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Abstract
We prove an existence result for a large class of PDEs with a nonlinear Wasserstein gradient flow

structure. We use the classical theory of Wasserstein gradient flow to derive an EDI formulation of
our PDE and prove that under some integrability assumptions on the initial condition the PDE is
satisfied in the sense of distributions.

1 Introduction
The most classical theory of gradient flows is concerned with evolution equations of the form

x′(t) = −∇F (x(t)),

for instance when x is a curve valued in a certain Hilbert space H and F : H → R is a given function
on such a space. It is well-known that a natural time-discretization of this equation takes the form of
a sequence of optimization problems, where we define, for a given time step τ > 0, a sequence (xk)k

of points in H via

xk+1 = argmin
{

F (x) + ||x− xk||2

2τ

}
.

This corresponds to the well-known implicit Euler scheme for the above equation, but has the advantage
that it admits a formulation in metric spaces, where the norm ||x−xk|| is replaced by a generic distance.
Such an iterated minimization procedure is usually called minimizing movement scheme (see [8]).

If one replaces the power 2 in these optimization problems with another power, the natural scaling
is the following

xk+1 = argmin
{

F (x) + τ

p

( ||x− xk||
τ

)p}
and leads to a solution of

x′(t) = −(∇F (x(t)))q−1,
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where for a vector v and an exponent α > 0 we denote by vα the vector whose direction is the same
as that of v and whose norm is ||v||α, i.e. ||v||α−1v, and the exponent q is the conjugate exponent of
p. As a consequence, we do not face a true gradient flow, but a different variational evolution that we
call generalized gradient flow. A similar construction could be made in metric spaces, of course, where
the notion of (generalized) gradient flow should be suitably defined (and we refer to [3] or [17] for the
details).

A particular case of interest is that of the Wasserstein spaces of probability measures endowed with
the distances Wp induced by optimal transport. These distances are now used in a variety of contexts,
from PDEs to machine learning, and we will not provide here extra details on them. The main facts
that we will use will be presented in Section 2.2, and the interested reader is encouraged to refer to
[20] or [18]. Each distance Wp being defined as the p-root of a transport cost, it is natural to use each
Wp only in the framework of a generalized gradient flow with exponent p.

The procedure consisting in studying the limits (as τ → 0) of the following iterated optimization
problems

ρk+1 = argmin
{

F (ρ) + W 2
2 (ρ, ρk)

2τ

}
has been introduced in [13], is now known as Jordan-Kinderleher-Otto scheme, and is widely used to
study PDEs of the form

∂tρ = ∇ ·
(
ρ∇

(
δF

δρ

))
,

where δF
δρ denotes the first variation of the functional F . When F (ρ) =

´
f(ρ(x))dx this gives rise to

a parabolic PDE of the form
∂tρ = ∇ ·

(
ρ∇(f ′(ρ))

)
.

In this work, we investigate instead the general case p ̸= 2. This consists in considering the iterated
optimization problems

ρk+1 = argmin
{

F (ρ) +
W p

p (ρ, ρk)
pτp−1

}
,

that we will call p-JKO scheme. The PDE has now the form

∂tρ = ∇ ·
(
ρ

(
∇
(
δF

δρ

))q−1)
.

When F has the form
´
f(ρ(x))dx for a convex integrand f , this equation becomes

∂tρ = ∆q(h(ρ)),

where h is a function such that h′(s) = sp−1f ′′(s) and, again, p and q are conjugate exponents.
Equivalently, one can also write this as

∂tb(u) = ∆q(u)
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with b = h−1. This is why these equations are called doubly non-linear. They are anyway quasilinear,
since the right-hand side is linear w.r.t. the second derivatives in space. However, the nonlinearity in
terms of the gradient is source of difficulty.

Among the first studies on these equations we mention [2] where strong structural assumptions were
required to prove existence and uniqueness, but we are more interested in the works which already
attacked these equations in terms of generalized gradient flows and p-JKO schemes. the founding
papers on this variational approach to these equations are [1] and [16], where it is proven that the
discrete solutions obtained by the p-JKO scheme converge, under some conditions, to a solution of the
PDE, in weak sense.

Both [1] and [16] use estimates obtained from the scheme in order to prove the necessary compact-
ness of both the density ρ and its gradient ∇ρ and pass to the limit the discrete optimality conditions
at each step. They require some assumptions on the function f : [16] only considers the case of powers,
i.e. f(z) = zm

m−1 , and requires m > 0; [1] requires f to satisfy Mc Cann’s condition for geodesic con-
vexity (see [15]). These restrictions on f are disappointing since the case of the parabolic q-Laplacian
equation ∂tρ = ∆qρ requires to use a function f such that f ′′(z) = cz−p, i.e. f(z) ≈ z2−p, which could
be out of the set of assumptions of these papers.

Our goal in the present paper is to generalize the results to more generic convex functions f , and
at the same time to change the strategy of the proof. Instead of relying on fine arguments for the
strong convergence of the gradient, we sill make use of the Energy-Dissipation Principle and prove an
Energy Dissipation Inequality on the limit. The idea, well-known in gradient flows (see, for instance
[3]) is the following: a curve t 7→ x(t) is a solution of x′ = −∇F (x) on [0, T ] if and only if we have

F (x(T )) +
ˆ T

0
(1
2 ||x′(t)||2 + 1

2 ||∇F (x(t))||2) dt ≤ F (x(0)). (1.1)

This can be seen from the fact that the chain rule provides d
dt(F (x(t)) = ∇F (x(t)) · x′(t) and, by

Young’s inequality, the opposite inequality of (1.1) is always true and the only equality case is given
by x′ = −∇F (x).

Analogously, we have x′(t) = −(∇F (x(t)))q−1 if and only if we have F (x(T )) +
´ T

0 (1
p ||x′(t)||p +

1
q ||∇F (x(t))||q) dt ≤ F (x(0)). The corresponding condition in the Wasserstein space when considering
F (ρ) :=

´
f(ρ(x))dx would be: a curve t 7→ ρt, solution of ∂tρ+ ∇ · (ρv) = 0, is a solution of the PDE

if and only if we have

F (ρ(T )) + 1
p

ˆ T

0

ˆ
Ω
ρ|v|p dx dt+ 1

q

ˆ T

0

ˆ
Ω
ρ|∇(f ′(ρ))|q dx dt ≤ F (ρ(0)).

Proving such an inequality is possible, up to some technicalities, using suitable estimates on the the
discrete scheme and semicontinuity arguments. The important point is that it is in general hard to
prove that this characterizes the solutions of the PDE, i.e. the condition v = −∇f ′(ρ), since it is hard
to prove that we do have d

dtF (ρt) =
´

∇(f ′(ρt)) · vtdρt, i.e. proving a chain rule in the Wasserstein
space.

The only other paper, to the best of our knowledge, where the EDI condition is used to characterize
solutions of these doubly nonlinear PDEs is [7], whose goal is to prove the convergence of a numerical
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scheme. The chain rule is there proven under the assumption that F is geodesically convex, i.e. f
satisfies Mc Cann’s condition. One of the hard tasks of the present work is to remove this assumption,
and this is done by decomposing, after some approximation, an arbitrary function f into the difference
of two functions satisfying Mc Cann’s condition. If we do not need to perform such a decomposition,
i.e. if f itself satisfies Mc Cann’s condition, then the only assumption that we will require on the initial
datum ρ0 will be

´
f(ρ0) < +∞, which is natural. If not, then we need a certain Lα summability, for

an exponent α depending on the dimension d, on the exponent p, and on the function f .
This condition on the integrability of the initial datum is an improvement compared to [1], where

most of the paper is presented under the assumption that ρ0 is bounded from above and below by
strictly positive constants, and then completed by a discussion on how to remove the lower bounds by
approximation and then the upper bound by replacing it with ρ0 ∈ Lp (the same p as the the exponent
in the Wasserstein space). Our exponent α could be smaller than p but, in particular, we do not need
it when f satisfies Mc Cann’s condition, as it is the case in [1].

We stress on the other hand two points where our paper is less general than the previous ones,
essentially for the sake of simplicity:

• After performing very long computations we decided to stick to the case F (ρ) =
´
f(ρ(x))dx and

ignore the more general case F (ρ) =
´
f(ρ(x))dx +

´
V dρ where a potential energy is added.

Such a case is, instead, considered in [1, 7]. Yet, it makes the computations much harder in
the case where F is not geodesically convex, and we believe the interest for these equations is
limited, because, differently from the case p = 2, the gradient of the potential does not act as a
linear drift in the equation.

• We also decided to ignore the case where the Wasserstein distance Wp are replaced by transport
costs which have not the homogeneity of a power. Indeed, [1] considers a JKO-like scheme
obtained by looking at

ρk+1 = argmin {F (ρ) + τTc,τ (ρ, ρk)} ,

where Tc,τ is the minimal transport cost associated with the cost (x, y) 7→ c((x− y)/τ). In this
case the equation we obtain is

∂tρ = ∇ ·
(
ρ∇c∗

(
δF

δρ

))
.

For an example of a very interesting PDE with this structure we cite [14] on the so-called
relativistic heat equation, where c(v) = 1 −

√
1 − |v|2.

The main result of our paper is the following theorem, where we use the notation Lf (z) = zf ′(z)−
f(z), so that the function Lf satisfies L′

f (z) = zf ′′(z) and, formally, ∇Lf (ρ) = ρ∇(f ′(ρ)).

Theorem 1.1. Let f : R+ → R∪{+∞} be a l.s.c. convex function such that f ∈ C2(0,+∞), f ′′ > 0,
and f ′′(z) ≥ Cz−θ when z is large enough for some θ ∈ R∪{+∞}. Let ϱ0 ∈ L1(Ω) be a probability
density satisfying

ˆ
Ω
f(ϱ0) dx < ∞.

4



If f does not satisfy Mc-Cann’s condition, set α = 2 − q(1 + 1
d) + θ(q− 1), and assume as well ϱ0 ∈ Lα

whenever α > 1, or
´

Ω ϱ0 log ϱ0 dx < +∞ if α = 1.
Then there exists ϱ ∈ C0([0, T ],Wp(Ω)) and v ∈ Lp(ϱt dx dt) such that

∂tϱt + ∇ · (ϱtvt) = 0 in the sense of distributions,
vt = −

(∇Lf (ϱt)
ϱt

)q−1
ϱt a.e. for a.e. t,

ϱ(0) = ϱ0.

