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Abstract. We show that the square of Carnot-Carathéodory distance from the origin, in

ideal Carnot groups, enjoys the horizontal semiconcavity (h-semiconcavity) everywhere in the

group including the origin. We apply this property to show h-semiconcavity for the solutions of

a class of non-coercive evolutive Hamilton-Jacobi equations, by using the associated Hopf-Lax

solutions.

1. Introduction.

Semiconvexity and semiconcavity properties are key regularity properties for functions, re-

lated to bounds for the second derivatives, and applied in many different contexts. We refer

to the monograph by Cannarsa and Sinestrari [16] for an overview on the topic. One of the

most interesting functions where one can apply this property is the distance function. It is

easily seen that the standard Euclidean distance is convex and thus semiconvex everywhere

but not semiconcave. However, the squared Euclidean distance to a given point is both semi-

convex and semiconcave, since its Hessian is a constant nonnegative matrix. This leads to

many interesting consequences, and it is somehow behind the successful use of the squared

distance to prove many results in PDEs. This opens to question the relation between semicon-

vexity/semiconcavity and distance functions in different geometrical settings.

In the case of Carnot groups, there is a vast literature investigating the notion of convexity

(or concavity) associated to their sub-Riemannian structure. Later in the paper we will review

several known notions that can be defined in these spaces. Let us just quickly recall the notion

of horizontal convexity (h-convexity for short) introduced by Lu-Mandredi-Stroffolini in the

Heisenberg group [30]; see also [25] for extension to more general Carnot groups. At the same

time, the notion of h-convexity is also studied independently by Danielli-Garofalo-Nhieu in [18]

by adapting the standard convexity definition to the algebraic structure of Carnot groups. The

notion of h-concavity can be symmetrically defined; see Definition 2.14 for a precise definition.

Later such a notion was generalised by Bardi and the first author in [10] with a more geometrical

approach that does not require any underlying Lie group structure and cover sub-Riemannian

structures up to the case of Carnot-type Hörmander vector fields.

While many results are known for h-convex or h-concave functions, less research has been

conducted on their semiconvex/semiconcave counterparts, which can be defined by easily
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adapting the concept of h-convexity/h-concavity. As an analogue of the Euclidean case, in

[10] it is shown that these notions are equivalent to bounds in the viscosity sense for the

intrinsic Hessian, namely the horizontal Hessian as defined in (2.16). This equivalence demon-

strates that horizontal semiconvexity/semiconcavity serves as a natural sub-Riemannian gener-

alization, elucidating why proving h-semiconvexity/h-semiconcavity properties is exceptionally

useful in studying degenerate PDEs associated with Carnot groups.

In this paper we are interested in exploring such semiconcavity for functions related to the

metric of a class of sub-Riemannian manifolds. In the setting of Carnot groups, various notions

of metric can be considered and they turn out to be all locally equivalent. In this work, we

discussed the Carnot-Carathéodory distance (CC distance for short), which is intrinsic and

therefore the most important distance. It is also the geodesic distance, which can be defined

as the minimal length among admissible curves joining two given points. A precise definition

is given in Definition 2.6. It has many important geometric and metric properties; for example

it is the only distance solving the eikonal equation in this geometrical setting (consult e.g.

[19, 32]).

Regarding the sub-Riemiannian manifolds in this work, we shall focus on the so-called ideal

Carnot groups, a subclass of step 2 Carnot groups that includes the Heisenberg group and

general H-type groups as simple yet significant examples. An important property of such type

of Carnot groups is that the abnormal set, which consists of endpoints of abnormal minimizing

geodesics starting from the group identity, contains only the identity itself. Under certain

assumptions for a general Carnot group, in [15] it is shown that the CC distance from the

identity is locally Euclidean semiconcave, and therefore locally h-semiconcave, away from the

abnormal set. See also [22, Theorem 5.9] for this result. However, despite many potential

applications in nonlinear PDEs, the behaviour near the identity has not been well understood

in the literature. For ideal Carnot groups, we aim to clarify the regularity of CC distance in

the whole space, including any neighborhood of the identity.

Our main result of this paper is the following theorem.

Theorem 1.1 (H-semiconcavity of square of CC distance). Let G be an ideal Carnot group

with CC distance d. Then d2(·, 0) is h-semiconcave in G.

We emphasize that our result complements [15, 22], extending the h-semiconcavity of d2
0 to

the identity, and thus obtaining the regularity globally. To prove this property we combine

general results from Lie groups, in particular the fact that, the abnormal set is simple enough

so that the missing local estimate can be obtained by a comparison of the homogeneous norm,

with viscosity theory techniques. The assumption that G is ideal is essential. In fact, as shown

in [33], the squared CC distance fails to be h-semiconcave in the Engel group, which is a

non-ideal Carnot group; see Proposition 3.5.

The consequence of this surprising regularity property for the squared CC distance allows

various applications to the study of degenerate nonlinear PDEs in ideal Carnot groups. In Sec-

tion 4, for a class of time-dependent convex Hamilton-Jacobi equations, we show the spatial h-

semiconcavity of viscosity solution that is given by the Hopf-Lax formula. The h-semiconcavity

constant we obtained depends on t > 0 but is independent of the space variables. Our result
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provides a sub-Riemannian generalization of the Euclidean counterpart; see for example [16,

Theorem 1.6.1] for the spatial semiconcavity of the Hopf-Lax solution to Hamilton-Jacobi

equations in the Euclidean space.

Although we have proved that the square of the CC distance is h-semiconcave, its regularity

turns out to be still very different from the Euclidean case. It is obvious that the squared

Euclidean distance from the origin is convex in the space. In contrast, we will show that, the

squared CC distance fails to be h-semiconvex in the Heisenberg group; see Proposition 3.8.

More related discussions will be given in a forthcoming paper [28].

The paper is organized as follows: In Section 2.1 we go over some basics about Carnot groups

including the group multiplication, the dilation and the CC distance. We recall some known

(local) inclusions between the CC balls and the Euclidean balls, and between the CC distance

and the homogeneous distance. The notions and properties of the endpoint map, normal and

abnormal geodesics, and ideal Carnot groups are reviewed in Section 2.2. Some related details

for the special case of the Heisenberg group as well as the notions of the horizontal gradient

and the horizontal Laplacian (or sub-Laplacian) are provided in these two sections as well.

In Section 2.3 we go over the notions and basic properties of h-concave and h-semiconcave

functions.

Section 3 is devoted to the proof of our main result of the paper, Theorem 1.1. We

also mention some related consequences and disprove the h-convexity of the squared CC dis-

tance. We provide our applications to Hamilton-Jacobi equations in Section 4, showing the

h-semiconcavity of Hopf-Lax solutions in space under suitable assumptions for the Hamilton-

ian.

Acknowledgments. The work of QL was supported by JSPS Grant-in-Aid for Scientific

Research (No. 19K03574, No. 22K03396).

2. Preliminaries

2.1. Carnot groups. We begin with some basic facts about Carnot groups. For more details,

we refer to [13].

Definition 2.1 (Carnot group). A Carnot group is a connected and simply connected Lie group

G whose Lie algebra g has a stratification g =
⊕s

j=1 gj , that is, a linear splitting g =
⊕s

j=1 gj

where [g1, gj ] = gj+1 for j = 1, . . . , s− 1 and [g1, gs] = {0}. If gs 6= {0}, the number s is called

the step of G.

Note that the case s = 1 coincides with the standard Euclidean space, therefore, here we

will always consider the case s ≥ 2.

