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Abstract

We show that if (X, d,m) is an RCD(K,N) space and u ∈ W1,1
loc(X) is a solution of the minimal surface equation,

then u is harmonic on its graph (which has a natural metric measure space structure). If K = 0 this allows to
obtain an Harnack inequality for u, which in turn implies the Bernstein property, meaning that any positive
solution to the minimal surface equation must be constant. As an application, we obtain oscillation estimates and
a Bernstein Theorem for minimal graphs in products M × R, where M is a smooth manifold (possibly weighted
and with boundary) with non-negative Ricci curvature.
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1 Introduction

In [12] Bombieri, De Giorgi and Miranda showed that the only entire positive solutions of the minimal surface equation
in Euclidean space are the constant functions. If we replace the Euclidean space with a Riemannian manifold the
validity of the aforementioned result depends on the geometry of the manifold. For this reason the following definition
was introduced in [19].

Definition. We say that a Riemannian manifold (M, g) has the Bernstein Property if the only entire positive solutions
of the minimal surface equation are the constant functions.
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For example, positive non constant solutions of the minimal surface equation in the hyperbolic plane were con-
structed in [43], while the Bernstein Property holds for manifold with non-negative Ricci curvature and a lower
sectional curvature bound thanks to [46]. Recently this was improved in [19] to manifolds with non-negative Ricci
curvature and no sectional curvature constraint (see also [18] for an even stronger result in the same fashion),
while Ding proved in [21] that the Bernstein Property holds in manifolds that are doubling and support a Poincaré
inequality.

The fact that manifolds with non-negative Ricci curvature have the Bernstein Property and the recent gener-
alization of some properties of minimal surfaces to RCD spaces (i.e. metric measure spaces with a notion of lower
bound on the Ricci curvature) suggest that an analogue of the Bernstein Property might hold in this setting as well.
We recall that an RCD(K,N) space is a metric measure space where K ∈ R plays the role of a lower bound on the
Ricci curvature, while N ∈ [1,+∞) plays the role of an upper bound on the dimension. This class includes measured
Gromov-Hausdorff limits of smooth manifolds of fixed dimension with uniform Ricci curvature lower bounds and
finite dimensional Alexandrov spaces with sectional curvature bounded from below. With this in mind we can state
the main result of this note.

Theorem 1. Let (X, d,m) be an RCD(0, N) space and let u ∈ W1,1
loc(X) be an entire solution of the minimal surface

equation. If u is positive, then it is constant.

The previous theorem, as anticipated, is part of a wider class of recent results that aim at generalizing to the non
smooth setting properties of minimal surfaces ([10], [25], [14], [42], etc.). Moreover, specializing Theorem 1 to the
smooth category, we obtain that the Bernstein Property holds for certain weighted manifolds with boundary. This
is the content of Theorem 2. Given a manifold (M, g) we denote by mg its volume measure and by dg its distance.
If V : M → R is a smooth function, we say that the metric measure space (Mn, dg, e

−V mg) is a weighted manifold.
Given Ω ⊂ M, we say that a function u ∈ C∞(Ω) is a solution of the weighted minimal surface equation on Ω \ ∂M if

div
( e−V ∇u√

1 + |∇u|2
)

= 0 on Ω \ ∂M.

We say that the boundary of a manifold with boundary is convex if its second fundamental form w.r.t. the inward
pointing unit normal is positive.

Theorem 2. Let (Mn, dg, e
−V mg) be a weighted manifold with convex boundary such that there exists N > n

satisfying

RicM + HessV − ∇V ⊗∇V
N − n

≥ 0 on M \ ∂M. (1)

If u ∈ C∞(M) is a positive solution of the weighted minimal surface equation on M \ ∂M whose gradient vanishes on
∂M, then u is constant.

The previous result is new (to the best of our knowledge) both in the boundaryless weighted setting and in the
framework of unweighted manifolds with boundary.

A second consequence of Theorem 1 is that the oscillation of minimal graphs in an appropriate class of pointed
manifolds grows with a uniform rate as one moves away from the base point in each manifold. This is stated precisely
in Theorem 3 below. Given a pointed metric space (M, d, x), r > 0 and f : Br(x) → R, we define

Oscx,r(f) := sup{|f(y) − f(x)| : y ∈ Br(x)}.

Theorem 3. Let n ∈ N be fixed. For every T, t, r > 0 there exists R > 0 such that if (Mn, g, x) is a pointed
manifold with non-negative Ricci curvature and u ∈ C∞(BR(x)) is a solution of the minimal surface equation such
that Oscx,r(u) ≥ t, then Oscx,R(u) ≥ T.

In Section 5 we actually prove a more general result involving weighted manifolds with boundary and a stronger
notion of oscillation (see Corollary 5.13) but we preferred to state Theorem 3 in this form for simplicity. We remark
that while Theorem 3 follows combining the Harnack inequality for minimal graphs given in [21] with a compactness
argument where an RCD space arises as limit of manifolds, the stronger version given by Corollary 5.13 truly relies
on Theorem 1 (and the same compactness argument).

We now turn our attention to the proof of Theorem 1. To this aim let (X, d,m) be an RCD(0, N) space and let
u ∈ W1,1

loc(X) be a solution of the minimal surface equation. The proof that we give follows the one in [21] to prove the
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analogous result for manifolds supporting a doubling volume measure and a Poincaré inequality. In that work Ding
shows first that Sobolev and Poincaré inequalities hold on the graph of u (see also [22]) and then uses a Moser-type
iteration argument, which relies on the fact that u is harmonic on its graph, to obtain the Harnack inequality for u
and the Bernstein Property.

The first obstacle for adapting the previously outlined strategy is that the graph of u in our setting has very little
structure, and it is not clear what it means for u to be harmonic on its graph. A key result in order to give the graph
of u a metric measure space structure is Theorem 4 (which holds for RCD(K,N) spaces). We denote by Epi(u) the
epigraph of u.

Theorem 4. Let u ∈ W1,1
loc(X), then the following conditions are equivalent.

1. Epi(u) is locally perimeter minimizing in X× R.

2. Epi(u) is perimeter minimizing in X× R.

3. u solves the minimal surface equation on X.

Remark. Thanks to Theorem 4, if we assume that the spaces in question satisfy appropriate parabolicity constraints,
then Theorems 1, 2 and 3 follow from the fact that parabolic RCD(0, N) spaces have the Half Space Property (see
[20]). We stress that the proofs of these theorems in our setting (i.e. without any parabolicity assumption) use
completely different techniques from the ones of [20].

Thanks to the previous theorem, if u ∈ W1,1
loc(X) is a solution of the minimal surface equation, we can consider the

closed representative of Epi(u) (which exists since this is a perimeter minimizing set), and we can define a complete
separable metric measure space which plays the role of the graph of u. More precisely, we consider (G(u), dg,mg),
where G(u) := ∂Epi(u), dg is the restriction of the product distance in X × R to G(u) and mg is the restriction of
the perimeter measure of Epi(u) to G(u). We also denote by ug : G(u) → R the height function on G(u). With this
definition of graph space, the Sobolev and Poincaré inequalities for ug on G(u) follow mimicking the proofs in [21]
(with the due modifications), so that the problem reduces to proving that ug is harmonic on G(u) in a generalized
sense that allows to repeat the iteration argument in [21].

The key results in this sense are given by Theorems 5 and 6 (which hold for RCD(K,N) spaces). Given f :
G(u) → R and x ∈ G(u), we denote by lipg(f)(x) the local Lipschitz constant of f at x. At every point of G(u) where
it makes sense, given a second function g : G(u) → R, we define

lipg(f) · lipg(g) :=
1

4
(lipg(f + g)2 − lipg(f − g)2).

One then shows that there exists a sufficiently large family Ag of functions on G(u) (and its compactly supported
version Ag

c) where the previously defined product behaves according to the usual rules of products of gradients. This
is the content of Theorem 5.

Theorem 5. Let u ∈ W1,1
loc(X) be a solution of the minimal surface equation. The function · : Ag ×Ag → L1loc(G(u))

given by
(ϕ1, ϕ2) 7→ lipg(ϕ1) · lipg(ϕ2)

is symmetric, bilinear, it satisfies the chain rule and the Leibniz rule in both entries and

lipg(ϕ1) · lipg(ϕ2) ≤ lipg(ϕ1)lipg(ϕ2).

Notably, the class Ag
c contains the cut off functions on G(u) that are needed to repeat the iteration argument

given in [21]. Theorem 6 is then the analogue in our setting of the fact that in the smooth category ug would be
harmonic on its graph. This matches the usual definition of harmonicity in distributional sense if u is assumed to be
locally Lipschitz, as the Corollary of Theorem 6 shows.

Theorem 6. Let u ∈ W1,1
loc(X) be a solution of the minimal surface equation. If ϕ ∈ Ag

c , then lipg(ϕ) · lipg(ug) ∈
L1(G(u)) and ˆ

G(u)

lipg(ϕ) · lipg(ug) dmg = 0.
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Corollary. Let u ∈ Liploc(X) be a solution of the minimal surface equation, then for every ϕ ∈ Lipc(G(u)) we haveˆ
G(u)

lipg(ϕ) · lipg(ug) dmg = 0.

Finally, we outline the main ideas in the proofs of Theorems 5 and 6. We will assume for simplicity that u is
locally Lipschitz on X and we will denote by ∇ the relaxed gradient on X (for Lipschitz functions this coincides with
the local Lipschitz constant lip thanks to [17]). Both theorems can be easily obtained if one can show that given
ϕ ∈ Lip(X) and the projection on the graph i : X → G(u), then the Local Lipschitz constant of ϕ ◦ i−1 (i.e. ϕ seen as
a function on the graph G(u)) satisfies

lipg(ϕ ◦ i−1)2 ◦ i = |∇ϕ|2 − (∇ϕ · ∇u)2

1 + |∇u|2
m-a.e. on X.

To obtain such an identity (which is what we would get on a Riemannian manifold) we use a technical blow-up
argument so that we reduce the problem to the Euclidean case.

To outline such argument we first need to recall a blow-up property of Lipschitz functions on metric measure
spaces due to Cheeger (see [17]). Let (Y, dy,my) be a space with a locally doubling measure which supports a local
Poincaré inequality (i.e. a PI space) such that for m-a.e. y ∈ Y the blow-up of Y at y is a Euclidean space Rk. Given

a point y ∈ Y of the previous type, we denote by ψn : BRk

1 (0) → (BY
1/n(x), nd) the Gromov Hausdorff maps realizing

the blow-up (see Definition 2.13). Thanks to [17] we have that for every θ ∈ Lip(Y), for m-a.e. y ∈ Y there exists a
linear function θ∞ : Rk → R, called the blow-up of θ at y, such that

∥n(θ ◦ ψn − θ(y)) − θ∞∥
L∞(BRk

1 (0))
→ 0.

Moreover, we have that the relaxed gradient ∇yθ(y) of θ in y (which coincides with the local Lipschitz constant
lip(θ)(y)) and the local Lipschitz constant lip(θ∞)(0) of θ∞ in 0 coincide.

In particular, this blow-up property of Lipschitz functions holds for X and G(u) as these are both PI spaces (since
u is now assumed to be Lipschitz). So we fix ϕ ∈ Lip(X) and we pick a point x ∈ X where the blow-up of X is realized

by the Gromov Hausdorff maps ψn : BRk

1 (0) → (BX
1/n(x), nd) and the functions u and ϕ admit blow-ups u∞ and ϕ∞

respectively. Let then j : Rk → Graph(u∞) be the projection on the graph. It turns out that the maps

ψ′
n := i ◦ ψn ◦ j−1 : j(BRk

1 (0)) → (i(BX
1/n(x)), ndg)

are Gromov Hausdorff maps realizing the blow-up of G(u) at (x, u(x)). In particular this implies that the blow-up
of ϕ ◦ i−1 on G(u) is ϕ∞ ◦ j−1. From this and the fact that blow-ups of functions preserve the Lipschitz constant, we
obtain that

lipg(ϕ ◦ i−1)2(i(x)) = lip(ϕ∞ ◦ j−1)2 = lip(ϕ∞)2 − (lip(ϕ∞) · lip(u∞))2

1 + lip(u∞)2
=

(
|∇ϕ|2 − (∇ϕ · ∇u)2

1 + |∇u|2
)

(x).

If u is not Lipschitz, the above strategy needs to be modified to ensure both existence of a blow-up of u on points
in X and existence of blow-ups of functions in Lip(G(u)) on points in G(u). Note in addition that in both cases we
need the Lipschitz constant of the blow-up to coincide with the local Lipschitz constant of the initial function. The
existence of blow-ups for u is addressed by using a geometric property of perimeter minimizers, i.e. the fact that
these admit tangent balls to their boundary (see [42] for the proof of this property in the non-collapsed case).

To deal with blow-ups of functions on G(u) we consider the notion of “strong blow-up” (see Definition 4.2). The
Lipschitz constant of a strong blow-up trivially coincides with the local Lipschitz constant of the initial function but
it might be harder to prove that such a blow-up exists. For this reason we introduce the class Ag (appearing in the
statements of Theorems 5 and 6) of functions admitting strong blow-ups on sufficiently many points and we conclude
by showing that this class is large enough to deal with the iteration argument of the proof of the Bernstein Property
later on.

The note is organized as follows: Section 2 contains preliminaries, Section 3 contains the proof of Theorem 4,
Section 4 contains the proofs of Theorems 5 and 6, while the final section contains the proofs of Theorems 1, 2 and
3.

Acknowledgements. I would like to thank Prof. Andrea Mondino for the many discussions we had about the
content of this note and for his valuable advice and guidance throughout this project.
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2 Preliminaries

Throughout the note will work on metric measure spaces (X, d,m), where (X, d) is a separable complete metric space
where balls are precompact and m is a non-negative Borel measure on X which is finite on bounded sets and whose
support is the whole X. Given an open set Ω ⊂ X we denote by Lip(Ω), Liploc(Ω) and Lipc(Ω) respectively Lipschitz
functions, locally Lipschitz and Lipschitz functions with compact support in Ω. If f ∈ Liploc(Ω) and x ∈ Ω we define

lip(f)(x) := lim sup
y→x

|f(x) − f(y)|
d(x, y)

and L(f) := sup
x,y∈Ω

|f(x) − f(y)|
d(x, y)

.

Given a closed interval I ⊂ R, we say that a rectifiable curve γ : I → X is a geodesic if its length coincides with
the distance between its endpoints. Unless otherwise specified we assume that geodesics have constant unit speed.
Throughout the note de will be the Euclidean distance in any dimension. In many proofs we will use the notation
c1, c2, etc. for constants that are independent of the other quantities appearing in the statement that we are proving.

2.1 Sobolev spaces and Gromov Hausdorff convergence

We now recall some basic notions about Sobolev spaces in the setting of metric measure spaces, the main references
being [17], [5], [6] and [26].

Definition 2.1. Let (X, d,m) be a metric measure space, Ω ⊂ X an open set and let p > 1. A function f ∈ Lp(Ω) is
said to be in the Sobolev space W1,p(Ω) if there exists a sequence of locally Lipschitz functions {fi}i∈N ⊂ Liploc(Ω)
converging to f in Lp(Ω) such that

lim sup
i→+∞

ˆ
Ω

lip(fi)
p dm < +∞.

A function f ∈ Lploc(Ω) is said to be in the Sobolev space W1,p
loc(Ω) if for every η ∈ Lipc(Ω) we have fη ∈ W1,p(Ω).

For any f ∈ W1,p(Ω) one can define an object |∇f | (a priori depending on p, but independent of the exponent in
the spaces that we will work on) such that for every open set A ⊂ Ω we have

ˆ
A

|∇f |p dm = inf
{

lim inf
n→+∞

ˆ
A

lip(fn)p dm
∣∣∣(fn)n ⊂ Lp(A) ∩ Liploc(A), ∥fn − f∥Lp(A) → 0

}
.

The quantity in the previous expression will be called p-Cheeger energy and denoted by Chp(f) while |∇f | will
be called relaxed gradient. Later we will often write Ch in place of Ch2 for simplicity of notation. We define
∥f∥W1,p(Ω) := ∥f∥Lp(Ω) + Chp(f). One can check that with this norm the space W1,p(Ω) is Banach. We now
introduce functions of bounded variation following [39] (see also [3]).

Definition 2.2. Let (X, d,m) be a metric measure space and let Ω ⊂ X an open set. A function f ∈ L1(Ω) is said
to be of bounded variation if there exists a sequence of of locally Lipschitz functions {fi}i∈N ⊂ Liploc(Ω) converging
to f in L1(Ω) such that

lim sup
i→+∞

ˆ
Ω

lip(fi) dm < +∞.

The space of such functions is denoted BV(Ω). A function f ∈ L1loc(Ω) is said to be in BVloc(Ω) if for every η ∈ Lipc(Ω)
we have fη ∈ BV(Ω).

For any f ∈ BV(Ω) and any open set A ⊂ Ω we define

|Df |(A) = inf
{

lim inf
n→+∞

ˆ
A

lip(fn) dm
∣∣∣(fn)n ⊂ L1(A) ∩ Liploc(A), ∥fn − f∥L1(A) → 0

}
.

One can check that the quantity in the previous expression is the restriction to the open subsets of Ω of a finite
measure. We define ∥f∥BV(Ω) := ∥f∥L1(Ω) + |Df |(Ω). One can check that with this norm the space BV(X) is Banach.
A function f belongs to W1,1(Ω) if f ∈ BV(Ω) and |Df | ≪ m. In this case we denote by |∇f | the density of |Df |
with respect to m.
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Definition 2.3. Let (X, d,m) be a metric measure space and let Ω ⊂ X be an open set. For every p ≥ 1 we denote
by W1,p

0 (Ω) the closure in W1,p(Ω) of Lipc(Ω).

Definition 2.4. A metric measure space (X, d,m) is infinitesimally Hilbertian if the space W1,2(X) is a Hilbert space.

