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Abstract

We give a Γ-convergence result for vector-valued nonlinear energies defined on peri-
odically perforated domains. We consider integrands with p-growth for p converg-
ing to the space dimension n. We prove that for p close to the critical exponent n
there are three regimes, two with a non-trivial size of the perforations (exponential
and mixed polynomial-exponential) and one where the Γ-limit is always trivial.
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1 Introduction

Variational problems on perforated domains can be considered the prototype of the
class of problems on varying domains. This is a very much studied class of problems
and shows interesting implications in homogenization and shape optimization problems
(see [1], [8]). A perforated domain is obtained from a fixed Ω by removing some periodic
set, the simplest of which is a periodic array of closed sets:

Ωδ = Ω \
⋃

i∈Zn

(δi+ εK), (1)

with ε = ε(δ) and K a bounded closed set with non empty interior. We are interested
in the study of problems in which we fix Dirichlet boundary conditions on Ωδ (or on the
boundary of Ωδ interior to Ω). The asymptotic behaviour of such problems is obtained
by studying the Γ-convergence of the functionals

Fδ(u) =


∫

Ω
f(Du) dx if u ∈W 1,p

0 (Ω; Rm) and u = 0 on Ω \ Ωδ,

+∞ otherwise,
(2)

where f is an energy density satisfying a growth condition of order p > 1.
From early results by Marchenko and Khruslov [14] we know that in the case

f(Du) = |Du|p there is a particular choice for the scaling of the perforations which
produces the appearance in the Γ-limit of an extra term replacing the internal bound-
ary conditions. The limit functional, indeed, is given by

F0(u) =
∫

Ω
|Du|p dx+ κp

∫
Ω
|u|p dx,



where κp is a positive constant, explicitly calculable. This result was recast in a rigorous
variational setting by Cioranescu and Murat [10], who provided an explicit formula for
the critical choice of ε according to the space dimension n:

ε = Rδn/n−p if p < n, with R > 0,

ε = exp(−aδ
−n
n−1 ) if p = n, with a > 0.

In [2] Ansini and Braides performed a complete analysis in the vector-valued case of
the Γ-convergence result for energies with a general integrand f with p-growth, in the
case p < n. In their setting the form of the extra term is

∫
Ω ϕ(u) dx, where the function

ϕ is given by a capacitary formula. The case n = p, leading to the exponential scaling,
was studied in details in [15]; in this case the limit extra term is characterized by a
formula of homogenization type.

In this paper we will consider the dependence of the energies in (2) on varying p,
in order to better understand the behaviour at the critical scaling and to overcome
the discontinuity in the description of the asymptotic analysis at p = n. Since we
are interested in a scale analysis we will consider integral functionals on periodically
perforated domains (1) in which f(Du) = |Du|p to avoid the technicalities of more
general f (for which we refer to [15]). We will see that the behaviour as δ → 0 and
p→ n gives rise to three possible regimes:

• if n−p = γδ
n

n−1 + o(δ
n

n−1 ) with γ ∈ R then the critical radius is exponential; i.e.,
ε = exp

(
− aδ

−n
n−1

)
with a > 0;

• if n− p > 0 and n− p� δ
n

n−1 then the critical size of the perforation is given by
an interpolation of polynomial and exponential terms: ε = R

1
n−p δ

n
n−p (n− p)

1−n
n−p ,

with R > 0;

• if n − p < 0 and p − n � δ
n

n−1 , then the limit is finite (and null) only on the
constant function zero: this situation will be referred to as rigid regime.

2 The three regimes - Heuristics

In all that follows n > 1 and m ≥ 1 are fixed integers. If E ⊂ Rn is a Lebesgue-
measurable set then |E| is its Lebesgue measure. Br(x) is the open ball in Rn of centre
x and radius r; if x = 0 we will write Br in place of Br(0). The letter c denotes a
generic strictly positive constant.

Let Ω be a fixed bounded open subset of Rn with |∂Ω| = 0. Let K ⊂ Rn be a
bounded closed set with non-empty interior. Let (δj), (εj) be two sequences of positive
real numbers converging to zero. For all i ∈ Zn and j ∈ N we denote by xj

i the vector
iδj ∈ δjZn ⊂ Rn. Let Ωj be the periodically perforated domain

Ωj = Ω \
⋃

i∈Zn

(xj
i + εjK). (3)

Let (ηj) be an infinitesimal sequence of real numbers. Let pj = n− ηj . We want to
find the critical scaling εj = εj(δj , ηj) for the perforations; i.e., the one which gives a
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non-trivial Γ-convergence result for the functionals

Fj(u) =


∫

Ω
|Du|pj dx if u ∈W 1,pj (Ω; Rm) and u = 0 on Ω \ Ωj ,

+∞ otherwise.

In other words, taking into account the n-homogeneity properties of Fj , we look for the
critical (εj) such that the family (Fj) Γ-converges to a functional F0 of the form

F0(u) =
∫

Ω
|Du|n dx+ κ

∫
Ω
|u|n dx for u ∈W 1,n(Ω; Rm), (4)

where κ is a positive constant that we want to calculate explicitly. As is customary,
not to overburden the notation all our functionals will be understood to take the value
+∞ where not explicitly defined.

In this paper we will show that the critical scaling and the expression of the extra
term in the Γ-limit are determined by the behaviour of the sequence (ηj) with respect
to (δj), as j → +∞. The three regimes we mentioned in the Introduction emerge
from the analysis of the asymptotic behaviour of a family of minimum problems which
play a fundamental role in the computation of the Γ-limit. Indeed, the proof of the
Γ-convergence result relies on a general argument by Ansini and Braides [2], which
allows to reduce the computation of the extra term to an estimate along converging
sequences close to the perforations. In order to give a heuristic idea of the crucial
lemma in [2], we consider the case K = B1 and a sequence uj → u. The technical
argument of the lemma (which is based on De Giorgi’s method for matching boundary
conditions) allows to make the assumption that the energy ‘far from the perforations’
gives a term which can be dealt with separately and produces the first integral in (4).
Moreover, the lemma enables to treat each perforation Bεj (x

j
i ) separately. Suppose

that u is continuous; since uj → u we can assume that uj is close to the limit value
u(xj

i ) close to Bεj (x
j
i ). In particular the lemma in [2] shows that we may suppose

uj = u(xj
i ) on the boundary of some small ball Bcδj

(xj
i ) containing Bεj (x

j
i ). In our

case, after a translation and a scaling argument, we get:∫
Bcδj

(xj
i )
|Duj |pj dx ≥ inf

{∫
Bcδj

|Dv|pj dx : v = 0 on Bεj , v = u(xj
i ) on ∂Bcδj

}
≥ ε

ηj

j inf
{∫

Bcδj/εj

|Dv|pj dx : v = 0 on B1, v = u(xj
i ) on ∂Bcδj/εj

}
= |u(xj

i )|
pjε

ηj

j inf
{∫

Bcδj/εj

|Dv|pj dx : v = 0 on B1, v =
u(xj

i )

|u(xj
i )|

on ∂Bcδj/εj

}
.