By using the exponential map, we can always identify a Carnot group G with its Lie algebra

g with the group law given by the so-called Baker-Campbell-Dynkin-Hausdorff formula (see

[13, § 15] for more details). Furthermore, by choosing a suitable basis of g consisting of bases

of gj , it can be further identified with (Rn, ·) with Rn = Rn1 × . . . × Rns , where · is a non

commutative operation, and n = n1 + · · · + ns, with n denoting the topological dimension of

G as a manifold, while nj the dimension of gj . After this identification, the group identity
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becomes 0 and p−1 = −p. For r > 0, writing p = (p(1), . . . , p(s)) ∈ Rn ∼= Rn1 × . . . × Rns , we

can define the dilation δr on (Rn, ·) by

δr(p
(1), . . . , p(s)) := (rp(1), . . . , rsp(s)),

which is an automorphism of (Rn, ·). Note that the dilations defined above are anisotropic; for

a more formal definition of the dilations defined on Carnot groups, we refer to [13].

Moreover, the group multiplication satisfies

p · q = p+ q +R(p, q), ∀ p, q ∈ Rn,(2.1)

with R = (R(1), . . . ,R(s)) ∈ Rn1 × . . . × Rns , R(j) a polynomial depending only on the first

n1 + . . .+nj−1 variables of p and q, i.e. the variables associated via the exponential map with

the first j − 1 layer of the Lie algebra. In particular, when the step s = 2, we have

R(p, q) = (0,B(p(1), q(1))) ∈ Rn ∼= Rn1 × Rn2 , ∀ p, q ∈ Rn,(2.2)

for some skew-symmetric bilinear form B : Rn1 × Rn1 → Rn2 . For this identification, more

details can be found in [13, Proposition 2.2.22 and § 3.2].

Remark 2.2. Given G step two Carnot group, let us consider R(p, q) introduced in (2.2), there

exists a constant C0 > 0 such that

(2.3) |R(p, q)| = |B(p(1), q(1))| ≤ C0|p(1)||q(1)| ≤ C0|p||q|, ∀ p, q ∈ G,

where | · | is the norm on G ∼= Rn.

For the sake of simplicity, we use m := n1 = dimg1 and write p(1) = (p1, . . . , pm).

Definition 2.3. For 1 ≤ i ≤ m, we use Xi ∈ g1 to denote the left-invariant vector field on G
which coincides with ∂

∂pi
at the identity. Note that {X1, . . . ,Xm} forms a basis of g1.

Example 2.4. The Heisenberg group H = R3 ∼= R2 × R is the simplest Carnot group whose

group law (2.1) is given by

(x, y, z) · (x̃, ỹ, z̃) =

(
x+ x̃, y + ỹ, z + z̃ +

1

2
(xỹ − x̃y)

)
,

which means that B((x, y), (x̃, ỹ)) = 1
2(xỹ− x̃y) in (2.2). From the group multiplication defined

above, it is easy to see that the center of H (the set of elements which can commute with all

the other elements) is {0} × R. The basis of g1 is given by

(2.4) X1 =
∂

∂x
− y

2

∂

∂z
, X2 =

∂

∂y
+
x

2

∂

∂z
.

Let Y = ∂
∂z . The Lie algebra g of H is given by g = g1 ⊕ g2 with

g1 = span{X1,X2}, g2 = span{Y}.

and the only nontrivial bracket relation of g is [X1,X2] = Y. In this particular case of the

Heisenberg group, one can show easily that (2.3) holds with C0 = 1. In fact, we have

|B(p(1), q(1))| = 1

2
|xỹ − x̃y| ≤ 1

2

(
|x||ỹ|+ |x̃||y|

)
≤ |p(1)||q(1)| ,

for p(1) = (x, y) and q(1) = (x̃, ỹ).
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Carnot groups are Lie groups, therefore they have also a manifold structure. Next we briefly

introduce it and we refer to [34, § 4.5] for more details.

Definition 2.5 (Sub-Riemannian structure). On a Carnot group G, the canonical left-invariant

sub-Riemannian structure (D, g) is defined as follows: the horizontal distribution D (a sub-

bundle of the tangent bundle TG satisfying the bracket generating condition) is generated by

g1 and the metric g on D is determined by {X1, . . . ,Xm}. To be more precise, we have

Dp := span{X1(p), . . . ,Xm(p)},

and {X1(p), . . . ,Xm(p)} forms an orthonormal basis at every point p ∈ G.

An horizontal path is an absolutely continuous map γ : [0, 1] → G such that γ̇(τ) ∈ Dγ(τ)

for a.e. τ , whose length can be calculated by

(2.5) `(γ) :=

∫ 1

0

√
g(γ̇(τ), γ̇(τ)) dτ.

Definition 2.6 (Carnot-Carathéodory distance). The Carnot-Carathéodory distance (or in

short CC distance) between two points p, q ∈ G is defined as

d(p, q) := inf{`(γ) | γ horizontal, γ(0) = p, γ(1) = q}.

By the celebrated Chow-Rashevsky Theorem (see for example [2, 34]), d is a well-defined

finite distance and its induced topology is the same as the manifold topology; in particular,

in Carnot groups, this means that d is continuous w.r.t. the standard Euclidean topology.

Therefore (G, d) is a metric space. We call the sub-Riemannian structure (D, g) complete if it

is complete as a metric space. A (length) minimizing geodesic is a horizontal path γ such that

`(γ) = d(γ(0), γ(1)).

In addition, the following properties of the CC distance hold (cf. [13, Proposition 5.2.6]):

(2.6)
d(δr(p), δr(q)) = rd(p, q), ∀ r > 0, p, q ∈ G,

d(p, q) = d(q−1 · p, 0) = d(p−1 · q, 0), ∀ r > 0, p, q ∈ G.

In the following we use BE(p, r) and BCC(p, r) to denote, respectively, the Euclidean ball

and the CC ball centred at p ∈ G with radius r > 0, i.e.

BE(p, r) := {q ∈ G | |p− q| < r}, BCC(p, r) := {q ∈ G | d(p, q) < r}.(2.7)

A well-known relation between the Euclidean distance and the CC distance is as follows.

Proposition 2.7 ([3], Proposition 1.1). On a Carnot group G with step s, for every compact

set K ⊂ G, there exists a constant C(K) > 0 such that

1

C(K)
|p− q| ≤ d(p, q) ≤ C(K)|p− q|

1
s , ∀ p, q ∈ K.

It immediately implies the following local inclusions between the Euclidean balls and the

CC balls, i.e. given any compact set K ⊂ G, if BCC(p, r) ⊂ K, then

BE(p, C(K)−srs) ⊂ BCC(p, r) ⊂ BE(p, C(K)r).(2.8)
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In order to simplify our notation, we denote by d0(p) the CC distance between the point p

and the group identity 0, i.e. d0(p) = d(p, 0). It is worth mentioning the following equivalence

between the CC distance from the identity and the homogeneous norm.

Proposition 2.8 ([13], Proposition 5.1.4). Let d be the CC distance of a Carnot group and

d0 = d(·, 0). Then, there exists a constant C ≥ 1 such that

C−1|p|G ≤ d0(p) ≤ C|p|G, ∀ p ∈ G,

where the homogeneous norm | · |G is defined by

(2.9) |p|G =

(
s∑
i=1

|p(i)|
2s!
i

) 1
2s!

, ∀ p = (p(1), . . . , p(s)) ∈ G,

with s the step of the group G and p(i) associated by the exponential map to the i-layer gi.

