TWO DIMENSIONAL GRAPH MODEL FOR EPITAXIAL CRYSTAL
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ABsTRACT. We consider a model to describe stable configurations in epitaxial growth of
crystals in the two dimensional case, and in the regime of linear elasticity. The novelty is
that the model also takes into consideration the adatom density on the surface of the film.
These are behind the main mechanisms of crystal growth and formation of islands (or quantum
dots). The main result of the paper is the integral representation of the relaxed energy.

1. INTRODUCTION

The ability to growth thin films of crystal over a substrate is a technology that has applications
in several areas, from surface coating, to lithography. Practitioners developed several techniques
to growth crystals over a substrate. Vapor deposition techniques are among the most important
and implemented: the substrate is immersed in a vapor, and mass transfer from the latter to
the former is responsible for the growth of the crystal. In order for the crystal to growth, two
conditions need to be satisfied: the vapor has to be saturated, and the substrate is kept at a
significantly lower temperature than the vapor. The former ensures attachment of vapor atoms
on the substrate, while the latter quick termalization of deposited atoms. In particular, this
implies that the entropic free energy is reduced after attachment.

In order to growth a crystal (namely, an ordered structure), attached atoms, called adatoms,
need to have sufficient energy to move from the landing location to a position of equilibrium.
This depends on the type of materials used in the vapor and for the substrate. Surface diffusion
of adatoms is therefore the mechanism used by thin films to growth as a crystal.

If the growth process is made in such a way that the first layers of the film arrange in the
same lattice structure of the substrate, the growth is called epitazial. Of course, the atoms of the
deposited material are stretched or compressed, since they are not in their (sometimes, stress
free) natural configuration.

The dynamics of the crystal growth process is extremely complicated, and it is influenced
by many factors. In particular, the ratio between the tendency of the adatoms to stick to the
substrate and their tendency to diffuse. Three mode of growth are defined based on this ratio:
the Frank-van der Merwe growth mode, where diffusion is stronger and thus the crystal growth
layer by layer, the Volmer-Weber groth mode, where diffusion is weaker, and therefore adatoms
tend to form islands on the substrate, and an intermediate one, the Stranski-Krastanov growth
mode, where the first monolayers the film behaves like in a rank-van der Merwe growth mode,
while after a certain threshold, it starts forming islands. Here we consider the latter case.

In the epitaxial Stranski-Krastanov growth mode, it is observed that, after a few monolayer
of material are deposited, the film accumulates too much elastic energy that it is no more
energetically convenient for atoms of the film to stick to the crystalline structure of the substrate.
Thus, relaxation process are employed in order to reduce the total energy of the system. The
most important ones are corrugation of the surface, and creation of defects. These are known
in the literature as stress driven rearrangement instabilities (see [23]). The former is responsible
for non-flat surfaces as well as for the appearance of islands (agglomerates of atoms, also called
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quantum dots) on the surface. With the latter, instead, the film introduces singularities in its
crystalline structure, such as cracks and dislocation.

It is extremely important to be able to control this extremely complex process in such a way
to reduce impurities as much as possible, or at least to be able to quantify them.

The physical literature on crystal growth is extremely vast. Here we limit ourselves to mention
the pioneering work [25] by Spencer, and Tersoff.

From the mathematical point of view, several investigation have been carried out, focusing on
different aspects of the growth process. There are both discrete models, and continuum models.
Here we focus on these latter. In particular, the work [4] by Bonnetier and Chambolle laid
the foundations for rigorous mathematical investigations of stable equilibrium configurations of
epitaxially strained elastic thin films in the linear elastic regime. The authors considered the
two dimensional case and proved an integral representation formula for the relaxed energy with
respect to the natural topology of the problem, as well as a phase field approximation. In [16],
Fonseca, Fusco, Leoni, and Morini proved a similar result by using an independent strategy, and
also investigated the regularity of configurations locally minimizing the energy.

Questions about the stability of the flat profile were investigate by Fusco and Morini in [21]
for the case of linear elasticity, and in [3] by Bonacini in the nonlinear regime. Moreover, in [2],
Bonacini considered the same question for the case where surface energy is anisotropic, showing,
surprisingly, that the flat interface is always stable.

It was not until 2019, with the work [12] of Crismale and Friedrich that the three dimensional
case was considered. Indeed, despite the existence of investigations for similar functionals in
higher dimension (see the work [II] by Chambolle and Solci, and [7] by Braides, Chambolle,
and Solci for the study of material void) were available, all of them considered elastic energies
depending on the full gradient of the displacement. On the other hand, it is know that physically
compatible models for elasticity must depend on the symmetrized gradient. The reason for such
a time gap between the two and the three dimensional case was technical: it was not clear
how to get compactness of a sequence of configurations with uniformly bounded energy. This
required the introduction of a new functional space: GSBD, the space of Generalized Functions
of Bounded Deformation, designed in the work [14] by Dal Maso in 2014 specifically to address
such an issue. The higher dimensional case was later considered in [13].

What all of the above continuum models are neglecting is the role of adatoms in the creation
of equilibrium stable interfaces. The importance of considering their effect was made clear by
Specer and Tersoff in [25], where the authors highlighted that considering the effect of adatoms,
and in particular of surface segregation of several species of deposited material, will change
the equilibrium configurations predicted by the model, and hopefully provide a more accurate
description of those observed in experiments.

This was made even clearer in the seminal paper [20] by Friend and Gurtin. The manuscript
unified several ad hoc investigations that focused on specific aspects on crystal growth or used
specific assumptions to derive the model. In particular, it was noted that considering adatoms
will, on the one hand, add a new variable to the problem, while, on the other hand, will make
the evolution equations pararbolic. Note that this is a huge mathematical advantage, since in
[17] and in [18], the authors had to add an extra term to the energy (that nevertheless has some
physical interpretation) to regularize the non-parabolic evolution equations obtained from the
model that does not take into consideration adatoms.

Following this direction of investigation, in [10], the first author, together with Caroccia and
Dietrich, started the study of a variational characterization of the evolution equations derived
by Friend and Gurtin. In that paper, the authors considered a variational model describing the
equilibrium shape of a crystal, where the elastic energy is neglected, and the crystal can growth
without the graph constrain. From the energy for regular configuration, a natural topology
was identified, and a representation formula for the relaxed energy was obtained. The result
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highlighted the interplay between oscillations of crystal surfaces and changes in adatom density
in order to lower the total energy. The result obtained in that paper was different from previous
investigations by Bouchitté (see [5]), Bouchitté and Buttazzo (see [6]), and Buttazzo and Freddi
(see [8]), due to the choice of the topology.

In a subsequent paper (see [9]), a phase field model was consider in a more general setting,
to pave the way towards the analysis of the convergence of the gradient flows.

In this paper, we continue this line of research by considering the case where the material
is deposited on a substrate, its profile can be described by a function, and the elastic energy
of the film is considered, as well as the surface energy of adatoms. The goal is to obtain a
representation formula for the relaxed energy in the natural topology of the problem. In order
to develop the main ideas needed for such investigation, this paper focus on the two dimensional
case. Forthcoming papers will consider the three dimensional case, as well as the dynamics, and
the situation when multiple species of materials are deposited at the same time.

1.1. The model. In this section we introduce the model that we will study. We consider the
two dimensional case. This corresponds to three dimensional configurations that are constant in
one direction. We work within the continuum theory of epitaxial growth. The main assumptions
of the model are the followings:

(i) The profile of the configurations of the thin film can be described as the graph of a
function;
(ii) We neglect surface stress;
(iii) The exchange of atoms between the substrate and the deposited film is negligible;
(iv) The atoms of the substrate do not change position.

The free energy of a configuration is the sum of a bulk energy and a surface energy. The
former is the elastic energy due to rearrangement of the atoms of the deposited film from a
stress free configuration (atoms sitting in their natural lattice position) to another disposition.
The latter, instead, stems from the net work needed to create an interface with a specific density
of adatoms. We first prescribe the energy of regular configurations, and will then obtain that of
more irregular configurations by relaxing the former.

We model the substrate as the set {(z,y) € R? : y < 0}. We consider a portion of the
deposited film in a region (a,b) x {y > 0}. To describe the profile of the film, let A : (a,b) = R
be a non-negative Lipschitz function. Consider its graph

Ly = {(z,Mz)) : z € (a,b)}, (1)
and its sub-graph (see Figure [2| on the left)
Q= {(z,y) €R? : z € (a,b), y < h(z)}. (2)

The set ) represents the deposited film, and the function h describes the free profile. We
first introduce the surface energy. The adatom density will be described by a positive function
u € LY(H.T},). Its energy will be

| wlut) @',

h

where with x we denote a point in R?, and ¢ : [0, +00) — (0, +00) is a Borel function such that
Inf ¥(s) > 0. (3)

Note that such a requirement has the physical interpretation that no matter what the adatom
density is, there is always an energy needed to construct a profile.

We now discuss the elastic energy. For each macroscopic configuration ), there are several
arrangements of atoms inside the thin film that produce that same profile. To each of these
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arrangements there is an elastic energy associated to: this energy will depend on the displacement
between the actual position of each atom and its position in the natural crystal lattice This
displacement will be described by a function v : €, — R?, and we assume it to be of class
Wh2(Qy;R?). The natural crystal configuration of the crystalline substrate and that of the
deposited film are represented by a function Ey : R — R2X2, defined as

te;1 @ eq if y >0,
0 if y <O.

Eo(y) =

Here, t > 0 is a constant depending on the lattice of the substrate, and {ej,e2} is the canonical
basis of R2. The crystalline structure of the film and the substrate might be slightly different,
but we assume their difference to be very small, namely |t| < 1. This assumption allows us to
work in the framework of linear elasticity. In particular, the relevant object needed to compute
the elastic energy is the symmetric gradient of the displacement

E(v) = %(Vv + Vo),

where Vv is the transposed of the matrix Vv. Note that E(v) is zero if Vv for any anti-
symmetric matrix (for instance, a rotation matrix).

Finally, we assume that the substrate and the film share similar elastic properties, so they
are described by the same positive definite elasticity tensor C. The elastic energy density will
be given by a function W : R?*2 — R defined as

2

1 1
W(A) = §A . (C[A] = 5 Z cijnmaijanm,
i,7,m,n=1
for a 2 x 2 matrix A = (aij)?,j:y The elastic energy will then be

/ W ( E(v(x) — Eo(y) )dx.
Qh,
Therefore, the energy of a regular configuration that we consider is given by

Flhvw = [ W(EQE) - Eo))dx+ [ w(ut) diix) (4)
Qp, Ty

where h : (a,b) — R is a non-negative Lipschitz function, u € L'(H!.T},), and v € W2(Qy; R?).
In the following, we will refer to such triples as regular admissible configurations, and we will
denote it by the class A, (see Definition [£.1)).

1.2. The main result. In order to study the relaxation of the energy F, we need to first discuss
what topology to use. This will determine the types of limiting configurations to expect, and
how these effect the value of the effective energy.

We first consider the notion of convergence for the profiles of the film. This will be the same
used in [16]. Here we give the heuristics for such a choice. There are several mechanisms that a
film can use to release elastic energy. Our model allows for three of these: rearrangement of atoms
inside the film, corrugation of the surface, and creation of cracks. The topology on the profile
will be concerned only with the last two. How can a crack form? There are two mechanisms: as
a fracture inside the film, or when the free profile becomes vertical, like it is depicted in Figure
on the top. We choose to model situations where only the latter is allowed. Note that this forces
cracks to be vertical segments touching the free profile. What we want to avoid are configurations
where cracks happen outside of the film (Figure|l{on the bottom). Thus, we need to differentiate
the two situations. The right way to do it is by considering the Hausdorff convergence of the
complement of the sub-graphs (the so called Hausdorff-complement topology). We note that, in
the latter case, the sets R?\ ,, will converge to the limiting configuration R?\ Q, where there is
no vertical cut (see Figure [ljon the bottom). This topology also accommodates for corrugations



GRAPH EPITAXY WITH ADATOMS 5

Ficure 1. Two ways that a sequence of graphs can close up: on the top by
giving rise to a crack inside £, while on the bottom to a crack outside §2;,. We
want a topology that sees the crack in the former case, but not in the latter.

of the profile.

We now consider the convergence of the displacements. Since the energy has quadratic growth
in the symmetric gradient of the displacement, the natural topology will be the weak W12
topology. In particular, in order to take case of the fact that the displacements are defined in
different domains (the subgraphs of the profiles), we take advantage that the complement of
these latter are converging in the Hausdorff sense. Thus, local convergence in the final domain
will do the job.

Finally, we discuss the topology for the adatom density. In [I0] the idea was to see the adatom
density as a Radon measure g concentrated on the graph describing the profile. Namely, for
each u € LY(T'},), we consider

po= uH Ty,

This identification allows not only to consider concentration of measures, but it is the correct
ingredient to exploit the interplay between oscillations of the profile and change in adatom
density. Thus, for the adatom density, the weak® convergence of measures will be used.

