωi

|∇u|2p+
1

µ1(Idi , hip)

(
α(ε)
|ω|
n

)
+ α(ε)

|ω|
n

(
1 + β(ε)

|ω|
n

)
.

By using the assumption µ1(Idi , hip) ≥ c for every i = 1, . . . , n, and summing over
i = 1, . . . , n, we get∫

ω
|u|2p ≤ 1

c

∫
ω
|∇u|2p+

1

c

(
α(ε)|ω|

)
+ α(ε)

(
1 + β(ε)|ω|

)
.

The statement follows by letting ε tend to 0. �
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Lemma 28. Let ω be an open bounded convex set of diameter d and let p be a positive
weight in L1(ω). Let u ∈ H1

loc(Ω)∩L2(Ω, pdx) satisfy
∫

Ω up dx = 0. If Pn = {ω1, . . . , ωn}
is a p-weighted L2 equipartition of u in ω, it holds∫

ω |∇u|
2p∫

ω |u|2p
=

1

n

n∑
i=1

∫
ωi
|∇u|2p∫

ωi
|u|2p

≥ 1

n

n∑
i=1

µ1(ωi, p) .

In particular, if u is an eigenfunction for µ1(ω, p), we have µ1(ω, p) ≥ 1
n

∑n
i=1 µ1(ωi, p)

and, in case µ1(ω, p) = µ1(ωi, p) for every i = 1, . . . , n, u is necessarily an eigenfunction
also for each µ1(ωi, p).

Proof. The statement is an immediate consequence of the two facts that
∫
ωi
u2p =

1
n

∫
ω u

2p and the restriction of u to ωi is admissible as a test function for µ1(ω1, p).
In case u is an eigenfunction for µ1(ω, p), and µ1(ω, p) = µ1(ωi, p) for every i = 1, . . . , n,
we see that none of the inequalities

∫
ωi
|∇u|2p ≥ µ1(ωi, p)

∫
ωi
|u|2p can be strict. �

4. Localized variational version and rigidity of Andrews-Clutterbuck
inequality

In this section we establish two intermediate results which will be used in the proof
of our quantitative inequality, but may have their own interest. In Proposition 29 we
give a localized variational version of Andrews-Clutterbuck inequality, which consists in
estimating the weighted Neumann eigenvalue µ1(ω, p) when ω ⊆ Ω is a convex set (with
possibly empty interior), and the weight p is associated with the first eigenfunction of
Ω.
In Theorem 31 we establish the rigidity of Andrews-Clutterbuck inequality. Both results
are proved exploiting the weighted equipartitions introduced in the previous section: the
former is obtained via measure equipartitions, the latter via L2 equipartitions.

For simplicity, in this section and in the remaining of the the paper, when no ambiguity
arises, we omit to indicate the set Ω by writing D in place of DΩ for its diameter (and
similarly for the width).

Proposition 29. Let N ≥ 2. There exists an absolute constant C > 0 such that: if
Ω ⊂ RN is an open bounded convex set of diameter D, Π is an affine subspace of RN of
dimension k ≤ N , ω ⊆ (Ω ∩ Π) is a relatively open convex subset of Ω ∩ Π of diameter
d > 0, and p ∈ L∞(ω) is a positive weight of the form p = hu2

1, being u1 the first Dirichlet
eigenfunction of Ω, and h : ω → (0,+∞) a ( 1

m)-concave function (with m ∈ N \ {0}), it
holds:

(45) µ1(ω, p) ≥ 3π2

D2
+ C

(D − d)3

D5
.

Proof. We first prove the inequality (45) in case ω is a smooth convex set, with ω ⊂ Ω,
and h is a smooth strictly positive ( 1

m)-concave function in ω. In this case, the weight
p is smooth and strictly positive in ω. Therefore, there exists a first eigenfunction for
µ1(ω, p), of classW 2,∞(ω). Then we are in a position to apply Lemma 27. Specifically, we
consider a p-weighted measure equipartition Pn = {ω1, . . . , ωn} of a first eigenfunction
for µ1(ω, p). We denote by Idi a diameter for ωi, and by hi(x) the Hk−1-measure of
the sections of ωi orthogonal to Idi as in Lemma 26. We apply Theorem 21 in order to
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estimate the one-dimensional eigenvalue µ1(Idi , hip). To that purpose we observe that p
satisfies(

∇ log p
1
2 (y)−∇ log p

1
2 (x)

)
· y − x
‖y − x‖

≤ −2
π

D
tan

( π
D

‖y − x‖
2

)
∀x, y ∈ ω .

Therefore, each weight hip is of the form ψ′i + ψ2
i for the function ψi ∈ A(Iπ) given by

ψi = −1
2((log p)′ + (log hi)

′). By Lemma 6 and the inequality (30) in Theorem 21, we
have

µ1(Idi , hip) ≥ λ1(Idi , ψ
′
i + ψ2

i ) ≥
3π2

D2
+

C

D2

(D − di
D

)3
≥ 3π2

D2
+

C

D2

(D − d
D

)3
.

By applying Lemma 27 to an eigenfunction for µ1(ω, p), the above inequality yields (45).
We now prove the inequality (45) for ω and p as in the statement. Let ωn be an
increasing sequence of smooth open bounded convex sets, compactly contained into ω,
which converges to ω in Hausdorff distance as n → +∞. Since h is power-concave, we
can approximate it by a sequence of smooth strictly positive log-concave functions hn
supported in ωn, such that hn ≤ h. Then the sequence of weights pn := hnu

2
1 (where

hn are formally extended to zero on ω \ ωn), converges weakly* to p in L∞(ω). Since
we have already shown that (45) holds true for µ1(ωn, pn), to conclude our proof it is
enough to observe that

(46) µ1(ω, p) ≥ lim sup
n

µ1(ωn, pn) .

The argument to obtain the above inequality is similar as the one used in the proof of
Lemma 6. Namely, for every ε > 0, we consider a function uε ∈ H1

loc(ω) ∩ L2(ω, p dx)
with

∫
ω uεp = 0, such that

µ1(ω, p) ≥
∫
ω |∇uε|

2p∫
ω |uε|2p

− ε ;

setting cε,n := 1
|ωn|uεpn, we have limn cε,n = 0. Hence, taking uε,n := uε − cε,n as a test

function for µ1(ωn, pn), we obtain

µ1(ω, p) ≥
∫
ω |∇uε|

2p∫
ω |uε|2p

− ε = lim
n

∫
ωn
|∇uε,n|2pn∫

ωn
|uε,n|2pn

− ε ≥ lim sup
n

µ1(ωn, pn)− ε .

The inequality (46) follows by the arbitrariness of ε > 0. �

Remark 30. Although not exploited in the sequel, let us point out that a consequence
of the localized inequality (45), written in terms of the first two eigenfunctions u1, u2, is
that, for any segment S ⊂ Ω such that

∫
S u1u2 = 0, it holds∫

S

(
u′2 −

u′1
u1
u2

)2∫
S
u2

2

≥ 3π2

D2
+ C

(D − |S|)3

D5
,

where the derivatives u′1, u
′
2 are taken in the direction of S.
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Theorem 31 (Rigidity). Let N ≥ 2. For every open bounded convex domain Ω in RN
of diameter D, we have

λ2(Ω)− λ1(Ω) >
3π2

D2
.

Proof. Assume by contradiction that Ω ⊂ RN , N ≥ 2, is an open bounded convex domain

with diameter D such that µ1(Ω, u2
1) = 3π2

D2 We distinguish the case of dimension N = 2
from the case of arbitrary dimension.

Case N = 2. For every n ≥ 1, let Pn = {Ω1, . . . ,Ωn} be a u2
1-weighted L2 equipartition

of u in Ω, being u := u2
u1

an eigenfunction for µ1(Ω, u2
1) (cf. Proposition 41). Denoting

by Di the diameter of Ωi, by Lemma 28 and Proposition 29 (applied with p = u2
1), we

have
3π2

D2
= µ1(Ω, u2

1) ≥ 1

n

n∑
i=1

µ1(Ωi, u
2
1) ≥ 3π2

D2
+ C

n∑
i=1

(D −Di)
3

D5
,

and u is an eigenfunction for each µ1(Ωi, u
2
1).

We infer that

D = Di ∀i = 1, . . . , n ,(47)

µ1(Ωi, u
2
1) = 3π2

D2 ∀i = 1, . . . , n .(48)

Moreover, by the last assertion in Lemma 28, u is an eigenfunction for each µ1(Ωi, u
2
1).

We claim that Ω is a circular sector (and hence Ωi are circular subsectors of the same di-
ameter, the supremum of whose opening angles is infinitesimal as n→ +∞). Indeed, con-
sider a straight line r which determines the u2

1-weighted L2 equipartition P2 = {Ω1,Ω2}.
Necessarily, r∩Ω must be a diametral segment of Ω. Indeed, let ID be a fixed diametral
segment of Ω: if ID 6= (r∩Ω), either ID∩ (r∩Ω) = ∅, or ID is transverse to r∩Ω. In the
first case, assume with no loss of generality that ID is contained into Ω1. Then, since
also Ω2 has diameter D, the set Ω would contain two distinct diametral segments, which
is not possible since a diagonal of the quadrilateral having vertices at the endpoints of
the two diametral segments would have length strictly larger than D. In the second case,
since ID is not entirely contained neither in Ω1, nor in Ω2, each among Ω1 and Ω2 would
contain a segment of length D, and again this would imply the existence of a segment of
length strictly larger than D in Ω. By repeating the same argument for the successive
straight lines which determine the u2

1-weighted L2 equipartition Pn = {Ω1, . . . ,Ωn} we
infer that each cutting line is a diametral segment. Since, as already noticed above, there
cannot be two disjoint diametral segments in Ω, we conclude that Ω contains, for every
n ≥ 1, n diametral segments having a common endpoint. By convexity, we infer that Ω
contains their convex envelope, and, by passing to the limit as n → +∞, we conclude
that Ω contains a circular sector. Actually, Ω must coincide with such circular sector,
because any point outside the sector cannot lie into any cell of Pn.
Once we know that Ω is a circular sector and that any cell of Pn a circular subsector,
we exploit the fact that u := u2

u1
is an eigenfunction for each µ1(Ωi, u

2
1). Since this holds

true for every n, we infer that the function u satisfies, on every radius of the circular
sector Ω, the Neumann condition ∂u

∂ν = 0, being ν the normal direction to the radius.
This implies that the function u is radial on Ω. But the expression of u2 and u1 (which
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is explicitly known for a circular sector, see for instance [23, Section 3.2]) shows that
this is not the case. So we have reached a contradiction.

