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Abstract

In this paper we identify the Fokker-Planck equation for (reflected) Sticky Brownian Motion
as a Wasserstein gradient flow in the space of probability measures. The driving functional is
the relative entropy with respect to a non-standard reference measure, the sum of an absolutely
continuous interior part plus a singular part supported on the boundary. Taking the small time-
step limit in a minimizing movement (JKO scheme) we prove existence of weak solutions for the
coupled system of PDEs satisfying in addition an Energy Dissipation Inequality.

1 Introduction
Since the work of R. Jordan, D. Kinderlehrer, and F. Otto [22] it is now well understood that
the classical Fokker-Planck equation{

∂tρ = ∆ρ+ div(ρ∇V ) in Ω

(∇ρ+ ρ∇V ) · ν = 0 on ∂Ω

can be reinterpreted as the Wasserstein gradient flow of the relative entropy in the space of
probability measures

dρ

dt
= − gradW H(ρ|µ),

where µ = 1
Z e

−V ∈ P(Ω) is the stationary Gibbs measure associated with the background
potential V : Ω → R. Here W is the quadratic Wasserstein distance over the smooth domain
Ω ⊂ Rd, and H(ρ|µ) =

´
Ω
ρ
µ log

(
ρ
µ

)
dµ is the relative entropy (Kullback-Leibler divergence) of

ρ w.r.t. the reference measure µ. This has shed a whole new light on variational evolution of
probability measures as gradient flows and the theory now covers advection-diffusion-aggregation
equations [9, 5], Porous Medium Equation [31] and doubly nonlinear parabolic equations [1],
fourth-order quantum drift-diffusion [27], reaction-diffusion equations with mass variations [24,
17, 12], and many more. We refer to the by-now classical textbooks [38, 37, 34] as well as to the
survey [35] for further discussions, references, and applications of this steadily growing topics.

A common feature of all the aforementioned models and equations is that they deal with
measures ρ = ρ(x) · dx which are absolutely continuous with respect to either the Lebesgue
measure in Euclidean domains, or its equivalent - the volume form - in Riemannian manifolds.
For the standard Fokker-Planck equation this is clearly legitimate due to strong regularizing
properties of the Laplacian, the generator of the standard (reflected) Brownian Motion with
stationary measure precisely given by the Lebesgue measure. Recently however, the so-called
(reflected) Sticky Brownian Motion [15] (SBM in short) started attracting renewed interest
[33, 13, 7, 23]. Roughly speaking, SBM is a Rd-valued stochastic process which behaves as
a standard diffusion as long as it remains in the interior of a prescribed domain Ω ⊂ Rd.
When it hits the boundary Γ = ∂Ω it sticks there for a random positive amount of time,
while following an intrinsic tangential diffusion (generated by the Laplace-Beltrami operator
∆Γ thereon). Eventually SBM almost surely reenters the domain and resumes its standard
Brownian behaviour, until hitting the boundary again, and so on. We refer to [20, 14] for the
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construction and regularity properties of SBM via Dirichlet-forms. In functional analytic terms,
SBM is best described by its generator

Lf(x) = lim
t↓0

Ef(Xt)− f(x)

t
=

{
1
2∆f(x) if x ∈ Ω
a
2∆Γf(x)− b∂νf(x) if x ∈ Γ = ∂Ω

were the parameters a, b > 0 are the tangential diffusivity and stickiness of the SBM process,
respectively. The stationary measure accordingly comprises an interior LdΩ and boundary Ld−1

Γ

Lebesgue measures, and the laws of motion couple the interior domain and its boundary through
an exchange term. The relevant probability distributions thus cannot simply be absolutely
continuous, and we write throughout

ρ = ω + γ ∈ P(Ω) with


ω = ρ

¬
Ω ∈ M+(Ω)

and
γ = ρ

¬
Γ ∈ M+(Γ)

for the associated interior/boundary decomposition Ω = Ω ∪ Γ. Discarding the probabilistic
1
2 factors for convenience, the abstract Fokker-Planck equation ∂tρ = L∗ρ for pure SBM reads
here 

∂tω = ∆ω in Ω

ω = bγ on ∂Ω
∂tγ = a∆Γγ − ∂νω in Γ

. (1.1)

In terms of PDEs this is a coupled system of bulk/interface diffusions, and the ∂νω exchange
term corresponds at the stochastic level to the jump rate between the two interior/boundary
behaviours. Here we focus on the case a = b = 1, and in this paper we shall make a case that
this is again a gradient flow

∂tω = ∆ω in Ω

ω = γ on ∂Ω
∂tγ = ∆Γγ − ∂νω in Γ

⇔ dρ

dt
= − gradW H(ρ |µ) for µ := LdΩ + Ld−1

Γ . (1.2)

Perhaps surprisingly, the transportation distance involved here is still the classical, quadratic
Wasserstein distance W over Ω. This is due to our crucial assumption that a = 1, for which the
interior ∆ and boundary ∆Γ diffusions are tangentially matched. For a ̸= 1 the transportation
distance must be adapted and the analysis is quite different. This will be investigated in a future
work [10]. The case of coefficients b ̸= 1 can however be treated by simply adapting the reference
measure µb = bLdΩ + Ld−1

Γ in the driving functional ρ 7→ H(ρ |µb), and we chose to focus on
b = 1 only to clarify the exposition. Similarly, background potentials VΩ, VΓ could very well be
included in the total free energy F = H +

´
Ω
VΩdω +

´
Γ
VΓdγ in order to account for drift in

the Fokker-Planck equation, but we simply ignore this possibility in order not to overburden the
analysis. Note that a rather complete mathematical analysis (existence, uniqueness, regularity)
of (1.1) has been carried out in [36] within a H1(Ω) × H1(Γ) functional framework. For the
smooth, positive solutions constructed therein, integration by parts gives

d

dt
H(ρt |µ) =

d

dt

(ˆ
Ω

ωt logωt +

ˆ
Γ

γt log γt

)
=

ˆ
Ω

(1 + logωt)∆ωt +

ˆ
Γ

(1 + log γt) [∆Γγt − ∂νωt]

=

[
−
ˆ
Ω

|∇ logωt|2ωt +
ˆ
∂Ω

(1 + logωt)∂νωt

]
+

[
−
ˆ
Γ

|∇Γ log γt|2γt −
ˆ
Γ

(1 + log γt)∂νωt

]
= −

ˆ
Ω

|∇ logωt|2ωt −
ˆ
Γ

|∇Γ log γt|2γt =: −I(ωt)− I(γt). (1.3)
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In the last equality we used the Dirichlet boundary condition ωt|∂Ω = γt to cancel out the
boundary terms (more on this in a moment). This shows that the relative entropy H(ρ |µ) =´
Ω
ω logω +

´
Γ
γ log γ of ρ = ω + γ is dissipated by the sum of the full Fisher information I(ω)

inside Ω and the tangential Fisher information I(γ) along the boundary Γ = ∂Ω. Here our focus
is not really on the well-posedness (although our analysis will provide as a byproduct existence
of weak solutions for initial data with merely finite entropy), and we rather take interest in the
variational gradient flow structure underlying this dissipation relation.

Although one can certainly come up with models naturally taking into account bulk/interface
interactions directly into the transportation distance [30, 19], we find surprising that the coupled
system (1.2) still fits within a completely standard optimal transport framework, as far as the
metric is concerned. Another striking aspect of our analysis is the following: For standard
Fokker-Planck equations the usual no-flux boundary condition encodes local conservation of
mass, while in (1.2) one may wonder where the boundary condition ω|∂Ω = γ stems from (this
trace compatibility was crucial in order to get to (1.3)). This is actually unrelated to mass
conservation: Our two evolution equations for ω, γ put together are already mass conservative
regardless of the extra boundary condition ω|∂Ω = γ, since ∂νω in the second PDE is precisely
the outflux of the momentum ∇ω appearing in the first one so whatever “comes out of Ω” is
just transferred to the boundary (the two PDEs together can indeed be reinterpreted as a single
continuity equation ∂tρ + divm = 0 with no-flux condition for the total density ρ = ω + γ,
but with a singular part γ living on the boundary in addition to a usual absolutely continuous
part ω in the interior). The Dirichlet boundary condition ω|∂Ω = γ is also not merely encoded
as a constraint in the entropy functional itself, since finiteness of H(ρ |µ) certainly does not
require or guarantee the trace compatibility. For the sake of completeness let us mention that
in [16] a transportation distance was constructed on M+(Ω), using the boundary Γ = ∂Ω as an
infinite reservoir allowing to store and release arbitrary amounts of mass. It was then showed
that the gradient flow of the standard entropy (with dx as a reference measure) with respect to
this new distance corresponds to the heat equation with Dirichlet boundary condition ρ|∂Ω = 1.
Although similar in spirit this is actually unrelated to our approach here, since our model is
really mass conservative in all regards. As we shall see later on, our boundary condition rather
arises from the energy-dissipation mechanism, and more precisely from the metric slope of the
driving functional (see Theorem 1). To the best of our knowledge this is the first example of
an optimal transport model in which entropy dissipation (rather than entropy itself) gives rise
to Dirichlet boundary conditions. In order to illustrate this even further, one could consider
different energies, for example of the form

F(ρ) =

ˆ
Ω

FΩ(ω)dx+

ˆ
Γ

FΓ(γ)dx, ρ = ω + γ

for some functions FΩ, FΓ : R+ → R satisfying suitable structural conditions. The gradient flow
would then read

dρ

dt
= − gradW F(ρ) ⇔


∂tω = div (ω∇F ′

Ω(ω)) in Ω

F ′
Ω(ω)|∂Ω = F ′

Γ(γ) on ∂Ω
∂tγ = divΓ (γ∇ΓF

′
Γ(γ))− ω∂νF

′
Ω(ω) in Γ.

The scalar fields F ′
Ω(ω), F

′
Γ(γ) are known in classical optimal transport as pressure variables (in

this respect the two evolution equations are nothing but Darcy’s law). Very heuristically, a pres-
sure difference along Γ would create somehow an infinite force. From a variational standpoint
this should be prohibited for dissipative systems. Thus the Dirichlet boundary condition can be
reinterpreted as a dissipative, pressure matching condition.

On a slightly different note, the theory of gradient flows in abstract metric spaces and curves
of maximal slope was initiated by De Giorgi [11], and more recently developed in [2]. One
possible way of formalizing the notion of such abstract gradient flows is to prove convergence of
De Giorgi’s minimizing movement in the small time-step limit τ → 0, of which the original JKO
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scheme [22] is a particular instanciation in the Wasserstein space (P(Ω),W). In order to back-up
our claim (1.2) that sticky diffusion is indeed a gradient flow we will pursue this by now classical
approach, with however a few twists. First, there are two classical ways of proving that the
limiting curve is a “solution”. The first one consists in exploiting purely metric tools to retrieve
in the limit an Energy Dissipation Inequality (EDI in short), where a dissipation functional
D(ρt) = − d

dtE(ρt) plays a key role together with the metric speed |ρ̇t|2 (both computed with
respect to the Wasserstein distance). Usually the dissipation is related to the metric slope
D(ρ) = |∂E|2(ρ), typically a Fisher information functional I(ρ), and this guarantees that the
limit is a curve of maximal slope. Moreover an upper chain rule argument shows that the energy
dissipation forces equality in a Cauchy-Schwarz inequality, thus relating the driving momentum
m in the continuity equation ∂tρ + divm = 0 to spatial gradients of the energy m = −ρ∇ δE

δρ .
This gives the PDE in the end, but really requires a chain rule (computing the derivative in time
of the energy E along a curve). This is well understood for classical functionals [2, chapter 10],
less so here, and we did not fully succeed in this respect (see Theorem 1 and our Conjecture 2).