If (X, d,m) is Infinitesimally Hilbertian and Ω ⊂ X an open set, for every f, g ∈ W1,1
loc(Ω) we define the measurable

function ∇f · ∇g : Ω → R by

∇f · ∇g :=
|∇(f + g)|2 − |∇(f − g)|2

4
.

As a consequence of the infinitesimal Hilbertianity assumption, the previously defined product of gradients is
bilinear in both entries. We then define the Laplacian in the metric setting.

Definition 2.5. Let (X, d,m) be infinitesimally Hilbertian and let Ω ⊂ X be an open set. Let f ∈ W1,2(Ω). We say
that f ∈ D(∆,Ω) if there exists a function h ∈ L2(Ω) such that

ˆ
Ω

gh dm = −
ˆ
Ω

∇g · ∇f dm for any g ∈ W1,2
0 (Ω).

In this case we say that ∆f = h in Ω.

We also have the following more general definition.

Definition 2.6. Let (X, d,m) be infinitesimally Hilbertian and let Ω ⊂ X be an open set. Let f ∈ W1,1
loc(Ω) and let

µ be a Radon measure on Ω. We say that ∆f = µ in Ω in distributional sense if

ˆ
Ω

h dµ = −
ˆ
Ω

∇g · ∇f dm for any g ∈ Lipc(Ω).

Similarly we define what it means to be a solution of the minimal surface equation.

Definition 2.7. Let (X, d,m) be infinitesimally Hilbertian and let Ω ⊂ X be an open set. We say that f ∈ W1,1
loc(Ω)

solves the minimal surface equation on Ω if for every ϕ ∈ Lipc(Ω) we have

ˆ
Ω

∇f · ∇ϕ√
1 + |∇f |2

dm = 0.

We now recall the main definitions concerning Gromov Hausdorff convergence, referring to [49] and [28] for an
overview on the subject.

Definition 2.8. Let (X, dx, x) and (Y, dy, y) be pointed metric spaces and let δ > 0. we say that a map f : X → Y
is a δ-GH map if

• f(x) = y.

• supa,b∈X

∣∣∣dx(a, b) − dy(f(a), f(b))
∣∣∣ ≤ δ.

• The image of f is a δ-net in Y.

Lemma 2.9. Let (Y, d, y) be a metric space and let A ⊂ Rk be either an open set or a closed non-trivial ball. Fix
δ > 0 and let f : (A, de, x) ⊂ Rk → Y be a δ-GH map. Let {yi}mi=1 ⊂ Y. There exists a 4δ-GH map g : A ⊂ Rk → Y
such that g ̸= f on at most m points and {yi}mi=1 ⊂ Im(g).

Proof. For every i let y′i be in f(A) and δ-close to yi. Let xi be an element such that f(xi) = y′i and if some of them
coincide, replace them with sufficiently close points, in such a way that f(xi) is 2δ-close to yi and the points {xi}mi=1

are all distinct. Consider the map

g(a) :=

{
f(a) a ̸= xn

yn a = xn.

It is easy to check that g has the desired properties.
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Definition 2.10. We say that a sequence of pointed metric spaces (Xn, dn, xn) converges to (X, d, x) in pointed
Gromov Hausdorff convergence if for every δ,R > 0 there exists N such that for every n ≥ N there exists a δ-GH
map f ϵ,Rn : B̄R(xn) → B̄R(x).

Definition 2.11. Let (X, d) be a metric space and x ∈ X. We denote by Tanx(X) the (possibly empty) collection of
(isometry classes of) metric spaces that are pointed Gromov Hausdorff limits as r ↓ 0 of the family (X, r−1d, x).

Definition 2.12. We say that a sequence of pointed metric measure spaces (Xn, dn,mn, xn) converges to (X, d,m, x)
in pointed measured Gromov Hausdorff convergence if it converges in pointed Gromov Hausdorff sense and the maps
f ϵ,Rn : B̄R(xn) → B̄R(x) given by Definition 2.10 satisfy (f ϵ,Rn )#(mn B̄R(xn)) → m B̄R(x) weakly in duality with
continuous boundedly supported functions on X.

Definition 2.13. Let (X, d,m) be a metric measure space such that for m-a.e. x ∈ X we have Tanx(X) = {(Rk, de)}.
Given a sequence {ϵn}n∈N ⊂ (0,+∞) decreasing to zero we say that (ϵn, ψn) is a blow-up of X at x if there exists a
sequence δn decreasing to zero such that ψn : B̄1(0) ⊂ Rk → (B̄ϵn(x), ϵ−1

n d) is a δn-GH map.

We recall that in the case of a sequence of uniformly locally doubling metric measure spaces (Xi, di,mi, xi) (as in
the case of RCD(K,N) spaces), pointed measured Gromov-Hausdorff convergence to (X, d,m, x) can be equivalently
characterized asking for the existence of a proper metric space (Z, dz) such that all the metric spaces (Xi, di) are
isometrically embedded into (Z, dz), xi → x and mi → m weakly in duality with continuous boundedly supported
functions in Z (see [28]).

2.2 General properties of RCD(K,N) spaces

We now recall some properties of RCD(K,N) spaces, i.e. infinitesimally Hilbertian metric measure spaces with Ricci
curvature bounded from below by K ∈ R and dimension bounded from above by N ∈ [1,+∞) in synthetic sense.

The Riemannian Curvature Dimension condition RCD(K,∞) was introduced in [6] (see also [26, 9]) coupling
the Curvature Dimension condition CD(K,∞), previously pioneered in [47, 48] and independently in [38], with the
infinitesimal Hilbertianity assumption. The finite dimensional counterpart RCD(K,N) is then obtained coupling
the finite dimensional Curvature Dimension condition CD(K,N) with the infinitesimal Hilbertianity assumption and
was proposed in [26]. For a complete introduction to the topic we refer to the survey [1] and the references therein.
Let us mention that in the literature one can find also the (a priori weaker) RCD∗(K,N). It was proved in [23,
7], that RCD∗(K,N) is equivalent to the dimensional Bochner inequality. Moreover, [16] (see also [37]) proved that
RCD∗(K,N) and RCD(K,N) coincide. We now recall the properties that we will use later on in the note.

The RCD(K,N) condition implies that the measure is locally doubling (see [47]) and the validity of a Poincaré
inequality (see [45]). In particular if f is a locally Lipschitz function on a RCD(K,N) space, its relaxed gradient
coincides with its local Lipschitz constant lip(f) (see [34, Theorem 12.5.1] after [17]). The aforementioned properties
are recalled in the next two propositions.

Proposition 2.14. Let (X, d,m) be an RCD(K,N) space. For every R > 0 there exists C(R) > 0 such that for every
x ∈ X and 0 < r < R we have

m(B2r(x)) ≤ C(R)m(Br(x)).

For RCD(0, N) spaces the function C can be taken to be the constant function with value 2N .

Proposition 2.15. Let (X, d,m) be an RCD(K,N) space, then for every f ∈ W1,2(X), x ∈ X and r > 0 the following
Poincaré inequality holds: ˆ

Br(x)

|f − fx,r| dm ≤ 4re|K|r2
ˆ
B2r(x)

|∇f | dm.

The next theorem can be found in [24, Theorem 6.12]. The proof in the RCD(K,N) setting is analogous.

Theorem 2.16. Let (X, d,m) be an RCD(K,N) space and let f ∈ BV(X). Then for every ϵ there exists a Lipschitz
function fϵ such that m({f ̸= fϵ}) ≤ ϵ.

The content of the next theorem can be found at the very end of [27].

Theorem 2.17. Let (X, d,m) be an RCD(K,N) space and p ∈ [1,+∞). Then Lipschitz functions are dense in
W1,p(X).
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The next theorem follows from [41, 15].

Theorem 2.18. Let (X, d,m) be an RCD(K,N) space. There exists k ∈ N ∩ [1, N ], called essential dimension of X,
such that for m-a.e. x ∈ X we have Tanx(X) = {(Rk, de)}. Any such point will be called a regular point for X.

A compactness argument due to Gromov and the stability of the RCD(K,N) condition under Gromov-Hausdorff
convergence (see [48] and [28]) give the following result.

Theorem 2.19. Let (Xn, dn,mn, xn) be a a sequence of pointed normalized RCD(K,N) spaces. Then, modulo passing
to a subsequence, they converge in pointed measured Gromov Hausdorff sense to an RCD(K,N) space.

We now consider a Sobolev type inequality when K = 0. Given a metric measure space (X, d,m), a function
f : X → R, p ∈ (0,+∞) and B ⊂ X Borel we define

∥f∥p,B :=
(  

B

|f |p dm
)1/p

.

The proof of the next two theorems can be adapted from the one in the smooth case found in [44, Theorem 7.1.15,
Theorem 7.1.13] (see also [31]).

Theorem 2.20. Let (X, d,m) be an RCD(0, N) space and let f ∈ Lip(X), then there exists C(N) > 0 such that for
every t > 0

t
N

N−1m({|u− uBr(x)| > t} ≤ Cr
N

N−1m(Br(x))∥lip(f)∥
N

N−1

1,Br(x)
.

Theorem 2.21. Let (X, d,m) be an RCD(0, N) space and let f ∈ Lip(X), then there exists C(N) > 0 such that for
every ν ∈ [1, N

N−1 ], x ∈ X and r > 0
∥f∥ν,Br(x) ≤ Cr∥lip(f)∥1,Br(x).

We now recall some properties of the heat flow in the RCD setting, referring to [9, 6] for the proofs of these results.
Given an RCD(K,N) space (X, d,m), the heat flow Pt : L2(X) → L2(X) is the L2(X)-gradient flow of the Cheeger
energy Ch. It turns out that one can obtain a stochastically complete heat kernel pt : X× X → [0,+∞), so that the
definition of Pt(f) can be then extended to L∞ functions by setting

Pt(f)(x) :=

ˆ
X

f(y)pt(x, y) dm(y).

The heat flow has good approximation properties, in particular if f ∈ W1,2(X), then Pt(f) → f in W1,2(X); while if
f ∈ L∞(X), then Ptf ∈ Lip(X) for every t > 0.

The next proposition follows combining the contractivity estimates for the heat flow of [27] with a standard lower
semicontinuity argument.

Proposition 2.22. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be an open set and let f ∈ BV(X). If |Df |(∂Ω) =
0, then

lim
t→0

|DPt(f)|(Ω) = |Df |(Ω).

2.3 Sets of finite perimeter and minimal sets

For the results of this section, unless otherwise specified, we will implicitly assume that we are working on a fixed
RCD(K,N) space (X, d,m).

Definition 2.23. Let E ⊂ X. We say that E has locally finite perimeter if 1E ∈ BVloc(X). For every Borel subset
B ⊂ X We denote |D1E |(B) by P (E,B).

When considering the perimeter as a measure under an integral sign we will use the notation Per(E, ·) instead of
P (E, ·).
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Definition 2.24. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to (Y, d,m, y).
We say that the Borel sets Ei ⊂ Xi of finite measure converge in L1 sense to a set E ⊂ Y of finite measure if
mi(Ei) → m(E) and 1Ei

mi → 1Fm weakly in duality w.r.t. continuous compactly supported functions in the space
(Z, dz) realizing the pmGH convergence.

We say that the Borel sets Ei ⊂ Xi converge in L1loc sense to a set E ⊂ Y if Ei ∩Br(xi) → E ∩Br(y) in L1 sense
for every r > 0.

The next proposition is taken from [2, Corollary 3.4].

Proposition 2.25. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to (Y, d,m, y).
Let Ei ⊂ Xi be Borel sets such that

sup
i∈N

P (Ei, Br(xi)) < +∞ for every r > 0.

Then there exists a (non relabeled) subsequence and a Borel set F ⊂ Y such that Ei → F in L1loc.

Definition 2.26. Let E ⊂ X be a set of finite perimeter. We say that a regular point x ∈ X such that x ∈ ∂E is
in the reduced boundary FE of E if for every sequence {ϵi}i∈N decreasing to zero, the sets Ei := E in the rescaled
spaces (X, ϵ−1

i d,m(Bϵi(x))−1m, x) converge in L1loc sense to a half space in Rk.

The next proposition is taken from [14, Corollary 3.15].

Proposition 2.27. Let E ⊂ X be a set of finite perimeter. Then the perimeter measure is concentrated on FE.

The next proposition is taken from [13, Theorem 5.2 and Proposition 6.1]. We first introduce some notation.
Let A ⊂⊂ X be a set of finite perimeter and let g ∈ Liploc(X). We denote by A(1) the set of points where A has
density 1. Assume that g has distributional Laplacian which is a finite Radon measure. Then there exists measures
µ1, µ2 ≪ |D1A| such that as t→ 0 we have

1A∇Pt(1A) · ∇g → µ1 and 1cA∇Pt(1A) · ∇g → µ2

in weak sense testing against functions in Lipc(X). We denote the density of µ1 and µ2 w.r.t. |D1A| respectively by

(∇g · νE)int and (∇g · νE)ext.

Proposition 2.28. Let A ⊂⊂ X be a set of finite perimeter and let g ∈ Liploc(X). Assume that g has distributional
Laplacian which is a finite Radon measure. Then for any f ∈ Lipc(X) we have

ˆ
A(1)

f d∆g +

ˆ
A

∇f · ∇g dm = −
ˆ
FA

f(∇g · νE)int dPer

and ˆ
A(1)∪FA

f d∆g +

ˆ
A

∇f · ∇g dm = −
ˆ
FA

f(∇g · νE)ext dPer.

Proposition 2.29. Let Ω ⊂⊂ Ω′ ⊂ X be open domains. Let ϕ : Ω′ → R be a 1-Lipschitz function such that
|∇ϕ| = 1 m-a.e. on Ω′ and ϕ has bounded Laplacian in distributional sense on Ω′. Then for λ1-a.e. t ∈ R such that
{ϕ = t} ∩ Ω ̸= ∅ the set {ϕ < t} has locally finite perimeter in Ω and

(∇ϕ · ν{ϕ<t})int = −1.

Next we consider a variant of Theorem 2.20 concerning sets of finite perimeter in RCD(0, N) spaces.

Proposition 2.30. There exists C > 0 such that if E ⊂ X has finite perimeter, r > 0 and x ∈ X, then

m(Br(x))
1
N min{m(E ∩Br(x)),m(Br(x) \ E)}

N
N−1 ≤ CrP (E,Br(x)).

Proof. By approximation it is easy to check that Theorem 2.20 holds also when f ∈ BV(X). Applying that theorem
to f = 1E with t = 1/2 gives the desired inequality.
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We now turn our attention to minimal sets.

Definition 2.31. Let Ω ⊂ X be an open set. Let E ⊂ Ω be a set of locally finite perimeter. We say that E is
perimeter minimizing in Ω if for every x ∈ Ω, r > 0 and F ⊂ Ω such that F∆E ⊂⊂ Br(x) ∩ Ω we have that
P (E,Br(x) ∩ Ω) ≤ P (F,Br(x) ∩ Ω). If we say that E is perimeter minimizing we implicitly mean that Ω = X.

Definition 2.32. Let Ω ⊂ X be an open set. Let E ⊂ Ω be a set of locally finite perimeter. We say that E
is locally perimeter minimizing in Ω if for every x ∈ Ω there exists r > 0 such that for every F ⊂ Ω such that
F∆E ⊂⊂ Br(x) ∩ Ω we have P (E,Br(x) ∩ Ω) ≤ P (F,Br(x) ∩ Ω). If we say that E is locally perimeter minimizing
we implicitly mean that Ω = X.

The next theorem comes from [36, Theorem 4.2 and Lemma 5.1].

Theorem 2.33. There exist C, γ0 > 0 depending only on K and N such that the following hold. If E ⊂ X is a set
minimizing the perimeter in Ω ⊂ X, then, up to modifying E on an m-negligible set, for any x ∈ ∂E and r > 0 such
that B2r(x) ⊂ Ω we have

m(E ∩Br(x))

m(Br(x))
> γ0,

m(Br(x) \ E)

m(Br(x))
> γ0

and
m(Br(x))

Cr
≤ P (E,Br(x)) ≤ Cm(Br(x))

r
.

From the previous result one deduces that locally perimeter minimizing sets admit both a closed and an open
representative, and these have the same boundary which in addition is m-negligible. Whenever we consider the
boundary of a locally perimeter minimizing set, we will implicitly be referring to the boundary of its closed (or open)
representative.

Corollary 2.34. For every R > 0 there exists γ > 0 depending only on K, N and R such that the following happens.
Let E ⊂ X be the closed representative of a set minimizing the perimeter in Ω ⊂ X. For every x ∈ E and 0 < r < R
such that B2r ⊂ Ω we have

m(E ∩Br(x))

m(Br(x))
≥ γ.

Proof. Let x and r be as in the statement. If Br/2(x) ⊂ E then by the local doubling property

m(E ∩Br(x))

m(Br(x))
≥

m(Br/2(x))

m(Br(x))
≥ C(R).

Otherwise let y ∈ Br/2(x) ∩ ∂E and note that B2r(y) ⊃ Br(x) ⊃ Br/2(y). Moreover by the local doubling property
m(Br/2(y)) ≥ C(R)−2m(B2r(y)) ≥ C(R)−2m(Br(x)). Putting these facts together and using Theorem 2.33 we obtain

m(E ∩Br(x))

m(Br(x))
≥ C(R)−2m(E ∩Br/2(y))

m(Br/2(y))
≥ C(R)−2γ0.

The next proposition is taken from [42, Theorem 2.43].

Proposition 2.35. Let (Xi, di,mi, xi) be a sequence of RCD(K,N) spaces converging in pmGH sense to (Y, d,m, y).
Let Ei ⊂ Xi be a sequence of Borel sets converging in L1loc sense to E ⊂ Y. Assume that each Ei is perimeter
minimizing in Bri(xi) and that ri ↑ +∞. Then E is perimeter minimizing and in the metric space realizing the
convergence we have that ∂Ei → ∂F in Kuratowski sense.