We remark that in the special case of Heisenberg group H (see Example 2.4), the homoge-

neous norm is

|(x, y, z)|H =
(
(x2 + y2)2 + z2

) 1
4 , ∀ (x, y, z) ∈ H,

which corresponds to (2.9) with s = 2, p = (x, y, z), p(1) = (x, y) and p(2) = z.

2.2. Endpoint map and ideal Carnot groups. Next we introduce the endpoint and ideal

Carnot groups. More details on this part can be found in [2, § 8] and [34, 39]. We recall that it

is usually more convenient to minimize the energy J as below rather than the original length

` defined in (2.5):

J(γ) :=
1

2

∫ 1

0
g(γ̇(τ), γ̇(τ)) dτ.(2.10)

In fact, we have the following relation (see e.g. [35, Theorem 1.1.7] or [39, Proposition 2.1]):

(2.11)
1

2
d2(p, q) = inf{J(γ) | γ : [0, 1]→ G, horizontal, γ(0) = p, γ(1) = q}.

For a fixed p ∈ G and any control u ∈ L2([0, 1],Rm), let γu be the unique maximal solution of

the following Cauchy problem:

(2.12) γ̇u(τ) =

m∑
j=1

uj(τ)Xj(γu(τ)), γ(0) = p.

Definition 2.9 (Endpoint map). We use Up to denote the set of u ∈ L2([0, 1],Rm) such that

the corresponding trajectories γu solving (2.12) starting at p are defined on the interval [0, 1].

Up is an open set in L2([0, 1],Rm). The endpoint map based at p is the map Ep : Up → G
defined as

Ep(u) := γu(1).

We then obtain an energy functional on Up given by

J (u) := J(γu) =
1

2

∫ 1

0
|u(τ)|2dτ.

Note that Ep is a smooth function on Up (cf. [34, Appendix D]) and a length minimizing

geodesic joining p and q is just γu with u minimizing J under the constraint Ep(u) = q. Thus,
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by the method of Lagrange multipliers (see e.g. [39, Theorem B.2] or [2, § 8.2]), for such u,

there exists a non-trivial pair (λ, ν), such that

(2.13) λ ◦DuEp = νDuJ , λ ∈ T ∗qG, ν ∈ {0, 1},

here ◦ denotes the composition and Du the differential with respect to u.

Definition 2.10 (Normal and abnormal minimizing geodesic). Given ν introduced in (2.13),

the length minimizing geodesic γu is called normal if ν = 1 and abnormal if ν = 0. We remark

that a minimizing geodesic could be both normal and abnormal at the same time since the

pair (λ, ν) is not necessarily unique (see [34, § 5.3.3]). Finally we call an abnormal minimizing

geodesic trivial if it is a constant curve.

The next definition introduces the groups under consideration in this paper; we refer to

[38, 39] for more details.

Definition 2.11 (Ideal Carnot group). Given a Carnot group G, we say that G is ideal if

the sub-Riemannian structure (D, g), introduced in Definition 2.5, is ideal, which by definition

means that it is complete and it does not admit non-trivial abnormal minimizing geodesics.

The following notion of fatness can help us check whether a Carnot group G is ideal or not.

Recall that G is called fat if for every p ∈ G and X ∈ D with X(p) 6= 0, we have

Dp + [D,X]p = TpG.

Thanks to the left invariance of the sub-Riemannian structure (D, g) on G, the property above

is equivalent to saying that for every X ∈ g1 \ {0}, the following holds true:

g1 + [g1,X] = g.(2.14)

By [40, Theorem 10], a Carnot group is ideal if and only if it is fat, which trivially implies that

G is step two, i.e., s = 2.

Example 2.12. The Heisenberg group H appearing in Example 2.4 is ideal. The simplest non-

ideal Carnot group is R×H. To be more precise, suppose that T is a nonzero constant vector

field on R and the Lie algebra of R×H is given by g = g1 ⊕ g2 with

g1 = span{T,X1,X2}, g2 = span{Y}.

Since T commutes with X1,X2,T, (2.14) fails for X = T, which implies that this Carnot group

is not ideal.

Carnot groups of step ≥ 3 are never ideal Carnot groups because they are not fat.

Example 2.13. The Engel group E = R4 ∼= R2×R×R, which is the simplest step three Carnot

group, is not ideal. To be more precise, the Engel group can be identified with R4 with the

following multiplication: given p = (x, y, z, s), p̃ = (x̃, ỹ, z̃, s̃) ∈ E

p · p̃ =

(
x+ x̃, y + ỹ, z + z̃ +

1

2
(xỹ − x̃y), s+ s̃+

1

2
(xz̃ − x̃z) +

1

12
(x− x̃)(xỹ − x̃y)

)
.
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Defining

X1 =
∂

∂x
− y

2

∂

∂z
−
(xy

12
+
z

2

) ∂

∂s
, X2 =

∂

∂y
+
x

2

∂

∂z
+
x2

12

∂

∂s
,

Y =
∂

∂z
+
x

2

∂

∂s
, Z =

∂

∂s
.

The Lie algebra g of E is given by g = g1 ⊕ g2 ⊕ g3 with

g1 = span{X1,X2}, g2 = span{Y}, g3 = span{Z}.

Here the nontrivial bracket relations of g are [X1,X2] = Y and [X1,Y] = Z. For more details

on the Engel group, we refer to [1, 5, 6, 7] and the references therein.

We conclude this subsection with the definition of several differential operators in Carnot

groups, which utilizes the derivatives along the vector fields introduced in Definition 2.3. The

horizontal gradient of ϕ ∈ C1(G) at the point p ∈ G, denoted by ∇Hϕ(p), is defined by

∇Hϕ(p) = (X1ϕ(p), . . . ,Xmϕ(p)) ∈ Rm.

The horizontal plane H0 passing through the identity 0 is a subspace of G ∼= Rn defined by

Rm×{0}× . . .×{0}. It is clear that H0 is isomorphic to Rm and thus from now on we will not

distinguish H0 from Rm. If we use 〈·, ·〉 to denote the inner product on the Euclidean space

G ∼= Rn inducing the norm | · |, with these notations, it is not difficult to see that

〈∇Hϕ(p), h〉 =
d

dτ

∣∣∣∣
τ=0

ϕ(p · τh), ∀h ∈ H0.(2.15)

Moreover, similar to the definition of the horizontal gradient, the (symmetrized) horizontal

Hessian of ϕ ∈ C2(G) at the point p ∈ G, denoted by (∇2
Hϕ(p))∗, is the unique m × m

symmetric matrix satisfying the following formula:

〈(∇2
Hϕ(p))∗h, h〉 =

d2

dτ2

∣∣∣∣
τ=0

ϕ(p · τh), ∀h ∈ H0.(2.16)

The (canonical) sub-Laplacian at p ∈ G is thus defined by ∆Hu(p) =
∑m

i=1 X2
iu(p).

2.3. H-concavity and h-semiconcavity. On Carnot groups it is possible to introduce sev-

eral notions of convexity and, respectively, concavity. However, not all the notions behave

well in this sub-Riemannian setting. For example, in [36], the authors showed that geodetical

convexity is not a suitable notion on Heisenberg group in the sense that the family of geodet-

ically convex sets only consist of the whole group, the empty set and the geodesics, and as a

consequence the only geodetically convex functions are the constant functions. Furthermore,

strong H-convexity is considered in [18, 14], and it turns out that it is still a too restrictive

notion. A notion of horizontal convexity, shortly h-convexity, was introduced, independently,

by Lu, Manfredi and Stroffolini [30], for the Heisenberg group, and by Danielli, Garofalo and

Nhieu [18] in more general Carnot groups. Later the notion has been discussed in various

papers e.g. [9, 23, 31, 37, 42, 25]. In more recent years h-convexity has been applied to study

properties of solutions for certain classes of PDEs [27, 29, 28]. See also [20] for an overview

on how h-convexity can be applied to sets. The authors of [10, 11] extended the notion of

the h-concavity the setting of vector fields and further studied the notion of h-semiconcavity,
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which is the key topic of the present work.

