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GEOMETRIC CRITERIA FOR THE EXISTENCE OF

CAPILLARY SURFACES IN TUBES

GIORGIO SARACCO

In memoriam of Robert Finn

Abstract. We review some geometric criteria and prove a refined ver-

sion, that yield existence of capillary surfaces in tubes Ω×R in a gravity

free environment, in the case of physical interest, that is, for bounded,

open, and simply connected Ω ⊂ R2. These criteria rely on suitable weak

one-sided bounds on the curvature of the boundary of the cross-section

Ω.

1. Introduction

In this brief note, we are interested in some purely geometrical criteria
that allow to determine whether capillary surfaces exist in a cylindrical
tube of cross-section a bounded, open, and simply connected subset Ω of
R2. Let us suppose that in the cylinder Ω × R (closing one of the ends)
there are two immiscible and incompressible phases in equilibrium (e.g.,
air and water) separated by an interface Γ, and let us assume that this
one can be represented by the graph of a function u. Then, the energy of
this physical system, whenever gravity is absent or can be neglected (for
instance, on Earth’s surface whenever the diameter of the cross-section is
sufficiently small and the mass of the fluid is small), consists of the sum
of three different terms: the free surface energy that represents the work
necessary to build the separating interface; the wetting energy that quantifies
the work of the adhesion forces between the phases and the rigid vertical
walls of the cylinder; a volume constraint standing for the finiteness of the
mass of the fluid we are considering. Hence, up to the multiplicative factor
of the surface tension, the energy of the system is

(1)

∫
Ω

√
1 + |∇u|2 dx− cos(γ)

∫
∂Ω

udH1(x) +

∫
Ω
λudx ,

where the first term is the surface energy, the second one the adhesion energy
and where γ is the contact angle measured inside the lower fluid between the
phases and the cylinder, and the last one represents the volume constraint,
being λ a Lagrange multiplier. The energy expression (1) had already been
derived by Gauss, unifying previous theories by Young and Laplace. A nice
account and modern derivation is available in [23], and in Figure 1 there is
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Figure 1. A fluid poured in a
thin tube gives rise to a capillary
surface Γ, that is, a (graphical)
surface with constant mean cur-
vature adhering to the walls of the
tube with a constant contact an-
gle γ determined by the properties
of the fluid, the air, and the ma-
terial of the tube.

γ
Γ

a sketch of the physical situation we are interested in. Writing down the
Euler–Lagrange equation of the functional (1), one finds that smooth critical
points need to satisfy

div(Tu) = λ , in Ω,(2)

Tu · νΩ = cos(γ) , on ∂Ω ,(3)

where Tu is the vector field

Tu =
∇u√

1 + |∇u|2
,

and νΩ the outward normal to Ω. A caveat is that when stating the above
mathematical problem, one considers a cylinder of infinite length, that is an
unrealistic physical situation. Nevertheless, if the mathematical formalism
leads to (and it does lead to) a solution that is the graph of a function u
bounded from below, then a physically meaningful solution can be derived
by adding a suitable constant, that is, by closing one end of the cylinder
and covering it with fluid.

The lone PDE (2) without the boundary condition (3) is generally referred
to as the prescribed mean curvature equation because the term in the LHS,
div(Tu), represents the pointwise mean curvature of the graph of u. Hence,
capillary surfaces have constant mean curvature given by λ. For the sake of
explanation, let us momentarily disregard the boundary condition (3) and
let us consider the 1-dimensional case, that is, Ω is, without loss of generality,
the interval (−a, a). When searching for a C2 solution, we are looking for a
continuously twice-differentiable function u such that the curve (x, u(x)) has
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(−a, 0) (a, 0)

(a) Bridging a gap wide 2a via an arc of

circle requires a radius of at least a.

(−a, 0) (a, 0)

(b) Prescribing the boundary condi-

tion (3) forces the symmetry of the solu-

tion.

