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Abstract. We consider a conservation law with strictly positive wave velocity and study the

well-posedness of a suitable notion of solution for the associated initial value problem under a
pointwise flux constraint active in the half-line R`.

The strict positivity of the wave velocity allows for the dynamics in the unconstrained region

R´ to be fully determined by the restriction of the initial data to R´.
On the other hand, the solution in the constrained region is dictated by the assumption

that the total mass of the initial datum is conserved along the evolution. We formulate the

transmission condition at the interface tx “ 0u in such a way that the boundary datum for
the initial boundary value problem posed on R` is given by the largest incoming flux that is

admissible under the constraint, while the exceeding mass is accumulated in a “buffer” (as an
atomic measure concentrated at the interface).

1. Introduction and main result

1.1. Conservation law models with pointwise density constraint. We are interested in
studying the effect that a pointwise constraint on the flux has on the dynamics of the scalar
conservation law

Btu ` Bxfpuq “ 0, t ą 0, x P R,(1.1)

where u : r0,`8q ˆ R Ñ R is the unknown and f P W 1,8
loc pRq is a non-negative flux function.

We assume that the wave velocity f 1 is strictly positive. Several models of interest verify this
hypothesis: e.g., fpuq :“ pu` εq2{2, provided u ě 0 (Burgers’ flux ); fpuq :“ pu ` εq2 signpu ` εq{2;
fpuq :“ pumax ´ uqu (Greenshields–LWR traffic model), provided 0 ď u ď umax{2; and fpuq :“

u
u`umax

, for |u| ď umax (which arises in several supply-chain models).
To introduce the constraint, we split the physical domain into two semi-lines, R˘. On the

negative semi-line R´, the flux is not limited; on the other hand, R` represents a “critical path”,
where we impose a constraint u ď 1 or, equivalently (since the flux is strictly monotone), fpuq ď

fp1q.
We assume that u0 P L1pRq X L8pRq, with u0 ě 0, and that the initial state is consistent with

the constraint, i.e.,

u0pxq ď 1 for x P R`.(1.2)

If u0 P r0, 1s, then Kružkov’s solution of (1.1) over r0,`8q ˆ R satisfies u ď 1 owing to the
maximum principle—thus, it satisfies the constraint automatically. However, values of u0 that
exceed 1 over R´ may invade R` under the action of Kružkov’s semigroup1 pStqtě0, following the
corresponding characteristics xptq “ x0 ` tf 1 pu0 px0qq. If this is so, the constraint is violated and
Kružkov’s entropy solution must be discarded.

1.2. A new notion of solution under constraints. Let us follow the dynamics in order to
build a suitable notion of solution.
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1That is, for every u0 P L1pRq X L8pRq, upt, ¨q “ Stru0s is the unique entropy solution of (1.1) corresponding to

the initial condition u0. We refer to [25] for further information.
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Because of f 1 ą 0 and the lack of constraint on R´, the restriction u0´ of the initial data to R´

fully determines the solution u´ of the problem
#

Btu´pt, xq ` Bxfpu´pt, xqq “ 0, t ą 0, x P R´,

u´p0, xq “ u0´pxq, x P R´.
(1.3)

That is, if we extend u0 as a data v0 over the whole line R and let vpt, ¨q :“ Strv0s, then the
restriction of v to r0,`8q ˆ R´ does not depend upon the choice of the extension (cf. also the
discussion around (3.4) below). We recall that u P L8

locpp0,8q ˆ Rq is an entropy solution of (1.3)
if, for every convex entropy η P C2pRq with entropy-flux q (given by q1 “ f 1η1),

(1.4) Btηpuq ` Bxqpuq ď 0, ηpup0, ¨qq “ ηpu0q,

holds in the sense of distributions in r0,`8q ˆ R. See [25] for further information.
Thanks to this observation, the entire problem is reduced to an initial boundary value problem

(IBVP) in R`:

Btu` ` Bxf pu`q “ 0, t ą 0, x P R`,

with an initial datum yet to be determined to realize the constraint fpuq ď fp1q. At the times
t ą 0 when the incoming boundary datum, fpu´pt, 0qq exceeds the constraint, there are only two
options to enforce the constraint: since no “spill-back” of the density is possible (owing to f 1 ą 0),
either mass disappears or, if we assume that it is conserved, it must accumulate as a singular
measure, mptqδtx“0u, a Dirac delta of mass mptq ě 0 concentrated at the interface tx “ 0u.

Assuming the principle of conservation of mass yields

ż 0

´8

u´pt, xqdx ` mptq `

ż `8

0

u`pt, xqdx “ M :“

ż

R
u0pxqdx.(1.5)

The initial data are, respectively,

mp0q “ 0, u˘p0, xq “ u0˘pxq,

where u0` and u0´ are the restrictions of u0 over R` and R´, respectively
2.