The question we now have to address is what are the possible limiting objects that we need to
consider. This is a discussion of compactuness of sequences (hg, vk, uk)r with uniformly bounded
energy, namely such that

sup F(hy, vg, ug) < +o0.

keN
We start by investigating the convergence of graphs, and the others will follow. Thanks to the
lower bound on the energy density v, the energy F is lower bounded by the length of the
graph of hp. Indeed, there exists ¢ > 0 such that

sup ¢cH!(T'y) < sup Y(ug) dH' < 400
keN keN Cpy,
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b a b

F1GURE 2. A regular configuration on the left, and a possible limiting
configuration on the right: cracks and jumps can appear.

which in turn is a lower bound on the total variation of hy:

sup H'(T,) —sup/ /14 R ]2dx>/ |h| dz.
keN keN

Thus, if a mass constrain on the area of i, or a Dirichlet boundary condition at a and
b are imposed, we get that the limiting configuration will be the sub-graph of a function
h: (a,b) — [0,+00) of bounded variation. In particular, since we are in the one dimensional
case, such a function will have countably many jumps and countably many cuts.

Now, we consider the convergence of the displacement. Due to the choice of the topology,
the limiting displacement will be a function v € W12(Qy;R?). Note that one of the technical
advantages of working in dimension two is that we can avoid having to rely on functions of
bounded deformation, and use instead Sobolev functions and the free profile to describe cracks.

Finally, let us discuss the adatoms densities. Each of them is seen as the Radon measure
’LLkHll_Phk. By imposing a mass constrain on the total amount of adatoms, we have that their
total variation is bounded, and thus they converge (up to a subsequence), to a Radon measure
p. Noting that each py is supported on the graphs I',,, and these latter also converge in the
Hausdorff sense to the graph of the limiting profile A, the limiting measure u will be supported
onﬂFb

Therefore, the class A of limiting admissible configurations we will need to consider are the
triples (h,v,u), where h € BV(a,b), v € W2(Q;;R?), and i is a Radon measure supported on

I'y,. Moreover, we denote by I'f the cuts of h, and by T, the rest of the rest of the extended
graph of h, namely regular part and jumps (see Figure [2l on the right, and Definition for the
precise definition).

The two main results of this paper provide representations of the relaxation of the functional
F when a mass constrain is in force, and when it is not.

Theorem 1.1. The relazation of the functional F defined in , with respect to the above
topology, is given by

Flhov,p) = | W(E((@)—Eo(y) )de+ | d(u(x) dH @)+ [ ¢ (u(@)) dH' (2)+0p°(Th),
Q T re

where QZ is the convex sub-additive envelope of 1 (see Definition , the function ¢° is defined

as

Pe(s) = min{lZ(r) + QZ(t) D s=r+t},
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for all s € [0,400), and

0 := lim @: lim ve)

t—too t t—+oo t

is the common recession coefficient ofzz and of ¢°.

Theorem 1.2. Fiz M,m > 0. Denote by A,(m, M) the triples (h,v,u) € A, such that
/ w(z) dH (z) = m, £2(Qp N {22 > 0}) = M,
'y

and by A(m, M) the triples (h,v,u) € A such that
w(lyp) =m, L2 (N {zy >0}) = M.
Define

H(h,v,u) =

+00 else.

{ F(hyv,u) if (h,v,u) € A.(m, M),

Then, the relazation of H in the above topology is given by

- gh,v,,u Zf ha“vM GATTL,M,

%(h,v,m:{ (hovo) if (b, ) € Alm, M)
400 else,

where G(h,v, ) denotes the right-hand side of the representation formula of Theorem |1.1]

Namely, the mass constrain is maintained by the relazation procedure.

Remark 1.3. In general, it is not possible to say more on the singular part of the measure.

Remark 1.4. The more general case, where the adatom density is vector valued (corresponding to
different materials deposited on the substrate) and the surface energy is anisotropic are currently
under investigation.

2. STRATEGY OF THE PROOF

Now, we would like to comment on the strategy to prove the main results. First of all, in
Theorem we will prove the liminf inequality in the case for the case of no mass constrain,
and in Theorem the limsup inequality for the case with the mass constrain. These theorems
will give both Theorem [I.T] and Theorem [I.2]

Similarly for functional considered in [16], the bulk and the surface terms of the energy do
not interact in the relaxation process. Since the former is quite standard, we will comment on
how to deal with the latter. In this lies the novelty of the paper. Our strategy relies on ideas
inspired by results obtained in [10]. The main difference with the case treated in that paper is
the graph constrain. This reflects on the fact that oscillations of the thin film profile must be in
the vertical direction in order to preserve such a constrain, and that cracks can be created only
in a specific way. The former turns only gives technical challenges, while the latter is responsible
for the different energy densities 1 and 1¢. Despite this, note that the recession coefficients for
the singular part of the measure in the two parts of the extended graph (the cuts, and the rest
of the graph) agree.

Let us discuss the strategy for the liminf inequality for the surface terms. We avoid mentioning
the fine details and focus instead on the main ideas. Let (hg)ren be a sequence of Lipschitz
functions such that R?\ 2, converge to R\ Qy,, for some function h of bounded variation. This
implies that 2, converges to Qp, in L' (see Lemma [3.8). Let (uy)ren the be adatoms densities
defined on each Ty, and let g = u dH' T, + p® be the limiting measure. We need to prove that

.. 1 o 1 c 1 s
hmlnf/Fhk U (ug(x)) dH' (x) 2/~ Y(u(x)) dH'(x) +/F,Clw (u(x)) dH'(x) + 60p°(Tr). (5)

k—00 T
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Fhk N Cg

FicurE 3. In order to get the liminf inequality, we separate the effects on a
neighborhood C; of the cut, and outside of it.

The idea is to separate the contribution that the energy on the left-hand side has on a neighborhood
of each cut of h, and on the other part of the graph of h. Despite there might be a countable
number of cuts, it is just a technicality to show that we can reduce to finitely many of them (see
the beginning of the proof of Theorem |6.1). Thus, let us assume that the final configuration
described by h has finitely many cuts. Since the energy is local, for the sake of simplicity, we
will consider the case where there is at most one cut. For € > 0, we consider a rectangle C.
around the cut (see Figure |3)) whose height is ¢ smaller than the height of the profile at that
point. This is to avoid this energy interacting with that of other smaller cracks.
Now, we claim that

11}g§1f /F hk\caip(uk(x)) dHi(x) > /f h\CEdJ(u(x)) dHY(x) + 0ps (T, \ C.), (6)
and that

. . c 1 s c

lim in /F hkmc&zﬁ(uk(x)) M (x) > /F . (u(x)) dH'(x) + 055N C). (7)

Given () and (7)), we obtain the desired liminf inequality by sending € to zero.

To obtain both (@ and @, we rely on (a localized version of) the lower semicontinuity result
proved in [I0, Theorem 5| (see Theorem . In the first case, the idea is to view the graph of
each hy, and the regular and the jump part of extended graph of h as (K ~!-equivalent to) the
reduced boundaries of the corresponding epigraphs.

For , we instead have to consider the contributions of the surface energy from both sides of
the crack. Therefore, we reason as follows: the rectangle C in Figure [3]is split by the vertical
line passing through the crack in two parts, one on the left and one on the right. Call them Cf ,
and C7, respectively. Then, we consider the sets §y,, NC¢ and Qp, NCL. Since R?\Qy, — R2\Q,
in the Hausdorff topology, they converge in L' to Cf , and C7, respectively. Moreover, it holds

wpH Ty, N CE St = uf T N CL + 4l
upH' Ty, NCT 5y = u"LT§ N Ce + il
Thus, thanks to the lower semicontinuity result (see Theorem [3.13)), we get that

Jim inf P (up(x)) dH (x) > / Dl (%)) dH (%) + 0TS N C)
k=00 Jry, nCt I5\C:
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and

liminf/ Y (up(x)) dHi(x) > / J(u’(x)) dH (x) 4+ 0us (TS N C.).
koo Jry, ner re\Ce

We then show that u’ 4 u" = u, and p’ + u- = ps. Thus, by definition of ¥¢, we obtain

Ve (u(x)) < P (u”(x)) + (v (x)).
This gives , and, in turn, the desired liming inequality for the surface energy.

We now discuss the strategy for the limsup inequality for the surface energy. This is more
involved, and requires several steps. The idea is to reduce to the situation where the limiting
profile h is Lischitz, and the adatom measure p is a piecewise constant density (more precisely,
it is possible to find a square grid where the density has the same value on each of the parts
of the graph inside each of these squares). In such a case, in Proposition we construct a
sequence (hg,uy)x that satisfies the mass constrains such that

lim sup /~ b (up(x)) dH (x) < /~ I(ux)) dH (). (8)

k—o0 Fhk IV

Without loss of generality (see Lemma , we can assume 1 to be convex. Then, 1 and zz
agree on [0, so), for some so € (0,400]. In particular, if sy < 400 the function 1 is linear on
(s0,+00) (see Lemma [3.11))). Thus, in squares where u < sg, we define hy, as h and uy as u.
We just have to care about those squares @@ where u > sg. The energy in such a square is

Y(u)(Tp N Q). The idea is to write
Yu)yH (Th N Q) = P(rso)H' (Tn N Q) = r(s0)H (T N Q) = t(s0) [rH' (Th N Q)] ,

for some r > 1, where in the last step we used the fact that ¥ (so) = ¥(sp). Then, we want to
obtain the quantity 7H'(I';, N Q) as the length of an oscillating profile hy, in @, and define wy,
as sg. This ensures the validity of . Such a construction is done in Proposition where
we prove an extension of the so called wriggling lemma (see [10, Lemma 4]). Namely, given a
Lipshitz function f : (a,b) — [0,400), and a number r > 1, there exists a sequence of graphs

fa i (a,b) — [0,+00) with H' Ty, > uH' Ty as n — oo, such that
H!(Ly,) =11 (Ty),

and fn(a) = f(a), fu(b) = f(b), for each n € N, and satisfying other technical properties (see
Proposition for the precise statement). What the above inequality is using is a quantitative
lack of lower semicontinuity of the perimeter. The difference with the result in [I0, Lemma 4]
is that we only vertical oscillations are allowed. Moreover, we also fill in details that were not
fully explained in that paper. Note that in our case, there is an additional technical difficulty
to be faced: ensuring that both mass constrained are satisfied by each (hg,uy) will be achieved
by carefully modifying both the profile and the density. Note that modifications of the graphs
have to be done in such a way that the profile is always non-negative.

In order to reduce from a general profile (h,v, u) € A(m, M) to the above case, we argue as
follows. First of all, by using averages, we prove that it suffices to consider the situation where
the adatom measure p is a piecewise constant function (see Proposition . Then, we need to
approximate a general profile h € BV (a,b) with a sequence of Lipschitz profiles (hj)ken, and
corresponding piecewise constant adatom densities (ug)gen, in such a way that

lim [ J(uk(x)) dH! (x) —}—/FC ¥° (up(x)) dH' (x)

k—00
T, G

- / J(u(x)) A (x) + / ) M), (9)
r re

This is done in Proposition [7.7] In order to obtain the approximation of the profiles, we employ
an idea by Bonnettier and Chambolle in Section 5.2 of [4], later adapted to the case of graphs
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in |16, Lemma 2.7|: to use the Moreau-Yosida transform to define a Lipschitz approximation of
h to the left and to the right of each cut (again, we are reducing to the case of finitely many
of them). To also approximate the cracks, we use a linear interpolation. As for defining the
adatom density on the graph of hy, we exploit the fact that the Hausdorff convergence of R?\ (),
to R?\ © implies that the graphs (hy)ren are converging in the Hausdorff topology to h. In
particular, for k large enough, the graphs of the hi’s will be inside the same squares where the
graph of h is. This allows to define u on the part of the graph of hj inside a square, as the value
that u has inside that square. Then, the convergence of the energy required in (9) is ensured
since the length of the graph of hj inside each cube converges to the length of h inside the same
cube.

3. PRELIMINARIES
We here introduce the main definition and basic results that will be used throughout the
paper.

3.1. Function of (pointwise) bounded variation in one dimension. We start with functions
of (pointwise) bounded variation in one dimension. A comprehensive treatment of this topic can
be found in the book [24] by Leoni.

Definition 3.1. Let h: (a,b) — R. We say that h is a function of pointwise variation in (a,b)
if Var(h) < 400, where

k
Var(h) := sup {Z |h(z;) — h(xi_1)|} :
i=1
where the supremum is taken over all finite partitions of (a,b). In this case, we write h €
BVP(a,b).

The main properties of functions of pointwise bounded variations that will be used in the
paper are collected in the following result (see [24] Theorem 2.17, Theorem 2.36]).

Theorem 3.2. Let h € BPV(a,b). Then, the limits
h(z™) = lim h(y), h(z™) = lim h(y),
y—x—

y—xot
exist for all x € (a,b). In particular, if we define the functions
B () = min{h(z ), h(z )}, bt () = max{h(zt), h(z)},

we have that there are at most countably many points x € (a,b) for which h™(x), h*(z) and
h(x) do not agree. Finally, h admits a lower semi-continuous representative.

We now connect functions of pointwise bounded variation with those of bounded variation.

Definition 3.3. Let u € L'(a,b). We say that u has bounded variation in (a,b) if there exists

a Radon measure p such that
b
/ up' dr = —/ @du,
a (a,b)

for all ¢ € Cl(a,b). In this case, we write u € BV(a, b), and we denote the measure u by Du.