For the purpose of this paper, we introduce directly the notion of h-concavity, holding the

usual relation that u is h-convex if and only if −u is h-concave.

Definition 2.14 (H-concavity). Given an open set Ω ⊂ G, a function u ∈ LSC(Ω) (i.e. the

function is lower semicontinuous in Ω) is called h-concave if and only if

(2.17)
u(p · h)+u(p · h−1)− 2u(p) ≤ 0,

∀ p ∈ Ω, h ∈ H0 such that [p · h−1, p · h] := {p · τh | τ ∈ [−1, 1]} ⊂ Ω.

Remark 2.15. Note that for Definition 2.14 to hold true, one could relax the assumption

of lower semicontinuity. Nevertheless, since later we use the viscosity characterization of h-

concave functions, we ask such regularity directly in the definition. This definition follows from

[30] and [18], where the notion is stated in a slightly different form, but these formulations

coincide with ours for LSC functions; see [25] for details.

Similarly to the standard Euclidean characterization established first by Alvarez, Lasry

and Lions in 1997 [4], the h-concavity of a function can be characterized by the sign of its

horizontal Hessian in the viscosity sense: this characterization was first introduced for the

Heisenberg group in [30] and later proved in Carnot groups in [43, 25]. See also [10] for the

more general case of Carnot-type Hörmander vectors fields.

Combining the results from the above mentioned papers, we have

(2.18) u is h-concave in Ω, if and only if, − (∇2
Hu)∗ ≥ 0 in Ω holds in the viscosity sense.

To be more precise, the viscosity inequality means that −(∇2
Hϕ(p))∗ ≥ 0 whenever there exist

ϕ ∈ C2(Ω) and p ∈ Ω such that u− ϕ has a local minimum at p.

Example 2.16. On the Heisenberg group H in Example 2.4, we have X1 = ∂x − y
2∂z, X2 =

∂y + x
2∂z, and the horizontal Hessian can be represented by

(∇2
Hϕ)∗ =

(
X2

1ϕ
1
2(X1X2ϕ+ X2X1ϕ)

1
2(X1X2ϕ+ X2X1ϕ) X2

2ϕ

)
.

In this case, one can easily verify that every Euclidean concave function in R3 is also h-concave

in H. The reverse however is not true. See [18, 20].

Next we recall the property under investigation in this paper.

Definition 2.17 (H-semiconcavity). Given an open set Ω ⊂ G, we call a function u ∈ LSC(Ω)

h-semiconcave if there exists a constant C ≥ 0 such that

u(p · h) + u(p · h−1)− 2u(p) ≤ C|h|2, ∀ p ∈ G, h ∈ H0 such that [p · h−1, p · h] ⊂ Ω,(2.19)

where we recall that | · | is the Euclidean norm on G ∼= Rn. The constant C is called h-

semiconcavity constant.

This is a generalization of the notion of semiconcave functions in the Euclidean space, for

which we refer to [16]. A function u is called h-semiconvex it −u is h-semiconcave. Similarly
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to the characterization in (2.18) for h-concave functions, the notion of h-semiconcavity can be

characterized by a bound for the horizontal Hessian in the viscosity sense.

Theorem 2.18 (Proposition 5.1 of [10]). Given an open set Ω ⊂ G and u ∈ LSC(Ω), the

follow statements are equivalent:

(1) u is h-semiconcave in Ω with h-semiconcavity constant C ≥ 0.

(2) We have

(2.20) − (∇2
Hu)∗ ≥ −C Idm in Ω in the viscosity sense,

which means that −(∇2
Hϕ(p))∗ ≥ −C Idm whenever there exist ϕ ∈ C2(Ω) and p ∈ Ω

such that u−ϕ has a local minimum at p. Here Idm denotes the m×m identity matrix.

The result below is a direct consequence of Theorem 2.18 and the stability of viscosity

supersolutions with respect to the infimum. It will be useful in our later applications. Below

we denote by LSC(A) the set of lower semicontinuous functions in a set A of a metric space.

Proposition 2.19. Let Ω be an open set of a Carnot group G. Let {uα}α∈A be a family of

h-semiconcave functions on Ω. Assume that for every α ∈ A, the function uα is h-semiconcave

functions in Ω with h-semiconcavity constant C ≥ 0 independent of α. Suppose that

u(p) := inf
α∈A

uα(p) > −∞ for all p ∈ Ω.

If u ∈ LSC(Ω), then u is also h-semiconcave in Ω with the same h-semiconcavity constant

C ≥ 0.

3. H-semiconcavity of square of CC distance

In this section, we present our main theorem, which states that the square of CC distance

in ideal Carnot groups is h-semiconcave. One of the tools we will use is the local (Euclidean)

semiconcavity studied in [15]. Recall that a function u is locally semiconcave in an open set

Ω if for every compact convex set K ⊂ Ω, there exists a constant C(K) ≥ 0 such that the

following holds:

λu(p) + (1− λ)u(q)− u(λp+ (1− λ)q) ≤ λ(1− λ)C(K)|p− q|2, ∀ p, q ∈ K,λ ∈ [0, 1].

(3.21)

Here the constant 2C(K) is called the semiconcavity constant on compact set K. Note that the

definition is independent of the choice of the norm | · |, since, in the Euclidean setting, different

norms are equivalent up to a multiplicative constant. Hereafter let us just use the standard

norm on Rn. By definition an ideal Carnot group only possesses trivial abnormal minimizing

geodesics. Consequently, the abnormal set of the identity 0, which is just the set of endpoints

of abnormal minimizing geodesics starting from the identity 0, must be {0}. It follows from

[15, Theorem 1] (and also [22, Theorem 5.9]) that d2(·, 0) is locally (Euclidean) semiconcave

on G \ {0}. The following lemma, which will be useful in the proof of our main result, is a

direct consequence.
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Lemma 3.1. Let G be an ideal Carnot group with CC distance d. Then, for d0 = d(·, 0), there

exist two constants C ≥ 0 and c > 0 such that

d2
0(p+ v) + d2

0(p− v)− 2d2
0(p) ≤ C|v|2, ∀ p ∈ ∂BCC(0, 1), |v| ≤ c.

Proof. Set S = ∂BCC(0, 1) and η = infq∈S |q|, that is, η is the Euclidean distance between the

origin and the boundary of the unit CC ball. By (2.8) with K = BCC(0, 1), it is easy to see

that η > 0. Thus, for every q ∈ S, the compact set BE(q, η/2) ⊂ G \ {0}; see Figure 1.

BE(q, η/4)

BE(q, η/2)

q

η

0
η

S = ∂BCC(0, 1)

Figure 1. Relation between the CC ball and the Euclidean ball in the proof
of Lemma 3.1.

It follows from the local (Euclidean) semiconcavity of d2
0 on G \ {0} (see [15, Theorem 1])

that there exists a C(q, η) ≥ 0 such that

(3.22)
λd2

0(p+) + (1− λ)d2
0(p−)− d2

0(λp+ + (1− λ)p−) ≤ λ(1− λ)C(q, η)|p+ − p−|2,

∀ p+, p− ∈ BE(q, η/2), λ ∈ [0, 1].