It now remains to see how, after density accumulates in the buffer, what boundary data arise
for the IBVP posed on R`. We start by observing that

d

dt

ż 0

´8

u´pt, xqdx “ ´fpu´pt, 0qq,
d

dt

ż `8

0

u`pt, xqdx “ f pu`pt, 0qq .

The conservation of mass in (1.5) thus reduces to the ODE

m1ptq “ fpu´pt, 0qq ´ f pu`pt, 0qq .(1.6)

Notice in particular that, since both u˘ are bounded3, the density m is Lipschitz continuous.
We now make a second crucial modellistic assumption: we suppose that flux f pu`pt, 0qq entering

the critical path must be as large as possible. That is, we prescribe the following alternative:

(A) if mptq “ 0 (no saturation), then we prescribe

f pu`pt, 0qq “ min tfpu´pt, 0qq, fp1qu

(that is, u`pt, 0q “ min tu´pt, 0q, 1u);
(B) if mptq ą 0 (saturated flow), then we prescribe

f pu`pt, 0qq “ fp1q

(that is, u`pt, 0q “ 1).

2More generally, we may also consider an initial concentration, i.e., an initial datum mp0q “ m0, where m0 ě 0

is prescribed.
3Indeed, }u´}L8pR´q ď }u0´}L8pR´q and }u`}L8pR`q ď 1.
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.
An important consequence of this modeling is that the evolution of the density m is decoupled

from that of u`: indeed, from (1.6), we deduce the variational inequality4

m ě 0, m1 ě h, m
`

m1 ´ h
˘

“ 0, mp0q “ m0,(1.7)

where m0 ě 0 (in the previous discussion, we considered m0 “ 0, because the evolution starts with
no mass accumulated at the interface, but we may indeed consider this more general situation)
and

h :“ fpu´pt, 0qq ´ fp1q P L8 pR`q(1.8)

are given.
Once u´ is known and (1.7) is solved, we finally arrive to the formulation of the following

Dirichlet boundary-value problem:
$

’

&

’

%

Btu` ` Bxf pu`q “ 0, t ą 0, x P R`,

u`p0, xq “ u0`pxq, x P R`,

f pu`pt, 0qq “ f`ptq, t ą 0,

(1.9)

where incoming flux is defined by

f`ptq :“

#

min tfpu´pt, 0qq, fp1qu if mptq “ 0,

fp1q if mptq ą 0.
(1.10)

Since fp0q ď f` ď fp1q and f is strictly increasing, the last equality in (1.9) amounts to writing

u`pt, 0q “ bptq, with bptq :“ f´1 pf`ptqq P r0, 1s.

This is a classical IBVP for a scalar conservation law, which falls within the well-posedness theory
developed by Bardos, le Roux, and Nédélec in [11] (provided that b has finite total variation).

We emphasize that now the constraint is ensured by the maximum principle and the fact that
(b P r0, 1s or, equivalently, f` P rfp0q, fp1qs).

This discussion leads to formulating the following theorem.

Theorem 1.1 (Well-posedness of a conservation law with pointwise constraint). Let us consider
the Cauchy problem for a scalar conservation law under constraint:

$

’

&

’

%

Btupt, xq ` Bxfpupt, xqq “ 0, t ą 0, x P R,
up0, xq “ u0pxq, x P R,
upt, xq ď 1 x P R`,

(1.11)

where we suppose

f P W 1,8press inf u0, ess supu0sq, f 1puq ě a ą 0 for u P ress inf u0, ess supu0s;

u0 P L1pR;R`q X L8pR;R`q, u0pxq ď 1 for x P R`,

m0 ě 0.

Then there exists a solution

wpt, xq “ upt, xq ` mptq δ0,

with pu,mq P
`

L8pp0,`8q ˆ Rq X L8pp0,8q;L1pRq
˘

ˆ R,

of (1.11) in the following sense:

S-1. u´ :“ 1p´8,0q u is the unique entropy solution of (1.3) in the sense of Kružkov;
S-2. m is the unique Lipschitz continuous solution of the variational inequality (1.7)–(1.8);
S-3. u` “ 1p0,`8q u is the unique entropy solution of (1.9) in the sense of Bardos–le Roux–

Nédélec.

4This is, more precisely, the complementarity problem associated with a variational inequality. It can be equiv-
alently formulated as

#

mintm1 ´ h, mu “ 0, t ą 0,

mp0q “ m0.
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Moreover, if pũ, m̃q is such a solution of (1.1) with initial data pũ0, m̃0q as above, then the following
inequality holds:

ż

R
|upt, xq ´ ũpt, xq| dx ` |mptq ´ m̃ptq| ď

ż

R
|up0, xq ´ ũp0, xq| dx ` |m0 ´ m̃0|, for t ě 0,

which, in particular, implies uniqueness for the Cauchy problem (1.1).