If we sum over the perforations, we obtain∑
i

∫
Bcδj

(xj
i )
|Duj |pj dx

≥
∑

i

|u(xj
i )|

pjε
ηj

j inf
{∫

Bcδj/εj

|Dv|pj dx : v = 0 on B1, v =
u(xj

i )

|u(xj
i )|

on ∂Bcδj/εj

}
.
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We want εj to be such that the following quantity is a Riemann sum:

∑
i

δn
j |u(x

j
i )|

pj
ε
ηj

j

δn
j

inf
{∫

Bcδj/εj

|Dv|pj dx : v = 0 on B1, v =
u(xj

i )

|u(xj
i )|

on ∂Bcδj/εj

}
.

(5)
If there exists κ ∈ R+ such that

ε
ηj

j

δn
j

inf
{∫

Bcδj/εj

|Dv|pj dx : v = 0 on B1, v =
u(xj

i )

|u(xj
i )|

on ∂Bcδj/εj

}
−→ κ, (6)

then (5) is a Riemann sum converging to the extra term

κ

∫
Ω
|u|n dx (7)

as j → +∞. The argument above will be made rigorous in the following sections.
Our first step consists in the asymptotic analysis of the scaled minimum problems

(6). We fix a vector ν ∈ Rm such that |ν| = 1; we will see that the limit is independent
of the choice of ν. We want to study

lim
j
δ−n
j inf

{∫
Bcδj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bcδj
; Rm), v = 0 on Bεj

}
(8)

= lim
j

ε
ηj

j

δn
j

inf
{∫

Bcδj/εj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bcδj/εj
; Rm), v = 0 on B1

}
(9)

where c is a positive constant.
For any unit vector ν ∈ Rm the infimum

inf
{∫

Bcδj/εj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bcδj/εj
; Rm), v = 0 on B1

}
(10)

equals

mc
j := inf

{∫
Bcδj/εj

|Dv|pj dx : v ∈ 1 +W
1,pj

0 (Bcδj/εj
; R), v = 0 on B1

}
, (11)

where the inf is taken among scalar functions. To check this, we first note that up to
rotations it is not restrictive to assume that ν = e1 = (1, 0, . . . , 0). On the one hand we
can identify each test function v for (11) with a vector-valued test function ṽ for (10)
by setting ṽ = ve1, hence we deduce that

inf
{∫

Bcδj/εj

|Dv|pj dx : v ∈ e1 +W
1,pj

0 (Bcδj/εj
; Rm), v = 0 on B1

}
≤ inf

{∫
Bcδj/εj

|Dv|pj dx : v ∈ 1 +W
1,pj

0 (Bcδj/εj
; R), v = 0 on B1

}
.

On the other hand, we note that if ν = e1 in (10), then the minimum must be reached
by a function of the form ṽ = (ṽ1, 0, . . . , 0) (if ṽ has non-zero components ṽj for j 6= 1
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then the energy increases). Taking ṽ1 ∈ 1 + W
1,pj

0 (Bcδj/εj
; R) as a test function for

(11), we get

inf
{∫

Bcδj/εj

|Dv|pj dx : v ∈ 1 +W
1,pj

0 (Bcδj/εj
; R), v = 0 on B1

}
≤ inf

{∫
Bcδj/εj

|Dv|pj dx : v ∈ e1 +W
1,pj

0 (Bcδj/εj
; Rm), v = 0 on B1

}
.

Therefore we can restrict our attention to the scalar problem (11) and note that by
simmetry reasons the minimum is reached by a radial function v(x) = w(|x|). Now,
w : R+ → R satisfies the Euler equation

∂

∂ρ

(
|w′(ρ)|pj−2ρn−1w′(ρ)

)
= 0

and the constraints
w(1) = 0, w(cδj/εj) = 1. (12)

With no loss of generality we can assume that w′(ρ) ≥ 0 and we find

w(ρ) = ρ
−ηj
pj−1

(( εj
cδj

) ηj
pj−1 − 1

)−1
+

(
1−

( εj
cδj

) ηj
pj−1

)−1
.

The minimum in (11) then is computed as

mc
j = ωn−1

∫ cδj/εj

1
|w′(ρ)|pjρn−1 dρ

= ωn−1

∫ cδj/εj

1

∣∣∣∣∣1− ( εj
cδj

) ηj
pj−1

∣∣∣∣∣
1−pj |ηj |pj−1

(pj − 1)pj−1

(
ρ

−ηj
pj−1

−1
)pj

ρn−1 dρ

= ωn−1
|ηj |pj−1

(pj − 1)pj−1

∣∣∣∣∣1− ( εj
cδj

) ηj
pj−1

∣∣∣∣∣
1−pj

. (13)

In conclusion the limit in (9) equals

lim
j→∞

ωn−1

(pj − 1)pj−1 ε
ηj

j δ
−n
j |ηj |pj−1

∣∣∣∣∣1− ( εj
cδj

) ηj
pj−1

∣∣∣∣∣
1−pj

. (14)

Remark. It is easily seen that the limit

lim
j
ε
ηj

j δ
−n
j mc

j

is independent of the constant c. Hence it is not restrictive to perform the asymptotic
analysis having fixed c = 1. To this end we denote by mj the infimum m1

j ; i.e.,

mj = inf
{∫

Bδj/εj

|Dv|pj dx : v ∈ 1 +W
1,pj

0 (Bδj/εj
), v = 0 on B1

}
= inf

{∫
Bδj/εj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bδj/εj
; Rm), v = 0 on B1

}
.
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We know that

mj = ωn−1
|ηj |pj−1

(pj − 1)pj−1

∣∣∣∣∣1− (εj
δj

) ηj
pj−1

∣∣∣∣∣
1−pj

. (15)

We recall that if n = p ; i.e., ηj ≡ 0, the critical scaling for the perforations is
exponential (see [15] for the details). We expect the exponential scaling to be the
critical one also in the case that the sequence (ηj) is ‘not too far’ from zero: in fact we

will find that if |ηj | ≈ δ
n

n−1

j or |ηj | � δ
n

n−1

j then the choice εj = exp
(
−aδ−n/n−1

j

)
gives

an extra term of the form (7) in the Γ-limit.
Afterwards, we will consider ηj > 0 such that ηj � δ

n/n−1
j . Our ansatz is that in

(15) the factor (
1−

(εj
δj

) ηj
pj−1

)1−pj

converges to some positive constant, hence we can restrict our attention to

lim
j→∞

ωn−1

(pj − 1)pj−1 ε
ηj

j δ
−n
j |ηj |pj−1.