The relation between functions of pointwise variation and functions of bounded variation is
given by the following result (see [24], Theorem 7.3|).

Theorem 3.4. Let u € BV(a,b). Then, there exists a right-continuous function h € BVP(a,b)
with u(x) = h(x) for a.e. € (a,b) such that Var(h) = |Dul(a,b).

Finally, we recall that the subgraph of a function of bounded variation is a set of finite
perimeter (see [22, Theorem 14.6]), and that its reduced boundary coincides with the non cut
part of the extended graph (see [15, Theorem 4.5.9 (3)].
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Lemma 3.5. Let h € BV(a,b). Then, the epigraph Qy has finite perimeter in (a,b) x R, and
HY(TH A9*Qp) =0,

where 0*Qy, s the reduced boundary of Qp,.

3.2. Hausdorff convergence. We now introduce the Hausdorff metric.

Definition 3.6. Let E, F c RY. We define
dp(E,F):=inf{r >0: ECF,, F C E,},
where, for A C RY and r > 0, we set A, :={x+y:2 € A,y € B,.(0)}. Moreover, we say that
a sequence of sets (Ey), with E, C RN Hausdorff converges to a set E C RY, and we write
E, 3 B, if dy(Ey, E) — 0 as k — cc.
In order for the Hausdorff distance to actually be a distance, we need to work with compact

sets. This will also give compactness of the metric space. This latter fact is known as Blaschke
Theorem (see [I, Theorem 6.1]).

Theorem 3.7 (Blaschke Theorem). The family of compact sets of RN endowed with the Hausdorff
distance is a compact metric space.

The convergence of epigraphs in the Hausdorff-complement topology we use implies their L'
convergence, as it was shown in [16, Lemma 2.5].

Lemma 3.8. Let (hi)r C BV(a,b) be a sequence of lower semi-continuous functions such that

sup [Dhy|(a, b) < +oo, R2\ Qp, 5 R2\ A4,
keN

for some open set A C R%. Then, there exists h € BV (a,b) such that A = Qy,, h, — h in L'
Moreover, Qy, — Qy, in L.

We now relate the Hausdorff metric with the Kuratowski notion of convergence (see [I}
Theorem 6.1]).

Proposition 3.9. Let (Ey)i, with Ex C R%, and let E C R%. Then, Ej A g if and only if the
followings hold:

(i) Any cluster point of a sequence (xy)y, with xy € Ey, belongs to E;
(ii) For any x € E, there exists (zy)k, with xy, € Ey, such that xj — x.

These equivalent properties are those defining the so called Kuratowski convergence.

3.3. On the surface energy. We now recall two results on the surface energy. The first is a
combination of [I(, Lemma A.11] and [9, Lemma 2.2].

Definition 3.10. Let ¢y : R — R. We define its convez envelope »** : R — R as
YV (x) == sup{p(z) : p is convex and p < P},
for all x € R.
Lemma 3.11. Let ¢ : [0,400) — (0,400). Then
i
Namely, in order to compute the convex sub-additive envelope of 1, we can assume, without loss

of generality, that v is convex.
Moreover, assume 1 to be convex. Then, there exists so € (0,+00] such that

~ s s < 8o,
w(s):{%ﬁ() < so

Os s > S0,

where 8 > 0 is such that 1Z is linear.
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Remark 3.12. Note that, if ¢ is differentiable at sq, then 6 = ¢)'(sg). In particular, if sp < +o0,
it holds that 1 is linear in [sg, +00).

The following result proved in [10, Theorem 3] gives a lower bound for the surface energy.

Theorem 3.13. Let E C RYN be a set of finite perimeter and p be a Radon measure supported
on OE. Let A C RN be an open set with u(0A) = 0. Let (Ep)reny C RY be a sequence of sets of
finite perimeter, and let (uy)pen, with up € LY(OE}) be such that

(i) ExNA— ENAin L'(R?);
(i1) upH'LO*EL N A > pA.
Then,

lim inf / (uy) dH > / P(u) dH + 0p (A),
O*ErNA O*ENA

k—o00

where 1 is as in Definition .

4. SETTING

In this section we give the rigorous definitions of the objects discussed in the introduction.
We start with the set of admissible configurations.

Definition 4.1. Let Q Cc R? v € WH2(Q;R?), and p be a Radon measure in R?2. We say
that the triple (2, v, p) is an admissible reqular configurations if there exists a Lipschitz function
h: (a,b) — [0, +00) such that

0= Qh7 n= quLFha
for some u € L*(T,). We denote by A, the family of all admissible regular configurations.
We now define the energy for regular configurations.

Definition 4.2. Next, we introduce the energy for regular configurations. We define 7 : 4, — R
as

F(Q,v,u) /W — Eo(y dx—i-/w )) dH!(x),
for every (,v,u) € A,.

We now introduce the more general configurations that will be treated.

Definition 4.3. Let Q C R?, v € W12(Q; R?), and p be a Radon measure in R?2. We say that
the triple (Q, v, u) is an admissible configurations if there exists a function h € BV (a,b) with
h > 0 such that

Q=Qy, n= UHlLFh e
where 4° is the singular part of p with respect H'LT),. We denote by A the family of all
admissible configurations.

In order to define the relax energy, we need to introduce some notation.

Remark 4.4. In Theorem we introduced the functions h*. Note that
h™(x) = liminf h(y), ht(z) = limsup h(y).
y*XE

y—a
In particular, if € (a,b) is a point of continuity for h, then h™(x) = h*(z) = h(x).
Definition 4.5. Let h € BV(a,b). We call

Ty = {(z,y) €R*> : x € (a,b), h(z) <y < h'(z)}
the extended graph of h. Moreover, we define:
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e The jump part of T'y, as
) = {(z,y) €R® : z € (a,b), h™(z) <y < h™(2)};
e The cut part of I'y, as
f={(z,y) €eR* : w € (a,b), h(z) <y < b~ (2)};
e The regular part of I'y, as
ri=T5\ (T UTY).
Moreover, we introduce the notation fh =1} U F{L.
Remark 4.6. Note that '
Ip=T,UT; =T} Ul UTY,

holds for every h € BV(a,b). Moreover, when there is no room for confusion, we will drop the
suffix h in the notation above.

We now define the notion of convergence that we are going to use to study our functionals.

Definition 4.7. We say that sequence (Q, vk, ux)r C A converges to a configuration (2, v, u) €
A if the following three conditions are satisfied:

(i) R%\ Q4 B 2 \ © in the Hausdorff convergence of sets;
(73) v — v weakly in Wéf(Q),
(iii) pr — p *+-weakly in the sense of measures;
as k — oo. We will write (Q, vk, k) — (2,0, 1) to denote the above convergence.
Remark 4.8. Note that, if K C 2 is a compact set, then there exists ky € N such that K C
for all k > kg. Therefore, the convergence of the functions vy’s is well defined.

Now we are going to define the setting for our relaxed functional.
Definition 4.9. A function 9 : [0,4+00) — R is said to be sub-additive if
P(s+1t) < (s) +(t),
for any s,t > 0.
Definition 4.10. Let ¢ : [0,400) — R. The convez sub-additive envelope of 1 is the function

¥ : [0,400) = R defined as

P(s) == sup{f(s): f:[0,400) = R is convez, sub-additive and f < 1}.
for all s € [0, +00).

Remark 4.11. Note that 1; is the greatest convex and sub-additive function that is no greater
than .

Definition 4.12. Let ¢ : [0, +00) — R. We define the function ¢°: [0, +00) — R as

We(s) == min{i(r) + (1) : 5 =1 +1},
for all s € [0, +00).
Remark 4.13. 1t is easy to see that the function 9 is well defined. Indeed, fix s > 0. Since ¥ is

defined only for non-negative real numbers, by compactness there exist a,b > 0 with s =a+b
such that

Ve(s) = ¥(a) + ¥(b).
Moreover, note that 1¢(0) = 2¢(0). This is consistent with the result obtained in [16], where
they consider the case 1) = 1. We will prove in Lemma that 1€ is convex and sub-additive.
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Definition 4.14. Let ¢ : [0,4+00) — R. We define the recession coefficients of J and ¢ as
~ i Cc
0 := lim @ and 6°:= lim M

s—+4o0 8 s—too 5

respectively.

In Lemma we will prove that 6 = 6. The common value will be denoted by 6. We are
now in position to introduce the candidate for the relaxed energy.

Definition 4.15. Let G : A — [0, +00) be the functional defined as
G(Q,v, 1) /W — Eo(y dx+/1j) ) dH(x) + / P°(u(x)) dH (x) + Ops(T),
FC
where 6 is the common recession coefficient of 1/) and °.

5. TECHNICAL RESULTS

In this section we collect the main technical results that will be needed in the proof of the
integral representation of the relaxation.

Lemma 5.1. Let ¢ : [0,+00) — R. Then, the function ¢ (see Definition[{.129) is conver and

sub-additive.

Proof. Step 1. We prove that 1¢ is sub-additive. Fix z > 0. Then, by definition of 1)¢(z), there
exist x,y > 0 with z = z + y such that

V°(2) = () + b (y).
Thus,
Vo(2) = %(@) + () > (e +y) = ¥(2),
where last inequality follows from the sub-additivity of 1Z Moreover,
Yz +w) < P(2) + P(w) < Y°(2) + ¢ (w),
for every z,w > 0.

Step 2. We prove that ¢° is convex. Let z,w > 0 and A € [0,1]. By definition of ¢¢(2), and
of ¥¢(w), there exist 21, 29, w1, wy > 0 with z = 21 + 22 and w = w; + we such that

Vo(2) = P(z1) + P(22), Yo (w) = P(wr) + Plws).
Note that
Az 4+ (1= Xw = Az + 22) + (1 = X) (w1 + wa)
= ()\21 +(1- )\)wl) + (>\22 +(1- /\)w2).
Thus, we get that

Az 4 (1= N)2) <d(Azr + (1= Nwt) + 9 (Azz + (1 — Vo)
< Xp(21) + (1= Nb(wn) + Mb(22) + (1= A)eb(ws)
= M%) + (1= Vi(w),
where, in the second step, we used the convexity of J O
We now prove that the recession coefficients of 1; and of 1, defined in Deﬁnition coincide.
Lemma 5.2. Let ¢ : [0,400) — R. Then, 0 = 6°.
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Proof. We first prove that 6¢ < 0. Indeed, since ¥¢(s) < 2{5(5/2), for all s > 0, we have that

¢ = 1im 2 < Jim 215(;):5.

s—+oo S s—+00 §
We now prove that 6 > 6. Fix z > 0, and let x,y > 0 with z = x + y such that
V¥(2) = $(2) + P(y)-
Then, we get
Vo(z) = (@) + dly) = ¥(2),
where last inequality follows from the sub-additivity of TZ Therefore,
v (s) ¥(s)

= lim ——= > lim ——= =46.
s——+00 S s—+o0 S

This concludes the proof. O
An important result that will be used several times is the following.
Lemma 5.3. Let h € BV(a,b) be lower semi-continuous, and let ¢ > 0. Define
Pe):={z€(a,b): JyeTy st h(z) <y<h (z)—c}.
Then, P(e) is a finite set.
Proof. By [1l, Corollary 3.33], it holds that

IDA|(a,b) = I |l L1(an) + DB () = h(x)] + D] (a, b),
zes

where S denotes the set of points € (a,b) such that ™ (z) > h(z), and D is the Cantor
part of the measure Dh. we recall that from Theorem we have that Jj, is at most countable.
Therefore, we obtain that

> b (@) = h(@)] < +o0.

zeS

Notice that the set P(e) corresponds to points in S where the quantity h™(x) — h(z) is at least
€. From the convergence of the series above, we get the desired result. (]

We now prove a result that will be needed in the limsup inequality.
Lemma 5.4. Let r > 0, and let {z;};en be an enumeration of Z*. Define
Q; =1 (2 +(0,1)%).

Let h € BV (a,b), and let (hy)x, be a sequence of Lipschitz functions such that R*\ Qy, Ri R2\ Qp,,
as k — oo. Then, there exists v € R?, and k € N such that the grid defined as

Q] =0+ Qj
satisfies:

(a) The intersection between the graph of h and the boundary of the new grid is finite, namely
1O N (| 0Qy)) < +oo.

JEN
(b) We have that
HU(TNQ;) #0 if and only if  H'(IT'NQ;) #0,

for every k > k.
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Proof. e first prove (a). We first consider an horizontal translation. Since h € BV(a,b), it has
at most a countable number of jumps and cuts. Therefore, there is v; € R such that

HO(MuT) N [ 0((v1,0) + Q;)]) < +oc.
JEN

Now we need to find a suitable vertical translation. Using the coarea formula (see [I, Theorem
3.40]), we infer that

Per({z € (a,b) : h(z) > t}) < 400,

for almost every ¢ € R, where Per denotes the perimeter. Since we are using the lower semi-
continuous representative of h, the sup-level set {z € (a,b) : h(x) > t} is open for all t € R,
which yields that

Nz € (a,b) : h(x) >t} ={z € (a,b) : h(z) =t}.
Thus, we obtain that
HO({z € (a,b) : h(z) = t}) < +0o0,
for almost every t € R. Let D C R defined as
D:={t>0:H"({z € (a,b) : h(z) =t}) = +o0}.
By definition, we have that |D| = 0. Let r > 0, and, for every ¢t > 0, set
G(t)={rj+t:jeZ}.
We now claim that
{t € (0,7): G(t)N D # 0} = 0.
First, note that if s,¢ € (0,r), with s # ¢, we have G(¢t) N G(s) = (). Now, define
Dj = D0 [rj, (r+1)j],
l~)j =Dj —rj.
By definition D; C (0,7) and |D;| = |D;| = 0,for every j € Z. Tn conclusion, we notice that
{te(0,r):Gt)ND #0} = | J D;.
JEZ

The claim follows from the above equality.
By proving the claim, we infer the existence of vy € R such that

HO(D N | U 9((0,v2) + Q;)]) < +oo.

