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Abstract

In this thesis we study qualitative as well as quantitative stability aspects of isometric

and conformal maps from Sn−1 to Rn, when n ≥ 2 and n ≥ 3 respectively. Starting

from the classical theorem of Liouville, according to which the isometry group of Sn−1 is

the group of its rigid motions and the conformal group of Sn−1 is the one of its Möbius

transformations, we obtain stability results for these classes of mappings among maps

from Sn−1 to Rn in terms of appropriately de�ned de�cits. Unlike classical geometric

rigidity results for maps de�ned on domains of Rn and mapping into Rn, not only an

isometric\conformal de�cit is necessary in this more �exible setting, but also a de�cit

measuring how much the maps in consideration distort Sn−1 in a generalized sense. The

introduction of the latter is motivated by the classical Euclidean isoperimetric inequality.
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Notations

n ∈ N a natural number denoting the dimension of the ambient Euclidean space

{e1, . . . , en} the standard orthonormal basis of Rn

〈a, b〉 the Euclidean inner product between two vectors a, b ∈ Rn

A : B or 〈A,B〉 the Euclidean inner product between two matrices A,B ∈ Rn×m

| · | the Euclidean norm of vectors or matrices\ linear maps

At the transpose of a matrix A ∈ Rn×m

(or the adjoint of the corresponding linear map respectively)

Sym(n), Skew(n) the space of n× n symmetric, antisymmetric matrices respectively

Asym, Askew the symmetric, antisymmetric part of a matrix A respectively

A the mean value of a tensor �eld A on its domain of de�nition

U the topological closure of an open set U ⊆ Rn

Bn
ρ (x0) the open ball in Rn centered at x0 ∈ Rn of radius ρ > 0

Sn−1
ρ (x0) ∂Bn

ρ (x0)

Bn Bn
1 (0)

Sn−1 := (Sn−1, g) Sn−1
1 (0) equipped with the standard round metric g

Uδ(Sn−1) the open δ-tubular neighbourhood of Sn−1

{τ1, . . . , τn−1} a positively oriented local orthonormal frame for TxSn−1 so that for every

x ∈ Sn−1, {τ1(x), · · · , τn−1(x), x} is a positively oriented orthonormal system

of n vectors in Rn

dvg the standard (n− 1)-volume form on Sn−1

ωn the volume of the unit ball in Rn

Hk the k-dimensional Hausdor� measure

Vol(E), Per(E) the volume, the perimeter of an Hn-measurable set E ⊆ Rn

O(n) the orthogonal group of Rn, i.e. the set {O ∈ Rn×n : OtO = In}

SO(n) the special orthogonal group of Rn, i.e. the set {R ∈ O(n) : detA = 1}

CO+(n) the conformal group of Rn, i.e. the set {λR ∈ Rn×n : λ > 0, R ∈ SO(n)},
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(actually its �positive cone�)

Mb(U ;Rd) the space of all Rd-valued Radon measures on a bounded domain U ⊆ Rn

sptµ the support of a measure µ ∈Mb(U ;Rd)

|µ|(U) the total variation of a measure µ ∈Mb(U ;Rd)

~νr the unit normal vector �eld to Sn−1
r , i.e. ~νr(x) = x

r
for every x ∈ Sn−1

r

idSn−1 the standard embedding map of Sn−1 into Rn

Ix the identity transformation on TxSn−1

∇v, divv, ∆v the Euclidean gradient, divergence and Laplacian of a map v : U ⊆ Rn 7→ Rn

∇Tu the tangential gradient of u : Sn−1 7→ Rn, represented in the local coordinates

{τ1, . . . , τn−1} and the Euclidean coordinates {e1, . . . , en} by the n× (n− 1)

matrix with entries (∇Tu)ij = 〈∇Tu
i, τj〉 for i = 1, . . . , n, j = 1, . . . , n− 1

divSn−1u, ∆Sn−1u the tangential divergence, Laplace-Beltrami operator of a map u : Sn−1 → Rn

PT (x) ∇T idSn−1(x) : TxSn−1 7→ Rn for x ∈ Sn−1, i.e. in local coordinates

(PT )ij = 〈ei, τj〉 for i = 1, . . . , n and j = 1, . . . , n− 1

dxu the intrinsic gradient of a map u : Sn−1 7→ Sn−1, viewed as a linear map

dxu : TxSn−1 7→ Tu(x)Sn−1 w.r.t. the frame {τ1, . . . , τn−1}

∂~νf the radial derivative of a function f : Bn 7→ R on Sn−1

Ck the space of k-times continuously di�erentiable maps, k ∈ N

Lp,W 1,p the standard Lebesque or Sobolev spaces respectively, 1 ≤ p <∞

‖u‖Lp(Sn−1) the Lebesgue norm of a map u ∈ Lp(Sn−1;Rn) with the convention that the

integral is taken with respect to the normalized Hn−1-measure, to simplify

some dimensional constants appearing later in the content, i.e.

‖u‖pLp(Sn−1) := −
∫
Sn−1 |u|p dHn−1

‖u‖W 1,p(Sn−1) the Sobolev norm of a map u ∈ W 1,p(Sn−1;Rn) with the same convention, i.e.

‖u‖pW 1,p(Sn−1) := −
∫
Sn−1 |u|p dHn−1 + −

∫
Sn−1 |∇Tu|p dHn−1

W 1,∞(Sn−1;Rn) the space of Lipschitz maps from Sn−1 to Rn with norm

‖u‖W 1,∞(Sn−1) := max
{
‖u‖L∞(Sn−1), ‖∇Tu‖L∞(Sn−1)

}
a+, a− the positive, negative part of a ∈ R, i.e. a+ := max{a, 0}, a− := −min{a, 0}

∼M1,M2,... the corresponding equality is valid up to a constant that is allowed to vary

from line to line but depends only on the parameters M1,M2, ...

.M1,M2,... the same meaning as above for inequalities

viii



Chapter 1

Introduction

1.1 An overview of geometric rigidity results for the

orthogonal and the conformal group

One of the most classical and well known rigidity theorems in di�erential geometry is

Liouville's theorem that concerns isometric and conformal maps de�ned on domains of

the Euclidean space. In modern terms it can be stated as follows.

Theorem 1.1.1. (Liouville)

(i) Let n ≥ 2 and U ⊆ Rn be a bounded Lipschitz domain. Suppose that u ∈ W 1,2(U ;Rn)

is a generalized orientation-preserving isometric map, that is

∇u ∈ SO(n) a.e. in U. (1.1.1)

Then u is a rigid motion of U , i.e. there exist R ∈ SO(n) and b ∈ Rn so that

u(x) = Rx+ b. (1.1.2)

(ii) Let n ≥ 3 and U ⊆ Rn be a bounded Lipschitz domain. Suppose that u ∈ W 1,n(U ;Rn)

is a generalized orientation-preserving conformal map, that is

∇u ∈ CO+(n) a.e. in U. (1.1.3)

Then u is the restriction on U of a Möbius transformation of Rn ∪ {∞}, i.e. there
exist A ∈ CO+(n), b ∈ Rn and a ∈ Rn \ U so that

u(x) = Ax+ b or u(x) = AB
x− a
|x− a|2

+ b, (1.1.4)

where B = diag(1, ..., 1,−1) ∈ Rn×n.

1



Another classical fact is that the �rst part of the theorem fails if the group SO(n)

is replaced by the full orthogonal group O(n), unless the maps in consideration are as-

sumed to be more regular, in particular C1(U ;Rn). The reason is that O(n) has rank-one

connections and therefore the corresponding di�erential inclusion, even when considered

among Lipschitz mappings, admits non-trivial solutions (for example the so called simple

laminates). Regarding the second part of the theorem, it is also well known that Liou-

ville's theorem for conformal maps does not hold in two dimensions. Actually, according

to the famous Riemann mapping theorem in complex analysis, every simply connected

domain in C that is not C itself is conformally equivalent to the open unit disk. There-

fore, the class of conformal maps de�ned on a �xed open subdomain of the complex plane

does not admit a simple characterization as before.

A simple proof of the �rst statement, as can be found for instance in [FJM02], can be

carried out along the following lines. Notice that

∇u ∈ SO(n) a.e. in U =⇒ cof∇u = ∇u a.e. in U. (1.1.5)

By Piola's identity we have div(cof∇u) = 0, which in this case implies that ∆u = 0 in

U in the sense of distributions. By Weyl's lemma for harmonic functions the map u is

smooth, and by using Bochner' formula

1

2
∆(|∇u|2 − n) = ∇u ·∆∇u+ |∇2u|2 = |∇2u|2 in U. (1.1.6)

Since ∇u ∈ SO(n) a.e. in U , the left hand side vanishes identically, thus ∇2u ≡ 0 in

U , i.e. u is a�ne with gradient in SO(n). It is also obvious that the same proof can be

carried out if the integrability exponent 2 is replaced by any exponent p ∈ [1,∞].

Regarding the proof of the second part of the theorem, J. Liouville was the �rst one to

prove it in 1850 for su�ciently regular maps, in particular for maps in the class C3(U ;Rn).

The conformality condition on u can be rewritten as a system of PDE, namely{
∇ut∇u = |∇u|2

n
In in U

det∇u > 0 in U

}
. (1.1.7)

This system can be solved explicitely and the solutions are precisely given by (1.1.4).