Step 2 (N arbitrary). We consider again a u2
1-weighted L2 equipartition Pn = {Ω1, . . . ,Ωn}

of u in Ω. By the same arguments used in case N = 2, all the cells of the partition satisfy
(47)-(48). Moreover, by arguing as in Remark 25, we can assume that, for each each cell
Ωi ∈ Pn, it holds (in a suitable orthogonal coordinates system associated with the cell)

(49) Ωi ⊂
{

(y, x) ∈ RN−2 × R2 : |yj | ≤ εn ∀j = 1, . . . , N − 2; |xj | ≤
D

2
∀j = 1, 2} ,

with εn → 0 as n → +∞. This implies that, in the limit as n → +∞, any sequence
of cells Ωk(n) ∈ Pn converges, up to a subsequence, to a degenerate convex set, which
may be either one-dimensional or two-dimensional. Any such limit set has diameter D,
because all the cells have diameter D. This allows to exclude that all the limit sets
are one-dimensional. Otherwise, by fixing two distinct segments S′ and S′′ contained
in Ω, both parallel to eN , and considering the sequences of domains Ωk′(n) ∈ Pn and
Ωk′′(n) ∈ Pn which contain them, in the limit as n → +∞ we would find two parallel
diametral segments contained in Ω. Let Ωk(n) ∈ Pn be a sequence which converges to a

two-dimensional convex set Ω0. We claim that, for a suitable ( 1
N−2)-concave function h,

it holds

(50) lim inf
n→+∞

∫
Ωk(n)

|∇u|2u2
1∫

Ωk(n)
|u|2u2

1

≥
∫

Ω0
|∇u|2hu2

1∫
Ω0
|u|2hu2

1

.

Indeed, in a coordinate system such that Ωk(n) satisfies (49), with the change of variables

Tn : RN−2 × R2 → RN−2 × R2 defined by Tn(y, x) = (εnx
′, x), we have∫

Ωk(n)
|∇u|2(y, x)u2

1(y, x)∫
Ωk(n)

|u(y, x)|2u2
1(y, x)

=

∫
T−1
n (Ωk(n))

|∇u|2(εnx
′, x)u2

1(εnx
′, x)∫

T−1
n (Ωk(n))

|u|2(εnx′, x)u2
1(εnx′, x)

.

We now pass to the limit as n → +∞: by using Fatou’s lemma and denoting by h(x)
the HN−2-measure of the slices of the limit set of T−1

n (Ωk(n)) at fixed x = (x1, x2), we
obtain

lim inf
n→+∞

∫
Ωk(n)

|∇u|2(y, x)u2
1(y, x) ≥

∫
Ω0

|∇u|2(0, x)h(x)u2
1(0, x) ;

on the other hand, recalling that u = u2
u1

, by dominated convergence we get

lim
n→+∞

∫
T−1
n (Ωk(n))

u2(εnx
′, x)u2

1(εnx
′, x) =

∫
Ω0

|u|2(0, x)h(x)u2
1(0, x) .

Therefore, we have

(51)
3π2

D2
= lim inf

n

∫
Ωk(n)

|∇u|2u2
1∫

Ωk(n)
|u|2u2

1

≥
∫

Ω0
|∇u|2hu2

1∫
Ω0
|u|2hu2

1

≥ µ1(Ω0, hu
2
1) ≥ 3π2

D2
,

where the first equality holds by (48), the second inequality holds by (50), the third
inequality holds because u(x, 0) is an admissible test function for µ1(Ω0, u

2
1h), and the

fourth inequality holds by Proposition 29 (applied with ω = Ω0 and p = hu2
1).
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We now focus on the two-dimensional convex set Ω0. Since we know from (51) that

µ1(Ω0, hu
2
1) = 3π2

D2 , with eigenfunction u, we can repeat the same arguments as in Step 1

of the proof, with the weight u2
1 replaced by hu2

1. (More precisely, the arguments of Step
1 are repeated working with (hu2

1)-weighted L2 equipartitions of u in Ω0, and applying
Proposition 29 with p = hu2

1).
By this way, we obtain that Ω0 is a circular sector and, as well, all the cells of any (hu2

1)-

weighted L2 equipartition of u in Ω0 are circular sectors Ωi
0, with µ1(Ωi

0, hu
2
1) = 3π2

D2 .
Let us fix a radius in Ω0 which does not belong to ∂Ω0, and look at a sequence of sectors
Ωi

0, of infinitesimal opening angle, having such radius in their closure. On this radius,
hereafter denote by ID, in the limit of a large number of cells, by arguing as in the proof
of (51), we obtain

µ1

(
ID, p

)
=

3π2

D2
, with p(x) :=

(
x+

D

2

)
hu2

1 .

By Corollary 11 we have, for some positive constant k, p(x) = k cos2
(
π
Dx
)
. This implies

in particular that p(x) ∼
(
x+ D

2

)2
as x→ −D

2 , which is not possible since

p(x) =
(
x+

D

2

)
hu2

1 = o
(
x+

D

2

)2
as x→ −D

2
.

We have thus reached a contradiction and our proof is achieved. �

5. Estimate of the excess: the geometric play of cells in N dimensions

In this section we prove Theorem 1, first in dimension N = 2 and then in higher dimen-
sions.

5.1. The case N = 2. We start by giving some preliminaries. For convenience, let us
introduce a geometric quantity, related to the width, which will be used throughout the
proof. Once fixed a diameter ID of Ω, we define the depth η of Ω with respect to ID as
the maximum of the length of all sections orthogonal to it. We point out that, denoting
by w⊥ the width of Ω in direction orthogonal to ID, it holds

η ≤ w⊥ ≤ 2η,
ηD

2
≤ |Ω| ≤ ηD, |Ω| ≤ wD.

Moreover, the inequality wD
2 ≤ |Ω| holds provided the width is small with respect to the

diameter, precisely w ≤
√

3
2 D (see [38, 48]). In particular, when the latter inequality is

satisfied, the depth and the width are equivalent, in the sense that

(52)
w

2
≤ η ≤ 2w .

Next proposition ensures the existence of a dimensional constant, related to the local-
ization of u2, which will intervene in the proof of Theorem 1.

Proposition 32. There exists a dimensional constant Λ such that: if Ω ⊂ R2 is an

open bounded convex set with diameter D, width w ≤
√

3
2 D, and Dirichlet eigenfunctions

u1, u2, and ω is cell of a u2
1-weighted L2 equipartition of u = u2

u1
in Ω composed by n cells,
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in an orthogonal coordinate system such that a diameter of Ω is the horizontal segment(
− D

2 ,
D
2

)
× {0}, the vertical sections ωx1 := ω ∩ ({x1} × R) satisfy

(53) ‖H1(ωx1)‖L∞(−D
2
,D

2
) ≥ Λ

w

n
.

Proof. Let us first prove the following claim: if Ω is an open bounded convex set of
diameter (−D

2 ,
D
2 )×R and depth η with respect to such diameter, for any open bounded

convex set ω ⊆ Ω, setting ωx1 := ω ∩ ({x1} × R), it holds∫
ω
|u|2 ≤ η ‖H1(ωx1)‖L∞(−D

2
,D

2
)

∫
Ω
|∇u|2 ∀u ∈ H1

0 (Ω) .

It is not restrictive to prove the above inequality for u ∈ C∞0 (Ω). Let x = (x1, x2) ∈ Ω,

and set Ωx1 := Ω∩({x1}×R). We have u(x) =
∫ x2

−∞
∂u
∂x2

(x1, s) ds, and ‖H1(Ωx1)‖L∞(0,D) ≤
η, and hence, by Hölder inequality,

|u(x)|2 ≤ η
∫

Ωx1

∣∣ ∂u
∂x2

(x1, s)
∣∣2 ds ∀x = (x1, x2) ∈ ω .

Therefore, ∫
ω
|u|2 ≤ η

∫
ω

[ ∫
Ωx1

∣∣ ∂u
∂x2

(x1, s)
∣∣2 ds] dx1 dx2

= η

∫
Ω
χω(x1, x2)

[ ∫
Ωx1

∣∣ ∂u
∂x2

(x1, s)
∣∣2 ds] dx1 dx2

= η

∫ D
2

−D
2

H1(ωx1)
[ ∫

Ωx1

∣∣ ∂u
∂x2

(x1, s)
∣∣2 ds] dx1

≤ η ‖H1(ωx1)‖L∞(−D
2
,D

2
)

∫
Ω

∣∣∇u|2 .
Now, we apply the claim just proved to the function u2, assuming that ω is a cell of a
u2

1-weighted L2 equipartition of u in Ω. Since∫
ω
u2

2 =

∫
ω
|u|2u2

1 =
1

n

∫
Ω
|u|2u2

1 =
1

n

∫
Ω
u2

2 =
1

n
,

we obtain

(54)
1

n
≤ η ‖H1(ωx1)‖L∞(0,D)

∫
Ω
|∇u2|2 ≤ η ‖H1(ωx1)‖L∞(0,D)λ2(Ω) .

Denoting by ρ the inradius of Ω, for a dimensional constant Λ we have

(55) λ2(Ω) ≤ Λ

ρ2
≤ 9Λ

w2
,

where the first inequality follows from the fact that Ω contains a disk of radius ρ (thanks
to the monotonicity of λ2(·) under inclusions), and the second one from the elementary
inequality w ≤ 3ρ. The conclusion follows by combining (54) and (55), and recalling

that η and w satisfy (52) (thanks to the assumption w ≤
√

3
2 D). �
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Remark 33. A consequence of Proposition 32 is the following information on the mass
distribution of the second eigenfunction. Assuming that the width of the set Ω is small
and the diameter of the cell ω is large, we get from (53) that

|ω| ≥ Λ′
|Ω|
n

= Λ′|Ω|
∫
ω
u2

2,

so that u2
2 does not localize on ω. This means that, though in general u2

2 may localize
(for instance on thinning triangles), the concentration of mass cannot occur on cells with
large diameter.

Proof of Theorem 1 in dimension N = 2. It is not restrictive to prove the statement
under the hypotheses that Ω is smooth, D = π, and a diameter of Ω is the segment(
− π

2 ,
π
2

)
× {0}. Moreover, thanks to Theorem 31, we can assume that w ≤ w0 :=

√
3

2 π,
so that (52) holds. Along the proof, the maximal admissible width will be diminished
when necessary, and will be still denoted by w0 (equivalently, we are going to indicate
by η0 a maximal admissible value for the depth η with respect to the diameter we have
fixed).
By Proposition 41, we have λ2(Ω)− λ1(Ω) = µ1(Ω, u2

1), with first eigenfunction u = u2
u1

.

For every n, we let {Ω1, . . . ,Ωn} be a u2
1-weighted L2 equipartition of u in Ω. We set

Di := diam(Ωi) and hi the profile function of Ωi in direction orthogonal to a fixed
diameter of Ωi.
We let c be some number in (0, 1), whose value will be diminished when necessary during
the proof, its final choice being postponed to the end of the proof.
For the benefit of the reader, before giving the detailed proof, we provide below the list
of cases, along with a very short heuristic description for each of them (some types of
cells are represented in Figure 3).

– Case 1: For a sequence of integers n, there exists In ⊂ {1, . . . , n} with card(In) ≥ n
2 ,

such that, ∀i ∈ In, the diameter of Ωi is “small”. In this case, by applying Proposition
29 to cells Ωi for i ∈ In, we obtain the quantitative gap inequality.

– Case 2: For a sequence of integers n, there exists I ′n ⊂ {1, . . . , n} with card(I ′n) ≥ n
2 ,

such that, ∀i ∈ I ′n, the diameter of Ωi “large”. In this case we prove that the cells Ωi

for i ∈ I ′n must intersect the vertical walls of a strip based on the diameter of Ω, so that
they can be ordered vertically and they have a polygonal boundary inside the strip.

– Case 2.1: For a sequence of integers n, there exists Jn ⊂ I ′n, with card(Jn) ≥ n
4 , such

that, ∀i ∈ Jn, Ωi has a vertex in the strip. In this case we reduce ourselves back to a
similar situation as in Case 1, so we prove the quantitative inequality.