1.3. Proof of Theorem 1.1. The proof of Theorem 1.1 consists of three steps.
First, we note that the existence, uniqueness, and L1-contraction property for entropy solutions

of (1.3) follows from Kružkov’s theory.
Second, we show that the variational inequality (1.7) has one and only one Lipschitz continuous

solution. This is carried out in Proposition 2.1 of Section 2.
Finally, in Section 3, we consider the IBVP (1.9). In Proposition 3.1, we prove that the boundary

datum (1.10) has finite total variation. As a consequence, we can apply BLN’s result (recalled in
Theorem A.1 and Appendix A below) to conclude that there exists one and only one entropy
admissible solution of (1.9).

Putting these considerations together, the proof of Theorem 1.1 is complete.

1.4. Comparison with the related literature. Conservation laws with pointwise constraints
on the flux have attracted much attention because of their applications, especially to traffic flow
models (which typically feature bell-shaped fluxes). In [21], Colombo and Goatin introduced the
concept of point constraints on the flux (i.e., constraints at a single point, x “ 0, of the type
fpupt, 0qq ď qptq for t ą 0) to the first-order model for road traffic. Their aim was to describe
the effects of obstacles along the road (e.g., toll gates, traffic lights, or localized construction sites)
and the flux function, f : r0, 1s Ñ R, featured in the model was Lipschitz continuous and bell-
shaped. The key component of the proof of the well-posedness result in [21] is approximating the
constrained conservation law by one with a discontinuous flux function.

This result was generalized in several directions, e.g., in [5, 3], where the authors also ad-
dressed the interpretation of this model in terms of the general theory of conservation laws with
discontinuous-flux (for which we refer to [6, 23, 22]).

Assuming that the discontinuity is located at x “ 0 and imposing the validity of Kružkov’s
entropy inequalities separately on p´8, 0q and p0,`8q, it turns out that every pair u, v of L8

solutions satisfies
ż

R
|upt, xq ´ vpt, xq|dx ď

ż

R
|up0, xq ´ vp0, xq| dx `

ż t

0

W pupt, 0˘q, vpt, 0˘qq dt,

where W is a quantity that depends only on the traces upt, 0˘q, vpt, 0˘q of u and v at x “ 0. If the
aim is to build an L1-contracting semigroup of solutions, as in the classical theory of conservation
laws, then we need W pu˘, v˘q ď 0 for every pair of solutions. In [6], Andreianov, Karlsen, and
Risebro introduced the notion of L1-dissipative germ to encode the condition W ď 0: at a point
of discontinuity of the flux f , a germ G is a set of pairs pu´, u`q satisfying the Rankine–Hugoniot
condition

fpu´q “ fpu`q

and the dissipation condition

W
`

u˘, v˘
˘

ď 0 for all pu´, u`q, pv´, v`q P G

Given a L1-dissipative germ G, they showed uniqueness of a G-entropy solution, i.e., a solution of
the conservation law satisfying Kruzkov’s conditions outside the origin and whose traces at x “ 0
belong to G.

Various L1-dissipative transmission conditions (i.e., several L1-dissipative germs) have been pro-
posed. Selecting the transmission condition is a modelistic choice: several conditions are available
in the literature in order to have that W ď 0, which lead to different physically relevant semigroups
of solutions.

We complement the analysis of [6]. In fact, we are dealing the case of a discontinuous flux

f̃px, uq :“

#

fℓpuq :“ fpuq, if x ă 0,

frpuq :“ mintfpuq, fp1qu, if x ą 0,
(1.12)
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where f 1 ě a ą 0. In case of saturation of the u ď 1 constraint, the analysis of [6, Section 4.5] yields
the non-existence of L8 G-entropy solutions that conserve mass for the conservation law driven by
f̃ (because the Rankine–Hugoniot condition at the interface generally does not hold). Addressing
this issue, we consider a different notion of transmission condition at the interface tx “ 0u: instead
of encoding Rankine–Hugoniot, we introduce a buffer density m that allows for the mass that is
concentrated at the interface tx “ 0u.

This viewpoint is somewhat similar also to the one of [9, 7, 8] where a Dirac delta is added
(as a source term in the PDE though, instead of at an interface transmission) to allow for energy
conservation in a fluid–structure interaction model.

We also refer to [1], where a non-classical shock arises from an “overcompressive” flux pair across
the interface tx “ 0u: the mass only enters the interface from both sides. This is different from
our case: namely, mass in the “buffer” can only increase.