Figure 2. Two solutions of the prescribed curvature equa-
tion in 1d. On the left one without enforcing any boundary
condition, while on the right with a Neumann-like condition.

constant curvature given by λ. Since in dimension 1 the only curves with
(positive) constant curvature λ are arcs of circles of radius λ−1, our solution
has to be one of such arcs. This imposes some geometric restraint on the
initial choice of λ. Indeed, in order to be able to bridge the gap spanned by
the interval (−a, a) with an arc of a circle of radius λ−1, we necessarily need
λ−1 to be at least a, refer also to Figure 2(a). Hence, a necessary condition
for existence is that

(4) λ ≤ 1

a
=

H0((−a, a))

H1((−a, a))
.

This is not a condition peculiar to dimension 1. In the physical situation1

of a bounded, open, and simply connected Ω ⊂ R2, integrating the PDE (2)
on Ω and using the Gauss–Green Theorem (assuming Ω Lipschitz), one has

−
∫
∂Ω

∇u · νΩ√
1 + |∇u|2

dH1(x) =

∫
Ω
div(Tu) dx = λ

∫
Ω
1 dx = λ|Ω|.

Taking now the absolute value on the LHS, moving it under the integral
sign and using that |Tu| ≤ 1, one finds the necessary condition to existence

(5) λ ≤ P (Ω)

|Ω|
,

where P ( · ) denotes the distributional perimeter, which for Lipschitz sets
E coincides with H1(∂E), and we refer to [4, 42] for the basic facts of sets
of finite perimeter. Further, carrying out the same steps on any Lipschitz
subset E compactly contained in Ω one also gets as necessary condition that

(6) λ <
P (E)

|E|
,

where the strict inequality comes from the fact that the vector field Tu is
such that |Tu| < 1 on any subset compactly contained in Ω.

1The following holds in general dimension N , using the relevant Hausdorff measures.
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Let us now consider the PDE (2) coupled with the boundary condition (3).
In this case we do not get an upper bound on λ like in (5)–(6), rather it
is implicitly determined by the geometrical nature of the problem. For
the sake of simplicity, we start again considering the 1-dimensional case.
Requiring (3) on the boundary forces the symmetry of the arc with respect
to the axis of the segment (−a, a) × {0}, see also Figure 2(b). Thus, such
arc belongs to a circle centered on the y-axis at (0, yC) and, by symmetry, it
intersects the walls of the cylinder at (−a, k) and (a, k), for some k. Without
loss of generality, one can assume the height k to be fixed. It is easy to
see that the function that to each y associates the angle created by the
circle centered at (0, y) with the line {a}×R at (a, k) is strictly monotonic,
therefore the angle γ prescribed by (3), coupled with any choice of the height
k completely determines the height yC = yC(k) of the center. Changing the
initial height k modifies yC but not their relative distance. Hence, the radius
of the circle ends up being determined by the geometry of the problem, and
in turns so it is the prescribed curvature λ. The only degree of freedom that
one has is the choice of the height k, which mathematically corresponds to
the uniqueness of the solution up to a vertical translation.

The same happens in the higher dimensional case. Integrating the PDE (2)
on Ω, owing to Gauss–Green Theorem and taking into account the bound-
ary condition, in place of the large inequality (5), one gets that λ needs to
satisfy

(7) λ = cos(γ)
P (Ω)

|Ω|
.

Performing the same reasoning on any proper Lipschitz subset E of Ω, taking
into account the boundary condition (3) on ∂E ∩ ∂Ω and that |Tu| < 1 on
∂E ∩ Ω, one finds the following necessary condition to existence

(8) λ <
P (E; Ω) + cos(γ)P (E; ∂Ω)

|E|
,

which is the analog of (6), and where P (E;A) denotes perimeter of E relative
to the set A. Pairing (7) with (8) one finds a necessary condition that is
purely geometrical, that is, the strict inequality

(9) cos(γ)
P (Ω)

|Ω|
<

P (E; Ω) + cos(γ)P (E; ∂Ω)

|E|

must hold for all Lipschitz proper subsets E of Ω. Thus, existence of capillary
surfaces is intimately tied to a purely geometrical problem set in one lower
dimension, which has been studied by Concus and Finn in [15, 21], refer also
to [42, Chap. 19]. It is easy to see that if condition (9) is met for a vertical
contact angle, that is γ = 0, then it also is for any γ ∈ [0, π/2]. If γ = π/2 it
is trivial; if otherwise γ ∈ [0, π/2) we can divide both terms in (9) by cos(γ)
and it suffices to notice that the RHS is strictly increasing as a function of
γ.
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For this reason, we focus on the choice γ = 0, in which case the necessary
condition becomes