– Case 2.2: For a sequence of integers n, there exists J ′n ⊂ I ′n, with card(J ′n) ≥ n
4 , such

that, ∀i ∈ J ′n, Ωi has no vertex in the strip. In this case we prove that, ∀i ∈ J ′n, the
function hi representing the profile of Ωi in direction orthogonal to its diameter is affine.
Then we distinguish two further sub-cases.

– Case 2.2.1: For a sequence of integers n, there exists Sn ⊂ J ′n, with card(Sn) ≥ n
8 ,

such that, ∀i ∈ Sn, the Rayleigh quotient of u on Ωi with respect to the measure u2
1 dx

is “large”. In this case we obtain the quantitative inequality.
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– Case 2.2.2: For a sequence of integers n, there exists S ′n ⊂ J ′n with card(S ′n) ≥ n
8 ,

such that, ∀i ∈ S ′n, the above mentioned Rayleigh quotient is “small”. In this case we
prove that, for i in a subfamily S′′n ⊂ S ′n, with card(S ′′n) ≥ n

16 , an extra-term δi > 0,

proportional to (1− hmaxi

hmini
)2, can be added in our lower bound for the Neumann eigenvalue

of the diameter of Ωi with weight hiu
2
1.

– Case 2.2.2.1: For a sequence of integers n, there exists Zn ⊂ S ′′n, with card(Zn) ≥ n
32 ,

such that, ∀i ∈ Zn, δi is “large”. In this case we obtain the quantitative inequality.

– Case 2.2.2.2: For a sequence of integers n, there exists Z ′n ⊂ S ′′n, with card(Z ′n) ≥ n
32 ,

such that, ∀i ∈ Z ′n, δi is “small”. Loosely speaking, this enables us to minorate the
length of the two segments of intersection between any of these cells and the vertical
walls of the strip, implying that our pile is sufficiently high. And since it is composed
by cells with “large” diameter, by the Pythagorean Theorem we eventually find in Ω a
segment larger than its diameter, reaching a contradiction.

We now detail each of the cases above.

 

 

Ω
Ω1

Ω2

Ω3

Ω4

Figure 3. A partition of Ω as in the proof of Theorem 1, in which the
indices 1 and 3 belong to In, 4 belongs to Jn ⊂ I ′n, and 2 belongs to
J ′n ⊂ I ′n. The dashed vertical lines are x1 = ±π−a

2 and x1 = ±π−2a
2 .

Case 1. For a sequence of integers n, there exists In ⊂ {1, . . . , n} with card(In) ≥ n
2 ,

such that,

Di ≤
√
π2 − cη2 ∀i ∈ In ⊂ {1, . . . , n} .

When applying Proposition 29 to cells Ωi for i ∈ In, the extra-term at the right hand
side of inequality (45) admits the following lower bound

(56)
(D −Di)

3

D5
≥ c3

8π8
η6 .
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Therefore we can prove the validity of the inequality (3), with c = C c3

210π8 , being C the
absolute constant appearing in Proposition 29. Indeed, we have

µ1(Ω, u2
1) ≥ 1

n

n∑
i=1

µ1(Ωi, u
2
1) =

1

n

[∑
i 6∈In

µ1(Ωi, u
2
1) +

∑
i∈In

µ1(Ωi, u
2
1)
]

≥ 1

n

[
3 card(Icn) +

(
3 + C

c3

8π8
η6
)

card(In)
]

≥ 3 + C c3

16π8 η
6 ≥ 3 + C c3

210π8w
6 ,

where the first inequality follows from Lemma 28, the second one from Proposition 29
(taking into account (56)), and the last one from the assumption card(In) ≥ n

2 and (52).

Case 2: For a sequence of integers n, there exists I ′n ⊂ {1, . . . , n} with card(I ′n) ≥ n
2 ,

such that,

Di ≥
√
π2 − cη2 ∀i ∈ I ′n .

Let a be a parameter such that 6η2
0 ≤ a < π

4 . We observe that for every i ∈ I ′n, Ωi

must intersect the vertical lines {x1 = −π−a
2 } and {x1 = π−a

2 }. Indeed, assume by

contradiction this is not true. Since by the choice of a it holds πa− a2

4 > 5η2
0, the length

of the projection of Ωi onto the vertical axis would be bounded from below by√
D2
i − (π − a

2
)2 ≥

√
π2 − cη2 − π2 + πa− a2

4
>
√
−cη2

0 + 5η2
0 ≥ 2η0 ≥ w⊥ ,

yielding a contradiction.
As a consequence of this fact, for i ∈ I ′n, the cells Ωi can be ordered in a vertical way,
and inside the strip

(
− π−a

2 , π−a2

)
× R none of their boundaries (except for the bottom

and the top cell) can contain portions of ∂Ω. Taking into account that Ωi are convex
sets obtained cutting by lines we infer that, for every i ∈ I ′n exception made for two
indices, the intersection of Ωi with the strip

[
− π−a

2 , π−a2

]
× R is a polygon.

We proceed to analyse Cases 2.1 and 2.2.

Case 2.1: For a sequence of integers n, there exists Jn ⊂ I ′n, with card(Jn) ≥ n
4 , such

that

Ωi has a vertex in
(
− π − 2a

2
,
π − 2a

2

)
× R ∀i ∈ Jn.

For i ∈ Jn, denoting by Vi one of its vertices inside the strip
(
− π−2a

2 , π−2a
2

)
×R (meant

as a vertex of the polygon Ωi ∩ (
[
− π−2a

2 , π−2a
2

]
× R)), there exists a neighbouring cell

Ωj such that Vi ∈ ∂Ωi ∩ ∂Ωj . The diameter Dj of such Ωj satisfies

Dj ≤
√

(π − a)2 + 4η2 ≤
√
π2 − 26η2

0 ,

where the last inequality holds because we are assuming that 6η2
0 ≤ a < π

4 . Since the

neighbouring cell Ωj can touch at most another cell Ω̃i with i ∈ Jn, we conclude that, in
Case 2.1, for a sequence of integers n there exists Wn ⊂ {1, . . . , n}, with card(Wn) ≥ n

8 ,
such that

Dj ≤
√
π2 − 26η2

0 ∀j ∈ Wn .
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Then, by arguing as in Case 1, we can prove (3) (for a suitable dimensional constant c).

Case 2.2: For a sequence of integers n, there exists J ′n ⊂ I ′n, with card(J ′n) ≥ n
4 , such

that

Ωi has no vertex in
(
− π − 2a

2
,
π − 2a

2

)
× R ∀i ∈ J ′n.

For i ∈ J ′n, we fix a diameter of Ωi, and we observe that the angle αi it forms with the hor-

izontal axis (i.e., with the diameter of Ω) does not exceed arcsin( 2η
Di

) ≤ arcsin( 2η√
π2−cη2

).

Then, if we work in a new local coordinate system in which the fixed diameter of Ωi is
the segment

(
− Di

2 ,
Di
2

)
×{0}, and we denote by hi the profile function of Ωi in vertical

direction, the function hi is necessarily affine on
(
− Di−4a

2 , Di−4a
2

)
× {0}, as soon as

`η,a :=
a

cos(arcsin( 2η√
π2−cη2

))
+ η

2η√
π2 − cη2

≤ 2a

(see Figure 4, where the marked angle is at most arcsin( 2η√
π2−cη2

)).

We remark that the above condition is satisfied provided η0 is small enough.

 

 

−π
2 −π−4a

2
π−4a

2
π
2

hmini

Lmini

Lmaxi

hmaxi

`η,a

Figure 4. The geometry of a cell Ωi in Case 2.2 and subsequent cases.
The dashed vertical lines are x1 = ±π−a

2 , x1 = ±π−2a
2 , x1 = ±π−4a

2 .

We proceed to analyse Cases 2.2.1 and 2.2.2.

Case 2.2.1: For a sequence of integers n, there exists Sn ⊂ J ′n with card(Sn) ≥ n
8 , such

that ∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 4 ∀i ∈ Sn.
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In this case we can easily conclude by arguing in a similar way as done in Case 1. Indeed
we have

µ1(Ω, u2
1) =

1

n

n∑
i=1

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 1

n

[ ∑
i 6∈Sn

µ1(Ωi, u
2
1) +

∑
i∈Sn

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]
≥ 1

n

[
3 card(Scn) + 4card(Sn)

]
≥ 3 +

1

8
.

The inequality (3) follows, for a dimensional constant c, provided w0 is small enough.

– Case 2.2.2: For a sequence of integers n, there exists S ′n ⊂ J ′n with card(S ′n) ≥ n
8 , such

that ∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≤ 4 ∀i ∈ S ′n.

We observe that there exists S ′′n ⊂ S ′n, with card(S ′′n) ≥ n
16 , such that

|Ωi| ≤
17

n
|Ω| ∀i ∈ S ′′n .

Indeed, otherwise it would be |Ωi| ≥ 17
n for at least n

16 cells in S ′n, and the union of such
cells would have measure strictly larger than the measure of Ω. Let us now prove that,
for every i ∈ S ′′n, denoting by K the absolute constant appearing in Theorem 21 (ii), and
by hmaxi and hmini the maximum and minimum of hi on IDi−4a, it holds

(57) µ1(IDi , hiu
2
1) ≥ 3 +

8K

π2

(
1− hmaxi

hmini

)2
.

To that aim we apply Lemma 26 with ω0 = Ωi, p = u2
1, and v = u. Notice that this is

possible because we are assuming that Ω is smooth, so that p is uniformly continuous in
Ωi, and u ∈W 2,∞(Ωi). We obtain

(58)

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥
{
µ1(IDi , hiu

2
1)− α(ε)|Ωi|∫

Ωi
u2u2

1

[
1 + µ1(IDi , hiu

2
1)
(

1 + β(ε)|Ωi|
)]}

≥
{
µ1(IDi , hiu

2
1)− α(ε)|Ωi|

1
n

[
1 +

3

2
µ1(IDi , hiu

2
1)
]}

,

where the last inequality holds provided ε is so small that
(
1 + β(ε)|Ω|

)
≤ 3

2 (which is
true as soon as n is sufficiently large).
Taking into account that cells Ωi for i ∈ S ′′n satisfy the condition |Ωi| ≤ 17

n |Ω|, the above
inequality implies∫

Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥
{
µ1(IDi , hiu

2
1)
[
1− 3

2
· 17|Ω| · α(ε)

]
− 17|Ω| · α(ε)

}
.

We infer that, again for ε sufficiently small, it holds∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 6

7
µ1(IDi , hiu

2
1)− 2 .
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Recalling that, for i ∈ S ′′n, the left hand side of the above inequality does not exceed 4,
we infer that

(59) µ1(IDi , hiu
2
1) ≤ 7 .

This enables us to apply Theorem 21 (ii), and conclude that (57) holds.
We proceed to analyse Cases 2.2.2.1 and 2.2.2.2.

Case 2.2.2.1: For a sequence of integers n, there exists Zn ⊂ S ′′n, with card(Zn) ≥ n
32 ,

such that
8K

π2

(
1− hmini

hmaxi

)2
≥ cη2 ∀i ∈ Zn.

By (57) and (59), for i ∈ Zn it holds

µ1(IDi , hiu
2
1) ≥ 3 + cη2 and µ1(IDi , hiu

2
1) ≤ 7 .

Then, by (58) we obtain ∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 3 + cη2 − 12α(ε)|Ωi|
1
n

.