(1.2)

We underline that the summability assumption on ρ0 (which is void if α < 1) only plalys a role in
case f does not satisfy McCann’s condition.

To achieve the goal of proving the above theorem, the paper is organized as follows. Section 2 is
devoted to some preliminaries: notation (2.1), bases of optimal transport, including some consider-
ations on the McCann’s condition that we mentioned many times so far (2.2), and the details of an
approximation procedure that we will use for every step of the p-JKO scheme, i.e. replacing f with fε

defined via fε(z) = f(z) + εz log z. In section 3 we prove that the solutions obtained in the iterated
minimization converge, up to subsequences, to a curve ρt satisfying the EDI condition. This requires
suitable interpolations of the discrete sequence (3.1). The proof of the compactness and of the limit
inequality is contained in Section 3.2, and in Section 3.3 we prove additional integrability properties
on the limit curve.

Section 4 is devoted to the hard task of proving the chain rule and is divided into several steps,
where we prove the desired results on arbitrary curves satisfying some integrability assumptions. Since
the curve obtained in Section 3 satisfies them, at the end of the section we can prove Theorem 1.1.

We also prove additional estimates on the solution constructed as a limit of the p-JKO scheme,
in particular in terms of its BV norm. This is a consequence of the so-called five gradients inequality
which as been recently generalized to the case of the transport cost |x− y|p in [6]. This is the object
of Section 5.

A short appendix concludes the paper, where a technical point in the discretization of the integral
in time in Section 4 is detailed.

Acknowledgments The authors were supported by the European Union via the ERC AdG 101054420
EYAWKAJKOS project.

2 Notations and Preliminaries

2.1 Notations

Below is a list of notations we will use in the sequel :

- d ∈ N∗ is the space dimension,

- Ω is an open convex bounded subset of Rd,

- T > 0 is a set time horizon and ΩT = Ω × [0, T ],
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- p > 1 and q > 1 are dual integrability exponents : 1
p + 1

q = 1,

- Wp is the p-Wasserstein distance.

- If z ∈ Rd is any vector and α > 1, we write zα = |z|α−1z

- For a differentiable function f : R+ → R, Lf is the function defined by Lf (z) = zf ′(z) − f(z)

- For a function f : R+ → R, F : P(Ω) → R∪{+∞} is its associated functional according
to definition 2.4. We use similarily H , F̃ , F̃1, F̃2,L for the functionals associated with the
functions h, f̃ , f̃1, f̃2, ℓ respectively.

For a function f : R+ → R, we define the following assumptions which we will use throughout this
paper :

• (H1) f is convex and lower semi-continuous

• (H2) f ∈ C2((0,+∞))

• (H3) f ′′ > 0

• (H4) f ′′(z) ≥ Cz−θ when z is large enough

• (G1) (Mc-Cann’s condition) f(0) = 0 and (0,+∞) ∋ s 7→ sdf(s−d) is convex and non increasing.

2.2 Preliminaries on Optimal transport, Gradient Flows and Geodesic Convexity

We refer to [3, 18, 19] for the general theory of optimal transport and its application to gradient flows,
and will compile below a selection of helpful facts we will use in the sequel.
Theorem 2.1. Let ϱ, g ∈ P(Ω) be two probabilities on Ω. The following statements are classical :

1. The problem

W p
p (µ, ν) := min

{ˆ
Ω×Ω

|x− y|p dγ ; γ ∈ Π(µ, ν)
}
,

where Π(µ, ν) is the set of probabilities on Ω × Ω with first marginal µ and second marginal ν,
admits a solution γ∗. If µ = ϱ dx, with ϱ ∈ L1(Ω), then the solution is unique, and given by
γ∗ = (id, T )#ϱ for some T : Ω → Ω which is called the optimal transport map.

2. We have
1
p
W p

p (µ, ν) = max
{ˆ

Ω
φ dµ+

ˆ
Ω
ψ dν ; φ(x) + ψ(y) ≤ 1

p
|x− y|p ∀x, y ∈ Ω

}
.

The optimal φ we call Kantorovich potentials, and they can be taken to be c-concave, meaning of
the form

φ(x) = inf
y∈Ω

1
p

|x− y|p − ψ(y), ψ(y) = φc(y) := inf
x∈Ω

1
p

|x− y|p − φ(x),

from which one can prove that φ and φc are Lipschitz.
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3. The optimal transport map T is given by

T (x) = x− (∇φ(x))q−1,

where φ is any Kantorovich potential. It is well defined almost everywhere since a Lipschitz
function is differentiable almost everywhere.

4. Wp is a distance on P(Ω) which metrizes the weak convergence of measures. Endowed with this
metric, we call P(Ω) the Wasserstein Space, which we denote by Wp(Ω)

5. Wp(Ω) is a geodesic space, and the geodesic between µ and ν is given by µt := (πt)#γ, where
πt(x, y) = (1 − t)x+ ty and γ is an optimal transport plan between µ and ν. If γ is given by an
optimal transport map T , then µt = ((1 − t)id + tT )# µ.

We will now define the Benamou-Brenier functional which will be useful in the sequel. We take
p ∈ (1,+∞), and set Kp =

{
(a, b) ∈ R×Rd; a+ 1

q |b|q ≤ 0
}

, and for (t, x) ∈ R+ ×Rd,

Bp(t, x) =


1
p

|x|p
tp−1 , if t > 0,

0, if t = 0, x = 0,
+∞ if t = 0, x ̸= 0, or t < 0.

Definition 2.2 (Benamou-Brenier functional). If X is a compact measurable space and (ϱ,E) ∈
Mb(X) × Mb(X)d,

Bp(ϱ,E) := sup
{ˆ

a dϱ+
ˆ
b · dE; (a, b) ∈ Cb(X,Kp)

}
.

Proposition 2.3. Bp is convex and lower semi-continuous on the space Mb(X) × Mb(X)d for the
weak convergence, and moreover we have

1. Bp(ϱ,E) ≥ 0,

2. If ϱ and E are both absolutely continuous with respect to a positive measure λ, then Bp(ϱ,E) =´
Bp(ϱ,E) dλ,

3. Bp(ϱ,E) < ∞ only if ϱ ≥ 0 and E ≪ ϱ,

4. In that case, we can write E = v · ϱ and Bp(ϱ,E) =
´ 1

p |v|p dϱ

Definition 2.4. Let f : R+ −→ R be a convex and l.s.c. function, and let L := limt−→+∞
f(t)

t . We
define

F (µ) :=
ˆ

Ω
f(ϱ(x)) dx+ LµS(Ω̄),

with µ = ϱ · dx + µS , where ϱ and µS are respectively the absolutely continuous (with respect to
the Lebesgue measure) and the singular part of µ. It is a convex and l.s.c. functional for the weak
convergence of measures.
We will similarly use the notations H , F̃ , F̃1, F̃2,L to denote the functionals associated with the
convex functions h, f̃ , f̃1, f̃2, ℓ respectively.
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Proposition 2.5. If f verifies (G1), then the functional F is geodesically convex in Wp, i.e. it is
convex along geodesics in Wp.

Lemma 2.6. Let φ : R+ → R+ be a superlinear convex function which is 0 in a neighborhood of 0.
There exists a smooth strictly convex superlinear function Φ satisfying (G1) and a constant C > 0
such that Φ ≤ C(φ+ 1)

Proof. We look at the function

Mϕ(s) := sdϕ(s−d),

and define Φ̃ to be its lower convex hull. Since ϕ is 0 near 0, we deduce that Φ̃ is eventually constantly
0, which implies that Φ̃ is decreasing, being a convex function. We take

Φ(z) = M−1Φ̃(z) = Φ̃(z− 1
d )z,

and find that Φ is superlinear if Φ̃(0+) = +∞. Supposing that this is not the case, i.e. that there
exists some M > 0 such that Φ̃ ≤ M near 0, we set

a = sup
s>0

M + 1 − Mϕ(s)
s

< +∞,

which is well defined because since ϕ is superlinear, Mϕ(0+) = +∞. We therefore have that

Mϕ(s) ≥ M + 1 − as,

so that the lower convex hull of Mϕ, being the supremum of affine functions lower than itself, verifies
Φ̃(0+) ≥ M+1 when we take s → 0 which yields a contradiction. Up to finding a smooth approximation
of Φ̃, for example via convolution, we can also assume that Φ is smooth. It is known (see for example
[19] chapter 17) that a superlinear convex function satisfying Mc-Cann’s condition (G1) is strictly
convex away from 0, therefore up to adding a convex function to Φ̃, that is linear near 0 (which means
adding a sublinear function to φ near +∞) and that strictly decreases to a constant thereafter (which
keeps Φ bounded near 0), we can guarantee that Φ = M−1Φ̃ is strictly convex everywhere, and that
Φ ≤ C(φ+ 1) for some constant C > 0.

2.3 Approximated problem

In this first section we will look at the following variational problem defining the next step in the JKO
scheme we will use later :

ϱ ∈ argmin
W p

p (ϱ, g)
pτp−1 + F (ϱ). (2.1)

We will assume that f satisfies (H1,H2,H3). To gain some regularity for the minimizers of the
problem, we will approximate it by adding a small entropy term.

µε ∈ argminµ

W p
p (µ, g)
pτp−1 + Fε(µ) (2.2)
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where Fε is the functional associated with fε(z) = f(z) + εz log(z), i.e.

Fε(µ) = F (µ) +
{
ε
´

Ω ϱ log(ϱ) dx if µ= ϱ dx
+∞ otherwise.

Lemma 2.7. The solution of 2.2 is given by a density that is bounded from above and away from 0,
and is actually Lipschitz continuous.

Proof. An easy adaptation of the proof from [4], appendix B.4 shows that the conditions fε(0+) = −∞
and f ′

ε(+∞) = +∞ implies that there exists δ > 0 such that the solution ϱε of 2.2 satisfies δ ≤ ϱε ≤ 1
δ .

Since f ′′
ε is bounded from below on compact sets, using the optimality condition (see [18] section 7.2.3

for its derivation), we have
φ

pτp−1 + f ′
ε(ϱε) = C a.e.,

from which we deduce that ϱε is a Lipschitz function. Indeed, we can write

ϱε = (f ′
ε)−1

(
C − φ

pτp−1

)
,

and since φ is Lipschitz we deduce the result.