(10)
P (Ω)

|Ω|
<

P (E)

|E|
,

for all Lipschitz proper subsets E of Ω. Such a condition was first shown
to be necessary by Concus and Finn [14, Lem. 4], under the Lipschitz reg-
ularity of Ω, required to employ the Gauss–Green Theorem. Via standard
arguments, this can be weakened to a piecewise Lipschitz request on Ω. Un-
der this regularity assumption, inequality (10) was later shown in Giusti’s
seminal paper [29] to be necessary for all choices of proper subsets E ⊊ Ω of
locally finite perimeter, considerably weakening the Lipschitz request on the
subsets E via an approximation argument. In the same paper Giusti proves
the sufficiency of such a condition, see also the comprehensive treatise [22,
Chap. 6]. The intrinsic geometric nature of this condition led the author
to ask himself whether some geometric criterion could be proved to ensure
the validity of (10), in [29, Thm. A.1 and Cor. A.1] he proved one, under
the assumptions that Ω is bounded, open, and convex, and of class C1, and
this will be touched upon in Section 3. We remark that this first criterion
provides an “if and only if” statement. Interestingly, one cannot just drop
the convexity hypothesis or replace it with star-shapedness and hope to re-
tain the same criterion, as shown by means of counterexamples by Finn and
Giusti [24]. Few years later Chen [13, Thm. 4.1] was able to extend the crite-
rion to bounded, open, simply connected, and piecewise Lipschitz sets that
enjoy a “strict” interior ball condition, where the meaning of “strict” will be
made clear later on in Section 4, where we discuss this extension. Notably,
dropping convexity and replacing it with this weaker assumption, produces
a sufficient but not anymore necessary criterion, unless an extra assumption
is requested. In the last decade new Gauss–Green formulas for much less
regular sets Ω have been proved, we here specifically refer to [41], but the
topic has been very active and a far from complete list is [8, 11, 12, 16, 17].
With these new formulas at one’s disposal, it has been possible to prove
existence of solutions of (2)–(3) under much weaker regularity conditions
on Ω, see [38], covering also wildly irregular sets, for instance balls with
infinitely many holes accumulating toward their boundaries [39, Sect. 3].
Namely, researchers went from asking the piecewise Lipschitz regularity of
Ω to the request

(11) P (Ω) = H1(∂Ω) ,

and the existence of a positive constant k depending only on Ω such that
for all subsets E ⊂ Ω one has

(12) min{P (E; ∂Ω);P (Ω \ E; ∂Ω) } ≤ kP (E; Ω) ,

that is, a Poincaré-type inequality. Whenever Ω is such that it satisfies (11)
and (12), inequality (10) again provides a necessary and sufficient condition
to existence, see [38, Thms. 4.3 and 4.7]. It is in this new framework that
we shall see that, combining results from [47, 48], a sufficient criterion for
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existence of solutions similar to that of Chen [13] can be proved in a wider
generality, dropping the piecewise Lipschitz requests on the boundary of Ω,
and only assuming a suitable weak condition on the curvature (in terms of
the reach), and this will be the topic of Section 5.

The plan of the paper is the following. In Section 2 we introduce a related,
useful problem through which we can state the problem in a “different lan-
guage”. In Section 3 and Section 4 we review the first two geometric criteria
yielding existence of capillary surfaces. In Section 5 we exploit few recent
results to prove a refined version of these criteria that has been hinted to
in [48] but neither formally stated nor proved.

2. A related problem

Let us set aside for a moment the capillarity problem (2)–(3), with all
the physical implications it carries along, and let us consider a related prob-
lem: the lone prescribed mean curvature differential equation without any
boundary datum

(13) div(Tu) = H , in Ω ,

where H is a fixed positive constant. Reasoning as we did in the introduc-
tion, by an application of the Gauss–Green Theorem, and using the approx-
imation argument of Giusti [29, Sect. 1], we have as necessary condition to
existence that

(14) H <
P (E)

|E|
,

for all proper subsets E ⊂ Ω of locally finite perimeter. Then, one has
two cases: either the strict inequality in (14) holds as well for Ω in place
of E (non-critical case); or the curvature H equals the ratio perimeter over
volume of Ω (critical case). In both cases, condition (14) can again be proved
to be sufficient for existence of solutions when Ω is bounded, open, simply
connected, and either it is piecewise Lipschitz or it satisfies (11)–(12).