The next proposition can be found in [8, Theorem 5.1]. Given Ω ⊂ X and f : Ω → R we denote by Epi(f) the set
{(x, t) ∈ Ω × R : t > f(x)} and by Epi′(f) the set {(x, t) ∈ Ω × R : t < f(x)}.

Proposition 2.36. Let f ∈ W1,1
loc(X). For every Borel set B ⊂ X we have

P (Epi(f), B) =

ˆ
B

√
1 + |∇f |2 dm.
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Given f ∈ W1,1
loc(X) we will use the notation Wf :=

√
1 + |∇f |2.

Proposition 2.37. Let Ω ⊂ X be open and let u ∈ W1,1
loc(Ω) be continuous in x0 and such that Epi(u) is locally

perimeter minimizing in Ω×R, then there exists an open set A ⊂ Ω containing x0 such that for every ϕ ∈ W1,1(A)∩
L∞(A) compactly supported in A we have ˆ

Ω

∇u · ∇ϕ
Wu

dm = 0. (2)

Proof. Since Epi(u) is locally perimeter minimizing in Ω×R there exists a cilynder Bδ(x0)× (u(x0)− ϵ, u(x0) + ϵ) ⊂
Ω×R where Epi(u) minimizes the perimeter. Moreover, modulo decreasing δ, we may assume that |u−u(x0)| < ϵ/2
in Bδ(x0) by the continuity hypothesis on u. We then set A := Bδ(x0). Note that if ϕ is as in the statement,
then the graph of the function u + tϕ restricted to A, for t ∈ R small enough, will be contained in the cylinder
Bδ(x0) × (u(x0) − ϵ, u(x0) + ϵ). This implies that the function f : R → R given by

f(t) := P (Epi(u+ tϕ), A× R)

has a minimum in zero. By Proposition 2.36 we can write f as

f(t) =

ˆ
A

√
1 + |∇(u+ tϕ)|2 dm,

so that by standard arguments involving Dominated Convergence Theorem we have that f is smooth and that

f ′(0) =

ˆ
Ω

∇u · ∇ϕ
Wu

dm.

Since f is smooth and has a minimum in zero we deduce that f ′(0) = 0 as desired.

Remark 2.38. The same argument of the previous proposition combined with a truncation argument shows that if
u ∈ W1,1

loc(Ω) is bounded and such that Epi(u) is perimeter minimizing in Ω×R, then for every compactly supported
ϕ ∈ W1,1(Ω) we have ˆ

Ω

∇u · ∇ϕ
Wu

dm = 0.

2.4 Existence of tangent balls to perimeter minimizers

In this section we sketch the main steps to prove Theorem 2.44, which will be of crucial importance later on. In
[42, Proposition 6.44] the same fact is proved assuming that the space is non collapsing, so we will only highlight
the points in such proof where changes need to be made for the general case. For simplicity we will work under the
assumption that E ⊂ X is a perimeter minimizer, although Theorem 2.44 is stated for local perimeter minimizers
in an open set. For the results of this section we will implicitly assume that we are working on a fixed RCD(K,N)
space (X, d,m). The next result is taken from [29, Theorem 5.2].

Proposition 2.39. Let E ⊂ X be a perimeter minimizing set and consider the distance function dĒ : X → R. There
exists tK,N ∈ C∞((0,+∞)) such that in X \ Ē we have ∆dĒ ≤ tK,N ◦ dĒ in distributional sense. If K = 0 we can
take tK,N ≡ 0.

The proof of the next result follows immediately from the one in [42, Lemma 2.41] while the subsequent corollary
is obtained via the Coarea Formula.

Proposition 2.40. Let E ⊂ X be a perimeter minimizing set. There exist constants C, r0 > 0 depending on K and
N such that for every t > 0 and r ∈ (0, tr0) we have

m({y ∈ Bt(x) : dĒ(y) ≤ r}) ≤ CrP (E,B2t(x)).

Corollary 2.41. Let E ⊂ X be a perimeter minimizing set. There exist constants C, r0 > 0 depending on K and
N such that the following happens. For every set of full measure A ⊂ (0, r0) and every sequence {tk}k∈N ⊂ (0,+∞)
there exists a sequence {ri}i∈N ⊂ A decreasing to zero such that for every x ∈ ∂E and for every k fixed, if i is
sufficiently large then

P ({dĒ(y) > ri}, Btk(x)) ≤ CP (E,B2tk(x)).
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The proof of the next result mimics the one of [42, Proposition 5.4] and is only sketched.

Proposition 2.42. Let E ⊂ X be a perimeter minimizing set and consider the distance function dĒ : X → R. Then
∆dĒ is a Radon measure in X and we have ∆dĒ = Per(E, ·) + ∆dĒ (X \ Ē) in distributional sense.

Proof. We do the proof assuming that K = 0, the general case requiring only a slight modification. Thanks to
Propositions 2.28 and 2.29 for λ1-a.e. r > 0 and for every positive ϕ ∈ Lipc(X) we have

ˆ
dĒ>r

ϕd∆dĒ +

ˆ
dĒ>r

∇ϕ · ∇dĒ dm = −
ˆ
X

ϕdPer({dĒ > r}). (3)

Now let {tk} be a sequence containing both a subsequence going to +∞ and one going to zero. We consider the
sequence ri given by Corollary 2.41 and, modulo passing to a subsequence, we obtain a Radon measure µ which is
the weak limit of the Radon measures Per({dĒ > ri}) in duality with compactly supported continuous functions (this
exists using the subsequence of {tk} that goes to +∞). We claim that µ≪ Per(E, ·). It is clear that µ is supported
on ∂E, so it is sufficient to prove that there exists a constant c such that for every x ∈ ∂E, considering the (non
relabeled) subsequence of tk that goes to zero, we have

lim sup
tk→0

µ(Btk(x))

Per(E,Btk(x))
≤ c.

So fix tk and note that
µ(Btk(x)) ≤ lim inf

i→+∞
Per({dĒ > ri}, Btk(x)).

By Corollary 2.41 the r.h.s. is controlled by CP (E,B2tk(x)), which by Theorem 2.33 is in turn controlled by
C ′P (E,Btk(x)). summing up we get

µ(Btk(x)) ≤ C ′P (E,Btk(x)),

as desired.
With this in mind we pass to the limit in (3) along the sequence ri and obtain

lim
i→+∞

ˆ
dĒ>ri

ϕd∆dĒ +

ˆ
X

∇ϕ · ∇dĒ dm = −
ˆ
X

ϕdµ.

The first addendum in the l.h.s. of the previous equation is a linear functional on the continuous compactly supported
functions. Moreover it has negative sign because of Proposition 2.39, so it is represented by a negative Radon
measure ν. This implies, by the same equation, that dĒ has measure valued Laplacian and that ∆dĒ (X \ Ē) = ν,
∆dĒ ∂E = µ and ∆dĒ E = 0. To conclude we only need to prove that µ = Per(E). Since we know that
µ≪ Per(E) it is enough to show that for Per-a.e. x ∈ ∂E we have

lim
tk→0

µ(Btk(x))

Per(E,Btk(x))
= 1.

This follows by the same blow-up argument of [42, Proposition 5.4].

Proposition 2.43. Let E ⊂ X be a perimeter minimizing set and consider the distance function dĒ : X \ Ē → R.
Then for every ϕ ∈ Lipc(X) and λ1-a.e. r ∈ R we have

ˆ
X

ϕdPer({dĒ > r}) −
ˆ
X

ϕdPer(E) ≤
ˆ
0<dĒ<r

∇ϕ · ∇dĒ dm.

Proof. For every r > 0 define Er := {dĒ < r}. Applying Proposition 2.28 with A := Er and g = dĒ (this can be
done thanks to proposition 2.42) we get that for every ϕ ∈ Liploc(X) we have

ˆ
∂E

ϕd∆dĒ +

ˆ
Er\Ē

ϕd∆dĒ +

ˆ
0<dĒ<r

∇ϕ · ∇dĒ dm

= −
ˆ
X

ϕ(∇dĒ · νEr
)int dPer(Er).
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Applying Propositions 2.42 and 2.29 we get that for λ1-a.e. r > 0 we have

ˆ
X

ϕdPer(E) +

ˆ
0<dĒ<r

∇ϕ · ∇dĒ dm ≥
ˆ
X

ϕdPer(Er).

The previous proposition replaces Lemma 6.12 in the proof of the analogue of Theorem 2.44 given in [42, Propo-
sition 6.44]. With this replacement, the argument can be carried out in the same way.

Theorem 2.44. Let Ω ⊂ X be an open set and let E ⊂ Ω be a set locally minimizing the perimeter in Ω. For Per-a.e.
x ∈ ∂E ∩ Ω there exists balls B1 ⊂ E and B2 ⊂ Ω \ E such that ∂B1 ∩ ∂B2 = {x}. These balls are called tangent
balls to E at x.

3 Minimal surface equation and perimeter minimizers

In this section (X, d,m) is a fixed RCD(K,N) space and Ω ⊂ X is an open set. We will denote by d× and m×
respectively the product distance and the product measure in X×R. We recall that given Ω ⊂ X and f : Ω → R we
denote by Epi(f) the set {(x, t) ∈ Ω × R : t > f(x)} and by Epi′(f) the set {(x, t) ∈ Ω × R : t < f(x)}. The goal of
this section is to prove the following theorem (which coincides with Theorem 4 in the Introduction when Ω = X).

Theorem 3.1. Let u ∈ W1,1
loc(Ω). The following conditions are equivalent.

1. Epi(u) is locally perimeter minimizing in Ω × R.

2. Epi(u) is perimeter minimizing in Ω × R.

3. u solves the minimal surface equation on Ω.

In Subsection 3.1 we show that 1 implies 3, while in Subsection 3.2 we will show that 3 implies 2.

3.1 Locally perimeter minimizing implies MSE

The proof of the next result is inspired from [30, Theorem 14.10]. We recall that whenever we refer to a locally
perimeter minimizing set we implicitly mean its open representative. Moreover whenever we refer to the pointwise
behavior of u we mean its precise representative defined by

u(x) := lim sup
r→0

 
Br(x)

u dm. (4)

Proposition 3.2. Let u ∈ W1,1
loc(Ω) be such that Epi(u) is locally perimeter minimizing in Ω×R, then u is continuous

in its Lebesgue points.

Proof. Let x ∈ Ω be a Lebesgue point for u and suppose that u(x) = 0. Modulo a vertical translation we always trace
back to this case. Since Epi(u) minimizes the perimeter locally, there exists an open set of the form Bϵ(x)× (−ϵ, ϵ) ⊂
Ω × R where Epi(u) is perimeter minimizing. Now consider r > 0 such that ϵ > 4r and y ∈ Br(x). Suppose for now
that u(y) ≥ 0.

For every i ∈ N such that 2ir ∈ [0,min{u(y), ϵ/4}] we have that (y, 2ir) is in the closure of Epi′(u) and Br(y, 2ir) ⊂
X × R is contained in Bϵ/2 × (−ϵ/2, ϵ/2). Hence, applying Corollary 2.34 in the product space (X × R, d×,m×), we
obtain that

m×(Br(y, 2ir) ∩ Epi′(u)) ≥ c1m×(Br(y, 2ir)) ≥ c2rm(Br(y)).

In particular we have

ˆ
B2r(x)

|u| dm ≥
∑

i∈N∩[0,min{u(y)/2r,ϵ/8r}]

m×(Br(y, 2ir) ∩ Epi′(u))

≥ c3r(min{u(y)/2r, ϵ/8r} − 2)m(Br(y)).
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Using the doubling property we obtain from the previous chain of inequalities that

c3r +

 
B2r(x)

|u| dm ≥ c5 min{u(y), ϵ}.

In particular, since u(y) was assumed to be positive, we deduce that

lim
r→0

sup
Br(x)

u ≤ 0,

while considering the case when u is negative we obtain with an analogous argument that

lim
r→0

inf
Br(x)

u ≥ 0,

proving the continuity of u in x.

Definition 3.3. Given an RCD(K,N) space (X, d,m) we define the codimension 1 spherical Hausdorff measure to
be the measure obtained with the Carathéodory construction using coverings made by balls and gauge function

Br(x) 7→ m(Br(x))/r.

We denote such measure by Hh.

The next proposition corresponds to [35, Theorem 4.1].

Proposition 3.4. Let f ∈ W1,1
loc(Ω). Then Hh-a.e. x ∈ Ω is a Lebesgue point of f .

The next proposition is an intermediate step to prove that 3 implies 1 in Theorem 3.1.

Proposition 3.5. Let u ∈ W1,1
loc(Ω) be such that Epi(u) is locally perimeter minimizing in Ω × R. There exists an

open set A ⊂ Ω with Hh(Ω \A) = 0 such that for every ϕ ∈ Lipc(A) we have
ˆ
Ω

∇u · ∇ϕ
Wu

dm = 0.

Proof. Combining Propositions 3.2 and 3.4 we get that u is continuous Hh-almost everywhere. For every continuity
point x of u consider the set Ax ⊂ Ω given by Proposition 2.37. And denote with A the union of these sets. It is
clear that Hh(Ω \A) = 0. Now let ϕ ∈ Lipc(A) and let {Ai}mi=1 be a finite subcover of the support of ϕ. Let {ηi}mi=1

be Lipschitz functions such that their sum is equal to 1 on the support of ϕ, while each ηi is compactly supported in
Ai. It is easy to check that such functions exist. We get

ˆ
Ω

∇u · ∇ϕ
Wu

dm =

m∑
i=1

ˆ
Ai

∇u · ∇(ηiϕ)

Wu
dm = 0.

Proposition 3.6. Let u ∈ W1,1
loc(Ω) be such that Epi(u) is locally perimeter minimizing in Ω×R. For every ϕ ∈ Lipc(Ω)

we have ˆ
Ω

∇u · ∇ϕ
Wu

dm = 0.

Proof. Let A be the set given by Proposition 3.5 and call C := Ω \ A. We claim that we can construct a sequence
{ηi}i∈N of Lipschitz compactly supported functions in Ω that are equal to 1 in a neighbourhood of C ∩ supp(ϕ) and
such that ∥ηi∥W1,1(Ω) → 0 as i goes to +∞.

Assume for the moment that the claim holds. In this case we get
ˆ
Ω

∇u · ∇ϕ
Wu

dm =

ˆ
Ω

∇u · ∇(ηiϕ)

Wu
dm +

ˆ
Ω

∇u · ∇((1 − ηi)ϕ)

Wu
dm

=

ˆ
Ω

ϕ∇u · ∇ηi
Wu

dm +

ˆ
Ω

ηi∇u · ∇ϕ
Wu

dm
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and since |∇u|/Wu ≤ 1 the last expression tends to zero as i goes to +∞ since ∥ηi∥W1,1(Ω) → 0.

So we only need to prove our previous claim. We have that C ∩ supp(ϕ) is compact and Hh(C) = 0. So for every
ϵ > 0 there exists a finite collection {Brϵi

(xϵi)}
mϵ
i=1 of balls with radii in (0, ϵ) and centers in C ∩ supp(ϕ), whose union

covers C ∩ supp(ϕ), and such that
mϵ∑
i=1

m(Brϵi
(xϵi))

rϵi
< ϵ.

For every such ball define ηϵi : X → R by

ηϵi (x) =
(

1 −
d(Brϵi

(xϵi), x)

rϵi

)
∨ 0.

It is clear that ∥ηϵi∥L1(X) ≤ m(B2rϵi
(xϵi)) ≤ c1m(Brϵi

(xϵi)), while

∥∇ηϵi∥L1(X) ≤
m(B2rϵi

(xϵi))

rϵi
≤ c1

m(Brϵi
(xϵi))

rϵi
.

In particular defining ηϵ := (
∑mϵ

i=1 η
ϵ
i ) ∧ 1 we obtain a Lipschitz function compactly supported in Ω (if ϵ is small

enough) which is equal to 1 on a neighbourhood of C ∩ supp(ϕ) and with ∥ηϵ∥W1,1(X) ≤ 2c1ϵ. This concludes the
proof.

Remark 3.7. The result of Proposition 3.6 holds also in the setting of doubling spaces supporting a (1, 1) Poincaré
inequality (without any curvature assumption). This follows taking into account that the density estimates for
perimeter minimizers (that were used in Proposition 3.2) hold in this weaker setting as well.

3.2 MSE implies globally perimeter minimizing

So far we have seen that if u ∈ W1,1
loc(Ω) and its epigraph is locally perimeter minimizing in Ω ×R, then u solves the

minimal surface equation. In this section we show that if u solves the aforementioned equation, then its epigraph
minimizes the perimeter.

Proposition 3.8. Let u ∈ W1,1
loc(Ω) be a solution of the minimal surface equation. Then u minimizes the area

functional among W1,1
loc(Ω) functions that coincide with u out of a compact set of Ω.

Proof. Let ϕ ∈ W1,1
loc(Ω) be a function that coincides with u out of an open precompact set A ⊂⊂ Ω. Then the

function f(t) =
´
A

√
1 + |∇(u+ tϕ)|2 dm is smooth, it satisfies f ′(0) = 0 and it is convex, so that it has a minimum

in 0. The statement follows.

The previous proposition implies that the theory of De Giorgi Classes can be applied to u. The next proposition
follows by mimicking the proof in the Euclidean setting given for example in [11, Theorem 3.9] (and it can be also
obtained combining the results from [32] and [8]).

Proposition 3.9. Let u ∈ W1,1
loc(Ω) be a solution of the minimal surface equation, then u is locally bounded.

In the next proposition we consider functions on Ω×R. Given such a function f we will denote by lipt(f)(x, s) the
local Lipschitz constant in (x, s) of the restriction of f to {x} ×R. Similarly, lipx(f)(x, s) will be the local Lipschitz
constant in (x, s) of the restriction of f to Ω × {s}. Finally, lip×(f) will be the local Lipschitz constant of f .