Lemma 2.8 (Flow Interchange Technique). Let h : R+ → R satisfy (H1-H2-H3-G1) and ϱε be the
solution of 2.2. Define H as in definition 2.4. If H (g) < +∞ then we have

H (g) − H (ϱε) ≥ τ

ˆ
Ω

∇(Lh(ϱε)) ·
(
∇f ′

ε(ϱε)
)q−1 dx ≥ 0.

Proof. Assumption (G1) implies that H is convex along geodesics, therefore we will look at the
geodesic [0, 1] ∋ t 7→ ϱt from ϱε to g. By convexity we have

H (g) − H (ϱε) ≥ lim
t→0

H (ϱt) − H (ϱε)
t

.

Following [3] section 10.4.3, we find that

lim
t→0

H (ϱt) − H (ϱε)
t

≥ −
ˆ

Ω
Lh(ϱε)Tr

(
∇̃(T − id)

)
dx,

where T is the optimal transport map from ϱε to g and ∇̃T denotes its approximate gradient. Again
adapting the proof of Theorem 10.4.5 of [3], up to approximating T with BV functions with nonnegative
distributional divergence and using that Lh(ϱε) ≥ 0 is W 1,1(Ω), we have

−
ˆ

Ω
Lh(ϱε)Tr

(
∇̃(T − id)

)
dx ≥

ˆ
Ω

∇ (Lh(ϱε)) · (T − id) dx−
ˆ

∂Ω
Lh(ϱε)(T − id) · n dσ

Using the convexity of the domain and the fact that T points inwards ϱε a.e. and Lh(0) = 0, the
boundary integral is non positive. Finally, using the optimality conditions for ϱε we have

T − id = − (∇φ)q−1 = τ
(
∇f ′

ε(ϱε)
)q−1

,
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and we obtain

−
ˆ

Ω
Lh(ϱε)Tr

(
∇̃(T − id)

)
dx ≥ τ

ˆ
Ω

∇(Lh(ϱε)) · ∇
(
f ′

ε(ϱε)
)q−1 dx

= τ

ˆ
Ω
h′′(ϱε)f ′′

ε (ϱε)q−1 |∇ϱε|q dϱε ≥ 0

Lemma 2.9. We have Γ-convergence of the functionals Fε
Γ−−−→

ε→0
F for the topology of weak conver-

gence of measures.

Proof. Since z 7→ z log(z) is bounded from below, up to adding a constant we can assume that the
sequence (Fε)ε is nonincreasing as ε → 0. This monotonicity ensures that the sequence Gamma
converges to the lower semi-continuous relaxation of its pointwise limit (see [5])

F̃ : µ 7→ F (µ) +
{

0 if µ= ϱdx and
´

Ω ϱ log(ϱ) dx < ∞
+∞ otherwise.

We now have to show that the l.s.c relaxation sc−F̃ of this functional is indeed F . First we can notice
that F ≤ F̃ and since F is l.s.c., we have F ≤ sc−F̃ . To get the opposite inequality, it is enough to
find a recovery sequence of probability measures that are given by bounded densities, since bounded
densities have finite entropy. We take a probability measure µ ∈ P(Ω̄) whose Lebesgue decomposition
is µ = ϱdx+ µS and we can assume that F (µ) < ∞. We define the set An = {ϱ > n} and

ϱn(x) =
{
ϱ(x) when x ∈ Ac

nffl
An
ϱ(y) dy when x ∈ An.

We have, using dominated convergence,
ˆ

Ω
|ϱ(x) − ϱn(x)| dx =

ˆ
An

∣∣∣∣∣ϱ(x) −
 

An

ϱ(y) dy
∣∣∣∣∣ dx ≤ 2

ˆ
An

ϱ(x) dx n→∞−−−→ 0,

so that ϱn converges to ϱ in L1 and ϱn(Ω) = ϱ(Ω). For the singular part, we approximate µS with
linear combinations of Dirac masses supported on Ω, and then take the convolution with a standard
mollifier with small enough support so that no mass escapes outside of the domain. We obtain a
sequence µS

n of L∞ densities such that µS
n → µS as measures, and µn(Ω) = µ(Ω). We have therefore

constructed a sequence of probability measures µn = ϱn dx + µS
n that converges to µ, and we have,

using the convexity of f ,

F̃ (µn) =
ˆ

Ω
f(ϱn(x) + µS

n(x)) dx ≤
ˆ

Ω
f(ϱn) dx+ L

ˆ
Ω
µn(x) dx.
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For the first term, we use Jensen’s inequality to get
ˆ

Ω
f(ϱn) dx =

ˆ
Ac

n

f(ϱ) dx+
ˆ

An

f

( 
An

ϱ(y) dy
)

dx

≤
ˆ

Ac
n

f(ϱ) dx+
ˆ

An

( 
An

f(ϱ(y)) dy
)

dx =
ˆ

Ω
f(ϱ) dx.

Remembering that we constructed µS
n so that the mass of the singular part was conserved, we therefore

obtain

lim sup
n

F̃ (µn) ≤
ˆ

Ω
f(ϱ) dx+ LµS(Ω̄) = F (µ),

so that sc−F̃ = F

Lemma 2.10. The solution µε of the approximated problem 2.2 weakly converges as measures to the
solution µ of 2.1 when ε → 0.

Proof. Using Lemma 2.9, and the fact that the Wasserstein distance metrizes the weak convergence of
measures, for a given probability measure g ∈ P(Ω̄), we have

µ 7→
W p

p (µ, g)
pτp−1 + Fε(µ) Γ−−−→

ε→0
µ 7→

W p
p (µ, g)
pτp−1 + F (µ).

Since Ω̄ is compact, P(Ω̄) is compact for the weak convergence of probability measures so that we
can assume that the sequence of minimums weakly converge. Because the limit problem has a unique
solution µ, we deduce that the sequence of minima µε converges to µ.

Remark 2.11. In the sequel, we will always have g ∈ L1(Ω). As a consequence of Lemmas 2.6, 2.8
and 2.10, one can show that the solution of problem 2.1 is an absolutely continuous measure µ = ϱdx
(see the proof of Lemma 3.6). We shall therefore use the usual abuse of notation of denoting by ϱ any
measure µ = ϱdx when the context is clear.

3 Energy Dissipation Condition and properties of the limit curve

3.1 Interpolations

We look at the problem

ϱτ
k+1 ∈ argmin

W p
p (ϱ, ϱτ

k)
pτp−1 + F (ϱ) (3.1)

Under our hypotheses, this problem has a unique solution and the sequence (ϱk)k∈N can be defined
recursively.

We can define multiple interpolations which are all useful for our analysis :

11



Definition 3.1 (Piecewise constant interpolation). We define the piecewise constant interpolation as
a piecewise constant curve ϱ̄τ

t and an associated velocity v̄τ
t : for t ∈ (kτ, (k + 1)τ ],

ϱ̄τ
t = ϱτ

k+1,

v̄τ
t = vτ

k := Id − Tk

τ
,

where Tk is the optimal transport map from ϱτ
k to ϱτ

k+1. We also define the piecewise constant
momentum variable Ēτ

t = ϱ̄τ
t v̄

τ
t

Definition 3.2 (Piecewise geodesic interpolation). We define the piecewise geodesic interpolation as
a piecewise geodesic curve ϱ̃τ

t and an associated velocity ṽτ
t : for t ∈ (kτ, (k + 1)τ ],

ϱ̃τ
t = (Id − (kτ − t)vτ

k)# ϱ
τ
k,

ṽτ
t = vτ

k ◦ (Id − (kτ − t)vτ
k)−1 ,

which is constructed to satisfy the continuity equation

∂tϱ̃
τ
t + ∇ · (ϱ̃τ

t ṽ
τ
t ) = 0.

Also, we have for a.e. t,

∥ṽτ
t ∥Lp(ϱ̃τ

t ) =
∣∣(ϱ̃τ )′∣∣ (t) = Wp(ϱk+1, ϱ

τ
k)

τ
,

and therefore the following holds :

τ

p
∥ṽτ

t ∥Lp(ϱ̃τ
t ) =

W p
p (ϱτ

k+1, ϱ
τ
k)

pτp−1 . (3.2)

We also define the piecewise geodesic momentum variable Ẽτ
t = ϱ̃τ

t ṽ
τ
t

Definition 3.3 (De Giorgi variational interpolation). We define the De Giorgi variational interpolation
as a curve ϱ̂τ

t : for t ∈ (kτ, (k + 1)τ ], we define s = t−kτ
τ ∈ (0, 1] and

ϱ̂τ
t = argmin

W p
p (ϱ, ϱτ

k)
p(sτ)p−1 + F (ϱ). (3.3)

In particular for t = (k + 1)τ we have s = 1 and we do retrieve ϱ̂τ
k+1 = ϱτ

k+1, and if t = kτ , s = 0 and
the minimizer has to be ϱ = ϱτ

k.

This interpolation is useful in deriving the following precursor to the EDI interpretation of our
gradient flow :

F (ϱτ
k) ≥ F (ϱτ

k+1) + τ

q

ˆ (k+1)

kτ

W p
p (ϱ̂τ

t , ϱ
τ
k)

s(sτ)p−1 dt+
W p

p (ϱτ
k+1, ϱ

τ
k)

pτp−1 . (3.4)

12



Indeed if we define the function

g : t ∈ (kτ, (k + 1)τ ] 7→ min
ϱ

W p
p (ϱ, ϱτ

k)
p(sτ)p−1 + F (ϱ),

we find that g is an nonincreasing function of t, and therefore differentiable almost everywhere. Fur-
thermore, we have a one sided fundamental theorem of analysis :

ˆ (k+1)τ

kτ
g′(t) dt ≥ g((k + 1)τ) − g(kτ)

=
W p

p (ϱτ
k+1, ϱ

τ
k)

pτp−1 + F (ϱτ
k+1) − F (ϱτ

k).

By the enveloppe theorem, at differentiability points of g we necessarily have

g′(t) = 1
q

W p
p (ϱ̂τ

t , ϱ
τ
k)

(sτ)p
,

which gives 3.4 when combined with the previous result. We can now use the optimality conditions for
3.3 : if we denote by Ts and φs respectively the optimal transport map and a Kantorovich potential
between ϱ̂τ

t and ϱτ
k, we have

∇φs

(sτ)p−1 = −∇f ′(ϱ̂τ
s)

which we can replace in the formula for W p
p using the definition of the optimal transport map :

Ts − Id = − (∇φs)q−1 ,

and obtain

1
q

W p
p (ϱ̂τ

t , ϱ
τ
k)

(sτ)p
= 1
q

ˆ
Ω

|x− Ts|p

(sτ)p
dϱ̂τ

s = 1
q

ˆ
Ω

∣∣∇f ′(ϱ̂τ
t )
∣∣q dϱ̂τ

t .