In conclusion the translation v := (v1,v2) is the one we were looking for.

We now prove part (b). Let v € R? be the vector found above, and let @j be the translated

squares. If the graph of h is contained in a single square @j, then there is nothing to prove.
Thus, we assume that this is not the case.
Fix 5 € N such that

HU(TNQ;) #0
We will prove that there exists k(j) € N such that
HY LN Qj) # 0.
for all k > k(j). Let z € Fﬁ@j. By the Kuratowski convergence, there exists () with zx € T'y,

for all k € N such that z; — = as k — oo. Since ij is open, there exists k() € N (depending
also on z, but this is not a problem) such that x;, € T, N Q; for all k > k(j). Using the fact that
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the graph of h is not entirely contained in the open square @);, and that the extended graph of
hy is a connected curve, we obtain that

H' (Tp N Qj) # 0

as desired. Since h € BV(a, b), it is bounded, and hence contained in a finite number of squares.
Let k1 € N be the maximum of the k(j)’s.

We now prove the opposite implication. Let 7 € N be such that
HYT NQ,) = 0.
Then, by Kuratowski convergence and the fact that @j is open, we infer that there exists E( j)eN
such that for all k& > k(7) it holds
Hl(Fk NQ;) =0
Again, let ks € N be the maximum of the k(j)’s.
Setting k = max{k1, ko}, we get the desired result. O
Finally, we prove a result about the so called wriggling process. This was introduced in [10],
Lemma 4] to exploit the quantitative loss of lower semi-continuity of the perimeter in order to
recover the relaxed energy density from . The difference with this latter is that, in our case,

only vertical perturbations are allowed. Moreover, we impose the oscillating profiles to stay
below the given function.

Proposition 5.5. Let h : [a, 8] — R be a non-negative Lipschitz function and let r > 1. Then,
there ezists a sequence of non-negative Lipschitz functions (hy)y such that:

(i) H'(Ty) = rH'(T);
(i) h(a) = hi(a), and h(B) = hi(B), for every k;
(7it) h < hg, for every k;
(iv) hg — h uniformly as k — oo;
(v) H'WLTy = rHUT, as k — oo,
where we used the notation I'y := Ty, , and I' := T'y,.
Proof. Step 1. Fix a < p < ¢ < 5. We prove the existence of a sequence (&) of Lipschitz
functions & : [p, ¢] — [0, 4+00), that satisfies
(i) M} (T,) = 1 (D);
(#') h(p) = & (p), and h(q) = & (q), for every k;
(13i") h < &, for every k;
(iv") & — h uniformly on [p,q|, as k — oo,

Notice that if » = 1 it is enough to consider the constant sequence & = h, for each k. Thus,
fix r > 1. Let (Ax)r C (0,1) be an infinitesimal sequence such that 0 < Ay < ¢ — p for each
k € N, and kX, — oo as k — oo. For each k € N, define the function n; € C([ ,q]) as

x_
- e [p.p+ M),
k
ne(z) =41 T € [p+ Mgy g — i),
l’_
5 wele- el
k

For each k € N, let ¢, > 0 that will be chosen later, and define the non-negative Lipschitz
function & : [p, q] [0,400) as

&.(x) = h(z) + (% - %\ Sin(th)\>nk(x). (10)
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First of all, note that & — h uniformly. Indeed, this follows from the fact that Qi — € as
k — oo in the Hausdorff sense. Moreover, from the definition (10]), we get that

0<h<&, h(p) = & (p), h(q) = &k(q)-

We claim that it is possible to chose t; > 0 such that H!(T¢,) = rH!(T), for every k € N. In
order to show that, for each k € N, let fj : [0,400) — (0,4+00) be defined as

q
Fult) = / NN AL
P

where

2 1 .
Hy(z,t) = h(z) + (% - Sln(tx)\)nk(x). (11)
We claim that:
(a) limy 400 fr(t) = +00, for every k € N;
(b) im0 f(0) = HI(D).
Therefore, since fj is continuous for every k € N, and r > 1, it is possible to chose t; > 0 such

that fi(ty) = H'(D¢,) = rHY(T), for every k € N. We now prove claim (a) and (b) in two
separate sub steps.

Step 1.1. We now prove claim (a). First, notice that

q q—Ax
Folt) = / 1T Ol (w2 dz > V1T O Hy (2,12 da.
p P+

Now, fix £ € N and consider the set
Zy={x € (p+ A\pyq— Ag) : cos(tx) > 1/2}.
We now prove that
inf | Z,| > 0. (12)
t>0

In order to prove (12), we first show that |Z,| > 0, for n € N. Set I :== (p + Ap,¢ — \;) and
consider the function g : I — {0, 1} defined as

g(:L‘) = ]l{cos(y)zl/Z}(x)v
and extend it periodically on R. Notice that, for n € N,

g(na:) = ]l{cos(ny)zl/Z}(x)'
By applying the Riemann-Lebesgue Lemma, we get that
|Zy| = [{cos(nz) > 1/2} N 1| = /g(nx) dz — ][g(:n) dz >0, (13)
I I

as n — oo. Now we use the above result to show (12)). Let t € (n,n + 1). We have that
|Z¢| = [{cos(tx) > 1/2} N |

and that
1
/g(t:c) de = / g(z)dz
I tJer
As
g(Z) = Z ]1{7§+2m71'§y§%+2m7r}a (14)
meZ

we can define the following families of intervals. Set
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We then have that, by (14), that
2m . o 2m o
— B) < |Zy] < — . 15
THOB,) < 2] < STHO(A) (15)

Since t € (n,n+ 1) and by and , we get that
27 27
2] > 2T 2
3(n+1) 3(n+1)
47 4

Z/Ig(nm)dx—g(n+1) >C_73(n—|—1)’

where C' > 0 is a constant independent of n. We conclude our claim by letting n — oo.

HO(Bn) = (H"(An) — 2)

Note that for every t > 0, on Z; we have ng(x) = 1 and cos(tz) > 1/2. Thus, we get that
t 't
t) > / \/1 + W (x)2 + Z cos(tx) Z cos(tz) — 24 dz
Z -

t Mt
> ! 2 _ —
_/Zt\/l—l-h(x) +kcos(ta:) % 24d

t t
> 1+ — tr)| — — 2€ d 16
_/Zt\/—i-kcos(a: 5% x, (16)
where £ is the Lipschitz constant of h. By choosing ¢ > 0 such that
t > 4k/,

from ([16), and from cos(txz) > 1/2 on Z;, we obtain

/ \/1+—24dx (17)

Thus, from and , we conclude that
lim fi(t) = +oo.

t——+o0

Step 1.2 Now we prove claim (b). Notice that

D+ Ak q—Ak
k p

+Ak

/Ak \/1+ W (z +ka> da. (18)

Since the sequence (\g)g is such that kA — oo, and ||A/|| L~ < +oo since h is Lipschitz, it holds
that

W) +

sup sup By

keN z€[p,q]
Thus, letting £ — oo in , we obtain

lim f5,(0) = #'(D).

k—o0

< +00.

This concludes the proof of b.

Step 2. We now prove the statement of the lemma. Fix r > 1, otherwise the statement is
trivial. For k € N, divide the interval [«, ] into k subintervals ([af, afﬂ])f:l, where . = o and
O‘]lerl = . We ask that each o! is not a jump point of h, and that |O‘i‘€+1 —a¥| < 2/k. Thanks to
Step 1, for each k € N, and each i € {1,...,k}, there exists a function £ : [of, ¥, ] — [0, 400)
such that

& (a) = h(a), &aky) =& ok, &a(B) = h(B),
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for all i € {2,...,k}, with

=

1€} = Rlleogr) <
and such that
H' (graph(&))) = rH! (UL o], ofy,] X R),
for all i € {1,...,k}, and all & € N. Define hy, : [o, 8] — [0, +00) as
hi(z) = & (x),
for x € [a O‘z+1] Note that hy is Lipschitz, h < hy, for all k € N, h, — h uniformly in %, and

k k

H'(Te) = H'(graph(§)) =r > H'(Ti[o, 0] x R) = rH'(T).

i=1 =1

It remains to prove property (v). To do so, fix ¢ € C’c_(Rz) and € > 0. Thanks to the uniform
continuity of ¢, there exists k € N such that for k > k the following holds: if z; € [of, aF 4],
then

o (@, hi(x)) — (i, ()| < e. (19)

Moreover, from the fact that hy is converging uniformly to the continuous function h, up to
increasing the value of k, we can also assume that

o (i, hi (1)) — p(ai, h(x:))] < e. (20)
Using , we get

/Fk o(x) dH! — r/Fcp(X) d#!

:Z/ o (@) 1+ b (@)? = rep . () VT W (2P da

e / (TR T R e
> 1), W

CV'L+1

+ /az (go(xi, hi(23)) /1 4 Wy (2)? — ro(z, h(2)) /1 + h’(m)2>dx}

(\/1+h’ 24 W)dm
k

+ @(%‘,h(%)) Z [/?iﬂ \/ 1+ h(z W)dx}
i=1 Je
:ef:/(jiH <\/1+h%(x)2+r\/1+h’(x)2>dw, (21)
i=1"<

where in the previous to last step we used , while last step follows from H!(T'y) = rH(T).
Thus, from we obtain

/ o(x) dH' — r/ o(x) dH' < 2rH! (D)e.
Ik r

1=

Thus, since ¢ is arbitrary, we get that H1LT', = rH!LT. O

Remark 5.6. From the above proof, we can infer the following facts,
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(i) Following (17)),

@2 [ frentor s [ -aas e [k -2

where g == inf;>( [ Z|. This lead us to

(3£) —2(3) < jarwaoy

If we solve for t/2k we get

123
* <
. <C. (22)

where
291(T)2
Ci=2(e+ £2+%).
I
11) We claim that t, — +o0o as k — o0o. Assume by contradiction this is not the case
(i1) y ,

namely that
supty < T,
k

for some 7 > 0. Thus, we have that

bie) = () = costa) o (o) + (3 = sin(tio) (o)

2m,(x)
<K 4 k
< h'(x) + ? + e

for every k. From the inequality

[Pl () — I ()] <

EN |
o

we infer that
HY(Dy) — HY(D). (23)
From step 1 we know that
HY (T = rHY(T) > HY(T), (24)

with » > 1 and for every k. By putting together and we get a contradiction.
(#41) From the expression of h}, we can actually choose the sequence (\); such that the
sequence (hy)g is uniformly Lipschitz. Indeed, on [a, o + Ag] we have

2
h} 14 —
) < e+
As ti/k is bounded and (Ag)g is chosen such in such a way that kA — +o00 as k — oo,

we can conclude.

6. LIMINF INEQUALITY

We now present the main ideas of the proof of the liminf inequality, contained in the following
theorem. One of the issues that we take in account is the fact that our final configuration I'; is
the graph of a BV function which might have a dense cut set. In particular, this is a problem
since in our argument we deal with what is happening on the left and on right of every cut in
I". This is not doable in case the cut set is dense. One possible way to go around, is to split the
energy on I'. By fixing € > 0, since h is a BV function, the cuts in I'® whose length is larger
then e is necessarily finite. For those amount of cuts we do the liminf inequality by using the
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result contained in |C.C.|. Finally, for the cut part in I'* with lenght smaller that e, we prove
that the energy there is small as we want as € — 0.

Theorem 6.1. For every configuration (2, v, ) € A and for every sequence of reqular configurations
(e, Vi, pi) ke € Ay such that (Qp, vk, pi) — (2,0, 1) as k — oo, we have

G(Qv,p) < likminf]:(Qk, Vkey 1k )-
—00

Proof. Fix € > 0 and consider the set

C.={xel’:h (z) —y<e},
which represents the the first part of each cut of h of length smaller than . By a standard
measure theory argument, is it possible to choose € such that u(I' N dC:) = 0. As consequence,

from Lemma , we have that I'“ \ C. consists of a finite number of vertical segments, whose
projection on the z-axes corresponds to the set (:cz)f\il. Notice also that

uw(InC:) — 0, u(IN C2) = p(Te), (25)
as e — 0. ' ‘ ' ‘

Fix 0 = d(e) > 0 such that we have 6 < |2" — 7| and that in [2' —§, 2" 4 0] we do not have any
jump point of h, for every for every i,j = 1,..., N. This is possible from Theorem [3.2] As we
have a finite number of cuts, in order to simplify the notation, we do the following construction
as we had only one cut point, and then we repeat it for each other one.