Hence,

µ1(Ω, u2
1) =

1

n

n∑
i=1

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 1

n

[ ∑
i 6∈Zn

µ1(Ωi, u
2
1) +

∑
i∈Zn

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]
≥ 1

n

[
3 card(Zcn) + (3 + cη2)card(Zn)

]
− 12α(ε)|Ω|

≥ 3 + c
32η

2 − 12α(ε)|Ω| ,

and the conclusion follows (as usual, for a suitable choice of c).

Case 2.2.2.2: For a sequence of integers n, there exists Z ′n ⊂ S ′′n, with card(Z ′n) ≥ n
32 ,

such that
8K

π2

(
1− hmini

hmaxi

)2
≤ cη2 ∀i ∈ Z ′n .

We shall now prove that, provided η0 and a are small enough, and c is well-chosen (as
well, small enough), this case cannot occur.
The contradiction argument relies on the following claim: denoting by Lmini ≤ Lmaxi the
lengths of the intersections of Ωi with the lines {x1 = −π−4a

2 } and {x1 = π−4a
2 }, we have

(60) for η0, a� 1 , Lmini ≥ Λ

8

w

n
∀i ∈ Z ′n ,

where Λ is the dimensional constant appearing in Proposition 32.
We first prove (60) and then we show how it leads to a contradiction.
For i ∈ Z ′n, choosing cη2

0 ≤ 2K
π2 , it holds(

1− hmini

hmaxi

)2
≤ π2c

8K
η2 ≤ 1

4
,
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A1
B1

A2

Ωt
i

Ωb
i

B2

Figure 5. The geometry of the pile of cells in Case 2.2.2.2. The dashed
vertical lines are x1 = ±π−a

2 .

so that
hmini

hmaxi

≥ 1

2
.

The above inequality, combined with the area inequality 1
2hminDi ≤ ηπ, implies that

hmax ≤ 4ηπ
Di

. In turn this implies that, if αi is the angle already considered in Case 2.2
formed between the diameters of Ω and Ωi, it holds

hmax · sinαi ≤
4ηπ√
π2 − cη2

2η√
π2 − cη2

.

Hence, for η0 sufficiently small, we have hmax · sinαi ≤ a, which ensures that the two
segments of lengths Lmini and Lmaxi are interior to the trapeze with bases given by the
two segments of lengths hmini and hmaxi and oblique sides given by portions of ∂Ωi (see
Figure 4). This implies via Thales Theorem that

Lmini

Lmaxi

≥ hmini

hmaxi

≥ 1

2
.

Denoting by (Ωi)x1 the intersection of Ωi with the straight line {x1} × R, we have

(61) Lmini ≥ 1

2
Lmaxi ≥ 1

4
‖H1((Ωi)x1)‖L∞(Iπ) ≥

Λ

4

w

n
,

where the second inequality is satisfied provided a is small enough, and the third one
holds by Proposition 32. This completes the proof of claim (60).
Eventually, let us show how (60) yields a contradiction. Let Ωb

i and Ωt
i be the bottom and

the top cell in the family of cells Ωi, for i ∈ Z ′n. Let A1B1 and A2B2 be two diametral
segments respectively for Ωb

i and Ωt
i, and consider the quadrilateral A1B1A2B2 (see

Figure 5).
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We can estimate from below the lengths of the segments A1A2 and B1B2 by the lengths
of their orthogonal projections on the vertical lines {x1 = −π−4a

2 } and {x1 = π−4a
2 }.

Applying claim (60) to all the cells Ωi for i ∈ Z ′n (exception made for Ωb
i and Ωt

i), and
recalling that card(Z ′n) ≥ n

32 we get

min
{
A1A2, B1B2

}
≥ Λ

4

w

n

( n
32
− 2
)
≥ Λ

256
w ,

where the last inequality holds for n large enough. On the other hand, since Z ′n ⊆ S ′′n ⊆
S ′n ⊆ J ′n ⊆ I ′n, it holds

min
{
A1B1, A2B2

}
≥
√
π2 − cη2 .

Then, at least one of the two diagonals of the quadrilateral A1B1A2B2 turns out to be
larger than the diameter of Ω, yielding a contradiction. Namely, since at least one of
the inner angles of the quadrilateral is larger than or equal to π

2 , we have

max
{
A1B2, A2B1

}
≥
[
(π2 − cη2) +

( Λ

256

)2
w2
] 1

2
> π

where the last inequality follows by choosing c small enough. Having reached a contra-
diction, our proof is achieved. �

5.2. The case N ≥ 3. The main tool to prove Theorem 1 for a domain Ω in dimension
N ≥ 3 is the following quantitative estimate of a weighted two-dimensional Rayleigh
quotient of u on suitable planar sections of Ω.

Theorem 34. Let N ≥ 3. There exists a dimensional constant c > 0 such that:

– for every open bounded convex domain Ω in RN of diameter D and width w, with
Dirichlet eigenfunctions u1, u2,
– for every planar subset U of Ω which, in a suitable orthogonal coordinate system
{e1, . . . , eN} with eN in the direction of the width of Ω, can be written as

U =
{
x ∈ Ω : xi = 0 ∀i = 1, . . . , N − 2 , a ≤ xN−1 ≤ b

}
,

– for every function h : U → (0, 1] independent of xN and
(

1
N−2

)
-concave, such that

(62)

∫
U
|∇Uu2|2h ≤ 2λ2(Ω)

∫
U
|u2|2h ,

if u := u2
u1

satisfies
∫
U uhu

2
1 = 0, and u2 is not identically zero on U , it holds∫

U |∇Uu|
2hu2

1∫
U |u|2hu

2
1

≥ 3π2

D2
+ c

w6

D8
.

For the proof of Theorem 34, we need the following preliminary results, which generalize
respectively Proposition 29 and Proposition 32.
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Proposition 35. There exists an absolute constant C such that: if all the assumptions
of Theorem 34 are satisfied, and ω is a cell of a (hu2

1)-weighted L2 equipartition of u in
U , of diameter d, it holds

(63)

∫
ω |∇Uu|

2hu2
1∫

ω |u|2hu
2
1

≥ 3π2

D2
+ C

(D − d)3

D5
.

Proof. For ε > 0 small, we set

ωε := Ω ∩
{
x : (xN−1, xN ) ∈ ω , (x2

1 + · · ·+ x2
N−2)

1
2 < ε

(h(xN−1)

γN−2

) 1
N−2

}
,

where γN−2 is the measure of the unit ball in RN−2.
Since ωε is an open bounded convex subset of Ω, denoting by dε its diameter, by Propo-
sition 29 we have

µ1(ωε, u
2
1) ≥ 3π2

D2
+ C

(D − dε)3

D5
.

From this inequality, taking as a test function for µ1(ωε, u
2
1) the function ũ− cε, where

ũ(x) := u(0, . . . , 0, xN−1, xN ) and cε :=

∫
ωε
ũu2

1∫
ωε
u2

1

,

we infer that

(64)
1

εN−2

∫
ωε
|∇ũ|2u2

1

1
εN−2

∫
ωε
|ũ− cε|2u2

1

≥ 3π2

D2
+ C

(D − dε)3

D5
.

In the limit as ε→ 0 we have

1

εN−2

∫
ωε

|∇xN−1,xN ũ|
2u2

1 →
∫
ω
|∇Uu|2hu2

1 ,

where we have exploited in particular the fact that h is a bounded
(

1
N−2

)
-concave func-

tion on U depending only on the variable xN−1, so that it is continuous on U . In a
similar way, we have

1

εN−2

∫
ωε

ũu2
1 →

∫
ω
uhu2

1 = 0 and
1

εN−2

∫
ωε

u2
1 →

∫
ω
hu2

1 > 0 ,

where the equality
∫
ω uhu

2
1 = 0 holds because ω is a cell of a (hu2

1)-weighted L2 equipar-
tition of u in U . It follows that cε → 0, and hence

1

εN−2

∫
ωε

|ũ− cε|2 →
∫
ω
|u|2hu2

1 .

Therefore, the inequality (63) follows from (64) by passing to the limit as ε→ 0. �

Proposition 36. There exists a dimensional constant Λ such that: if all the assumptions
of Theorem 34 are satisfied, and ω is a cell of a (hu2

1)-weighted L2 equipartition of u in
U composed by n cells, setting ωxN−1 := ω ∩ ({xN−1} × ReN ), it holds

‖H1(ωxN−1)‖L∞(a,b) ≥ Λ
w

n
.
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Proof. We consider the restriction of u2 to U , and we argue in a similar way as in
the proof of Proposition 32. Denoting by ηU the depth of U in direction eN , we have
u2(xN−1, xN ) =

∫ xN
−∞

∂u
∂xN

(xN−1, s) ds, and ‖H1(ωxN−1)‖L∞(a,b) ≤ ηU , and hence

|u2(xN−1, xN )|2 ≤ ηU
∫
UxN−1

∣∣ ∂u2

∂xN
(xN−1, s)

∣∣2 ds ∀(xN−1, xN ) ∈ U .

Since h is independent of xN , namely h = h(xN−1), multiplying the above inequality by
h we obtain the following inequality holding for every (xN−1, xN ) ∈ U :

(65) |u2(xN−1, xN )|2h(xN−1) ≤ ηU
∫
UxN−1

∣∣ ∂u2

∂xN
(xN−1, s)

∣∣2h(xN−1) ds

Integrating over ω and using (62), we obtain∫
ω
|u2|2h ≤ ηU

∫
ω

[ ∫
UxN−1

∣∣ ∂u2

∂xN
(xN−1, s)

∣∣2h(xN−1) ds
]
dxN−1 dxN

= ηU

∫
U
χω(xN−1, xN )

[ ∫
UxN−1

∣∣ ∂u2

∂xN
(xN−1, s)

∣∣2h(xN−1) ds
]
dxN−1 dxN

= ηU

∫ b

a
H1(ωxN−1)

[ ∫
UxN−1

∣∣ ∂u2

∂xN
(x1, s)

∣∣2h(xN−1) ds
]
dxN−1

≤ ηU · ‖H1(ωxN−1)‖L∞(a,b) · 2λ2(Ω)

∫
U
|u2|2h

≤ ηU · ‖H1(ωxN−1)‖L∞(a,b) · 2
Λ

w2
Ω

∫
U
|u2|2h ,

where, for the sake of clearness, we have indicated by wΩ the width of Ω. Since ω is a
cell of a (hu2

1)-weighted L2 equipartition of u in U , we infer that

‖H1(ωxN−1)‖L∞(a,b) ≥
1

2Λ

1

n

w2
Ω

ηU
≥ 1

4Λ

wΩ

n
,

where the last inequality holds because ηU ≤ 2wΩ. �

Remark 37. If in the above proposition the diameter of U has length at least 9
10D, the

angle it forms with the direction eN−1 is at most arcsin( 10
9DwΩ). Then the conclusion

of the proposition continues to hold, possibly with a different constant Λ, if the local
system of cartesian coordinates is changed into (e′N−1, e

′
N ), being e′N−1 aligned with the

diameter of U .

Proof of Theorem 34. It is not restrictive to prove the statement under the hypotheses
that Ω is a smooth domain with diameter π and small width. As above, for the sake of
clearness, we denote by wΩ the width of Ω, and by ηU the depth of U in direction eN .
We observe that, thanks to the assumption (62), ηU and wΩ are comparable. Indeed,
ηU ≤ 2wΩ. To show the converse, namely that also wΩ is controlled by ηU , we start from
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the pointwise inequality (65), which holds on U , and we integrate it on U . Proceeding
as in the proof of Proposition 36, we arrive at∫

U
|u2|2h ≤ ηU · ‖H1(UxN−1)‖L∞(a,b) · 2

Λ

w2
Ω

∫
U
|u2|2h .