The second classical approach is directly PDE-oriented and less related to dissipation: Lever-
aging ad-hoc tools from optimal transportation theory, one usually writes down the discrete
Euler-Lagrange optimality condition for each step ρn ⇝ ρn+1 of the JKO scheme, and tries
passing to the limit τ → 0 to retrieve the continuous PDE directly from the one-step opti-
mality. In the classical Fokker-Planck case this strongly relies on the Brenier-McCann theorem
[8, 29], allowing to relate the optimal map in ρn+1 = Tn#ρ

n with the energy. More precisely,
the Euler-Lagrange equation Tn(x)−x

τ = −∇ δE
δρ (ρ

n+1) typically gives the discrete velocity field
driving particles around in the end (displacement Tn(x)− x divided by time τ). This technical
tool is unfortunately not available here, since our entropy functional always forces ρn = ωn+γn

to have a singular part γn supported on the boundary and therefore systematically prevents
any application of the Brenier-McCann theorem (which precisely requires ρ not to give mass to
small Hd−1 sets in dimension d!). In some sense the bulk-interface interaction, corresponding to
the ∂νω exchange term in (1.2), forces mass splitting already at the discrete level. In order to
circumvent this technical obstacle and still obtain a useful Euler-Lagrange equation we perform
instead an ad-hoc ε-regularization of the entropy functional, and show that the barycentric mo-
mentum conveys enough information in order to first pass to the limit ε→ 0 and then take τ → 0.

Let us now fix some notations. We always work in a smooth, bounded, convex domain
Ω ⊂ Rd, g ≥ 2. (We assume convexity for technical convenience only, but the result should hold
for general domains.) We set

H(z) := z log z − z + 1 ≥ 0, z ≥ 0,

and the reference measure will always be

µ := LdΩ + Ld−1
Γ ∈ M+(Ω).

The entropy

E(ρ) := H(ρ |µ) =

{´
Ω
H
(

dρ
dµ (x)

)
µ(dx) if ρ≪ µ

+∞ else
(1.4)

is then nonnegative, strictly convex, and lower semi-continuous. As suggested by (1.3) we define
the dissipation

D(ρ) :=

{
I(ω) + I(γ) if ρ = ω + γ and ω|∂Ω = γ

+∞ else
(1.5)

(see later on for a rigorous definition of the Fisher information functional I as well as the
precise meaning of the boundary trace ω|∂Ω). This penalization of the constraint ω|∂Ω = γ is
not technically artificial and arises intrinsically when trying to compute the metric slope |∂E|,
see Theorem 1 below.
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Given an initial datum ρ0 ∈ P(Ω), the JKO scheme consists in initializing ρ0 = ρ0 and
solving recursively

ρn+1 ∈ Argmin
ρ∈P(Ω)

{
1

2τ
W2(ρ, ρn) + E(ρ)

}
. (1.6)

With such a discrete sequence one can define the piecewise constant interpolation

ρτt := ρn+1 for t ∈ (nτ, (n+ 1)τ ],

and we will establish

Main result. Fix any ρ0 ∈ P(Ω) with E(ρ0) < ∞. For any small τ > 0 the JKO scheme
(1.6) is uniquely well-posed, and there is a discrete sequence τ → 0 such that the interpolant ρτ

converges to a continuous curve ρ : [0,∞) → P(Ω)

W (ρτt , ρt) −−−→
τ→0

0 for all t ≥ 0.

The limit satisfies the Energy Dissipation Inequality

E(ρT ) +
ˆ T

0

(
1

2
|ρ̇t|2 +

1

2
D(ρt)

)
dt ≤ E(ρ0), ∀T > 0

and is a weak solution of the PDE (1.2). Moreover, there is λ > 0 only depending on Ω such
that

H(ρt | µ̄) ≤ e−2λtH(ρ0 | µ̄) and |ρt − µ̄|TV ≤ e−λt
√

1

2
H(ρ0 | µ̄), ∀ t ≥ 0 (1.7)

where µ̄ := 1
µ(Ω)

µ it the renormalized stationary measure. Finally, if ρ0 ≤ cµ for some constant
c > 0 (resp. ρ0 ≥ cµ for some c) then ρt ≤ cµ for all t ≥ 0 (resp. ρt ≥ cµ.)

It is worth stressing that something is still missing in order to obtain a rigorous metric
gradient flow. Indeed, in order for EDI to fully characterize curves of maximal slope one should
really prove that g(ρ) =

√
D(ρ) is an upper gradient [2, chapter 1]. The local slope |∂E| is

always a (weak) upper gradient, and we conjecture that D = |∂E|2 thus it is plausible that
√
D

should be an upper gradient. However we only managed to prove that D ≤ |∂E|2, and we were
also not able to prove directly that

√
D is an upper gradient.

Another key concept for the abstract theory of metric gradient flows is that of geodesic
convexity, or, in the specific optimal transport framework, McCann’s displacement convexity
[28]. In smooth, complete Riemannian manifolds the λ-convexity of H (relatively to the reference
volume measure) is equivalent to λ-Ricci lower bounds. In Euclidean domains, it is known to
hold with λ = 0 if and only if Ω is convex, which can also be reinterpreted as the fact that the
subspace PacLd

Ω
(Ω) ⊂ P(Ω) of absolutely continuous measures (w.r.t. to the reference Lebesgue

measure LdΩ) is geodesically convex. It is worth stressing that this whole picture collapses here:
Due to our choice of reference measure µ = LdΩ + Ld−1

Γ the entropy E(ρ) = H(ρ |µ) cannot be
λ-convex for any λ ∈ R, even if the underlying domain Ω is strongly uniformly convex. This is
due to the fact that Pacµ (Ω) itself fails to be geodesically convex. For a counterexample, take
Ω the unit ball, and consider two measures ρ0 = 0 + γ0, ρ1 = 0 + γ1 smoothly supported on
the boundary as in Figure 1, with finite entropies E(ρi) = H(γi | Ld−1

Γ ) < ∞. It is not difficult
in this configuration to check that the unique geodesic ρt remains singular (and absolutely
continuous w.r.t. Hd−1) and supported strictly inside Ω for all intermediate times t ∈ (0, 1). As
a consequence ρt = ωt + 0 is not absolutely continuous w.r.t. µ and thus E(ρt) = +∞ for all
t ∈ (0, 1), while E(ρ0), E(ρ1) < +∞.

It is also known that geodesic convexity usually leads to logarithmic Sobolev and entropy-
entropy production inequalities, which in turn should yield exponential convergence as t → ∞
towards the unique entropy minimizer, here µ = 1

|Ω|+|Γ|µ ∈ P(Ω). Although convexity com-
pletely fails here as just discussed, it was proved nonetheless in [6] that µ always satisfies a
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ρ0 = 0 + γ0 ρ1 = 0 + γ1

ρt = ωt + 0

Ω

Γ

Figure 1: Counterexample to displacement convexity

boundary-trace logarithmic Sobolev inequality. The usual entropy-entropy production argu-
ment will thus apply in our framework as well and will allow us to establish the exponential
convergence (1.7).

The paper is organized as follows: In Section 1 we fix some notations and define a few rele-
vant objects. We also establish a (partial) connection between the abstract metric slope |∂E|(ρ)
of our relative entropy E(ρ) = H(ρ |µ) and its dissipation functional D(ρ), Theorem 1. Section 2
gathers several a-priori estimates for the discrete JKO solutions, including the Euler-Lagrange
optimality condition and a discrete dissipation inequality based on De Giorgi’s variational in-
terpolant. In Section 3 we leverage the previous work to pass to the limit τ → 0, and prove the
main result. For convenience we split this into Proposition 3.1 (convergence to a limiting curve
satisfying EDI) and Proposition 3.3 (the limit is a weak solution of the PDE). Finally, we defer
to Appendix A some technical statements and lemmas needed along the way. Let us first fix
once and for all the framework as well as a few notations.

• Ω ⊂ Rd (d ≥ 2) is a smooth, bounded, convex domain with boundary Γ = ∂Ω. We tend to
write ∂Ω for quantities arising from the interior, such as ω|∂Ω, while we prefer the notation
Γ for quantities intrinsically defined thereon, such as γ. The Euclidean distance on Ω is
denoted by dΩ, while the intrinsic Riemannian distance on the boundary is denoted dΓ.
The full gradient, divergence and Laplacian in Ω are denoted ∇,div,∆, while their intrinsic
Riemannian counterpart along Γ are denoted ∇Γ,divΓ,∆Γ.

• We write X for smooth Riemannian manifolds, possibly with boundaries, and dX the
Riemannian distance. Typically we shall take X = Ω, a flat manifold with boundary ∂Ω,
or X = Γ, a curved manifold of its own right (with induced Riemannian metric).

• With a clear abuse of notations we call Lebesgue measure the volume form on a manifold
X and we write indistinctly dx for the Lebesgue measures LdΩ or Ld−1

Γ . Unless otherwise
specified, and with a slight abuse of notations, the Boltzmann entropy H(ν) always denotes
the entropy H(ν |dx) of a nonnegative measure ν ∈ M+(X ) with respect to this dx
measure.

• For probability measures ρ ∈ P(Ω) we always decompose ρ = ρ
¬
Ω + ρ

¬
Γ =: ω + γ and

identify ω ∈ M+(Ω), γ ∈ M+(Γ) with their densities with respect to the corresponding
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Lebesgue measures, i-e we ω = ω(x) · LdΩ and γ = γ(x) · Ld−1
Γ . Typically this notation

allows to simply write

E(ρ) = H
(
ω + γ | LdΩ + Ld−1

Γ

)
= H(ω) +H(γ).

• The narrow convergence of measures is defined in duality with bounded, continuous test
functions

ρn
∗
⇀ ρ iff

ˆ
X
φ(x)ρn(dx) →

ˆ
X
φ(x)ρ(dx), ∀φ ∈ Cb(X )

as n→ ∞
• For µ, ν ∈ M+(X ) with compatible masses M =

´
µ =

´
ν the (squared) Wasserstein

distance is
W2

X (µ, ν) = min
π∈Π(µ,ν)

¨
X×X

d2X (x, y)π(dx, dy),

where Π(µ, ν) the set of admissible plans π ∈ M+(X × X ) with mass M and marginals
πx = µ, πy = ν. We refer to [34, 37, 38] for more material on optimal transport theory.
Unless otherwise specified W will simply denote WΩ, the Wasserstein distance over Ω for
the quadratic cost d2

Ω
(x, y) = |y − x|2.

• Following [2], in a metric space (X, d) a curve {xt}t∈I is said to be absolutely continuous
if

d(xt0 , xt1) ≤
ˆ t1

t0

η(t)dt

for some η ∈ L1(I) and all [t0, t1] ⊆ I. In that case the metric speed

|ẋt| := lim
h→0

d(xt+h, xt)

h

exists for a.e. t ∈ I and is the smallest function η satisfying the above inequality. The
(local) metric slope of a functional E : X → R ∪ {+∞} is defined as

|∂E|(x) = lim sup
y→x

[E(x)− E(y)]+

d(x, y)
. (1.8)

• We use the t subscript for curves of measures t 7→ ρt = ωt + γt, while the time derivative
is denoted ∂t.

Definition 1.1 (Fisher information [2, defs. 10.4.15 and 10.4.16]). On a smooth Riemannian
manifold (possibly with boundary) X we say that a nonnegative measure µ ∈ M+(X ) has log-
arithmic derivative if µ = f(x) · dx for some f ∈ L1(dx) and if its distributional gradient
∇f ∈ L1

loc(dx) with moreover |∇f | ≪ f . In that case we write with a slight abuse of notations
∇ log f = ∇f

f for the Radon-Nikodym derivative. The Fisher information is then

I(µ) :=

{´
X |∇ log f |2dµ if µ = f · dx has logarithmic derivative ∇ log f

+∞ otherwise

We shall often exploit the following well-known facts, which we recall here without proof.

Lemma 1.2 (Properties of the Fisher information). For any nonnegative, absolutely continuou
f ∈ L1(X ) with mass M =

´
X f <∞ we write µ = f · dx. Then

• One has the equivalent representations

I(µ) =
ˆ
X
|∇ log f |2 f =

ˆ
X

∣∣∣∣∇ff
∣∣∣∣2 f =

ˆ
X

∣∣∣∣∇f√
f

∣∣∣∣2 = 4
∥∥∥∇√f∥∥∥2

L2
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• In dimension d there holds

∥f∥W 1,p(X ) ≤ Cp,X [M + I(µ)] for


p = 2 if d = 1

p = 2− if d = 2

p = d
d−1 if d ≥ 3

. (1.9)

(p = 2− means as usual “for any p < 2”)

• I is convex and lower semi-continuous for the narrow convergence.