Fixi € 1,...,N. Since R?\ A 2 \ 2, for every cut point (x%, h(2%)), there is a sequence
of the form (wk,hk(mk))k such that (zx)r C (2" — d,2" + ) and (ack,hk(xk)) — (:L'Z,h(xl))
as k — oo. Indeed, by Proposition there is a sequence (xy,yr)r C R?\ € such that
(zk,yk) — (2%, h(z")). By definition, we have that hy(z;) < yx and up to a subsequence (not
relabelled), we have that (wx, hi(zr)) — (2%, 2"), for some z* € R. We would like to have
2t = h(z"). If we had 2° > h(z?), then

lim hy(z1) < h(z?) < 21,

which contradicts our convergence above. Vice versa, if 2* < h(a: '), then (2%, 2%) ¢ R\ Q. In
conclusion we have 2 = h(z") and thus (zy, hi(zy)) — (2, h(z")), as k — oo,

Around each vertical cut, we set for each k € N (see Figure [4)
Rp = (o' = 6,2) x (0,h(a") =€), Ry = (ux, 2" +0) x (0,h(z") — &),
and .
R§ = R, UR} U [{z} x (0,h(z") —&)].
Now we split the energy in the following way. Take any (Q, vk, pg)r C Ay such that (Qp, vk, pr) —
(Q,v, 1) as k — co. We have

lim inf {/ W (E(vi) — Eo(y)) dx + P (ug) d'Hl]
k—o00 Q Ty
> lim inf/ W (E(vg) — Eo(y)) dx + lim inf Y(uy) dH!
k—o0 Q. k—o00 Fk\Rg
+ lim inf / Y(uy) dH. (26)
k—oc0 kafRs

We are going to estimate each term on the right-hand side of separately.
Step 1. Here we stimate the bulk term on the right-hand side of . Since vy — v in
Wﬁm?(Q R?) as k — oo, for every compactly contained set K C (2, we get
lim inf/ W (E(vi) — Eo(y)) dx > lim inf/ W (E(vi) — Eo(y)) dx
7% K

k—o0 k—o0
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FiGure 4. The rectangles we are using for the estimate of the liminf. In
particular, the set A5 is the light blue, while the boundary of the rectangle R5
is the one in purple.

24W@@=MW®,

as F(-) is linear and W (-) is convex. Since K is arbitrary, we can conclude by taking an increasing
sequence (K;); of sets compactly contained in © with |Q\ K| — 0 as k — co. Thus, using the
Monotone Convergence Theorem

liminf/Q W (E(v) — Eo(y)) dx > /QW(E(U) — Eo(y)) dx, (27)

k—so00
we get the liminf for the bulk term.
Step 2. For the second term on the right-hand side of , we would like to apply Theorem
3.13l Fix € > 0. By knowing that for each k € N we have |h;| < M, we define the open set
5= (la.b] x [0.M]) \ R
We have that A5 NQ, — ASNQin L' as k — co. From Lemma we have that
H((9°Q N A5)AT) = 0.
By definition, we can write
wpH (O N AS) 2 L A = wH T + poLAS + uM' LC,
as k — oo, and by applying Theorem [3.13] we have

lim inf/ Y(uy) dH > () A + 0p®(A3) + 9/ w dH, (28)
k—oo Joq,nAs I'nAs .

as desired.

Step 3. We now deal with the third term on the right-hand side of . Define
Ef=QuNR, and EJ:=Q,NR;. (29)
Using Lemma [3.8] we obtain that
Ef — R = (2 — 6,2%) x (0, () — &),

Ef — R" = (¢, 2° + ) x (0,h™ (27) — &),
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as k — oo in L'. Note that, for every k large enough, both E,i # () and E} # (. Furthermore,
notice that

8E£ N Rg = (Fk N Ri) U [{xk} X (0, hk(ack))],
6E£ NR" = (Fk N RZ) U [{xk} X (0, hk.(xk.))] .
We now define the densities

Uk X € Fk N Rev
= {
0 X € {xk} X (0, hk(f’?k))v

7"( ) U xel'yN RZ,
Up(X) ==
0 X € {xk} X (0, hk(a:k))

We now prove that that
ph = ugH'C(OBL N RY) = pf = fHIL(TO\ C) + (47,
i = G HILOFL 0 R) S = gL (T C) + (7',
for some f,g € L*(T'¢\ C:) such that
f+g9=uprac., (30)
and
(1) + (") = (31)
where (uf)® and (u")* are supported in T\ C.. Notice that
pi({an} < (0, hi(ar)) = wi, ({2} X (0, hx (1)) = 0,

holds for every k. By definition we have ,uf; + py, = p, for every k € N. Moreover, for every set
A, measurable with respect to puy (thus also for pf and uf), we have

HE(A) < pi(A) = / up dH = |Jugl| s eyn) < L
T'LNA

where L is a constant independent of A, and is given by the fact that the sequence (ug)y is
x-weakly converging. The same bound for . also holds. We have that, up to a subsequence
(not relabelled), there are two Radon measures u‘ and u” such that

pp =t and pp ol
as k — oo.

We claim that supp(uf) € T°\ C. and supp(p”) C T\ C.. Indeed, take any set A such
that p((T°\ C:) NOA) = 0 and AN (I'“\ C:) = 0. Then p((T¢\ C:) NA) = 0. If we had
pf((Te\ Ce) N A) > p((T°\ C2) N A), we would have

(0N C) N A) = lim g (09N C2) N A) > Jim g (09 C2) N A) = (D) C2) N A),

and this implies that p°((I'*\ C:) N A) = 0. Thus p‘ < pand if u((I¢\ C.) N A) = 0, then also
pf((Te\ C:) N A) = 0. As the same holds for p", we conclude our claim.
Then, there are f,g € L1(I'°\ C.) for which we can write

pt = fHILTNC) + (1) and p” = gH' (TN Co) + (u")°,
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with (uf)* and (u")® are singular measures with respect to fH!L(I'*\ C.) and gH'L(I'°\ C.)
respectively. We now prove that u = u’ + pu”. Notice that for every ¢ € C.(R?),

/ e du, — edpu,
OELUDET Ie\Ce

as k — oo, from the fact that p, — p. On the other hand we have

/ @duk:/ sod(ﬂiJruZ):/ @dMiJr/ o duj,
OELUOEY OB UOET oE! OE]

k
— pdu’ + / pdu’,
k—o00 re\Ce re\C:

Since ¢ € C.(R?) is arbitrary, this implies that u = u’ 4 p° . In particular, we obtain and

B
We now prove the convergence of the energy. Set
Sk = {wr} > (0, hx(w)) and S = {a'} x (0, h(a")),

we notice that H'(Sy) — H'(S) as k — oo. In particular, this implies that

lim [ (0) dH? :/w(o) dH?!. (32)
S

k—o0 Sk

Now, we want to apply Theorem Recalling Definition of the sets Ef; and £}, we
obtain

lim inf / V(uy) dH + 2 / ¥(0) dH?
ILNRE s

k—o0

= liminf / Y(ug) dH +2 [ (0) d?—L1]
L FkﬂRg Sk

k—o0

= lim inf / Y(uy) dH? —|—/ P (uy,) d?—l1]
OELNRS

k—o0 OETNRS

k—o0 k—o0

> lim inf/ 1[J(uf;) dH! + lim inf/ Y(ul) dH?
OELNRS OELNRS

> / D(f) dH' + (i) (OR N RS) + / D(g) dH' + 0(47)* (OR" NRS)
8RZQR§ aerRg

- / 3(F) MY + 6(u)(T°\ Cu) + /
re\Ce

D) A+ 0 (T € + 2 [ b(0) !
re\C. s
z/ YC(u) dH + 0u(T€\ C.) +2/ ¥(0) dH!,
re\C. s
where the last inequality follows from together with the definition of . Thus,

lim inf / Y(uy) dH > / Ve(u) dH + 0p(TC\ C.), (33)
k—oo JrnRs Ie\Ce

foralle >0
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Step 5. Using , , and we obtain
lim inf [/ W (E(vk) — Eo(y)) dx+/ P (ug) d?—ll} > / W(E(v) — Eo(y)) dx
k—o0 Qi T 0

+ | p(u) dH + 05 (A5) + 6 [ wdH!
FﬂAg C:

- / Ye(u) dH + 0p (T \ Cs).
re\C.
By letting ¢ — 0, and using we get the desired liminf inequality. U

7. LIMSUP INEQUALITY
The goal of this section is to prove the limsup inequality for the mass constrained problem.

Theorem 7.1. Let m, M > 0. Let (2, v, u) € A(m,M). Then, there ezists a sequence of regular
configurations (Q, v, ug)r C Ar(m, M) such that

hmsupf(glkavuk’) < Q(Q,v,,u),

k—o00
and with (e, vg, ur) = (Q,v, 1) as k — oo.
The proof is long and therefore it will be divided in several steps, each proved in a separate
result:
Step 1: For any configuration (Q,v,u) € A(m, M), we find a sequence (ug)r C L'(I') where
each uy is a piecewise constant function, such that gy = upH'LT A was k — oo,
(Q,v, ug) € A(m, M) for all k € N, and
lim g(Q7 v, /-Lk’) < g(Qa v, :u)
k—o00

This will be proved in Proposition [7.6}

Step 2: Let (Q,v, 1) € A(m, M), be such that y = uH T, and u € L'(T') is piecewise constant.
In Proposition , we construct a sequence (Qk,vk,,uk)k C A,(m,M), where pup =
upH' T}, and uy, is piecewise constant, such that (Qg, vk, px) — (,v, 1) as k — oo, and

lim G(Qu, vk, ) = G(Q, v, p);
k—o0

Step 3: For every configuration (2,v,u) € A,, with each uy piecewise constant, in Proposition
We build a sequence (Qk,vk,uk)k C A, with (Qp, vk, k) = (Q,v, 1) as k — oo, such
that

lim ]:(Qkivvk’nuk) = Q(Q,v,,u),
k—oo

Step 4: From Propositions and and a diagonalization argument we get the limsup
inequality.

Remark 7.2. Using Theorem [7.I] with Theorem we have proved Theorem [I.1] and Theorem
L2l

We start by defining the class of piecewise constant function that we will use.

Definition 7.3. Let h € BV (a,b), and 6 > 0. We say that a finite family (Qj)é-\[:1 of open and
pairwise disjoint rectangles is d-admissible cover for T, if
(i) The side lengths of each @;’s is less than 0;
(ii) It holds
N
rclyaes
i=1
(i) H{TNoQ')=0forall j=1,...,N.
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A simple result that will be use repeatedly without mentioning it is the following (see (a) of
54).

Lemma 7.4. Let h € BV(a,b), and § > 0. Then, there exists a 0-admissible cover for T'.

Definition 7.5. Let h € BV(a,b), and 6 > 0. A function u E'LI(F) is called 0-grid constant
if there exists a d-admissible cover for I', such that ujg; = v/ € R, for every j = 1,...,N.

Moreover, we say that uw € L'(I') is grid constant if there exists § > 0 such that it is J-grid
constant.

We now carry on Step 1: approximate any admissible configuration with a sequence of
configurations where the density is grid constant.

Proposition 7.6. Let (Q,v,u) € A(m, M). Then, there exists a sequence (ug)r C L'(T'), with
ug, € LY(T) grid constant, such that (0, v, ux) — (Q,v, ), as k — oo, and

lim g(Q7U7,Uk) < g(Q7v>M)7
k—o0

where ji = uH'LT. Moreover, (9, v, ux) € A(m.M).

Proof. Step 1. Given (Q,v, u) € A(m, M), with p = uH' T + p*, we would like to approximate
p® with a finite number of Dirac deltas. Given k € N, consider an 1/k-admissible cover of T'.
Let Q1,...,QnN, be those that intersect with I'. For each i = 1,..., Ng, let 2;, € Q; NT. We
define

mj, = p*(Q})

and set

Ny

oyl is
p = uH LI+ Z mkéz}e,

i=1
where, for every k € N, Ny, is finite. It is possible to see that g (I') = m and p, — p as k — co.
Furthermore, the fact that p*(I") = Zj-vz’“l mi, for every k € N, implies that

g(Q,’U,Mk) - g(vivu)a
for every k € N.

Step 2. Now, consider (Q,v,u) € A(m, M), with g = uH' T + SN mi6s,,, with z; € T and
m* > 0 as defined in step 1, for every ¢ = 1,... N. We now construct an admissible cover in
order to define a suitable density on .

For k € N, consider (Qi)ij 1, an 1/k-admissible cover for I'. Consider the covering of I' given by

(UQ #,1/k)) U [(UQJ)\(QQW}UM)] (31)

We notice that ( UJL§1 Qi) \ ( Uf\il Q(z,1/k)) can be divided Ny, rectangles whose sides does not
exceed 1/k. Thus, up to a further subdivision in rectangles, we consider as a 1/k-admissible
cover of I'. In order to simplify the notation, we denote as Q] any rectangle contained in .
Furthermore, by reordering the rectangles in , we assume that for j = 1,..., N, Qi C
UY, Q(z',1/k) and for j = N +1,...,N +Nk, we have @, € (U7, Q1) \ (UL, Q(z%,1/k)).
Fix € > 0. Since

rne’ renq’

im (762) +OO, and 1'm M — +OO,

b0 HIT N QY) koo HHTe N Qf)
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for all j =1,..., N, there is k € N such that, for every k > k, we have

H' (CNQY) = (T NQ})
‘,ﬁ(rm%) (H%Fm@@) _9’ <€ (35)
and
H(TNQY (1 (T NQ)
‘,ﬁ(rm%) ¥ (Hl(PmQ@) B 9‘ < (36)
We now define a density on I'. For x € Qj, we define ug : I' =+ R as
pnQy) S =
"N e
H r“n k if Te Te¢ J
Hl(TCﬂQi) ifxeI° TNy #0.