We infer that ∫
U
|u2|2h ≤ η2

U · 2
Λ

w2
Ω

∫
U
|u2|2h ,

which shows that

(66) ηU ≥
1√
2Λ

wΩ .

Once we know that the quantities wΩ and ηU are equivalent, we indicate by w0 and
η0 respectively upper bounds for wΩ and ηU , and we proceed by adopting the same
proof line of Theorem 1. The difference is that we have to work with (hu2

1)-weighted
L2 equipartition of u in U , the unique modification with respect to the proof Theorem
1 being the presence of the extra-weight h. For every n, let {Ω1, . . . ,Ωn} be a (hu2

1)-
weighted L2 equipartition of u in U . We set Di := diam(Ωi) and hi the profile function
of Ωi in direction orthogonal to a fixed diameter of Ωi.
We denote by c some number in (0, 1), and we follow step by step the same proof line of
Theorem 1, distinguishing the same cases in cascade. Below we limit ourselves to indicate
which are the required modifications, all the other cases being completely analogue as
in Theorem 1:

– Case 1: In place of applying Proposition 29, apply Proposition 35.
– Case 2.2.2: Lemma 26 is now applied with p = hu2

1 (notice that such p is still
uniformly continuous on Ωi, since h is continuous on U).

– Case 2.2.2.2: In place of applying Proposition 32, apply Proposition 36 (taking
also into account Remark 37).

�

Proof of Theorem 1 in dimension N ≥ 3. It is not restrictive to prove the statement under
the hypotheses that Ω is smooth and strictly convex, D = π, and w is small and attained
in direction eN . For every n ∈ N, let {Ω1, . . . ,Ωn} be a u2

1-weighted L2 equipartition
of u in Ω, obtained by the procedure described in Remark 25, namely using a family
of hyperplanes, all parallel to eN , with normals of the type (cosα1, sinα1, 0, . . . , 0),
(0, cosα2, sinα2, 0, . . . , 0), . . . , (0, . . . , 0, cosαN−2, sinαN−2, 0). For n large, all the cells
become narrow in (N − 2)-directions, so that they become arbitrarily close to a convex
set having at most Hausdorff dimension 2. Since by construction for every cell it holds∫

Ωi
u2

2 = 1
n , for at most n

2 cells it holds
∫

Ωi
|∇u2|2 ≥ 2λ2(Ω)

∫
Ωi
u2

2. Equivalently,

(67)

∫
Ωi

|∇u2|2 ≤ 2λ2(Ω)

∫
Ωi

u2
2 ∀i ∈ In ⊂ {1, . . . , n} with card(In) ≥ n

2
.

For every i ∈ In, by same argument used to prove the inequality (66) in the proof of
Theorem 34, we obtain that the depth ηΩi in direction eN satisfies

(68) ηΩi ≥
1√
2Λ

wΩ ∀i ∈ In .
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We denote by I ′n the subfamily of In such that the diameter Di of Ωi satisfies Di ≤ 9
10π,

and we set I ′′n = In \ I ′n. Applying Proposition 29, we get

µ1(Ωi, u
2
1) ≥ 3 ∀i 6∈ In and µ1(Ωi, u

2
1) ≥ 3 + C

( π
10

)3 ∀i ∈ I ′n .

By Lemma 28 it follows that

µ1(Ω, u2
1) =

∫
Ω |∇u|

2u2
1∫

Ω |u|2u
2
1

≥ 1

n

n∑
i=1

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

≥ 1

n

[∑
i 6∈In

µ1(Ωi, u
2
1) +

∑
i∈I′n

µ1(Ωi, u
2
1) +

∑
i∈I′′n

∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]

≥ 1

n

[
3
(
n− card(In)

)
+
(
3 + C

( π
10

)3)
card(I ′n) + min

i∈I′′n

[∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]
card(I ′′n)

]
.

Therefore, to conclude the proof we are reduced to show that

lim inf
n→+∞

min
i∈I′′n

[∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]
≥ 3 + cw6

Ω .

Indeed in this case we have

µ1(Ω, u2
1) ≥ 3 +

1

2

[
C
( π

10

)3 ∧ c]w6
Ω .

Let in ∈ I ′′n be such that

min
i∈I′′n

[∫
Ωi
|∇u|2u2

1∫
Ωi
|u|2u2

1

]
=

∫
Ωin
|∇u|2u2

1∫
Ωin
|u|2u2

1

.

In the sequel we write for brevity Ωn in place of Ωin . So our target is to show that

lim inf
n→+∞

∫
Ωn |∇u|

2u2
1∫

Ωn |u|2u
2
1

≥ 3 + cw6
Ω .

Let Hn be the intersection of closed halfspaces parallel to eN such that Ωn = Ω ∩Hn.
Up to subsequences, and up to changing the coordinate system, we can assume that Hn

converge in Hausdorff distance to the hyperplane

Π :=
{
x : xi = 0 ∀i = 1, . . . , N − 2

}
.

In the sequel, a point (0, . . . , 0, xN−1, xN ) ∈ Π will be identified with the pair (xN−1, xN ).
Accordingly, the sequence Ωn converge in Hausdorff distance to the set U := Ω ∩ Π,
which is of the kind

U =
{

(xN−1, xN ) : xN−1 ∈ (a, b) , xN ∈ Ω ∩ (xN−1 + ReN )
}
.

We remark that U is nondegenerate, namely it has positive two-dimensional measure.
Indeed, the depth of U in direction eN is strictly positive because, by (68), the depth
of Ωn in direction eN is uniformly bounded from below. Moreover, the length of (a, b)
is strictly positive, because the diameter of Ωn is not smaller than 9π

10 , and cannot be
attained in direction eN (which is the direction of the width, assumed to be small).
Moreover U cannot lie on ∂Ω, thanks to our initial assumption of strict convexity on Ω.
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For every (xN−1, xN ) ∈ Π, we define the function

hn(xN−1) = HN−2
((

Π⊥(xN−1,xN )

)
∩Hn

)
,

where Π⊥(xN−1,xN ) denotes the (N − 2)-affine space passing through (xN−1, xN ) and or-

thogonal to Π.
Up to subsequences, hn

‖hn‖∞ converges a.e. on ReN−1 to a function h such that h = 0

on (−∞, a) ∪ (b,+∞). Moreover, since by the Brunn-Minowski Theorem hn is
(

1
N−2

)
-

concave on (a, b), the convergence is locally uniform on (a, b), h is itself
(

1
N−2

)
-concave

on (a, b), and consequenty satisfies also ‖h‖∞ = 1.
We claim that

(69) lim
n→+∞

1

‖hn‖∞

∫
Ωn
f =

∫
U
fh for every f ∈ C∞(Ω) .

and

(70) u2 is not identically zero on U .

Assume by a moment these two claims hold true. Then we infer that Ω, U , and h satisfy
all the assumptions of Theorem 34. Indeed, recall that Ωn belongs to the family of cells
satisfying (67), and pass to the limit as n→ +∞: by using (69) with f = |∇u2|2 and with
f = u2

2, it follows that assumption (62) is fulfilled. Similarly, recalling that
∫

Ωn uu
2
1 =∫

Ωn u1u2 = 0, and using (69) with f = u1u2, it follows that also the assumption that∫
U uhu

2
1 = 0 is satisfied. Finally, the assumption that u2 does not vanish identically on

U is satisfied by (70). Then, we have

lim
n→+∞

∫
Ωn |∇u|

2u2
1∫

Ωn |u|2u
2
1

=

∫
U |∇u|

2hu2
1∫

U |u|2hu
2
1

≥ 3 + cw6 ,

where the first equality is obtained applying again (69) with f = |u|2u2
1 = u2

2 and
with f = |∇u|2hu2

1, and the second inequality follows from Theorem 34 (since |∇u|2 ≥
|∇Uu|2).
To conclude our proof, we now give the proofs of claims (69) and (70).

• Proof of claim (69): Let δn denote the Hausdorff distance between Ωn and U , and set

U−δn =
{
x ∈ U : dist(x, ∂U) > δn

}
, U δn =

{
x ∈ Π : dist(x, ∂U) < δn

}
.

We have∫
Ωn
f =

∫
Π

∫
Π⊥

(xN−1,xN )

χΩnf =

∫
U−δn

∫
Π⊥

(xN−1,xN )

χΩnf +

∫
Uδn\U−δn

∫
Π⊥

(xN−1,xN )

χΩnf ,

where the integrals over Π⊥(xN−1,xN ) are made with respect to x′ = (x1, . . . , xN−2), while

the integrals over U−δn , U δn \ U−δn are made with respect to (xN−1, xN ).
For (xN−1, xN ) ∈ U−δn , setting h = (x′, 0, 0), we have

f(x′, xN−1, xN ) = f(0, xN−1, xN ) +∇f(0, xN−1, xN ) · h+ o(|h|) ;

for (xN−1, xN ) ∈ (U δn \ U−δn), if (zN−1, xN ) is the projection of (xN−1, xN ) onto U

parallel to eN−1, setting h̃ = (x′, xN−1 − zN−1, 0) we have

f(x′, xN−1, xN ) = f(0, zN−1, xN ) +∇f(0, zN−1, xN ) · h̃+ o(|h̃|) .
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Accordingly, we have∫
U−δn

∫
Π⊥

(xN−1,xN )

χΩnf =

∫
U−δn

hn(xN−1)(f +O(δn)) ,∫
Uδn\U−δn

∫
Π⊥

(xN−1,xN )

χΩnf =

∫
Uδn\U−δn

ψn(xN−1, xN )(f +O(δn)) ,

where ψn is defined by

ψn(xN−1, xN ) := HN−2
((

Π⊥(xN−1,xN )

)
∩ Ωn

)
.

We now divide by ‖hn‖∞ and pass to the limit as n → +∞. Taking into account that
ψn ≤ hn, and that HN−2

(
U δn \ U−δn

)
is infinitesimal, we conclude that

lim
n→+∞

1

‖hn‖∞

∫
Ωn
f = lim

n→+∞

1

‖hn‖∞

∫
U−δn

fhn =

∫
U
fh .

• Proof of claim (70): Assume by contradiction that u2 is identically zero on U . We are
going to show that this implies∫

Ωn |∇u2|2∫
Ωn |u2|2

→ +∞ as n→ +∞ ,

against (67). To that aim we are going to use an argument which amounts roughly to
control the value of the function by the value of its gradient, in the same spirit of the
 Lojasiewicz inequality [39].

For every i ∈ N let us denote by D
(i)
xUu2 the i-th order differential of u2 computed at a

point xU = (0, . . . , 0, xN−1, xN ) of U . Let k ∈ N \ {0} be the smallest natural number

such that, for some point xU of U , D
(k)
xU u2 6= 0. Clearly such k exists: otherwise, by the

analyticity of u2 inside Ω, u2 would be identically zero.
In order to estimate the Rayleigh quotient of u2 over Ωn, we distinguish between points
x = (x′, xN−1, xN ) ∈ Ωn such that (xN−1, xN ) ∈ U and such that (xN−1, xN ) 6∈ U .
For x = (x′, xN−1, xN ) ∈ Ωn such that (xN−1, xN ) ∈ U , setting xU = (0, . . . , 0, xN−1, xN )
and ξ = (x′, 0, 0), we have

u2(x) =
k∑
i=0

1

i!
D(i)
xU
u2[ξ(i)] + o(|ξ|k)

∇u2(x) =
k−1∑
i=0

1

i!
D(i)
xU
∇u2[ξ(i)] + o(|ξ|k−1) .