Proposition 3.10. Let f ∈ Lip(Ω × R) and let B ⊂ Ω be an open set. Suppose that there exist ϵ, s1, s2 ∈ R such
that 1/2 > ϵ > 0, s2 > s1, f ≥ 1 − ϵ on B × {s1} and f ≤ ϵ on B × {s2}. Then setting

w(f)(x) :=

ˆ s2

s1

f(x, t) dt.

we have that w(f) is Lipschitz and

ˆ
B×(s1,s2)

lip×(f) dm× ≥
ˆ
B

√
(1 − 2ϵ)2 + |∇w(f)|2 dm.
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Proof. By the tensorization property of the energy (see [8]) we have

ˆ
B×(s1,s2)

lip×(f) dm× =

ˆ
B×(s1,s2)

√
lipt(f)2 + lipx(f)2 dm×

and for every (a, b) ∈ C(Ω) × C(Ω) such that a2 + b2 ≤ 1 we get

ˆ
B×(s1,s2)

√
lipt(f)2 + lipx(f)2 dm× ≥

ˆ
B×(s1,s2)

a lipt(f) + b lipx(f) dm×

and by the condition on f this is greater than or equal to

ˆ
B

[
a(1 − 2ϵ) + b

ˆ
(s1,s2)

lipx(f) dt
]
dm.

We claim that lip(w(f)) = |∇w(f)| ≤
´
(s1,s2)

lipx(f) dt almost everywhere w.r.t. m in Ω. If the claim holds, passing

to the supremum with respect to (a, b) in the previous expression we conclude.
Observe that for every x, y ∈ B we have

|w(f)(x) − w(f)(y)| ≤
ˆ s2

s1

|f(x, t) − f(y, t)| dt ≤ (s2 − s1)L(f)d(x, y)

so that w(f) is Lipschitz in B and hence for m-a.e. x ∈ B we have |∇w(f)| = lip(w(f)). Moreover by DCT we have

lip(w(f))(x) = lim
xn→x

|w(f)(x) − w(f)(xn)|
d(xn, x)

≤
ˆ
(s1,s2)

lipx(f) dt,

as desired.

Lemma 3.11. Let f, g ∈ W1,1
loc(Ω) and B ⊂⊂ Ω be a Borel set, then |P (Epi(f), B × R) − P (Epi(g), B × R)| ≤

|D(f − g)|(B).

Proof. The proof is immediate and follows from the fact that

|P (Epi(f), B × R) − P (Epi(g), B × R)| = |
ˆ
B

√
1 + |∇f |2 dm−

ˆ
B

√
1 + |∇g|2 dm|

≤
ˆ
B

||∇f | − |∇g|| dm ≤
ˆ
B

|∇(f − g)| dm.

The next proposition contains a technical approximation result that will be crucial for the remaining part of the
section.

Proposition 3.12. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω be open sets and let f ∈ W1,1
loc(Ω) and ϕ ∈ BVc(Ω

′) be locally bounded.
There exist functions ft ∈ Lip(Ω′′) converging in L1(Ω′′) to f + ϕ such that

lim sup
t→0

P (Epi(ft),Ω
′′ × R) = P (Epi(f + ϕ),Ω′′ × R)

and
|D(f − ft)|(Ω′′ \ Ω′) → 0.

Proof. Since the statement concerns precompact sets of Ω, modulo using a cut off, we suppose that f ∈ W1,1(Ω) with
compact support in Ω. Moreover, modulo enlarging Ω′′, we may also suppose that m(∂Ω′′) = 0. Whenever we refer to
f as a function on X we implicitly mean its extension to zero. Let B be an open set such that supp(ϕ) ⊂⊂ B ⊂⊂ Ω′.
We claim that for every ϵ > 0 there exists a function f ′ ∈ W1,1(Ω) with compact support whose restriction to Ω \B
is Lipschitz such that

|P (Epi(f + ϕ),Ω′′ × R) − P (Epi(f ′ + ϕ),Ω′′ × R)| < ϵ
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and
|D(f − f ′)(Ω′′ \ Ω′)| < ϵ.

To prove the claim consider an open set A such that

supp(ϕ) ⊂⊂ A ⊂⊂ B

and let δ > 0 and v ∈ Lipc(Ω) be such that ∥f − v∥W1,1(Ω) < δ. Let then η ∈ Lipc(B) be a positive function, taking
value less than or equal to 1 and identically equal to 1 on A. We define f ′ := ηf + (1 − η)v. This function trivially
satisfies f ′ ∈ W1,1(Ω), it has compact support, its restriction belongs to Lip(Ω \B), |D(f − f ′)(Ω′′ \ Ω′)| < δ, and

|P (Epi(f + ϕ),Ω′′ × R) − P (Epi(f ′ + ϕ),Ω′′ × R)|

= |P (Epi(f), cA× R) − P (Epi(f ′), cA× R)|.

By Lemma 3.11 this last quantity is controlled by

|D(f ′ − f)|(cA) ≤ |D(1 − η)(v − f)|(Ω) ≤ c(η)δ.

In particular choosing δ small enough we have proved the claim. Taking this into account, it is sufficient to prove
the statement of the theorem under the additional assumption that the restriction of f to Ω \B is Lipschitz (and we
still have that f ∈ W1,1(Ω) and has compact support).

To this aim we define ft := Pt(f +ϕ) and we claim that these functions restricted to Ω′′ have the right properties.
First of all the functions ft are Lipschitz by The L∞ to Lipschitz property of the heat flow. Moreover ft → f + ϕ in
L1(Ω′′) since we have convergence in L2(X).

We will now show that
|D(f − ft)|(Ω′′ \ Ω′) → 0.

Let τ ∈ Lipc(Ω
′) be positive, taking value less than or equal to 1 and equal to 1 on B. Note that

ft = Pt((1 − τ)f) + Pt(τf + ϕ),

and since (1 − τ)f ∈ Lip(X) ⊂ W1,2(X) we have Pt((1 − τ)f) → (1 − τ)f in W1,2(X) which implies convergence in
W1,1(Ω′′) since Ω′′ is bounded. In particular when we restrict these functions to Ω′′ \ Ω′ we get

|D(f − Pt((1 − τ)f))|(Ω′′ \ Ω′) → 0.

So to conclude the proof of the second property in the statement it is sufficient to note that by Proposition 2.22 we
have

|D(Pt(τf + ϕ))|(Ω′′ \ Ω′) → |D(τf + ϕ)|(Ω′′ \ Ω′) = 0.

We now turn our attention to the perimeter condition. Modulo a vertical translation we can suppose that f + ϕ > 0
on Ω′′. Consider then the function Ft : X× R → R given by

Ft(x, s) := PX×R
t (1Epi′(f+ϕ))(x, s).

By Proposition 2.22 and the fact that m(∂Ω′′) = 0, we get

lim
t→0

|DX×RFt|(Ω′′ × R) = P (Epi′(f + ϕ),Ω′′ × R). (5)

At the same time we have that pX×R
t ((x, r)(y, s)) = pXt (x, y)pRt (r, s) and that

´
R pt(r, s) ds = 1. We claim that this

implies ∥∇(w(Ft) − ft)∥L1(Ω′′) → 0 as t→ 0, where

w(Ft)(x) :=

ˆ
I

Ft(x, s) ds

and I is any finite open interval containing 0 and the supremum of u+ ϕ in Ω′′.
Indeed

w(Ft)(x) − ft(x)
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=

ˆ
I

ˆ
X×R

pXt (x, y)pRt (r, s)1Epi′(f+ϕ)(y, s) dm(y) ds dr −
ˆ
R

ˆ
X×R+

pXt (x, y)pRt (r, s)1Epi′(f+ϕ)(y, s) dm(y) ds dr

=

ˆ
I

ˆ
X×R−

pXt (x, y)pRt (r, s) dm(y) ds dr −
ˆ

cI

ˆ
X×R

pXt (x, y)pRt (r, s)1Epi′(f+ϕ)∩X×R+
(y, s) dm(y) ds dr.

Note now that the first addendum in the previous expression is a constant, so that to prove our claim it is sufficient
to show that ˆ

Ω′′
lipx

ˆ
cI

Pt(1Epi′(f+ϕ)∩X×R+
)(x, r) dr dm(x) → 0.

This follows passing the Lipschitz constant inside the second integral and observing first that lipx is controlled from
above by the Lipschitz constant in the product space, and then that Proposition 2.22 guarantees that

lim
t→0

|DX×RPt(1Epi′(f+ϕ)∩X×R+
)|(Ω′′ × cI) = 0.

This concludes the proof that ∥∇(w(Ft) − ft)∥L1(Ω′′) → 0. By Lemma 3.11, this implies that

|P (Epi(w(Ft)),Ω
′′) − P (Epi(ft),Ω

′′)| → 0.

In conclusion if we fix ϵ > 0, for t small enough we have that Ft satisfies the hypotheses of Proposition 3.10 and in
addition |P (Epi(w(Ft)),Ω

′′) − P (Epi(ft),Ω
′′)| < ϵ, so that

|DFt|(Ω′′ × R) ≥ P (Epi(w(Ft)),Ω
′′ × R) − 2ϵm(Ω′′) ≥ P (Epi(ft),Ω

′′ × R) − ϵ(1 + 2m(Ω′′)).

Finally, passing to the limits in the previous expression and taking into account (5), the arbitrariness of ϵ, and the
lower semicontinuity of perimeters we conclude.

Proposition 3.13. Let u ∈ W1,1
loc(Ω) be a solution of the minimal surface equation. Then the epigraph of u minimizes

the perimeter among bounded competitors in BVloc(Ω) that coincide with u out of a compact set.

Proof. Let Ω′ ⊂⊂ Ω′′ ⊂⊂ Ω be open sets and let ϵ > 0. Let ϕ ∈ BVc(Ω
′) be bounded. It will be sufficient to show

that for a constant C independent of ϵ we have

P (Epi(ϕ+ u),Ω′′ × R) ≥ P (Epi(u),Ω′′ × R) − Cϵ.

By Proposition 3.12 there exists f ∈ Lip(Ω′′) such that

∥f − u∥W1,1(Ω′′\Ω̄′) + ∥f − (u+ ϕ)∥L1(Ω′′) < ϵ

and
P (Epi(f),Ω′′ × R) ≤ P (Epi(ϕ+ u),Ω′′ × R) + ϵ.

Let η ∈ Lipc(Ω
′′) be positive, taking value less than or equal to 1 and equal to 1 on a neighbourhood of Ω̄′. Note

that fη + (1 − η)u ∈ W1,1
loc(Ω) and differs from u on a precompact set of Ω′′, so that

P (Epi(u),Ω′′ × R) ≤ P (Epi(fη + (1 − η)u),Ω′′ × R).

At the same time

|P (Epi(fη + (1 − η)u),Ω′′ × R) − P (Epi(f),Ω′′ × R)| ≤ |D(1 − η)(f − u)|(Ω′′ \ Ω̄′) ≤ C(η)ϵ.

Putting these inequalities together we have

P (Epi(ϕ+ u),Ω′′ × R) ≥ P (Epi(f),Ω′′ × R) − ϵ

≥ P (Epi(fη + (1 − η)u),Ω′′ × R) − (C(η) + 1)ϵ

≥ P (Epi(u),Ω′′ × R) − (C(η) + 1))ϵ,

concluding the proof.
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Theorem 3.14. Let u ∈ W1,1
loc(Ω) be a solution of the minimal surface equation. Then Epi(u) is a perimeter

minimizing set in Ω × R.

Proof. Let F ⊂ Ω × R be a set such that Epi′(u)∆F ⊂⊂ Ω × R. Let A ⊂ Ω be an open precompact set such that
Epi′(u)∆F ⊂⊂ A × R. Modulo translating vertically, since u is bounded in A, we can suppose that u > 0 and
Epi′(u)∆F ⊂⊂ A× (0 + ∞).

Now consider a sequence {fi}i∈N ⊂ Lip(A× R) of functions converging in L1(A× R) to F and such that

P (F,A× R) = lim
i→+∞

ˆ
A×R

lip×(fi) dm×.

It is clear that we can assume that fi = 1 on A× (−∞, 0) and that there exists c > 0 such that f = 0 on A× (c,+∞)
(if this is not the case we multiply by a cutoff and obtain a better approximation).

Using the notation introduced in Proposition 3.10, we obtain by the same proposition that

P (F,A× R) ≥ lim sup
i→+∞

ˆ
A

√
1 + |∇w(fi)|2 dm = lim sup

i→+∞
P (Epi(w(fi)), A).

Moreover the L1 convergence of Epi(w(fi)) to Epi(w(1F )) in A × R and the lower semicontinuity of the perimeter
gives, passing to the limit in the previous expression, that

P (F,A× R) ≥ P (Epi(w(1F )), A).

Moreover since each w(fi) is Lipschitz we deduce that w(1F ) ∈ BV(A). By definition w(1F ) ̸= u on a precompact
subset of A, so that by Proposition 3.13 we deduce that

P (F,A× R) ≥ P (Epi(w(1F )), A) ≥ P (Epi(u), A),

as desired.

4 Harmonicity of u on its graph

In this section we prove Theorems 5 and 6 from the Introduction. This is the central and most technical section of
the note. We first introduce the abstract machinery of strong blow-ups and then we apply it to u and its graph.
This can be done thanks to the refined blow-up properties of u analyzed in Section 4.2.

4.1 Blow-ups of functions

The idea of considering blow-ups of functions comes from [17], and in this section we apply the results of the
aforementioned work to define strong blow-ups. The key results are Corollaries 4.7 and 4.9, as they show that a
function and its strong blow-up share the same local Lipschitz constant (note that this may not happen for blow-ups,
in general). In the rest of the note when we consider the L∞ norm of a function we mean its supremum. Moreover,
if we are working with functions that are defined modulo negligible sets, we will be implicitly fixing a representative.

Definition 4.1. Let (X, d) be a metric space and let f : X → R be a function. Given a sequence {ϵn}n∈N decreasing
to zero, we say that a triple (ϵn, ψn, f

∞) is a blow-up of f at x if (ϵn, ψn) is a blow-up of X at x and f∞ : Rk → R
is a linear function such that

∥ϵ−1
n (f ◦ ψn − f(x)) − f∞∥

L∞(B̄Rk
1 (0))

→ 0.

Definition 4.2. Let (X, d) be a metric space. We say that a triple (ϵn, ψn, f
∞) is a strong blow-up of f at x if it is

a blow-up and the following holds. For every {δ′n}n∈N going to zero and every sequence {ψ′
n}n∈N of δ′n-GH maps

ψ′
n : B̄Rk

1 (0) → (B̄ϵn(x), ϵ−1
n d)

such that ψ′
n ̸= ψn for at most a finite number of points we have that (ϵn, ψ

′
n, f

∞) is a blow-up of f at x.

The next theorem follows from [17, Theorem 10.2].
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Theorem 4.3. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be an open set and let f ∈ Lip(Ω). Then for m-a.e.
x ∈ Ω, for every blow-up (ϵn, ψn) of X at x there exists a (non relabeled) subsequence such that (ϵn, ψn, f

∞) is a
blow-up of f at x and |∇f |(x) = lip(f)(x) = lip(f∞)(0).

Corollary 4.4. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be an open set and let f ∈ Lip(Ω), then for m-
a.e. x ∈ Ω for every blow-up (ϵn, ψn) of X at x there exists (modulo passing to a subsequence) a strong blow-up
(ϵn, ψn, f

∞) of f in x. We say that f is differentiable in any such point.

Proof. Let x ∈ Ω be a regular point of X. Since f is Lipschitz Theorem 4.3 guarantees that for every blow-up (ϵn, ψn)
of X at x there exists (modulo passing to a subsequence and asking that x lies out of an appropriate m-negligible set)
a blow-up (ϵn, ψn, f

∞) of f at x. Let now (ϵn, ψ
′
n) be another blow-up of X at x such that for every n ∈ N we have

ψ′
n ̸= ψn on at most a finite number of points. By the previous theorem, modulo passing to another subsequence,

there exists a blow-up (ϵn, ψ
′
n, f

′∞). It is easy to check that f∞ and f ′
∞

coincide out of a countable set so that,
being linear, they coincide everywhere, concluding the proof.

Proposition 4.5. Let f : Rm → R be a smooth function and let ϕ1, ..., ϕm : Ω → R be functions admitting blow-ups
{(ϵn, ψn, ϕ

∞
i )}mi=1 in x. Then f(ϕ1, ..., ϕm) has blow-up (ϵn, ψn, f

∞), where

f∞ := ∇f((ϕ1(x), ..., ϕm(x))) · (ϕ∞1 , ..., ϕ
∞
m ).

The same statement holds replacing blow-ups with strong blow-ups.

Proof. We will suppose w.l.o.g. that (ϕ1, ..., ϕm)(x) = 0 and that f(0) = 0. To lighten the notation instead of writing
ϕi ◦ ψn we will write simply ϕi. Since f is smooth we have

|ϵ−1
n f(ϕ1, ..., ϕm) − f∞|

= |ϵ−1
n ∇f(ϕ1, ..., ϕm)(x) · (ϕ1, ..., ϕm) + ϵ−1

n o(|(ϕ1, ..., ϕm)|) − f∞|

≤ |ϵ−1
n ∇f(ϕ1, ..., ϕm)(x) · (ϕ1, ..., ϕm) − f∞| +

o(|(ϕ1, ..., ϕm)|)
|(ϕ1, ..., ϕm)|

|(ϕ1, ..., ϕm)|
ϵn

.

The first addendum goes to zero uniformly in B1(0) by definition of f∞. Concerning the second, the quantity
(ϕ1, ..., ϕm)/ϵn is bounded in modulus by the existence of the linear blow-ups, so that the second addendum goes
to zero uniformly in B1(0), concluding the proof of the first claim. The statement on strong blow-ups follows
similarly.

Proposition 4.6. Consider a metric space (Y, dy), a point y ∈ Y, and a function f : Y → R. Suppose that

lip(f)(y) = lim
n→+∞

|f(yn) − f(y)|
dy(yn, y)

and set ϵn := dy(y, yn). Let Rk ⊃ A ⊃ B̄1(0) be either an open set or a closed ball and let Y ⊃ An ⊃ B̄ϵn(y). Assume
that {δn}n∈N decreases to zero and that we have δn-GH approximations ψn : A→ (An, ϵ

−1
n dy) such that there exists

a linear function f∞ : Rk → R such that

∥ϵ−1
n (f ◦ ψn − f(y)) − f∞∥L∞(A) → 0.