Note that the function uy € L*(T) is 1/k-grid constant by definition. For each k € N, define the
measure

pr = upHILT. (37)
By definition, it follows directly that the mass constrained is satisfied, namely that (Q,v, ux) €
A(m, M).

Step 8. We now prove that ug L_,u as k — oo. Take ¢ € C’C(]I_QQ). Fix € > 0. Using the
uniform continuity of ¢, there exists k € N such that for every k > k we have that

(%) — p(xp)| <&,

for every x € Qi, where xi is the intersection point of the diagonals of Qi. First, we write

‘/wduk—/wdu‘ < ’ﬁwduk—ﬁwdu’ﬂ/ ‘Pdﬂk_/ sodu’
I I I I c I'e

<> ([ k¢dﬂk_/~ ksodu‘+ > / k‘;"dﬂk—/ cedul,(38)
=1 ' /Tnek rnQk =1 JTenQk renQ*
and we estimate the two terms on the right-hand side of separately. We have that
N+Ny, N+N,,
> /~ pd —/~ sodu‘ <y [/~ |o(x) = (x,) |k
= rnQ¥ rnQ* = rnQ¥
#1600 — oGl + 16 [T @8) — (@)
NO*
J
< 2me||pllcor2y, (39)

where we used the fact that u(I' N Q?) = (TN Q?) for each j = 1,..., M + Nj and every
k € N, by definition of ug. Using similar computations, we also get that the second and term
on the right-hand side of can be estimated as

N+Nk

> / _soduk—/ _cpdu’ < 2me|plleo@2), (40)
=1 renQ;, renQ;,

Finally, From , and , we get

‘/FSOde—/FSOdM’ < dme||¢|lcor2)-
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As € > 0 is arbitrary, we can conclude that jy, — g as k — oo.

Step 4. We now prove the convergence of the energy. We will prove that

lim sup G(2, v, i) < G(2, v, ).

k—o0

Since the bulk term of the energy is unchanged, we estimate the other contributions. We have
that

B NAN, )
/fz/z(uk) aH! + /F W (ug) dHY = ; /fin Duy) dH + /MQi V() d?—L1]
5 franens ) e (D)

jz: TN QY (ﬁinudH1+M)
+H (TN Qe ( JQCQ% w dH! + M)]

>

N+Ng [

T NQ) ¢< ][Mj u d’H1> +HY(TN Qi)wc( ][chQj u d”Hl)]

N ~ .
p(CNQy)
<2 M HlﬁﬁwQ@>

J=1

T NQhY (frmjudH)JrHl(fﬁQZ;){pv(

1/1c 7 c 1 c J c S(FCQQ%)
+HN TN QL) (fer]udH ) +HN TN QL) (HI(FCHQ@)]
N+N,

+ Z [ T NQLY (]{qudﬂl)JrH(FCmQﬂw (ﬁchiudHl)]

N o
w*(TNQy)
=2 1<me§;>)

Jj=1

/ w) dH + H! (erJ)w(
ng

+/MQJ V() AL+ H! (rCmQﬂ)zpc(w>]

HI(TeN Q)
N+N;,
1 c 1
+ Z [ /F o ) dH /F cm@iw (u) d?—(]
S H(TNQ) — 1 (TN QY
u) dH? Yo AL <k
; /FOQJ NG S(Fin)w<H1(FmQ§€)>

H(TCN QL) . uS(T°NQY) )]

c d 1 s (e J ' c ]
+/ch]‘¢ (w) dH' + p*(T ka)MS(FCin)w <”H1(FCHQ§C)
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N+Ng

1 c 1
+Z[/W u) dH /chin(u)d’H], (41)

where in the first inequality we used the sub-additivity of J and ¢, while in the previous to
last step we used Jensen’s inequality.
By construction, we have that and hold. Thus, from , we obtain

/ﬁ(uk) dH' + [ ¢°(uy,) dH!
I Te

<y

J=1

/ W) dH 4 (TN QL 0+ ) + / () + (TN QL0+ <)
FOQJ renQ;

N+Ng,
1 c 1
+Z [/my u) dH /chin,Z)(u)dH]

N+Ny N | |
-2 [/mj Plu) dH + /chQj o(u) A+ 0p* (TN QY +ep*(T'N Q;ﬂ)]

J=1

< /~1;(U) dH! + YC(u) dH + 0p (D) + ep®(T). (42)
r re
From , since ¢ is arbitrary, we can conclude
lim sup g(Qa v, /’Lk) < g(Q7 v, :U‘)

k—o0

This concludes the proof. O

We proceed our analysis with the second step, which will allows us to reduce to the case of a
Lipschitz profile and a grid constant adatom density.

Proposition 7.7. Let (Q,v,pn) C A(m, M) be such that u is grid constant. Then, there exists
a sequence (Qk,vk, uk)k C Ay(m, M), with each uy grid constant, such that

lim g(Qkavka/Lk) = g(QaUaM)7
k—o0
and (Qp, v, ur) = (Q,v, 1), as k — oo.

Proof. The strategy of the proof is the following. In Step I we show that it suffices to build
the required sequence in case h has finitely many cut points. In Step 2 we build the recovery
sequence. Finally in Step 3 we show the convergence of the energy.

Step 1. In this first step we are going to show that it suffices to prove the result in the case h has
a finite number of cuts. Namely, we prove that there exist sequences (£, , wi, vi)r, C A(m, M)
where each g; has a finite number of cuts, and vy is grid constant, such that

lim G(Qg,, wr, vi) = G(Q,v, ),
k—o0

and (g, , wg, vx) = (v, 1) as k — oo.
The following construction is inspired by [16, Theorem 2.8|. For k € N, define (see Figure [5)

gi(2) = min{max{h™ (z) - 1/k, 0}, h(x)},
for every x € (a,b). It is possible to see that, for each k, the function gy is lower semicontinuous,

of bounded variation, and such that g < h. Moreover, thanks to Lemma we have that h
has finitely many cuts. We then define

gr(x) = gr(x) + €, (43)
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FI1GURE 5. In order to reduce to a finite number of cuts, we do the following:
first, we shift down by 1/k the regular part of the graph of h (not the cuts),
getting the red graph. In this process, some parts of the graph might have gone
below zero. Thus, we get the function g by cutting them, and by adding the
remaining part of the original cuts.

for each k, where

1 b
€k = 3 a(M —/a gk(l‘)dx) > 0.
Set I'y, =Ty, , and note that
Jim HY(Ty) = HY(T). (44)
—00

We now need, for each k£ € N, to define the displacement vy, and the adatom density ug. For
the former, by fixing a yo < 0 such that v(-,yo) € W'?((a,b); R?), we define

v(r,y —er) iy >uyo+er,
wy(x) = { v(z,y0) if yo <y <wyo+ e, (45)

v(z,y) if y < yo.
Regarding the density, for x € I'y, we define
u(z,y + 1/k) if (z,y+1/k) €T, and h(z) > 1/k,

2k(x) = u(z,y) if x e I,

u(zx,0) if h(z) =0,

o L= [ x|
T = uwdH — zi dH .
HY(T'k) [ r T
We notice that (using (44))

where

lim 7, = 0. (46)

k—o00
The density considered is vy == (25, + %) H LT}
Step 1.1 We first prove that (g, ,wk,vg)r C A(m, M). By definition, the sequences (gi)
and (v ) satisfy the mass and the density constraint as in Theorem
Step 1.2 We now prove that (g, ,wr, i) = (Q,v, 1) as k — oo. By using the definition, it
is possible to see that R?\ ,, A g2 \ 2, and wx — v in T/Vhl)CQ(Q, R?) as k — oo. In particular,
we have that H!(T';) — HY(T) as k — oc.
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We now prove that v, — p as k — oo. Take any ¢ € C.(R?) and fix ¢ > 0. By the uniform
continuity of ¢ we find § > 0 such that, if |(z,y — 1/k) — (z,y)| < d, we have

Then, for k large enough,

’/ oz d?—[l—l—/ §%0) dHl—/tpu d?—[1’
Tk Tk r

< ’[ o(z,y —1/k)u dH! —i—/~ ou(z,0) dH! — /anu d’H1’
TN{h>1/k} TN{h=0} T

+ ’/c U dHl - /F @YU d’Hl’ + HQOHCO(Rz)'Hl(Fk)Tk
A

§5HUHL1(f)+‘/ pu dHl_/ Yu dHl‘
rn{h>1/k} r'n{r>0}
+ ’/ s U d'Hll + H(PHCO(RQ)Hl(Fk)T'k
c 1_‘;;‘

Here we notice that '\ T', — 0, r, — 0 and that Ln{h>1/k} - Tn{h>0}ask — .
From these considerations, as ¢ is arbitrary, we infer that v, — p as k — oo.

Step 1.8 Finally, we prove the convergence of the energy. First, by a standard argument, we
can reduce to the case u € L*(I"). Thus, we have

|G (e, wi, vi) — G(Q,0, )| < ‘/ E(wg) — Eo(y) dX—/W (v) — o(y))dx‘
) w (21 + i) dH' — /¢ dHl(

) zpc (2 +75) dH! — v d?—[l‘. (47)

Regarding the bulk term on the right-hand side of , since wg — v in VVI(I)S(Q R?) as k — oo,
we have that

lim E(wg) = E(v).

k—o0

Remember that by construction ) C Q. From the fact that ) — Q in L_1 as k — oo, we can
find k£ € N such that for every k > k, we have |2\ Qx| < e. Then, for k > k, we have

’/Q E(wy) — Eo(y) dx—/W (v) - o(y))dX’
< /Q W (E(wr) - Eoly) - W(E(v) - Eoy))|dx

+| W (E(v) - Foly))dx| (48)
O\

Notice that the first term on the right-hand side of is zero, whereas, by Dominated
Convergence Theorem, we can conclude that the second term is going to zero as k — oo.

We now consider the surface terms on the right-hand side of ([47)). From (46), we can choose k
large enough so that rp < 1. Since u € L*°(I"), we have that ¢ and ¢ are uniformly continuous
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in [0, ||lu|| e~ + 1]. Then, for every € > 0, there is k € N such that for every k > k
[(u+re) —d(u)] <& and [P (utri) — ()] <e. (49)
For the first term, we get

[ Oz + 1) dH —/fq;(u) d?—ll‘

Tk
— ‘ /f [J(u +rg) — J(u)] d?—[l‘ + ‘ ﬁfﬁ{0<h<1/k} J(zk + 75,) dHL|. (50)

Now we use , together with
Ln{0<h<1/k} —0,

and we conclude the convergence to 0 of the surface term in , as k — oco. Regarding the
second surface term on the right-hand side of , we have that

[ vrtwrng ant = [ ey o] <] [ fprtun) - o] an|

+| / 0 () | (51)
Ten{h—(z)—1/k<y<h—(z)}

From and since
r‘n{h (z) —1/k<y<h (x)} =0

for k — oo, we conclude our estimate on the cut part.

By putting together , and in , we get that

lim G(Qg, wg, vg) = G(Q, v, p).
k—o0

Step 2. Now, consider h € BV(a,b) with a finite number of cuts. Let (¢/)™_; C (a,b) be the
the othogonal projection on the z-axes of the cuts. Set

g0 =min{|c —J|: i#j=1,...,n}. (52)

In order to lighten the notation, and since we are considering a function A which has a finite
number of cut points, we can work as h had a single cut and then repeating the following
construction for the general case. So let ¢ be the cut point of A.

The idea of the construction is to use the Yosida-Moreau transform far from the cut point
a < ¢ < b and, around the cut, we use an interpolation in [c — €g/k,c + £0/k] in order to get
the Hausdorff convergence to the vertical cut. We need to apply the Yosida-Moreau transform
beforehand because we need the mass constraint to be satisfied, as we want to use the same
procedure as in , which requires a sequence that lies below h. Another reason to do so is
because the sequence obtained from the transform satisfies two properties, see [16, Lemma 2.7],
namely we have the Hausdorff convergence to our configuration in case we don’t have cut points
and also the convergence of the length of the graph.