Recall that, on smooth bounded domains Ω ⊂ Rd, the trace operator tr :W 1,p(Ω) → Lp(∂Ω)
is continuous for p ≥ 1 and compact for p > 1 [25, chapter 18]. Owing to (1.9) we see that a
measure µ = f ·dx with I(µ) <∞ always has a well-defined trace f |∂Ω = tr f ∈ Lp(∂Ω) for some
p > 1. This clarifies the rigorous meaning of the dissipation functional D in (1.5): Either I(ω)
and I(γ) are finite and therefore the trace ω|∂Ω = trω is well-defined, or simply D(ρ) = +∞.
This will also give a meaning to the boundary condition ω|∂Ω = γ in the Fokker-Planck equation
(1.2), whose solutions will satisfy by construction

´ T
0
D(ρt) dt < +∞ and thus D(ρt) < +∞ for

a.e. t ≥ 0.

The next result is specific to our optimal transport context with E(ρ) = H(ω) +H(γ), and
will be key for the subsequent analysis. It will allow to retrieve simultaneously the boundary
conditions as well as natural dissipation estimates for the PDE directly from the small-time step
limit τ → 0 in the JKO scheme, and more importantly justifies our claim in the introduction
that the trace compatibility arises from the dissipation only.

Theorem 1. Let D be the dissipation functional in (1.5). Then

|∂E|2(ρ) ≥ D(ρ) (1.10)

and D is (sequentially) narrowly lower semi-continuous.

We were not able to prove the reverse inequality, and for future reference we record here

Conjecture 2. Equality holds in (1.10).

Proof of Theorem 1. Let us first show that |∂E|2(ρ) ≥ I(ω) + I(γ). Take ρ = ω + γ ∈ Dom(E)
with masses MΩ =

´
Ω
ω ≥ 0 and MΓ =

´
Γ
γ ≥ 0, MΩ + MΓ = 1. For any arbitrary ω̃ ∈

M+(Ω), γ̃ ∈ M+(Γ) with same masses MΩ,MΓ let ρ̃ = ω̃ + γ̃ ∈ P(Ω). Let πΩ ∈ Π(ω, ω̃)
and πΓ ∈ Π(γ, γ̃) be optimal plans for the transportation problems set on (Ω, dΩ) and (Γ, dΓ),
respectively. The plan π := πΩ+πΓ is easily seen to be admissible for the transportation problem
from ρ = ω + γ to ρ̃ = ω̃ + γ̃, set on (Ω, dΩ). Since the induced distance dΓ(x, y) ≥ dΩ(x, y)
along the boundary we have in particular

W2(ρ, ρ̃) ≤
¨

Ω
2
d2
Ω
(x, y)π(dx, dy) =

¨
Ω2

d2
Ω
(x, y)πΩ(dx, dy) +

¨
Γ2

d2
Ω
(x, y)πΓ(dx, dy)

≤
¨

Ω2

d2
Ω
(x, y)πΩ(dx, dy) +

¨
Γ2

d2Γ(x, y)πΓ(dx, dy) = W2
Ω
(ω, ω̃) +W2

Γ(γ, γ̃). (1.11)

Let now (ωt, γt)t≥0 be the heat flows running on Ω,Γ, respectively, started from ω, γ (with of
course no-flux boundary condition on ∂Ω for the first flow). Exploiting the duality formula for

8



the local slope [2, lemma 3.1.5] and writing ρt = ωt + γt we can bound

1

2
|∂E|2(ρ) = lim sup

t↓0

1

t
sup
ρ̃

{
E(ρ)− E(ρ̃)− 1

2t
W2(ρ, ρ̃)

}
= lim sup

t↓0

1

t
sup

ρ̃=ω̃+γ̃

{
[H(ω) +H(γ)]− [H(ω̃) +H(γ̃)]− 1

2t
W2(ρ, ρ̃)

}
≥ lim sup

t↓0

1

t

{
[H(ω) +H(γ)]− [H(ωt) +H(γt)]−

1

2t
W2(ρ, ρt)

}
(1.11)
≥ lim sup

t↓0

1

t

{[
H(ω)−H(ωt)−

1

2t
W2

Ω(ω, ωt)

]
+

[
H(γ)−H(γt)−

1

2t
W2

Γ(γ, γt)

]}
≥ lim inf

t↓0

1

t

[
H(ω)−H(ωt)−

1

2t
W2

Ω(ω, ωt)

]
+ lim inf

t↓0

1

t

[
H(γ)−H(γt)−

1

2t
W2

Γ(γ, γt)

]
.

By Proposition A.1 the two lim inf are bounded from below by half the respective Fisher infor-
mations, and |∂E|2(ρ) ≥ I(ω) + I(γ) follows.

Let us now prove the the lower semicontinuity. Take a sequence ρn ∗
⇀ ρ. Up to extraction of a

subsequence if needed we can assume that lim inf D(ρn) = limD(ρn) <∞. By definition of D we
have I(ωn)+I(γn) ≤ C and ωn|∂Ω = γn for all n, and from (1.9) we have moreover that ωn, γn
are bounded in W 1,p for some p > 1. By Rellich-Kondrachov compactness we get that ωn → ω
and γn → γ at least in L1(Ω), L1(Γ), respectively. This implies in particular that ρ = lim ρn has
interior/boundary decomposition ω+γ = limωn+lim γn. By compactness of the trace operator
we also get ω|∂Ω = trω = lim(trωn) = lim γn = γ, hence D(ρ) = I(ω) + I(γ). By standard
lower semi-continuity of I we have next D(ρ) = I(ω) + I(γ) ≤ lim inf I(ωn) + lim inf I(γn) ≤
lim inf{I(ωn) + I(γn)} = lim inf D(ρn) and the claim follows.

It only remains now to address the much more delicate trace compatibility, i.e. we need to
prove that if I(ω) + I(γ) < ∞ but ω|∂Ω ̸= γ then |∂E|(ρ) = +∞. Assume accordingly that
there is x0 ∈ ∂Ω = Γ such that ω|∂Ω(x0) ̸= γ(x0). (This is meaningful in the sense that both
ω|∂Ω and γ are defined Ld−1

Γ a.e.) Consider first the case

ω0 := ω|∂Ω(x0) > γ(x0) =: γ0.

For some small ε, δ, θ to be adjusted later on we will construct below a suitable (ε, δ, θ)-
perturbation ω̃, γ̃ of ω, γ in a neighborhood of x0 by transferring a small fraction θ of mass from
the interior to the boundary in order to “diminish the gap ω0 − γ0 > 0” close to x0. This will be
achieved by paying a transportation cost one order of magnitude smaller that the gain in entropy
as ε, δ, θ → 0, hence by definition (1.8) of the slope we will have |∂E|(ρ) ≥ lim inf

ε,δ,θ→0

E(ρ)−E(ρ̃)
W(ρ,ρ̃) =

+∞. Roughly speaking δ will be a small tangential length-scale along the boundary and ε a
small normal scale, so that the perturbation will be constructed in a box of size δd−1ε. The
parameter θ will control the small fraction of mass to be taken from the interior and mapped to
the boundary, and in some sense θ will be used to “linearise” H(ω)−H(ω̃) ∼ H ′(ω̃)(ω− ω̃) and
H(γ)−H(γ̃) ∼ H ′(γ̃)(γ− γ̃). The important point is that the transfer of mass from the interior
to the boundary should take place on a normal scale ε ≪ δ much smaller than the tangential
scale δ. This reflects the normal derivative ∂νω appearing in (1.2), which consistently encodes
the bulk/interface interactions.

Since our construction of the perturbation below will be localized, it is enough to work in
local charts and we thus work in the following configuration: Ω = Rd+ is a half-space, Γ = ∂Ω =
{0} × Rd−1, and x0 = (0, 0Rd−1) ∈ Γ. We write x = (x1, x

′) ∈ R+ × Rd−1 for the natural
coordinates, and denote by

T (x) = ProjRd−1(x) = (0, x′)

the projection on the boundary. We take Γδ = Bd−1
δ (0) a small neighborhood of the origin in Γ,

and also define the ε-thickening Ωε,δ = (0, ε)× Γδ as in Figure 2. For reasons that will appear
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x1 ∈ R+

x′ ∈ Rd−1

0

Ωε,δΓδ

x = (x1, x
′)T (x) = (0, x′)

δ

ε

Figure 2: The (ε, δ) boundary layer

clear later on we impose

εp−1 = O
(
δd−1

)
for p =

d

d− 1
> 1. (1.12)

Writing γ̂ := T#(ω
¬
Ωε,δ) for simplicity, the perturbation is then defined as

ω̃(x) :=

{
(1− θ)ω(x) if x ∈ Ωε,δ

ω(x) else
and γ̃(x′) :=

{
γ(x′) + θγ̂(x′) if x′ ∈ Γδ

γ(x′) else
(1.13)

In other words, we take a small fraction θ ≪ 1 of ω inside Ωε,δ and transport it to the boundary
Γδ along the x1 direction, where it is simply added to the boundary density already present there.
Meanwhile, ω, γ remain unchanged outside of the small control boxes Ωε,δ,Γδ, respectively.
Notice that ω̃, γ̃ do not satisfy the compatibility condition. We perturb however “in the good
direction” by decreasing the trace gap, since ω̃ ≤ ω and γ̃ ≥ γ and therefore [ω̃ − γ̃](x0) ≤
[ω − γ](x0).

Step 1: variation in entropy. In order to estimate the first variation of E we first exploit
the convexity of H to write

E(ρ)− E(ρ̃) = [H(ω)−H(ω̃)] + [H(γ)−H(γ̃)] ≥
ˆ
Ωε,δ

H ′(ω̃)[ω − ω̃]︸ ︷︷ ︸
:=A

+

ˆ
Γδ

H ′(γ̃)[γ − γ̃]︸ ︷︷ ︸
:=B

10



For the first term we use the convexity of z 7→ zH ′(z) = z log z to apply Jensen’s inequality as

A =

ˆ
Ωε,δ

H ′[(1− θ)ω]θω =
θ

1− θ

ˆ
Ωε,δ

H ′[(1− θ)ω](1− θ)ω

=
θ|Ωε,δ|
1− θ

 
Ωε,δ

H ′[(1− θ)ω](1− θ)ω

≥ θ|Ωε,δ|
1− θ

H ′

(
(1− θ)

 
Ωε,δ

ω

)(
(1− θ)

 
Ωε,δ

ω

)
.

From Lemma 1.2 we have that ω ∈ W 1,p with p = d
d−1 > 1. Because we took care to impose

the ε, δ regime (1.12) we can apply Lemma A.3 to conclude that
ffl
Ωε,δ

ω → ω0 > 0 and thus

lim inf
ε,δ,θ

A

θ|Ωε,δ|
≥ H ′(ω0)ω0. (1.14)

(Note that, since we assumed ω0 > γ0, we have in particular ω0 > 0 so there is no issue with log 0
here.) The B term is more involved and requires extra work. Observe that γ̂ = T#(ω

¬
Ωε,δ) is

given more explicitly by

γ̂(x′) =

ˆ ε

0

ω(x1, x
′)dx1, x′ ∈ Γδ.

This is small as ε → 0 so in order to obtain something nontrivial one should actually look at
the rescaled quantity

γ̄(x′) :=
1

ε
γ̂(x′) =

ˆ ε

0

ω(x1, x
′)
dx1
ε
.