Since

D(k)
xU
u2[ξ(k)] = D(k−1)

xU
(∇u2 · ξ)[ξ(k−1)] = ξ ·

(
D(k−1)
xU

(∇u2)[h(k−1)]
)
,

by applying Cauchy-Schwarz inequality we obtain

|D(k)
xU
u2[ξ(k)]| ≤ |ξ||D(k−1)

xU
(∇u2)[ξ(k−1)]| .

It follows that

(71) |u2(x)|2 ≤ |ξ|2|∇u2(x)|2 + o(|ξ|2k) ∀x ∈ Ωn : (xN−1, xN ) ∈ U .
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For x ∈ Ωn such that (xN−1, xN ) 6∈ U , we let (zN−1, xN ) be the point introduced in the

above proof of claim (69), we set ξ̃ = (x′, xN−1−zN−1, 0), and we argue in a similar way
as above. We obtain

(72) |u2(x)|2 ≤ |ξ̃|2|∇u2(x)|2 + o(|ξ̃|2k) ∀x ∈ Ωn : (xN−1, xN ) 6∈ U .

Integrating |u2|2 over Ωn and taking into account that, by the ( 1
N−2)-concavity of hn,

for small δn we have
∫
U hn ≥

|Ωn|
2 , we get, for some positive constants C1 and C2,

C1|h|2k
∫
U
hn ≥

∫
Ωn
|u2|2 ≥

1

(k!)2

∫
U
hn
(
|D(k)

xU
u2[h(k)]|2 + o(|h|2k)

)
≥ C2|h|2k

∫
U
hn .

Now, summing (71)-(72) over Ωn, we obtain

δ2
n

∫
Ωn |∇u2|2∫
Ωn |u2|2

≥ 1 + o(1) .

This is not possible since δn → 0 and, from (67), the ratio
∫
Ωn |∇u2|2∫
Ωn |u2|2

is bounded from

above. As a conclusion, our assumption that u2 is identically zero on U fails to be true,
yielding (70). �

6. The Neumann gap

Through the addition of few specific new results, the approach developed in the previous
sections leads to a quantitative lower bound for the first nontrivial Neumann eigenvalue
µ1(Ω, φ) defined according to (2), where φ is a generic positive weight in L1(Ω) which is
no longer related to the first eigenfunction, but is power-concave, a particular case being
φ ≡ 1.
Actually, the statement of Theorem 2 holds more generally with µ1(Ω) replaced by
µ1(Ω, φ), being φ any weight which is ( 1

m)-concave for some m ∈ N \ {0}. Such assump-
tion is needed not only for the existence of an eigenfunction u (see Proposition 43 in
Appendix), but also for the control of the constant c in Theorem 2.
The proof proceeds along the same line as Theorem 1, being considerably simpler and
yet demanding some nontrivial new ingredients. The main difficulty arises from the fact
that an eigenfunction u can no longer be identified with u2

u1
. We point out that this

identification was crucial to obtain Proposition 32, which in turn allowed to reach a
contradiction in Case 2.2.2.2 of our proof of Theorem 1 for N = 2.
To overcome such difficulty, we manage to acquire a control on the Lebesgue measure of
the cells of the partition in terms of the width of Ω. This will be possible thanks to the
following new geometrically explicit L∞ estimate for Neumann eigenfunctions (see [15]
for global Lipschitz regularity results):

Proposition 38. There exists a positive constant C depending only on N + m such
that, for every open bounded convex domain Ω ⊂ RN with diameter DΩ and any positive
1
m -concave weight φ, a first eigenfunction u associated with the Neumann eigenvalue
µ1(Ω, φ) satisfies

(73) ‖u‖L∞(Ω) ≤ Cµ1(Ω, φ)
N+m

2
DN+m

Ω(∫
Ω φ
)1/2 ‖u‖L2(Ω,φ).
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Remark 39. (i) In the particular case φ ≡ 1, the estimate (73) reads

(74) ‖u‖L∞(Ω) ≤ Cµ1(Ω)
N
2
DN

Ω

|Ω|
1
2

‖u‖L2(Ω) .

(ii) As it can be seen for the proof below in case φ = 1, the result continues to hold for
any Neumann eigenpair.

(iii) Combined with the result proved by Maz’ya in [43, Section 2], and with the upper
bound for the relative isoperimetric constant stated in [17, Theorem 1.4], the inequality
(74), written for an arbitrary Neumann eigenpair (µk(Ω), uk) gives the following gradient
estimate

‖∇uk‖L∞(Ω) ≤ Cµk(Ω)
N
2

+1D
N+1
Ω

|Ω|
1
2

‖uk‖L2(Ω).

Proof. Let us start by proving the result for φ ≡ 1. Let a1 ≥ a2 ≥ · · · ≥ aN denote the
semi-axes of the John ellipsoid of Ω. Since (74) is invariant under scaling, we are going
to assume without loss of generality that a1 = 1. In order to reduce ourselves to work
with domains having the unit ball as John ellipsoid, we perform the change of variables
X = T (x), with

X1 = x1, X2 =
x2

a2
, . . . , XN =

xN
aN

.

Taking into account that a1 is comparable to DΩ, it is readily checked that, in terms of
the function v defined on T (Ω) by

v(X1, . . . , XN ) := u(X1, a2X2, . . . , aNXN ),

the inequality we want to prove becomes:

(75) ‖v‖L∞(T (Ω)) ≤ Cµ
N
2

1 (Ω)‖v‖L2(T (Ω)) .

Setting for brevity A := T (Ω) and c = (c1, . . . , cN ) := ( 1
a2

1
, . . . , 1

a2
N

), it holds

µ1(Ω) :=

∫
Ω |∇u|

2∫
Ω u

2 =

∑N
i=1

∫
A

∣∣ ∂v
∂Xi

∣∣2ci dX∫
A v

2 dX
=: µc(A) ,

and the optimality of u can be reformulated as the following variational property of v

(76)

N∑
i=1

∫
A
ci
∂v

∂xi

∂ϕ

∂xi
= µc(A)

∫
A
vϕ ∀ϕ ∈ H1(A) .

We now use the Moser iteration scheme: we claim that, if a solution v to (76) belongs

to Lp(A), then it belongs also to L
pN
N−1 (A); more precisely, for a dimensional constant

C, it holds

(77)
(∫

A
|v|

pN
N−1

)N−1
N ≤ Cµc(A)

p2

2(p− 1)

∫
A
|v|p .
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To prove the claim we observe that, if v ∈ Lp(A), we can take |v|p−2v as test function
in (76). This gives

N∑
i=1

∫
A
ci
∂v

∂xi

∂|v|p−2v

∂xi
= µc(A)

∫
A
|v|p.

Since ci ≥ 1, we infer that

p− 1(p
2

)2 N∑
i=1

∫
A

(∂|v| p2
∂xi

)2
≤ µc(A)

∫
A
|v|p,

and hence ∫
A

∣∣∣∇|v| p2 ∣∣∣2 =
N∑
i=1

∫
A

(∂|v| p2
∂xi

)2
≤ µc(A)

p2

4(p− 1)

∫
A
|v|p.

Since ∫
A
|v|p +

∫
A
|∇|v|p| =

∫
A
|v|p +

∫
U

∣∣∣∇(|v|
p
2 )2
∣∣∣ =

∫
A
|v|p + 2

∫
A
|v|

p
2

∣∣∣∇|v| p2 ∣∣∣ ,
for every positive constant α > 0 we have

(78)

∫
A
|v|p +

∫
A
|∇|v|p| ≤

∫
A
|v|p + α

∫
A
|v|p +

1

α

∫
A

∣∣∣∇|v| p2 ∣∣∣2
≤
(
α+ 1 +

1

α
µc(A)

p2

4(p− 1)

)∫
A
|v|p .

Next we observe that there exist positive dimensional constants C ′ and C ′′ such that,
for every function w ∈W 1,1(A) (extended to zero outside A), it holds

(79)
(∫

A
|w|

N
N−1

)N−1
N ≤ C ′

(∫
A
|∇w|+

∫
∂A
|w|
)
≤ C ′′

(∫
A
|∇w|+

∫
A
|w|
)
.

Here the first inequality is due to the continuity of the embedding of BV (RN ) into

L
N
N−1 (RN ), and the second one to the continuity of the trace operator from W 1,1(A) to

L1(∂A). Notice in particular that the fact that C ′′ is purely dimensional is due to the
condition that the John ellipsoid of A is the unit ball (so that the outradius and the
inradius of A are controlled respectively from above and from below).
By applying (79) with w = |v|p, we infer from (78) that(∫

A
|v|

pN
N−1

)N−1
N ≤ C ′′

(
α+ 1 +

1

α
µc(A)

p2

4(p− 1)

)∫
A
|v|p.

The validity of our claim (77) (with C = C′′

α ) follows from the above inequality af-
ter noticing that, by Payne-Weinberger inequality, and since we have fixed a1 = 1,
µc(A) = µ1(Ω) is bounded from below by a dimensional constant so that, for α below a
dimensional threshold,

α+ 1 ≤ 1

α
µc(A)

p2

4(p− 1)
.
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We now apply (77) recursively: setting p0 = 2 and pk+1 = N
N−1pk (i.e., pk = 2

(
N
N−1

)k
),

this gives

‖v‖Lpk+1 (A) ≤ (Cµc(A))
1
pk

(
p2
k

2(pk − 1)

) 1
pk

‖v‖Lpk (A) .

In the limit as k → +∞ we obtain

‖v‖L∞(A) ≤
∞∏
k=0

(Cµc(A))
1
pk

( p2
k

2(pk − 1)

) 1
pk ‖v‖L2(A).

The validity of the required inequality (75) (for some dimensional constant C) follows
by noticing that ∑

k≥0

1

pk
=

1

2

∑
k≥0

(
N − 1

N

)k
=
N

2
,

and
∞∏
k=0

( p2
k

2(pk − 1)

) 1
pk ≤

∞∏
k=0

p
1
pk
k < +∞.

The case of a general ( 1
m)-concave weight φ is obtained by collapsing, relying on the

results proved in the Appendix. Precisely, we write inequality (74) on the domain

Ω̃ε ⊂ RN+m defined in (88), and we obtain the validity of (73) in the limit as ε→ 0, by
using the lower semicontinuity inequality (89) from Proposition 43.

�

We are now in a position to give the proof of Theorem 2. The idea is the same as for
the Dirichlet case: reduce the N -dimensional gap estimate to a two-dimensional one.
However, the two-dimensional one will involve a geometric weight, and so we are going
to prove it more in general replacing µ1(Ω) by µ1(Ω, φ), where φ is a fixed positive weight
which is ( 1

m)-concave for some m ∈ N \ {0}.
To avoid cumbersome overlaps, we are going to outline the parts which closely follow
the proof of Theorem 1, focusing our attention on the differences.
As in the case of the Dirichlet fundamental gap, by the Payne-Weinberger reduction argu-
ment, estimating from below µ1(Ω, φ) amounts to estimating from below a weigthed one-
dimensional Neumann eigenvalue of the type µ1(I, p). The difference must be searched
in the weight: now p = hφ, where φ is the preassigned power-concave weight (which
replaces u2

1), while h is still, as in the Dirichlet case, the power-concave function giving
the (N −1)-dimensional measure of the cell’s section orthogonal to I. As a consequence,
the one dimensional part of the proof is much simpler. Indeed, by the log-concavity of
p, Lemma 6 still holds, so that

µ1(I, p) ≥ λ1(I,mp) , with mp :=
[3

4

(p′
p

)2
− 1

2

p′′

p

]
.