We define, for each k € N, hf; : (a,c) — [0,00) as the Yosida-Moreau transform of h on (a, )
and hj, : (¢,b) — [0,00) as the Yosida transform of h on (c,b). Namely

hi(x) == inf{h(z) + klz — 2| : z € (a,¢)},
hi(x) = inf{h(z) + k|lz — 2| : z € (¢,b)}.
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We have that both hﬁ and hj are k-Lipschitz functions such that hi < h and hj, < h.
Furthermore, by [16, Lemma 2.7] we have that th — QN [(a,c) xR] and Qpr — QN [(c,b) xR]
as k — oo, together with their convergence of the length of their respective graph, namely

H(Tye) = HH (TN ((a,¢) x R)),
H'(Chr) = HY (DN ((e,b) x R)),

as k — oco. We can also extend by continuity hﬁ and hy at c, as we have both right and left
limit of h at ¢. We are going to use the following notation

Sy = :c—%,c—l—%} x R,
Sﬁ = c—%o,c} x R,
S = —c,c—i—%o} x R,

where ¢ is defined in . The definition of our sequence (hy)x uses the definition of hf; and
hj, outside Sj, whereas in Sj, we have a linear interpolation from the cut point (¢, h(c)) and the
points (c — eo/k, hi(c —eo/k) and (c+ eo/k, hj(c+eo/k)). We define our Lipschitz sequence as

hﬁ(l’) LS (a,c— EO/k)a
mex + g z € St

myx + qp, x € S].

hi(x) x € (c+eo/k,b),

with suitable coefficients mi,qi,m’,;,qz € R such that we have linear interpolation from (c —
e0/k, hi(c—e0/k)) and (c+eo/k, hj(c+e0/k)) to the point (¢, h(c)). Notice that, by definition,
hi(c) = h(c), hy is continuous. Moreover, thanks to Theorem , for k large enough, it holds
that iLk < h. Now, following the same path as in , we set

hi(x) = hi(x) + ex,

e = bia(M — /abﬂk(ac)da:>.

We than have that the sequence (hy) satisfies the mass constraint, namely,

/a ()l = M.

Step 2.1. For every k € N, let 0 be the sub-graph of h,. We prove that R? \ Q A p2 \
as k — oco. We use again the equivalence of the Hausdorff convergence with the Kuratowski
convergence (see Proposition . Take X = (7, %) € R?\ Q. We first want to prove that there
exists a sequence (zg,yr)r C R*\ Qi such that (zp,yx) — Z. Then, we have different cases
depending whether x € Sy or not. In case x ¢ Sy then, as the sequence (hy)y is defined as the
Yosida-Moreau transform of h, away from the cut point, we can use Lemma 2.7 of [16] and we
have already the Hausdorff convergence desired.

Next we deal the case in which x € S. If = c and § < h™(¢), consider the sequence

- ¢
Yy—qp _
(ks Yr) = (75 kh’u),
mk

where
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for every k € N. We obtain (xg,yx) — (¢,y) as k — oo.

In case T = cand §y > h™(c) or in case T # ¢, it is enough to consider the constant sequence
(21, yk) == (c, %), since by definition hj, < h and thus we have that (z,y) € R?\ €, for every
keN.

We are left to check the second condition of the Kuratowski convergence. Take a sequence
(2, yk)r C R?\ (Qx N Sk) and suppose that (2, yr) — (2,9) as k — co. We need to prove that
(,y) € R2\ Q. Since (z,yx) € Sk and the vertical strip Sy, is shrinking to the vertical line
¢ X R, then we must have that = = ¢ thus the point (z,y) € R?\ Q.

In case our sequence (xx,yx)x is laying both in R2\ (Q; N S*) and in R?\ (4 \ S¥), as it is
converging, it is enough consider k large enough and we get that (zg,yy) is only in one of the
two sets. Then we can proceed as before.

Thus, we can conclude that R?\ €, A Rr2 \ Qas k — oo.
Step 2.2. We are going to define a density on I'y. Since u is grid constant we can consider a
family of squares (Q7);cs, with J = {1,... N}, such that on each square Q7 we have
Ui = w e R.

We now define two index sets

Ay={jeJ Q@ nS,=0}, By, = J\ Ay (53)
In order to define what follows, we recall Lemma[5.4] The density is then defined as uy : T, — R
MU N Q) .
iy I'yN@’ A
w Hl(rkﬂQj) xelyg Q y J € Ag,
. H'(°N Q) : .
J : el,NQINSE, je By,
HI(Tw N QiNSE) xeline =k
TN gaeng)
. N NnS;, jeB
HI(Ty, N QI NSy x €Lp QTN S, J € Br
CHH T NQ)\ S) ,
J . X e (kaQJ) Sk7 ]EBk7
(TN Q1) 5) '

where a’, b/ are such that
al + V= (54)
and
VW) = Plad) +h(v). (55)
As the size of the squares is fixed, we take k large enough such that the vertical strip Sg is

contained in a single vertical column of squares.
For each k € N, define the measure p;, = uH'.I'y,. We have that yy, satisfies the density

constraint. Indeed,
- HYT J
/ dELNQ)
FkﬁQj

/ up dH' =)
'k

- :
jear H (Pk N QJ)
HY TN Q) 1 HI (TN Q) 1
+ / ol <)yt / @) an
ng:k ( I,NQINSe HI(TLNQIN Sﬁ) I',NQINSY, HI (TR NQINSY)

,Hl«fﬂQj)\Sk) 1
i /(FmQj)\Sk Y (TN @Q7)\ Sk) " )
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=S WH(ENQ) + Y (ajHl(FcﬂQj)—i—bj”Hl(FcﬁQj)

JEAg JEBk

+ w1 (TN Q7) \ sk))

N
= Z/ W dH = m,
= Jrg

where in the previous to last step we used .

Step 2.3. We prove that Xy, Take any ¢ € C.(R?). For every € > 0, we can find keN
such that for every k > k we have |o(x) — o(x?)| < e for all x € @7, where x7 denotes the center
of the square (7. From Lemma we have

)/ gpukdﬂl—/cpudHl)SZ)/ cpudeI—/N ou? d?—[l‘
Ty r - Irengi Qi

(1

ouy, dH? —/ ou’ d?—[l‘
TrNQINSy rnNSy

+‘/ ou dHl—/N oud d?—[lb. (56)
(CrNQI)\Sk (TNQJ)\ Sk,

We now compute first the sum over the indexes in Ay on the right-hand side of . By summing
and subtracting ¢(x7) inside each of the integral, it holds that

rne? : e
/ 7}[1 TN gy —/~ ou? d’l—ll‘ <2 o) — o)||u! [H (T N Q)
jea, kaQﬂ HE T, N Q) TnQi jea,

<2 Y HNITNQ)||
JEA
< 2¢|lul| ;1 - (57)

We now estimate the sum over By on the right-hand side of . Note that, up taking a larger
k € N, we can assume that

D IHNITNQINSy) —H (T NQY)| < 4e,
JEB;

for all k > k. Bearing in mind that for every j € N it holds a/ + / = u/, we get

Z ’/ ouy, dH? —/ ou? dH!
T'LNQIiNSy nQIiNsy

JEBk
. renoi
Z ’/ a’ 1H ( Q ) - dHl
kaQme HI(T,NQ NSy)

JEBk

'Hl(FC N Q])
+ v :
/ermS; 4 HI (T NQINSY)

— / ou! dH*
rnQIiNsy

<2 > W (H'(TNQ) +H(TNQINS))

JEBk

dH!
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(el [H (06N Q1) = HA(T N Q7 1 8y)

< 2e(2[|ul| oo () + 4€) + de|l@llcom2)l|wl| Loo (1) (58)

In the same way, we can obtain the estimate for last two terms of the sum over B on the
right-hand side of ,

>/ ol = [ | < Cellulla (59)
S ewams, T,

for some constant C' > 0. In conclusion, if we put together , , , , we obtain that
‘/ ouy, dH! — / wu d?—[l‘ < C'e,
Ty r

with C’ > 0. Since ¢ is arbitrary, we get that ju, — p.

Step 2.5. By using the same approach as in (45)), we can define the displacement sequence
(vp)e C WE2(Q; R?) such that vy — v in W22 (Q;R?) as k — oc.

loc loc

Step 2.6. It remains to prove the convergence of the energy. By using the index sets in ,
we have that

|G (Q, vk, x) — G(Q, v, 1)| < ‘/Q E(vr) — Eo(y) dX—/ W(E(v) — o(y))dx‘
+ / Dy dH — [ Jd) ant
jEZAk rpNQJ rnJs ‘
+ 3 / Y(ul) dH! —/ YC(u?) dHl]
JEB T'.NQINSy renQ;,
e[ Bt [ ) ant]. 6)
jeBy ! TRNQI\Sk (TNQI)N\Sk

We will estimate the four terms on the right-hand side of separately. For the bulk term,
we can use the same method as in and we conclude that

‘/ E(vg) — Eoly) dx—/W (v) — Eo(y))dx‘—>0, (61)

as k — oo.
We now consider the first sum on the right hand side of .We have that

(/Fm] i (Ekr;%jj))) dH! —/mj By |

<3 oz ) Y30t @) — G 41 @)

+ 30 [P H TN Q1) = Sy H T N Q7). (62)

JEAR

From the fact that v is continuous and since H1 (T NQ7) — H! (F N Q’) as k — oo, for every
€ > 0 there is k € N such that for every k > k we have

M (TN Q) —H (T NQ))| <e.
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and
~ S HYT N QY) ~ .
| (“Jm) ()| <<
Then, from we have that
FQQJ) 1 - 1
AN S VA B T 77 i d
Z ‘/Fma QQJ)) H /mjw(u) H
<e Z HY TN QM)+ ¢ Z (). (63)
JEA JEA

As ¢ is arbitrary, we can conclude our estimate.

Regarding the second sum on the right-hand side of , we use the a similar method as in
. Now, for the first two terms can be estimated as follows,

Z/ D) dH — / v () a'|
FkﬁQJﬂSk renQs

JEB
L(ren @ .
= ¥ (@ g g M T @ )
JEB
~ . 1 c j . . .
(v 7—[17(-[1“:1;7 gj%])sz))ﬂl(rk NQINSE) — SR (TN Q). (64)

By using the same argument that led us to obtain , consider € > 0 as before, then, for &k
large enough, we have

M (TN QT NS —HIT Q)| <e,
H (TN QN Sp) - H (TN Q)| <e,
and, by the continuity of 12?,

. (e ~
M HlHrgw gﬁwj?s*é))

M HlHr;f?cgﬂciwj)er )| <=

As consequence, from (64) we get

j d 1 / c(nJ d 1
Z‘/mek u’) dH chij(u) H)

JEBK

<e ) (H'Tn@ nSH+H(TenQ NSy

JEBy
+ 3 (e H (TR N Q7 N SE) + (b ) H (T, N Q7 N ) — ve(w! Y HH (TN Q7))
JEB
_EZH CLNQ NSy +€Z (a?) + (v )
J€By JE€By
+ Y (@) + ) — ) [H (TN Q) (65)

JEB
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Now, we conclude our estimate by using and the fact that ¢ is arbitrary.
The third sum in the right hand side of can be treated in the same way as before.
Consider € > 0 as above, then, for k large enough we have
HH(TNQ)\S) - H(TNQY) <e
and

‘¢< HY(TNQI)\ Sk)
YHI((TL N Qi) \ SK)

) zZ(uj)’ <e.

Thus we have

~ HN(TNQI)\ Sk - S
‘/FWQJ )\Si jHl((Fk nNe7)\ Sk)) o /(mej)\Sk vl dH ’

<e Y HNTRNQ)\Sk) +e Y P Y H ((TrN Q) \ Sk)

JEB JjE€EB

+ D [P)H (T N Q) \ Sk) — () H (T N Q). (66)

JEBk

JEBy

Since ¢ is arbitrary and from the fact that H' ((TxNQ7)\ Sk) — HY T NQI) as k — oo, we can
conclude the last estimate.

By putting together , , and in , we conclude that
lim G(Q, vi, p) = G(Q, v, ).
k—o0
O

Proposition 7.8. Let (2, v, 1) be such that h is a non-negative Lipschitz function, v € Wh2(Q; R?)
and pn = uH ' T, withu € LY(T) a grid constant density. Then, there is a sequence (Qp, Vg, i)k C
A (m, M), with pp = upH' Ty and up € L*(H'T}) grid constant, such that

lim F(Qp, v, pix) = G(Q, v, 1),
k—o0
and (Q/ﬁvkvuk) — (Q,’U,M), as k — oo.
Proof. Step 1. Denote by 1™ the convex envelope of 1, namely,
PV = {p: pis convex and p < 1)}

It is well known (see, for instance, [19, Theorem 5.32 and Remark 5.33]) that for any given
density w € L*(T), with g a Lipschitz function, then there is a sequence (wp,)m C L'(I'y) such
that w,, — w in L' and

lim ¢(wm) dH! = [ ™ (w) dH .

m—r0o0 Fg
In particular, w, H' Ty — wH! \_Fg as k — oo. Therefore, if we prove the statement of the

proposition for ¢ convex we also have it for ¥ Borel. Thus, from now on, in order to enlighten
the notation, we will assume 1 to be a convex function.