The interesting bit is that in the critical case any solution of (13) will
be a capillary surface, since it automatically satisfies (2)–(3) with a verti-
cal contact angle, that is, for γ = 0 (the boundary datum being assumed
almost everywhere). Even more, such a solution is unique up to vertical
translations. For the sake of convenience, we sum up this result in the next
statement (refer to [29, Thm. 2.1] for the piecewise Lipschitz case and to [38,
Thm. 5.1] for the general case combined with [39, Sect. 5.1]).

Theorem 2.1. Let Ω be a bounded, open, and simply connected subset of
R2 satisfying (11)–(12), and let H ∈ R fixed. The following are equivalent:

(a) (14) holds and H = P (Ω)|Ω|−1;
(b) there exists a unique (up to translations) solution of (13);
(c) there exists a solution u such that Tu · νΩ = 1 a.e. on ∂Ω, i.e., that

solves (2)–(3) with γ = 0.
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Since (14) needs to hold for all subsets of Ω of locally finite perimeter, if
we take the infimum in (14) among all Borel subsets of Ω, we find

H ≤ inf

{
P (E)

|E|
: |E| > 0

}
= h(Ω) ,

where the constant on the RHS is known as the Cheeger constant of Ω, and
it was first introduced in [10]. The problem of computing the constant h(Ω)
and of determining the subsets of Ω attaining it (called Cheeger sets of Ω)
has gained a lot of attention in the last decades. Whenever Ω is the unique
Cheeger set in itself, we shall call it a minimal Cheeger set. We refer to the
two surveys [35, 43], and to [32, 36, 37, 40, 48] for results in the 2-dimensional
case that we are interested in, and the references therein.

Introducing the constant and being aware of the results on it is very useful,
since we can easily restate the non-critical and the critical case in terms of
the Cheeger constant and of Cheeger sets. Indeed, whenever H < h(Ω) we
are in the non-critical case, while when H = h(Ω) and h(Ω) is uniquely
attained by Ω, that is, when Ω is a minimal Cheeger set, we are in the
critical case.

In view of this parallel, and the equivalence of the critical case for (13)
(Theorem 2.1 (a)) with the capillarity problem (2)–(3) with γ = 0 (The-
orem 2.1 (c)), what one needs to find are criteria on a bounded, open,
simply connected, and planar set Ω (either piecewise Lipschitz, or satisfy-
ing (11)–(12)) that ensure that Ω is a minimal Cheeger set. The proofs we
will provide of the criteria contained in the next sections exploit this deep
link between the two problems, and we shall see how criteria for Ω being
a minimal Cheeger set almost immediately port to criteria for existence of
solutions of (2)–(3) with γ = 0.

We also mention that such self-minimality criteria for the Cheeger prob-
lem appear to be useful in other contexts such as image reconstruction prob-
lems as the ROF model [45], failure of planar plates subject to a vertical
load [34], and viscoplastic fluids [28, 31].

For the sake of completeness, we remark that minimal Cheeger sets are
in some contexts called calibrable sets, see [5, Def. 3 and Rem. 6]. We
also mention that the task of verifying the necessary condition (10), or, as
discussed, determining whether Ω is a minimal Cheeger set, is equivalent to
finding a vector field on Ω with some special properties, and we refer the
interested reader to [19, Thms. 1 and 2], and also to [30, Thm. 3] and [49, 50].

3. Convex sets

The first criterion for existence that appeared dates back to 1978 and
it is due to Giusti [29, Thm. A.1 and Cor. A.1]. Several years later two
criteria in different settings were independently proved, and these paired
with the observations of Section 2 immediately allow to recover Giusti’s
one. In particular, we refer to Bellettini–Caselles–Chambolle [5, Rem. 6
and Thm. 4] in the framework of C1,1, calibrable, and convex sets, and to
Kawohl–Lachand-Robert [32, Thm. 2] in the language of Cheeger sets. This
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latter, paired with the observations of Section 2, provides a very quick proof
of the criterion.