We expect the critical scaling to be εj w δ
n/ηj

j η
θ/ηj

j for some θ > 0; an explicit calcula-
tion will prove that our assumptions are correct.

Finally, we will deal with ηj < 0 and |ηj | � δ
n

n−1

j . In this case any choice of (εj)
gives the result we would get if ηj ≡ c < 0: the Γ-limit is finite (and null) only on the
constant function u ≡ 0. In this case the compact embedding into continuous functions
prevails over the convergence of pj → n+.

(1) Exponential regime. Consider the case in which

ηj = γδ
n

n−1

j + o(δ
n

n−1

j ) (16)

with γ ∈ R. We will show that if we take

εj = exp
(
− aδ

−n
n−1

j

)
,

where a > 0 is a fixed constant, then the limit in (9) is finite.
In fact, if γ ∈ R \ {0} we get

lim
j

ε
ηj

j mj

δn
j

= lim
j
ε
ηj

j ωn−1
1

(pj − 1)pj−1

1
|ηj |ηj

|ηj |n−1δ−n
j

∣∣∣∣∣1− (εj
δj

) ηj
pj−1

∣∣∣∣∣
1−pj

=
ωn−1

(n− 1)(n−1)
e−aγ lim

j

( |ηj |

δ
n

n−1

j

)n−1

∣∣∣∣∣∣∣1−
exp

(
− aδ

− n
n−1

j
ηj

pj−1

)
δ

ηj
pj−1

j

∣∣∣∣∣∣∣
1−pj

=
ωn−1

(n− 1)(n−1)
e−aγ

∣∣∣∣∣1− e−
aγ

n−1

γ

∣∣∣∣∣
1−n

=: α(γ). (17)

If γ = 0 we have

lim
j

ε
ηj

j mj

δn
j

=
ωn−1

(n− 1)n−1

a1−n

(n− 1)1−n
=
ωn−1

an−1
=: α(0). (18)
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Note that α(0) equals the limit we get in the case η ≡ 0; note moreover that

lim
γ→0

α(γ) = α(0).

(2) Mixed polynomial-exponential regime. In the case that ηj > 0 and

ηj � δ
n

n−1

j ,

then the critical scaling is

εj = R
1

ηj δ
n
ηj

j η
−n−1

ηj

j ,

with R > 0 fixed. The computation of the limit gives

lim
j

ε
ηj

j mj

δn
j

= lim
j

ωn−1

(pj − 1)pj−1Rδ
n
j η

−n+1
j δ−n

j η
pj−1
j

1−
R

1
pj−1 δ

n
pj−1

j η
1−n
pj−1

j

δ

ηj
pj−1

j


1−pj

.

Since

lim
j

R
1

pj−1 δ
n

pj−1

j η
1−n
pj−1

j

δ

ηj
pj−1

j

= 0

we have

lim
j

ε
ηj

j mj

δn
j

= Rωn−1 lim
j

η
−ηj

j

(pj − 1)pj−1 = R
ωn−1

(n− 1)n−1
.

(3) Rigid regime. Finally, we suppose that ηj < 0 and

|ηj | � δ
n

n−1

j .

In this case we will see that for any choice of (εj) the functionals (Fj) Γ-converge to
the functional F∞ : W 1,n(Ω; Rm) → [0,+∞] given by

F∞(u) =
{

0 if u ≡ 0,
+∞ otherwise.

3 Statement of the main result

The main result of this paper will be stated in Theorem 3.1.

Theorem 3.1 Let m,n ∈ N with n ≥ 2, m ≥ 1. Let Ω be a bounded open subset of
Rn with |∂Ω| = 0. Let K ⊂ Rn be a bounded closed set with non-empty interior. Let
(δj) be a sequence of positive numbers converging to zero; let (ηj) be an infinitesimal
sequence of numbers; we set pj = n− ηj. Let (εj) be a non-negative sequence such that
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εj ≤ δj/2. For all i ∈ Zn and j ∈ N, xj
i indicates the vector xj

i = iδj ∈ δjZn ⊂ Rn. Let
K

δj

i = xj
i + εjK. For all j ∈ N we denote by Ωj the periodically perforated domain

Ωj = Ω \
⋃

i∈Zn

K
δj

i . (19)

Consider the functionals Fj : W 1,pj (Ω; Rm) → [0,+∞] defined by

Fj(u) =


∫

Ω
|Du|pj dx if u = 0 on Ω \ Ωj ,

+∞ otherwise.
(20)

Let (εj) = εj(δj , ηj) be defined as follows:

(1) exponential regime: if ηj = γδ
n

n−1

j + o(δ
n

n−1

j ), γ ∈ R, then εj = exp(−aδ
−n
n−1

j ),
with a > 0;

(2) mixed polynomial-exponential regime: if ηj > 0 and ηj � δ
n

n−1

j , then εj =

R
1

ηj δ
n
ηj

j η
1−n
ηj

j , with R > 0.

Let κ be the positive constant defined by

(1) exponential regime: if ηj = γδ
n

n−1

j + o(δ
n

n−1

j ) with γ ∈ R, then

κ =
ωn−1

(n− 1)(n−1)
e−aγ

∣∣∣∣∣1− e−
aγ

n−1

γ

∣∣∣∣∣
1−n

if γ 6= 0,

and κ is extended by continuity to the case γ = 0; i.e. κ = ωn−1

(n−1)n−1 ;

(2) mixed polynomial-exponential regime: if ηj > 0 and ηj � δ
n

n−1

j , then

κ = R
ωn−1

(n− 1)n−1
.

Then the functionals (Fj) defined as in (20) Γ-converge (with respect to the strong
convergence of L1(Ω; Rm)) to the functional F : W 1,n(Ω; Rm) → [0,+∞] given by

F (u) =
∫

Ω
|Du|n dx+ κ

∫
Ω
|u|n dx. (21)

Moreover,

(3) rigid regime: if ηj < 0 and |ηj | � δ
n

n−1

j and (εj) is a generic sequence satisfying
0 ≤ εj ≤ δj/2,

then the functionals (Fj) defined as in (20) Γ-converge (with respect to the strong con-
vergence of L1(Ω; Rm)) to the functional F∞ : W 1,n(Ω; Rm) → [0,+∞] given by

F∞(u) =
{

0 if u ≡ 0,
+∞ otherwise.

(22)
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Corollary 3.2 (Convergence of minimum problems) Let (Fj) be a family of func-
tionals of the form (20), and let F = Γ-limj Fj. Then for all φ ∈ Lq(Ω; Rm), with
q > n

n−1 , the minimum values

µj = inf
{
Fj(u) + 〈φ, u〉 : u ∈W 1,pj

0 (Ω; Rm)
}

converge to
µ = min

{
F (u) + 〈φ, u〉 : u ∈W 1,n

0 (Ω; Rm)
}
.