Step 2. Take any configuration (2, v, ), where h is a Lipschitz function, v € W12(Q; R?)

and p = wH' T is a grid constant density. Then, we can consider a finite grid of open squares
(@Q7)jes such that

Ui = W e R.
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2t i+l pit2 gi+3

FIGURE 6. On each interval [z¢, 2'71], depending on whether u/ > sy or not, we
will apply the wriggling process and change the density to sg, or do not change a thing.

for each j € J. By construction, there are finitely many points a = 20 <2t < ... < 2™ =bsuch
that u =u* € R on
graph(h) N [(2",2""1) x R],
for every i = 0,...,n (see Figure [6]).
Define the index sets

A={i=1,...,n:u’ < sp},

B:={i=1,...,n}\ A, (67)
where sg is given by Lemma In such a way, we are going to apply the wriggling process
for ¢ € B. By Lemma , for every i € B, we choose r* > 1 such that

ut = rlsg.

and we have, on each interval (x?,

properties:
(1) 7—[1( 0) = riHY T N [(2f, 27TY) x R]), where T'% := graph(h),
(i7) h(z') = hi(a"), and h(z ”1) = i (a™*),
(ZlZ) h’|(:p1 xH»l < hk’
)
)

z1), a Lipschitz sequence (hi)g, that verifies the following

(iv) hf — h(zi zi+1) uniformly as k — oo,

*

(v) HLTE = P HI (DN (28, 277Y) x R), as k — oo.
Then, we define the Lipschitz sequence (hy)y as

_ ;L;c u’ > S0,
(2t ity = ;
h‘(mi7zi+1) u' < s,
By setting T}, := graph(hy), we define the density @, on T}, as
S0 ul > S0

ul

U| (2 i) xR = ;
u' < S0,
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We have that the sequence (ug); define above satisfies the density constraint. Indeed, by
considering the index set defined in (67)), we have

a, dH! = / ut dH + / so dH"
/1:‘;€ ;4 TrN[(x?,zi+1)xR] ; TpN[(x?,2tT1)xR]

= Zui’;‘—[l(fk N [(z?, 2 x R]) + Z soH (T N [(zf, 271 x R])

€A i€B

=> wH (N[22 xR) + > sor'H (TN (2", 2"H) x R))
€A 1€EB

= Z/ ut dHt
i=1 ¥ TN[(zf,zt 1) xR]

= m,

where in the third to last step we used the fact that
HU (T N [(2',2") x R]) = 77T 0 (27, 277) x R]), (68)
for every i € B.

_ Step 8. Since in general h < hy, we have that M = [Q| < |[Q], where Q;, is the sub-graph of
hi, for each k € N. In order to fix the mass constraint we set

M<1
Ve = = S 1
||

and we have that v, — 1 as £k — oo. Define, for each k € N,
hk = 'szﬁlv

Now the sequence (hy)y satisfies the mass constrain, indeed

b b
[ e = [ e = 0] = 0.

Now, let T, := graph(hy). Since in general, for every k € N, HY(Tx) < HY(Tk), we need to
adjust the density constraint. By knowing that

/ a, dH' = m,
Ty
we need to define a new sequence of density (ug)r on I'y such that, for every k € N,
/ up dH! = m.
™
Thus we set, for each k € N,
U,
up = —F
k th ;
with
1
r
by = H (k) <1
HY(Ty)

Notice that t; — 1 as kK — oco. We have that the sequence (uy ) satisfies the density constraint.
Indeed,
/ wp dHY = PRy = aHL(TY) = / ap dH! = m.
T i T,
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Step 3. We now prove the convergence of the density, namely upH' Ty, = uH!LT. To do so,

we first prove that Gy H ' Ty — wH' T, and then we conclude by triangle inequality.
Take any ¢ € C.(R?) and consider ¢ > 0. We can find § > 0 such that, if x,y € R? satisfy

‘y - X‘ < (57
then
lo(y) — p(x)] <e. (69)
Up to refining the intervals (z%, z*!), we can assume that
o S
- < .
| | 7

Let K > 0 such that for every £k € N we have hy < K and h < K. This is possible, as our
sequence is uniformly bounded by definition and & is bounded. Consider a finite partition of
[0, K] given by ° = 0,9',...,94™ = K, such that for every [ = 1,...,m we have

AR
—~ < —.
y 7
Moreover, for every [, consider i € [y!, y'™1]. Then, from (69), for every x € [2%, 271 x [y, y' 1],
we have

ly

lp(x) — (@', 7)) <e.

We then have
‘/ akgodHl—/ugodHI‘:‘Z/ uigadHI—FZ/ sop dH!
T r 1 JTunl(@i @it xR] 5 JTunl(at 2t ) xR

_ 7 d 1
Z/Fﬁ[zlm“rl)XR]uso /H‘

_Z‘/ Sop dHl—/ ul(p dHl‘
ieB Y TrNl(@ a1 xR] DN[(zf,zi+1)xR]

= iZ‘/ so[p(x) — o(z',7)] dHl‘

o 5 Tl i ) x iyt ))

Y]

=0 icp YNl a1 x(yhyt+1)]

u (%) = (o, 5')] |

E3Y (@ 7R T 0 [ ) < (o))

=0 ieB

— (@, gy H T N (2", a™) x (4, g )]

< €50 Z ZHl(fk} N [(xi7xi+1) X (yl7yl+1)])

=0 ieB

+auii2#(r N[, 2" x (o' ")

=0 i€B

+ llelleoge) Y Y lsoH T N (2,2 x (3,4 )])
=0 i€B
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—uH (T N[, 2™ x (g )]

< esp Z”Hl(fk N [(z%, 2 x R])
1€EB

+eu' Y HY(I N[, 2"T) x R])

i€B

+ llelleomz) Y lsoH! (Tr N [, &™) x R])
i€B

—uH (TN (2, 2") x R])]

Now, by using condition we get

‘/ Upe dH! — / wp d?—[l‘ < 2e|lul|1(ry, (70)
Tk r
where we can conclude as € was arbitrary.

In order to prove that upyH' Ty = wH' T, we can use together with the triangle
inequality and the following estimates. We fix ¢ and ¢ as in , so we have

\/ upp dH' — | e dHl‘
Ik T
b U 07, 5 B — ”
:‘/ (EVJ(%hk(x)) 14+ y.h(2)? — g, hi(z))y/1 + b (x) )dx‘

< [ G~ 1)t uon i+

+ upp(x, h(z))4/1 + 7,3712&(3:)2 — app(z, hi(z))4/1 + ﬁz(az)Q] daz‘. (71)

Regarding the first term on the right hand side of (7I)), we have that the sequence (hy)y is
uniformly Lipschitz, as stated in Remark Then there is L > 0 such that |hj| < L.
Furthermore, we have that, for every k € N, |ug| < C, with C' > 0, and we get

’/ab (tlk ), b))y 1+ 70 ()2 < (tlk — 1[Cllelleoy/1+722 (72)

Now, we estimate the remaining two terms on the right-hand side of . Let & > 0. There is
k' € N such that for k > k' we have

|’7k - 1| < 6/.

Since the function x — /1 + 22 is Lipschitz we have,

1+ 2R ()2 = 1+ B (@)2] < 2Pl () — ()| < 2L — 1] < 2L (73)

Thus we have

b
[ vt mo)y1 7 @02 - e Futa) 1+ B 02
<[

o e, ()1 92 (02 = ol b))/ 1 -+ ()2
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b
+ / Upp(z, hi(z))y/1+ R, (2)? — arp(z, hi(z))y/1 + ) (2 ‘dx (74)
Then, the first term on the right-hand side of can be estimated by using ([73) and we get
b
/ Upp(x, hig(2))/1 4+ V2R, (2)? — tgp(z, hi(z))y/1 + R (x ‘dx < K'¢, (75)

where K’ := 2LC(b — a)l|¢]|co(rz)-
The second term on the right-hand side of is estimated by using the uniform continuity of
. Since there is C’ > 0 such that |hg| < C’, for every k € N, we also have

() = hie(@)] = | — LA ()| < £'C".

As consequence, by using a similar approach as in , we get

/ ol b))+ By ()2 — ol () 1+ B ()2 e < K7, (76)

where K" == b - a)C’\/l + L2
By putting (75) and (76)) in (73), we get that

/b Upp(x, hig(2)) /14 V2R, (2)? — gp(z, hie(z))y/1 + R (x ’dx < K'¢ + K"e. (77)
Now, bay putting and in we get
‘ /Fk e dHY — | d?-[l‘ <K'd+K':+ ‘tlk - 1‘CH§0HCO(R2)\/1 +a2L2 (78)
Finally, by using and we get
]/ upep dH! —/W d?-ﬂ’ < ‘/ upp dH — | e d?—[1’ +(/ T ! —/unp d’Hl‘
Ty, r T T T r

1
< 2eful| 1 ry + K¢+ K + \g ~1/Cllglleoayy/1 + 222

we can conclude since € and ¢’ were arbitrary and by letting & — oo.

Step 4. Regarding the displacement, set
Uk(:E? y) = U(l‘, ’Wey)

The definition of the vz’s is well posed, indeed (z,7y) € 4 if and only if y < hi(z). In
particular A < hg, hence v(z,vxy) is well defined at every point. Notice that, since hy > 0, we
have that for y < 0 it holds vy = v. Thus, denote the bounded open set

Ot =0n{y >0},
and note that the set
QZ_ = {(‘Tayky) : (xay) € QJr}
is also open and bounded.

We now prove that vy — v in W23(Q;R2), as k — oo. Indeed, take ¢ € C(R?). Fix e > 0

loc
and since ¢ is uniformly continuous, we have that |p(x) — ¢(y)| < €, every time |x —y| < § for

some § > 0. In particular, since v, — 1, if k is large enough, we have
Y
)@(l‘v 7) - QO(SC, y)) <e
Yk

By using the above fact, we get

‘/ vkapdx—/ vgadx’ = )/ vkgodx—/ vapdx’
R2 RR2 QF aQt
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1

Y
=|— v(zx, x, — |dzd / v(z, x,y)dzd
o /m (2,90 ( %) y— | v y)eley)dedy

< vlk‘ /Q+ v(z,y) [90(:6, %) - w(:c,y)}dwdy’

+ <71k = 1) /m v(x,y)w(x,y)dxdy‘

€ 1
< —llv —i—‘——l‘ v .
%H HLl(Q) - | HL2(Q)HSOHL2(Q)

By letting ¢ — 0 and & — oo we conclude the first estimate. Here we have used the Sobolev
embedding for WH2(QF; R?).

Now we prove the convergence of the gradient. First we note that the gradients are uniformly
bounded, namely it can be verified that

IVor]lr2) < ClIVllL2(0),

for some positive uniform constant C' > 0. Thus, we have

‘/ Vg - chdx/ Vv - Vgpdx‘ = ‘/ Vg - Vgodx/ Vu - Vg@dx‘
R2 R2 of o+

1 Yy
= — Opv(w,y)0zp( w, ~— )dad
o v(z,y) s0<:v )\k) zdy

Y
+ /Q+ %v(m,y)%gp(az, A—}g)dxdy,

and, from similar estimates as before, together with the uniform boundedness of the gradients,
we can conclude that vy — v in WH2(Q+;R?), as k — oo.

Step 5. It remains to prove the convergence of the energy. Set py = upH'.I';,. We have

F (s v 1) — G, 0, 1) = /Q W (E(vr) — Eo(y))dx — /Q W(E(v) - Foly))dx

+ [ Y(uy) dH' / P(u) dH! (79)
Ty r
Step 5.1 We now prove the convergence of the bulk term in (79).

/ W (E(ur) — Eoly))dx — / W (E(v) - Eoly))dx
O Q
= / W(E(v(:c,vky)) — Eo(y))dx —/ W(E(U) — Eo(y))dx
e 0

_ vlk[/ W (E(v(, 2)) — ED<%>)dxdz —/QW(E(U) - EO(Z))dﬂde}

Qg

1
+(=-1) / W (E(v) - Eo(z))dadz. (80)
Yk Q
By noticing that Eo(z) = Eo(2/7x), fix ¢ > 0 such that, if k is large enough, [Q; \ Q| <¢'. In
the first two terms on the right-hand side of , we have that, for every k, 0 C Q, and then
we can proceed as in , and we get
1

L Wt ) - Be)astz = [ w(EE) - B)ir]
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1

= o~ { o6 W (E(v) — Eo(y))dxdz].

From here we conclude by Dominated Convergence Theorem. Notice that the second term on
the right-hand side of is going to zero, since v, — 1 as k — oo.
From here we conclude the convergence of the bulk term in.

Step 5.2 We now consider the surface terms in . Using the index sets defined in (67)), we

get

d 1 / i] dul / S0 Feny
wuk " Z LpN[(z?,zit1 xR]qb(tk) " +; pkn[(xi’xiJrl)XR]w(tk) H

€A

By using the fact that 1 is continuous (as we are in the convexity assumption stated in Step 1)
and from the fact that, for every i € B,

we

¢<%)H1(Fk N [(ZL‘i’_jU’i+1) X R]) — thkw<%>Hl(F N [(:L‘i,.ZUH_l) % RD,
get

lim [ (uy) dHt

k—o0 T

— lim [Zw(i)ﬂl(rm[(xi F X R)) + Y rity 1/}( ) LT N [(z,2*) x R])
€A

k—o0
i€B

= > P )H (T N[, 2 x R) + > rip(so)H (DN [(2F,27) x R])

i€A i€B
=" S N[, 2 X R]) + 3 H T 0 [0, 2 x R)
€A i€B

= /F{E(uf') dHl.

This concludes the estimate for the surface term in ([79)).

Step 6. By putting all the steps together, we then conclude that

Th

(1]
(2]
(3]
[4]
[5]
(6]
[7]
(8]

lim F(Q, vk, pg) = G(Q, v, ).
k—o0

is completes the proof of Theorem [7.1] O
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