As a result, choosing p+ = p+ v, p− = p− v, and λ = 1
2 , we apply (3.22) to deduce

d2
0(p+ v) + d2

0(p− v)− 2d2
0(p) ≤ 2C(q, η)|v|2, ∀ p ∈ BE(q, η/4), |v| ≤ η/4.

See Figure 2.

Since {BE(q, η/4)}q∈S is an open cover of S, by compactness, there exists a finite cover

{BE(qi, η/4)}1≤i≤N with N < +∞. Now we introduce

C := 2 max
1≤i≤N

C(qi, η) ≥ 0,

then, for every p ∈ S, there exists an i ∈ {1, . . . , N} such that p ∈ BE(qi, η/4), which yields

d2
0(p+ v) + d2

0(p− v)− 2d2
0(p) ≤ 2C(qi, η)|v|2 ≤ C|v|2, ∀ |v| ≤ η/4.

By taking c := η/4 > 0, we complete the proof of the lemma. �

We stress that both constants C, c > 0 in Lemma 3.1 depend only on S = ∂BCC(0, 1),

therefore they are both universal constants.

Let us now prove our main result, Theorem 1.1.
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BE(q, η/4)

BE(q, η/2)

p

p− v

p+ v

Figure 2. Relation between the points and balls in the proof of Lemma 3.1.

Proof of Theorem 1.1. We continue using d0 to denote the CC distance from the identity.

Theorefore we have d2
0(p) = d2(p, 0) for p ∈ G. Moreover, since Carnot groups satisfy the

Hörmander condition, meaning the distribution associated to Carnot groups is bracket gener-

ating, the CC distance d is continuous (see [34, Theorem 2.2 and Theorem 2.3]). Therefore it

is clear that the condition d2
0 ∈ LSC(G).

We first pose the following claim:

(3.23)
For every p ∈ G, there exist C > 0 (independent of p) and c(p) > 0 such that

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p) ≤ C|h|2, ∀h ∈ H0, |h| ≤ c(p).

Assuming that (3.23) holds, we can use the viscosity characterization for h-semiconcave

functions given in Theorem 2.18 to easily conclude. In fact, take ϕ ∈ C2(G) such that d2
0 − ϕ

has a local minimum at some p ∈ G. Without loss of generality, by standard viscosity theory

techniques, we can assume that the local minimum is equal to 0, i.e. ϕ(p) = d2
0(p) (see e.g.

[26, Proposition 2.2]). Then claim (3.23) implies that for h ∈ H0 with |h| small enough we get

ϕ(p · h) + ϕ(p · h−1)− 2ϕ(p) ≤ d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p) ≤ C|h|2.(3.24)

However, recalling the horizontal differential operators introduced in (2.15) and (2.16) and by

applying the Taylor expansion in the group (see e.g. [13, § 20]), we can write

(3.25)
ϕ(p · h) = ϕ(p) + 〈∇Hϕ(p), h〉+

1

2
〈(∇2

Hϕ(p))∗h, h〉+ o(|h|2),

ϕ(p · h−1) = ϕ(p)− 〈∇Hϕ(p), h〉+
1

2
〈(∇2

Hϕ(p))∗h, h〉+ o(|h|2).

Combining (3.24) and (3.25), we obtain

〈(∇2
Hϕ(p))∗h, h〉+ o(|h|2) ≤ C |h|2,

for all h ∈ H0 with |h| small enough. Dividing this inequality by |h|2 and letting |h| → 0+, we

deduce that (∇2
Hϕ(p))∗ ≤ C Idm and thus −(∇2

Hd
2
0)∗ ≥ −C Idm in the viscosity sense, which

concludes the result by Theorem 2.18.
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Let us now prove claim (3.23). We fix the constants C ≥ 0 and c > 0 appearing in Lemma

3.1, and split the proof of (3.23) into three cases:

Case 1: p ∈ S = {q ∈ G | d(q, 0) = 1}. We would like to use Lemma 3.1. Since G is an ideal

Carnot group, it is fat and thus of step 2. (The case of step 1 Carnot group can be reduced to

the known Euclidean case.) It follows from from (2.1) and (2.2) that

p · h = p+ h+R(p, h), p · h−1 = p− h−R(p, h), ∀ p, h ∈ G.(3.26)

Furthermore, we apply inequality (2.3) to p ∈ S = ∂BCC(0, 1) to get |R(p, h)| ≤ C1|h|, where

C1 = C0 supp∈S |p| ∈ (0,+∞). As a result, we have

|vp,h| ≤ |h|+ C1|h|, ∀ p ∈ S, h ∈ G, where vp,h := h+R(p, h).

Then for c1 = c
1+C1

, whenever p ∈ S and h ∈ H0 such that |h| ≤ c1, we deduce |vp,h| ≤ c.

Combining this with Lemma 3.1 (with constant C in place of C) and (3.26), we obtain

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p) = d2

0(p+ vp,h) + d2
0(p− vp,h)− 2d2

0(p)

≤ C|vp,h|2 ≤ C (1 + C1)2 |h|2, ∀ p ∈ S, h ∈ H0, |h| ≤ c1.

This proves claim (3.23) with C = C (1 + C1)2.

Case 2: p ∈ G and p 6= 0. In this case, we use the properties of the CC distance as in (2.6). In

fact, for every p 6= 0 we can define p̃ = δ1/r(p) with r = d0(p) (i.e. p = δr(p̃)) so that p̃ ∈ S.

Indeed, we have

d0(p̃) = d0

(
δ1/r(p)

)
=

1

r
d0(p) =

1

r
r = 1.

Then we can adopt Case 1 for p̃ with h̃ = δ1/r(h) for all h ∈ H0 such that |h| ≤ c1r, where

c1 is the constant determined in Case 1. It is worth pointing out that, due to the condition

h ∈ H0, we have

δ1/r(h) =
|h|
r
, |h̃| = |h|

r
≤ c1 r

r
= c1.

Hence by our result in Case 1 we can write

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p) = d2

0(δr(p̃) · h) + d2
0(δr(p̃) · h−1)− 2d2

0(δr(p̃))

= r2[d2
0(p̃ · δ1/r(h)) + d2

0(p̃ · δ1/r(h)−1)− 2d2
0(p̃)] = r2

[
d2

0(p̃ · h̃) + d2
0(p̃ · h̃−1)− 2d2

0(p̃)
]

≤ r2C| h̃ |2 ≤ r2C
|h|2

r2
= C|h|2,

where we take C = C (1 + C1)2 as in Case 1 and c(p) = c1d0(p). This proves claim (3.23) for

the current case with C = C (1 + C1)2 and c(p) = c1d0(p).

Case 3: p = 0. It remains to prove the claim in the case p = 0. To this end, we use the

equivalence of the CC distance and the homogeneous norm introduced in (2.9). Noticing that,

for all h ∈ H0 we have that |h|G = |h|, hence for p = 0 we obtain

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p) = d2

0(h) + d2
0(−h) ≤ 2C2

2 |h|2,

where C2 ≥ 1 is the constant given in Proposition 2.8. This proves claim (3.23) for the point

p = 0 with the constants C = 2C2
2 and c(p) = 1.
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To sum up, considering all of the cases discussed above, we have shown that claim (3.23)

holds for all p ∈ G and h ∈ H0 such that |h| ≤ c(p), with

C = max
(
C (1 + C1)2 , 2C2

2

)
> 0, c(p) =

c1d0(p), if p 6= 0,

1, if p = 0.