Finally, using 3.2 in 3.4 yields

F (ϱτ
k) ≥ F (ϱτ

k+1) + 1
q

ˆ (k+1)τ

kτ

ˆ
Ω

∣∣∇f ′(ϱ̂τ
t )
∣∣q dϱ̂τ

t dt+ 1
p

ˆ (k+1)τ

kτ

ˆ
Ω

|ṽτ
t |p dϱ̃τ

t dt.

To easily justify the previous computations and later make it easier to pass to the limit we will use the
approximation introduced in 2.2 to obtain a different (but formally equivalent) form for the slope :

ϱε = argmin
W p

p (ϱ, ϱτ
k)

p(sτ)p−1 + F (ϱ) + ε

ˆ
Ω
ϱ log ϱdx.

We know ϱε are Lipschitz and weakly converge to ϱ̂τ
t , and with the same computations as above we

can deduce, using that ε log(ϱε) is a increasing function of f ′(ϱε),

13



1
q

W p
p (ϱε, ϱτ

k)
(sτ)p

= 1
q

ˆ
Ω

∣∣∇ (
f ′(ϱε) + ε log(ϱε))∣∣q dϱε ≥ 1

q

ˆ
Ω

∣∣∣∣∇Lf (ϱε)
ϱε

∣∣∣∣q dϱε.

Since weak convergence of measures implies the convergence in Wasserstein distance, we have, using
the lower semi-continuity of the slope proved in the following lemma :

1
q

W p
p (ϱ̂τ

t , ϱ
τ
k)

(sτ)p
≥ lim inf

ε

1
q

ˆ
Ω

∣∣∣∣∇Lf (ϱε)
ϱε

∣∣∣∣q dϱε ≥ 1
q

ˆ
Ω

∣∣∣∣∇Lf (ϱ̂τ
t )

ϱ̂τ
t

∣∣∣∣q dϱ̂τ
t

Lemma 3.4. The functional

ϱ 7→ 1
q

ˆ
Ω

∣∣∣∣∇Lf (ϱ)
ϱ

∣∣∣∣q dϱ = Bq(ϱ,∇Lf (ϱ))

is lower semi-continuous with respect to the weak L1 convergence.

Proof. Let ϱn be a sequence of probability measures weakly converging in L1 to some probability
measure ϱ. We can assume that Bq(ϱn,∇Lf (ϱn)) is bounded and from Hölder’s inequality and q

p = q−1
we get the following basic estimate :

ˆ
Ω

|∇Lf (ϱn)| dx =
ˆ

Ω

|∇Lf (ϱn)|
ϱ

1/p
n

ϱ1/p
n dx ≤

(ˆ
Ω

|∇Lf (ϱn)|q

ϱ
q/p
n

dx
) 1

q (ˆ
Ω
ϱn(x) dx

) 1
p

≤ Bq(ϱn,∇Lf (ϱn))
1
q .

Using this bound we can therefore deduce that Lf (ϱn) − Cn is bounded in L1 for some constants Cn,
and using the compactness embedding of BV in L1 we can deduce that up to subsequences, we have,
for some u ∈ BV (Ω)

Lf (ϱn) − Cn −→ u almost everywhere and in L1,
∇Lf (ϱn) −→ du weakly as measures .

This strong convergence implies that Cn is actually bounded. Indeed, if for some further subsequence
we had Cn → ∞, this would imply that Lf (ϱn) → ∞ a.e. which in turn implies that ϱn → ∞ a.e.
because Lf is strictly increasing. Similarily, if Cn → −∞ for some subsequence, we would have
Lf (ϱn) → −∞ a.e. and ϱn → 0 a.e. Both situations are impossible in light of Lemma 3.5 below, so
that we can assume that (Cn)n is bounded. Up to changing u by a constant, we can therefore assume
that Lf (ϱn) −→ u a.e. and in L1, which implies that ϱn −→ (Lf )−1(u) a.e. Again using Lemma 3.5, the
weak convergence ϱn → ϱ then gives u = Lf (ϱ) a.e. Finally, using 2.3, we get that du has a density
which is ∇Lf (ϱ) and

1
q

ˆ
Ω

∣∣∣∣∇Lf (ϱ)
ϱ

∣∣∣∣q dϱ = Bq(ϱ,∇Lf (ϱ)) ≤ lim inf
n

Bq(ϱn,∇Lf (ϱn)) = lim inf
n

1
q

ˆ
Ω

∣∣∣∣∇Lf (ϱn)
ϱn

∣∣∣∣q dϱn
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Lemma 3.5. Let (un)n ∈ L1(Ω) be a sequence of functions that weakly converges to some u in L1(Ω),
such that un converges pointwise to some measurable function v almost everywhere on A ⊂ Ω, then
u = v almost everywhere on A.

Proof. First by Fatou’s Lemma, we find
ˆ

A
|v| dx ≤ ∥u∥L1(A),

so that v is finite almost everywhere. By Egorov’s theorem, for ε > 0, there exists some Aε ⊂ A such
that |A \Aε| ≤ ε and un converges to g uniformly on Aε. By the weak convergence, we have

ˆ
Aε

un(u− v) dx −→
ˆ

Aε

u(u− v) dx.

By the uniform convergence, we find
ˆ

Aε

un(u− v) dx −→
ˆ

Aε

v(u− v) dx,

so that we have ˆ
Aε

(u− v)2 dx = 0,

and u = v almost everywhere on Aε. Taking ε → 0, we find f = g almost everywhere on A.

We can therefore exchange the slope term in the previous partial EDI and have

F (ϱτ
k) ≥ F (ϱτ

k+1) + 1
q

ˆ (k+1)τ

kτ

ˆ
Ω

∣∣∣∣∇Lf (ϱ̂τ
t )

ϱ̂τ
t

∣∣∣∣q dϱ̂τ
t dt+ 1

p

ˆ (k+1)τ

kτ

ˆ
Ω

|ṽτ
t |p dϱ̃τ

t dt.

Finally, summing on k we get our EDI formulation :

F (ϱ0) ≥ F (ϱτ
T ) + 1

q

ˆ T

0

ˆ
Ω

∣∣∣∣∇Lf (ϱ̂τ
t )

ϱ̂τ
t

∣∣∣∣q dϱ̂τ
t dt+ 1

p

ˆ T

0

ˆ
Ω

|ṽτ
t |p dϱ̃τ

t dt. (3.5)

3.2 Compactness estimates and passing to the limit

From our initial JKO scheme, comparing the value of the optimal minimizer ϱτ
k+1 with that of the

current step ϱτ
k we have

F (ϱτ
k+1) +

W p
p (ϱτ

k+1, ϱ
τ
k)

pτp−1 ≤ F (ϱτ
k),

and summing these inequalities yields
∑

k

W p
p (ϱτ

k+1, ϱ
τ
k)

pτp−1 ≤ F (ϱ0) − inf F < ∞.
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This is useful in deriving the following uniform continuity estimate on the geodesic interpolations : if
s < t we have

Wp(ϱ̃τ
s , ϱ̃

τ
t ) ≤

ˆ t

s

∣∣(ϱ̃τ )′∣∣ (r) dr

≤ (t− s)
1
q

(ˆ t

s

∣∣(ϱ̃τ )′∣∣ (r)p dr
) 1

p

= (t− s)
1
q

(ˆ t

s
∥ṽτ

t ∥p
Lp(ϱ̃τ

t ) dr
) 1

p

≤ (t− s)
1
q

(∑
k

τ
W p

p (ϱτ
k+1, ϱ

τ
k)

τp

) 1
p

≤ C(t− s)
1
q .

For the piecewise constant interpolation, we can first say that for t ∈ (kτ, (k + 1)τ ],

Wp(ϱ̄τ
t , ϱ̃

τ
t ) = Wp(ϱτ

k+1, ϱ̃
τ
t ) ≤ Cτ

1
q

and therefore the convergence of ϱ̃τ
t will imply the convergence of ϱ̄τ

t . Finally, for the De Giorgi
interpolation, for t ∈ (kτ, (k + 1)τ ],

Wp(ϱ̂τ
t , ϱ̃

τ
t ) ≤ Wp(ϱ̂τ

t , ϱ̄
τ
t ) +Wp(ϱ̄τ

t , ϱ̃
τ
t )

≤ Wp(ϱ̂τ
t , ϱ

τ
k) +Wp(ϱτ

k, ϱ
τ
k+1) +Wp(ϱ̄τ

t , ϱ̃
τ
t )

and using

W p
p (ϱ̂τ

t , ϱ
τ
k) ≤ (F (ϱk) − F (ϱ̂τ

t )) p(t− kτ)p−1

≤ (F (ϱ0) − inf F ) pτp−1

≤ Cτ
p
q ,

we get

Wp(ϱ̂τ
t , ϱ̃

τ
t ) ≤ Cτ

1
q .

Using the Arzelà-Ascoli theorem we can deduce that up to a subsequence which we do not relabel,
when τ → 0, all interpolated curves uniformly converge to some ϱ ∈ C

1
q ([0, T ],Wp(Ω))

We now wish to prove compactness for the momentum variable, to pass to the limit in our EDI
formulation. To this aim, we can notice that using the Jensen inequality,

∣∣∣Ẽτ
t

∣∣∣ (Ω) =
ˆ

Ω
|ṽτ

t | dϱ̃τ
t ≤

(ˆ
Ω

|ṽτ
t |p dϱ̃τ

t

) 1
p

= ∥ṽτ
t ∥Lp(ϱ̃τ

t )
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and, adding the time variable,

∣∣∣Ẽτ
∣∣∣ ([0, T ] × Ω) ≤

ˆ T

0
∥ṽτ

t ∥Lp(ϱ̃τ
t ) dt ≤ T

1
q

(ˆ T

0
∥ṽτ

t ∥p
Lp(ϱ̃τ

t ) dt
) 1

p

≤ CT
1
q

We can therefore assume that as τ → 0 and for a subsequence which we do not relabel, Ẽτ weakly
converges as a measure to some measure E.