More than a century after the �rst proof, F. Gehring proved Liouville's theorem for

homeomorphisms in the Sobolev class W 1,n(U ;Rn) in [Geh62] and Y.G. Reshetnyak re-

moved the injectivity assumption in [Res67a], by combining ideas from the original proof

and the regularity theory for the n-harmonic equation. Later on, T. Iwaniec proved in

[Iwa92] that there exists a critical exponent 1 < pn < n such that Liouville's theorem for

2



conformal maps holds in W 1,p(U ;Rn) whenever p ≥ pn. Below this integrability thresh-

old one can construct counterexamples, i.e. for every p′ ∈ (1, pn) there exists a map

u ∈ W 1,p′(U ;Rn) such that ∇u ∈ CO+(n) a.e. in U , but u is not a single Möbius trans-

formation. Actually, T. Iwaniec and G. Martin showed in [IM93] that the sharp threshold

is pn = n
2
in case n is even, conjecturing that this is also the case when n is odd. Certainly,

as it is mentioned in their work, there exist counterexamples to Liouville's theorem for

conformal maps below the exponent n
2
in all dimensions. However, their beautiful proof

regarding the sharpness of the exponent n
2
in even dimensions does not seem to adapt in

the case of odd dimensions. The reason is that at the core of their proof lies the algebraic

expression of the Jacobian determinant of a map u in terms of its n
2
× n

2
minors, a fact

that is of course possible only when n is even.

A natural question that can be posed and was subsequently widely explored is whether

these rigidity theorems are stable, so that one can have approximate versions in the fol-

lowing sense.

If for a map u its gradient is close to SO(n) or to CO+(n) in an average sense, is it

true that the map is itself close to a single rigid motion or a Möbius map respectively in

an appropriate average sense, both in a qualitative and a quantitative fashion?

In the rest of this introductory Section we give a brief overview and description of

some, among several interesting, results related to this question.

1.1.1 On the stability of the orthogonal group when n ≥ 2

As far as the stability of solutions to the di�erential inclusion ∇u ∈ SO(n) is concerned,

a qualitative result was obtained by Y.G. Reshetnyak in [Res67b].

Theorem 1.1.2. (Y.G. Reshetnyak, [Res67b]) Let n ≥ 2, U ⊆ Rn be a bounded

Lipschitz domain and let 1 ≤ p <∞. If (uj)j∈N ∈ W 1,p(U ;Rn) is a sequence of mappings

such that

lim
j→∞
‖dist(∇uj, SO(n))‖Lp(U) = 0, (1.1.8)

then there exists R ∈ SO(n) such that up to a non-relabeled subsequence

lim
j→∞
‖∇uj −R‖Lp(U) = 0. (1.1.9)

A modern proof of this result that uses the concept of Young measures can be found

in [Kin87] and a generalization to the setting of approximately orientation-preserving

isometries between Riemannean manifolds in [KMS19].

3



In the quest for quantitative analogues, let us �rst mention the classical work of F.

John (see [Joh61], [Joh72]), in which he considered mappings that are apriori approxi-

mately isometric in the following sense.

Let Q := Q(x0, L) be an n-dimensional cube in Rn centered at x0 ∈ Rn, of side-length
L > 0 and let u ∈ C1(Q;Rn). The strain tensor associated to the right Cauchy-Green ten-

sor of u is de�ned as eu :=
√
∇ut∇u−In and the maximum strain of u as εu := ‖eu‖L∞(Q).

Given now δ > 0, a map u ∈ C1(Q;Rn) is called δ− quasiisometric i� εu ≤ δ. With these

de�nitions, John's results can be summarized in the following.

Theorem 1.1.3. (F. John, [Joh61],[Joh72]) Let n ≥ 2, Q := Q(x0, L) be an n-cube

in Rn and 1 < p < ∞. There exist δ := δ(n, p) > 0 and C := C(n, p) > 0 such that for

every δ − quasiisometric map u ∈ C1(Q;Rn) there exists O ∈ O(n) so that

‖∇u−O‖Lp(Q) ≤ C‖eu‖Lp(Q). (1.1.10)

The theorem implies in particular that for every δ−quasiisometricmap u ∈ C1(Q;Rn),

its gradient has bounded mean oscillation in Q. By an application of the standard Sobolev

inequalities one sees that there also exists a constant C
′

:= C
′
(n, p) > 0 such that for

every δ−quasiisometric map u ∈ C1(Q;Rn) as in the theorem there exists a rigid motion

γ of Rn so that

If 1 < p < n, ‖u− γ‖Lp∗ (Q) ≤ C
′‖eu‖Lp(Q), where p∗ :=

np

n− p
> 1,

If p > n, ‖u− γ‖L∞(Q) ≤ C
′
L1−n

p ‖eu‖Lp(Q).

Notice that the previous theorem concerns C1-regular maps, providing thus a stability

result for solutions to the di�erential inclusion ∇u ∈ O(n), which is rigid in this class

of mappings. An improvement of F. John's results was later obtained by R. V. Kohn by

proving

Theorem 1.1.4. (R. V. Kohn, [Koh82]) Let n ≥ 2, U ⊆ Rn be a bounded, Lipschitz

domain and let p ≥ 1 with p 6= n. There exist C1 := C1(n, U, p) > 0, C2 := C2(n, U) > 0

such that for every bi-Lipschitz map u : U 7→ Rn there exist a rigid motion γ of Rn and

O ∈ O(n) so that

(i) If 1 ≤ p < n, then

‖u− γ‖Lp∗ (U) + ‖u− γ‖Lp(∂U) ≤ C1‖εu‖Lp(U), (1.1.11)

4



where p∗ = np
n−p > 1 is again the conjugate Sobolev exponent of p. The �nonlinear

elastic strain� εu is now de�ned as

εu := (λn − 1)+ + (λ2 . . . λn − 1)+ + |det(Gu)− 1|, (1.1.12)

where Gu :=
√
∇ut∇u and 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn are the principal stretches of u,

i.e. the eigenvalues of Gu.

(ii) If p > n, then

‖u− γ‖L∞(U) ≤ C1‖εu‖Lp(U). (1.1.13)

(iii) If one sets ẽu := |∇ut∇u− In|, then one also has the estimate∫
U

|∇u−O|2 dx ≤ C2‖εu + ẽu‖L1(U). (1.1.14)

It is worth noticing that R. V. Kohn's results include the case p = 1 and do not

assume any apriori smallness of the nonlinear elastic strain, which was required in F.

John's framework, but only a Lipschitz-invertibility assumption. Since εu contains terms

measuring also �surface� change and �signed-volume� change, the last theorem also yields

stability of the general group of rigid motions in terms of this nonlinear elastic strain,

even if the maps under consideration are assumed to be less regular than C1.

A fundamental breakthrough that requires neither a smallness assumption on the

elastic energy, nor invertibility assumptions on the maps in consideration, was achieved

in the pioneering work of G. Friesecke, R. D. James and S. Müller in [FJM02], where a

sharp scaling-invariant quantitative estimate was obtained.

Theorem 1.1.5. (G. Friesecke, R. D. James, S. Müller, [FJM02]) Let n ≥ 2

and U ⊆ Rn be a bounded, Lipschitz domain. There exists a constant C := C(n, U) > 0

such that for every u ∈ W 1,2(U ;Rn) there exists an associated R ∈ SO(n) so that

‖∇u−R‖L2(U) ≤ C ‖dist(∇u;SO(n))‖L2(U) . (1.1.15)

The latter estimate holds true also in W 1,p(U ;Rn) for any p ∈ (1,∞) as well as in

interpolation spaces (see [CS06] and [CDM14]). Notice that the exponent with which the

norm on the right hand side of the estimate appears, is sharp. Moreover, apart from being

translationally and rotationally invariant, the estimate is also scaling invariant with re-

spect to the domain, in the sense that if C := C(n, U) > 0 stands for the optimal constant

for which (1.1.15) holds, then C(n, λRU + b) = C(n, U) for every λ > 0, R ∈ SO(n) and

b ∈ Rn.

5



Theorem 1.1.5. has been used widely in the analysis of variational models for nonlinear

elasticity, for instance in questions related to dimension reduction. A nice application ap-

pears already in [FJM02], where the authors use their nonlinear rigidity estimate together

with Γ-convergence tools, to rigorously derive thin-plate theories from a 3-dimensional

model of nonlinear elasticity, as the thickness of the plate goes to zero.

It is also fairly well known but still worth remarking that (1.1.15) is the exact nonlinear

counterpart of the classical Korn's inequality, which is a fundamental tool for problems

in the context of linearized elasticity.

Theorem 1.1.6. (Korn, see for example [Cia88]) Let n ≥ 2 and U ⊆ Rn be a

bounded, Lipschitz domain. There exists a constant C := C(n, U) > 0 such that for every

u ∈ W 1,2(U ;Rn) there exists S ∈ Skew(n) (i.e. St = −S) so that

‖∇u− S‖L2(U) ≤ C ‖(∇u)sym‖L2(U) . (1.1.16)

Korn's inequality also holds in W 1,p(U ;Rn) for every p ∈ (1,∞) and can also be

generalized in a Riemannean setting (see [CJ02]). It is clear that Theorem 1.1.5. is the

nonlinear analogue of Theorem 1.1.6., since the tangent space of the �nite-dimensional

Lie group SO(n) at In is exactly the Lie-algebra so(n) of skew-symmetric n×n matrices.

Also, the linearization of the function u 7→ dist(∇u;SO(n)) around the identity mapping

gives

dist(∇u;SO(n)) =
∣∣∣(∇u)sym − In

∣∣∣+O(|∇u− In|2). (1.1.17)

Let us now present a very short sketch of the proof of Theorem 1.1.5., and refer the

interested reader to the original work [FJM02], Section 3, for the detailed proof.