For any p ≥ 1 we have by Jensen’s inequality

 
Γδ

|γ̄ − ω0|p =
 
Γδ

∣∣∣∣ˆ ε

0

[ω(x1, x
′)− ω0]

dx1
ε

∣∣∣∣p dx′
≤
 
Γδ

ˆ ε

0

|ω(x1, x′)− ω0|p
dx1
ε

dx′ =

 
Ωε,δ

|ω − ω0|p → 0 (1.15)

as soon as p ≤ d
d−1 , due to Lemma 1.2 and Lemma A.3 exactly as before. This confirms that γ̄

remains indeed of order ω0 = O(1) in any Lp, p ≤ d
d−1 . Fixing any M > γ0, we define now

H ′
M (z) := H ′(z)χ(0,M ](z) and H

′
M (z) := H ′(z)χ(M,∞)(z),

the lower and upper truncations of H ′(z) = log z. We split next, after changing variables
x′ = δy′ and writing ϕδ(y′) = ϕ(δy′) for any relevant function ϕ = γ, γ̃, γ̂, γ̄,

B =

ˆ
Γδ

H ′(γ̃)[γ − γ̃] = −|Γδ|
 
Γδ

H ′(γ + εθγ̄)εθγ̄ = −θε|Γδ|
 
Bd−1

1

H ′(γδ + εθγ̄δ)γ̄δ

= θ|Ωε,δ|

(  
Bd−1

1

−H ′
M (γδ + εθγ̄δ)γ̄δ︸ ︷︷ ︸
:=B

−
 
Bd−1

1

H
′
M (γδ + εθγ̄δ)γ̄δ︸ ︷︷ ︸

:=B

)

Let us first handle the B term. By Lebesgue’s differentiation theorem we have
 
Bd−1

1

|γδ − γ0| =
 
Bd−1

δ

|γ − γ0| → 0,
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in particular γδ → γ0 a.e. in Bd−1
1 . Owing to (1.15) we have similarly 

Bd−1
1

|γ̄δ − ω0| =
 
Bd−1

δ

|γ̄ − ω0| ≤
 
Ωε,δ

|ω − ω0| → 0,

hence γ̄δ → ω0 a.e as well. As a consequence −H ′
M (γδ + εθγ̄δ)γ̄δ → −H ′

M (γ0)ω0 = −H ′(γ0)ω0

at least a.e. inside Bd−1
1 (here it is crucial that the truncation in H ′

M was chosen at level M > γ0
so that H ′

M (γ0) = H ′(γ0)). Since H ′(M)−H ′
M (z) ≥ 0 for fixed M (this is mainly why we had

to truncate) we conclude by Fatou’s lemma that

lim inf
ε,δ,θ

B = lim inf
ε,δ,θ

{ 
Bd−1

1

[
H ′(M)−H ′

M (γδ + εθγ̄δ)
]
γ̄δ +

 
Bd−1

1

−H ′(M)γ̄δ

}

= lim inf
ε,δ,θ

{ 
Bd−1

1

[
H ′(M)−H ′

M (γδ + εθγ̄δ)
]
γ̄δ

}
−H ′(M) lim

ε,δ,θ

 
Bd−1

1

γ̄δ

≥
 
Bd−1

1

[H ′(M)−H ′(γ0)]ω0 −H ′(M)ω0 = −H ′(γ0)ω0.

Note that this allows for γ0 = 0 with −(log γ0)ω0 = +∞, since in that case ω0 > γ0 = 0.
For the B term we write

−B =

 
Bd−1

1

H
′
M (γδ + εθγ̄δ)︸ ︷︷ ︸

:=f

γ̄δ︸︷︷︸
:=g

.

Exactly as before, and again because we truncated at level M > γ0, we have convergence
H

′
M (γδ + εθγ̄δ)γ̄δ → H

′
M (γ0 + 0)ω0 = 0 a.e. In order to apply Vitali’s convergence theorem it

suffices to show that the product {fg}ε,δ,θ is uniformly integrable in Bd−1
1 as ε, δ, θ → 0. Since

H
′
M (z) = (log z)χ(M,∞)(z) has been truncated one has that the negative part [H

′
M ]−(z) ≤

max{0,− logM}, which in turn easily yields

exp
(∣∣∣H ′

M (z)
∣∣∣) ≤ CM (1 + z), ∀ z ≥ 0

for some suitable CM > 0. Whence 
Bd−1

1

exp f ≤
 
Bd−1

1

CM
(
1 + γδ + εθγ̄δ)

)
= CM

 
Bd−1

δ

(1 + γ + εθγ̄) → CM [1 + γ0 + 0] .

Moreover by Lemma 1.2 we have ω ∈W 1, d
d−1 . One more application of Lemma A.3 gives 

Bd−1
1

|g|
d

d−1 =

 
Bd−1

δ

|γ̄|
d

d−1 → ω
d

d−1

0 .

We use now the elementary inequality (ab)p ≤ C [1 + exp(a) + bq] for a, b ≥ 0 and any 1 ≤ p < q

(for some C = Cp,r). Indeed, choosing any p ∈
(
1, d

d−1

)
we conclude from the above estimates

that  
Bd−1

1

|fg|p ≤
 
Bd−1

1

C
(
1 + exp(f) + |g|

d
d−1

)
= O(1)

as ε, δ, θ → 0, for some fixed p > 1. This gives equi-integrability and we can thus legitimately
apply Vitali’s convergence theorem to conclude that lim

ε,δ,θ→0
B = 0. Whence

lim inf
ε,δ,θ→0

B

θ|Ωε,δ|
≥ lim inf
ε,δ,θ→0

B

θ|Ωε,δ|
≥ −H ′(γ0)ω0. (1.16)

Gathering (1.14)(1.16), and by strict convexity of H with ω0 > γ0, we obtain

lim inf
ε,δ,θ→0

E(ρ)− E(ρ̃)
θ|Ωε,δ|

≥ [H ′(ω0)−H ′(γ0)]ω0 > 0. (1.17)
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Step 2: transportation cost. Recalling the definition (1.13) of our perturbation ρ̃ = ω̃+γ̃,
it is easy to check that the plan π ∈ P

(
Ω× Ω

)
defined by duality as

¨
Ω×Ω

φ(x, y)π(dx,dy) =

ˆ

Ω\Ωε,δ

φ(x, x)ρ(dx) + (1− θ)

ˆ

Ωε,δ

φ(x, x)ρ(dx) + θ

ˆ

Ωε,δ

φ(x, T (x))ρ(dx)

is admissible from ρ to ρ̃. Since |T (x)− x| ≤ ε in Ωε,δ we obtain

W2(ρ, ρ̃) ≤
¨

Ω
2
|x− y|2π(dx, dy) = θ

ˆ
Ωε,δ

|x− T (x)|2ρ(dx)

= θ

ˆ
Ωε,δ

|x− T (x)|2ω(dx) ≤ θ|Ωε,δ|ε2
 
Ωε,δ

ω ∼ θ|Ωε,δ|ε2ω0. (1.18)

Step 3: conclusion. Take ε small enough so that (1.12) and therefore (1.17)(1.18) hold.
Recalling that |Ωε,δ| = |Bd−1

1 |εδd−1 we obtain at last

|∂E(ρ)| = lim sup
µ→ρ

[E(ρ)− E(µ)]+

W(ρ, µ)
≥ lim inf
ε,δ,θ→0

θ|Ωε,δ|[H ′(ω0)−H ′(γ0)]ω0

(θ|Ωε,δ|ε2ω0)
1
2

=
√
ω0[H

′(ω0)−H ′(γ0)]︸ ︷︷ ︸
=C0>0

lim inf
ε,δ,θ→0

√
θ|Ωε,δ|
ε

= C ′
0 lim inf
ε,δ,θ→0

(
θδd−1

ε

) 1
2

= +∞

provided ε ≪ θδd−1 - which is of course compatible with (1.12). This finally settles the case
ω0 > γ0 ≥ 0.

If now γ0 > ω0 ≥ 0 we proceed similarly, by spreading uniformly along horizontal lines the
excess of γ-mass from the boundary Γδ to the interior Ωε,δ. More explicitly the new perturbation
is defined as

γ̃(x′) :=

{
(1− θ)γ(x′) if x′ ∈ Γδ

γ(x′) else
and ω̃(x) :=

{
ω(x) + θ 1

εγ(x
′) if x = (x1, x

′) ∈ Ωε,δ

γ(x) else
.

The rest of the argument is very similar and for the sake of brevity we omit the details. (This
case is actually easier because the horizontal oscillations of the infinitesimal variations 1

εγ(x
′)

of ω are trivially under control, while they previously required some W 1,p control via the Fisher
information in order to apply Lemma A.3).

2 Discrete estimates
In this section we lay the groundwork for the convergence ρτt → ρt later on. We start with

Lemma 2.1. Given any ρn ∈ P(Ω) there exists a unique minimizer ρn+1 = ωn+1 + γn+1 of
(1.6), satisfying

|∂E|(ρn+1) ≤ W(ρn, ρn+1)

τ
< +∞

with moreover ωn+1 ∈W 1, d
d−1 (Ω), γn+1 ∈W 1, d−1

d−2 (Γ) and the trace compatibility

ωn+1
∣∣
∂Ω

= γn+1.

Proof. Recall first that E and W2(·, ρn) are classically nonnegative and lower semi-continuous
w.r.t. narrow convergence. The latter is linearly convex, while the former is strictly convex.
Hence the direct method in the calculus of variations gives existence and uniqueness of a mini-
mizer ρn+1 for the JKO functional Fn

τ (ρ) :=
1
2τW

2(ρ, ρn) + E(ρ) in (1.6). Moreover this mini-
mizer has finite entropy and therefore we can decompose ρn+1 = ωn+1 + γn+1 unambiguously.
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Note that Fn
τ implicitly defines a Moreau-Yosida regularization Eτ of E [2, chapter 3], and more

precisely Fn
τ (ρ

n+1) = Eτ (ρn). As a consequence the slope estimate |∂E|(ρn+1) ≤ W(ρn,ρn+1)
τ

follows from standard properties of the Moreau-Yosida regularization, see e.g. [2, lemma 3.1.3].
The rest of the statement follows by Theorem 1 (the slope controls the Fisher informations and
the trace condition) and Lemma 1.2 (properties of the Fisher information).

For a momentum m ∈ Md(Ω) and mass density ρ ∈ P(Ω) we denote the quadratic kinetic
energy functional

J (m, ρ) :=

ˆ
Ω

|m|2

ρ
,

which is properly defined as the usual extension of to the space of measures of the integral with
density J(M,R) = |M |2

R (by one-homogeneity).
The following lemma gives in some sense the Euler-Lagrange optimality condition for the

minimizer ρn+1 in each JKO step.

Lemma 2.2. There exists an optimal plan πn+1 ∈ Π(ρn, ρn+1) such that the momentum mn+1 ∈
Md(Ω) defined through

ˆ
Ω

ξ(y) ·mn+1(dy) :=

¨
Ω×Ω

y − x

τ
· ξ(y)πn+1(dx,dy), ∀ ξ ∈ Cb(Ω)

d (2.1)

can be written as
mn+1 = −∇ωn+1LdΩ −∇Γγ

n+1Ld−1
Γ − nn+1

Γ , (2.2)

for some normal measure nn+1
Γ ∈ Md(Γ). Moreover we have

I(ωn+1) + I(γn+1) ≤ J (mn+1, ρn+1) ≤ 1

τ2
W2(ρn, ρn+1) (2.3)

Let us stress here that πn+1 ∈ Π(ρn, ρn+1) is a “forward-in time” plan. Accordingly, the term
y−x
τ in (2.1) should be seen as the terminal velocity of the time-τ geodesic from x to y, a tangent

vector at y. This convention for the discrete momentum is chosen so that ∂tρ + divm = 0 in
the end (after taking τ → 0), and this is consistent with the minus sign in (2.2) ultimately
leading to forward-in time diffusion. Let us also anticipate on the fact that the normal measure
nΓ = lim

τ→0
nn+1
Γ will vanish in the end (we were not able to prove that nn+1

Γ = 0 already at
the discrete level) so the key point in (2.2) is to identify the interior contribution ∇ω and the
tangential component ∇Γγ of the boundary part.

Proof. Fix ε > 0 and let Γε = {x ∈ Ω, d(x,Γ ≤ ε)} be an interior ε-neighborhood of Γ = ∂Ω.
We let Ωε = Ω \ Γε, which is again a smooth domain if ε > 0 is small enough. On Γε one
can use a system of normal and tangential coordinates, which we avoid defining explicitly for
the sake of clarity. Using this system of coordinates it is easy to define a smooth potential
V ε : Ω → R which is constant inside Ωε, only depends on the normal coordinate inside Γε, and
most importantly satisfies

µε := e−V
ε(x)LdΩ

∗
⇀ µ = LdΩ + Ld−1

Γ

as ε → 0 (one can simply use a standard ε-mollification of the one-dimensional Dirac-delta in
the normal coordinate). We consider the approximate problem

ρε = Argmin
ρ∈P(Ω)

{
1

2τ
W2(ρ, ρn) +H (ρ |µε)

}
.