�

Applying Theorem 2.18 to the function d2
0 = d2(·, 0), a direct consequence of Theorem 1.1

is the following corollary.

Corollary 3.2. Let d be the CC distance of an ideal Carnot group G. For d0 = d(·, 0), there

exists a constant C > 0 such that

−(∇2
H [d2

0])∗ ≥ −C Idm in G holds in the viscosity sense.

In particular, −∆H [d2
0] ≥ −mC in G holds in the viscosity sense, where m denotes the di-

mension of the first layer of the Lie algebra of G. Here, the viscosity inequalities mean that

−(∇2
Hϕ(p))∗ ≥ −C Idm and −∆Hϕ(p) ≥ −mC hold for any ϕ ∈ C2(G) and p ∈ G such that

d2
0 − ϕ attains a local minimum at p.

Proof. From Theorem 1.1 we know that d2
0 is h-semiconcave. Then by (ii) of Theorem 2.18,

there exists a constant C ≥ 0 such that for any ϕ ∈ C2(G) and p ∈ G with the property that

d2
0 − ϕ has a local minimum at p, we have −(∇2

Hϕ(p))∗ ≥ −C Idm. Taking the trace on both

sides, we obtain −∆Hϕ(p) +mC ≥ 0, which concludes the proof. �

Corollary 3.3. Let d be the CC distance of an ideal Carnot group G. For d0 = d(·, 0), there

exists a constant C > 0 such that

(∇2
H [d2

0])∗ ≤ C Idm,

and

∆H [d2
0] ≤ mC

hold almost everywhere in G.

Proof. We first define the cut locus (of the identity 0) as follows:

Cut0 := {p ∈ G | d2
0 is not smooth in a neighbourhood of p}.

It is known [38, Proposition 15] that the cut locus has measure zero if the step of a Carnot

group is two. From Corollary 3.2 we know that −(∇2
H [d2

0])∗ ≥ −C Idm and −∆H [d2
0] ≥ −mC

hold in the viscosity sense. Therefore, by standard techniques of viscosity solution theory,

−(∇2
H [d2

0](p))∗ ≥ −C Idm and −∆H [d2
0](p) ≥ −mC hold at all points p where d2

0 is smooth

including all p ∈ G \ Cut0. Then the conclusion of the corollary follows. �
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d2
0

x

z

Figure 3. Graph of d2
0 = d2(·, 0) in the Heisenberg group H.

Remark 3.4. We include Figure 3 to illustrate the significant difference between the h-semiconcavity

on Heisenberg group H and the usual Euclidean semiconcavity. The following explicit expres-

sion of the CC distance in H is obtained in [12, Theorem 1.36]:

d2
0(x, y, z) =


(

θ

sin θ

)2

(x2 + y2), if (x, y) 6= (0, 0) and θ = µ−1
(

4|z|
x2+y2

)
,

4π|z|, if (x, y) = (0, 0),

(3.27)

where µ : (−π, π)→ R given by

µ(s) :=
2s− sin(2s)

2 sin2 s
(3.28)

is an increasing diffeomorphism (cf. [24, Lemme 3, p. 112]). Since d2
0 is rotational symmetric

in the coordinates x and y, we only draw the graph of d2
0 on the set {(x, 0, z) : x, z ∈ R}. It

can be seen from the red curve that a corner-like singularity occurs at the identity 0 in the

direction z (i.e. the forbidden direction). As a result, it is not Euclidean semiconcave at 0,

which by definition means that d2
0 is not locally Euclidean semiconcave in any neighborhood of

the identity. This observation might explain why the result [15, Theorem 1] or [22, Theorem

5.9] did not touch the identity on H.

Our result confirms that such singularity actually does not affect the horizontal semiconcav-

ity of d2
0 at the identity 0. As a matter of fact, to investigate the definition of h-semiconcavity,

we should restrict the function to the horizontal plane, which gives a smooth function

d2
0(x, y, 0) = x2 + y2.

The graph of this function is plotted as the blue curve in Figure 3.

The assumption of ideal Carnot groups in Theorem 1.1 is essential. The h-semiconcavity

of the square of the CC distance actually fails to hold on the Engel group introduced in
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Example 2.13. We refer to [33, Theorem 1.2] for this observation. To be more precise, the

following can be found in the proof in [33, § 4].

Proposition 3.5 ([33]). On the Engel group E, there exists a nonzero element p in E (in the

abnormal set) such that the following limit holds:

lim
h∈R\{0},h→0

d0(p · he1)− d0(p)

h2
= +∞,

where e1 := (1, 0, 0, 0) ∈ H0 ⊂ E. In particular,

lim
h>0,h→0+

d2
0(p · he1) + d2

0(p · (he1)−1)− 2d2
0(p)

h2
= +∞.

It is possible to generalize our result in Theorem 1.1 for other functions related to the CC

distance. We present the following generalization in a bounded open set of an ideal Carnot

group.

Corollary 3.6. Let G be an ideal Carnot group with CC distance d. Let Ω be a bounded open

set of G. Assume that Ψ : [0,+∞) → [0,+∞) is an increasing function such that its even

extension Ψ̃ : R→ [0,+∞) is a locally semiconcave function in R, as defined in (3.21). Then,

Ψ(d(·, 0)) is h-semiconcave in Ω.

Proof. We still use the notation d0 = d(·, 0) in G. We first assume that Ψ̃ ∈ C2(R). Since Ψ̃ is

even, it is easy to obtain Ψ̃′(0) = 0. Now let T (Ω) := supp∈Ω d(p) < +∞. On the compact set

[0, T (Ω)], by the local semiconcavity there exists a constant C(Ω) > 0 such that Ψ̃′′ ≤ C(Ω).

Consequently this implies

0 ≤ Ψ̃′(τ) = Ψ̃′(τ)− Ψ̃′(0) ≤ C(Ω)τ, ∀ τ ∈ [0, T (Ω)].(3.29)

Moreover, for p ∈ Ω \ {0} and h ∈ H0 such that [p · h−1, p · h] ⊂ Ω, by Taylor expansion we

have

Ψ(d0(p · h))−Ψ(d0(p)) ≤ Ψ̃′(d0(p))(d0(p · h)− d0(p)) +
C(Ω)

2
(d0(p · h)− d0(p))2.(3.30)

Notice that

Ψ̃′(d0(p))(d0(p · h)− d0(p)) ≤ Ψ̃′(d0(p))

2d0(p)
(d2

0(p · h)− d2
0(p)),

and, also by the fact h ∈ H0, we have

|d0(p · h)− d0(p)| ≤ d(p · h, p) = d0(h) = |h|,

since it is easy to see that t → th, t ∈ [0, 1] is a length minimizing geodesic. Inserting these

two estimates into (3.30), we obtain

Ψ(d0(p · h))−Ψ(d0(p)) ≤ Ψ̃′(d0(p))

2d0(p)
(d2

0(p · h)− d2
0(p)) +

C(Ω)

2
|h|2.