Criterion 3.1. Let Ω ⊂ R2 be a bounded, open, and convex set, and let κ̄
be defined as

κ̄ = ess supκ∂Ω ,

where κ∂Ω represents the curvature of ∂Ω. Then the PDE (2) with boundary
condition (3) has a solution for γ = 0 if and only if

(15) κ̄ ≤ P (Ω)

|Ω|
.

Proof. By [32, Thm. 2] a bounded, open, and convex planar set Ω is self-
Cheeger if and only if κ̄ ≤ P (Ω)/|Ω|. Moreover, convex sets have a unique
Cheeger set [1], hence it also tells us that h(Ω) is uniquely attained by Ω.

In turns, this says we are in the critical case for solving (13), that is,
statement (a) in Theorem 2.1 holds. Since convex implies Lipschitz, the
regularity assumptions on Ω requested in Theorem 2.1 are satisfied. There-
fore, by the equivalency stated by the theorem, there is a solution of (2)–(3),
with γ = 0 (Theorem 2.1 (c)). □

It is here useful to define what we mean by curvature of a convex set,
which a priori is only Lipschitz, and thus the curvature may not be defined
in the classical sense, that requires a C2 regularity.

Given a convex set Ω, its support function is p : S1 → R defined as

p(θ) = sup
(x,y)∈Ω

{x cos(θ) + y sin(θ) },

which is Lipschitz continuous and allows to identify the hyperplane orthog-
onal to (cos(θ), sin(θ)) supporting the convex set Ω. The boundary of Ω
can be then described almost everywhere as the simple and closed curve
(x(θ), y(θ)), with θ ∈ [0, 2π], given by

x(θ) = p(θ) cos(θ)− p′(θ) sin(θ),

y(θ) = p(θ) sin(θ) + p′(θ) cos(θ).

If a convex set is of class C2, its support function p is twice differentiable
and the curvature radius ρ is such that ρ = p + p′′ > 0, and the curvature
is its reciprocal. Conversely, given a Radon measure p : S1 → R, satisfying
p + p′′ ≥ 0 in a distributional sense, one can find a convex set Ω, whose
support function is given by p. One can prove that there is a bijective
correspondence between convex sets and Radon measures p on S1 such that
p+ p′′ ≥ 0, and the curvature κ can be defined in general as the ratio 1/ρ,
being ρ = p + p′′. The supremum κ̄ is then defined as +∞ if κ is not
bounded, otherwise as the supremum of the Lebesgue precise representative
of κ.

What is important to note is that if κ̄ is finite, then the classical fact for
C2 convex sets Ω that at any point x ∈ ∂Ω there exists a ball through x
of radius 1/κ̄ and interior to Ω remains true. This in particular allows to
restate Criterion 3.1 in terms of an interior ball condition of radius P (Ω)/|Ω|
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Ω

R r

θR θr

Figure 3. A set Ω that, when smoothed out, satisfies the
curvature condition (15), yet existence of solutions of the
PDE (2) with boundary condition (3) for γ = 0 fails.

at any point of the boundary x ∈ ∂Ω. The criteria we shall discuss in the
next sections are indeed essentially stated through this property.

For the sake of completeness, we note that such a criterion has been proved
also in different frameworks, when the underlying metric is non Euclidean,
but rather anisotropic. In particular, we refer the interested reader to [33,
Cor. 5.3], see also [6, Thm. 8.1]. These criteria have been later extended for
general N -dimensional convex sets, see [2] for the Euclidean case and [9] for
the anisotropic case.