Using the Benamou-Brenier functional which is lower semi-continuous for the weak convergence of
measures, we therefore have that there exists v ∈ Lp([0, T ] × Ω, dϱt dt) such that E = ϱv and

lim inf
τ

Bp(ϱ̃τ , Ẽτ ) ≥ Bp(ϱ,E) = 1
p

ˆ T

0

ˆ
Ω

|vt|p dϱt dt

Moreover the continuity equation which is linear in (ϱ,E) readily passes to the limit and we have

∂tϱ+ ∇ · (ϱv) = 0

Up to changing v we can also assume it is the (unique) velocity vector field of minimal Lp norm. For
the slope term, we only have to use Lemma 3.4 and Fatou’s Lemma to get

lim inf
τ

1
q

ˆ T

0

ˆ
Ω

∣∣∣∣∇Lf (ϱ̂τ
t )

ϱ̂τ
t

∣∣∣∣q dϱ̂τ
t dt ≥

ˆ T

0
lim inf

τ
Bp(ϱ̂τ

t ,∇Lf (ϱ̂τ
t )) dt ≥ 1

q

ˆ T

0

ˆ
Ω

∣∣∣∣∇Lf (ϱt)
ϱt

∣∣∣∣q dϱt dt.

Therefore, passing to the limit in 3.4 gives

F (ϱ0) ≥ F (ϱT ) + 1
q

ˆ T

0

ˆ
Ω

∣∣∣∣∇Lf (ϱt)
ϱt

∣∣∣∣q dϱt dt+ 1
p

ˆ T

0

ˆ
Ω

|vt|p dϱt dt. (3.6)

3.3 Estimates on the limit curve

Lemma 3.6. There exists Φ : R+ → R+, smooth, strictly convex and superlinear such that

sup
t∈[0,T ]

ˆ
Ω

Φ(ϱt) dx < ∞

Proof. We know by Dunford-Pettis’ theorem that since ϱ0 ∈ L1(Ω), there exists some superlinear
convex function φ : R+ → R+, which we can assume to be 0 in a neighborhood of 0 such that

ˆ
Ω
φ(ϱ0) dx < ∞

We take Φ to be the one constructed in Lemma 2.6 from φ. It is smooth and satisfies Mc-Cann’s
condition (G1) so that we can use it in Lemma 2.8 : at the k-th step of the JKO scheme, we have,
for the approximated problem, ˆ

Ω
Φ(ϱτ

k) dx ≥
ˆ

Ω
Φ(ϱε) dx,
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and taking ε → 0, we have ϱε → ϱτ
k+1. By lower semi continuity of the functional, we get
ˆ

Ω
Φ(ϱτ

k) dx ≥
ˆ

Ω
Φ(ϱτ

k+1) dx,

so that by induction we have, for all k,ˆ
Ω

Φ(ϱτ
k) dx ≤

ˆ
Ω

Φ(ϱ0) dx ≤ C

(ˆ
Ω
φ(ϱ0) + 1 dx

)
< ∞.

Passing to the limit τ → 0, and again using the lower semi continuity of the functional, we can deduce
that for all t ≥ 0 ˆ

Ω
Φ(ϱt) dx ≤

ˆ
Ω

Φ(ϱ0) dx,

and

sup
t∈[0,T ]

ˆ
Ω

Φ(ϱt) dx ≤
ˆ

Ω
Φ(ϱ0) dx < ∞

Lemma 3.7. If we have, for α = 2 − q(1 + 1
d) + θ(q − 1) :

ˆ
Ω
ϱ0 log ϱ0 dx < +∞ if α = 1,

ˆ
Ω
ϱα

0 dx < +∞ if α > 1,
(3.7)

then ˆ
ΩT

|∇h(ϱt)|q dx dt < ∞,

where h is any function satisfying h′(z) = z
α−1

q f ′′(z)
1
p

Proof. We shall use the flow interchange technique, which allows us to gain some first order regularity
from the integrability assumption of the initial condition. First we will look at the case where α ∈
[1 − 1

d ,∞) \ {1}. Starting from the k-th step of our JKO scheme, we look at the ε-approximated
problem and apply Lemma 2.8 with the function z 7→ 1

α−1z
α and get

1
α− 1

ˆ
Ω

(ϱτ
k)α − 1

α− 1

ˆ
Ω
ϱα

ε ≥ τ

ˆ
Ω
ϱα−1

ε f ′′(ϱε)q−1 |∇ϱε|q dx ≥ 0,

where ϱε is the solution of 2.2 with g = ϱk. We can write ϱα−1
ε f ′′(ϱε)q−1 |∇ϱε|q = |∇h(ϱε)|q, and h

being strictly increasing, when taking the limit ε → 0 (and hence ϱε → ϱτ
k+1), we can argue as in the

proof of Lemma 3.4 to find
1

α− 1

ˆ
Ω

(ϱτ
k)α − 1

α− 1

ˆ
Ω

(ϱτ
k+1)α ≥ τ

ˆ
Ω

∣∣∇h(ϱτ
k+1)

∣∣q dx.
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Summing on each step of the JKO scheme, and using Fatou’s Lemma when passing to the limit τ → 0,
we can obtain

1
α− 1

ˆ
Ω
ϱα

0 ≥
ˆ

ΩT

|∇h(ϱ)|q dx dt+ 1
α− 1

ˆ
Ω
ϱα

T dx.

For the case α = 1, we use the same techniques as above, but applying lemma 2.8 to the function
z 7→ z log z which satisfies Mc-Cann’s condition and, in terms of second derivatives, behaves in a similar
manner to power functions, so that all computations are the same. Finally, if α < 1 − 1

d , one can use
the result for α = 1 − 1

d ; indeed α is an increasing function of θ, and the condition f ′′(r) ≥ Cr−θ when
r is large becomes weaker as θ increases.

4 Derivative of F along the flow
In this section, we will endeavor to compute the derivative of F along the curve given by (ϱ, v).
Formally, using the continuity equation, we can write

d
dtF (ϱt) =

ˆ
Ω

d
dtf(ϱt) dx =

ˆ
Ω
f ′(ϱt)∂tϱt dt =

ˆ
Ω

∇f ′(ϱt) · vt dϱt,

which gives

F (ϱT ) − F (ϱ0) =
ˆ T

0

ˆ
Ω

∇f ′(ϱt) · vt dϱt dt.

Now, using ∇Lf (ϱt) = ∇f(ϱt)ϱt and the EDI formulation 3.6,

0 ≥
ˆ T

0

ˆ
Ω

∇f ′(ϱt) · vt dϱt dt+ 1
q

ˆ T

0

ˆ
Ω

∣∣∇f ′(ϱt)
∣∣q dϱt dt+ 1

p

ˆ T

0

ˆ
Ω

|vt|p dϱt dt,

which, with Young’s inequality gives

{
∂tϱt + ∇ · (ϱtvt) = 0
vt = − (∇f ′(ϱt))q−1

In the rest of this section we shall give a rigorous proof of the above result. First we can notice that
for our purposes, it is enough to prove that

F (ϱT ) − F (ϱ0) ≥
ˆ T

0

ˆ
Ω

∇Lf (ϱt)
ϱt

· vt dϱt dt.

Remark 4.1. The above statement could be proved in the case where δ ≤ ϱ ≤ 1
δ for some δ > 0

(which is the case for example, when δ ≤ ϱ0 ≤ 1
δ (see [1] or [16])) by regularizing the couple (ϱ, ϱv)

via convolution. The L∞ bound corresponds to the worst case f ′′ > 0 in our theorem, and we have no
need for lower bounds in the following proofs.
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Theorem 4.2 (Chain Rule). Let (ϱt)t∈[0,T ] be an absolutely continuous curve in Wp(Ω) with velocity
vector field (vt)t∈[0,T ], so that it solves the continuity equation

∂tϱt + ∇ · (ϱtvt) = 0.

If there exists a non-negative smooth superlinear strictly convex function Φ such that
ˆ

ΩT

Φ(ϱt) dx dt < ∞,

and we have
ˆ

ΩT

∣∣∣∣∇Lf (ϱt)
ϱt

∣∣∣∣q dϱt dt < ∞,

and, if f does not satisfy Mc-Cann’s condition (G1),
ˆ

ΩT

|∇h(ϱ)|q dx dt < +∞,

where h is any function satisfying h′(z) = z
α−1

q f ′′(z)
1
p , and α = 2 − q(1 + 1

d) + θ(q − 1), then

F (ϱT ) − F (ϱ0) =
ˆ

ΩT

∇Lf (ϱ)
ϱ

v dϱ dt.

Proof. Step 1 : Truncation and decomposition
In this first step, we write f as the difference of two functions f1, f2 which will satisfy Mc-Cann’s
condition, and for which computations are allowed. To be able to do this we first need to truncate f
linearly near 0 and +∞, and we will pass to the limit at the end to recover the initial function.

First we linearly truncate f near 0 and infinity and for ease of computations subtract a positive
constant such that the truncated function is zero at zero.

f̃(z) =


a0z for z ≤ z0,

f(z) + b0 for z0 ≤ z ≤ z1,

a1z + b1 for z1 ≤ z,

with a0 = f ′(z0) ≤ a1 = f ′(z1), b0 = Lf (z0), b1 = Lf (z0) − Lf(z1) ≤ 0. Its associated Mc-Cann
function is

Mf̃(s) =


a1 + sdb1 for s ≤ z

− 1
d

1 ,

Mf(s) + b0s
d for z− 1

d
1 ≤ s ≤ z

− 1
d

0 ,

a0 for z− 1
d

0 ≤ s.
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We take the second derivative which is

(
Mf̃

)′′
(s) =


b1(d− 1)dsd−2 for s ≤ z

− 1
d

1 ,

(Mf)′′ (s) + b0(d− 1)dsd−2 for z− 1
d

1 ≤ s ≤ z
− 1

d
0 ,

0 for z− 1
d

0 ≤ s.

We now take g̃2
′′(s) =

((
Mf̃

)′′
(s)
)

−
and integrate twice so that, choosing the constants c0 and c1

we have

g̃2(s) =


−b1s

d + c1s for s ≤ z
− 1

d
1 ,

Θ(s) for z− 1
d

1 ≤ s ≤ z
− 1

d
0 ,

c0 for z− 1
d

0 ≤ s,

where Θ is the double primitive of g̃2(s) with suitable integration constants so that g̃2 is C2 (except at
z

− 1
d

1 and z
− 1

d
0 ). g2 is convex by construction, and also decreasing since it is constant at infinity. And

finally we can define

f̃2(z) = M−1g̃2(z) =


c0z for z ≤ z0,

M−1Θ(z) for z0 ≤ z ≤ z1,

c1z
1− 1

d − b1 for z1 ≤ z,

f̃2 is a C2 (except at z0 and z1) convex function that is linear near the origin and that satisfies the
Mc-Cann condition and

f̃ ′′
2 (z) ≤ Cz−(1+ 1

d
) when z ≥ z0.