Sketch of proof of Theorem 1.1.5. The approach of G. Friesecke, R. D. James and

S. Müller in Theorem 1.1.5. consists of the following steps. First, the corresponding

interior estimate is proven (see Proposition 3.4 in [FJM02]), namely

Let Q be an n-dimensional cube in Rn and Q′ be the cube in Rn having the same

center and half the side-length of Q. For every v ∈ W 1,2(Q;Rn) there exists R ∈ SO(n)

such that

‖∇v −R‖L2(Q′) ≤ C(n) ‖dist(∇v;SO(n))‖L2(Q) , (1.1.18)

where C(n) > 0 is a dimensional constant.

The proof of the interior estimate, which is the main part in the proof of Theorem

1.1.5., is itself divided in several steps.
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Step 0. By using a suitable truncation argument (see Proposition A.1 in [FJM02]),

one can without loss of generality assume that the map v is Lipschitz with an apriori

Lipschitz bound, i.e. ‖∇v‖L∞(Q) ≤M , where M := M(n) > 0 is a dimensional constant.

Step 1. Let now ε := ‖dist(∇v;SO(n))‖L2(Q). Without loss of generality one may

assume that 0 < ε ≤ 1. In the case of the exact di�erential inclusion v ∈ W 1,2(U ;Rn)

with ∇v ∈ SO(n) a.e. in U , Piola's identity implied that actually v was harmonic in U .

In this approximate setting, if one calls vh the harmonic replacement of v, i.e. the unique

solution to the Dirichlet problem{
−∆ṽ = 0 in Q

ṽ = v on ∂Q

}
, (1.1.19)

Piola's identity implies that the map vh − v satis�es the PDE{
−∆(vh − v) = div(∇u− cof∇u) in Q

vh − v = 0 on ∂Q

}
. (1.1.20)

As a result, ∫
Q

|∇vh −∇v|2 dx .n ε
2 (1.1.21)

=⇒
∫
Q

dist2(∇vh;SO(n)) dx .n ε
2. (1.1.22)

Step 2. By Step 1 one can now focus on the harmonic replacement vh. By testing

Bochner's identity (1.1.6) with a suitable cut-o� function and by using basic properties

of harmonic functions, one can arrive at the following L∞-estimates.

∥∥∇2vh
∥∥
L∞(Q′)

.n

√
ε =⇒ ‖∇vh −R‖L∞(Q′) .n

√
ε, (1.1.23)

for a constant matrix R ∈ Rn×n that can without loss of generality be chosen to lie in

SO(n), and even more speci�cally one can choose R = In. Notice that (1.1.23) immedi-

ately implies that ‖∇vh −R‖L2(Q′) .n

√
ε, which is a suboptimal version of the desired

estimate, with the de�cit ε appearing with the suboptimal exponent 1
2
instead of 1.

Step 3. Despite being suboptimal, the L∞-estimate (1.1.23) allows one to linearize

the dist(· ;SO(n)) around the identity as in (1.1.17) and use Korn's inequality (1.1.16)

for the displacement map vh(x)− x in order to improve the suboptimal exponent 1
2
to the

optimal exponent 1. In particular, one is able to show that∫
Q′

∣∣∇vh −∇vh∣∣2 dx .n ε
2, (1.1.24)
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where ∇vh := −
∫
Q′
∇vh dx, and since dist(∇vh;SO(n)) .n ε, one can replace the average

in (1.1.24) with a constant matrix R ∈ SO(n).

Once the interior estimate in cubes is established, the global estimate in an arbitrary

Lipschitz domain U is obtained via covering arguments. Clearly Steps 0 and 1 can be

carried out unchanged when the cube Q is replaced by an arbitrary Lipschitz domain U ,

so that only Steps 2 and 3 have to be modi�ed. Suitably covering U with a sequence of

cubes, in each one of which the interior estimate applies, and using standard estimates

for harmonic functions, the authors in [FJM02] obtain the following global estimate.∫
U

dist2(x; ∂U)|∇2uh|2 dx ≤ c(n, U)

∫
U

dist2(∇uh;SO(n)) dx. (1.1.25)

Finally, coupling (1.1.25) with a weighted version of the Poincare inequality, namely∫
U

|f − f |2 dx ≤ c̃(n, U)

∫
U

dist2(x; ∂U)|∇f |2 dx, (1.1.26)

which holds for all f ∈ W 1,2(U ;Rm), applied to f := ∇uh, yields (1.1.15) for uh.

Let us also remark that generalizations of the previous results to the case of incom-

patible �elds, that is �elds that do not arise globally as gradients, are important for

applications in the analysis of variational models for crystal plasticity. For example, gen-

eralizations of Theorem 1.1.6. and Theorem 1.1.5. in two dimensions are provided by

Theorem 1.1.7. (A. Garroni, G. Leoni, M. Ponsiglione, [GLP10]) Let U ⊆ R2

be a bounded, simply-connected, Lipschitz domain. There exists C := C(U) > 0 such

that for every A ∈ L2(U ;R2×2) with CurlA ∈ Mb(U ;R2) there exists a skew-symmetric

matrix S ∈ R2×2, so that

‖A− S‖L2(U) ≤ C
(
‖Asym‖L2(U) + |CurlA|(U)

)
(1.1.27)

and by its nonlinear analogue

Theorem 1.1.8. (S. Müller, L. Scardia, C.I. Zeppieri, [MSZ14]) Let U ⊆ R2 be

a bounded, simply-connected, Lipschitz domain. There exists C := C(U) > 0 such that

for every A ∈ L2(U ;R2×2) with CurlA ∈ Mb(U ;R2), there exists a rotation R ∈ SO(2)

so that

‖A−R‖L2(U) ≤ C
(
‖dist(A;SO(2))‖L2(U) + |CurlA|(U)

)
. (1.1.28)
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Here, for a matrix �eld A = (Aij)i,j=1,2, CurlA := ((CurlA)1,CurlA)2) denotes its

distributional Curl, de�ned componentwise as (CurlA)i := ∂2Ai1 − ∂1Ai2 for i = 1, 2.

Let us additionally mention that G. Lauteri and S. Luckhaus have obtained geomet-

ric rigidity estimates for incompatible �elds in dimensions n ≥ 3 in [LL17]. In order to

describe their results, we recall that a tensor �eld A ∈ L1(U ;Rn×n) can be identi�ed

with an Rn-valued 1-form, namely with ωA := (ωiA)i=1,...,n, where ωiA :=
∑n

j=1Aij dx
j,

and the (distributional) Curl of A can be identi�ed with the Rn-valued 2-form (the space

of which we denote by (∧2(Rn))
n) given by the (distributional) exterior di�erential of

ωA, namely dωA := (dωiA)i=1,...,n. With the use of an averaged homotopy operator similar

to the one introduced by T. Iwaniec and A. Lutoborski in [IL93] and techniques from

harmonic analysis, the authors of [LL17] have shown the following.

Theorem 1.1.9. (G. Lauteri, S. Luckhaus, [LL17])

(i) Let n ≥ 2 and U ⊆ Rn be a bounded convex domain. There exists a constant C :=

C(n, U) > 0 such that for every A ∈ L
n
n−1 (U ;Rn×n) with CurlA ∈Mb

(
U ; (∧2(Rn))

n)
and spt(CurlA) b U , there exists R ∈ SO(n) so that

‖A−R‖
L

n
n−1 ,∞(U)

≤ C
(
‖dist(A;SO(n))‖

L
n
n−1 ,∞(U)

+ |CurlA|(U)
)
. (1.1.29)

(ii) Let n ≥ 3, p ∈
[

n
n−1

, 2
]
and M > 0 be �xed. There exists C := C(n, p,M) > 0 such

that for every A ∈ L∞(Bn;Rn×n) with ‖A‖L∞(Bn) ≤M , CurlA ∈Mb

(
Bn; (∧2(Rn))

n)
and spt(CurlA) b Bn, there exists R ∈ SO(n) so that

(iia) in the supercritical case n
n−1

< p ≤ 2, one has the estimate∫
Bn
|A−R|p dx ≤ C

(∫
Bn

distp(A;SO(n)) dx+ (|CurlA|(Bn))
n
n−1

)
; (1.1.30)

(iib) in the critical case p = n
n−1

, one has the non-scaling invariant estimate∫
Bn
|A−R|

n
n−1 dx ≤ C

∫
Bn

dist
n
n−1 (A;SO(n)) dx

+ C
(
|CurlA|(Bn)

) n
n−1
(
|log(|CurlA|(Bn))|+ 1

)
. (1.1.31)

1.1.2 On the stability of the conformal group when n ≥ 3

Turning now our attention to the stability of solutions to the di�erential inclusion asso-

ciated with the group CO+(n) in dimension n ≥ 3, the reader is referred to the book of

Y.G. Reshetnyak [Res13] and the references therein for a detailed collection of the results

obtained mostly by the author of the book, and which initiated further research in this
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direction. Here, we would like to describe some more recent results in the spirit of those

presented in the previous Subsection.

Related to the question of the sharp regularity conditions under which Liouville's the-

orem for conformal mappings holds, a qualitative version appears in the work of B. Yan

in [Yan96].

Theorem 1.1.10. (B. Yan, [Yan96]) Let n ≥ 3, U ⊆ Rn be an open bounded Lipschitz

domain and p ≥ n. Let (uj)j∈N ∈ W 1,p(U ;Rn) be a weakly convergent sequence such that

uj ⇀ u in W 1,p(U ;Rn) and

lim
j→∞
‖dist(∇uj;CO+(n))‖Lp(U) = 0. (1.1.32)

Then ∇u ∈ CO+(n) a.e. in U , i.e. u is a Möbius transformation of U and actually

uj → u strongly in W 1,p(U ;Rn).