Moreover, if (uj) is such that Fj(uj) + 〈φ, u〉 = µj + o(1) as j → ∞, then it admits a
subsequence converging in L1(Ω; Rm) to a solution of the problem defining µ.

Theorem 3.1 will be proved in Sections 5 and 6.

Remark. We can rephrase the result in terms of equivalence by Γ-convergence following
the terminology introduced by Braides and Truskinovsky in [7].

Definition 3.3 (Equivalence by Γ-convergence) Let (Fε), (Gε) be two families of
functionals. We say that (Fε) and (Gε) are equivalent by Γ-convergence if and only if
for each sequence (εj) there exists a subsequence (εjk

) such that

Γ- lim
k
Fεjk

= Γ- lim
k
Gεjk

and these limits are non-trivial; i.e., they are not identically equal to +∞ and they do
not assume the value −∞.

In [2] Ansini and Braides dealt with the Γ-convergence of functionals onW 1,p(Ω; Rm)
of the form

Fj(u) =


∫

Ω
f(Du) dx if u = 0 on

⋃
i∈Zn

K
δj

i ∩ Ω,

+∞ otherwise,
(23)

with fixed p < n and f a quasiconvex function satisfying a growth condition of order

p. They proved that, under general assumptions, the choice εj = δ
n

n−p

j guarantees the
Γ-convergence of Fj to a functional F : W 1,p(Ω; Rm) → [0,+∞] of the form

F(u) =
∫

Ω
f(Du) dx+

∫
Ω
ϕ(u) dx,

where ϕ : Rm → [0,+∞) is given by a capacitary formula. This result can be re-
formulated as follows: the family (Fj) is equivalent to the functionals Gj : W 1,p(Ω; Rm) →
[0,+∞] defined by

Gj(u) =
∫

Ω
f(Du) dx+

εn−p
j

δn
j

∫
Ω
ϕ(u) dx,

with respect to Lp(Ω; Rm)-convergence.
A similar argument can be applied to the case in which Fj are defined as in (23)

but p equals n, which was developed in [15]. In this case (Fj) are equivalent to the
functionals Gj given by

Gj(u) =
∫

Ω
f(Du) dx+

| log εj |1−n

δn
j

∫
Ω
ϕ(u) dx

9



with respect to Ln(Ω; Rm)-convergence.
In the case we deal with in this paper, the statement of Theorem 3.1, taking into

account (13) and (15), implies that the functionals Fj : W 1,pj (Ω; Rm) → [0,+∞] in
(20) are equivalent to the family (Gj) defined by

Gj(u) =
∫

Ω
|Du|n dx+

ωn−1

(pj − 1)pj−1 ε
ηj

j δ
−n
j |ηj |pj−1

∣∣∣1− (εj
δj

) ηj
pj−1

∣∣∣1−pj
∫

Ω
|u|n dx

with respect to L1(Ω; Rm)-convergence.

4 Preliminary results

4.1 A lemma for varying domains

In this section we recall a technical Lemma by Ansini and Braides (see [2]) which allows
to modify sequences of functions close to the perforations.

Lemma 4.1 Let (uj) converge strongly to u in L1(Ω; Rm); let supj Fj(uj) < ∞. Let
(ρj) be a positive sequence of the form ρj = cδj, where c < 1

2 . For all j ∈ N we define

Zj =
{
i ∈ Zn : dist

(
xj

i ,R
n \ Ω

)
> δj

}
.

We fix k ∈ N. Then, for all i ∈ Zj there exists ki ∈ {0, 1, . . . , k − 1} such that, having
set

Cj
i =

{
x ∈ Ω :

1
2ki+1

ρj < |x− xj
i | <

1
2ki

ρj

}
, (24)

ui
j = |Cj

i |
−1

∫
Cj

i

uj dx, ρi
j =

3
4
2−kiρj ,

there exists a sequence (wj), with wj → u in L1(Ω; Rm) such that

wj = uj on Ω \
⋃

i∈Zj

Cj
i , (25)

wj(x) = ui
j if |x− xj

i | = ρi
j , (26)

and
∫

Ω

∣∣|Dwj |pj − |Duj |pj
∣∣ dx ≤ c

k
. (27)

Moreover, if
(
|Duj |pj

)
is equi-integrable, then we can choose ki = 0 for all i ∈ Zj.

Proof. In [2] Ansini and Braides dealt with integral functionals in which the integrands
satisfy a growth condition of order p (p fixed). Neverthless, the proof of Lemma [2, 3.1]
can be repeated word for word; we only need to notice that the constant which appears
in the estimate of the gradients (now depending on pj) is equi-bounded.

4.2 A discretization argument

The extra term of the Γ-limit can be obtained through a discretization argument, as
explained in the following proposition.
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Proposition 4.2 Let (uj) be a bounded sequence in L∞(Ω; Rm) such that supj Fj(uj) <
∞. We assume that uj → u in L1(Ω; Rm). Let (ρj) be a positive sequence of the form
ρj = cδj, where c < 1/2. We fix k ∈ N; for all i ∈ Zj we consider an annuli Cj

i of the
form (24) for an arbitrary choice of ki ∈ {0, 1, . . . , k − 1}. We denote by ui

j the mean

value of uj on Cj
i and by Qj

i the cube Qj
i = xj

i +
(
− δj

2 ,
δj

2

)n
; let ψj be defined as

ψj =
∑
i∈Zj

|ui
j |pjχ

Qj
i
. (28)

Then
lim

j→∞

∫
Ω
|ψj − |u|n| dx = 0. (29)

Proof. Since uj → u in L1(Ω; Rm), the limit in (29) equals the limits

lim
j

∫
Ω
|ψj − |uj |pj | dx = lim

j

∫
Ω
|
∑
i∈Zj

|ui
j |pjχ

Qj
i
− |uj |pj | dx

= lim
j

∑
i∈Zj

∫
Qj

i

||ui
j |pj − |uj |pj | dx.

We use the Lipschitz condition

||ui
j |pj − |uj |pj | ≤ c|ui

j − uj |
(
|ui

j |pj−1 + |uj |pj−1
)

and Hölder’s inequality to get∫
Qj

i

||ui
j |pj − |uj |pj | dx ≤ c

(
sup

j
‖uj‖

pj−1
∞

) ∫
Qj

i

|uj − ui
j | dx

≤ cδ
n(pj−1)/pj

j

( ∫
Qj

i

|uj − ui
j |pj dx

) 1
pj .

We want to estimate the last integral with a quantity independent of i; to this end we
apply Poincaré-Wirtinger’s inequality in the following form:

Let A ⊂ Rn be an open bounded connected set and let B be an open subset of A. Let
ρ > 0 be fixed. Let (pj) be a real sequence converging to n as j → +∞. Then there
exists a constant C = C(n,A,B) such that for all v ∈W 1,pj (ρA; Rm) we have( ∫

ρA

∣∣∣∣v − 1
|ρB|

∫
ρB
v

∣∣∣∣pj

dx
)1/pj

≤ ρC
( ∫

ρA
|Dv|pj dx

)1/pj

.