Assume moreover that if {δ′n}n∈N decreases to zero and {ψ′
n} is another sequence of δ′n-GH approximations between

the same sets such that ψ′
n differs from ψn on at most a finite number of points we have that

∥ϵ−1
n (f ◦ ψ′

n − f(y)) − f∞∥L∞(A) → 0.

Then lip(f)(y) = lip(f∞)(0).

Proof. We first show that lip(f)(y) ≤ lip(f∞)(0). By Lemma 2.9 for every n ∈ N there exists a 4δn-GH map
ψ′
n : A → An such that ψ′

n ̸= ψn on at most one point and yn ∈ Im(ψ′
n) with ψ′

n(xn) = yn. By hypothesis we then
have ∣∣∣ |f(yn) − f(y)|

dy(yn, y)
− f∞(xn)

∣∣∣ → 0.
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Moreover since f∞ is linear and |xn| tends to 1 as n increases we have

lip(f∞)(0) ≥ lim sup
n→+∞

|f∞(xn)|
|xn|

≥ lim sup
n→+∞

|f∞(xn)|.

Summing up we obtain

lip(f)(y) = lim
n→+∞

|f(yn) − f(y)|
dy(yn, y)

= lim
n→+∞

|f∞(xn)| ≤ lip(f∞)(0),

proving the first inequality.
We now show that lip(f∞)(0) ≤ lip(f)(y). Since f∞ is linear there exists x∞ ∈ Rn such that |x∞| = 1 and

lip(f∞)(0) = f∞(x∞). By hypothesis we then get that

|ϵn−1|f(ψn(x∞)) − f(y)| − f∞(x∞)| → 0,

with dy(ψn(x∞), y) ≤ ϵn(1 + δn). Therefore

lip(f∞)(0) = f∞(x∞) = lim
n→+∞

ϵn
−1|f(ψn(x∞)) − f(y)|

≤ lim sup
n→+∞

(1 + δn)|f(ψn(x∞)) − f(y)|
dy(ψn(x∞), y)

≤ lip(f)(y),

concluding the proof.

Corollary 4.7. Consider a metric space (Y, dy), a point y ∈ Y, and a function f : Y → R. Suppose that

lip(f)(y) = lim
n→+∞

|f(yn) − f(y)|
dy(yn, y)

and set ϵn := dy(y, yn). If f admits strong blow-up (ϵn, ψn, f
∞) then lip(f∞)(0) = lip(f)(y).

As remarked at the beginning of the section, in the rest of the note, when we consider blow-ups of Sobolev
functions we assume that we are working with a fixed representative.

Proposition 4.8. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X an open set and let f ∈ W1,1
loc(Ω). For m-a.e.

x ∈ X, if there exists a strong blow-up (ϵn, ψn, f
∞) of f at x, then |∇f |(x) = lip(f∞)(0).

Proof. Fix ϵ > 0 and consider the Lipschitz map fϵ such that m({f ̸= fϵ}) ≤ ϵ given by Theorem 2.16. By the
locality of relaxed gradients for m-a.e. x ∈ {f = fϵ} we have

|∇f |(x) = |∇fϵ|(x) = lip(fϵ)(x).

So to conclude we only need to show that for m-a.e. x ∈ {f = fϵ} for every strong blow-up (ϵn, ψn, f
∞) of f at x it

holds
lip(fϵ)(x) = lip(f∞)(0). (6)

We claim that in every point x ∈ {f = fϵ} where {f = fϵ} has density 1 and fϵ is differentiable the previous equality
holds. To prove the claim, given the strong blow-up (ϵn, ψn, f

∞), we consider (modulo passing to a subsequence)
the strong blow-up (ϵn, ψn, f

∞
ϵ ), which exists by our choice of x.

Then we fix 1/8 > δ > 0, a basis {ei}ki=1 of Rk and we consider points

xni ∈ B̄δϵn(ψn(ei)) ∩ {f = fϵ} ∩ B̄ϵn(x).

Such points always exist if n is large enough by the density condition of {f = fϵ} in x. By Lemma 2.9 for every n
there exists a 4δn-GH map ψ′

n with same domain and codomain as ψn, differing from ψn on at most k points and
such that {xni }ki=1 ⊂ Im(ψ′

n). Now let {yni }ki=1 ⊂ B̄1(0) be points such that ψ′
n(yni ) = xni and, modulo passing to a

subsequence, let yi ∈ B̄1(0) be the limit of yni as n increases to +∞. Observe that {yi}ki=1 is a basis for Rk since for
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every i we have de(yi, ei) ≤ δ. As (ϵn, ψn, f
∞) and (ϵn, ψn, f

∞
ϵ ) are strong blow-ups we have that (ϵn, ψ

′
n, f

∞) and
(ϵn, ψ

′
n, f

∞
ϵ ) are blow-ups as well.

In particular (assuming for simplicity that f(x) = 0) for every δ1 > 0 and i there exists n ∈ N such that

|f∞(yi) − f∞ϵ (yi)| ≤ |f∞(yni ) − f∞ϵ (yni )| + δ1

and
∥f ◦ ψ′

n − f∞∥L∞(B̄1(0)) + ∥fϵ ◦ ψ′
n − f∞ϵ ∥L∞(B̄1(0)) < δ1.

So we get
|f∞(yi) − f∞ϵ (yi)| ≤ |f∞(yni ) − f∞ϵ (yni )| + δ1

≤ |f(ψ′
n(yni )) − fϵ(ψ

′
n(yni ))| + 2δ1 = 2δ1.

In particular as δ1 was arbitrary we get that for every i we have f∞(yi) = f∞ϵ (yi) and since these functions are linear
and {yi}ki=1 is a basis for Rk we deduce that they coincide. Equation (6) then follows by Theorem 4.3.

Corollary 4.9. Let (X, d,m) be an RCD(K,N) space, let Ω ⊂ X be an open set and let f ∈ W1,1
loc(Ω). For m-a.e.

x ∈ Ω, if for every sequence {ϵn}n∈N, modulo passing to a subsequence, there exists a strong blow-up (ϵn, ψn, f
∞),

then |∇f |(x) = lip(f∞)(0) = lip(f)(x).

Proof. It follows combining Corollary 4.7 and Proposition 4.8.

Note that the previous corollary fails if we replace strong blow-ups with normal blow-ups. To see this consider
the Dirichlet function f : R → R given by f(x) = 1 if x ∈ Q and f(x) = 0 otherwise. It is easy to see that for every
ϵn → 0 there exists a blow-up (ϵn, ψn) of R at 0 such that the function f admits (ϵn, ψn, 0) as blow-up (but not as
strong blow-up), but lip(0) = 0 while lip(f)(0) = +∞.

4.2 Refined blow-up properties of Epi(u)

In the remaining part of Section 4, (X, d,m) will be a fixed RCD(K,N) space with K ≤ 0, Ω ⊂ X will be an open set
and u ∈ W1,1

loc(Ω) will be a function satisfying one of the equivalent conditions in Theorem 3.1. When writing Epi(u)

we will always implicitly refer to its open representative while W will denote the quantity
√

1 + |∇u|2.
We recall that whenever we refer to the pointwise behavior of u, we implicitly assume that we are considering

it is precise representative (see (4)). In particular this means that the graph of u is contained in ∂Epi(u). We will
denote by v : Ω → R a generic function such that

Graph(v) ⊂ ∂Epi(u). (7)

The results of this section hold for any v of the previous type, as they depend on the geometric properties of Epi(u),
rather than the specific representative that we choose. The key result of this section is Theorem 4.15, showing that
each function v of the previous type admits a strong blow-up at m-almost every x ∈ X. Let k be the essential
dimension of X.

Remark 4.10. Let B1, B2 ⊂ Ω × R be tangent balls to Epi(u) in (x, u(x)) and let u(x) = 0. Modulo replacing one
of the balls with a smaller one we can suppose that they have the same radius. In this case the real coordinates of
their centers are one the opposite of the other one.

We say that a geodesic γ : I → X× R is horizontal if it is contained in a set of the form X× {t} for some t ∈ R.

Lemma 4.11. For m-a.e. x ∈ Ω there exist interior and exterior tangent balls to Epi(u) in (x, u(x)), and the geodesic
connecting their centers is not horizontal.

Proof. By Proposition 3.2, u is continuous in its Lebesgue points, so that for every such point x ∈ Ω we have
{x} × R ∩ ∂Epi(u) = {(x, u(x))}.

Suppose now by contradiction that there is a Borel set B ⊂ Ω of positive measure m(B) > 0 such that for every
x ∈ B the set Epi(u) does not admit a pair of tangent balls at any point in {x} × R. Because of Proposition 2.36
we would get that the set {(x, t) ⊂ ∂Epi(u) : x ∈ B} has positive perimeter in ∂Epi(u) and its points never admit
tangent balls, contradicting Theorem 2.44.
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In particular for m-a.e. x ∈ Ω there exists a point (x, t) ∈ ∂Epi(u) where Epi(u) has tangent balls, and by our
initial remark on Lebesgue points we have that for m-a.e. x ∈ Ω there exist tangent balls in (x, u(x)).

We will now prove that for m-a.e. point of the previous type the geodesic connecting the centers of the tangent
balls is not horizontal. To this aim let x0 ∈ Ω be a Lebesgue point for u and |∇u| such that Epi(u) admits a pair
of tangent balls in (x0, u(x0)) and assume for simplicity that u(x0) = 0. We claim that in every such point the
aforementioned geodesic cannot be horizontal. Suppose by contradiction that this is not the case.

Consider for every n ∈ N the dilated function

nu : (Ω, nd, Cnm) → R,

where Cn := m(Bn−1(x0))−1. We will denote by Bn
s (y) balls in the dilated space (X, nd, Cnm) and by |∇n| the

gradient; it is easy to check that |∇n| = |∇|/n. Observe moreover that the space (X, nd, Cnm) is an RCD(K/n2, N)
space, so that these spaces all admit a (1, 1)-Poincaré inequality with the same constants by Proposition 2.15. We
obtain ˆ

Bn
1 (x0)

|∇nnu|Cn dm =

 
B1/n(x0)

|∇u| dm → c, (8)

where the last limit is due to our initial assumption on x0. Moreover for every n ∈ N there exists a constant cn such
that ˆ

Bn
1/2

(x0)

|nu− cn|Cn dm ≤ 4e|K|
ˆ
Bn

1 (x0)

|∇nnu|Cn dm,

which together with (8) gives that for every n ∈ N sufficiently large
ˆ
Bn

1/2
(x0)

|nu− cn|Cn dm < 4e|K|(c+ 1). (9)

Consider now the tangent balls Br((p, 0) ⊂ Epi(u) and Br((q, 0)) ⊂ Epi′(u) in (x0, 0) which, without loss of generality,
we suppose to have the same radius r. For every n ∈ N sufficiently large let pn ∈ Ω be the point on the geodesic
connecting p and x0 which is distant 3

4n from x0. Observe that Bn
1/4(pn) ⊂ Bn

1 (x0), and since Cnm(Bn
1 (x0)) = 1,

from the doubling property we deduce that there exists a constant C independent of n such that Cnm(Bn
1/4(pn)) ≥

C. Repeating the exact same construction with respect to q we obtain qn such that Bn
1/4(qn) ⊂ Bn

1 (x0) and

Cnm(Bn
1/4(qn)) ≥ C.

Our goal is now to show that there exists a sequence {an}n∈N ⊂ R+ increasing to +∞ such that nu ≥ an on
Bn

1/4(qn), while nu ≤ −an on Bn
1/4(pn). If we are able to prove this, keeping in mind that Cnm(Bn

1/4(pn)) ≥ C and

Cnm(Bn
1/4(qn)) ≥ C, we contradict (9).

The desired sequence can be constructed observing that on Bn
1/4(qn) the graph of u lies above the ball Br((q, 0)),

and so in particular
nu ≥ n

√
r2 − (r − 1/(2n))2 =

√
nr − 1/4,

while an analogous argument gives nu ≤ −
√
nr − 1/4 on Bn

1/4(pn), as desired.

Let γ : [0, L(γ)] → X×R be a geodesic, where L(γ) denotes its length. We denote by γ(t)R and γ(t)X respectively
the real and the X component of γ(t). Observe that both γR and γX are geodesics in the respective spaces.

Definition 4.12. Let γ : [0, L(γ)] → X×R be a geodesic, where L(γ) denotes its length. We define the slope of γ as

s(γ) :=
|γ(0)R − γ(L(γ))R|

L(γ)
.

In the next lemma we will denote by e1 a fixed element of modulo 1 in Rk. We recall that we denote by v a
generic function whose graph is contained in ∂Epi(u).

Lemma 4.13. Let x ∈ Ω be a regular point for X where Epi(u) admits interior and exterior tangent balls of radius
r at (x, u(x)) and suppose that the the geodesic γ connecting their centers is not horizontal.

Consider {ϵn}n∈N such that nϵn ≤ r
√

1 − s(γ)2 and suppose that we have {δn}n∈N decreasing to zero and the
δn-GH maps

ψn : B̄Rk

n (0) → (B̄X
nϵn(x), ϵ−1

n d).
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Let pn be the point on the portion of γX connecting p and x at distance nϵn from x and let qn be the analogous point

replacing p with q. Suppose moreover that ψn(ne1) = qn, ψn(−ne1) = pn and ψn : B̄Rk

1 (0) ⊂ B̄X
ϵn(x). Then we have

that
∥ϵ−1

n (v(ψn) − v(x)) − u∞∥L∞(B̄Rn
1 (0)) → 0, (10)

where u∞ : Rk → R is the linear function whose graph is perpendicular to the line connecting
(e1, s(γ)/

√
1 − s(γ)2)) and (−e1,−s(γ)/

√
1 − s(γ)2)).

Proof. Assume for simplicity that u(x) = 0. Consider the maps (ψn, ϵnid) : B̄Rk

n (0) × R → (B̄X
nϵn(x) × R, ϵ−1

n d×)
given by

(ψn, ϵnid)(y, t) := (ψn(y), ϵnt)

and note that these are δn-GH maps. We claim that

(ψn, ϵnid)(Bn−2δn(ne1, ns(γ)/
√

1 − s(γ)2)) ⊂ B(n−δn)ϵn(qn, nϵns(γ)/
√

1 − s(γ)2) (11)

and

(ψn, ϵnid)(Bn−2δn(−ne1,−ns(γ)/
√

1 − s(γ)2)) ⊂ B(n−δn)ϵn(pn, nϵns(γ)/
√

1 − s(γ)2), (12)

where we implicitly assume that the balls appearing in the left hand sides of these inequalities have been restricted to
the domain of (ψn, ϵnid). We only prove (11) since (12) is analogous. To prove the claim we note that by construction

(ψn, ϵnid)((ne1, ns(γ)/
√

1 − s(γ)2) = (qn, nϵns(γ)/
√

1 − s(γ)2),

so that (11) follows because the maps (ψn, ϵnid) are δn-GH maps as noted earlier.
We now show that the graph of ϵ−1

n (v(ψn)) cannot intersect the balls

Bn−2δn(ne1, ns(γ)/
√

1 − s(γ)2)

and
Bn−2δn(−ne1,−ns(γ)/

√
1 − s(γ)2).

Indeed if (y, ϵ−1
n v(ψn(y)) belongs to the first ball (resp. the second), then by (11) its image

(ψn, ϵnid)(y, ϵ−1
n v(ψn(y)) = (z, v(z))

belongs to
B(n−δn)ϵn(qn, nϵns(γ)/

√
1 − s(γ)2)

(resp. B(n−δn)ϵn(pn,−nϵns(γ)/
√

1 − s(γ)2)), and this is a contradiction since we will see that this ball is contained

in the tangent ball to Epi(u). Indeed the point (qn, nϵns(γ)/
√

1 − s(γ)2) lies between (x, 0) and the center of

one of the tangent balls to Epi(u) since nϵn ≤ r
√

1 − s(γ)2. Moreover nϵn is less than the distance between

(qn, nϵns(γ)/
√

1 − s(γ)2) and (x, 0), so that the desired inclusion follows.

In the next lemma we use the notation pn and qn introduced previously.

Lemma 4.14. Let x ∈ Ω be a regular point for X such that Epi(u) admits interior and exterior tangent balls of radius
r at (x, u(x)) such that the the geodesic γ connecting their centers is not horizontal. Let {ϵn}n∈N be decreasing to
zero. We can pass to a subsequence such that nϵn ≤ r

√
1 − s(γ)2 and there exist {δn}n∈N decreasing to zero and the

δn-GH maps

ψn : B̄Rk

n (0) → (B̄X
nϵn(x), ϵ−1

n d)

such that

• ψn(ne1) = qn, ψn(−ne1) = pn,

• ψn(B̄Rk

1 (0)) ⊂ B̄X
ϵn(x).
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Proof. Let i ∈ N be fixed. Modulo passing to a (non relabeled) subsequence of {ϵn}n∈N, there exists {δn}n∈N
decreasing to zero and δn-GH maps

ψ′
n : B̄Rk

i (0) → (B̄X
iϵn(x0), ϵn

−1d).

We will denote by pi,n the point on the portion of the geodesic γX between p and x0 at distance iϵn from x0, while
qi,n will be the analogous point replacing p with q.

We claim that replacing ψ′
n with ψn := ψ′

n ◦ ρ, where ρ is an appropriate isometry of B̄Rk

i (0), we can suppose
that there exists another sequence {δ′n}n∈N decreasing to zero such that

ϵ−1
n d(ψn(ie1), qi,n) ≤ δ′n

and
ϵ−1
n d(ψn(−ie1), pi,n) ≤ δ′n.