Further results on conservation laws under constraints are contained in [3, 10, 4, 31, 32, 28, 27,
13, 26].

A model for traffic flow at a junction used in [16, 17, 18] is also somewhat related to our set-up:
if the flux of cars at a junction that wants to enter a certain road is larger than the given maximum
flux allowed on that road, they are placed in a queue, first-in-first-out; specifically, in these three
works, it is assumed that the queue can occupy a buffer of unlimited capacity, restricted to a
certain size, or to a vanishing size, respectively.

Finally, we mention that, in [41, 29, 12, 38, 14, 40, 15, 39], the formulation of conservation laws
with constraints on the density was treated in a different way (as a variational inequality, more
closely related to parabolic obstacle problems) by using a penalization method à la Stampacchia.
However, in this work, the mass of the initial datum may be lost during the evolution due to the
obstacle, which is not desirable in traffic or supply-chain modeling. To address this issue, in [2],
a nonlocal Lagrange multiplier was incorporated in the penalization argument; this, in turn, gave
rise to a different set of challenges: the question of the uniqueness of the constructed solution
remains open and the property of finite speed of propagation does not hold.

Yet another way to enforce constraints (broadly speaking) on the profile of the solution at time
t is to turn the problem into a flux identification question: from an initial datum and solution
satisfying some properties (e.g., one-sided bound), reconstruct a suitable flux that produces that
solution. There are several papers about this type of inverse problem, for both linear and nonlinear
conservation laws, e.g., [19, 36, 20, 34]. In these works, however, the given information is not just
an L8-constraint on the solution, but more precise, i.e., the exact profile of the solution at time t
in (a subregion of) the domain (or its trace on the boundary of the domain).

2. Existence and uniqueness of m

In this section, we study the variational inequality (1.7). We show that it admits a unique
solution, which is explicitly characterized as the smallest function m satisfying the initial data and
m ě 0, m1 ě h.

Proposition 2.1 (Well-posedness of the variational inequality). Let m0 P R` and h P L8 pR`q be
given. Then the variational inequality (1.7) admits a unique Lipschitz continuous solution, which
is explicitly given by the formula

mptq “ inf tpptq : p P Ktu , for all t ě 0,

where Kt :“
␣

p P Cpr0, tsq : pp0q “ m0 and p ě 0, p1 ě h in r0, ts
(

.
(2.1)

Here, the differential inequality p1 ě h is to be understood in the distributional sense: i.e.,

pτ ă tq ùñ

ˆ

pptq ě ppτq `

ż t

τ

hpsqds

˙

.

Moreover, given m̃0 P R and the corresponding solution m̃ (with same h), we have that the map
t ÞÑ |mptq ´ m̃ptq| is non-increasing.

Remark 2.2 (A representation formula). A (non-explicit) formula for the in (2.1) is given by

mptq “ m0 `

ż t

0

h`psqds ´

ż t

0

h´psq1tmpsqą0upsqds, t ě 0,(2.2)
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where h “ h` ´ h´ is the splitting of h into positive and negative part.
We claim that m̄ P Kt. First, we have that m̄ is continuous and m̄p0q “ m0. Second, m ě 0.

Indeed, if, by contradiction, there exists t˚ ą 0 such that mpt˚q ă 0, then, by continuity, there’s an

interval pt˚ ´δ, t˚ `δq where it is negative and mpt˚ ´δq “ 0, and then m̄pt˚q “ m0 `
şt

0
h`psqdx´

şt˚
´δ

0
h´psqds ě mpt˚ ´ δq “ 0, which is absurd. Finally, m1ptq “ h`ptq ´ h´ptq1tmptqě0u ě hptq.

Next, we claim that, for any p P Kt, m ď p. By contradiction, let p P Kt and t˚ ą 0 such
that ppt˚q, mpt˚q ą 0, and ppt˚q ă mpt˚q. Then, there exists δ ą 0 such that m ą p ą 0 in
pt˚ ´ δ, t˚ ` δq and mpt˚ ´ δq “ ppt˚ ´ δq. Then

ppt˚q ě ppt˚ ´ δq `

ż t˚

t˚´δ

hpsqds

“ mpt˚ ´ δq `

ż t˚

t˚´δ

h`psqds ´

ż t˚

t˚´δ

h´psqds

“ mpt˚ ´ δq `

ż t˚

t˚´δ

h`psqds ´

ż t˚

t˚´δ

h´psq1tmpsqą0u ds

“ mpt˚q,

which is a contradiction.