Just as in Lemma 2.1 there exists a unique, absolutely continuous minimizer ρε = ρε(x)LdΩ.
By standard arguments, and because µε ∗

⇀ µ, the functional Fn
τ,ε := 1

2τW
2(·, ρn) + H(· |µε)
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Gamma-converges to the JKO functional Fn
τ as ε→ 0. As a consequence ρε converges narrowly

to the unique minimizer ρn+1 of Fn
τ as ε→ 0.

For ε > 0 the minimizer ρε is absolutely continuous, hence by the Brenier-McCann theorem
there exists a unique (forward) optimal plan πε = (T ε, id)#ρ

ε from ρn to ρε, induced by the
unique (backward) optimal map T ε from ρε to ρn = T ε#ρ

ε. Standard stability of optimal plans
[34, thm. 1.52] gives that πε ∗

⇀ πn+1 as ε → 0 for some optimal plan πn+1 ∈ Πopt(ρ
n, ρn+1).

The momentum mε, defined by duality as
ˆ
Ω

ξ(y) ·mε(dy) :=

¨
Ω×Ω

y − x

τ
· ξ(y)πε(dx,dy), ∀ ξ ∈ Cb(Ω)

d

therefore converges narrowly to mn+1 similarly defined by (2.1). For ε > 0, by-now fairly
standard arguments [34, chapter 8] give the Euler-Lagrange optimality condition for the ε-
problem in the form

mε(dy) =
y − T ε(y)

τ
ρε(dy) = −ρε∇ (log ρε + V ε) = −∇ρε − ρε∇V ε (2.4)

with a slight abuse of notations. We have moreover

J (mε, ρε) =

ˆ
Ω

|mε|2

ρε
=

ˆ
Ω

∣∣∣∣T ε(y)− y

τ

∣∣∣∣2 ρε(dy) = W2(ρε, ρn)

τ2
−−−→
ε→0

W2(ρn+1, ρn)

τ2
.

Since (ρε,mε)
∗
⇀ (ρn+1,mn+1) this gives, by lower semi-continuity of J ,

J (mn+1, ρn+1) ≤ lim inf
ε→0

J (mε, ρε) =
W2(ρn+1, ρn)

τ2
<∞.

In particular by standard properties of J we have |mn+1| ≪ ρn+1 = ωn+1 + γn+1 ∈ L1(Ω) +
L1(Γ), and this defines unambiguously the interior and boundary parts

mn+1 = mn+1 ¬
Ω +mn+1 ¬

Γ =: mn+1
Ω +mn+1

Γ .

Recall from Lemma 2.1 that ωn+1, γn+1 have W 1,p Sobolev regularity for some p > 1, and
observe that, owing to J (mn+1, ρn+1) <∞ and ρn+1 = ωn+1+γn+1, we have absolute continuity
mn+1

Ω ≪ LdΩ and mn+1
Γ ≪ Ld−1

∂Ω . We first claim that mn+1
Ω = −∇ωn+1LdΩ. To this end, note

that mn+1 has finite mass since

|mn+1| =
∣∣∣ lim
ε→0

mε
∣∣∣ ≤ lim inf

ε→0
|mε| = lim inf

ε→0

(ˆ
Ω

∣∣∣∣y − T ε(y)

τ

∣∣∣∣ ρε)

≤ lim inf
ε→0

(ˆ
Ω

∣∣∣∣T ε(y)− y

τ

∣∣∣∣2 ρε
) 1

2

= lim inf
ε→0

W(ρε, ρn)

τ
=

W(ρn+1, ρn)

τ
.

Take any test-function ξ ∈ C1
c (Ω)

d supported away from the boundary. Then
ˆ
Ω

ξ ·mn+1
Ω =

ˆ
Ω

ξ ·mn+1 = lim
ε→0

ˆ
Ω

ξ ·mε (2.4)
= − lim

ε→0

ˆ
Ω

ξ · (∇ρε + ρε∇V ε) = − lim
ε→0

ˆ
Ω

ξ · ∇ρε,

where the last equality holds because for ε small enough ∇V ε is supported in Γε where ξ vanishes
(being compactly supported away from the boundary). Integrating by parts gives

ˆ
Ω

ξ ·mn+1
Ω = − lim

ε→0

ˆ
Ω

ξ · ∇ρε = lim
ε→0

ˆ
Ω

div(ξ)ρε =

ˆ
Ω

div(ξ)ρn+1 =

ˆ
Ω

div(ξ) ωn+1,

where the last equality holds again because ξ is supported away from the boundary. Since mn+1
Ω

and ωn+1 are absolutely continuous this fully characterizes mn+1
Ω = −∇ωn+1LdΩ as claimed.
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For the more delicate boundary part let us decompose into tangential and normal components

mn+1
Γ = tn+1

Γ + nn+1
Γ .

We need to show
tn+1
Γ = −∇Γγ

n+1Ld−1
Γ .

Take a tangential field ξ ∈ C1(Γ)d and extend it to ζ ∈ C1(Ω)d such that ζ remains tangential
in an interior δ-neighborhood Γδ of Γ = ∂Ω, for a small δ > 0 fixed. We compute next

ˆ
Γ

ξ · mn+1
Γ +

ˆ
Ω

ζ · mn+1
Ω =

ˆ
Ω

ζ · mn+1 = lim
ε→0

ˆ
Ω

ζ · mε = − lim
ε→0

ˆ
Ω

ζ · (∇ρε + ρε∇V ε).

Now, for fixed δ and small enough ε, we have by construction ζ ·∇V ε = 0 inside Γε (where ∇V ε
is normal and ζ is tangential due to ε < δ), while ∇V ε vanishes identically outside of Γε. Hence
ζ · ∇V ε ≡ 0 in Ω, and since on the boundary ζ|∂Ω = ξ is tangential we can integrate by parts
the term

´
Ω
ζ · ∇ρε for any fixed ε > 0 to get

ˆ
Γ

ξ ·mn+1
Γ +

ˆ
Ω

ζ ·mn+1
Ω = − lim

ε→0

ˆ
Ω

ζ · ∇ρε = lim
ε→0

ˆ
Ω

div(ζ)ρε

=

ˆ
Ω

div(ζ)ρn+1 =

ˆ
Γ

div(ζ)γn+1 +

ˆ
Ω

div(ζ)ωn+1.

Because we just proved that mn+1
Ω = ∇ωn+1, and since ζ|∂Ω · ν = ξ · ν = 0 on the boundary, we

can cancel out
´
Ω
ζ ·mn+1

Ω = −
´
Ω
ζ · ∇ωn+1 =

´
Ω
div(ζ)ωn+1 in the previous equality and we

are left with ˆ
Γ

ξ ·mn+1
Γ =

ˆ
Γ

div(ζ)γn+1.

Since the extension ζ is actually tangential in a neighborhood of ∂Ω the full divergence div(ζ)|∂Ω
matches the intrinsic tangential divergence divΓ(ξ), hence for any tangential field ξ ∈ C1(Γ)

ˆ
Γ

ξ · tn+1
Γ =

ˆ
Γ

ξ ·mn+1
Γ =

ˆ
Γ

divΓ(ξ) γ
n+1.

Because Γ has no boundary this fully characterizes tn+1
Γ = −∇Γγ

n+1.
Finally, since we known now that −mn+1 = ∇ωn+1LdΩ+∇Γγ

n+1Ld−1
Γ +nn+1

Γ we get for free
that

I(ωn+1) + I(γn+1) =

ˆ
Ω

|∇ωn+1|2

ωn+1
+

ˆ
Γ

|∇Γγ
n+1|2

γn+1

≤
ˆ
Ω

|∇ωn+1|2

ωn+1
+

ˆ
Γ

|nn+1
Γ |2

γn+1
+

ˆ
Γ

|∇Γγ
n+1|2

γn+1

=

ˆ
Ω

|mn+1|2

ρn+1
= J (mn+1, ρn+1)

and the proof is complete.

Lemma 2.3. Given any ρn ∈ P(Ω) the unique minimizer ρn+1 defined in Lemma 2.1 satisfies:

• if ρn ≥ cµ for some positive constant c, then ρn+1 ≥ cµ;

• if ρn ≤ cµ for some positive constant c, then ρn+1 ≤ cµ.

Proof. We consider an approximation similar to the one presented in Lemma 2.2. Yet, not only
we want to regularize µ into µε, but we also need to modify ρn into a new measure ρn,ε so that
we preserve the inequality ρn,ε ≥ cµε (resp. ρn,ε ≤ cµε). To do so, we can simply apply the
heat semigroup in the domain Ω to both µ and ρn. Note that this construction was not used
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in Lemma 2.2 because we needed a certain structure in the approximation, and in particular
we wanted to guarantee µε = e−Vε for a potential Vε which is function of the distance to ∂Ω,
constant far enough from ∂Ω, which does not happen for the heat flow. On the other hand, we
did not need in Lemma 2.2 to modify ρn.

We then observe that we can apply [21, Lemma 2.4] which concerns one step of the JKO
scheme for a functional of the form ρ 7→

´
F ( dρdµ )dµ. We apply this to the approximated JKO

functional where µ is replaced by µε because [21] did not explicitly mention the case where µ
is singular. We obtain the inequalities ρε ≥ cµε (resp., ρε ≤ cµε) and we can take the limit
ε → 0 (the ε-JKO functional is easily checked to Γ-converge, hence the minimizers converge as
well).

In order to retrieve later on a weak solution in the limit τ → 0 we define three very classical
time interpolants, based on the discrete solutions (ρn)n≥0. Writing for simplicity tn = nτ , the
piecewise-constant interpolation ρτ : [0,∞) → P(Ω) is

ρτt := ρn+1, for t ∈ (tn, tn+1]. (2.5)

The piecewise geodesic interpolation ρτ : [0,∞) → P(Ω) is defined as

ρτt :=

(
tn+1 − t

τ
x+

t− tn

τ
y

)
#π

n+1, for t ∈ [tn, tn+1], (2.6)

where πn+1 ∈ Π(ρn, ρn+1) is the optimal plan from Lemma 2.2. Finally, we also define
De Giorgi’s variational interpolant ρ̃τ : [0,∞) → P(Ω) as

ρ̃τt := Argmin
ρ∈P(Ω)

{
1

2r
W2(ρ, ρn) + E(ρ)

}
for t = tn + r ∈ (tn, tn+1], r ∈ (0, τ ]. (2.7)

This is well-defined: Arguing exactly as in Lemma 2.1 there is a unique minimizer for all r > 0.
Note that for t = tn+1 we have r = τ , in which case ρ̃τ (tn+1) = ρn+1 is nothing but the next
JKO step. Standard properties of the Moreau-Yosida regularization [2, lemma 3.1.2] guarantee
that ρ̃τt → ρn as t ↘ tn ⇔ r ↘ 0 in (2.7), thus ρ̃τt indeed interpolates continuously between
successive steps ρn, ρn+1 of the JKO minimizing movement. Note that by definition all three
interpolants also match at discrete times, i-e ρτ (tn) = ρτ (tn) = ρ̃τ (tn) = ρn. Moreover, since
ρτ is piecewise geodesic we have that the metric speed

|ρ̇τt |2 = cst =
W2(ρn, ρn+1)

τ2
for t ∈ [tn, tn+1].

Our last a-priori estimate is completely standard for minimizing movements in metric spaces
and is just a discrete Energy Dissipation Inequality. Note that this involves both the geodesic
interpolation ρτ and De Giorgi’s interpolant ρ̃τ .