We fix j ∈ N; for all i ∈ Zj there exists a positive constant α = α(n,Cj
i ) (independent

of the exponent pj) such that( ∫
Qj

i

|ui
j − uj |pj dx

) 1
pj ≤ αδj

( ∫
Qj

i

|Duj |pj dx
) 1

pj .

11



Note that α depends on Cj
i and hence on the choice of ki ∈ {0, 1, . . . , k− 1}; under our

assumptions the family of homothetic annuli {Cj
i } is finite (for fixed j ∈ N), hence we

can define α′ = α′(n) := maxα(n,Cj
i ). In conclusion there exists α′ > 0 such that( ∫

Qj
i

|uj − ui
j |pj dx

) 1
pj ≤ α′δj

( ∫
Qj

i

|Duj |pj dx
) 1

pj .

Now,

lim
j

∑
i∈Zj

∫
Qj

i

||ui
j |pj − |uj |pj | dx ≤ lim

j

∑
i∈Zj

cδ
n(pj−1)/pj

j

( ∫
Qj

i

|uj − ui
j |pj dx

) 1
pj

≤ lim
j
cδ

n(pj−1)/pj

j δj
∑
i∈Zj

( ∫
Qj

i

|Duj |pj dx
) 1

pj .

For all j ∈ N the function y 7→ y
1

pj is concave; in particular, if {t1, . . . , tN} ⊂ R+ are
such that

∑
i ti = 1 and {y1, . . . , yN} ⊂ R+, then

∑
i

ti(yi)
1

pj ≤
( ∑

i

tiyi

) 1
pj .

Therefore ∑
i∈Zj

1
#Zj

( ∫
Qj

i

|Duj |pj dx
) 1

pj ≤
( ∑

i∈Zj

1
#Zj

∫
Qj

i

|Duj |pj dx
) 1

pj

≤
( 1

#Zj

) 1
pj

( ∫
Ω
|Duj |pj dx

) 1
pj .

Since #Zj ' |Ω|/δn
j , we have #Z(1−1/pj)

j δ
n(1−1/pj)
j ≤ c, then

lim
j

∑
i∈Zj

∫
Qj

i

||ui
j |pj − |uj |pj | dx ≤ c lim

j
δ
n(pj−1)/pj

j #Zj
1

(#Zj)1/pj

( ∫
Ω
|Duj |pj dx

) 1
pj

≤ c lim
j
δj = 0.

In conclusion
lim

j

∫
Ω
|ψj − |u|n| dx = 0.

5 Non-degenerate regimes

In this Section we will prove the Γ-convergence result for the exponential and the
mixed polynomial-exponential regimes; in what follows (εj) and κ are defined as in the
statement of Theorem 3.1. We will first consider the case K = B1, the closure of the
unit ball, and then conclude that the results are indeed independent of the form of K,
provided it has a non-empty interior.
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5.1 Liminf inequality - Spherical perforations

In the case of fixed p, the first term in the limit functional (21) can be dealt with by
a simple lower-semicontinuity argument. In our case, with varying pj , we note that if
uj → u in L1(Ω; Rm) then∫

Ω
|Du|n dx ≤ lim inf

j

∫
Ω
|Duj |pj dx. (30)

In fact, let p < n be fixed. By Hölder’s inequality we have∫
Ω
|Du|p dx ≤ lim inf

j

∫
Ω
|Duj |p dx ≤ lim inf

j

( ∫
Ω
|Duj |pj dx

)p/pj

|Ω|1−p/pj

≤ lim inf
j

( ∫
Ω
|Duj |pj dx

)p/n
|Ω|1−p/n.

If we evaluate the liminf for p→ n− we get

lim inf
p→n−

∫
Ω
|Du|p dx ≤ lim inf

p→n−

(
lim inf

j

∫
Ω
|Duj |pj dx

)p/n
|Ω|1−p/n

= lim inf
j

∫
Ω
|Duj |pj dx.

Fatou’s Lemma implies that

lim inf
p→n−

∫
Ω
|Du|p dx ≥

∫
Ω

lim inf
p→n−

|Du|p dx =
∫

Ω
|Du|n dx.

In conclusion we get (30):∫
Ω
|Du|n dx ≤ lim inf

p→n−

∫
Ω
|Du|p dx ≤ lim inf

j

∫
Ω
|Duj |pj dx.

We are now ready to prove the liminf inequality by focusing on the effect of
the perforations. Let u ∈ W 1,n(Ω; Rm) and let uj → u in L1(Ω; Rm) be such that
supj Fj(uj) < ∞ (note that for all p < n the functions (uj) are equi-bounded in
W 1,p(Ω; Rm) and hence uj ⇀ u in W 1,p(Ω; Rm)). We denote by (ρj) a sequence of the
form ρj = cδj , with c < 1/2.

Proposition 5.1 (Liminf inequality) The following inequality holds:

lim inf
j

∫
Ω
|Duj |pj dx ≥

∫
Ω
|Du|n dx+ κ

∫
Ω
|u|n dx.

Proof. Let k ∈ N. By applying Lemma 4.1 to (uj) we get a sequence wj → u which will
be used as a technical device to prove the liminf inequality. We recall that in particular
wj = uj on Ω \

⋃
i∈Zj

Cj
i and wj(x) = ui

j for |x − xj
i | = ρi

j , where ρi
j = 3

4ρj2−ki , for
fixed ki ∈ {0, . . . , k − 1}.
We denote by Ej the set

Ej =
⋃

i∈Zj

Bj
i , where Bj

i = Bρi
j
(xj

i ).

We treat separately the contribution of |Duj |pj on Ω \ Ej and on Ej (step A and B
respectively).
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A. We first deal with the contribution of the integrals on Ω \Ej . We will prove that

lim inf
j

∫
Ω\Ej

|Duj |pj dx ≥
∫

Ω
|Du|n dx. (31)

Let

vj(x) =
{
ui

j for x ∈ Bj
i , i ∈ Zj ,

wj(x) for x ∈ Ω \ Ej .

Note that there exists a function v such that vj → v in L1(Ω; Rm) upon passing to
subsequences. Let χj = χ

Ω \
⋃

i∈Zj

Bρj (xj
i )

; by construction there exists a constant γ ∈ R+

such that χj converges weakly* to γ in L∞ (see e.g. [6, Example 2.4]). There follows
that vjχj ⇀ γv in L1 and ujχj ⇀ γu in L1. Since vjχj ≡ ujχj we can deduce that
u = v. From Lemma 4.1 we obtain

lim inf
j

∫
Ω\Ej

|Duj |pj dx+
c

k
≥ lim inf

j

∫
Ω\Ej

|Dwj |pj dx

= lim inf
j

∫
Ω
|Dvj |pj dx ≥

∫
Ω
|Du|n dx.