Proof of Theorem 1.1. Step 1. The representation formula gives a solution. The function m given
by (2.1) is non-negative and satisfies

mp0q “ inf tpp0q : p P K0u “ m0

Moreover, by definition of Kt, it satisfies mptq ě 0 and m1ptq ě 0 for all t ě 0. It remains to prove
that mpm1 ´ hq “ 0 holds for t ą 0. To this end, we will show that, if m ‰ 0 (i.e., m ą 0), then
m1 “ h, i.e., for all t ě τ ě 0,

mptq “ mpτq `

ż t

τ

hpsqds.

Let t ě τ ě 0 be given. On the one hand, every p P Kt satisfies

pptq ě ppτq `

ż t

τ

hpsqds ě mpτq `

ż t

τ

hpsqds.

Minimizing over Kt, we infer

mptq ě mpτq `

ż t

τ

hpsqds.(2.3)

On the other hand, any p P Kτ can be continued as an element of Kt by defining

ppτ 1q “ ppτq `

ż τ 1

τ

|hpsq|ds, for all s P rτ, ts.

This yields the inequality

mptq ď ppτq `

ż t

τ

|hpsq|ds.

Minimizing over Kt, we obtain

mptq ď mpτq `

ż t

τ

|hpsq| ds.(2.4)

We want to show that actually we can replace |h| by h in (2.4). To this end, we observe that (2.3)
and (2.4) together imply that m is Lipschitz continuous,

h ď m1 ď |h|,

and, provided t ´ τ ą 0 is small enough,

mpτq ´

ż t

τ

|hpsq|ds ą 0.(2.5)
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As a consequence, we find that, every p P Kτ can be actually continued as an element of Kt by

ppτ 1q “ ppτq `

ż τ 1

τ

hpsqds, for all τ 1 P rτ, ts.

Then we have

mptq ď ppτq `

ż t

τ

hpsqds.

Minimizing over Kt, this yields (provided that t ´ τ ą 0 is small enough)

mptq ď mpτq `

ż t

τ

hpsqds.(2.6)

Combining (2.3) and (2.6) yields

mptq “ mpτq `

ż t

τ

hpsqds.

Since m is continuous, this implies m1 ” h over every interval in which m ą 0. Moreover, since
the set defined by m ą 0 is open in R` (hence a union of such interval), we deduce

pm ą 0q ùñ
`

m1 “ h
˘

.

As a result, m is a Lipschitz solution of (1.7).
Step 2. Uniqueness. Let us suppose that M is another solution of (1.7) with the same initial

data. We claim that t ÞÑ 1
2 pM ´ mq2 is a non-increasing function. Since it vanishes at t “ 0, it

must be ď 0 on R`, which yields M ” m.
To prove the needed monotonicity, we compute

1

2
ppM ´ mq2q1 “ pM ´ mqpM ´ mq1

and observe that

Mpm ´ Mq1 “ Mm1 ´ MM 1 ě Mh ´ MM 1 “ 0

and, likewise,

mpM ´ mq1 ě 0.

Summing up both inequalities, we deduce

pM ´ mqpM ´ mq1 ď 0.

Finally, we note that, by a similar argument, if m̃0 P R is another initial data and m̃ is the
corresponding solution of (1.7), we can show that t ÞÑ |m̃ ´ m| is non-increasing. □

In Proposition 2.1, if h is not merely a bounded function, but is actually the one in (1.8), we
can show that the buffer density m decays.

Proposition 2.3 (Long-time behavior of the buffer density). Let m0 ě 0 and let h P L8pR`q be
given by (1.8). Then the solution m of the variational inequality (1.7) satisfies

lim
tÑ`8

mptq “ 0.(2.7)

Proof. We write

0 “

ĳ

∆

pBtu´ ` Bxf pu´qq dxdt,

where ∆ is the triangle whose basis is p´aT, 0q at initial time and the right side is p0, T q at the
boundary x “ 0 (here, recall that f 1 ě a ą 0). From Gauss–Green’s formula, we deduce

0 “

ż T

0

f pu´pt, 0qq dt ´

ż 0

´aT

u0´pxqdx `

ż T

0

pf pu´q ´ au´q pt, apt ´ T qqdt.

The last integral is non-negative because of fpuq ´ au ě 0. Letting T Ñ `8, we obtain
ż `8

0

f pu´pt, 0qq dt ď }u0´}L1pRq

In particular, this gives g :“ f ˝ u0´ P L1pp0,`8qq.
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Let pt1, t2q be a maximal interval on which m ą 0, with t1 ě 0, so that m pt1q “ 0. We claim
that t2 ă `8.