Similar to the rigid case, the above theorem fails for p < n
2
. A natural question is then

whether there exists a critical threshold p∗ ∈ [n
2
, n) so that whenever p ≥ p∗, Theorem

1.1.10. holds for maps in W 1,p(U ;Rn) that are approximately conformal in the previous

sense and fails when p < p∗. Another related question is whether p∗ = pn, where pn is

the critical threshold for the validity of Liouville's theorem as addressed by T. Iwaniec

and G. Martin. The existence of such a p∗ that is not too far below n was established in

[YZ98] and in [M�Y99] S. Müller, V. Sverak and B. Yan proved that actually p∗ = pn = n
2

in the case n ≥ 4 is even, in complete accordance with the rigid case.

Regarding quantitative estimates, a result in the spirit of the one of G. Friesecke, R. D.

James and S. Müller in an L2-setting was obtained by D. Faraco and X. Zhong in [FZ05].

Due to the noncompactness of the conformal group and its degeneracy at 0 ∈ Rn×n, their
result concerns rotationally invariant compact subsets of CO+(n) that are bounded away

from 0 and in�nity, and can be represented as a �nite union of annuli-type subregions of

CO+(n). We present for simplicity the result in the case that such a subset has only one

connected component, and can therefore be written as

CO+(n;m,M) := {λR; 0 < m ≤ λ ≤M, R ∈ SO(n)} b CO+(n). (1.1.33)

Given an open bounded Lipschitz domain U ⊆ Rn with n ≥ 3, the di�erential inclusion

φ ∈ W 1,2(U ;Rn) with ∇φ ∈ CO+(n;m,M) a.e. in U (1.1.34)

possesses of course also non-a�ne solutions. The set of all possible such solutions is com-

prised by the orientation-preserving Möbius transformations described by (1.1.4), whose
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gradients are uniformely bounded from below by
√
nm and from above by

√
nM . We

denote the set of all those maps byMn(U ;m,M) and more generally we denote byMn(U)

the set of all orientation-preserving Möbius transformations that are �nite in U . With

these de�nitions, the main result in [FZ05] is

Theorem 1.1.11. (D. Faraco, X. Zhong, [FZ05]) Let n ≥ 3, U ′ b U ⊆ Rn be open

bounded Lipschitz domains and let 0 < m ≤M <∞.

(i) There exists C1 := C1(n,m,M,U ′, U) > 0 such that for every u ∈ W 1,2(U ;Rn),

there exists φ ∈Mn(U ′;m,M) so that

‖∇u−∇φ‖L2(U ′) ≤ C1 ‖dist(∇u;CO+(n;m,M))‖L2(U) . (1.1.35)

(ii) In the special case m = M , there exists C2 := C2(n,m,U) > 0 such that for every

u ∈ W 1,2(U ;Rn), there exists φ ∈Mn(U ;m,m) so that

‖∇u−∇φ‖L2(U) ≤ C2 ‖dist(∇u;CO+(n;m,m))‖L2(U) . (1.1.36)

The second part of the theorem is of course a direct consequence of Theorem 1.1.5..

The interesting issue regarding the �rst part, where the subannulus of CO+(n) is generi-

cally nontrivial, is that it is an interior estimate which, unlike the SO(n)-case, cannot be

extended to a global one.

As D. Faraco and X. Zhong remark (see Example 3.3 in [FZ05]), given any two pa-

rameters 0 < m < M <∞, one can construct a sequence of inversions (φj)j∈N ∈Mn(Bn)

with the centers of inversion belonging all to a straight line and converging to a point

outside Bn, with the property that

lim
j→∞

inf
ψ∈Mn(Bn;m,M)

∫
Bn
|∇φj −∇ψ|2 dx∫

Bn
dist2(∇φj;CO+(n;m,M)) dx

=∞. (1.1.37)

Nevertheless, an interesting open question regarding the interior estimate is whether it

holds true for the full conformal group CO+(n) and not only for compact subsets of

it of the previous type. It seems that one cannot easily adapt the method of proof in

[FZ05] to the noncompact case, both because of the unboundedness of CO+(n) and also

because of the degeneracy of the associated n-harmonic equation at the vertex of the cone.

Indeed, the proof of Theorem 1.1.11. is performed by a suitable application and mod-

i�cation of the ideas of the proof of Theorem 1.1.5. in the conformal setting. First, the

estimate is proven when U is a ball B in Rn and U ′ is the concentric ball of half the ra-

dius, the case of general bounded Lipschitz domains U ′ b U ⊆ Rn following by standard

covering arguments. The assumption on the subset of the group CO+(n) in consideration
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is bounded from above, allows one to apply essentially the same truncation argument as

in the SO(n)-case, i.e. Proposition A.1 in [FJM02], and assume that u is Lipschitz with

an apriori bound on its Lipschitz constant that depends on n and M .

The idea is then again to replace the map u with a map that has the same boundary

values and satis�es some suitably associated PDE. The natural choice would be to con-

sider the n-harmonic replacement of u, i.e. the solution to the boundary value problem{
−div (|∇v|n−2∇v) = 0 in B

v = u on ∂B

}
, (1.1.38)

which unfortunately leads to the suboptimal estimate∫
B

|∇u−∇v|2 dx .n,M

(∫
B

dist2(∇u,CO+(n;m,M)) dx

) 1
n−1

.

Nevertheless, the extra assumption that the subset of CO+(n) is also bounded from

below away from zero, enabled the authors in [FZ05] to consider a suitable strongly

elliptic modi�cation of (1.1.38) for which, by standard elliptic theory, the analogous to

(1.1.21) estimate holds with optimal exponent (see the estimate (4.7) in [FZ05]). Hence,

the problem is again reduced to showing (1.1.35) for mappings that satisfy this related

strongly elliptic equation, the so-called F-harmonic mappings in [FZ05]. By similar but

somewhat more qualitative arguments than those in [FJM02], the authors are �nally again

able to reduce to a linearized setting, where the following variant of Korn's inequality for

the trace-free part of the symmetrized gradient is used.

Theorem 1.1.12. (Y.G. Reshetnyak, see Theorem 3.3, Chapter 3, [Res13])

Let n ≥ 3 and U be a subdomain of Rn that is starshaped with respect to a ball. There

exists a constant C := C(n, U) > 0 such that for every u ∈ W 1,2(U ;Rn),

‖∇u−∇(ΠΣnu)‖L2(U) ≤ C

∥∥∥∥(∇u)sym −
divu

n
In

∥∥∥∥
L2(U)

, (1.1.39)

where ΠΣn : W 1,2(U ;Rn) 7→ Σn is the W 1,2-projection on the �nite-dimensional kernel of

the trace-free symmetrized gradient operator.

The last variant of Korn's inequality has of course an intimate connection with the

geometry of CO+(n), discussed in detail in [Res13], Chapters 2 and 3 and also in [FZ05]

and the references therein. If TCO+(n) stands for the tangent space to the Lie group

CO+(n) at In
(

its dimension being (n+1)(n+2)
2

)
, it easy to see that

A ∈ TCO + (n) ⇐⇒ Asym =
TrA

n
In,
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so that the function A 7→ d(A) :=
∣∣Asym − TrA

n
In
∣∣ is equivalent to the distance of A to

TCO+(n). Therefore, the linear subspace of W 1,2(Rn;Rn)

Σn :=

{
u ∈ W 1,2(Rn;Rn) : (∇u)sym =

divu

n
In

}
(1.1.40)

can be viewed as the Lie algebra of the Möbius group of Rn, i.e. Σn is isomorphic to

so(n+ 2, 1).

1.2 Description of the main results

Inspired from the results described in the previous Section, in this thesis we study stabil-

ity aspects of isometric and conformal maps from Sn−1 into the ambient Euclidean space

Rn. Except for the complementary Section 4.3 which came as a result of a short private

discussion of the author with Dr. Jonas Hirsch, the results presented in this thesis are

obtained by the author and S. Luckhaus in a joint (ongoing) work (see [LZ] and especially

the upcoming preprint [LZon]).

Now that the starting domain is of codimension 1 in Rn, this case exhibits more �ex-

ibility than the case of such maps de�ned on open subsets of Rn and mapping into Rn.

On the one hand, the �spherical version� of Liouville's theorem still asserts that the

only isometric di�eomorphisms of Sn−1 are its rigid motions, i.e. the restrictions on Sn−1

of orthogonal transformations of Rn, and the only conformal di�eomorphisms of Sn−1 are

its Möbius transformations, and actually the conclusions hold again under less restrictive

regularity and invertibility assumptions.

In Chapter 2 we revise such versions of Liouville's theorem and give some intrinsic

and to the knowledge of the author new proofs of it, which can also be modi�ed to give

approximate versions of the theorem.

On the other hand, it is also well known that these are not the only isometric\
conformal maps that one can de�ne on Sn−1. In general, there exist such maps from Sn−1

onto other closed embedded hypersurfaces. Standard examples come from the theory of

isometric embeddings, as a consequence of the celebrated Nash-Kuiper theorem.