Now we set

f̃1 = f̃ + f̃2,

which, by construction also satisfies Mc-Cann’s condition (Mf̃1 is convex and constant for large enough
values).

Step 2 : Getting regularity for the slope of f2
In this second step, we use the integrability assumption on ∇h(ϱ) to gain the necessary integrability
on ∇Lf̃2

(ϱ).
To obtain our needed regularity we will use a finite differences trick, indeed we can write, for z ≥ z0,(

Lf̃2

)′
(z) = zf̃ ′′

2 (z) ≤ Cz− 1
d ≤ Cz

q−1
q h′(z)z− 1

d
+ q−1

q
θ− α−1

q
− q−1

q = Cz
q−1

q h′(z),

where we used the hypothesis f ′′(r) ≥ Cr−θ and our condition α = 2 − q(1 + 1
d) + θ(q − 1) so that

−1
d + q−1

q θ − α−1
q − q−1

q = 0. Since f̃ ′′
2 (z) = 0 when z < z0, the above inequality is also trivially true

in this case. We can therefore write, for s > t,

Lf̃2
(s) − Lf̃2

(t) =
ˆ s

t

(
Lf̃2

)′
(z) dz ≤ C

ˆ s

t
z

q−1
q h′(z) dz
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and ∣∣∣Lf̃2
(s) − Lf̃2

(t)
∣∣∣ ≤ C max(s, t)

q−1
q |h(s) − h(t)|

Taking a test function φ ∈ C∞
c (Ω) and δ ∈ Rd, we have∣∣∣∣ˆ

Ω
Lf̃2

(ϱ(x))∇φ(x) · δ dx
∣∣∣∣ =

∣∣∣∣limt→0

ˆ
Ω
Lf̃2

(ϱ(x))φ(x− tδ) − φ(x)
t

dx
∣∣∣∣

=
∣∣∣∣∣limt→0

ˆ
Ω

Lf̃2
(ϱ(x+ tδ)) − Lf̃2

(ϱ(x))
t

φ(x) dx
∣∣∣∣∣

≤ lim sup
t→0

ˆ
Ω

max(ϱ(x+ tδ), ϱ(x))
q−1

q
|h(ϱ(x+ tδ) − h(ϱ(x))|

t
|φ(x)| dx

=
ˆ

Ω
ϱ(x)

q−1
q |∇h(ϱ)(x) · δ| |φ(x)| dx,

where we used the strong convergence ϱ(· + tδ) → ϱ in L1 and |h(ϱ(·+tδ)−h(ϱ)|
t → |∇h(ϱ) · δ| in Lq. This

proves that Lf̃2
(ϱ) is a W 1,1 function such that

∣∣∣∇Lf̃2
(ϱ)
∣∣∣ ≤ ϱ

q−1
q |∇h(ϱ)|, so that

ˆ
ΩT

∣∣∣∇Lf̃2
(ϱ)
∣∣∣q

ϱq−1 dx dt ≤
ˆ

ΩT

|∇h(ϱ)|q dx dt < ∞

Step 3 : Proving the chain rule
In this step, we will prove the chain rule for the truncated function f̃ . The idea is to discretize the curve
(ϱt)t and approximate it with its geodesic interpolation, for which we can use the geodesic convexity
of f̃1, f̃2 and the previous regularity results to obtain the discrete chain rule. We then pass to the limit
and recover the chain rule for the original curve.

Lemma 4.3. Let (ϱt)t∈[0,T ] be an absolutely continuous curve in Wp(Ω) with velocity vector field
(vt)t∈[0,T ], so that it solves the continuity equation

∂tϱt + ∇ · (ϱtvt) = 0,

and there exists a non-negative smooth superlinear strictly convex function Φ such thatˆ
ΩT

Φ(ϱt) dx dt < ∞.

Let ℓ : R+ → R be a C1 function satisfying (H1-G1), such that Lℓ(ϱ) ∈ L1
t,x, and

ˆ
ΩT

|∇Lh(ϱ)|q

ϱq−1 dx dt < +∞,

then

L (ϱT ) − L (ϱ0) =
ˆ

ΩT

∇Lℓ(ϱ)
ϱ

· v dϱdt.
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Proof. We use Theorem A.1 to find a sequence of partitions 0 = tN0 < tN1 < · · · < tNN+1 = T of [0, T ]
with sup

i
tNi+1 − tNi

N→∞−−−−→ 0, such that

ˆ
Ω
Lℓ(ϱtN

i
) dx < ∞,

and
N∑

k=1
(tNi+1 − tNi )A(tNi ) →

ˆ T

0
A(t) dt,

where A(t) =
ˆ

Ω

∣∣∣∣∇Lℓ(ϱt)
ϱt

∣∣∣∣q dϱt +
ˆ

Ω
Φ(ϱt) dx. Like before, we denote by ϱ̄N the piecewise constant

interpolation of (ϱtN
i

)i, defined by ϱ̄N
t = ϱtN

i
if t ∈ [tNi , tNi+1[ for i = 1, . . . , N , and ϱ̄N

t = 0 for t ∈ [0, t1[
so that we have

ˆ
ΩT

∣∣∣∣∣∇Lℓ(ϱ̄N
t )

ϱ̄N
t

∣∣∣∣∣
q

dϱ̄N
t dt+

ˆ
ΩT

Φ(ϱ̄N
t ) dx dt N→+∞−−−−−→

ˆ
ΩT

∣∣∣∣∇Lℓ(ϱt)
ϱt

∣∣∣∣q dϱt dt+
ˆ

ΩT

Φ(ϱt) dx dt < ∞.

(4.1)

Using the same argument as in the proof of Lemma 2.8, the geodesic convexity of H , and the fact
that Lh(ϱ) is W 1,1 allows us to write

L (ϱtN
i+1

) − L (ϱtN
i

) ≥
ˆ

Ω

∇Lℓ(ϱtN
i

)
ϱtN

i

(Ti − id) dϱtN
i

=
ˆ tN

i+1

tN
i

ˆ
Ω

∇Lℓ(ϱ̄N
t )

ϱ̄N
t

v̄N
t dϱ̄N

t dt,

where Ti is the optimal transport map from ϱtN
i

to ϱtN
i+1

and v̄N
t = Ti−id

tN
i+1−tN

i

. Summing everything gives

L (ϱT ) − L (ϱt1) ≥
ˆ

ΩT

∇Lℓ(ϱ̄N
t )

ϱ̄N
t

v̄N
t dϱ̄N

t dt. (4.2)

We will now prove that this inequality passes to the limit. Since ϱ ∈ C0([0, T ],Wp), we have that
ϱ̄N

t → ϱt weakly in L1 for any fixed t ∈]0, T ]. From Lemmas 2.4 and 3.4, and using Fatou’s Lemma,
we therefore obtain that

lim inf
ˆ

ΩT

∣∣∣∣∣∇Lℓ(ϱ̄N
t )

ϱ̄N
t

∣∣∣∣∣
q

dϱ̄N
t dt ≥

ˆ
ΩT

∣∣∣∣∇Lℓ(ϱ)
ϱ

∣∣∣∣q dϱ dt

lim inf
ˆ

ΩT

Φ(ϱ̄N
t ) dx dt ≥

ˆ
ΩT

Φ(ϱt) dx dt.
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Together with (4.1), this implies that
ˆ

ΩT

∣∣∣∣∣∇Lℓ(ϱ̄N
t )

ϱ̄N
t

∣∣∣∣∣
q

dϱ̄N
t dt →

ˆ
ΩT

∣∣∣∣∇Lℓ(ϱt)
ϱt

∣∣∣∣q dϱt dt
ˆ

ΩT

Φ(ϱ̄N
t ) dx dt →

ˆ
ΩT

Φ(ϱt) dx dt.

We will now use a classical trick of convex functions to obtain the almost everywhere convergence of
ϱ̄t (see [12]). We define ω to be the convexity gap of Φ, which is to say

ω(z, x) = Φ(z) − Φ(x) − Φ′(x)(z − x) ≥ 0.

By the strict convexity of Φ, ω(z, x) = 0 if and only if z = x, and if (zn)n is a sequence such that
ω(zn, x) → 0, then zn → x. Let AM = {ϱ ≤ M}, we have:

ˆ
ΩT

Φ(ϱ̄N
t ) dx dt ≥

ˆ
AM

Φ(ϱt) dx dt+
ˆ

AM

Φ′(ϱt)(ϱ̄N
t − ϱt) dx dt+

ˆ
AM

ω(ϱ̄N
t , ϱt) dx dt.

We know that ϱ̄N weakly converges in L1
t,x to ϱ, and on AM , Φ′(ϱ) is bounded, so that the second

integral vanishes in the limit. Taking the lim sup we therefore get
ˆ

Ac
M

Φ(ϱt) dx dt ≥ lim sup
ˆ

AM

ω(ϱ̄N
t , ϱt) dx dt.