First, we consider the case t1 ą 0. We have

m1 “ h “ g ´ fp1q ě g, t P pt1, t2q,

where we recall that h “ g ´ fp1q, g P L1p0,`8q, and then

m pt2q ` pt2 ´ t1q fp1q “

ż t2

t1

gptqdt ď

ż `8

t1

gptqdt

Since the left-hand side is finite, we deduce that t2 is finite.
Second, we consider the case t1 “ 0. Then we have

m pt2q ` pt2 ´ t1q fp1q “

ż t2

t1

gptqdt ` m0 ď

ż `8

t1

gptqdt ` m0,

and, again, we deduce that t2 is finite.
In conclusion, since the intervals are disjoint, the length of the set tt : mptq ą 0u mus be

bounded by fp1qpm0 ` }g}L1pp0,`8qqq ď fp1qpm0 ` }u0´}L1pp0,`8qqq.

In addition, we notice the estimate m pt2q ď
şt2
t1
gptqdt, which shows that the maxima over the

intervals of positivity of m tend to zero (actually, they form a summable series). Thus

lim
tÑ`8

mptq “ 0.

□

Remark 2.4. In general, we cannot say more than (2.7) regarding the long-time behavior of the
buffer density unless we consider additional hypotheses on the initial datum or the flux function.
Let us provide some examples.

Compactly supported data: If u0´ has compact support, the activation of the obstacle is a
transient phenomenon. Indeed, by [30], we then have that there exists T̄ ą 0 such that
u´pt, 0q “ 0 for t ě T̄ . Then we can deduce that m has compact support.

Linear flux: If the flux function is linear, i.e., fpuq ” au, then gptq “ au0´p´atq. Even though
u0´ is integrable, the set tt ě 0 : gptq ą a “ fp1qu could be unbounded. In such a
situation, the support of m is unbounded, although having finite length.

Strictly concave/convex flux: If the flux is strictly concave (or convex), in the sense that f2

does not vanish. Then, by the sharp Olĕınik-type inequality in [24, 33],

}u´}L8pRq “ Opt´1{2q

Therefore gptq “ Opt´1{2q. This implies

h ď ´
1

2
fp1q, @t ą T

for some T . Up to a translation of time, we may suppose that h ď ´ 1
2fp1q for all time.

Then the function

pptq :“

$

&

%

m0 ´
t

2
fp1q, if t ă 2m0

fp1q
,

0, if t ě 2m0

fp1q
,

belongs to the set Kt for every t ě 0, thus is an upper bound for m. This shows that
m ” 0 for all t ą T . Hence, m is compactly supported.

3. Existence and uniqueness of u`

As for the Cauchy problem, the notion of solution for the IBVP associated with a scalar conser-
vation law is expressed in terms of integral inequalities involving entropies. Given a convex entropy
η P C2pRq with entropy-flux q, we define the relative entropy

η̄pξ | ζq :“ ηpξq ´ ηpζq ´ η1pζqpξ ´ ζq(3.1)

and the flux of the relative entropy

q̄pξ; ζq :“ qpξq ´ qpζq ´ η1pζqpfpξq ´ fpζqq.(3.2)
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(whose definition does not mimic that of η̄, but it is tailored so that q̄1 “ η̄1f 1 at fixed ζ P R). We
say that v is the entropy solution of the (1.9) in the sense of BLN 5 if, for every convex entropy
η P C2 and entropy-flux q,

ĳ

R2
`

´

η̄pu` | bqBtφ ` q̄pu`; bqBxφ ´ pu` ´ bqBxη
1pbqφ

¯

dxdt

`

ż

R`

η̄ pu0`pxq | bp0qqφp0, xqdx ě 0.

(3.4)

holds for every non-negative test function φ P C8
c pR2;R`q.

For a general flux, the formulation of the IBVP given in (3.4) does not impose the equality
u` “ b at the boundary. This is due to the possible formation of boundary layer effects. For
instance, if f 1 ă 0 (the waves travel to the left), then u` is completely determined by the initial
data u0` alone, while the boundary data b is simply ignored (as q̄ ď 0 identically in this case). On
the other hand, our assumption f 1 ą 0 yields q̄pξ; bq ě 0 for all ξ P R, for every convex entropy η.
If η is strictly convex, we even have q̄pξ; bq ą 0, unless ξ “ b holds6. For IBVP (1.9), the boundary
condition q̄ pu`pt, 0q; bptqq ď 0 then tells us therefore that the Dirichlet condition is satisfied in the
classical sense:

u`p¨, 0q ” b.

With this, we do obtain the conservation of total mass, since we have

d

dt

ż

R`

u`pt, xqdx “ f pu`pt, 0qq “ fpbptqq.

In order to apply the classical well-posedness result by Bardos, le Roux, and Nédélec (recalled
in Theorem A.1) to (1.9), we only need to show that b P BVpr0,`8qq. This turns out to be true:
we will show that TVp0,tqpbq ď 2TVp0,tq pu´p¨, 0qq; and, on the one hand, we already know that
TV pu´p¨, 0qq ď TV pu0´q.