Now, the counterpart of the sharp one dimensional lower bound for λ1(I,mp) given in
Theorem 8 reads simply as follows: since p is log-concave we have that mp is a positive
measure and hence, working for definiteness of the interval Iπ, we have

λ1(Iπ,mp) ≥ λ1(Iπ) = 1 .
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By analogy with Theorem 21, keeping the notation Id = (−d
2 ,

d
2) for any 0 < d < π, the

above inequality can be refined in two distinct directions:

(i) There exists an absolute constant C > 0 such that

(80) λ1(Id,mp) ≥ λ1(Id, 0) =
π2

d2
≥ 1 + C(π − d) .

(ii) There exists an absolute constant K such that, if p = hφ, with h log-concave and
affine on an interval [a, b] with Iπ

4
⊆ [a, b] ⊆ Id, the following implication holds:

(81) λ1(Id,mp) ≤ 2 ⇒ λ1(Id,mp) ≥ 1 +
[
1− min{h(a), h(b)}

max{h(a), h(b)}

]2
.

We remark that the lower bound (80), in which the exponent 1 replaces the exponent 3

appearing in (30), is a straightforward consequence of the Taylor expansion of π2

(π−ε)2 as

ε→ 0+. On the other hand, the lower bound (81) can be proved in similar way as (31).
Passing to higher dimensions, the results in Section 3 about weighted measure or L2

equipartitions remain unaltered working with our new weight.
Then, by using measure equipartitions, as a counterpart to Proposition 29, we obtain
the following localized version of the (weighted) Payne-Weinberger inequality:

(82) µ1(ω, φ) ≥ π2

D2
+ C

(D − d)

D3
,

where ω ⊆ Ω ⊂ RN (N ≥ 2) are open bounded convex sets of diameters d < D.
With this inequality at our disposal, we proceed to prove the quantitative inequality.
Notice in particular that it is not necessary to prove preliminarily rigidity as in the
Dirichlet case: if the quantitative form of the Payne-Weinberger inequality holds true
for cells with diameter larger than π

2 and second John semi-axis smaller than a fixed
threshold a2, rigidity follows as direct consequence. Indeed, we consider a partition of
Ω into cells with second John semi-axis smaller than a2. If a cell has diameter smaller
than π, we get rigidity. Otherwise, all cells have diameter equal to π, and we get as
well rigidity by writing the quantitative form of the inequality for a single cell, which
has a strictly positive second John semi-axis. (Notice that, in the Dirichlet case, due to
the presence of the weight u2

1, a quantitative inequality for convex sets with small width
does not imply a quantitative inequality on a single cell).
The proof of Theorem 2 is carried over first in case N = 2 and then for N ≥ 3. In
dimension N = 2, we are going to use, in place of Proposition 32, the following result
obtained via the L∞ estimate given in Proposition 38.

Proposition 40. There exists a positive constant Λ, depending only on N + m, such
that: if Ω ⊂ RN is an open bounded convex set, φ is a positive

(
1
m

)
-concave weight in

L1(Ω) and u is a first eigenfunction for µ1(Ω, φ) normalized in L2(Ω, φ), and ω is a cell
of a φ-weighted L2 equipartition of u in Ω composed by n cells, it holds

|ω| ≥ Λ
|Ω|
n
.
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Proof. By Proposition 38, we have

1

n
∫
ω φ

=

∫
ω φu

2∫
ω φ

≤ ‖u‖2L∞(Ω) ≤ Cµ1(Ω, φ)N+mD
2(N+m)
Ω∫

Ω φ
.

Since µ1(Ω, φ)D
2(N+m)
Ω is bounded from above by a constant K depending only on N+m

(see [37, 31] for φ ≡ 1 and Proposition 43 for the general case), we conclude that∫
ω
φ ≥ K

n

∫
Ω
φ .

On the other hand, we have ‖φ‖L∞(Ω) < +∞ and, assuming with no loss of generality

that 0 ∈ Ω is a maximum point for φ|Ω, the
(

1
m)-concavity of φ implies that φ(x) ≥

1
2m ‖φ‖L∞(Ω) for every x ∈ 1

2Ω. Hence∫
Ω
φ ≥ 1

2N+m
‖φ‖L∞(Ω)|Ω| .

We deduce that

|ω|‖φ‖L∞(Ω) ≥
∫
ω
φ ≥ K

n

∫
Ω
φ ≥ K

n2N+m
‖φ‖L∞(Ω)|Ω| ,

and the result follows with Λ = K
2N+m . �

Proof of Theorem 2 in dimension N = 2. We follow the same geometric construction
as in the proof of Theorem 1. Relying on the inequalities (81) and (82), all the cases
work as previously, exception made for the last one, Case 2.2.2.2. To prove that this
case cannot occur, the contradiction argument is still based on the validity of claim (60).
The proof of such claim proceeds unaltered up to the inequality (61). At this point
we have to argue differently. Indeed, in the Dirichlet setting, the estimate Lmini ≥ Λ

n
was obtained through the control on the length of the cell’s section due to Proposition
32 (whose proof is no longer valid in the Neumann setting because it is based on the
identification of a first eigenfunction with u2

u1
). However, the validity of the estimate

Lmini ≥ Λ
n can be recovered thanks to the control on the cell’s area due to Proposition

40. Once we have this estimate, claim (60) follows, and the proof can be concluded as
in the Dirichlet case. �

Proof of Theorem 2 in dimension N ≥ 3. Let us prove the inequality for φ ≡ 1 (the case
of a general ( 1

m)-concave weight follows by collapsing, using Proposition 43).
It is not restrictive to prove the statement under the following assumptions: DΩ = π,
µ1(Ω) ≤ π2 + 1, and Ω smooth, so that a first eigenfunction u for µ1(Ω) belongs to
C2(Ω). We fix a coordinate system (e1, . . . , eN ) such that a1 is aligned with e1 and a2

is aligned with eN . For every n ∈ N, we consider a L2 equipartition {Ω1, . . . ,Ωn} of u
in Ω, obtained by the procedure described in Remark 25, namely by using a family of
cutting hyperplanes parallel to eN , in such way that, for n large, any cell Ωi becomes
narrow in (N − 2)-directions, i.e., arbitrarily close to a 2D-convex section Ui. Via the
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usual argument à la Payne-Weinberger (namely arguing as in Lemmas 26 and 27, except
that now our cells are narrow in (N − 2) in place of (N − 1)-dimensions), we obtain

µ1(Ωi) ≥ µ1(Ui, φ) + o(1) ∀i = 1, . . . , n ,

where φ is a ( 1
N−2)-concave weight, and o(1) is an infinitesimal quantity as n→ +∞.

By the quantitative inequality already proved for the weighted Neumann eigenvalue in
2D, we infer that

µ1(Ωi) ≥ 1 + cw2
Ui + o(1) ∀i = 1, . . . , n .

We now search for a good proportion of cells such that wUi controls from above a2. It
is not restrictive to confine our search among cells whose diameter is sufficiently large
(otherwise, if for a fixed proportion of cells the diameter is small, we easily obtain the
quantitative inequality from (82), by arguing as in the Dirichlet case). For cells with large
diameter, wUi is comparable to the width of Ui in direction eN , which by construction is
equal to the width of Ωi in direction eN , hereafter denoted by wNΩi . We claim that there
exists a dimensional constant K such that

(83) wNΩi ≥ Ka2 ∀i ∈ In ⊂ {1, . . . , n} with card(In) ≥ n

2
.

Indeed, for t > 0, let us denote by Itn the family of indices i ∈ {1, . . . , n} such that
wNΩi < ta2. We have

|ωi| ∼ wNΩiH
N−1(Πe⊥N

(ωi)) < ta2HN−1(Πe⊥N
(ωi)) ∀i ∈ Itn .

On the other hand, for every i = 1, . . . , n, by Proposition 40 we have, for dimensional
constants Λ, Λ′

|ωi| ≥
Λ

n
|Ω| ≥ Λ′

n
a1a2 . . . aN .

We infer that
Λ′

n
a1a3 . . . aN ≤ tHN−1(Πe⊥N

(ωi)) ∀i ∈ Itn .

Summing over i ∈ Itn, we obtain

card(Itn)
Λ′

n
a1a3 . . . aN ≤ tHN−1(Πe⊥N

(Ω)) ∼ ta1a3 . . . aN ,

which implies

t− card(Itn)
Λ′

n
≥ 0 .

Then claim (83) is proved taking In := {1, . . . , n} \ Itn , with t := Λ′

2 .
In view of (83), our proof is easily achieved by applying in the usual way Lemma 28:

µ1(Ω) =

∫
Ω |∇u|

2∫
Ω |u|2

≥ 1

n

n∑
i=1

∫
Ωi
|∇u|2∫

Ωi
|u|2

≥ 1

n

[∑
i∈In

µ1(Ωi) +
∑
i 6∈In

µ1(Ωi)
]

≥ 1

n

[
(1 +Ka2

2)card(In) + (n− card(In))
]
≥ 1 +

K

2
a2

2 .

�
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7. Appendix

In this section we fix some results about weighted Neumann eigenvalues of the type
µ1(Ω, p), defined according to (2). First we consider the case when p equals u2

1, and
then the case when p equals a ( 1

m)-concave function φ. In both cases we have that an
eigenfunction exists: in the former case it can be explicitly identified with the quotient
between the second and first Dirichlet eigenfunction, in the latter case it can be obtained
by a collapsing procedure, namely as the limit of rescaled Neumann eigenfunctions in
higher dimensional convex sets with suitable profile.

Proposition 41. Given an open bounded convex domain Ω in RN , let λ1(Ω), λ2(Ω) and
u1, u2 be the first two Dirichlet eigenvalues and eigenfunctions of Ω (normalized in L2),
and let µ1(Ω, u2

1) be defined according to (2). Then it holds

µ1(Ω, u2
1) = λ2(Ω)− λ1(Ω) ,

and an eigenfunction for µ1(Ω, u2
1) is given by u := u2

u1
.

Proof. When Ω is smooth, the result is well-known [14, Section 1.2.2]; actually, in this
case we have that u = u2

u1
is smooth up to the boundary of Ω, see [50, Appendix A].

When Ω is not smooth, the statement can be obtained by approximation. Consider
an increasing sequence of open smooth convex domains Ωε ⊂ Ω converging to Ω in
Hausdorff distance as ε → 0. For i = 1, 2, let λi(Ωε) and uεi denote the first two
Dirichlet eigenvalues and eigenfunctions of Ωε, normalized in L2, and extended to 0 in
Ω \ Ωε. We claim that, in the limit as ε→ 0, we have

λi(Ωε)→ λi(Ω) , uεi → ui in H1
0 (Ω) i = 1, 2 , uε1 → u1 in L∞(Ω) .