Theorem 1.2.1. (J.F. Nash-N.H. Kuiper, [Nas54], [Kui55]) Let (Md, h) be a

smooth compact d-dimensional manifold, m ≥ d + 1 and u : Md 7→ Rm be a short

embedding, that is an embedding for which H1(u ◦ γ) ≤ H1(γ) for every C1-curve γ in

Md. Then u can be uniformely approximated by C1-isometric embeddings.
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While by a classical result in di�erential geometry the only C2-isometric embedding

of Sn−1 into Rn is the standard one modulo rigid motions, the above astonishing theorem

implies the following somewhat counterintuitive fact. Given any δ ∈ (0, 1), in an arbitrar-

ily small C0-neighbourhood of the short homothety uδ : Sn−1 7→ Rn, uδ(x) := δx, there

exist C1 isometric embeddings which can be visualized as wrinkling isometrically Sn−1

inside a small ball in a way that produces continuously varying tangent planes. Although

beyond the scope of this thesis, let us mention that these type of �exibility phenomena,

known as the h-principle, occur very often in problems in geometry or �uid dynamics,

either in smooth solutions of underdetermined problems (for example smooth isometric

embeddings in high codimension), or in relatively low-regularity solutions of determined

problems (for example C1-isometric embeddings with �xed codimension). The interested

reader is referred to [SJ12] for an introduction to this beautiful topic and to the classical

treatise by M. Gromov [Gro13].

Other examples of conformal maps from Sn−1 to Rn that are not Möbius transfor-

mations are also (at least when n = 3) used in cartography, for instance the inverse of

Jacobi's conformal map projection that conformally maps S2 onto the surface of an ellip-

soid.

Therefore, Liouville's rigidity theorem on the one hand, and the above �exibility phe-

nomena on the other, naturally motivate the question of stability of the isometry\ con-
formal group of Sn−1, described in loose terms by the following.

Question. Let n ≥ 2\n ≥ 3 and u : Sn−1 7→ Rn be a map which is in an average sense

almost isometric\almost conformal. If we have the extra information that u(Sn−1) is in

an average sense close to being a round sphere, can we control the deviation of u from a

particular rigid motion\Möbius transformation (up to translation and scaling) of Sn−1?

This is essentially the guiding question throughout the thesis. Of course, as it is

common in many questions regarding the stability of geometric\functional inequalities
or the stability of absolute minimizers in geometric variational problems, the notions of

measurement are themselves an important feature of the problem. The de�cits measur-

ing the deviation of u from being isometric\conformal are analogous to similar ones that

have appeared in the literature for these notions for maps de�ned in the bulk, i.e. in

open subdomains of Rn. The de�cit we choose for the necessary extra information on

how much u distorts Sn−1 is in a sense a generalized isoperimetric de�cit for the map u.

Both in the isometric and in the conformal setting it is motivated by the property of

balls being the only isoperimetric sets in Rn (modulo sets of measure zero), and also by

their stability among sets of �nite perimeter in terms of the isoperimetric de�cit (see for
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example the beautiful works in [Fus17], [FMP08], [FMP10] and the references therein on

the sharp quantitative form of the isoperimetric inequality).

In Chapter 3 we provide an answer to the previous question in the isometric case,

when the ambient dimension is n ≥ 2. The main result of the �rst two Sections of Chap-

ter 3 is Theorem 3.2.3., according to which

For every n ≥ 2 and M > 0 there exists Cn,M > 0 such that for every Lipschitz map

u : Sn−1 7→ Rn with ‖∇Tu‖L∞(Sn−1) ≤M , there exists O ∈ O(n) so that

−
∫
Sn−1

|∇Tu−OPT |2 dHn−1 ≤ Cn,M (δu + εu) .

Here, δu denotes the L2-isometric de�cit of u, de�ned by

δu :=

(
−
∫
Sn−1

∣∣∣√∇Tut∇Tu− Ix
∣∣∣2 dHn−1

) 1
2

and εu its generalized isoperimetric de�cit (being actually the positive part of the excess

in generalized volume), de�ned by

εu :=

(
1−

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣
)

+

.

The proof of this result, which is �rst presented in Section 3.1 in the particular

case that u is an isometric map from Sn−1 to Rn, is based on �rst proving its corre-

sponding qualitative \compactness analogue and then reduce to the case of maps that are

apriori close to a certain rigid motion of Sn−1 in the appropriate topology, namely the

W 1,2 − topology.

The assumption on an apriori Lipschitz bound for the maps under consideration can

be substantially weakened, as Proposition 3.2.6. in Subsection 3.2.2. suggests. This

can be done via the use of the same Lipschitz truncation argument as in [FJM02], but

in our context the Lipschitz truncation of a Sobolev map u ∈ W 1,2(Sn−1;Rn) should also

take care of the possible change in the de�cit εu. Because of this extra feature, we can

show that in the case n = 2 or n = 3 the assumption can be completely removed. In

the case n ≥ 4 it can be replaced by a much weaker one, namely by the assumption that

the maps in consideration enjoy a uniform bound in some homogeneous Sobolev space of

order higher than 2 (namely in Ẇ 1,2(n−2)(Sn−1;Rn)).

Note also that the presence of the de�cit εu which penalizes deviation from isoperime-

try in a generalized sense, allows us to have a quantitative stability result for the whole
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group of rigid motions of Sn−1, be them orientation-preserving\-reversing. We also ex-

hibit examples showing the optimality of the result in terms of the norm on the left hand

side and the exponents of the de�cits on the right hand side of the estimate.

Regarding the choice of the de�cit εu, notice that if u is an isometric embedding of

Sn−1 into Rn and Eu is the open bounded connected set in Rn with ∂Eu = u(Sn−1), then

of course Per(Eu) = Hn−1(u(Sn−1)) = nωn, while

Vol(Eu) =
1

n

∣∣∣∣∫
Sn−1

〈u, νu〉gu dHn−1

∣∣∣∣ =
1

n

∣∣∣∣∣
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣ .
By the classical Euclidean isoperimetric inequality, εu = 1−

∣∣∣−∫Sn−1

〈
u,
∧n−1
i=1 ∂τiu

〉
dHn−1

∣∣∣
in this case, and it really represents the isoperimetric de�cit of the set Eu. Here we have

abused notation and denoted〈
u,

n−1∧
i=1

∂τiu
〉

:=

〈
u, ∗

(
n−1∧
i=1

∂τiu

)〉
,

i.e. we have set νu := ∗
∧n−1
i=1 ∂τiu

|
∧n−1
i=1 ∂τiu|

, identifying (by Hodge duality) the normalized wedge

product of the (linearly independent in this case) vectors (∂τiu)n−1
i=1 in Rn with the unit

normal to the hyperplane they span. Moreover, gu :=
∣∣∧n−1

i=1 ∂τiu
∣∣ =

√
det (∇Tut∇Tu) is

the standard area element induced by u. From here on, we also use the notation

Vn(u) := −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1, (1.2.1)

which for a Lipschitz embedding u : Sn−1 7→ Rn gives the signed enclosed volume normal-

ized by the volume of the unit ball Bn. For a general map u (for which |Vn(u)| <∞), we

may still sometimes refer to it as the signed-volume term, although it might not necessar-

ily represent the actual signed enclosed volume. The integral in the de�nition of Vn is also

connected to the notion of degree and also to the property of the Jacobian determinant

being a null-Lagrangian. It is indeed a standard fact that for any appropriate extension

U : Bn 7→ Rn of u in the interior of the unit ball,

−
∫
Bn

det∇U dx = −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1. (1.2.2)

This identity holds true for example for the harmonic extension uh : Bn 7→ Rn of u, the

latter being taken componentwise.

In Section 3.3 we present a linear stability result which can be viewed as an analogue

of Theorem 1.1.6. for maps from Sn−1 into Rn, and discuss some simple consequences of
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it. According to (3.3.13),

Although the kernel of the quadratic form associated to the generalized full isoperimet-

ric de�cit (introduced below) is in�nite-dimensional, any positive combination of it with

the quadratic form associated to the isometric de�cit (even when n = 2) has �nite di-

mensional kernel (which is actually isomorphic to Skew(n)) and satis�es a corresponding

coercivity estimate. In other words, the intersection of the two kernels exactly corresponds

to the tangent space to the orthogonal group at the identity matrix.

In Chapter 4 we study the conformal case when the ambient dimension is n ≥ 3.

The corresponding de�cit in this case is again in the spirit of the ones appearing in Chap-

ter 3 and is motivated by the following simple observations.

For an arbitrary map u ∈ W 1,n−1(Sn−1;Rn), let 0 ≤ σ1 ≤ σ2 ≤ ... ≤ σn−1 be

the eigenvalues of the symmetric positive-de�nite matrix
√
∇Tut∇Tu. In view of the

arithmetic mean-geometric mean inequality we always have that Hn−1-a.e. on Sn−1,(
|∇Tu|2

n− 1

)n−1
2

=

(∑n−1
i=1 σ

2
i

n− 1

)n−1
2

≥

(
n−1∏
i=1

σ2
i

) 1
2

=
√

det (∇Tut∇Tu), (1.2.3)

and by averaging on Sn−1

−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1 ≥ −
∫
Sn−1

√
det (∇Tut∇Tu) dHn−1, (1.2.4)

Equality would hold i� 0 ≤ σ1(x) = ... = σn−1(x) for Hn−1-a.e. x ∈ Sn−1, i.e. i� u is a

generalized conformal map from Sn−1 to Rn. Therefore, the di�erence (or alternatively

the ratio) between the two sides of (1.2.4) provides an average measure of deviation from

conformality for maps u ∈ W 1,n−1(Sn−1;Rn). This is of course in complete analogy to

the case of maps v ∈ W 1,n(U ;Rn), where U ⊆ Rn is a bounded open Lipschitz domain.

In that case, by the same reasoning∫
U

(
|∇v|2

n

)n
2

dx ≥
∫
U

|det∇v| dx ≥
∫
U

det∇v dx,

with equalities i� ∇v ∈ CO+(n) for a.e. x ∈ U , or equivalently (as long as n ≥ 3), i�

v is the restriction of a Möbius transformation onto U . The reader is again referred to

[Res13], [Yan96], [YZ98] [M�Y99] and the references therein for an exposition of stability

results for conformal maps in domains of Rn in terms of such an average measure of

non-conformality.