4. Non convex piecewise Lipschitz sets

On the one hand, it was almost immediately clear that the lone curvature
condition (15) is not enough to guarantee the existence of solutions, and
that in the previous statement convexity played a major role. Indeed, in [24,
Sec. 1], the authors show that existence may fail when negative curvatures
occur, even if they are small compared to the ratio P (Ω)/|Ω|, and even
if one requires starshapedness. Specifically, Finn and Giusti consider two
balls of radii R and r, with R > r, with non empty intersection, as shown
in Figure 3. One can smooth out the intersection points in such a way that
the curvature κ is strictly less than 1/r at all points of the boundary. Calling
θR and θr the angles drawn by the segment through the two centers and by
those through the centers and the intersection point (refer to Figure 3), and
disregarding higher order terms in θR and θr, one has

(16)
P (Ω)

|Ω|
≈ 2π(R+ r)− 2(θRR+ θrr)

π(R2 + r2)
→ 2

R+ r

R2 + r2
,

for sufficiently small angles (that is, sufficiently spaced far apart centers).
Thus, the curvature condition (15) is satisfied, provided that

1

r
< 2

R+ r

R2 + r2
,

that is, if r > R(
√
2 − 1). Nevertheless, for such values the necessary con-

dition (10) for existence fails to hold, since the ball BR ⊂ Ω has a strictly
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better perimeter to volume ratio than Ω itself. Indeed, in view of (16),

P (BR)

|BR|
=

2

R
< 2

R+ r

R2 + r2
≈ P (Ω)

|Ω|
,

provided that the centers of the two balls are sufficiently far apart.
On the other hand, also the curvature plays a special role, as implied

by [25, Thm. 3] that states that, for Ω sufficiently smooth, if there exists
even a single point on the boundary where the curvature is strictly greater
than P (Ω)/|Ω|, then the necessary condition (10) fails.

What Chen realized is that the key point was neither the bound on the
curvature nor the convexity, rather what the two condition paired together
implied: the existence of an interior ball of radius |Ω|/P (Ω) through any
point of the boundary. As he allowed also less regular sets, that is, piecewise
Lipschitz, he stated the condition as an interior “rolling” ball condition to
take into account that at non regular points x of ∂Ω one has a cone of
inward normals, in place of a uniquely defined one. In particular, since
the boundary is assumed to be piecewise Lipschitz, one can easily define a
leftmost inward normal ν− (resp., a rightmost one ν+) as the limit of the
normals approaching from the left (resp., the right); the resulting cone shall
consist of all directions inbetween ν− and ν+ locally pointing toward the
inside of the set Ω.

We can now recollect this loose idea into a definition, based on the original
one [13, Def. 4.1].

Definition 4.1. Let Ω ⊂ R2 be a bounded, open, simply connected, and
piecewise Lipschitz set. We say that it enjoys the interior rolling ball con-
dition of radius r, if for any x ∈ ∂Ω, any ν ∈ S1 in the cone of interior
normals to Ω at x, one has Br(x+ rν) ⊂ Ω. We say that it enjoys the strict
interior rolling ball condition if additionally no pair of antipodal points in
∂Br(x+ rν) belongs to ∂Ω.

Loosely speaking, the definition above means that one can “roll”—hence
the adjective “rolling”—along the boundary of Ω and internally to Ω a ball
of the given radius r, and this can be thought of as a one-sided bound on the
curvature of ∂Ω. For the sake of completeness, we remark that Chen only
gave the “strict” definition without naming it so; the distinction between
“strict” and “non strict” came much later in [48]. Chen proved that the
strict condition, for r = |Ω|/P (Ω), is sufficient for existence of solutions,
albeit not necessary. In particular, the union of two overlapping balls with
the same radius, that is, a situation like that of Figure 3 with r = R, with
the centers suitably spaced far apart, provides a set for which this condition
is not met, while the necessary condition (10) holds, and thus existence is
nevertheless ensured, see [13, Ex. 5.3].

Let us notice how the interior rolling ball condition of radius r implies
that the inner parallel set at distance r, that is,

Ωr = {x ∈ Ω : dist(x; ∂Ω) ≥ r } ,
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is simply connected (because Ω is) and path connected. This path connect-
edness property turns out to be the key to make the criterion necessary. Let
us lay down some more jargon.

Definition 4.2. Let Ω ⊂ R2 be a bounded, piecewise Lipschitz, and simply
connected set. We say that it has no necks of radius r if Ωr is path connected.