This visually corresponds to asking that the maps ψn approximately send the line between ie1 and −ie1 in the
portion of γX contained in Biϵn(x0).

To prove the claim we note that there exist points x1, x2 in the image of ψ′
n that are δn-close in the dilated

distance ϵ−1
n d to qi,n and pi,n respectively, so that their preimages a1, a2 satisfy de(a1, a2) ≥ 2i − δn, meaning that

they are almost antipodal. In particular there exist antipodal points b1, b2 ∈ ∂B1(0) such that de(b1, a1) < δn and
de(b2, a2) < δn.

We then get that ψ′
n(b1) is 2δn close to ψ′

n(a1), and hence is also 3δn close to qi,n. Similarly ψ′
n(b2) is 3δn close

to pi,n. We then consider a rotation ρ sending ie1 in b1 and −ie1 in b2 and we define define ψn := ψ′
n ◦ ρ. We then

get
ϵ−1
n d(ψn(ie1), qi,n) = ϵ−1

n d(ψ′
n(b1), qi,n) ≤ 3δn

and
ϵ−1
n d(ψn(−ie1), pi,n) = ϵ−1

n d(ψ′
n(b2), pi,n) ≤ 3δn.

In conclusion setting δ′n := 3δn we conclude the proof of the claim.

From this it follows that the maps ψ′′
n : B̄Rk

i (0) → (B̄X
iϵn

(x), ϵ−1
n d), given by

ψ′′
n(y) =


ψ′
n(y) x /∈ {ie1,−ie1}

qi,n y = ie1

pi,n y = −ie1

are δ′′n := (δn + δ′n)-GH maps.

Finally define the maps ψn : B̄Rk

i (0) → B̄X
iϵn

(x) by ψn(y) = ψ′′
n(y) if y /∈ B1(0) or ψ′′

n(y) ∈ Bϵn(x), while in any
other case ψn(y) is set to be the point on the geodesic connecting x and ψ′′

n(y) at distance ϵn(1 − δ′′n) from x. It is

easy to check that these maps are 5δ′′n-GH maps such that ψn(ie1) = qi,n, ψn(ie1) = pi,n and ψn(B̄Rk

1 (0)) ⊂ B̄X
ϵn(x).

So modulo passing to nested subsequences as i increases and using a diagonal argument the proof is concluded.

Theorem 4.15. Let x ∈ Ω be a regular point for X such that Epi(u) admits interior and exterior tangent balls
of radius r at (x, u(x)) such that the the geodesic γ connecting their centers is not horizontal. Then there exists
u∞ : Rk → R such that for every {ϵn}n∈N, modulo passing to a subsequence, there exists a blow-up (ϵn, ψn) of X in
x such that every v as in (7), modulo passing to another subsequence, has (ϵn, ψn, u

∞) as strong blow-up at x.

Proof. Modulo passing to a subsequence we can assume that nϵn ≤ r
√

1 − s(γ)2. We will use the notation pi, qi and
u∞ as in the statement of Lemma 4.13. Thanks to Lemma 4.13 and 4.14 there exists a sequence {δi}i∈N decreasing
to zero and δi-GH maps

ψi : B̄Rk

i (0) → (B̄X
iϵi(x), ϵ−1

i d)

satisfying ψi(ie1) = qi, ψi(−ie1) = pi and ψi(B̄
Rk

1 (0)) ⊂ B̄X
ϵi(x) and such that (assuming as usual for simplicity that

u(x) = 0)
∥ϵ−1

i v(ψi) − u∞∥
L∞(BRk

1 (0))
→ 0.
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To prove that we have a strong blow-up we need to consider a sequence {δ′i}i∈N decreasing to zero and δ′i-GH maps

ψ′
i : B̄Rk

1 (0) → B̄X
ϵi(x) each of which differs from ψi on at most a finite number of points and we need to prove that

∥ϵ−1
i v(ψ′

i) − u∞∥
L∞(B̄Rk

1 (0))
→ 0.

To this aim define the maps ψ′′
i : B̄Rk

i (0) → (B̄X
iϵi

(x), ϵ−1
i d)

ψ′′
i (y) :=

{
ψ′
n(y) y ∈ B̄1(0)

ψn(y) y /∈ B̄1(0).

It is clear that these maps are δ′′n-GH maps between the respective domains for a sequence {δ′′n}n∈N converging to
zero. Moreover they satisfy the conditions of Lemma 4.13, so that we get

∥ϵ−1
n v(ψ′′

n) − u∞∥
L∞(B̄Rk

1 (0))
→ 0,

concluding the proof that u∞ is a strong blow-up.

Corollary 4.16. For m-a.e. x ∈ Ω we have |∇u(x)| = lip(u)(x).

Proof. It follows by Corollary 4.9 and Theorem 4.15.

4.3 A first definition of Graph space

In this section we combine the machinery of strong blow-ups with the refined blow-ups properties of Epi(u) to obtain
preliminary versions of Theorems 5 and 6 in the Introduction (i.e. Corollary 4.23 and Theorem 4.26). To this aim
we follow the strategy outlined in the Introduction under the additional hypothesis that u is Lipschitz.

Definition 4.17. We define the metric measure space (Ω̃, d̃, m̃), where Ω̃ := Ω, for every x, y ∈ Ω̃ the distance d̃ is
defined by d̃(x, y) := d×((x, u(x)), (y, u(y)) and for every Borel subset B ⊂ Ω (w.r.t. d) the measure m̃ is given by

m̃(B) := P (Epi(u), B × R).

Note that this space is not complete if u is not continuous. For a function f : Ω̃ → R we will denote the local
Lipschitz constant w.r.t. the distance d̃ at a point x ∈ Ω̃ by ˜lip(f)(x). We denote by i : Ω → Ω̃ the identification
map.

Proposition 4.18. Let x ∈ Ω be a point as in Theorem 4.15 and let (ϵn, ψn, u
∞) be the strong blow-up of u at x

given by such theorem. Let j : Rk → Graph(u∞) ⊂ Rk × R be the projection on the graph, i.e. j(x) := (x, u∞(x)).
Then there exists a sequence {δn}n∈N decreasing to zero such that the maps

ψ′
n := i ◦ ψn ◦ j−1 : j(B̄Rk

1 (0)) → (i(B̄X
ϵn(x)), ϵ−1

n d̃)

are δn-GH maps.

Proof. We first prove that for every δ > 0, if n is sufficiently large ψ′
n(j(B̄Rk

1 (0))) is a δ-net in (i(B̄X
ϵn(x)), ϵ−1

n d̃). To

this aim observe that ψ′
n(j(B̄Rk

1 (0))) = i(ψn(B̄Rk

1 (0))), so that since (ϵn, ψn) is a blow-up of X in x we only need to
show that the map

i : (B̄ϵn(x), ϵ−1
n d) → (i(B̄ϵn(x)), ϵ−1

n d̃)

sends δ′-nets to δ-nets for δ′ sufficiently small and n sufficiently large.
In particular it is sufficient to prove that if a, b ∈ B̄X

ϵn(x) and ϵ−1
n d(a, b) < δ′ then

ϵ−1
n d̃(i(a), i(b)) ≤ ϵ−1

n d(a, b) + 2lip(u∞)δ′.

To this aim suppose by contradiction that for every n ∈ N there exist an, bn ∈ B̄ϵn(x) such that ϵ−1
n d(a, b) < δ′ and

|ϵ−1
n d̃(i(an), i(bn)) − ϵ−1

n d(an, bn)| > 2lip(u∞)δ′.
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By definition of d̃ we have that

|ϵ−1
n d̃(i(an), i(bn)) − ϵ−1

n d(an, bn)| ≤ ϵ−1
n |u(an) − u(bn)|,

and since u has strong blow-up (ϵn, ψn, u
∞) in x we can assume (modulo modifying the GH maps ψn) that an, bn ∈

Im(ψn), so that ϵ−1
n |u(an) − u(bn)| can be made arbitrarily close to |u∞(a′n) − u∞(b′n)| where ψn(a′n) = an and

ψn(b′n) = bn. But if n is large enough ψn will be a δ′-GH map so that

|u∞(a′n) − u∞(b′n)| ≤ lip(u∞)de(a
′
n, b

′
n)

≤ lip(u∞)(ϵ−1
n d(an, bn) + δ′) ≤ 2lip(u∞)δ′,

a contradiction. This concludes the proof that for every δ > 0, if n is sufficiently large ψ′
n(j(B̄Rk

1 (0))) is a δ-net in
(i(B̄X

ϵn(x)), ϵ−1
n d̃)

Now we need to show that ψ′
n almost preserves distances. We pick two points (x1, u

∞(x1)) and (x2, u
∞(x2)) in

the domain of ψ′
n and we need to compute

ϵ−1
n d̃(ψ′

n((x1, u
∞(x1))), ψ′

n((x2, u
∞(x2)))).

The previous expression is equal to

ϵ−1
n d×((ψn(x1), u(ψn(x1))), (ψn(x2), u(ψn(x2))))

=

√
ϵ−2
n d(ψn(x1), ψn(x2))2 + ϵ−2

n |u(ψn(x1)) − u(ψn(x2))|2,

so that using the inequality |
√
a2 + b2 −

√
c2 + d2| ≤ |a− c| + |b− d| we obtain

|ϵ−1
n d̃(ψ′

n((x1, u
∞(x1))), ψ′

n((x2, u
∞(x2)))) − d×((x1, u

∞(x1)), (x2, u
∞(x2)))|

≤ |ϵ−1
n d(ψn(x1), ψn(x2)) − de(x1, x2)| + |ϵ−1

n u(ψn(x1)) − ϵ−1
n u(ψn(x2)) − u∞(x1) + u∞(x2)|

and the last term is going uniformly to 0 as n increases, concluding the proof.

Definition 4.19. Let (Y, d) be a metric space and f, g : Y → R be functions with finite local Lipschitz constant in
y ∈ Y. We define

lip(f) · lip(g) :=
1

4
(lip(f + g)2 − lip(f − g)2).

Observe that the object defined in the previous definition may fail to be a quadratic form on generic metric
spaces. This additional regularity, in our setting, will be a consequence of Corollary 4.23.

Proposition 4.20. Let θ ∈ W1,1
loc(Ω). For m-a.e. x ∈ Ω such that for every (ϵn, ψn, u

∞) strong linear blow-up of u
at x, modulo passing to a subsequence, θ has strong linear blow-up (ϵn, ψn, θ

∞), we have

˜lip(θ ◦ i−1)2 ◦ i = |∇θ|2 − (∇θ · ∇u)2

W 2
.

Proof. Let x be a point as in the statement and assume in addition that Epi(u) admits tangent balls at (x, u(x)).
Let {yn}n∈N ⊂ Ω̃ be such that d̃(i(x), yn) → 0 and

˜lip(θ ◦ i−1)(i(x)) = lim
n→+∞

|θ(yn) − θ(i(x))|
d̃(i(x), yn)

,

and define ϵn := d̃(i(x), yn). Let (ϵn, ψn, u
∞) be the strong linear blow-up of u at x given by Theorem 4.15 so that,

modulo passing to a subsequence also θ admits strong blow-up (ϵn, ψn, θ
∞). Moreover thanks to Proposition 4.5

θ + u and θ − u admit strong blow-ups given respectively by (ϵn, ψn, θ
∞ + u∞) and (ϵn, ψn, θ

∞ − u∞).
In particular by Proposition 4.8, modulo asking that x is out of an appropriate m-negligible set, we have that

|∇θ|(x) = lip(θ∞), |∇u|(x) = lip(u∞),
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|∇(θ + u)|(x) = lip(θ∞ + u∞), and |∇(θ − u)|(x) = lip(θ∞ − u∞).

This implies in particular that (∇θ ·∇u)(x) = lip(θ∞)·lip(u∞). Let j be the map given in the statement of Proposition
4.18. We claim that θ ◦ i−1 : i(Ω) → R admits strong blow-up (ϵn, i ◦ ψn ◦ j−1, θ∞ ◦ j−1) at i(x). Assume for the
moment that the claim holds. Then, thanks to the choice of ϵn, using Corollary 4.7 we obtain that

˜lip(θ ◦ i−1)2(i(x)) = lip(θ∞ ◦ j−1)2.

By doing a simple computation in Rk one realizes that

lip(θ∞ ◦ j−1)2 = lip(θ∞)2 − (lip(θ∞) · lip(u∞))2

lip(u∞)2

and this last expression, thanks to our previous remarks, coincides with

|∇θ|2 − (∇θ · ∇u)2

W 2
,

evaluated in x, concluding the proof.
To prove the claim we observe that by the previous proposition the maps i ◦ ψn ◦ j−1 : j(B̄1(0)) → i−1(B̄ϵn(x))

are GH approximations and that

∥ϵ−1
n (θ ◦ i−1 ◦ i ◦ ψn ◦ j−1 − θ(x)) − θ∞ ◦ j−1∥

L∞(j(B̄Rk
1 (0)))

= ∥ϵ−1
n (θ ◦ ψn − θ(x)) − θ∞∥

L∞(B̄Rk
1 (0))

→ 0.

On the other hand if {ψ̃n}n∈N is another sequence of GH maps between j(B̄1(0)) and i−1(B̄ϵn(x)) such that each

ψ̃n differs from i ◦ ψn ◦ j−1 on a finite number of points, then we can write ψ̃n = i ◦ ψ′
n ◦ j−1, where ψ′

n differs from
ψn on a finite number of points as well. As a consequence we have

∥ϵ−1
n (θ ◦ i−1 ◦ ψ̃n − θ(x)) − θ∞ ◦ j−1∥

L∞(j(B̄Rk
1 (0)))

= ∥ϵ−1
n (θ ◦ ψ′

n − θ(x)) − θ∞∥
L∞(B̄Rk

1 (0))
→ 0,

proving the claim. To be precise what we proved is not existence of a strong blow-up because j(B̄Rk

1 (0)) is not a
ball w.r.t. d× on the graph Graph(u∞), but this is still sufficient to conclude applying Proposition 4.6 instead of
Corollary 4.7.

Proposition 4.21. Let θ1, θ2 ∈ W1,1
loc(Ω). For m-a.e. x ∈ Ω such that for every (ϵn, ψn, u

∞) strong linear blow-up
of u at x, modulo passing to a subsequence, there exist strong linear blow-ups (ϵn, ψn, θ

∞
1 ) and (ϵn, ψn, θ

∞
2 ), we have( ˜lip(θ1 ◦ i−1) · ˜lip(θ2 ◦ i−1)

)
◦ i = ∇θ1 · ∇θ2 −

1

W 2
(∇θ1 · ∇u)(∇θ2 · ∇u).

Proof. By Proposition 4.20 for m-a.e. point as in the statement we have( ˜lip(θ1 ◦ i−1) · ˜lip(θ2 ◦ i−1)
)
◦ i =

1

4

(
( ˜lip((θ1 + θ2) ◦ i−1)2 − ( ˜lip((θ1 − θ2) ◦ i−1))2)

)
◦ i

=
1

4

[
|∇(θ1 + θ2)|2 −

(
∇(θ1 + θ2) · ∇u

W

)2

− |∇(θ1 + θ2)|2 +
(
∇(θ1 − θ2) · ∇u

W

)2]
= ∇θ1 · ∇θ2 −

1

W 2
(∇θ1 · ∇u)(∇θ2 · ∇u).

Corollary 4.22. Let A ⊂ Ω be a Borel set, then
ˆ
i(A)

˜lip(u ◦ i−1) dm̃ =

ˆ
A

|∇u| dm.
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Proof. From the previous proposition we obtain that ˜lip(u ◦ i−1) ◦ i = |∇u|/W for m-a.e. x ∈ Ω and since W is also
the density of m̃ w.r.t. m we conclude.

We will denote by A the set of functions ϕ ∈ W1,1
loc(Ω) such that for m-a.e. x ∈ Ω for every strong linear blow-up

(ϵn, ψn, u
∞) of u at x there exists, modulo passing to a subsequence, a strong blow-up (ϵn, ψn, ϕ

∞) of ϕ at x. Observe
that A contains the algebra generated by Liploc(Ω), if f ∈ A and g ∈ Liploc(Ω) then fg ∈ A, and A is closed under
compositions with smooth functions. We denote by Ac the set of functions in A having compact support in Ω. We
will also denote by L0(Ω) the space of m-a.e. real valued measurable functions on Ω.

Corollary 4.23. The function · : A × A → L0(Ω) given by (ϕ1, ϕ2) 7→ ˜lip(ϕ1) · ˜lip(ϕ2) is symmetric, bilinear, it

satisfies the chain rule and the Leibniz rule in both entries and ˜lip(ϕ1) · ˜lip(ϕ2) ≤ ˜lip(ϕ1) ˜lip(ϕ2).

Proof. The fact that ˜lip(ϕ1) · ˜lip(ϕ2) ≤ ˜lip(ϕ1) ˜lip(ϕ2) follows from the fact that ˜lip(ϕ1 + ϕ2) ≤ ˜lip(ϕ1) + ˜lip(ϕ2) and˜lip(ϕ1) ≤ ˜lip(ϕ1−ϕ2)+ ˜lip(ϕ2). All the other properties follow from the representation given by Proposition 4.21.

Definition 4.24. We define ηx0
: Ω → R by

ηx0
(x) := d(x, x0) + |u(x) − u(x0)|

and ηR,r
x0

: Ω → R by

ηR,r
x0

(x) := 1 ∧
( R

R− r
− 1

R− r
ηx0

(x)
)
∨ 0.

Proposition 4.25. We have that ηx0
∈ A and if R < d(∂Ω, x0) then ηR,r

x0
∈ Ac.