Notice that the left hand side is decreasing in M , while the right hand side is increasing in M , therefore,
taking the limit M → +∞, we have

0 = lim
ˆ

ΩT

ω(ϱ̄N
t , ϱt) dx dt

Up to extraction, we can therefore assume that ω(ϱ̄, ϱ) → 0 almost everywhere, which, as stated above
entails that ϱ̄ → ϱ almost everywhere. Again 4.1 implies that

´
ΩT

∣∣∣∇Lℓ(ϱ̄N
t )
∣∣∣ dx dt is bounded, so that

up to extraction we can assume (∇Lℓ(ϱ̄N )) converges to some measure. Using the strong convergence
of ϱ̄, one can identify this limit as ∇Lℓ(ϱ). We also know that

´
ΩT

∣∣∣∇Lℓ(ϱ̄N
t )

ϱ̄N
t

∣∣∣q dϱ̄N
t dt is bounded, so

that up to extraction, (∇Lℓ(ϱ̄N )(ϱ̄N )− 1
p ) weakly converges in Lq

t,x to some ξ. Multiplying by (ϱ̄N )
1
p ,

which strongly converges to ϱ
1
p in Lp

t,x, we obtain ∇Lℓ(ϱ̄N ) ⇀ ξϱ
1
p , so that by uniqueness of the

limit, ξ = ∇Lℓ(ϱ)ϱ− 1
p . Since we also have the convergence of the Lq norm, we actually have strong

convergence of the slope term.
We now prove the convergence of the discrete velocity field v̄N . Just like in section 3.2, by looking

at the geodesic interpolation we can prove the following inequality :
ˆ

ΩT

∣∣∣v̄N
t

∣∣∣p dϱ̄N
t dt ≤

ˆ
ΩT

|vt|p dϱdt,
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which implies that the sequence
(
v̄N (ϱ̄N )

1
p

)
is bounded in Lp

t,x, so that up to extraction it weakly
converges to some ξ ∈ Lp

t,x. Again like before we also have

ˆ
ΩT

∣∣∣v̄N
t ϱ̄

N
t

∣∣∣ dx dt ≤ T
1
q

(ˆ T

0
∥v̄N

t ∥p

Lp(ϱ̄N
t )

) 1
p

≤ C,

so that the sequence
(
v̄N ϱ̄N

)
weakly converges as a measure to some E ∈ M(Ω)d. Using the con-

vergence ϱ̄N → ϱ and Lemma 2.3, we deduce that there exists some v̂ ∈ Lp(ϱ) such that E = v̂ϱ
and ˆ

ΩT

|v|p dϱ dt ≥ lim inf
N→∞

ˆ
ΩT

∣∣∣v̄N
t

∣∣∣p dϱ̄ dt ≥
ˆ

ΩT

|v̂|p dϱdt.

Using arguments as in [18] section 9.3, we can find that (ϱ,E) satisfy the continuity equation, so that
since we chose v to be the velocity field with minimum norm, we have v̂ = v in Lp(ϱt) for almost every
t and ˆ

ΩT

|v|p dϱ dt =
ˆ

ΩT

|v̂|p dϱdt = lim
N→∞

ˆ
ΩT

∣∣∣v̄N
t

∣∣∣p dϱ̄N
t dt.

We will now use the same convex trick to prove prove that ξ = vϱ
1
p . We write ω(z, x) = |z|p

p − |x|p
p −

xp−1(z − x) ≥ 0, which enjoys the same properties as before, and AM = {|v| ≤ M}, and we have
ˆ

ΩT

ϱ̄N
t

|v̄N
t |p

p
dx dt ≥

ˆ
AM

ϱ̄N
t

|v|p

p
dx dt+

ˆ
AM

ϱ̄N
t |v|p−1(v̄N

t − v) dx dt+
ˆ

AM

ϱ̄N
t ω(v̄N

t , v) dx dt. (4.3)

We know that (ϱ̄N
t v̄

N
t ) is uniformly integrable, indeed, if B ⊂ Ω × [0, T ] is measurable, then

ˆ
B
ϱ̄N

t v̄
N
t dx dt ≤

(ˆ
B
ϱ̄N

t |v̄N
t |p dx dt

) 1
p
(ˆ

B
ϱ̄N

t dx dt
) 1

q

≤ C

(ˆ
B
ϱ̄N

t dx dt
) 1

q

,

so that the uniform integrability of ϱ̄N implies the unform integrability of (ϱ̄N v̄N ). Therefore, we
conclude that ϱ̄N v̄N ⇀ ϱv weakly in L1

t,x and
ˆ

AM

p̄N
t v̄

N
t |v|p−1 dx dt →

ˆ
AM

ϱ|v|p dx dt

Taking the limit in 4.3, we therefore getˆ
Ac

M

ϱ
|v|p

p
dx dt ≥ lim sup

N→∞

ˆ
AM

ϱ̄N
t ω(v̄N

t , v) dx dt.

Again, the left hand side is decreasing in M while the right hand side is increasing in M , so that we
have

0 = lim sup
N→∞

ˆ
ΩT

ϱ̄N
t ω(v̄N

t , v) dx dt,
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and, up to extracting again, we find that v̄ → v almost everywhere on on {ϱ > 0}. From this
convergence and v̄N (ϱ̄N )

1
p ⇀ ξ, we deduce that ξ = vϱ

1
p on {ϱ > 0}. Putting everything together, we

can write ˆ
ΩT

|ξ|p dx dt ≤ lim inf
N→∞

ˆ
ΩT

|v̄N
t |pϱ̄N

t dx dx =
ˆ

ΩT

|v|pϱdx dt

=
ˆ

{ϱ>0}
|v|pϱ dx dt

=
ˆ

{ϱ>0}
|ξ|p dx dt ≤

ˆ
ΩT

|ξ|p dx dt,

so that ξ = vϱ
1
p almost everywhere. In conclusion, we have proved that v̄N (ϱ̄N )

1
p → vϱ

1
p in Lp

t,x,
because we also have convergence of the norm. We can now finally pass to the limit in 4.2, and we
obtain

L (ϱT ) − L (ϱ0) ≥
ˆ

ΩT

∇Lℓ(ϱ)
ϱ

· v dϱdt.

Applying this result to the same curve while inverting the time variable, i.e. to the curve ρt = ϱT −t

(whose velocity vector is −vT −t) we obtain

L (ϱT ) − L (ϱ0) =
ˆ

ΩT

∇Lℓ(ϱ)
ϱ

v dϱdt.

We use Lemma 4.3 with the functions h = f̃1, and h = f̃2 to obtain

Corollary 4.4. With our previous notations, we have the following :

F̃1(ϱT ) − F̃1(ϱ0) =
ˆ

ΩT

∇Lf̃1
(ϱ)

ϱ
· v dϱdt,

F̃2(ϱT ) − F̃2(ϱ0) =
ˆ

ΩT

∇Lf̃2
(ϱ)

ϱ
· v dϱdt,

so that

F̃ (ϱT ) − F̃ (ϱ0) =
ˆ

ΩT

∇Lf̃ (ϱ)
ϱ

· v dϱdt

Step 4 : Passing the truncation to the limit
We will now prove that we can pass our truncation process to the limit and still keep our inequality.
As a reminder, we defined our linear truncation f̃n as

f̃n(z) = cn +


an

0z for z ≤ zn
0 ,

f(z) + bn
0 for zn

0 ≤ z ≤ zn
1 ,

an
1z + bn

1 for zn
1 ≤ z,
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with an
0 = f ′(zn

0 ) ≤ an
1 = f ′(zn

1 ), bn
0 = Lf (zn

0 ), bn
1 = Lf (zn

0 ) − Lf(zn
1 ) ≤ 0 and cn = f(zn

0 ) − an
0z

n
0 .

This formula just amounts to setting f̃ ′′
n(z) = 0 when z ≤ zn

0 and z ≥ zn
1 . Since f is convex, we have

f̃n ≤ f , so that by the monotone convergence theorem, we directly have

F̃n(ϱ) → F (ϱ)

for any density ϱ ∈ L1(Ω).
For the slope term, since L′

h(z) = zh′′(z), we have Lf̃n
(ϱ) = (αn ∧ (βn ∨ Lf (ϱ))) for some constants

αn and βn, so that Lf̃n
(ϱ) is a Lipschitz function of Lf (ϱ) and we can write

∇Lf̃n
(ϱ) = ∇Lf (ϱ)1{αn≤ϱ≤βn}

Using dominated convergence, we can therefore conclude that

F (ϱT ) − F (ϱ0) =
ˆ

ΩT

∇Lf (ϱ)
ϱ

· v dϱdt (4.4)

In the case when f already satisfies Mc-Cann’s condition (G1), one can skip steps 1,2 and 4 and
directly use step 3 with the untruncated function f itself.

We are now ready to give the proof of Theorem 1.1.

Proof. We will prove that the curve (ϱt)t∈[0,T ] we constructed in Section 3 is the solution of the PDE
(1.2). We know that there exists a velocity field (vt)t∈[0,T ] such that we have

∂tϱt + ∇ · (ϱtvt) = 0,

and the EDI condition (3.6)

F (ϱ0) ≥ F (ϱT ) + 1
q

ˆ T

0

ˆ
Ω

∣∣∣∣∇Lf (ϱt)
ϱt

∣∣∣∣q dϱt dt+ 1
p

ˆ T

0

ˆ
Ω

|vt|p dϱt dt.

Using Lemmas 3.6 and 3.7, we can apply Theorem 4.2 to obtain

F (ϱT ) − F (ϱ0) =
ˆ

ΩT

∇Lf (ϱ)
ϱ

v dϱ dt,

so that we have

0 ≥
ˆ

ΩT

∇Lf (ϱ)
ϱ

· v + 1
q

∣∣∣∣∇Lf (ϱ)
ϱ

∣∣∣∣q + 1
p

|v|p dϱdt.

According to Young’s inequality, this implies that

v = −
(∇Lf (ϱ)

ϱ

)q−1
ϱ a.e. for a.e. t.
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5 BV Estimates for the solution
In this section we give some BV estimates on the limit curve obtained by our p-JKO scheme, both
our results are obtained using the flow interchange technique, with suitable assumptions on the initial
condition and the function f . The following lemma, proved in [6] (see also [10]) as a generalization of
the results of [9], is useful to prove that BV bounds are conserved along out p-JKO scheme.

Lemma 5.1. Let Ω ⊂ Rd be bounded and convex with non-empty interior, ϱ, g ∈ W 1,1(Ω) be two
probability densities, h ∈ C1(Rd) a radially symmetric strictly convex function and H ∈ C1(Rd \{0})
be a radially symmetric convex function, then the following inequality holds

ˆ
Ω

(
∇ϱ · ∇H(∇φ) + ∇g · ∇H(∇ψ)

)
dx ≥ 0, (5.1)

where (φ,ψ) is a choice of Kantorovich potentials for the optimal transport problem between ϱ and g
for the transport cost given by c(x, y) = h(x− y), with the convention that ∇H(0) = 0.