To prove this claim we observe first that, for ε small enough, the domains Ωε contain a
fixed ball. Hence, by the decreasing monotonicity of Dirichlet eigenvalues under domain
inclusion, the sequence λi(Ωε) is bounded. It follows that ∆uεi is bounded in L2(Ωε),
and hence uεi is bounded in H2(Ωε) (see e.g. [26, Theorem 3.1.2.1]), so that up to
subsequences it converges weakly in H2(Ω) and strongly in H1

0 (Ω); then, the limits of
λi(Ωε) and uεi can be identified respectively with λi(Ω) and ui (see e.g. [12, Section
4.6]). It remains to prove that uε1 → u1 in L∞(Ω). By [18, Lemma 3.1], there exists a

dimensional constant C such that ‖uε1‖∞ ≤ Cλ1(Ωε)
N/4, so that the sequence uε1 remains

bounded in L∞(Ωε).
In turn, this implies that supε ‖∇uε1‖L∞(Ωε) < +∞. Indeed, denoting by wε the torsion

function on Ωε (i.e. the unique solution in H1
0 (Ωε) to the equation −∆w = 1 in Ωε), by

direct computation the function

Pε(x) = |∇uε1|2 + λ1(Ωε)(u
ε
1)2 − 2λ2

1(Ωε)‖uε1‖2∞wε

is subharmonic in Ωε (see also [13, Section 3]). Hence Pε attains its maximum at the
boundary. The uniform boundedness of ∇uε1 in L∞(Ωε) follows by taking into account
that ‖wε‖L∞(Ωε) is bounded from above by a constant depending on |Ωε| and that, by a
classical barrier argument, ‖∇uε1‖L∞(∂Ωε) is bounded from above by λ1(Ωε)‖uε1‖∞.
Hence the functions uε1 are equibounded and equicontinuous in Ω, and the uniform
convergence of uε1 to u1 follows from the Ascoli-Arzelà theorem.
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Now we observe that the function u is admissible in the definition (2) of µ1(Ω), so that

(84) µ1(Ω, u2
1) ≤

∫
Ω
|∇u|2u2

1 dx .

By the strong convergences uεi → ui in H1
0 (Ω), for every compact set K ⊂ Ω, setting

vε :=
uε2
uε1

, up to subsequences it holds |∇vε|2(uε1)2 → |∇u|2u2
1 a.e. on K. Hence, by

Fatou’s lemma,

(85)

∫
K
|∇u|2u2

1 dx ≤ lim inf
ε→0

∫
K
|∇vε|2(uε1)2 ≤ lim inf

ε→0

∫
Ωε

|∇vε|2(uε1)2.

By (84) and (85), exploiting the arbitrariness of K, and using the statement for the
smooth domains Ωε, we obtain

(86) µ1(Ω, u2
1) ≤

∫
Ω
|∇u|2u2

1 dx ≤ lim inf
ε→0

(λ2(Ωε)− λ1(Ωε)) = λ2(Ω)− λ1(Ω) .

To conclude the proof, it remains to show that the two inequalities in (86) are in fact
equalities. Let δ > 0 be fixed, and let vδ be a function in H1

loc(Ω), with
∫

Ω v
2
δu

2
1 = 1

and
∫

Ω vδu
2
1 = 0, such that µ1(Ω, u2

1) ≥
∫

Ω |∇vδ|
2u2

1 − δ. Since Ωε ⊂ Ω, we have that

vδ ∈ H1
loc(Ωε). If the approximating domains Ωε are suitably chosen, we have

(87)

lim
ε→0

∫
Ωε

v2
δ (u

ε
1)2 =

∫
Ω
v2
δu

2
1 (= 1) ,

lim
ε→0

∫
Ωε

vδ(u
ε
1)2 =

∫
Ω
vδu

2
1 (= 0) ,

lim
ε→0

∫
Ωε

|∇vδ|2(uε1)2 =

∫
Ω
|∇vδ|2u2

1 .

More precisely, by the uniform convergence of uε1 to u1 and Lebesgue dominated con-
vergence theorem, the equalities in (87) are satisfied provided Ωε is chosen so that, for
some ηε → 0, uε1 ≤ (1 + ηε)u1. Such choice is possible thanks to the following argument.
Fix the origin at the maximum point of u1, and consider a small contraction (1 − ε)Ω
of Ω with respect to the origin. The log-concavity of u1 allows to order by inclusion the
level sets of the functions u1( x

1−ε) and u1(x), yielding that u1( x
1−ε) ≤ u1(x) for every

x ∈ (1 − ε)Ω, with strict inequality except at the origin. Then, taking Ωε as a smooth
convex approximation of (1 − ε)Ω, we get the required inequality uε1 ≤ (1 + ηε)u1, for
some ηε → 0.
We finally notice that the convergences in (87) remain true if we replace therein the
functions vδ by their translations and normalizations vδ,ε, defined by

vδ,ε :=
vδ − 1

|Ωε|
∫

Ωε
vδ(u

ε
1)2

‖vδ − 1
|Ωε|

∫
Ωε
vδ(u

ε
1)2‖L2(Ωε,(uε1)2)

.

Since vδ,ε is an admissible test function for µ1(Ωε, (u
ε
1)2), by using the statement for the

smooth domains Ωε we obtain

µ1(Ω, u2
1) ≥ lim sup

ε→0

∫
Ωε

|∇vδ,ε|2(uε1)2−δ ≥ lim sup
ε→0

[λ2(Ωε)−λ1(Ωε)−δ] = λ2(Ω)−λ1(Ω)−δ .
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Eventually, by letting δ → 0, we conclude that the two inequalities in (86) hold with
equality sign. �

We now turn attention to the case of power-concave weights. For the convenience of the
reader we start with the following

Lemma 42. Let Ω be an open bounded convex domain in RN , and let φ ∈ L1(Ω) be
a positive weight which is ( 1

m)-concave for some m ∈ N \ {0}. Then the embedding

H1(Ω, φ) ↪→ L2(Ω, φ) is compact.

Proof. Let Ω̃ ⊆ RN+m be defined by

Ω̃ =
{

(x, y) ∈ RN × Rm : x ∈ Ω, ‖y‖Rm < ω−1/m
m φ1/m(x)

}
.

Since φ1/m is concave, Ω̃ is open and convex, so that H1(Ω̃) is compactly embedded into

L2(Ω̃). Now, if {un} is a bounded sequence in H1(Ω, φ), setting ũn(x, y) := un(x) we
have ∫

Ω̃
ũ2
n(x, y) dxdy =

∫
Ω
u2
n(x)φ(x) dx,∫

Ω̃
|∇x,yũn|2(x, y) dxdy =

∫
Ω
|∇xun|2(x)φ(x) dx.

Then, up to subsequences, ũn converges weakly in H1(Ω̃) and strongly in L2(Ω̃) to a

function ũ ∈ H1(Ω̃). Since ũ is constant in the y variable, the function u(x) := ũ(x, y)
belongs to H1(Ω, φ), and un converges strongly to u in L2(Ω, φ). �

Now, under the assumptions of Lemma 42, the compactness of the embeddingH1(Ω, φ) ↪→
L2(Ω, φ) ensures that the operator mapping a function f ∈ L2(Ω, φ) with

∫
Ω fφ = 0 into

the unique solution to

inf
v∈H1(Ω,φ)

(
1

2

∫
Ω
|∇v|2φ−

∫
Ω
fvφ

)
is positive, self-adjoint, and compact. Then the eigenvalues of the weighted problem−div (φ∇u) = µ(Ω, φ)φu in Ω

φ
∂u

∂ν
= 0 on ∂Ω

can be computed by the classical min-max formula. In particular, we have that

µ1(Ω, φ) = inf
u∈H1(Ω,φ)\{0},

∫
Ω uφ=0

∫
Ω |∇u|

2φ∫
Ω u

2φ
,

and the infimum is attained. We now show that the above eigenvalue and a first eigen-
function associated with it can be obtained by collapsing, i.e. by a limiting procedure as
as ε→ 0+ starting from the convex hypographs

(88) Ω̃ε :=
{

(x, y) ∈ RN × Rm : x ∈ Ω, ‖y‖Rm < εω−1/m
m φ1/m(x)

}
⊆ RN+m.
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Proposition 43. Let Ω be an open bounded convex domain in RN , and let φ ∈ L1(Ω) be
a positive weight which is ( 1

m)-concave for some m ∈ N \ {0}. Let ũε be L2-normalized

first eigenfunctions associated with µ1(Ω̃ε). Setting uε(X,Y ) := ε
m
2 ũε(X, εY ), up to

subsequences we have

µ1(Ω̃ε)→ µ1(Ω, φ) and uε → ũ in L2(Ω̃1),

where ũ(X,Y ) := u(X), u being a L2(Ω, φ)-normalized eigenfunction associated with
µ1(Ω, φ). In particular

(89) ‖u‖L∞(Ω) ≤ lim inf
ε→0

ε
m
2 ‖ũε‖L∞(Ω̃ε)

.

Proof. By the change of variables X = x, Y = 1
εy, we get∫

Ω̃1

|∇Xuε|2 +
1

ε2
|∇Y uε|2dXdY =

∫
Ω̃ε

|∇xũε|2 + |∇yũε|2dxdy = µ1(Ω̃ε)∫
Ω̃1

u2
ε(X,Y )dXdY = 1,

∫
Ω̃1

uε(X,Y )dXdY = 0 .

From Kröger’s inequality [37], we know that lim supµ1(Ω̃ε) < +∞, so that {uε} is

bounded in H1(Ω̃1), and possibly passing to a subsequence it converges weakly in H1(Ω̃1)

to some function ũ with ∇Y ũ = 0 in Ω̃1. Setting u(X) := ũ(X,Y ), we get that
∫

Ω u
2φ =

1,
∫

Ω uφ = 0 and

µ1(Ω, φ) ≤
∫

Ω
|∇u|2φ ≤ lim inf

ε→0
µ1(Ω̃ε).

To show the converse inequality, let v be a normalized first eigenfunction for µ1(Ω, φ)
and define

ṽε ∈ H1(Ω̃ε), ṽε(x, y) := ε−
m
2 v(x).

We have ∫
Ω̃ε

ṽε = 0,

∫
Ω̃ε

ṽ2
ε = 1,

∫
Ω
|∇v|2φ =

∫
Ω̃ε

|∇ṽε|2,

so that ṽε is a test function for µ1(Ω̃ε) and µ1(Ω, φ) ≥ lim supε→0 µ1(Ω̃ε). We conclude

that the equality µ1(Ω, φ) = limε→0 µ1(Ω̃ε) holds, and that the function u above has to

be an eigenfunction for µ1(Ω, φ). Together with the convergence uε → ũ in L2(Ω̃1), this
implies (89). �
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2005.

[13] D. Bucur, D. Mazzoleni, A. Pratelli, and B. Velichkov, Lipschitz regularity of the eigenfunctions on
optimal domains, Arch. Ration. Mech. Anal. 216 (2015), no. 1, 117–151.

[14] G. Carron, De nouvelles utilisations du principe du maximum en géométrie [d’après B. Andrews, S.
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J. Convex Anal. 20 (2013), no. 1, 253–264. MR 3086452
[22] V. Ferone, C. Nitsch, and C. Trombetti, A remark on optimal weighted Poincaré inequalities for
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[29] G. H. Hardy, J. E. Littlewood, and G. Pólya, Inequalities, Cambridge, at the University Press,,
1952, 2d ed.

[30] A. Henrot (ed.), Shape optimization and spectral theory, De Gruyter Open, Warsaw, 2017.
[31] A. Henrot and M. Michetti, Optimal bounds for Neumann eigenvalues in terms of the diameter,
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