Similarly we have

Ψ(d0(p · h−1))−Ψ(d0(p)) ≤ Ψ̃′(d0(p))

2d0(p)
(d2

0(p · h−1)− d2
0(p)) +

C(Ω)

2
|h|2.
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Adding them together and apply Theorem 1.1 as well as (3.29), we have

Ψ(d0(p · h)) + Ψ(d0(p · h−1))− 2Ψ(d0(p))

≤ Ψ̃′(d0(p))

2d0(p)
(d2

0(p · h) + d2
0(p · h−1)− 2d2

0(p)) + C(Ω)|h|2

≤ Ψ̃′(d0(p))

2d0(p)
C|h|2 + C(Ω)|h|2 ≤ (C/2 + 1)C(Ω)|h|2,

under the assumption that p ∈ Ω \ {0} and h ∈ H0 such that [p ·h−1, p ·h] ⊂ Ω, where C is the

h-semiconcavity constant of d2
0. This estimate still holds for p = 0, since Ψ̃′(d0(p)) = Ψ̃′(0) = 0

in (3.30). This ends the proof for the case Ψ̃ ∈ C2(R).

For general Ψ̃, it is sufficient to approximate by standard mollification. Take φε(·) =

ε−1φ(·/ε), where φ is an even, nonnegative, smooth function with compact support such that∫
R φdx = 1 and decreasing on [0,+∞). For every ε ∈ (0, 1), we can show that φε∗Ψ̃ is smooth,

even, increasing on [0,+∞), and locally semiconcave with the semiconcavity constant on any

compact set independent of ε ∈ (0, 1). Since φε ∗ Ψ̃ → Ψ̃ locally uniformly as ε → 0, we can

apply the standard stability argument for viscosity solutions to conclude our proof. �

Remark 3.7. Typical examples of the function Ψ satisfying the assumptions of Corollary 3.6

are Ψ(τ) = Cτγ with C > 0 and γ ≥ 2.

While we have proved in Theorem 1.1 that the squared CC distance d2
0 in an ideal Carnot

group is h-semiconcave, it however fails to be an h-semiconvex function even in the Heisenberg

group H, the simplest example of ideal Carnot groups. To see this, we present the following

result, which suggests a corner-like singularity at every nonzero point in the center; see the

green curve in Figure 3. See the forthcoming paper [28] for more discussions about this

property.

Proposition 3.8 ([28], Proposition 2). Let d be the CC distance of the Heisenberg group H
and d0 = d(·, 0) in H. For every p = (0, 0, τ) ∈ H with τ 6= 0, the following holds:

lim
h∈H0\{0},h→0

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p)

|h|
= −4d0(p).(3.31)

In particular,

lim
h∈H0\{0},h→0

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p)

|h|2
= −∞.

Proof. The key to the proof is the expression of the squared CC distance given in (3.27). Since

d2
0 is symmetric with respect to the xy-plane and rotationally symmetric about the z-axis,

without loss of generality, we may assume that h1 > 0, h2 = 0, and z > 0. Moreover, in view

of the 1-homogeneity of the CC distance with respect to the group dilation as shown in (2.6),

it suffices to prove (3.31) for e3 = (0, 0, 1). In fact, for a generic p = (0, 0, τ) = δτ (e3), we have,

as H0 3 h→ 0,

d2
0(p · h) + d2

0(p · h−1)− 2d2
0(p)

|h|
=
τ2

|h|
(
d2

0

(
e3 · δ1/τ (h)

)
+ d2

0

(
e3 · δ1/τ (h)−1

)
− 2d2

0(e3)
)

=
τ

|h̃|

(
d2

0

(
e3 · h̃

)
+ d2

0

(
e3 · h̃−1

)
− 2d2

0(e3)
)
→ −4τd0(e3) = −4d0(p),
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where we applied (3.31) at p = e3 with h̃ = δ1/τ (h) = h/τ .

Let us now prove (3.31) at p = e3. By symmetry, we may further take h = (h1, 0, 0) with

h1 > 0. In this case, we have p · h = (h1, 0, 1) and p · h−1 = (−h1, 0, 1). Our goal is then to

show

lim
h1→0+

1

h1

(
d2

0(h1, 0, 1) + d2
0(−h1, 0, 1)− 2d2

0(0, 0, 1)
)

= −4d0(0, 0, 1).(3.32)

We use the expression of the squared CC distance given by (3.27), which yields

d2
0(0, 0, 1) = 4π, d2

0(h1, 0, 1) = d2
0(−h1, 0, 1) =

(
θ

sin θ

)2

h2
1,

where θ = θ(h1) = µ−1
(

4
h21

)
→ π− as h1 → 0+. The equation for θ also gives

4

h2
1

= µ(θ) =
2θ − sin(2θ)

2 sin2(θ)
,(3.33)

which yields

(3.34)
h1

π − θ
→ 2√

π
, as h1 → 0+.

Then using (3.33), combined with (3.28), we get

d2
0(h1, 0, 1) + d2

0(−h1, 0, 1)− 2d2
0(0, 0, 1)

h1
= 2h1

d2
0(h1, 0, 1)− d2

0(0, 0, 1)

h2
1

= 2h1

[(
θ

sin θ

)2

− πµ(θ)

]
= 2h1

θ(θ − π) + π sin θ cos θ

sin2 θ
.

By (3.34), we can pass to the limit of the relation above as h1 → 0+ to obtain

lim
h1→0+

d2
0(h1, 0, 1) + d2

0(−h1, 0, 1)− 2d2
0(0, 0, 1)

h1
= lim

h1→0+
−2h1(θ + π)

π − θ
= −8

√
π.

Our proof of (3.32) is complete, since −8
√
π = −4d0(0, 0, 1). �

4. Applications to Hamilton-Jacobi equations

In this section, we study h-semiconcavity of the viscosity solutions for a class of time-

dependent Hamilton-Jacobi equations of the form:

(4.35)

{
ut + Φ

(
|∇Hu|) = 0, p ∈ G, t > 0,

u(0, p) = g(p), p ∈ G,

where ut denotes the time derivative of u, ∇Hu is the horizontal gradient in an ideal Carnot

group G, and Φ : [0,+∞) → [0,+∞) is a continuous, convex, non-decreasing function such

that Φ(0) = 0. We assume throughout this section that g ∈ LSC(G), where we recall that

LSC(A) denotes the set of lower semicontinuous functions in a set A. In [19] (see also [32] for

the case of the Heisenberg group) it was proved that, if g ∈ LSC(G) and

(4.36) ∃C > 0 such that g(p) ≥ −C(1 + d0(p)) holds for all p ∈ G,
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then the viscosity solution u ∈ LSC([0,+∞)×G) of the Cauchy problem (4.35) can be obtained

by the (metric) Hopf-Lax formula

u(t, p) = inf
q∈G

[
g(q) + tΦ∗

(
d(p, q)

t

)]
, (t, p) ∈ [0,+∞)×G,(4.37)

where Φ∗ is the Legendre-Fenchel function associated to Φ, that is defined by

(4.38) Φ∗(s) := sup
τ≥0

{
sτ − Φ(τ)}, s ≥ 0.

For the uniqueness, we refer to [17], where comparison principles are proved for the Cauchy

problem with continuous initial data. Using Theorem 1.1, we prove that, under suitable

conditions on Φ∗, for all t > 0, the viscosity solution of problem (4.35) given by (4.37) is

h-semiconcave in space. For the convenience of the reader, we will first show the result in the

easiest case when Φ(s) = s2/2 for s ≥ 0 and then study the case of a more general Φ.

Let us first recall another known result for the Hopf-Lax function.

Lemma 4.1 ([19]). Let G be an ideal Carnot group with CC distance d. Let d0 = d(·, 0) in G.