Lemma 2.4. For any τ > 0 and tN = Nτ , N ∈ N, there holds

E
(
ρτ (tN )

)
+

ˆ tN

0

(
1

2
|ρ̇τt |

2
+

1

2
|∂E|2 (ρ̃τt )

)
dt ≤ E (ρ0) . (2.8)

In particular since E ≥ 0 one has

sup
τ→0

ˆ ∞

0

(
1

2
|ρ̇τt |

2
+

1

2
|∂E|2 (ρ̃τt )

)
dt ≤ E(ρ0) < +∞. (2.9)

Proof. For fixed n ∈ N, standard properties of the Moreau-Yosida approximation give the one-
step dissipation estimate

H(ρn+1) +
W2(ρn, ρn+1)

2τ
+

1

2

ˆ tn+1

tn
|∂E|2 (ρ̃τt )dt ≤ E(ρn),

17



see e.g. [32, lemma 7.5 and eq. (7.16)] or [2, theorem 3.1.4 with lemma 3.1.3]. Recall that
by definition ρτ is the geodesic interpolation and therefore has constant speed |ρ̇τt |2 = cst =
W2(ρn,ρn+1)

τ2 . Summing the previous inequality from n = 0 to n = N − 1, we get a telescopic
sum for the E

(
ρn+1

)
− E (ρn) term with by definition ρN = ρτ (tN ) and ρ0 = ρ0, and (2.8)

follows.

3 Convergence to a dissipative weak solution
In this section we fully exploit the discrete estimates from Section 2 in order to prove our main
result. For the ease of exposition we split the proof into separate statements. Our first result is
a rather soft and generic convergence statement

Proposition 3.1. There exists a discrete sequence τ → 0 (not relabeled for simplicity) and a
continuous curve ρ : [0,∞) → P(Ω) with ρ(0) = ρ0 such that

1. the interpolants ρτ , ρ̃τ , ρτ converge locally uniformly towards the same limit ρ

sup
t∈[0,T ]

[
W(ρt, ρ

τ
t ) +W(ρt, ρ

τ
t ) +W(ρt, ρ̃

τ
t )
]
−−−→
τ→0

0

in any finite time interval [0, T ].

2. we have the Energy Dissipation Inequality

E(ρT ) +
ˆ T

0

(
1

2
|ρ̇t|2 +

1

2
D(ρt)

)
dt ≤ E(ρ0), ∀T > 0. (3.1)

Proof. First, owing to the Prokhorov theorem, P(Ω) is relatively compact for the narrow conver-
gence. Since in bounded domains the Wasserstein distance metrizes the narrow convergence [38,
thm 6.9] we have that {ρτt }τ>0 lies in a fixed W-relatively compact set for any fixed t ≥ 0. By
(2.9) we also have sup

τ→0

´ T
0
|ρ̇τt |2dt < +∞ for any fixed T > 0. In particular W(ρτt , ρ

τ
s ) ≤ CT |t−s|

1
2

in any finite interval. By the Ascoli-Arzelá theorem there is a discrete sequence such that ρτ
converges W-uniformly to a limit curve ρ. By diagonal extraction if needed we can assume that
the limit does not depend on the finite horizon T > 0, hence ρτ → ρ locally uniformly.

Fix now any t ≥ 0, and let n = ⌊t/τ⌋ such that t = tn + r ∈ [tn, tn+1) for some r ∈ [0, τ).
Testing ρ = ρn as a competitor in (2.7) and recalling that E(ρ̃τt ) ≥ 0, we get the rough bound

1

2r
W2(ρ̃τt , ρ

n) ≤ E(ρ̃τt ) +
1

2r
W2(ρ̃τt , ρ

n) ≤ E(ρn),

so that
W2(ρ̃τt , ρ

n) ≤ 2rE(ρn) ≤ 2τE(ρ0).

Similarly testing ρ = ρn in (1.6), and because ρτ interpolates geodesically between ρn, ρn+1, one
gets

W2(ρτt , ρ
n) ≤ W2(ρn+1, ρn) ≤ 2τE(ρn) ≤ 2τE(ρ0).

By triangular inequality we get

W(ρ̃τt , ρ
τ
t ) ≤ W(ρ̃τt , ρ

n) +W(ρn, ρτt ) ≤ 2
√

2τE(ρ0) → 0

and therefore ρ̃τ also converges uniformly to the same limit ρ as ρτ . For the same reason

W(ρτt , ρ
τ
t ) = W(ρn+1, ρτt ) ≤ W(ρn+1, ρn) ≤

√
2τE(ρ0) → 0

and thus ρτ also converges uniformly to ρ. This common limit trivially satisfies the initial
condition in the sense that ρ(0) = lim ρτ (0) = lim ρ0 = ρ0.
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Finally let us turn into the dissipation inequality (3.1). For fixed T > 0 let N = ⌊T/τ⌋ and
tN = Nτ , so that T ∈ [tN , tN+1). By continuity of t 7→ ρt and arguing exactly as before we
have W(ρT , ρ

τ
tN+1) ≤ W(ρT , ρ

τ
T ) +W(ρτT , ρ

τ
tN+1) → 0 and therefore by lower semi-continuity

E(ρT ) ≤ lim inf
τ→0

E(ρτtN+1). (3.2)

For the dissipation terms, we note first from T ≤ tN+1 and D ≤ |∂E| in Theorem 1 that

ˆ T

0

(
1

2
|ρ̇τt |

2
+

1

2
D(ρ̃τt )

)
dt ≤

ˆ tN+1

0

(
1

2
|ρ̇τt |

2
+

1

2
|∂E|2 (ρ̃τt )

)
dt

simply because T ≤ tN+1. By lower semicontinuity of theH1 action ρ 7→
´
|ρ̇t|2dt w.r.t. uniform

convergence (as a supremum of continuous functions) we have that

ˆ T

0

|ρ̇t|2dt ≤ lim inf
τ→0

ˆ T

0

|ρ̇τt |2dt ≤ lim inf
τ→0

ˆ tN+1

0

|ρ̇τt |2dt. (3.3)

By Fatou’s lemma and the lower semicontinuity of D (Theorem 1) we get

ˆ T

0

D(ρt)dt ≤
ˆ T

0

lim inf
τ→0

D(ρτt )dt ≤ lim inf
τ→0

ˆ T

0

D(ρτt )dt ≤ lim inf
τ→0

ˆ tN+1

0

|∂E|2(ρτt )dt (3.4)

Gathering (3.2)(3.3)(3.4), we finally retrieve

E(ρT ) +
ˆ T

0

(
1

2
|ρ̇t|2 +

1

2
D(ρt)

)
dt

≤ lim inf
τ→0

E(ρτtN+1) +
1

2
lim inf
τ→0

ˆ tN+1

0

|ρ̇τt |2dt+
1

2
lim inf
τ→0

ˆ tN+1

0

|∂E|2(ρτt )dt

≤ lim inf
τ→0

{
E(ρτtN+1) +

ˆ tN+1

0

(
1

2
|ρ̇τt |2dt+

1

2
|∂E|2(ρτt )

)
dt

}
(2.8)
≤ E(ρ0)

and the proof is complete.

So far this proof of convergence was purely abstract and relied solely on soft and fairly
general metric considerations. The dissipation estimate (3.1), however, was retrieved in terms
of the explicit functional D(ρ) = I(ω) + I(γ) rather than the less tractable slope |∂E|(ρ). Since
we could not prove that D = |∂E|2 in Theorem 1, and because we could not establish a general
upper chain rule, this is where metric arguments become limited. In order to retrieve the PDE
we thus have to resort to more direct arguments, mainly based on the Euler-Lagrange optimality
condition from Lemma 2.2.

For technical reasons we first need to improve the narrow convergence ρτt
∗
⇀ ρt into a separate

convergence of the interior and boundary parts.

Lemma 3.2. For the same discrete sequence τ → 0 as in Proposition 3.1 there holds

ωτt ⇀ ωt in L1(Ω) and γτt ⇀ γt in L1(Γ) for all t ≥ 0,

Proof. Fix any t ≥ 0. From the entropy bounds H(ωτt )+H(γτt ) = E(ρ̄τt ) ≤ E(ρ0) in (2.8), for any
subsequence τk there is a sub-subsequence τkl such that ωτkl

t ⇀ u and γτkl
t ⇀ v in L1(Ω), L1(Γ)

as l → ∞, for some limits u, v. But since we already know that ρτt
∗
⇀ ρt this shows that any

such limits are necessarily u = ρt
¬
Ω = ωt and v = ρt

¬
∂Ω = γt. This classically implies that

the whole sequence converges and concludes the proof.
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Proposition 3.3. The curve ρ = ω + γ from Proposition 3.1 solves
∂tω = ∆ω in Ω

ω = γ on ∂Ω

∂tγ = ∆Γγ − ∂νω in ∂Ω

in the sense that ωt|∂Ω = γt for a.e. t ≥ 0, ω ∈ L1
loc([0,∞);W 1,p(Ω)) and γ ∈ L1

loc([0,∞);W 1,q(Γ))
with p, q > 1 given by (1.9) (with respectively d ≥ 2 and d− 1 ≥ 1), and
ˆ
Ω

φρt1−
ˆ
Ω

φρt0+

ˆ t1

t0

ˆ
Ω

∇φ·∇ω+
ˆ t1

t0

ˆ
Γ

∇Γφ·∇Γγ = 0 ∀φ ∈ C1(Ω), ∀ 0 ≤ t0 < t1 <∞.

Proof. We first observe from the energy dissipation (3.1) that
´ T
0
D(ρt)dt <∞. By Theorem 1

this immediately implies ωt|∂Ω = γt for a.e. t ≥ 0 and, combined with (1.9), also entails the
claimed Sobolev regularity for ω, γ.

Let us now focus on the weak formulation of the PDE. Recalling that the piecewise geodesic
interpolation ρτt is defined by (2.6), we naturally define the corresponding momentum mτ

t ∈
M(Ω)d as follows. Let πn+1 ∈ Π(ρn, ρn+1) be the optimal plan from Lemma 2.2. For x, y ∈ Ω
we denote by

zxyt :=
tn+1 − t

τ
x+

t− tn

τ
y, t ∈ [tn, tn+1]

the time-τ geodesic from x to y. Setting
ˆ
Ω

ξ(z) ·mτ
t (dz) :=

¨
Ω×Ω

y − x

τ
· ξ (zxyt )πn(dx,dy), ∀ ξ ∈ Cb(Ω)

d

and mτ := mτ
t dt ∈ Md

(
[0,∞)× Ω

)
, a classical computation shows that (ρτ ,mτ ) solve the

continuity equation ∂tρτ + divmτ = 0 on (0,∞)× Ω with no flux boundary conditions, i.e.
ˆ
Ω

φρτt1 −
ˆ
Ω

φρτt0 +

ˆ t1

t0

ˆ
Ω

∇φ ·mτ = 0 ∀φ ∈ C1(Ω), ∀ 0 ≤ t0 < t1. (3.5)

Moreover for any fixed t ∈ [tn, tn+1] we have∣∣∣∣ˆ
Ω

ξ(z) ·mτ
t (dz)

∣∣∣∣ ≤ (¨
Ω×Ω

∣∣∣∣y − x

τ

∣∣∣∣πn(dx, dy)) ∥ξ∥L∞(Ω)

≤
(¨

Ω×Ω

|y − x|2

τ2
πn(dx,dy)

) 1
2

∥ξ∥L∞(Ω)

=
W(ρn, ρn+1)

τ
∥ξ∥L∞(Ω) = |ρ̇τt | ∥ξ∥L∞(Ω).

As a consequence in any finite time interval QT = [0, T ]× Ω we have

|mτ | (QT ) =
ˆ T

0

|mτ
t | (Ω) dt ≤

ˆ T

0

|ρ̇τt | dt ≤
√
T

(ˆ T

0

|ρ̇τt |
2
dt

) 1
2

≤ CT

uniformly in τ > 0, where the last inequality follows from (2.9). This gives compactnessmτ ∗
⇀m

narrowly as τ → 0 in any finite time interval, for some limit m. Moreover the weak formulation
(3.5) for ∂tρτ + divmτ = 0 immediately passes to the limit and (ρ,m) therefore also solve the
same continuity equation.