By the arbitrariness of k we get (31).

B. We now turn our attention to the contribution of |Duj |pj on Ej . We will prove
that

lim inf
j

∫
Ej

|Duj |pj dx ≥ κ

∫
Ω
|u|n dx. (32)

1.B We first assume that (uj) is a bounded sequence in L∞(Ω; Rm). Lemma 4.1
implies that

lim inf
j

∫
Ej

|Duj |pj dx ≥ lim inf
j

∫
Ej

|Dwj |pj dx− c

k

= lim inf
j

( ∑
i∈Zj

∫
Bj

i

|Dwj |pj dx
)
− c

k
.

We fix j ∈ N, i ∈ Zj and estimate
∫
Bj

i
|Dwj |pj dx . By modifying wj we define

w̃i
j(x) =

{
wj(x+ xj

i ) for |x| ≤ ρi
j ,

ui
j otherwise.

Having set Tj = ρj

εj
, we define ζ ∈ ui

j +W 1,n
0 (BTj ; Rm) as ζ(y) = w̃i

j(εjy); note that ζ
vanishes on B1. Now,∫

Bi
j

|Dwj(x)|pj dx =
∫

Bρj

|Dw̃i
j(x)|pj dx = ε

ηj

j

∫
BTj

|Dζ(y)|pj dy

≥ ε
ηj

j inf
{∫

BTj

|Dv(y)|pj dy : v ∈ ui
j +W

1,pj

0 (BTj ; R
m), v = 0 on B1

}
= |ui

j |pjε
ηj

j inf
{∫

BTj

|Dv(y)|pj dy : v ∈
ui

j

|ui
j |

+W
1,pj

0 (BTj ; R
m), v = 0 on B1

}
= |ui

j |pjε
ηj

j m
c
j .
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In Section 2 we proved that

lim
j→∞

ε
ηj

j m
c
j

δn
j

= lim
j→∞

ε
ηj

j mj

δn
j

= κ.

Summing up all the contributions on Bj
i , we deduce that

lim inf
j

∫
Ej

|Duj |pj dx ≥ lim inf
j

∑
i∈Zj

∫
Bi

j

|Dwj |pj dx− c

k

≥ lim inf
j

∑
i∈Zj

|ui
j |pjδn

j

ε
ηj

j m
c
j

δn
j

− c

k

≥ κ lim inf
j

∑
i∈Zj

|ui
j |pjδn

j −
c

k
.

Proposition 4.2 implies that

lim
j

∑
i∈Zj

|ui
j |pjδn

j =
∫

Ω
|u|n dx,

hence
lim inf

j

∫
Ej

|Duj |pj dx ≥ κ

∫
Ω
|u|n dx− c

k
.

Summing up the contributions on Ej and Ω \Ej and taking into account the arbitrari-
ness of k we get

lim inf
j

Fj(uj) ≥
∫

Ω
|Du|n dx+ κ

∫
Ω
|u|n dx.

2.B We now remove the boundedness assumption on (uj). By [4, Lemma 3.5],
upon passing to a subsequence, for all M ∈ N and η > 0 there exists RM > M and a
Lipschitz function ΦM of Lipschitz constant 1 such that

ΦM (z) = z if |z| < RM ,
ΦM (z) = 0 if |z| > 2RM ,
lim

j
Fj(uj) ≥ lim infj Fj(ΦM (uj))− η.

If we apply Lemma 4.1 and Proposition 4.2 to the sequence (ΦM (uj)) we get

lim inf
j

∫
Ej

|DΦM (uj)|pj dx+
c

k
≥ κ lim inf

j

∑
i∈Zj

δn
j |(ΦM (u))i

j |pj

= κ

∫
Ω
|ΦM (u)|n dx.

Since k is arbitrary we obtain

lim inf
j

Fj(ΦM (uj)) ≥
∫

Ω
|D(ΦM (u))|n dx+ κ

∫
Ω
|ΦM (u)|n dx.

Now, Lemma [4, 3.5] implies that

lim
j
Fj(uj) + η ≥

∫
Ω
|D(ΦM (u))|n dx+ κ

∫
Ω
|ΦM (u)|n dx.
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We can let M →∞ and note that ΦM (u) ⇀ u in W 1,n(Ω; Rm) to get

lim
j
Fj(uj) + η ≥

∫
Ω
|Du|n dx+ κ

∫
Ω
|u|n dx.

By letting η → 0 we obtain the thesis.

5.2 Limsup inequality - Spherical perforations

Proposition 5.2 (Limsup inequality) For all u ∈ W 1,n(Ω; Rm) there exists a se-
quence (uj) such that uj → u in L1(Ω; Rm) and

lim sup
j

Fj(uj) ≤
∫

Ω
|Du|n dx+ κ

∫
Ω
|u|n dx.

Proof. We will first assume that the target u is a Lipschitz function and then we will
deal with the general case.

1. Let u ∈ Lip(Ω; Rm) (in particular u ∈ L∞(Ω; Rm)). For fixed j ∈ N we denote by
φj(x) = ϕj(|x|) the radial minimizing function for the problem

min
{∫

Bcδj

|Duj |pj : v ∈ 1 +W
1,pj

0 (Bcδj
), v = 0 on Bεj

}
,

where c < 1/2 is fixed. By a simple calculation we get

ϕj(ρ) =

 ρ
ηj

1−pj

(
(cδj)

ηj
1−pj − ε

ηj
1−pj

j

)−1
−

((
cδj

εj

) ηj
1−pj − 1

)−1
for ρ > ε,

0 for 0 ≤ ρ ≤ ε.

We will build a recovery sequence (uj) for u by working separately on Bcδj
(xj

i ) ⊂ Ω
and Bcδj

(xj
i ) ∩ Ωc 6= ∅ (step 1.A and 1.B respectively).

1.A We first consider the perforations such that Bcδj
(xj

i ) ⊂ Ω. We denote by ui
j

the average integral ui
j = |Cj

i |−1
∫
Cj

i
u dx. For x ∈ Bcδj

(xj
i ) we set

uj(x) = u(x)φj(x− xj
i ).