Proposition 3.1 (BV-estimate on b). For every t ě 0, we have

TVp0,tqpbq ď 2TVp0,tq pu´p¨, 0qq .

Proof. Let us recall that, by definition,

(1) if mptq ą 0, then bptq “ 1;
(2) if mptq “ 0, then bptq “ min tu´pt, 0q, 1u.

If m ą 0 on an interval I, then TVIpbq “ 0. On the other hand, if m ” 0 on I, then
TVIpbq ď TVI pu´p¨, 0qq because the projection π over r0, 1s is a contraction and bptq “ π˝u´pt, 0q.

There remains to control the jumps of b at the transition points τ , i.e., those wherem passes from
one regime to the other one. Such jumps connect the values 1 and u´pτq, where the latter must be
ă 1 (instead b is continuous at τ). The derivative m1 connects the values 0 and fpu´pτqq ´ fp1q.
The latter being negative (because f is increasing), we see that the transitional jump of b can only
occur when m passes from ą 0 to ” 0, and not in the opposite case.

5Another equivalent way to express the BLN boundary condition is as follows: the trace u`pt, 0`q satisfies

fpu`pt, 0`qq “ Gpbptq, u`pt, 0`qq,

where G denotes the Godunov numerical flux associated to f (see [35, Eq. (3.8)]), which is given by

Gpξ, ζq “

$

’

&

’

%

min
rξ,ζs

f if ξ ď ζ,

max
rζ,ξs

f if ξ ě ζ.
(3.3)

6To see this, we first remark that Q :“ q ˝ f´1 is a convex function: differentiation of the identity Q˝ f “ q gives

f 1Q1 ˝ f “ q1, that is Q1 ˝ f “ η1. Differentiating once more, we have f 1Q2 ˝ f “ η2. Since η2 ě 0 and f 1 ą 0, we
obtain Q2 ě 0. The convexity then implies

Qpfpsqq ´ Qpfpbqq ´ Q1pfpbqqpfpsq ´ fpbqq ě 0,

which is the same as q̄ps; bq ě 0. If η is strictly convex over an interval J , then Q may not be affine on any

sub-interval of fpJq, and therefore is strictly convex too.
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Therefore, let us assume that bpτ ´ 0q “ 1 and bpτ ` 0q “ u´pτq ă 1. Then m remains ” 0 over
a time interval pτ, τ1q until TVpτ,τ1q pu´p¨, 0qq ě 1 ´ u´pτ, 0q, because u´p¨, 0q remains ď 1 in this
interval.

As a result, the sum of all the transitional jumps is bounded above by
ř

τ TVpτ,τ1q pu´p¨, 0qq,
which is less than or equal to TVp0,tq pu´p¨, 0qq because the intervals under consideration are dis-
joint. □

Appendix A. Review of BLN theory

In this appendix, for the sake of completeness, we recall the main well-posedness result of [11].

Theorem A.1 (Well-posedness of the IBVP). Let f P W 1,8pRq, v0 P BV pR`q, and b P

BVpr0,`8qq be given7. Then the IBVP

$

’

&

’

%

Btvpt, xq ` Bxfpvpt, xqq “ 0, t ą 0, x P R`,

vp0, xq “ v0pxq, x P R`,

vpt, 0q “ bptq, t ě 0,

(A.1)

has one and only one entropy solution v P BV pr0,`8q ˆ R`q that satisfies (3.4). Moreover, the
following estimates hold: for every t ě 0,

}vpt, ¨q}L8pR`q ď max
!

}v0}L8pR`q , }b}L8pp0,tqq

)

,(A.2)

TVxpvpt, ¨qq ď TVx pv0q ` TVp0,tqpbq.(A.3)

Let us briefly sketch the proof of Theorem A.1. The solution of the IBVP (A.1) is constructed by
the vanishing viscosity method. We start from the Dirichlet problem for the parabolic conservation
law

$

’

&

’

%

Btv
εpt, xq ` Bxf pvεpt, xqq “ εB2

xv
εpt, xq, t ą 0, x P R`,

vεp0, xq “ u0pxq, x P R`

vεpt, 0q “ bptq, t ą 0,

(A.4)

whose solution vε is smooth for t ą 0 and x P R`.
In order to pass to the limit as ε Œ 0 and recover the hyperbolic problem (A.1), we need some

crucial a priori estimates.
First, the maximum principle gives

}vε}L8pR`q ď max
!