Similarly, if mn+1 is the discrete momentum from Lemma 2.2, it is easy to see that the
piecewise constant momentum mτ = mτ

t dt with

mτ
t := mn+1 for t ∈ (tn, tn+1]
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satisfies |mτ |(QT ) ≤ CT and therefore also converges to some m. Exactly as in [34, lemma
8.9] we claim that m = m. Indeed, fix any Lipschitz function ξ : Ω → Rd and t ∈ [0, T ]. For
t ∈ (tn, tn+1] the time-τ geodesic zxyt between x, y satisfies of course |zxyt − y| ≤ |x − y|, hence
by definition of m and m∣∣∣∣ˆ

Ω

ξ · [mτ
t −mτ

t ]

∣∣∣∣ = ∣∣∣∣¨
Ω×Ω

y − x

τ
· [ξ(zxyt )− ξ(y)]πn+1(dx,dy)

∣∣∣∣
≤ Lip(ξ)

¨
Ω×Ω

|y − x|2

τ
πn+1(dx, dy)

= Lip(ξ)
W2(ρn, ρn+1)

τ
= τ Lip(ξ)|ρ̇τt |2.

As a consequence for any Lipschitz function ζ : [0, T ]× Ω → Rd we have∣∣∣∣∣
ˆ T

0

ˆ
Ω

ζ · [mτ −mτ ]

∣∣∣∣∣ ≤ τ Lip(ζ)

ˆ T

0

|ρ̇τt |2 dt ≤ Cτ → 0,

and since mτ ∗
⇀m,mτ ∗

⇀m the claim follows.
Finally, let us show that m = −∇ω · LdΩ − ∇Γγ · Ld−1

Γ . For expediency we denote mΩ =
m

¬
[0,∞)×Ω and mΓ = m

¬
[0,∞)×Ω. We first deal with the interior part. By Lemma 2.2 we

have, for fixed 0 ≤ t0 < t1 and any ξ ∈ C1
c (Ω) compactly supported away from the boundary,

ˆ t1

t0

ˆ
Ω

ξ ·mΩ =

ˆ t1

t0

ˆ
Ω

ξ ·m = lim
τ→0

ˆ t1

t0

ˆ
Ω

ξ ·mτ

= lim
τ→0

ˆ t1

t0

ˆ
Ω

ξ ·mτ
Ω

(2.2)
= − lim

τ→0

ˆ t1

t0

ˆ
Ω

ξ · ∇ωτ

= lim
τ→0

ˆ t1

t0

ˆ
Ω

div(ξ)ωτ =

ˆ t1

t0

ˆ
Ω

div(ξ)ω,

where the last equality is a straightforward application of Lebesgue’s dominated convergence
theorem together with the pointwise weak L1 convergence ωτt ⇀ ωt for all t ≥ 0 from Lemma 3.2
(and the bound |

´
Ω
div(ξ)ωτt | ≤ ∥div ξ∥∞ uniformly in t). Since t0 < t1 and ξ ∈ C1

c (Ω) were
arbitrary this identifies the interior part mΩ = −∇ω at least in the distributional sense.

In order to identify now the boundary contribution mΓ = −∇Γγ, observe first that ∂tρ +
divm = ∂tρ + divm = 0 with no-flux boundary condition. One should thus expect mΓ to
be tangential, otherwise mass would either exit or enter the domain through Γ. However the
no-flux condition is enforced only in a weak form, similar to (3.5) with ρ,m in place of ρτ ,mτ .
The argument therefore needs some care and for simplicity we defer it to Proposition A.2. Thus
taking for granted that mΓ is tangential, we only need to show equality mΓ = −∇Γγ in duality
with tangential vector-fields. To this end take any such tangential ξ ∈ C1(Γ), and extend it to
ζ ∈ C1(Ω). We have now

ˆ t1

t0

ˆ
Γ

ξ ·mΓ =

ˆ t1

t0

ˆ
Γ

ζ|Γ ·mΓ =

ˆ t1

t0

ˆ
Ω

ζ ·m−
ˆ t1

t0

ˆ
Ω

ζ ·mΩ

= lim
τ→0

ˆ t1

t0

ˆ
Ω

ζ ·mτ −
ˆ t1

t0

ˆ
Ω

ζ · ∇ω = lim
τ→0

ˆ t1

t0

ˆ
Ω

ζ ·mτ +

ˆ t1

t0

ˆ
Ω

div(ζ)ω

= lim
τ→0

{ˆ t1

t0

ˆ
Ω

ζ ·mτ +

ˆ t1

t0

ˆ
Ω

div(ζ)ωτ
}

(2.2)
= lim

τ→0

{
−
ˆ t1

t0

ˆ
Ω

ζ ·
[
∇ωτLdΩ +∇Γγ

τLd−1
Γ + nτΓ

]
+

ˆ t1

t0

ˆ
Ω

div(ζ)ωτ
}

= − lim
τ→0

ˆ t1

t0

ˆ
Γ

ξ · ∇Γγ
τ = lim

τ→0

ˆ t1

t0

ˆ
Γ

divΓ(ξ)γ
τ =

ˆ t1

t0

ˆ
Γ

divΓ(ξ)γ.
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The last equality follows again from the pointwise L1 convergence γτt ⇀ γt in L1(Γ) for all t ≥ 0
from Lemma 3.2 and Lebesgue’s dominated convergence. Here we also heavily exploited that
ζ|Γ = ξ is tangential on the boundary in order to suitably integrate by parts in both directions,
as well as to disregard the normal part ζ · nτΓ = 0 of mτ along the boundary. This identifies
mΓ = −∇Γγ in the distributional sense and the proof is complete.

In order to fully establish our main result we are still missing the long-time convergence (1.7)
and the propagation of initial pointwise bounds. Observe first that, since µ̄ = 1

µ(Ω)
µ is a simple

renormalization to unit mass, our driving entropy is just a vertical shift E(ρ) = H(ρ |µ) =
H(ρ | µ̄) + Cµ and the Energy dissipation (3.1) holds with H(ρT | µ̄) and H(ρ0 | µ̄) in place
of E(ρT ), E(ρ0). Moreover, Proposition 3.3 implies in particular that ρ solves the continuity
equation ∂tρ + divm = 0 with driving momentum mt = ∇ωt · LdΩ + ∇Γγt · Ld−1

Γ . By stan-
dard characterization of W2-absolutely continuous curves [2] we see that 1

2 |ρ̇t|
2 ≤ J (mt, ρt) =

1
2

´
Ω

|mt|2
ρt

= 1
2

´
Ω

|∇ωt|2
ωt

+ 1
2

´
Γ

|∇Γγt|2
γt

= 1
2D(ρt) for a.e. t. As a consequence we have

H(ρT | µ̄) +
ˆ T

0

D(ρt)dt ≤ H(ρ0 | µ̄), ∀T ≥ 0.

We exploit next a boundary trace Logarithmic-Sobolev inequality from [6, section 4] , which can
be phrased in our precise framework as

H(ρ | µ̄) ≤ 1

2λ
D(ρ), ∀ ρ ∈ P(Ω)

for some λ ≡ λ(Ω) > 0. This shows that

H(ρT | µ̄) + 2λ

ˆ T

0

H(ρt | µ̄)dt ≤ H(ρ0 | µ̄), ∀T ≥ 0

and immediately entails the first exponential decay in (1.7) by Grönwall’s lemma. The decay
in total variation is as usual a consequence of the general Csiszár-Kullback-Pinsker inequality
|a − b|TV ≤

√
1
2H(a | b) for arbitrary probability distributions a, b. Finally, the propagation of

pointwise bounds ρ0 ≤ cµ (resp. ρ0 ≥ cµ) is an easy consequence of Lemma 2.3, iterated along
the JKO scheme.

A Appendix
Proposition A.1. Let X be a smooth, compact Riemannian manifold, possibly with (smooth)
boundary. Let H(ρ) =

´
X ρ log ρ and I(ρ) =

´
X |∇ log ρ|2ρ be the entropy and Fisher information

(relatively to the volume measure dx), and denote WX the Wasserstein distance with quadratic
cost c(x, y) = d2X (x, y). For any ρ ∈ P(X ) let (ρt)t≥0 be the heat flow started from ρ (with
no-flux boundary condition on ∂X if needed). Then

1

2
|∂H|2(ρ) ≥ lim inf

t→0

1

t

[
H(ρ)−H(ρt)−

1

2t
W2

X (ρ, ρt)

]
≥ 1

2
I(ρ). (A.1)

Equality is actually expected to hold: At least formally this is clear because the heat flow is
nothing but the Wasserstein gradient flow of the entropy [22]

dρt
dt

= − gradWX
H(ρt) (A.2)
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and therefore

1

t

[
H(ρ)−H(ρt)−

1

2t
W2

X (ρ, ρt)

]
=

H(ρ)−H(ρt)

t
− 1

2

(
WX (ρ, ρt)

t

)2

∼
t→0

− d

dt
H(ρt)

∣∣∣∣
t=0

− 1

2

∥∥∥∥dρtdt
∥∥∥∥2
t=0

= −
〈
gradWX

H(ρ),
dρt
dt

∣∣∣∣
t=0

〉
− 1

2

∥∥∥∥dρtdt
∥∥∥∥2
t=0

(A.2)
=

∥∥gradWX
H(ρ)

∥∥2 − 1

2

∥∥gradWX
H(ρ)

∥∥2
=

1

2

∥∥gradWX
H(ρ)

∥∥2 =
1

2
|∂H|2(ρ).

We wish to stress that nothing is really new or surprising here, but since we could not find
anywhere in the literature a precise statement fitting our purpose we opted for giving a self-
contained proof. This generic result is well documented in the case of λ-convex functionals, in
particular equality in (A.1) is proved in [2, theorem 10.4.17] over the whole space in (possibly
infinite-dimensional) Hilbert settings. For our current choice of the entropy H this convexity
is well-known to be related to Ricci curvature lower bounds on the underlying manifold. Note
that, owing to our assumption on X , we always have such a uniform bound Ricx ≥ λ for some
λ ∈ R. The point is that the statement is independent of the precise value of this lower bound
and requires no curvature assumption on the boundary, if any. This should be expected since all
quantities in (A.1) are first order in nature, while curvature is a second order notion. However,
this is more subtle than meets the eye. For, when X = Ω ⊂ Rd is a smooth, banana-shaped
domain, the geodesic displacement convexity [28] of the entropy may completely fail (H may not
be λ-convex for any λ ∈ R, even very negative). In other words, in the presence of a negatively
curved boundary, the connection between Ricci lower bounds and a modulus of displacement
convexity is compromised. As a consequence the characterization of the metric slope in [2] does
not apply here due to the possible lack of convexity. In fact this should not be a fundamental
obstruction: displacement convexity is a global notion, while as already discussed our statement
is local in nature (and in fact our proof below will solely rely on local PDE arguments). Another
possible interpretation is as follows: In a purely metric context, λ-convexity can be seen as a
quantitative regularity for the driving functional, and may therefore prove to be key for the
abstract theory. However we are dealing here with the explicit heat flow: the latter of course
enjoys many useful properties such as regularizing effects, which in turn can be exploited in this
particular context to compensate for the lack of ”metric regularity“ (the λ-convexity). One may
also hope to apply [3, thm. 7.6], but this requires checking a priori the lower semi-continuity of
the (relaxed) metric slope, which is hard to achieve in the absence of any explicit representation
(such as |∂H|2 = I, which is precisely at stake here.)

Proof. The first inequality in (A.1) is trivial owing to the duality formula for the local slope [2,
lemma 3.1.5], which holds in arbitrary metric spaces and reads here

1

2
|∂H|2(ρ) = lim sup

τ↓0

1

τ
sup

ν∈P(X )

{
H(ρ)−H(ν)− 1

2τ
W2

X (ρ, ν)

}
.

Thus we only focus on the second inequality.
Note first that, by usual properties of the heat flow, ρt is bounded away from zero and

C∞ smooth (up to the boundary if ∂X ̸= ∅) for any t > 0. The following computations and
integration by parts are therefore completely legitimate as long as we step away from t = 0.
Since Dom(|∂H|) ⊂ DomH, we can assume that H(ρ) < ∞ and ρ = ρ(y)dy has density
w.r.t. the volume measure dy. Let Kt(x, y) be the relevant heat kernel. Owing to the integral
representation ρt(x) =

´
X Kt(x, y)ρ(y)dy and the convexity of z 7→ H(z) = z log z we have by
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Jensen’s inequality

H(ρt) =

ˆ
X
H(ρt(x))dx ≤

ˆ
X

(ˆ
X
H(ρ(y))Kt(x, y)dy

)
dx

=

ˆ
X
H(ρ(y))

(ˆ
X
Kt(x, y)dx

)
dy =

ˆ
X
H(ρ(y))dy = H(ρ).