Lemma 5.2. Let g ∈ P(Ω) ∩BV (Ω), and denote by ϱ the solution of problem 2.1. Then ϱ ∈ BV (Ω)
and ∥ϱ∥BV (Ω) ≤ ∥g∥BV (Ω)

Proof. For the case p = 2, the proof is done in [11] using the five gradients inequality for p = 2. For the
sake of completeness, we give below the same proof adapted to the general case, using the generalized
five gradients inequality 5.1. As usual, we start by looking at the approximated problem 2.2, and
assume that g ∈ W 1,1(Ω). Applying Lemma 5.1, with the function H(z) = |z|, we obtain

ˆ
Ω

(
∇ϱε · ∇φ

|∇φ|
+ ∇g · ∇ψ

|∇ψ|

)
dx ≥ 0

Using the optimality condition f ′′
ε (ϱε)∇ϱε = − ∇φ

τp−1 , we know that ∇ϱε and ∇φ point in opposite
directions, so that we get

ˆ
Ω

|∇ϱε| dx ≤
ˆ

Ω
∇g · ∇ψ

|∇ψ|
dx ≤

ˆ
Ω

|∇g| dx.

Passing to the limit ε → 0, we obtain ∥ϱ∥BV ≤ ∥g∥W 1,1 , and we pass to g ∈ BV (Ω) by approximating
g by gn ∈ W 1,1 with converging BV norm. This yields uniform convergence of the functional ϱ 7→
Wp(ϱ, gn) to ϱ 7→ Wp(ϱ, g) and therefore Γ-convergence of the functional in problem (2.1), so that the
corresponding minimizers ϱn converge to the minimizer of the limit problem ϱ. Using the lower semi
continuity of the BV norm, we obtain the claimed inequality ∥ϱ∥BV (Ω) ≤ ∥g∥BV (Ω)

A direct application of the above result immediately gives the following corollaries :

Corollary 5.3. The recursive sequence (ϱτ
k) obtained from the p-JKO scheme (3.1) satisfies

∥ϱk+1∥τ
BV ≤ ∥ϱτ

k∥BV .

Corollary 5.4. If ϱ0 ∈ BV (Ω), then ϱt ∈ BV (Ω) for all t ≥ 0 and ∥ϱt∥BV ≤ ∥ϱ0∥BV .

28



Remark 5.5. If we know that the solution to (1.2) is unique, when given some t ≥ 0, we can use
Corollary 5.4 to prove that for all s ≥ 0, we have ∥ϱt+s∥BV ≤ ∥ϱt∥BV . Indeed, we can look at the same
p-JKO scheme with ϱt as an initial condition, and obtain a solution (ϱ̄s)s such that ∥ϱ̄s∥BV ≤ ∥ϱt∥BV .
Uniqueness gives ϱ̄s = ϱt+s and the result.

We now prove an instantaneous BV regularization property for the limit curve constructed by our
p-JKO scheme. Notice that in the following theorem, we assume that f ′′(z) ≥ Cz−θ not only for large
z, but for z near 0 as well.

Theorem 5.6. Assume f ′′(z) ≥ Cz−θ for all z ∈ R+, θ ≥ −p−1
d , and let β = max

(
1 − 1

d ; θ
p + 1

q

)
.

Assume moreover that ϱ0 ∈ Lβ whenever β > 1, or
´

Ω ϱ0 log ϱ0 dx < +∞ if β = 1, then there exists
some C̃ > 0 such that for all t > 0, we have ∥ϱt∥BV ≤ C̃t

− 1
q

Proof. We will once again use the flow interchange technique, starting from the k-th step of our p-JKO
scheme, we look at the ε approximated problem and apply Lemma 2.8 with the function z 7→ 1

β−1z
β

(or z 7→ z log(z) in the case β = 1 with similar computations) to get

1
β − 1

ˆ
Ω

(ϱτ
k)β dx− 1

β − 1

ˆ
Ω
ϱβ

ε dx ≥ τβ

ˆ
Ω
ϱβ−1

ε f ′′(ϱε)q−1|∇ϱε|q dx

≥ Cβτ

ˆ
Ω
ϱβ−1−θ(q−1)

ε |∇ϱε|q dx.

Now, using Hölder’s inequality we obtain
ˆ

Ω
|∇ϱε| dx =

ˆ
Ω
ϱ−γ

ε ϱγ
ε |∇ϱε| dx ≤

(ˆ
Ω
ϱγp

ε dx
) 1

p
(ˆ

Ω
ϱ−γq

ε |∇ϱε|q dx
) 1

q

,

where we chose γ to statisfy −γq = β−1−θ(q−1). In order for
´

Ω ϱ
γp
ε dx to be bounded, we want γ to

be such that 0 ≤ γp ≤ β, which is equivalent to θ
p + 1

q ≤ β ≤
(

θ
p + 1

q

)
q . To apply the flow interchange

technique, we also need β ≥ 1 − 1
d , so that the condition θ ≥ −p−1

d , which implies q
(

θ
p + 1

q

)
≥ 1 − 1

d ,
allows us to take β = max

(
1 − 1

d ; θ
p + 1

q

)
. We can therefore write

τ

(ˆ
Ω

|∇ϱε| dx
)q

≤
(ˆ

Ω
(ϱτ

k)γp dx
) q

p
( 1
β − 1

ˆ
Ω

(ϱτ
k)β dx− 1

β − 1

ˆ
Ω
ϱβ

ε dx
)
,

and taking the limit ε → 0 and summing over steps of the scheme gives∑
k

τ

(ˆ
Ω

|∇ϱτ
k| dx

)q

≤ C̃.

Using Corollary 5.3 we can obtain ˆ
Ω

|∇ϱ̄τ
t | ≤ C̃t

− 1
q ,

and passing to the limit τ → 0 we have ∥ϱt∥BV (Ω) ≤ C̃t
− 1

q for all t > 0.
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A Discrete integral convergence lemma
Theorem A.1. Let f : [0, T ] → R+ be a L1 function. For all ε > 0, there exists 0 = t0 < t1 < t2 <
· · · < tn+1 = T such that for all i ∈ {0, . . . , n}, ti+1 − ti ≤ ε and∣∣∣∣∣

n∑
i=1

f(ti)(ti+1 − ti) −
ˆ T

0
f(x) dx

∣∣∣∣∣ ≤ ε.

The (ti)i=1,...,n can also be taken from a set [0;T ] \A where A has zero Lebesgue measure.

Proof. For the sake of clarity we will pick arbitrary ε, w > 0 corresponding respectively to the maximum
tolerated error in approximating the integral and the maximum mesh size, then one can set w = ε at
the end of the proof.

By absolute continuity of the Lebesgue integral, there exists some v > 0 such that for all measurable
subsets E of [0, T ] with |E| ≤ v we have

ˆ
E
f(x) dx ≤ ε

8 (A.1)

By the dominated convergence theorem, there exists some M > 1 such that

|{x ∈ [0, T ]; f(x) > M}| < min
(
v

2 ,
w

2

)
.

Let H = {f(x) ≤ M} \ A. By the Lebesgue differentiation theorem, for a.e. x ∈ H, there exists δ(x)
such that for all intervals I containing x of length less than δ(x), we have∣∣∣∣ 1

|I|

ˆ
I
f(y) dy − f(x)

∣∣∣∣ ≤ ε

8(T + 1) (A.2)

let G be the (full measure) subset of H such that the above holds.
For every x ∈ G, consider the closed intervals [x, x + h], where h ranges across all positive values

such that f(x+ h) − f(x) ≤ ε
8 , and h ≤ min( ε

8M , w
2 , δ(x)).

The above collection, ranging across x forms a Vitali cover of the set G (because otherwise the
Lebesgue differentiation theorem would be contradicted). By Vitali’s covering lemma, there exists
a countable subcollection Ii such that G \ ∪iIi has measure 0, and the Ii are pairwise disjoint. By
the Lebesgue dominated convergence theorem, there exists some N > 0 such that

∣∣∣G \ ∪N
i=1Ii

∣∣∣ ≤
min( ε

8M , v
2 ,

w
2 ). Now we write each Ii as (ai, bi), and relabel them so that they are in increasing order.

We now take the partition given by the points tj to be a1, b1, . . . , aN , bN . We denote by Ai, Bi the
partition cells (ai, bi) and (bi, ai+1), respectively, with the convention that aN+1 = T ; and define
S(Ai) = f(ai)(bi −ai) ; S(Bi) = f(bi)(ai+1 − bi). Finally, we call R(f) the left Riemann sum of f over
this partition. We have:

∣∣∣∣∣R(f) −
ˆ T

0
f dx

∣∣∣∣∣ ≤
N∑

i=1

∣∣∣∣∣
ˆ

Ai

f dx− S(Ai)
∣∣∣∣∣+

N∑
j=1

∣∣∣∣∣
ˆ

Bj

f dx− S(Bj)
∣∣∣∣∣+

∣∣∣∣∣
ˆ

[0,a1]
f dx

∣∣∣∣∣
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Using A.2, we have: ∣∣∣∣∣
ˆ

Ai

f dx− S(Ai)
∣∣∣∣∣ ≤ |Ai|

(
ε

8(T + 1)

)
Using A.1 and noticing that ∪N

j=1Bj ⊂ [0, T ] \ ∪N
i=1Ii whose measure is less than v we have

N∑
j=1

∣∣∣∣∣
ˆ

Bj

f dx− S(Bj)
∣∣∣∣∣ ≤

∣∣∣∣∣
ˆ

∪N−1
j=1 Bj

f dx
∣∣∣∣∣+

N−1∑
j=1

|S(Bj)|

≤ ε

8 +
N−1∑
j=1

|S(Bj)|

≤ ε

8 +
N∑

j=1
|Bj | f(bi)

≤ ε

8 +
N∑

j=1
|Bj | (f(ai) + ε

8)

≤ ε

8 + (
N∑

j=1
|Bj |)(M + ε

8)

= ε

8 + ε

8M (M + ε

8)

≤ ε

8 + ε

8 + ε2

16M
= 3ε

8
Now for the last term, the domain of integration has measure less than v by construction, and therefore∣∣∣∣∣

ˆ
[0,a1]

f dx
∣∣∣∣∣ ≤ ε

8 .

Thus putting all the above together, we have

∣∣∣∣∣R(f) −
ˆ T

0
f dx

∣∣∣∣∣ ≤ ε

8(T + 1)

N∑
i=1

|Ai| + 3ε
8 + ε

8

≤ ε

8(T + 1)T + 3ε
8 + ε

8
≤ ε

Finally, using that
∣∣∣[0, T ] \ ∪N

i=1Ii

∣∣∣ ≤ |Hc|+
∣∣∣G \ ∪N

i=1Ii

∣∣∣ ≤ w and the fact that the intervals are disjoint,
we get that the mesh is of size at most w, and the first point of the partition is at most w away from
0.
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