If moreover u : Sn−1 7→ Rn is a general Lipschitz embedding, in view of the isoperi-

metric inequality we further have

−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

≥ −
∫
Sn−1

√
det (∇Tut∇Tu) =

Hn−1(u(Sn−1))

nωn
≥ |Vn(u)|

n−1
n , (1.2.5)
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and equalities in the above chain of inequalities would hold i� the map u is conformal

and u(Sn−1) is a round sphere in Rn, i.e. u has to be a conformal embedding of Sn−1 onto

another round sphere, hence a Möbius transformation up to a translation vector and a

scaling factor. The chain of inequalities in (1.2.5) can be rewritten as

Dn−1(u) ≥ Pn−1(u) ≥ |Vn(u)| ≥ Vn(u), (1.2.6)

where

Dn−1(u) :=

(
−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1

) n
n−1

, (1.2.7)

Pn−1(u) :=

(
−
∫
Sn−1

√
det (∇Tut∇Tu) dHn−1

) n
n−1

, (1.2.8)

and Vn(u) is de�ned in (1.2.1). Actually, the inequality

Pn−1(u) ≥ Vn(u) (1.2.9)

is valid for all maps u ∈ W 1,n−1(Sn−1;Rn), even if they are not necessarily embeddings.

The nonnegative quantity Pn−1(u)− Vn(u) is the one that we refer to as the generalized

full isoperimetric de�cit. Having not been able to �nd a reference for this particular

inequality in the literature (without refering to Almgren's isoperimetric inequality for in-

tegral currents), we include in Appendix A a short proof of it which comes as a simple

consequence of another generalized isoperimetric inequality, proved by elementary means

by S. Müller (see Lemma 1.3 in [Mü90]).

It is also immediate that these three geometric quantities, to which we will refer in

the sequel as the generalized (n − 1)-Dirichlet energy-term, the generalized perimeter-

term and the generalized signed-volume-term respectively, enjoy the following invariance

properties.

(i) (Translational invariance) For every u ∈ W 1,n−1(Sn−1;Rn) and every b ∈ Rn

Dn−1(u+ b) = Dn−1(u) , Pn−1(u+ b) = Pn−1(u) , Vn(u+ b) = Vn(u). (1.2.10)

(ii) (Rotational invariance) For every u ∈ W 1,n−1(Sn−1;Rn) and every rotation map

R ∈ SO(n)

Dn−1(Ru) = Dn−1(u) , Pn−1(Ru) = Pn−1(u) , Vn(Ru) = Vn(u). (1.2.11)

(iii) (Scaling behaviour) For every u ∈ W 1,n−1(Sn−1;Rn) and every λ > 0

Dn−1(λu) = λnDn−1(u) , Pn−1(λu) = λnPn−1(u) , Vn(λu) = λnVn(u). (1.2.12)
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(iv) (Conformal invariance) For every u ∈ W 1,n−1(Sn−1;Rn) and every orientation-

preserving ψ ∈ Conf(Sn−1)

Dn−1(u ◦ ψ) = Dn−1(u) , Pn−1(u ◦ ψ) = Pn−1(u) , Vn(u ◦ ψ) = Vn(u). (1.2.13)

With these considerations in mind, we say that for a map u its combined conformal-

isoperimetric de�cit is ε-small for some ε > 0 i�

Dn−1(u) ≤ (1 + ε)Vn(u). (1.2.14)

Employing this de�cit, our main stability results for the conformal case, i.e. Theorem

4.1.2. and Theorem 4.2.1. are of local nature and concern actually maps that are apriori

close in a certain topology to a �xed Möbius transformation of Sn−1. Without loss of

generality we can take this to be the identity transformation on Sn−1, at least as long

as we focus on compact subsets of the set of its Möbius transformations, with gradient

bounded from below and above by �xed positive constants (see part (ii) in Remark 4.1.1.).

Without entering into the precise technical assumptions, Theorem 4.1.2 and The-

orem 4.2.1. can be described as follows.

For every map u : Sn−1 7→ Rn which lies in a su�ciently small neighbourhood of the

idSn−1 in an appropriate topology, there exist an orientation-preserving Möbius transfor-

mation of Sn−1 which we call φu, a vector bu ∈ Rn and a positive factor λu > 0 such

that ∥∥∥∥(u ◦ φu − buλu

)
− idSn−1

∥∥∥∥
W 1,2(Sn−1)

≤ C
√
ε.

The constant C > 0 depends only on the dimension, as does also the size of the neigh-

bourhood (in the correct topology of course) around the idSn−1 for the validity of our local

estimate. The exponent 1
2
with which the ε-de�cit appears on the right hand side is also

optimal, i.e. it cannot generically be improved. This can easily be checked by considering

the sequence of a�ne mappings (uσ)σ>0 : Sn−1 7→ Rn for σ → 0+, where uσ(x) := Aσx,

with Aσ := diag(1, ..., 1, 1 + σ) ∈ Rn×n.

In Section 4.1 we present the result and its proof when the dimension of the ambient

space is n = 3 and in Section 4.2 in the higher dimensional case n ≥ 4. The argumen-

tation follows the same lines in both cases and some intermediate steps in the proofs are

the same. However, in dimension n = 3 some assumptions can be relaxed, for example

the topology in which we require apriori closeness of u to the idSn−1 is weaker than the

one in dimensions n ≥ 4 (as we will see it will be the W 1,2-topology instead of W 1,∞),
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and some of the arguments can be simpli�ed (compare for instance Subsection 4.1.2

with Subsection 4.2.2). We have therefore chosen to keep these two cases separate and

provide in Section 4.2 the necessary details in the arguments that need to be slightly

modi�ed.

As in many occasions where local stability of absolute minimizers in variational prob-

lems is examined, at the core of the proofs in both cases lies the study of the coercivity

properties of the second variation\ quadratic form Qn which appears after a formal Tay-

lor expansion of the combined conformal-isoperimetric de�cit around the idSn−1 . This is

of course performed in a purely W 1,2-setting, i.e. at this linearized level of course no

closeness to the identity assumption has to be made. The main ingredient that we will be

making use of, is the �ne interplay between the Fourier decomposition of aW 1,2(Sn−1;Rn)-

vector �eld into spherical harmonics and the invariance properties of the linear �rst or-

der di�erential operator associated to the second variation of the signed-volume-term Vn

around the idSn−1 .

At a functional-analytic level, this gives a decomposition of a W 1,2(Sn−1;Rn)-vector

�eld into vector-valued spherical harmonics of a special type, as we prove in Theorem

4.1.8., which might be interesting in its own right. This in turn implies a coercivity

estimate for the quadratic form Qn associated to the combined conformal-isoperimetric

de�cit, i.e. Theorem 4.1.10. and Theorem 4.2.7., which are the main results in Sub-

section 4.1.2 and Subsection 4.2.2 respectively. Similarly to Section 3.3, a corollary of

these estimates is the following.

Although the kernels of the nonnegative quadratic forms arising as the second varia-

tions of the conformal de�cit and the generalized full isoperimetric de�cit at the idSn−1

are both in�nite-dimensional, the intersection of the two kernels is �nite dimensional and

actually isomorphic to the Lie algebra of in�nitesimal Möbius transformations of Sn−1.

In this sense, Theorems 4.1.10 and 4.2.7 are the analogues of Theorem 1.1.12. for

maps from Sn−1 to Rn.

In Section 4.1.3 we complete the proof of Theorem 4.1.2. and (since the argument

there can be carried out essentially unchanged in all dimensions n ≥ 3) also the proof of

Theorem 4.2.1.. This is done by using the Inverse Function Theorem and a topological

degree argument similar to the corresponding ones appearing in [Res70] and [FZ05].

The complementary Section 4.3 came as a result of a short private discussion with

Dr. Jonas Hirsch, whom the author would like to thank. We include it in order to give

another application of how some of the ideas that the reader will encounter in Chapters
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2 and 3 can be used to give an alternative and somewhat shorter proof of a recent result

due to A. Bernard-Mantel, C.B. Muratov and T. M. Simon in [BMMS], where a quan-

titative stability result for the particular case of degree ±1 conformal mappings from S2

onto itself is obtained, the authors there being motivated by the analysis of a variational

model from micromagnetics.

In the Outlook we list some open questions that originated from this work or that

the author �nds interesting in general. Finally, in the Appendices we include for the

convenience of the reader a brief proof of the generalized isoperimetric inequality that

we have been using, some basic facts from the theory of spherical harmonics and also

a detailed derivation of the Taylor expansions of the geometric quantities that appear

throughout the main body of the thesis.
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Chapter 2

A new view of Liouville's theorem on

Sn−1

2.1 The isometry group of Sn−1 when n ≥ 2

Turning now to the main topic of the thesis and before giving some standard de�nitions,

let us �rst make the following trivial remark for the sake of clarity. As we have mentioned

in the table of Notations, we denote by Sn−1 := (Sn−1, g) the standard round sphere em-

bedded in Rn.