}u0}L8pR`q , }a}L8pR`q

)

Second, given a convex entropy η and the corresponding entropy flux q, we compute

Btη pvεq ` Bxq pvεq “ εB2
xη pvεq ´ εη2 pvεq pBxv

εq
2

The choice of ηpξq :“ ξ2 yields a uniform bound on
?
εBxv

ε in L2 pp0, T q ˆ R`q, which ensures that
εB2

xη pvεq Ñ 0 in the sense of distributions.
Finally, we prove a BV-estimate. Differentiating the PDE in (A.4) with respect to the x-variable,

we have (denoting zε :“ Bxv
ε)

Btz
ε ` Bx

`

f 1 pvεq zε
˘

“ εB2
xz

ε.

Multiplying by sign zε and using Kato’s inequality (see [37, Lemma A]) yields

Bt |zε| ` Bx
`

f 1 pvεq |zε|
˘

ď εB2
x |zε| .

7Notice that the assumption concerning b is slightly weaker than in [11] because of the one-dimensional context.

In dimension 1 ` d with d ě 2, we also need the tangential gradient of a to be of bounded variation.
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Integrating in the x-variable, we compute

d

dt
TVx pvεpt, ¨qq ď f 1 pvεq |zεpt, 0q| ´ ε pBx |zε|q pt, 0q

“ psign zεpt, 0qq
`

f 1 pvεq Bxv
ε ´ εB2

xv
ε
˘

pt, 0q

“ psign zεpt, 0qq
`

Bxf pvεq ´ εB2
xv

ε
˘

pt, 0q

“ ´ psign zεpt, 0qq Btv
εpt, 0q

ď |Btb| ,

and conclude that
TVx pvεpt, ¨qq ď TVx pv0q ` TVp0,tqpbq.

This BV-estimate and standard arguments (for which we refer, e.g., to [42]) yield the compactness
of the sequence tvεuεą0: we may extract a subsequence converging almost everywhere to a limit
point v. A careful analysis of initial and boundary conditions reveals that the limit v satisfies the
entropy inequalities in the integral sense:

ĳ

R2
`

␣

η̄pv | bqBtφ ` q̄pv; bqBxφ ´ pv ´ bqBxη
1pbqφ

(

dx dt

`

ż

R`

η̄ pv0pxq | bp0qqφp0, xqdx ě 0

for every (smooth) convex entropy and every non-negative test function φ P C8
c pR2;R`q.

To see that the whole family tvεuεą0 converges as ε Ñ 0`, it suffices to prove the uniqueness
of the limit (by Urysohn’s subsequence principle). For this, let us suppose that another entropy
solution, denoted by w, exists. Since the entropy condition (3.4) contains the usual entropy in-
equalities

Bt|v ´ k| ` Bxppfpvq ´ fpkqq signpv ´ kqq ď 0,

Kružkov’s “doubling of variables” argument yields

Bt|w ´ v| ` Bxppfpwq ´ fpvqq signpw ´ vqq ď 0.

Integrating in space, we infer (using the fact that w and v have bounded variation)

d

dt
}wpt, ¨q ´ vpt, ¨q}L1pR`q ď

`

pfpwq ´ fpvqq signpw ´ vq
˘

ˇ

ˇ

ˇ

x“0
.

On the other hand, (3.4) contains the boundary condition q̄pvpt, 0q | bptqq ď 0, which amounts to
writing

psignpv ´ kq ´ signpb ´ kqqpfpvq ´ fpkqq

ˇ

ˇ

ˇ

x“0
ď 0, for all k P R.(A.5)

From (A.5), written for both w and v, it follows that

pfpwq ´ fpvqq signpw ´ vqq

ˇ

ˇ

ˇ

x“0
ď 0.(A.6)

Then t ÞÑ }wpt, ¨q ´ vpt, ¨q}L1pR`q is non-increasing. Since wp0, ¨q “ vp0, ¨q “ v0, we deduce that
w ” v.

To prove (A.6), we argue by contradiction. Let us suppose that pfpwq ´ fpvqq sign pw ´ vqq ą 0
at x “ 0. Without loss of generality, we may assume v ă w, and so fpvq ă fpwq. Let us take
k Ñ b, with sign pb ´ kq “ ´sign pv ´ bq. We infer

pfpvq ´ fpbqq sign pv ´ bq ď 0.

Likewise, we have
pfpwq ´ fpbqq sign pw ´ bq ď 0.

Choosing instead k “ w resp. k “ v), we also have

pfpwq ´ fpvqq sign pw ´ vqq ď pfpwq ´ fpvqq sign pw ´ bq and ď pfpvq ´ fpwqq sign pv ´ bq.

There follows v ď b ď w. If b ‰ v, w, then the inequalities above mean fpvq ą fpbq ą fpwq, which
yields a contradiction.
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