Let λ > 0, p > 1 be fixed and let cλ > 0 be such that for all a, b > 0 we have

(a+ b)p ≤ cλa
p + (1 + λ)bp; (33)

cλ is equi-bounded as λ→ 0 and p→ n. We have:∫
Bcδj

(xj
i )
|Duj(x)|pj dx ≤ cλ

∫
Bcδj

(xj
i )
|Du(x)|pj dx

+(1 + λ)
∫

Bcδj
(xj

i )
|u(x)|pj |Dφj(x− xj

i )|
pj dx

≤ cλ

∫
Bcδj

(xj
i )
|Du|pj dx+ (1 + λ)

∫
Bcδj

(xj
i )
|ui

j |pj |Dφj |pj dx

+(1 + λ)
∫

Bcδj
(xj

i )
||u|pj − |ui

j |pj ||Dφj |pj dx.
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Since u is Lipschitz we have∫
Bcδj

(xj
i )
||u|pj − |ui

j |pj ||Dφj |pj dx ≤
∫

Bcδj
(xj

i )
c‖u‖pj−1

∞ |u− ui
j ||Dφj |pj dx

≤
∫

Bcδj
(xj

i )
cδj |Dφj |pj dx

and then∫
Bcδj

(xj
i )
|Duj(x)|pj dx ≤ cλ

∫
Bcδj

(xj
i )
|Du(x)|pj dx+ (1 + λ)

∫
Bcδj

(xj
i )
cδj |Dφj |pj dx

+(1 + λ)|ui
j |pj

∫
Bcδj

(xj
i )
|Dφj |pj dx.

We denote by Gj the set
Gj =

⋃
i:Bcδj

(xj
i )⊂Ω

Bcδj
(xj

i ).

1.B Let Bcδj
(xj

i ) ∩ Ωc 6= ∅. For x ∈ Bcδj
(xj

i ) ∩ Ω we set uj(x) = u(x)φj(x − xj
i ).

By (33) we get∫
Bcδj

(xj
i )∩Ω

|Duj |pj dx ≤ cλ

∫
Bcδj

(xj
i )∩Ω

|Du|pj dx+ c(1 + λ)
∫

Bcδj

|Dφj(x− xj
i )|

pj dx.

We denote by G′j the set

G′j =
⋃

i:Bcδj
(xj

i )∩Ωc 6=∅

Bcδj
(xj

i ) ∩ Ω,

while Ω′j indicates

Ω′j =
⋃

i:Bcδj
(xj

i )∩Ωc 6=∅

Qj
i .

In conclusion we set uj(x) = u(x) on Ω \ (Gj ∪ G′j) and hence we get a recovery
sequence for the target function u. In fact:∫

Ω
|Duj |pj dx =

∫
Gj

|Duj |pj dx+
∫

G′
j

|Duj |pj dx+
∫

Ω\(Gj∪G′
j)
|Duj |pj dx

≤ cλ
∑

i:Bcδj
(xj

i )⊂Gj

∫
Bcδj

(xj
i )
|Du|pj dx+ cλ

∑
i:Bcδj

(xj
i )⊂G′

j

∫
Bcδj

(xj
i )∩Ω

|Du|pj dx

+
∫

Ω\(Gj∪G′
j)
|Du|pj dx+ (1 + λ)δn

j

∑
i∈Zj

|ui
j |pjδ−n

j

∫
Bcδj

|Dφj |pj dx

+c(1 + λ)δjδn
j

∑
i∈Zj

δ−n
j

∫
Bcδj

|Dφj |pj dx

+c(1 + λ)|Ω′j |δ−n
j

∫
Bcδj

|Dφj |pj dx.
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Therefore we have∫
Ω
|Duj |pj dx ≤

∫
Ω
|Du|pj dx+ cλ

∫
Gj

⋃
G′

j

|Du|pj dx+ (1 + λ)cδj |Ω|

+(1 + λ)δn
j

∑
i∈Zj

|ui
j |pjδ−n

j

∫
Bcδj

|Dφj |pj dx+ (1 + λ)|Ω′j |.

Taking into account that

lim
j
δ−n
j

∫
Bcδj

|Dφj |pj dx = κ and lim
j
|Ω′j | = |∂Ω| = 0,

we get

lim sup
j

∫
Ω
|Duj |pj dx ≤ lim sup

j

∫
Ω
|Du|pj dx+ (1 + λ)κ lim sup

j

∑
i∈Zj

|ui
j |pjδn

j

+cλ lim sup
j

∫
Gj

⋃
G′

j

|Du|pj dx.

Since limj |Gj | = c|Ω| and limj |G′j | = 0, we obtain

cλ lim sup
j

∫
Gj

⋃
G′

j

|Du|pj dx = cλo(1) as c→ 0.

By Fatou’s Lemma and Proposition 4.2 we get

lim sup
j

∫
Ω
|Duj |pj dx ≤

∫
Ω
|Du|n dx+ (1 + λ)κ

∫
Ω
|u|n dx+ cλo(1) as c→ 0.

Finally, we let c→ 0 and then λ→ 0, and we obtain the desired inequality

lim sup
j

∫
Ω
|Duj |pj dx ≤

∫
Ω
|Du|n dx+ κ

∫
Ω
|u|n dx.

2. We now deal with the general case. Let u ∈W 1,n(Ω; Rm); u can be approximated
by a sequence (uk) ⊂ Lip(Ω; Rm) ∩W 1,n(Ω; Rm) with respect to the W 1,n-norm. For
fixed k ∈ N we proved that Γ- lim supj Fj(uk) ≤ F (uk). Since the Γ-lim sup is a lower
semicontinuous functional, we get

Γ- lim sup
j

F (u) ≤ lim inf
k

Γ- lim sup
j

Fj(uk) ≤ lim inf
k

F (uk) = F (u).

5.3 Non-spherical perforations

In this section we will deal with the Γ-convergence result for the general case: K ⊂ Rn is
a bounded closed set with non-empty interior. We will show how in the non-degenerate
regimes the results are indeed independent of the form of K. In particular, we will
prove that

κK := lim
j
δ−n
j inf

{∫
Bδj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bδj
; Rm), v = 0 on εjK

}
(34)
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equals the constant

κ = lim
j
δ−n
j inf

{∫
Bδj

|Dv|pj dx : v ∈ ν +W
1,pj

0 (Bδj
; Rm), v = 0 on Bεj

}
we computed explicitly (note that κK ≤ κK′

if K ⊆ K ′). This is equivalent to the
fact that for any compact set K with non-empty interior the functionals Fj = FK

j :
W 1,pj (Ω; Rm) → [0,+∞], defined by

FK
j (u) =


∫

Ω
|Du|pj dx if u = 0 on

⋃
i∈Zn

(xj
i + εjK) ∩ Ω,

+∞ otherwise,
(35)

Γ-converge to the integral functional in (21). To this end, it suffices to prove that if we
consider two closed balls Br1(x0) and Br2(x0) such that Br1(x0) ⊂ K ⊂ Br2(x0), then

the functionals FBr1 (x0)
j and FBr2 (x0)

j Γ-converge to the same limit functional.