Moreover by continuity ρt → ρ and lower semi-continuity of H we also have H(ρ) ≤ lim inf
t→0

H(ρt),
hence in particular

H(ρt) → H(ρ) < +∞ as t ↓ 0.

Using the identity ∆ρ = div(ρ∇ log ρ) (valid at least for smooth positive ρ), a very classical
computation gives, for t > 0,

d

dt
H(ρt) =

d

dt

ˆ
X
ρt log ρt =

ˆ
X
(log ρt + 1)∂tρt =

ˆ
X
(log ρt + 1)∆ρt

=

ˆ
X
(log ρt + 1) div(ρt∇ log ρt) = −

ˆ
X
|∇ log ρt|2ρt = −I(ρt).

Integrating from t0 > 0 to t > t0 and taking t0 → 0 with H(ρt0) → H(ρ), we see that t 7→ I(ρt)
is integrable up to t0 = 0 with

H(ρ)−H(ρt)

t
= lim
t0↓0

H(ρt0)−H(ρt)

t
= lim
t0↓0

1

t

ˆ t

t0

I(ρs)ds =
1

t

ˆ t

0

I(ρs)ds. (A.3)

In order to estimate the squared Wasserstein distance, we observe that ∂sρs = ∆ρs = div(ρs∇ log ρs),
hence (ρs, vs) = (ρs,−∇ log ρs) solves the continuity equation

∂sρs + div(ρsvs) = 0 with
ˆ t

0

ˆ
X
|vs|2ρsds =

ˆ t

0

I(ρs)ds <∞.

By the Benamou-Brenier formula [4, 26] we get

W2
X (ρ, ρt)

t2
≤ 1

t

ˆ t

0

|vs|2ρs =
1

t

ˆ t

0

I(ρs)ds (A.4)

Gathering (A.3)(A.4) we get altogether

∀ t > 0 :
1

t

[
H(ρ)−H(ρt)−

1

2t
W2

X (ρ, ρt)

]
≥ 1

2t

ˆ t

0

I(ρs)ds =
1

2

ˆ 1

0

I(ρtu)du.

Fatou’s lemma finally leads to

lim inf
t↓0

1

t

[
H(ρ)−H(ρt)−

1

2t
W2

X (ρ, ρt)

]
≥ lim inf

t↓0

1

2

ˆ 1

0

I(ρtu)du

≥ 1

2

ˆ 1

0

lim inf
t↓0

I(ρtu)du ≥ 1

2

ˆ 1

0

I(ρ)du =
1

2
I(ρ),

where the last inequality follows by lower semi-continuity of I combined with continuity of
the heat flow ρtu → ρ0 = ρ as t ↓ 0 for a.e. u ∈ (0, 1). Note that this also covers the case
I(ρ) = +∞.

Proposition A.2. Let Ω ⊂ Rd be a smooth domain. Assume that (ρ,m) solves the continuity
equation ∂tρ+divm = 0 in (0, T )×Ω with no-flux boundary condition on ∂Ω, in the sense that

ˆ
Ω

ϕρt1 −
ˆ
Ω

ϕρt0 =

ˆ t1

t0

ˆ
Ω

∇ϕ ·m, ∀ 0 ≤ t0 < t1 ≤ T and ϕ ∈ C1(Ω) (A.5)

with t 7→ ρt being narrowly continuous. Then mΓ := m
¬
Γ is tangential.
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t1

t0
η

Kδ

K̃δ

Γη

Figure 3: cylindrical exhaustion (t0, t1)× Γη for ωt0 , ωt1 , |mΩ|

This simply means that the no-flux boundary condition m · ν = 0, although encoded in a
weak meaning in (A.5), can still be recovered in a strong sense for the boundary momentum
mΓ · ν = 0.

Proof. For notational convenience we write mΩ := m
¬
Ω,mΓ := m

¬
Γ with m = mΩ +mΓ, and

also decompose mΓ into tangential and normal components mΓ = tΓ + nΓ. We need to show
that nΓ = 0.

Fix 0 ≤ t0 < t1 ≤ T and take a small δ > 0. Being Ω a Polish space, the measure ωt0 ∈
M+(Ω) is inner regular and therefore here exists a compact set Kδ ⊂⊂ Ω with ωt0(Ω \Kδ) ≤ δ.
Similarly, we can assume that ωt1(Ω\Kδ) ≤ δ at time t = t1, and Kδ is at positive distance from
∂Ω. Let now Q = (t0, t1) × Ω. As before, the measure |mΩ| is inner regular and there exists a
compact set K̃δ ⊂⊂ Q such that |mΩ|(Q \ K̃δ) ≤ δ. By compactness K̃δ is at positive distance
from ∂Q =

(
[t0, t1]× ∂Ω

)
∪
(
{t0} × Ω

)
∪
(
{t1} × Ω

)
. In particular there exists η > 0 such that

the smooth interior η-neighborhood Γη = {x ∈ Ω : d(x, ∂Ω) < η} of Γ satisfies Γη ⊂ Ω \Kδ and
(t0, t1)× Γη ⊂ Q \ K̃δ – see Figure 3. Whence

ωt0(Γη) ≤ δ, ωt1(Γη) ≤ δ, |mΩ|((t0, t1)× Γη) ≤ δ.

Pick an arbitrary test-function ψ ∈ C(Γ). Since Γη is smooth, for any small η we can find a
function ϕη(x) ∈ C1(Ω) such that

(i) ϕη|∂Ω = 0

(ii) ∂νϕ
η|∂Ω = ψ

(iii) ϕη is supported in Γη

(iv) we have the bounds ∥ϕη∥∞ + ∥∇ϕη∥ ≤ C = Cψ uniformly in η → 0.

Roughly speaking, ϕη is a sort of (possibly signed) bump function on the annular neighborhood
Γη of Γ, vanishing on both the inner and outer boundaries, and having prescribed normal
growth ∂νϕη = ψ across the outer boundary Γ = ∂Ω. We want to test now ϕ = ϕη in the weak
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formulation of the continuity equation. Because ϕη vanishes on ∂Ω and outside of Γη ⊂ Ω we
see that the left-hand side of (A.5)∣∣∣∣ˆ

Ω

ϕηρt1 −
ˆ
Ω

ϕηρt0

∣∣∣∣ =
∣∣∣∣∣
ˆ
Γη

ϕηωt1 −
ˆ
Γη

ϕηωt0

∣∣∣∣∣ ≤ ∥ϕη∥∞ (ωt0(Γη) + ωt1(Γη)) ≤ 2Cψδ → 0

as δ → 0. In the right-hand side, observe that by construction ∇ϕη is normal on Γ with slope
∂νϕ

η = ψ. Hence the tangential contribution is identically zero, and writing nΓ = ν(x) · nΓ for
some scalar measure nΓ ∈ M((0, T )× Γ) we get

ˆ t1

t0

ˆ
Ω

∇ϕη ·m =

ˆ t1

t0

ˆ
Ω

∇ϕη ·mΩ +

ˆ t1

t0

ˆ
Γ

∇ϕη · tΓ +

ˆ t1

t0

ˆ
Γ

∇ϕη · nΓ

=

ˆ t1

t0

ˆ
Ω

∇ϕη ·mΩ + 0 +

ˆ t1

t0

ˆ
Γ

∂νϕ
η nΓ =

ˆ t1

t0

ˆ
Ω

∇ϕη ·mΩ +

ˆ t1

t0

ˆ
Γ

ψ nΓ.

As before the first term∣∣∣∣ˆ t1

t1

ˆ
Ω

∇ϕη ·mΩ

∣∣∣∣ =
∣∣∣∣∣
ˆ t1

t1

ˆ
Γη

∇ϕη ·mΩ

∣∣∣∣∣ ≤ ∥∇ϕη∥∞|mΩ|((t0, t1)× Γη) ≤ Cψδ → 0.

Taking thus δ → 0 in
´
Ω
ϕηρt1 −

´
Ω
ϕηρt0 =

´ t1
t0

´
Ω
∇ϕη ·mtdt we obtain

0 =

ˆ t1

t0

ˆ
Γ

ψ nΓ

for all ψ ∈ C(Γ) and t0 < t1. Whence nΓ = ν(x) · nΓ ≡ 0 and the proof is complete.

Lemma A.3. In Ω = Rd+ let us write x = (x1, x
′) ∈ R+ × Rd−1. Fix p > 1 and take ε, δ → 0

with εp−1 = O(δd−1). For x0 = (0, x′0) ∈ ∂Ω let Ωε,δ = {x = (x1, x
′) ∈ (0, ε)× Bd−1

δ (x′0)} ⊂ Ω.
Then for any u ∈W 1,p

loc (Ω) and a.e. x′0 ∈ Rd−1 there holds
 

Ωε,δ

|u(x)− u(x0)|p =
1

|Ωε,δ|

ˆ

Ωε,δ

|u(x)− u(x0)|p → 0 as ε, δ → 0.

Here by u(x0) we mean [tru](x′0), the boundary trace of u ∈ W 1,p evaluated at a point x′0
such that x0 = (0, x′0), which indeed makes sense for a.e. x′0 ∈ Rd−1. This is nothing but a
Lebesgue differentiation for boundary points. Compared to standard versions, such as [18, thm.
5.7], it is worth stressing that the shrinking sets Ωε,δ in our statement may be very thin in the
x1 direction and can have unbounded eccentricity (a typical requirement for standard Lebesgue
differentiation). We will typically use this with ε much smaller than δ, i-e averaging on very
thin boundary layers.

Proof. For simplicity let us denote v(x′) = tru(x′) = u(0, x′) and u0 := u(x0) = v(x′0) =: v0.
Assume first that u ∈ C1(Ω). Then for x = (x1, x

′) ∈ Ωε,δ we have by Jensen’s inequality

|u(x1, x′)−v(x′)|p =
∣∣∣∣ˆ x1

0

∂x1
u(z, x′)dz

∣∣∣∣p ≤ xp−1
1

ˆ x1

0

|∂x1
u(z, x′)|pdz ≤ xp−1

1

ˆ ε

0

|∇u(z, x′)|pdz.

Integrating in x1 ∈ (0, ε) and x′ ∈ Bδ = Bd−1
δ (x′0) we get

ˆ
Ωε,δ

|u(x1, x′)− u(0, x′)|pdx ≤ εp

p

ˆ
Ωε,δ

|∇u|pdx.
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By triangular inequality with (a+ b)p ≤ 2p−1(ap + bp) we obtain

1

2p

ˆ
Ωε,δ

|u(x)− u0|p ≤
ˆ
Ωε,δ

|u(x1, x′)− v(x′)|p +
ˆ
Ωε,δ

|v(x′)− v0|p

≤ εp

p

ˆ
Ωε,δ

|∇u|pdx+ ε

ˆ
Bδ

|v(x′)− v0|p.

Dividing by |Ωε,δ| = ε|Bd−1
δ | we get

1

2p

 
Ωε,δ

|u(x)− u0|p ≤
εp

p|Bd−1
1 |εδd−1

ˆ
Ωε,δ

|∇u|p +
 
Bδ

|v(x′)− v0|p

and therefore, owing to our standing assumption that εp−1 = O(δd−1),

 
Ωε,δ

|u(x)− u0|p ≤ C

(ˆ
Ωε,δ

|∇u|p +
 
Bδ

|v(x′)− v0|p
)

for C > 0 only depending on p > 1, the dimension d, and the upper bound on εp−1/δd−1 = O(1),
but not on u. By density of C1(Ω) in W 1,p and continuity of the trace operator tr :W 1,p(Ω) →
Lp(∂Ω) the same holds for any u ∈ W 1,p(Ω). Now since |∇u|p ∈ L1 the first term converges
to zero as soon as |Ωε,δ| → 0, while the second term converges to zero simply by the Lebesgue
differentiation theorem applied to v = tru (here it is important that we chose Ωε,δ with bounded
eccentricity in the Rd−1 tangential direction).
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