Chen’s definition, refer to [13, Def. 5.1], is different from the one given
here, but completely equivalent. The one we provided has its roots in [36,
Def. 1.2 and Rem. 1.3], where we drew inspiration from the original one.
We are now ready to state Chen’s criterion [13, Thms. 4.1 and 5.2], whose
proof we omit, as it is implied by the criterion we state and prove in the
next section.

Criterion 4.3. Let Ω ⊂ R2 be a bounded, piecewise Lipschitz, and simply
connected set.

(i) If it enjoys the strict interior rolling ball condition for r = |Ω|/P (Ω),
then the PDE (2) with boundary condition (3) has a solution for
γ = 0.

(ii) If Ω has no necks of radius r = |Ω|/P (Ω), then the PDE (2) with
boundary condition (3) has a solution for γ = 0 if and only if Ω
enjoys the strict interior rolling ball condition for r = |Ω|/P (Ω).

We remark that one cannot replace the strict condition with the non
strict one, as otherwise the statement would not hold. This is highlighted
by the “Pinocchio” example shown in Figure 4, also called “keyhole” or
“proboscis” by Finn in [26, 27], where he studied similar configurations for
γ ̸= 0. Such a set is given by the union of the ball B1 centered at the origin
and a ball of radius r = sin θ centered at (cos θ, 0). There exists a choice
of θ ∈ (0, π/2), that we denote by θ0 and the corresponding radius by r0
(roughly, θ0 ≈ 0.531), such that this set is a minimal Cheeger set. Then for
any T > 0, it is easy to see that the Pinocchio set

PT = B1 ∪
⋃

τ∈[0,T ]

Br0(cos θ0 + τ, 0)

satisfies the (non strict!) interior rolling ball condition for r = |PT |/P (PT ),
it is a Cheeger set in itself, but not a minimal one, since for any t ∈ [0, T )
the proper subset Pt is such that

P (Pt)

|Pt|
=

P (PT )

|PT |
.

The full computations are available in [37, Ex. 4.6], but such an exam-
ple appeared several times, see [22, Sects. 6.13, 6.14, and 6.17], and [7,
Sects. 4.2, 4.3, and 4.4]. In particular, one can also smooth out the set
controlling the curvature, and build in this way a counterexample to Crite-
rion 3.1 when convexity is removed, in the same spirit of the one described
at the beginning of this section, see [3, Exs. 6.5 and 6.6].
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1
r0

θ0

Figure 4. The Pinocchio set.

5. A refined criterion

In this last section we state and prove an improved version of Criterion 4.3.
First, let us give a more general definition of strict interior rolling ball condi-
tion, that does not necessitate the piecewise Lipschitz regularity Ω, rather it
is stated through a lower bound on the reach of the complement set R2 \Ω,
originally stated in [48, Def. 1.1].

Definition 5.1. Let Ω ⊂ R2 be a Jordan domain. We say that it enjoys the
(weak) interior rolling ball condition of radius r if reach(R2\Ω) ≥ r. We say
that it enjoys the (weak) strict interior rolling ball condition if additionally
for all z ∈ ∂((R2 \ Ω)⊕BR) no antipodal points of ∂BR(z) lie both on ∂Ω.

For the sake of completeness, we recall that a Jordan curve is the image
of a continuous and injective function Φ : S1 → R2 and a Jordan domain is
the open region bounded by such a curve, and this is well defined thanks to
the Jordan–Schoenflies Theorem. While any piecewise Lipschitz and simply
connected set clearly is a Jordan domain, it might not be immediate to the
reader unfamiliar with curvature measures that the condition on the reach
is just a weaker request than that made previously on the existence of an
interior rolling ball. The reach of a set A, first introduced in the foundational
work [18], refer also to the survey [52] and the comprehensive book [44], is
defined as follows.