(1) Exponential regime Let ηj = γδ
n

n−1

j + o(δ
n

n−1

j ), with γ ∈ R. In the case K = B1

we proved that if we set εj = exp
(
− aδ

−n/(n−1)
j

)
then we get

κ = α(γ) =
ωn−1

(n− 1)(n−1)
e−aγ

∣∣∣∣∣1− e−
aγ

n−1

γ

∣∣∣∣∣
1−n

if γ 6= 0,

extended by continuity as γ → 0. If we fixR > 0 and set εj = R exp(−aδ−n/(n−1)
j ) =

exp(logR− aδ−n/(n−1)
j ), then the computation of the limit in (9) still gives α(γ).

Therefore we can state that κBr1 (x0) = κBr2 (x0) = κ, hence κK = κ.

(2) Mixed polynomial-exponential regime Let ηj > 0 and ηj & δ
n

n−1

j . Let R > 0
be fixed. For all ξ > 0 we can note that if j is large enough we have:

R
1

ηj diamK ≤ R
1

ηj r2 ≤
(
R(1 + ξ)

) 1
ηj

and
R

1
ηj diamK ≥ R

1
ηj r1 ≥

(
R(1− ξ)

) 1
ηj .

In the case K = B1 we proved that if we set εj = R
1

ηj δ
n
ηj

j η
1−n
ηj

j , then we get
κ = Rωn−1(n − 1)1−n. Now, if we replace the constant R by R(1 ± ξ), we get
κ = R(1± ξ)ωn−1(n− 1)1−n respectively. By comparison,

R(1− ξ)
ωn−1

(n− 1)n−1
≤ κK ≤ R(1 + ξ)

ωn−1

(n− 1)n−1
;

if we let ξ → 0 we get κK = R ωn−1

(n−1)n−1 .

6 The rigid regime

Finally we prove the Γ-convergence result in the rigid case; i.e., ηj < 0 and |ηj | �
δ
n/n−1
j . The proof will be performed in two steps: first we will show that if we fix
εj ≡ 0 then the functionals (Fj) Γ-converge to F∞ defined as in (22); then we will
prove (by a comparison argument) that the same result holds for any choice of (εj).
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1. Let εj ≡ 0. We denote by F 0
j the functional (20) in this particular case:

F 0
j (u) =


∫

Ω
|Du|pj dx if u(xj

i ) = 0,

+∞ otherwise.
(36)

Note that the assumption u(xj
i ) = 0 makes sense because of the compact embedding of

W 1,pj (Ω; Rm) into the set of continuous functions.
We will prove that

Proposition 6.1 Let u 6= 0; then for all uj → u in L1(Ω; Rm) we have

lim inf
j

Fj(uj) = +∞.

Proof. Upon a truncation argument as in Step 2.B of Section 5.1 it is not restrictive
to suppose that (uj) is bounded in L∞(Ω; Rm).

Let c < 1/2 be a fixed constant. If we apply Lemma 4.1 to (uj) (with k ∈ N
arbitrarily fixed) we get a sequence (wj) such that for all i ∈ Zj we have wj = uj on
Ω \

⋃
i∈Zj

Cj
i , wj = ui

j on ∂Bρi
j
(xj

i ) (where ρi
j = 3

42−kicδj) and

lim inf
j

∫
Ω
|Duj |pj +

c

k
≥ lim inf

∫
Ω
|Dwj |pj dx.

We have:

lim inf
j

∫
Ω
|Duj |pj dx+

c

k
≥ lim inf

j

∫
Ω
|Dwj |pj dx ≥ lim inf

∑
i∈Zj

∫
Bj

i

|Dwj |pj dx.

Let

w̃i
j(x) =

{
wj(x+ xj

i ) for |x| ≤ ρi
j ,

ui
j otherwise,

and note that ∫
Bj

i

|Dwj |pj dx =
∫

Bcδj

|Dw̃i
j |pj dx.

There follows that

lim inf
j

∫
Ω
|Duj |pj dx+

c

k
≥ lim inf

j

∑
i∈Zj

∫
Bcδj

|Dw̃i
j |pj dx

≥ lim inf
j

∑
i∈Zj

inf
{∫

Bcδj

|Dv|pj dx : v ∈ ui
j +W

1,pj

0 (Bcδj
; Rm), v(0) = 0

}
.

If we focus our attention on the minimum problem above and repeat the computations
of Section 2 we get

inf
{∫

Bcδj

|Dv|pj dx : v ∈ ui
j +W

1,pj

0 (Bcδj
; Rm), v(0) = 0

}
= |ui

j |pj inf
{∫

Bcδj

|Dv|pj dx : v ∈ 1 +W
1,pj

0 (Bcδj
; R), v(0) = 0

}
= |ui

j |pjωn−1(cδj)ηj

( |ηj |
pj − 1

)pj−1
.
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Taking into account the arbitrariness of k and Proposition 4.2 we get

lim inf
j

∫
Ω
|Duj |pj dx ≥ lim inf

j

∑
i∈Zj

|ui
j |pjωn−1(cδj)ηj

( |ηj |
pj − 1

)pj−1

≥ lim inf
j

c
(∑

i∈Zj

δn
j |ui

j |pj

)
δ−n
j (cδj)ηj

( |ηj |
pj − 1

)pj−1

≥ c
(∫

Ω
|u|n dx

)
lim inf

j

( |ηj |

δ
n

n−1

j

)pj−1
δ
−pj

j δ
n(pj−1)

n−1

j = +∞.

The limsup inequality is trivial since it has to be checked only for u ≡ 0.

2. Let K be a compact subset of Rn with non-empty interior. Let (εj) be a generic
real sequence satisfying 0 ≤ εj ≤ δj/2. Let Fj : W 1,pj (Ω; Rm) → [0,∞] be defined as
in (20) and F 0

j as in (36).
We proved that Γ-limj F

0
j = F∞. Note that if Fj(u) <∞ then F 0

j (u) = Fj(u); hence
F 0

j (u) ≤ Fj(u) for all u ∈W 1,pj (Ω; Rm). By comparison we get Γ-lim inf Fj ≥ F∞ and
the converse inequality is trivial for the Γ-lim sup. Hence Γ-limj Fj = F∞.
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Vol. II, 98-138, and Vol. III, 154-178, Res. Notes in Math., 60 and 70, Pitman,
London, 1982 and 1983, translated in: A strange term coming from nowhere.
Topics in the Mathematical Modelling of Composite Materials, Birkhäuser, Boston,
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[12] Dal Maso, G. Asymptotic behaviour of solutions of Dirichlet problems. Boll.
Unione Mat. Ital. 11A (1997), 253-277.

[13] Defranceschi, A. and Vitali, E. Limits of minimum problems with convex obstacles
for vector valued functions. Appl. Anal. 52 (1994), 1-33.

[14] Marchenko, A.V. and Khruslov, E.Ya. New results in the theory of boundary
value problems for regions with closed-grained boundaries. Uspekhi Mat. Nauk 33
(1978), 127.

[15] Sigalotti, L. Asymptotic analysis of periodically perforated nonlinear media at the
critical exponent. To appear

22