Given a su�ciently regular (say C1) map u : Sn−1 7→ Sn−1, at every x ∈ Sn−1 the

gradient of u can be viewed extrinsically as the linear map ∇Tu(x) : TxSn−1 7→ Rn, as if
u was considered a map from Sn−1 to Rn with |u| ≡ 1, and intrinsically as the linear map

dxu : TxSn−1 7→ Tu(x)Sn−1. Choosing the local orthonormal frame {τ1, . . . , τn−1} indicated
by the unit normal vector �eld on Sn−1, the linear maps (dxu)tdxu : TxSn−1 7→ TxSn−1

and (∇Tu
t∇Tu)(x) : TxSn−1 7→ TxSn−1 coincide, so that we can use either of them in the

de�nitions to come without distinction. The same holds true for less regular maps (for

example Lipschitz or Sobolev maps) at Hn−1-a.e. x ∈ Sn−1 where the gradient is de�ned.

De�nition 2.1.1. Let n ≥ 2 and 1 ≤ p ≤ ∞.

(i) A map u ∈ C1(Sn−1;Rn) is called isometric i� at every x ∈ Sn−1

(∇Tu
t∇Tu)(x) = Ix. (2.1.1)

(ii) A map u ∈ W 1,p(Sn−1;Rn) is called generalized isometric i� at Hn−1-a.e. x ∈ Sn−1

(∇Tu
t∇Tu)(x) = Ix, (2.1.2)

where the gradient is understood in the weak but also in the classical sense Hn−1-

a.e., since such maps are automatically 1-Lipschitz.
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(iii) Amap u ∈ W 1,p(Sn−1;Sn−1) is called a generalized orientation-preserving\-reversing

isometry of Sn−1 i� at Hn−1-a.e. x ∈ Sn−1 the intrinsic gradient of u is an

orientation-preserving\-reversing isometry between TxSn−1 and Tu(x)Sn−1.

(iv) The group of all isometric di�eomorphisms of Sn−1 will be denoted by Isom(Sn−1),

and the subgroup consisting only of the orientation-preserving ones will be denoted

by Isom+(Sn−1).

As we have discussed in the Introduction, isometric and also conformal maps from

Sn−1 into Rn are more �exible than the ones from n-dimensional subdomains of Rn into

Rn. However, Liouville's rigidity theorem still holds for such maps from Sn−1 onto itself,

a fact that is of course a trivial consequence of the classical version of Liouville's theorem

regarding the structure of the isometry and the conformal group of the Euclidean space.

A fairly standard proof of this fact is that for any n ≥ 2, an isometry u : Sn−1 7→ Sn−1

can be extended radially to Rn via U(x) := |x|u
(
x
|x|

)
if x ∈ Rn \ {0} and U(0) := 0.

It is a simple fact of Euclidean geometry that U is an isometry of Rn, hence a linear

orthogonal transformation and going back, u is the restriction of such a transformation

on Sn−1.

For the conformal case, for any n ≥ 3 the conformal di�eomorphisms of Sn−1 are of

course in a bijective correspondence to the conformal di�eomorphisms of the augmented

Euclidean space Rn−1 ∪ {∞}, i.e. the Möbius transformations, via the stereographic pro-

jection which is itself a conformal map.

However, the main purpose of this and the next Section is to present an alternative

and more intrinsic proof of Liouville's theorem on Sn−1, which to the knowledge of the

author has not appeared in the literature. This will also provide some motivation for the

subsequent stability analysis, since the arguments can be perturbed both in a qualitative

and a quantitative way as we will see later. The proof does not use the corresponding

result in the Euclidean space, only the knowledge that orthogonal transformations are

isometric and Möbius maps are conformal, and is more intrinsic in the sense that it

basically relies on the sharp Poincare inequality on Sn−1 (see the Remark B.0.3. in

Appendix B).

Theorem 2.1.2. (Liouville's Theorem for the isometry group of Sn−1)

Let n ≥ 2. Then u ∈ Isom(Sn−1) i� it is the restriction of an orthogonal transformation

of Rn on Sn−1, i.e. there exists O ∈ O(n) so that for every x ∈ Sn−1

u(x) = Ox. (2.1.3)
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Proof. First of all, the restrictions of orthogonal transformations of Rn on Sn−1 are

isometries of Sn−1. Conversely, if u ∈ Isom(Sn−1) then for every x ∈ Sn−1 one has

(∇Tu
t∇Tu)(x) = (dxu)tdxu = Ix =⇒ |∇Tu(x)|2

n− 1
= 1. (2.1.4)

Since u : Sn−1 7→ Sn−1 is an isometric di�eomorphism, u](ω) = ±ω for every (n− 1)-form

ω on Sn−1. By the change of variables formula applied to the vector-valued (n− 1)-form

xdvg (where dvg is the standard volume-form on Sn−1) and keeping in mind a possible

change of sign in case the di�eomorphism u reverses the orientation of Sn−1, we obtain

0 = −
∫
Sn−1

xdvg = ±−
∫
Sn−1

u](xdvg) = ±−
∫
Sn−1

u(x)dvg(x), (2.1.5)

i.e.

−
∫
Sn−1

u dHn−1 = 0. (2.1.6)

By the Poincare inequality on Sn−1 for �elds with zero mean (see (B.0.6)) and since

|u| ≡ 1,

1 = −
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≥ −

∫
Sn−1

|u|2 dHn−1 = 1. (2.1.7)

The equality case in the Poincare inequality implies that in the Fourier expansion of u

in spherical harmonics, no other spherical harmonics except the �rst order ones should

appear. Since the �rst order spherical harmonics are the coordinate functions normalized

by a suitable constant, we deduce that u(x) = Ox for some O ∈ Rn×n. Although it is not

really important here, as we mention in Remark B.0.1. in the Appendix B, we actually

have that O = ∇uh(0), where uh : Bn 7→ Rn is the harmonic extension of u in Bn.

This linear map would transform Sn−1 into the boundary of an ellipsoid, which after

possibly an orthogonal change of coordinates is

u(Sn−1) :=
{
y = (y1, y2, ...yn) ∈ Rn :

y2
1

σ2
1

+
y2

2

σ2
2

+ ...+
y2
n

σ2
n

= 1
}
, (2.1.8)

where 0 ≤ σ1 ≤ σ2 ≤ ... ≤ σn are the eigenvalues of the symmetric matrix
√
OtO. By

assumption u(Sn−1) ≡ Sn−1, and this forces σ2
1 = σ2

2 = ... = σ2
n = 1, i.e. O ∈ O(n).

Remark 2.1.3. The previous proof can also be carried out under less restrictive regu-

larity assumptions, as long as the maps in question preserve\- reverse the orientation of

Sn−1 in the sense of De�nition 2.1.1., a condition that should again be imposed because

of the rank-one connectedness of the orthogonal group.

For instance, if n ≥ 2, 1 ≤ p ≤ ∞ and u ∈ W 1,p(Sn−1;Sn−1) is a generalized

orientation-preserving isometry of Sn−1, with the same proof as before we can deduce
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that there exists R ∈ SO(n) so that u(x) = Rx for every x ∈ Sn−1. Indeed, any such

map is Lipschitz continuous and bijective. The surjectivity is a consequence of the more

general fact that any isometry v of a compact metric space (X, d) (in our case Sn−1 with

the geodesic distance induced by the round metric g) is surjective. We remind the reader

of the elementary proof of this topological fact.

Let x ∈ X and ε > 0 be arbitrary. De�ne the sequence (xl)l∈N ∈ X via x0 := x,

xl+1 := v(xl). Since X is compact, we can assume (up to passing to a non-relabeled

subsequence) that (xl)l∈N is a convergent and therefore Cauchy sequence. Thus, for any

l < m su�ciently large we have d(xl, xm) < ε. By the fact that v is an isometry, we

recursively obtain

d(x; v(X)) ≤ d(x0, v(xm−l−1)) := d(x0, xm−l) = · · · = d(xl, xm) < ε, (2.1.9)

and since ε > 0 was arbitrary and v(X) is closed, we conclude that x ∈ v(X).

With the same argument as in the smooth case we obtain that −
∫
Sn−1 u dHn−1 = 0 and

also the rest of the proof can be carried out unchanged.

Remark 2.1.4. An equivalent way to state Theorem 2.1.2. would be to say that the only

isometric maps that transform Sn−1 into another round sphere (of radius 1 of course) are

the rigid motions. As we mentioned in Section 1.2, if u : Sn−1 7→ Rn is an isometric em-

bedding, u(Sn−1) is a closed Lipschitz hypersurface in Rn with the same (n− 1)-Hausdor�

measure as Sn−1. If Eu stands for the bounded domain in Rn with ∂(Eu) = u(Sn−1), we

know from the classical Euclidean Isoperimetric Inequality that

Vol(Eu) ≤ Vol(Bn) = ωn, (2.1.10)

with equality i� Eu is a ball in Rn, i.e. i� u(Sn−1) is a round sphere of Rn, i.e. i� u is a

rigid motion of Sn−1 according to Theorem 2.1.2..