A set A has reach r if, for all ρ < r, the points in the Minkowski sum
A⊕Bρ have a unique projection onA. Again, roughly speaking, this amounts
to saying that it is possible to roll a ball of radius r along ∂A on the exte-
rior of A, essentially providing a (weak) one-sided bound on its curvature.
Notice the word exterior : this is why the interior rolling ball condition is
defined through the reach of the complement set. We shall see that such
a condition for r = |Ω|/P (Ω), up to some very weak regularity condition
on ∂Ω, is sufficient for existence. Just as we did in the previous section,
we notice that this weaker definition of interior rolling ball condition still
implies that Ω has no necks of radius r, see [48, Lem. 3.1] where a finer
result is proved. Assuming again this no neck condition, the criterion turns
out to be necessary.
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Criterion 5.2. Let Ω ⊂ R2 be a Jordan domain such that

(17) H1(Ω(1) ∩ ∂Ω) = 0 ,

where Ω(1) is the set of points of density 1 for Ω, and such that

|∂Ω| = 0 ,

where by this latter we mean that its boundary has zero 2-dimensional Lebesgue
measure.

(i) If it enjoys the (weak) strict interior rolling ball condition of radius
r = |Ω|/P (Ω), then the PDE (2) with boundary condition (3) has a
solution for γ = 0.

(ii) If Ω has no necks of radius r = |Ω|/P (Ω), then the PDE (2) with
boundary condition (3) has a solution for γ = 0 if and only if Ω
enjoys the (weak) strict interior rolling ball condition of radius r =
|Ω|/P (Ω).

Proof. By [48, Crit. 1.5] if Ω enjoys the (weak) strict interior rolling ball
condition for r = |Ω|/P (Ω), then Ω is the unique Cheeger set in itself, that
is,

h(Ω) =
P (Ω)

|Ω|
<

P (E)

|E|
,

for all proper subsets E. Hence, statement (a) of Theorem 2.1 holds. We
are left with checking that the hypotheses of Theorem 2.1 are met, as this
would imply that statement (c) of Theorem 2.1 holds, which is our claim. We
only need to check that (11)–(12) hold, as the other topological assumptions
follow from Ω being a Jordan domain.

Since Ω is a Cheeger set and it satisfies (17), we can apply [47, Thm. 3.4]
to find that Ω enjoys a Poincaré-type inequality, that is, hypothesis (12) is
met. Thus, applying [47, Lem. 3.5], we find that

H1(Ω(0) ∩ ∂Ω) = 0 .

This latter equality, paired with (17) and with the celebrated Federer’s
Structure Theorem implies that also hypothesis (11) is met.

To show the necessity when Ω has no necks of radius r, we reason as
follows. If the PDE problem (2)–(3) has a solution for γ = 0, then the
necessary condition

P (Ω)

|Ω|
<

P (E)

|E|
,

holds, for all proper subsets E. Since Cheeger sets always exist when Ω is
bounded, it remains proved that Ω is the unique Cheeger set in itself. Since
we also have |∂Ω| = 0, in virtue of [36, Thm. 1.4], we have that Ω = Ωr⊕Br,
with r = 1/h(Ω). The conclusion follows by [48, Lem. 3.1]. □

The regularity hypotheses requested in the three criteria went from piece-
wise Lipschitz to require that the set of points of density 1 for Ω inside the
boundary of Ω is negligible, paired with |∂Ω| = 0. This latter request is of
technical nature and due to the proof of [36, Thm. 1.4]. Even though it is
not very stringent, as it forces us to discard only plane filling curves à la
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Knopp–Osgood (see [46, Chap. 8]), we believe that it could be removed by
employing the regularity theory of Λ-minimizers of the perimeter.

Finally, as mentioned at the beginning, we recall that existence of a
solution of (2)–(3) for the choice γ = 0 also implies that for any choice
γ ∈ (0, π/2], which we sum up in the following corollary.

Corollary 5.3. Let Ω ⊂ R2 satisfy the general assumptions of Criterion 5.2
plus that of point (i). Then, the PDE (2)–(3) has solution for any choice
γ ∈ [0, π/2].

In this case, we do not have (and we should not expect) an “if and only
if” statement. Indeed, it is well-known that there are sets Ω such that one
has solutions of (2)–(3) for all angles γ ≥ γ0 > 0, with γ0 depending on the
geometry of Ω. This kind of phenomenon appears, e.g., when ∂Ω presents
angles smaller than π. For the sake of completeness, we mention that there
are some criteria taking into account the opening of the angle which provide
existence for γ ̸= 0, refer to [20, 51] and the examples therein.
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