Assume that g ∈ LSC(G) and satisfies (4.36). Then u ∈ LSC([0,+∞) × G) and there exists

a constant C ′ > 0 such that

u(t, p) ≥ −C ′(1 + d0(p) + t), ∀ p ∈ G, t > 0.(4.39)

Moreover, if g ∈ LSC(G) is bounded, then the infimum in (4.35) is actually a minimum and

it is attained in a CC ball centred at the point p with radius depending only on Φ and t.

Our first result is the following.

Theorem 4.2. Let G be an ideal Carnot group with CC distance d. Let d0 = d(·, 0) in G.

Assume that g ∈ LSC(G) satisfies (4.36). Let Φ(s) = s2/2 for s ≥ 0 and u be defined as in

(4.37). Then u(t, ·) is h-semiconcave in G, for every t > 0.

Proof. Since d(p, q) = d(q−1 · p, 0) = d0(q−1 · p) holds for all p, q ∈ G, given the choice

Φ(s) = s2/2 for s ≥ 0, we have Φ∗(s) = s2/2 by (4.38) and the function u in (4.37) reduces to

u(t, p) = inf
q∈G

{
g(q) +

d2
0(q−1 · p)

2t

}
, (t, p) ∈ [0,+∞)×G.

By Theorem 1.1, for every q ∈ G and t > 0, the function

p 7→ g(q) +
d2

0(q−1 · p)
2t

is h-semiconcave with h-semiconcavity constant C/(2t), where C > 0 is the h-semiconcavity

constant of d2
0. In view of (4.39), we have u(t, p) > −∞ for any t > 0 and p ∈ G. Then the

h-semiconcavity of u(t, ·) in G follows from Proposition 2.19. �

Remark 4.3. Theorem 4.2 implies that u(t, ·) defined by (4.37) is also locally Lipschitz con-

tinuous with respect to the CC distance, which in turn yields a local Hölder continuity with

respect to the Euclidean distance.

We next generalize the previous result for more general Hamilton-Jacobi equations but under

additional boundedness assumption on g and locally strong convexity of the Hamiltonian. Here
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we say that a function f is locally strongly convex in an open set Ω ⊂ Rn if for every compact

convex set K ⊂ R, there exists a constant C(K) > 0 such that

λf(x) + (1− λ)f(y)− f(λx+ (1− λ)y) ≥ λ(1− λ)C(K)|x− y|2, ∀x, y ∈ K,λ ∈ [0, 1].

Theorem 4.4. Let G be an ideal Carnot group with CC distance d. Assume that g ∈ LSC(G)

is bounded. Let Φ : [0,+∞)→ [0,+∞) be a continuous, convex, non-decreasing function with

Φ(0) = 0. Assume in addition that Φ is coercive in the sense that

(4.40)
Φ(τ)

τ
→ +∞ as τ → +∞,

and the even extension Φ̃ : R → [0,+∞) of Φ is locally strongly convex in R. Let u be the

viscosity solution of (4.35) defined as in (4.37). Then, u(t, ·) is h-semiconcave in G for every

t > 0.

Proof. It is well known that the Legendre-Fenchel transform of a coercive, strongly convex

function is semiconcave in R; see for example [21, Lemma 4 in Chapter 3.4]. Using (4.40),

one can localize this property to prove the Legendre-Fenchel transform of a coercive, locally

strongly convex function is locally semiconcave in R. Since Φ̃ is locally strongly convex in R,

we thus obtain the local semiconcavity of (Φ̃)∗ in R.

On the other hand, as Ψ = Φ∗ in [0,+∞), we have (Φ̃)∗
∣∣
[0,+∞)

= Ψ under current assump-

tions on Φ; in other words, Ψ has a semiconcave even extension in R. Now applying Corollary

3.6 with Ψ = Φ∗, we obtain the local h-semiconcavity of Φ∗(d0), that is Φ∗(d0) is h-semiconcave

in any bounded open set Ω ⊂ G.

Let us fix t > 0 arbitrarily. For any p ∈ G, we can use the boundedness of g to deduce that

g(q) + tΦ∗
(
d0(q−1 · p)

t

)
→ +∞ as d0(q)→ +∞.

By (4.37), it then follows that there exists q̂ ∈ G depending on p such that

u(t, p) = g(q̂) + tΦ∗
(
d0(q̂−1 · p)

t

)
≤ g(p),

which yields

tΦ∗
(
d0(q̂−1 · p)

t

)
≤ g(p)− g(q̂).

Applying the boundedness of g again, we are led to d0(q̂−1 ·p) < M for some M > 0 depending

on Φ, t but independent of p, q̂. In other words, for every fixed t > 0 and p ∈ G, we have

(4.41) u(t, p) = inf
Ω

{
g(q) + tΦ∗

(
d0(q−1 · p)

t

)}
,

for any open set Ω ⊂ G satisfying BCC(p,M) ⊂ Ω.

By the local h-semiconcavity of Φ∗(d0), for any p0 ∈ G, we see that

p 7→ g(q) + tΦ∗
(
d0(q−1 · p)

t

)
is h-semiconcave in BCC(p0, 1) for all q ∈ BCC(p0,M + 1) with h-semiconcavity constant

depending on M . In view of Proposition 2.19, we obtain the h-semiconcavity of u(t, ·) in
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BCC(p0, 1) with the same h-semiconcavity constant by taking infimum of the function above

over q ∈ BCC(p0,M + 1) and noticing that

u(t, ·) = inf
q∈BCC(p0,M+1)

{
g(q) + tΦ∗

(
d0(q−1 · p)

t

)}
,

thanks to (4.41) with Ω = BCC(p0,M + 1) ⊃ BCC(p,M).

Since the h-semiconcavity constant of u(t, ·) in BCC(p0, 1) is independent of p0 ∈ G, we thus

obtain the h-semiconcavity of u(t, ·) in G. �

Our h-semiconcavity result above can be applied to some particular Hamilton-Jacobi equa-

tions such as

ut +
1

α
|∇Hu|α = 0 in (0,+∞)×G,

with a bounded initial value g ∈ LSC(G) and 1 < α ≤ 2. The case α = 1 is not covered by

Theorem 4.4, but if g ∈ LSC(G) is assumed to be bounded and h-semiconcave in G, then we

have preservation of the spatial h-semiconcavity of the viscosity solution given by the optimal

control formula

u(t, p) = inf
q∈BCC(p,t)

g(q), t > 0, p ∈ G.

The proof is simply a straightforward application of Proposition 2.19.

It is not our intention to study in detail stationary PDE problems in this paper, but one

possible simple application of Theorem 1.1 in this direction is for the eikonal equation

(4.42) |∇Hu| = 1 in Ω,

where Ω ⊂ G is a given open set. Let S = G \Ω, we define the CC distance from the set S by

dS(p) := min
q∈S

d(p, q) = min
q∈S

d0(q−1 · p).

Note that dS is continuous, and when S = {0}, dS = d0, which is exactly the CC distance from

the group identity. It is well known that u = dS is a viscosity solution of (4.42) satisfying the

boundary condition u = 0 on ∂Ω. We can use Theorem 1.1 to prove easily that its square is

h-semiconcave in Ω.

Proposition 4.5. Let S ⊂ G be a nonempty closed set on an ideal Carnot group G. Then d2
S

is an h-semiconcave function in G \ S.

Proof. Observe that

d2
S(p) = min

q∈S
d2(p, q) = min

q∈S
d2

0(q−1 · p),

and for every q ∈ S, the function p 7→ d2
0(q−1 · p) is h-semiconcave with h-semiconcavity

constant the same as the one of d2
0. As a result, the proof follows from Proposition 2.19. �
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