Proof. We only show that ηx0 ∈ A, as ηR,r
x0

∈ Ac then follows trivially.
For m-a.e. x ∈ Ω the function u is continuous. So suppose that we are in such a continuity point x and that

u(x) > u(x0). Let (ϵn, ψn, u
∞) be a strong linear blow-up of u at x. By Corollary 4.4 (modulo passing to a

subsequence and assuming that x is out of an appropriate m-negligible set) the distance function d(·, x0) admits a
strong blow-up (ϵn, ψn, d

∞), while |u− u(x0)| = u− u(x0) locally so that it has strong blow-up (ϵn, ψn, u
∞) by the

choice of x. By Proposition 4.5 ηx0
has strong blow-up (ϵn, ψn, d

∞ + u∞).
If we are in a point where u(x) < u(x0) the argument is the same, so that we are left with the points where

u(x) = u(x0). Let (ϵn, ψn, u
∞) be a strong linear blow-up of u at x. Existence of the blow-up for d(·, x0) follows in

the same way as before, while by locality and Proposition 4.8 in m-a.e. such point |u − u(x0)| has strong blow-up
(ϵn, ψn, 0) so that the same argument we used for the previous case allows to conclude in the same way.

Theorem 4.26. Let ϕ ∈ Ac, then ˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1) ∈ L1(Ω̃) and

ˆ
Ω̃

˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1) dm̃ = 0.

Proof. By Proposition 4.21 we get( ˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1)
)
◦ i =

∇ϕ · ∇u
W 2

m-a.e.,

so that ˆ
Ω̃

| ˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1)| dm̃ ≤
ˆ
Ω

|∇ϕ · ∇u|
W

dm ≤
ˆ
Ω

|∇ϕ| dm < +∞,

giving that ˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1) ∈ L1(Ω̃). Hence

ˆ
Ω̃

˜lip(ϕ ◦ i−1) · ˜lip(u ◦ i−1) dm̃ =

ˆ
Ω

∇ϕ · ∇u
W

dm = 0.
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4.4 The Graph of u

In this section we define the Graph Space of u as anticipated in the introduction and we derive Theorems 5 and 6
from their analogues (i.e. Corollary 4.23 and Theorem 4.26) in the previous section.

Definition 4.27. Let G(u) ⊂ Ω ×R be the boundary of Epi(u). We define the metric measure space (G(u), dg,mg),
where dg is the product distance of Ω × R restricted to G(u) × G(u) and mg is the perimeter measure induced by
Epi(u) on the Borel subsets of G(u). We denote by lipg the local Lipschitz constant of a function f : G(u) → R.

Remark 4.28. The function ig : Ω → G(u) given by ig(x) := (x, u(x)) preserves distances, measures and its image

has full measure in G(u). Nevertheless the spaces Ω̃ and G(u) are not identifiable as the former may not be complete.
On the other hand if u is continuous the two spaces coincide.

Lemma 4.29. mg(G(u) \ Graph(u)) = 0.

Proof. Let C ⊂ Ω be the set of continuity points of u and for every A ⊂ Ω set GA := {(x, u(x)) ∈ G(u) : x ∈ A}.
Observe that since P (Epi(u), ·) is concentrated on G(u) and G(u) ∩ (A ∩ C) × R = GA∩C we have

P (Epi(u), GA∩C) = P (Epi(u), (A ∩ C) × R).

As a consequence, given an open precompact set A ⊂ Ω, we have

P (Epi(u), A× R) − P (Epi(u), GA∩C) = P (Epi(u), A× R) − P (Epi(u), (A ∩ C) × R)

= P (Epi(u), (A \ C) × R) =

ˆ
A\C

√
1 + |∇u|2 dm = 0.

This implies that P (Epi(u), cGC) = 0, which in turn implies that mg(G(u) \ Graph(u)) = 0.

Lemma 4.30. Let ϕ : G(u) → R be a Lipschitz function (w.r.t. dg). For m-a.e. x ∈ Ω we have lipg(ϕ)(ig(x)) =˜lip(ϕ ◦ ig ◦ i−1)(i(x)).

Proof. For every x the inequality
lipg(ϕ)(ig(x)) ≥ ˜lip(ϕ ◦ ig ◦ i−1)(i(x))

is trivial so we only need to prove the opposite one.
To this aim fix a point x where u admits strong linear blow-up (ϵn, ψn, u

∞) as in Theorem 4.15 and let
{(xn, tn)}n∈N ⊂ G(u) be a sequence of points such that (xn, tn) → (x, u(x)) and

lipg(ϕ)(ig(x)) = lim
n→+∞

|ϕ(xn, tn) − ϕ(x, u(x))|
dg((xn, tn), (x, u(x))

.

We claim that, modulo passing to a subsequence,

lim
n→+∞

dg((xn, tn), (x, u(x))

dg((xn, u(xn)), (x, u(x))
= 1. (13)

To prove the claim we define ϵn := d(xn, x) and note that

ϵ−1
n dg((xn, tn), (x, u(x))

ϵ−1
n dg((xn, u(xn)), (x, u(x))

=

√
1 + ϵ−2

n |tn − u(x)|2√
1 + ϵ−2

n |u(xn) − u(x)|2
.

Let now v : Ω → R be given by

v(y) :=

{
u(y) y /∈ {xn}n∈N

tn y = xn.

It is clear that v is a representative of u in the sense of Section 4.2, so that by Theorem 4.15 both v and u admit
strong blow-up (ϵn, ψn, u

∞) at x.
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By Lemma 2.9, modulo modifying the maps ψn, we can also suppose that xn ∈ Im(ψn). Let yn ∈ B̄Rk

1 (0) be such
that ψn(yn) = xn and, modulo passing to a subsequence, let yn → y. We then get that ϵ−1

n |u(xn) − u(x)| → u∞(y)
and ϵ−1

n |tn − u(x)| → u∞(y) as well, proving our claim.
We now claim that

lim
n→+∞

|ϕ(xn, tn) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))

= lim
n→+∞

|ϕ(xn, u(xn)) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))

. (14)

Since ϕ is Lipschitz and dg((xn, u(xn)), (x, u(x)) ≥ d(xn, x) we have that

|ϕ(xn, u(xn)) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))|

−
lipg(ϕ)|tn − u(xn)|

d(xn, x)

≤ |ϕ(xn, tn) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))

≤ |ϕ(xn, u(xn)) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))|

+
lipg(ϕ)|tn − u(xn)|

d(xn, x)
.

The same argument of the previous claim allows then to show that

|tn − u(xn)|
d(xn, x)

→ 0

so that (14) is verified. From (13) and (14) we deduce

lipg(ϕ)(ig(x)) = lim
n→+∞

|ϕ(xn, u(xn)) − ϕ(x, u(x))|
dg((xn, u(xn)), (x, u(x))

≤ ˜lip(ϕ ◦ ig ◦ i−1)(i(x)),

as desired.

We define Ag := {ϕ ∈ Liploc(G(u)) : ϕ ◦ ig ∈ A} and Ag
c := {ϕ ∈ Liploc(G(u)) : ϕ ◦ ig ∈ Ac}. Note that Ag

c is the
set of functions in Ag that have compact support in G(u). These families are closed under the same operations as
the family A.

Theorem 5. The function · : Ag ×Ag → L1loc(G(u)) given by

(ϕ1, ϕ2) 7→ lipg(ϕ1) · lipg(ϕ2)

is symmetric, bilinear, it satisfies the chain rule and the Leibniz rule in both entries and lipg(ϕ1) · lipg(ϕ2) ≤
lipg(ϕ1)lipg(ϕ2).

Proof. Combine Lemma 4.30 and Corollary 4.23.

The property of the previous theorem is related to the notion of Lipschitz-infinitesimally Hilbertian space intro-
duced in [40]. Using that if u ∈ Liploc(Ω), then Lipc(G(u)) ⊂ Ag

c , one can check that under the local Lipschitzianity
assumption on u the space G(u) is Lipschitz-infinitesimally Hilbertian.

We now give some definitions that will be very useful also for the next section

Definition 4.31. Let (x, t), (y, s) ∈ Ω ×R and define ρ(x,t)((y, s)) := d(x, y) + |t− s|. Given x̄ ∈ Ω ×R we then set
Dx̄,r = {ȳ ∈ Ω × R : ρx̄(ȳ) < r} and

Ax̄,s := {x ∈ Ω : {x} × R ∩ G(u) ∩Dx̄,s ̸= ∅}.

Given R > r > 0 real numbers and x0 ∈ Ω we set ηR,r
x0,g : G(u) → R

ηR,r
x0,g(x̄) := 1 ∧

( R

R− r
− 1

R− r
ρ(x0,u(x0))(x̄)

)
∨ 0.

Observe that ηR,r
x0,g ◦ ig = ηR,r

x0
so that ηR,r

x0,g ∈ Ag
c if R < d(∂Ω, x0). Finally we define ug : G(u) → R as ug(x, t) = t.

Note that ug ◦ ig = u.
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Theorem 6. Let ϕ ∈ Ag
c , then lipg(ϕ) · lipg(ug) ∈ L1(G(u)) andˆ

G(u)

lipg(ϕ) · lipg(ug) dmg = 0.

Proof. Since ϕ ∈ Lipc(G(u)) and ug ∈ Lip(G(u)), then lipg(ϕ) · lipg(ug) ∈ L1(G(u)) trivially. By Lemmas 4.29 and 4.30
we have ˆ

G(u)

lipg(ϕ) · lipg(ug) dmg =

ˆ
Graph(u)

lipg(ϕ) · lipg(ug) dmg

=

ˆ
Ω̃

˜lip(ϕ ◦ ig ◦ i−1) · ˜lip(u ◦ i−1) dm̃

and by Theorem 4.26 this last term equals zero.

Corollary. Let u ∈ Liploc(Ω) be a solution of the minimal surface equation, then for every ϕ ∈ Lipc(G(u)) we haveˆ
G(u)

lipg(ϕ) · lipg(ug) dmg = 0.

Proof. Since u ∈ Liploc(Ω) we have that Lipc(G(u)) ⊂ Ag
c , concluding the proof.

Using the chain rule, the Leibniz rule, the fact that ηR,r
x0,g ∈ Ag

c and applying the previous theorem we also get
the following corollary. This is the version of ’integration by parts’ that we will use repeatedly in the next section.

Corollary 4.32. Let p : R2 → R be a polynomial and let f(x, y) := xp(x, y) and ϕ := f(ηR,r
x0,g, ug) with R < d(∂Ω, x0).

Let h = g ◦ ug with g : R → R smooth. Thenˆ
G(u)

lipg(ϕ) · lipg(h) dmg = −
ˆ
G(u)

lipg(ug)2h′′(ug)ϕdmg.

5 Bernstein Property

In this section, we work on a fixed RCD(0, N) space (X, d,m). The first subsection contains the proof of Theorem 1
(in a stronger version, see Theorem 5.9), while the second one contains the proofs of Theorems 2 and 3 (as anticipated
we prove the stronger version of Theorem 3 given by Corollary 5.13).

5.1 Harnack inequality on G(u)

In this section we assume that u ∈ W1,1
loc(BR(p)) is a solution of the minimal surface equation. The goal is to mimic

the strategy used in [21] to prove the Harnack inequality for ug on G(u) i.e. Theorem 5.8. The challenge in adapting
the aforementioned strategy is to prove that ug is harmonic on G(u) and this was done in Section 4.4. Besides
harmonicity on the graph, the other key steps are the validity of Poincaré and Sobolev inequalities on G(u) i.e.
Theorems 5.6 and 5.7.

These theorems can be obtained in our setting with the same ideas used in [21]. For this reason we only give
a detailed proof of Theorem 5.6, so that one sees what changes need to be made from the corresponding proof
in [21]; the same exact changes allow then to obtain also the Sobolev inequality from the analogous result in the
aforementioned work. Once the harmonicity of u on G(u) and the Poincaré and Sobolev inequalities are established,
the Harnack inequality follows formally repeating the same argument of [21] and for this reason the proof of Theorem
5.8 is only sketched.

We will often use the notation x̄ = (x, tx) ∈ X× R when considering points in the product space. Moreover, we
will use extensively the notation introduced in Definition 4.31 concerning sets of the type Dx̄,r and Ax̄,s.

Lemma 5.1. There exists a constant C > 0 depending only on N such that for every x̄ ∈ G(u) and 0 < t, r, s <
R− d(x, p) with r > s we have

mg(Dx̄,s) ≥ Cmg(Dx̄,r)
sN

rN

and
1

C
m(Bt(x)) ≤ mg(Dx̄,t) ≤ Cm(Bt(x)).
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Proof. From Theorem 2.33, the fact that m× is doubling and the fact that the ball Bs(x̄) ⊂ X × R contains the
rectangle Bs/2(x) × (tx − s/2, tx + s/2) we get

mg(Dx̄,s) ≥ mg(Bs/2(x̄)) ≥ c1
2m×(Bs/2(x̄))

s
≥ c2

m×(Bs(x̄))

s

≥ c2
m(Bs/2(x))s/2

s
≥ c3m(Bs(x)).

Since m is doubling, by a standard argument (see [21, Equation (2.1)]), we obtain

c3m(Bs(x)) ≥ c4m(Br(x))
sN

rN
.

Using the same tools as in the first part of the proof we then obtain that

c4m(Br(x))
sN

rN
≥ c5m(B2r(x))

sN

rN
≥ c6

m×(Br(x̄))

r

sN

rN
≥ c7mg(Dx̄,r)

sN

rN
,

proving the first inequality. Replacing s with t in the first and last chain of inequalities we obtain the second one.

Definition 5.2. For every t ∈ R and x̄ ∈ G(u) we define

Ex̄,t := {ȳ ∈ G(u) : ug(ȳ) > t+ ug(x̄)} and E′
x̄,t := {ȳ ∈ G(u) : ug(ȳ) < t+ ug(x̄)}.

Lemma 5.3. There exists a constant C > 0 depending only on N such that for every x̄ ∈ G(u) and r > 0 with
B3r(x) ⊂ BR(p) and for λ1-a.e. t ∈ (−r, r) we have

m({u > ug(x̄) + t} ∩Br−t(x)) ≥ C mg(Et ∩Dx̄,r). (15)

Moreover if

mg(Et ∩Dx̄,r) ≤ 1

2
mg(Dx̄,r), (16)

then
m({u < ug(x̄) + t} ∩Br+|t|(x)) ≥ C m(Br(x)). (17)

Analogous inequalities hold replacing Et with E′
t and reversing the inequality signs appearing in the left hand sides

of inequalities (15) and (17).

Proof. We first prove (17). We denote x̄t := (x, tx + t) and we consider the compact set V ⊂ X × R given by the
closure of

{ȳ ∈ Dx̄t,r+|t| : u(y) < tx + t, ty ∈ (u(y), tx + t)},

and we define the competitor C := Epi′(u) ∪ V . Since Epi′(u) minimizes the perimeter we have

P (Epi′(u), Dx̄,3r) ≤ P (C,Dx̄,3r). (18)

We now claim that
P (Epi′(u), (G(u) \ ∂V ) ∩Dx̄,3r) = P (C, (∂C \ ∂V ) ∩Dx̄,3r). (19)

To prove the claim observe that by the definition of V we have ∂C \ ∂V = G(u) \ ∂V and, if q ∈ G(u) \ ∂V , then in
a small ball centered at q we have that C = Epi′(u), which implies the claim.

Subtracting (19) from (18) we deduce that

P (Epi′(u), ∂V ∩ G(u) ∩Dx̄,3r) ≤ P (C, ∂V ∩ ∂C ∩Dx̄,3r).

Using first the definition of V , then (16) and finally Lemma 5.1 we get

P (Epi′(u), ∂V ∩ G(u) ∩Dx̄,3r) ≥ mg(E′
t ∩Dx̄,r)

≥ c1mg(Dx̄,r) ≥ c2m(Br(x)),
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so that to prove (17) it is enough to show that

P (C, ∂V ∩ ∂C ∩Dx̄,3r) ≤ c3m({u < ug(x̄) + t} ∩Br+|t|(x)).

To this aim observe that ∂V ∩ ∂C is the disjoint union of

A := X× {tx + t} ∩ Epi(u) ∩Dx̄t,r+|t|,

B := X× (−∞, tx + t) ∩ Epi(u) ∩ ∂Dx̄t,r+|t|,

and
D := (Ā \A) ∪ (B̄ \B).

If q ∈ A, then in a sufficiently small ball centered at q the set C coincides with the subgraph of the constant function
t+ tx. This, together with the area formula given by Proposition 2.36, implies that

P (C,A) ≤ m({u < tx + t} ∩Br+|t|(x)).

Similarly if q ∈ B, then in a sufficiently small ball centered at q the set C coincides with the epigraph of a function
with Lipschitz constant 1. Moreover if q ∈ B, then its projection on X × {t + tx} belongs to A (this is clear
from the picture, and depends on the fact that we defined V using Dx̄t,r+|t| and not Dx̄,r+|t|). This implies that
P (C,B) ≤ c4P (C,A).

Finally for λ1-a.e. t ∈ (−r, r) we have that mg(X× {tx + t}) = 0 and mg(∂Dx̄,r+|t|) = 0. Using the area formula
given by Proposition 2.36 we get that for every such t we have m(πX(Ā \ A)) = m(πX(B̄ \ B)) = 0, which in turn
implies that P (C,D) = 0.

In particular
P (C, ∂V ∩ ∂C) = P (C,A ∪B) ≤ c5m({u < tx + t} ∩Br+|t|(x)),

as desired.
The proof of the other identity follows an identical argument replacing V with the closure of

{ȳ ∈ Dx̄t,r−t : u(y) > tx + t, ty ∈ (tx + t, u(y))}.

In this case since since the r.h.s. is mg(Et) we don’t need to use the condition (16), which was needed to say that
mg(E′

t) ≥ c1m(Br(x)).

The next lemma corresponds to Lemma 3.3 in [21]. Our formulation is slightly different and, later on, it will
allow us to avoid the use of the Coarea formula on G(u), since this tool is a priori not available.

Lemma 5.4. There exists a constant C > 0 depending only on N such that for every x̄ ∈ G(u) and r > 0 with
B3r(x) ⊂ BR(p) and for λ1-a.e. t ∈ (−r, r) if

mg(Et ∩Dx̄,r) ≤ 1

2
mg(Dx̄,r),

then
mg(Et ∩Dx̄,r) ≤ CrP ({u > ug(x̄) + t}, Ax̄,3r).

The same statement holds replacing Et with E
′
t and reversing the inequality sign appearing in the right hand side of

the last inequality.

Proof. We have
3rP ({u > tx + t}, Br+|t|(x)) ≥ (r + |t|)P ({u > tx + t}, Br+|t|(x))

and thanks to Proposition 2.30 this last quantity is greater than or equal to

c1 min {m({u > tx + t} ∩Br+|t|(x)),m({u ≤ tx + t} ∩Br+|t|(x))}. (20)

Because of (17) in Lemma 5.3, for λ1-a.e. t ∈ (−r, r) the quantity in (20) is greater than or equal to c2m({u >
t + tx} ∩ Br+|t|(x)), which is then greater than or equal to c3mg(Et ∩ Dx̄,r) by equation (15) in the same lemma.
Summing up we proved that

mg(Et ∩Dx̄,r) ≤ c4rP ({u > tx + t}, Br+|t|(x)),
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so that to conclude we only need to show that

P ({u > tx + t}, Br+|t|(x)) ≤ P ({u > tx + t}, Ax̄,3r).

To this aim we will show that ∂{u > tx + t} ∩ Br+|t|(x) ⊂ Ax̄,3r, from which the desired inequality will follow
immediately. Let y ∈ ∂{u > tx + t}∩Br+|t|(x) and assume by contradiction that (y, tx + t) /∈ G(u). As G(u) is closed
there exists a small ball centered in (y, tx + t) which is either fully contained in the interior of Epi(u) or in the interior
of its complement. We only consider the first case, the other one being analogous. Call B the aforementioned ball,
and let ϵ > 0 be small enough such that Bϵ(y) × [tx + t− ϵ, tx + t+ ϵ] ⊂ B, so that we deduce that u < tx + t− ϵ in
Bϵ(y), contradicting the fact that y ∈ ∂{u > tx + t}.

We deduced that (y, tx + t) ∈ G(u), so that to conclude we only need to note that (y, tx + t) ∈ Dx̄,3r since
t ∈ (−r, r).

Lemma 5.5. Let f : R → R be a smooth monotone function and define ϕ : G(u) → R as ϕ := f ◦ ug. Let x̄ ∈ G(u)
and r > 0 be such that Br(x) ⊂ BR(p), then

ˆ
Ax̄,r

|∇(ϕ ◦ ig)| dm =

ˆ
Dx̄,r

lipg(ϕ) dmg.

Proof. By Lemma 4.29 we know that
mg(Dx̄,r \ ig(i−1

g (Dx̄,r))) = 0,

so that ˆ
Dx̄,r

lipg(ϕ) dmg =

ˆ
i−1
g (Dx̄,r)

lipg(ϕ) ◦ ig d(mg ◦ ig).

Since mg ◦ ig = m̃ and m̃(Ax̄,r ∆ i−1
g (Dx̄,r)) = 0 (since u is continuous m-a.e.) we get that the previous expression

can be rewritten as ˆ
Ax̄,r

lipg(ϕ) ◦ ig dm̃.

Thanks to Lemmas 4.30 and Corollary 4.22 this is equivalent to

ˆ
Ax̄,r

˜lip(ϕ ◦ ig) dm̃ =

ˆ
Ax̄,r

|∇(ϕ ◦ ig)| dm,

concluding the proof.

Given a function f ∈ L1(G(u)) we use the notation

fx̄,r :=

 
Dx̄,r

f dmg.

Theorem 5.6. There exists a constant C > 0 depending only on N such that for every x̄ ∈ G(u) and r > 0 with
B3r(x) ⊂ BR(p) and for every smooth monotone function f : R → R, defining ϕ : G(u) → R as ϕ := f ◦ ug, we have

ˆ
Dx̄,r

|ϕ− ϕx̄,r| dmg ≤ Cr

ˆ
Dx̄,3r

lipg(ϕ) dmg.

Proof. Observe that since f is smooth and monotone, for every s ∈ R we have that {ϕ > s} = {ug > f−1(s)} (or
{ug < f−1(s)} if f is decreasing) and if A ⊂ R has full λ1 measure then also f−1(A) has this property. This will allow
us to use Lemma 5.4 in what follows. We assume for simplicity that f is increasing, as the other case is analogous.

Now suppose again for simplicity (the other case being again analogous) that

mg({ϕ > ϕx̄,r} ∩Dx̄,r) ≤ mg({ϕ < ϕx̄,r} ∩Dx̄,r).

In this case for every t ≥ 0 we have

mg({ϕ > ϕx̄,r + t} ∩Dx̄,r) ≤ mg({ϕ > ϕx̄,r} ∩Dx̄,r)
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≤ mg({ϕ < ϕx̄,r} ∩Dx̄,r) ≤ mg({ϕ < ϕx̄,r + t} ∩Dx̄,r),

so that in particular

mg({ϕ > ϕx̄,r + t} ∩Dx̄,r) ≤ 1

2
mg(Dx̄,r).

Hence, using first a variation of Fubini’s Theorem (see [4, Proposition 1.78]) and then Lemma 5.4 we get

ˆ
{ϕ>ϕx̄,r}∩Dx̄,r

(ϕ− ϕx̄,r) dmg =

ˆ +∞

0

mg({ϕ > t+ ϕx̄,r} ∩Dx̄,r) dt,

≤ Cr

ˆ +∞

0

P ({ϕ ◦ ig > t+ ϕx̄,r}, Ax̄,3r) dt.

This last expression, by the Coarea formula in X and Lemma 5.5, is less than or equal to

Cr

ˆ
Ax̄,3r

|∇(ϕ ◦ ig)| dm =

ˆ
Dx̄,3r

lipg(ϕ) dmg.

Summing up, we proved that

ˆ
{ϕ>ϕx̄,r}∩Dx̄,r

(ϕ− ϕx̄,r) dmg ≤ Cr

ˆ
Dx̄,3r

lipg(ϕ) dmg.

To conclude we simply observe that

ˆ
Dx̄,r

|ϕ− ϕx̄,r| dmg

=

ˆ
{ϕ>ϕx̄,r}∩Dx̄,r

(ϕ− ϕx̄,r) dmg +

ˆ
{ϕ<ϕx̄,r}∩Dx̄,r

(ϕ− ϕx̄,r) dmg

= 2

ˆ
{ϕ>ϕx̄,r}∩Dx̄,r

(ϕ− ϕx̄,r) dmg ≤ 2Cr

ˆ
Dx̄,3r

lipg(ϕ) dmg.

We now state the Sobolev isoperimetric inequality.

Theorem 5.7. There exists a constant C > 0 depending only on N such that for every x̄ ∈ G(u) and r ≥ τ > 0 with
B2r(x) ⊂ BR(p) and for every smooth monotone function f : R → R, defining ϕ : G(u) → R as ϕ := f ◦ ug, we have

mg(Dx̄,r)1/N
(ˆ

Dx̄,r

ϕ
N

N−1 dmg

)N−1
N ≤ Cr

(ˆ
Dx̄,r+τ

lipg(ϕ) dmg +
1

τ

ˆ
Dx̄,r

ϕdmg

)
and

mg(Dx̄,r)1/N
(ˆ

Dx̄,r

ϕ
2N

N−1 dmg

)N−1
N ≤ C

(
r2
ˆ
Dx̄,r+τ

lipg(ϕ)2 dmg +
2r

τ

ˆ
Dx̄,r+τ

ϕ2 dmg

)
.

We only sketch the proof of Theorem 5.8, so that one sees how the machinery of the previous section replaces
integration by parts in the smooth setting. The part of the proof that we omit is formally the same as the one in
[21].

Theorem 5.8. There exists a constant C > 0 depending only on N such that if (X, d,m) is an RCD(0, N) space and
u ∈ W1,1

loc(BR(p)) is positive and satisfies one of the equivalent conditions in Theorem 3.1, setting p̄ := (p, u(p)), we
have

sup
G(u)∩Dp̄,R/2

ug ≤ C inf
G(u)∩Dp̄,R/2

ug.
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Proof. Let 0 < s < R and define w : G(u) → R by

w := log ug −
 
Dp̄,s

log ug dmg.

Let η : G(u) → R be function of the form ηr1,r2p,g (see Definition 4.31) which is supported in Dp̄,R and let q ∈ [0,+∞).
Because of Corollary 4.32 we have

ˆ
G(u)

lipg(w)2η2|w|q dmg =

ˆ
G(u)

lipg(w) · lipg(η2|w|q) dmg

= 2

ˆ
G(u)

η|w|q lipg(η) · lipg(w) dmg + q

ˆ
G(u)

η2|w|q−1wlipg(w)2 dmg

≤ 1

2

ˆ
G(u)

lipg(w)2η2|w|q dmg + 2

ˆ
G(u)

lipg(η)2|w|q dmg + q

ˆ
G(u)

η2|w|q−1lipg(w)2 dmg.

The previous inequalities imply
ˆ
G(u)

lipg(w)2η2|w|q dmg ≤ 4

ˆ
G(u)

lipg(η)2|w|q dmg + 2q

ˆ
G(u)

η2|w|q−1lipg(w)2 dmg,

so that choosing η appropriately we get for every r ≤ R/4 the inequality
ˆ
Dp̄,3r

lipg(w)2 dmg ≤ 8

r2
mg(Dp̄,4r).

This corresponds to equation (4.21) in [21] and the remaining part of the proof can be carried out formally repeating
the same argument of [21], replacing the smooth objects with the appropriate ones in our setting.

As an immediate application of the Harnack inequality we get the following result, which implies Theorem 1.

Theorem 5.9. Let (X, d,m) be an RCD(0, N) space and let u ∈ W1,1
loc(X) be a function satisfying one of the equivalent

conditions of Theorem 3.1. If u is positive then it is constant.

5.2 Applications to the smooth setting

In this section we prove Theorems 2 and 3 from the Introduction. Given a manifold (M, g) we denote by mg its
volume measure and by dg its distance. If V : M → R is a smooth function we say that the metric measure space
(Mn, dg, e

−V mg) is a weighted manifold. Given an open set Ω ⊂ M we say that a function u ∈ C∞(Ω) is a solution
of the weighted minimal surface equation on Ω \ ∂M if

div
( e−V ∇u√

1 + |∇u|2
)

= 0 on Ω \ ∂M.

We say that the boundary of a manifold with boundary is convex if its second fundamental form w.r.t. the inward
pointing unit normal is positive. The next proposition can be obtained repeating an argument in [33, Theorem 2.4].

Proposition 5.10. Let (Mn, dg, e
−V dmg) be a weighted manifold with convex boundary such that for a number N ≥ n

we have

Ric + HessV − ∇V ⊗∇V
N − n

≥ 0 on M \ ∂M, (21)

with the convention that if N = n only constant weights are allowed, then (Mn, dg, e
−V dmg) is an RCD(0, N) space.

Given a weighted manifold with boundary (Mn, dg, e
−V dmg) and a smooth vector field A ∈ TM we define the

pointwise divergence in the weighted manifold by divVA := divA−∇V · ∇A.

Proposition 5.11. Let (Mn, dg, e
−V dmg) be a weighted manifold with convex boundary satisfying condition (21) for

N > 0 and let u ∈ C∞(BR(x)) be a solution of the weighted minimal surface equation on BR(x) \∂M whose gradient
vanishes on ∂M ∩BR(x). Then u solves the minimal surface equation on BR(x) in distributional sense.
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Proof. We first check the statement testing against C∞
c (M) functions. Let ϕ ∈ C∞

c (M) and let ν be the outward unit
normal on ∂M. Integrating by parts we obtain

ˆ
M

∇u
W

· ∇ϕ e−V dmg = −
ˆ
M

ϕ divV
(∇u
W

)
e−V dmg +

ˆ
∂M

ϕ

W
∇u · νe−V dHn−1, (22)

where Hn−1 is the Hausdorff measure w.r.t. dg. Since u solves the minimal surface equation on M \ ∂M we have that

divV
(

∇u
W

)
= 0 pointwise, while the second addendum in (22) is zero by the condition on ∇u. The same is true for

ϕ ∈ Lipc(M) via a standard approximation argument.

Theorem 2. Let (Mn, dg, e
−V mg) be a weighted manifold with convex boundary such that there exists N > n

satisfying

RicM + HessV − ∇V ⊗∇V
N − n

≥ 0 on M \ ∂M.

If u ∈ C∞(M) is a positive solution of the weighted minimal surface equation on M \ ∂M whose gradient vanishes on
∂M, then u is constant.

Proof. The weighted manifold (Mn, dg, e
−V dmg) is an RCD(0, N) space by Proposition 5.10, while u solves the

minimal surface equation in distributional sense on the weighted space by Proposition 5.11. The conclusion follows
by the Theorem 1.

Let x ∈ X, r > 0 and f : Br(x) → R. We define

Oscx,r(f) := sup{|f(y) − f(x)| : y ∈ Br(x)},

Osc+x,r(f) := sup{(f(y) − f(x))+ : y ∈ Br(x)},

Osc−x,r(f) := sup{(f(y) − f(x))− : y ∈ Br(x)}.

Theorem 5.12. Fix N ∈ (1,+∞). For every T, t, r > 0 there exists R(N,T, t, r) > 0 such that if (X, d,m, x) is a
pointed RCD(0, N) space and u ∈ W1,1

loc(BR(x)) is a function satisfying one of the equivalent conditions of Theorem
3.1 such that Oscx,r(u) ≥ t, then

Osc+x,R(u) ≥ T and Osc−x,R(u) ≥ T.

Proof. Assume by contradiction that the statement is false. Then there exist T, t, r > 0, a sequence {Ri}i∈N increasing
to +∞, a sequence of RCD(0, N) spaces (Xi, di,mi, xi) and solutions ui ∈ W1,1

loc(BRi(xi)) of the minimal surface
equation such that Oscxi,r(ui) ≥ t and

Osc+xi,Ri
(ui) ≤ T or Osc−xi,Ri

(ui) ≤ T.

Modulo normalizing the measures mi we may suppose that mi(B1(xi)) = 1, while modulo translating vertically each
function ui we may suppose that ui(xi) = T . Moreover, passing to a (non relabeled) subsequence, we can suppose
(the other case being analogous) that Osc−xi,Ri

(ui) ≤ T . Under these assumptions we have that all the functions ui
are positive in their domains, so that using the Harnack inequality on their graphs we get that they are all locally
uniformly bounded.

Denote then Ei := Epi(ui) ⊂ BRi
(xi) × [0,+∞) and observe that Ei is perimeter minimizing in BRi

(xi) × R.
Modulo passing to yet another (non relabeled) subsequence, the spaces (Xi, di,mi, xi) converge in pmGH sense to
an RCD(0, N) space (X, d,m, x), which implies that Xi × R → X × R in pmGH sense as well. The sets Ei converge
then (again modulo passing to a subsequence) in L1loc sense to a perimeter minimizing set E ⊂ X × R. Moreover
the Kuratowski convergence of ∂Ei to ∂E in the space realizing the convergence (see Proposition 2.35), the fact
that Graph(ui) ⊂ ∂Ei and that Graph(ui) can only converge in Kuratowski sense to a graph, imply that there exists
u : X → [0,+∞) such that Graph(u) ⊂ ∂E (u is real valued since the functions ui are locally uniformly bounded).

It is easy to see that this implies that E = Epi(u). Observe in addition that Oscx,2r(u) ≥ t again by the Kuratowski
convergence of Graph(ui) to Graph(u) and the lower bound on the oscillation of each ui. Finally, modulo doing an
extra vertical translation on the functions ui, we can assume that 0 ≤ infX u < t/c, where c is the constant appearing
in Theorem 5.8 (in particular we can do this translation in such a way that the functions ui are still positive on every
ball of fixed radius in the respective space for i large enough).
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We now claim that u satisfies an Harnack-type inequality on its graph, which will force its oscillation to be strictly
less than t, a contradiction. As we did previously in the note we will denote by ug the height function on ∂E and by
uig the height function on ∂Ei. For every ϵ > 0 and s > 0, thanks to the Kuratowski convergence of ∂Ei to ∂E we
have for i large enough

sup
G(u)∩D(x,T ),s

ug ≤ sup
G(ui)∩D(xi,T ),2s

uig + ϵ

and
inf

G(ui)∩D(xi,T ),2s

uig ≤ inf
G(u)∩D(x,T ),s

ug + ϵ.

Using then the Harnack inequality given by Theorem 5.8 we find a constant c > 0 such that for i large enough

sup
G(ui)∩D(xi,T ),2s

uig ≤ c inf
G(ui)∩D(xi,T ),2s

uig.

Putting these facts together we get

sup
G(u)∩D(x,T ),s

ug ≤ c inf
G(u)∩D(x,T ),s

ug + ϵ(c+ 1),

and since ϵ was arbitrary we obtain
sup

G(u)∩D(x,T ),s

ug ≤ c inf
G(u)∩D(x,T ),s

ug.

In particular letting s go to +∞ and using the fact that infX u < t/c we conclude.

Combining with Propositions 5.10 and 5.11 we get the following corollary, which is a stronger version of Theorem
3.

Corollary 5.13. Fix N ∈ N. For every T, t, r > 0 there exists R(N,T, t, r) > 0 such that if (Mn, dg, e
−V dmg) is a

weighted manifold with convex boundary satisfying condition (21) for n < N and u ∈ C∞(BR(x)) is a solution of the
weighted minimal surface equation on BR(x) \ ∂M whose gradient vanishes on ∂M ∩BR(x) such that Oscx,r(u) ≥ t,
then

Osc+x,R(u) ≥ T and Osc−x,R(u) ≥ T.
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Birkhäuser Verlag, Basel, 1984, pp. xii+240. isbn: 0-8176-3153-4. doi: 10.1007/978-1-4684-9486-0. url:
https://doi.org/10.1007/978-1-4684-9486-0.

[31] Piotr Haj lasz and Pekka Koskela. “Sobolev met Poincaré”. In: Mem. Amer. Math. Soc. 145.688 (2000),
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