With the notations and conventions we introduced in Section 1.2, the last inequality

can be rewritten in this case as

|Vn(u)| :=

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣ ≤ 1. (2.1.11)

Of course, for a general Lipschitz map v : Sn−1 7→ Rn that is not necessarily an embed-
ding, the last integral may not always represent the actual (signed) enclosed volume. The

next theorem can be regarded as a slight generalization of Theorem 2.1.2., since it asserts

that for generalized isometric maps from Sn−1 into Rn the inequality (2.1.11) can be ob-

tained in a simple way, even without referring immediately to the classical isoperimetric

inequality, and the equality case is of course characterized as before.
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Theorem 2.1.5. Let n ≥ 2 and 1 ≤ p ≤ ∞. For every generalized isometric map

u ∈ W 1,p(Sn−1;Rn) the inequality (2.1.11) holds, with equality i� u is a rigid motion of

Sn−1, i.e. i� there exist O ∈ O(n) and b ∈ Rn so that for every x ∈ Sn−1

u(x) = Ox+ b. (2.1.12)

Proof. Recalling (1.2.10), we have Vn(u+ b) = Vn(u) for every constant b ∈ Rn. Indeed,

Vn(u+ b) := −
∫
Sn−1

〈
u+ b,

n−1∧
i=1

∂τi(u+ b)
〉
dHn−1 = −

∫
Bn

det∇(u+ b)h = −
∫
Bn

det∇(uh + b)

= −
∫
Bn

det∇uh = −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1 =: Vn(u),

and in particular for b := −−
∫
Sn−1 u dHn−1,

Vn(u) := −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1 = −

∫
Sn−1

〈
u−−

∫
Sn−1

u,
n−1∧
i=1

∂τiu
〉
dHn−1. (2.1.13)

Since u is assumed to be generalized isometric, by taking the trace and the determinant

in (2.1.2), we have again that Hn−1-a.e. on Sn−1

|∇Tu|2

n− 1
= 1,

∣∣∣∣∣
n−1∧
i=1

∂τiu

∣∣∣∣∣ =
√

det(∇Tut∇Tu) = 1. (2.1.14)

Using the Cauchy-Schwarz inequality and again the sharp Poincare inequality on Sn−1,

|Vn(u)| =

∣∣∣∣∣−
∫
Sn−1

〈
u−−

∫
Sn−1

u,
n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣
≤ −
∫
Sn−1

∣∣∣∣u−−∫
Sn−1

u

∣∣∣∣
∣∣∣∣∣
n−1∧
i=1

∂τiu

∣∣∣∣∣ dHn−1 = −
∫
Sn−1

∣∣∣∣u−−∫
Sn−1

u

∣∣∣∣ dHn−1

≤

(
−
∫
Sn−1

∣∣∣∣u−−∫
Sn−1

u

∣∣∣∣2 dHn−1

) 1
2

≤
(
−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1

) 1
2

= 1.

If |Vn(u)| = 1, then again equalities must hold in all places in the above chain of inequal-

ities. By the equality case in Poincare's inequality we have again u(x) = Ax + −
∫
Sn−1 u

for some A ∈ Rn×n. It is also fairly easy to check that A ∈ O(n), even by arguing analyt-

ically rather than geometrically this time. On the one hand, by the equality cases above

we obtain

1 = −
∫
Sn−1

∣∣∣∣u−−∫
Sn−1

u

∣∣∣∣2 dHn−1 = −
∫
Sn−1

|Ax|2 dHn−1 =
|A|2

n
, (2.1.15)
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and also

1 =

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣ =

∣∣∣∣−∫
Bn

det∇uh
∣∣∣∣ =

∣∣∣∣−∫
Bn

det∇(Ax)h

∣∣∣∣ = |detA| . (2.1.16)

By a standard argument via the arithmetic mean-geometric mean inequality, if we con-

sider the polar decomposition A = O
√
AtA, where O ∈ O(n) and label 0 ≤ σ1 ≤ · · · ≤ σn

the eigenvalues of
√
AtA, then

1 =
|A|2

n
=

∑n
i=1 σ

2
i

n
≥

(
n∏
i=1

σ2
i

) 1
n

= |detA|
2
n = 1. (2.1.17)

The equality in this algebraic inequality yields σ1 = · · · = σn = 1, hence AtA = In, i.e.

A = O ∈ O(n), which completes the proof.

In Chapter 3 we will see how to suitably adapt the proof, in order to obtain the

stability version of the previous theorem both in a qualitative and a quantitative manner.

2.2 The conformal group of Sn−1 when n ≥ 3

Let us now discuss the corresponding result for the conformal case. Similar to De�nition

2.1.1., we adopt

De�nition 2.2.1. Let n ≥ 3.

(i) A map u ∈ C1(Sn−1;Rn) is called conformal i� at every x ∈ Sn−1 its gradient is a

nonsingular linear map and u preserves the angle between any two tangent vectors

at that point, or equivalently i� at every x ∈ Sn−1

(
∇Tu

t∇Tu
)

(x) =

(
|∇Tu(x)|2

n− 1

)
Ix. (2.2.1)

(ii) A map u ∈ W 1,n−1(Sn−1;Rn) is called generalized conformal i� at Hn−1-a.e. x ∈
Sn−1 (

∇Tu
t∇Tu

)
(x) =

(
|∇Tu(x)|2

n− 1

)
Ix, (2.2.2)

where the gradient is to be understood here in the weak sense.

(iii) Amap u ∈ W 1,n−1(Sn−1;Sn−1) is called a generalized orientation-preserving\-reversing
conformal map of Sn−1 i� at Hn−1-a.e. x ∈ Sn−1 the intrinsic gradient of u is an

orientation-preserving\-reversing linear conformal map between TxSn−1 ∪ {∞} and
Tu(x)Sn−1 ∪ {∞}.
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(iv) The group of all conformal di�eomorphisms of Sn−1 will be denoted by Conf(Sn−1),

and again the subgroup consisting only of the orientation-preserving ones will be

denoted by Conf+(Sn−1).

We can now state Liouville's theorem in this setting and give its new intrinsic proof.

Theorem 2.2.2. (Liouville's Theorem for the conformal group of Sn−1)

Let n ≥ 3. Then u ∈ Conf(Sn−1) i� it is a Möbius transformation of Sn−1, i.e. i� there

exist O ∈ O(n), ξ ∈ Sn−1 and λ > 0 so that for every x ∈ Sn−1

u(x) = Oφξ,λ(x). (2.2.3)

Here, φξ,λ := σ−1
ξ ◦ iλ ◦ σξ, where σξ is the stereographic projection of Sn−1 onto the

tangent plane TξSn−1 ∪{∞} and iλ : TξSn−1 7→ TξSn−1 is the dilation in TξSn−1 by factor

λ. Analytically, φξ,λ is given by the formula

φξ,λ(x) :=
−λ2

(
1− 〈x, ξ〉

)
ξ + 2λ

(
x− 〈x, ξ〉ξ

)
+
(
1 + 〈x, ξ〉

)
ξ

λ2
(
1− 〈x, ξ〉

)
+
(
1 + 〈x, ξ〉

) . (2.2.4)

Proof. The argument is similar to the one in the proof of Theorem 2.1.2.. The maps

(φξ,λ)ξ∈Sn−1,λ>0 are conformal di�eomorphisms of Sn−1 and conversely, if u ∈ Conf(Sn−1),

by taking the determinant in both sides of (2.2.2) and recalling the very �rst remark in

the beginning of the Chapter, we have that for every x ∈ Sn−1

√
det ((∇Tut∇Tu)(x)) =

√
det ((dxu)tdxu) =

(
|dxu|2

n− 1

)n−1
2

=

(
|∇Tu(x)|2

n− 1

)n−1
2

.

Since u is a conformal di�eomorphism of Sn−1, we can use the area formula, Jensen's

inequality and again the sharp Poincare inequality on Sn−1 to obtain

1 =
Hn−1(u(Sn−1))

nωn
= −
∫
Sn−1

√
det (∇Tut∇Tu) dHn−1 = −

∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1

≥
(
−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1

)n−1
2

≥

(
−
∫
Sn−1

∣∣∣∣u−−∫
Sn−1

u

∣∣∣∣2 dHn−1

)n−1
2

. (2.2.5)

If we assume for the moment that −
∫
Sn−1 u dHn−1 = 0, then the last averaged integral

is exactly equal to 1 since u takes values on Sn−1. In this case, again equalities must

hold at each step in the above chain of inequalities, and with the same reasoning as in

the proof of Theorem 2.1.2. we would infer that u(x) = Ox for some O ∈ O(n). Of

course, for the above argument to work we need the convexity of the function t 7→ t
n−1

2 ,
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which is true exactly i� n ≥ 3 (in any case, for n = 2 conformality is a trivial notion

for maps from S1 to itself). We only have to justify why one can always reduce to this case.

If bu := −
∫
Sn−1 u 6= 0, one can show that there always exist ξ0 ∈ Sn−1 and λ0 > 0 so

that

−
∫
Sn−1

u ◦ φξ0,λ0 dHn−1 = 0. (2.2.6)

Indeed, consider the map F : Sn−1 × [0, 1] 7→ Bn, de�ned as

F (ξ, λ) := −
∫
Sn−1

u ◦ φξ,λ dHn−1 for λ ∈ (0, 1] and F (ξ, 0) := lim
λ↓0+

F (ξ, λ). (2.2.7)

The map F is obviously continuous, and

F (ξ, 0) = u(ξ) for every ξ ∈ Sn−1 =⇒ F (Sn−1, 0) = u(Sn−1) = Sn−1, (2.2.8)

whereas

F (Sn−1, 1) = {bu}. (2.2.9)

In other words, F is a continuous homotopy between Sn−1 and the point bu ∈ Bn�{0},
and therefore

∃ λ0 ∈ (0, 1) s.t. 0 ∈ F (Sn−1, λ0) ⇐⇒ ∃ ξ0 ∈ Sn−1 s.t. F (ξ0, λ0) = 0. (2.2.10)

We can now apply the previous argument to the conformal map u ◦ φξ0,λ0 that has zero

average on Sn−1, to deduce that for a matrix O ∈ O(n) and for every x ∈ Sn−1

(u ◦ φξ0,λ0)(x) = Ox =⇒ u(x) = Oφ−1
ξ0,λ0

(x) = Oφξ,λ(x), (2.2.11)

where ξ := ξ0 ∈ Sn−1 and λ := 1
λ0
> 0.

Remark 2.2.3. The Möbius transformations of Sn−1 could of course alternatively be

described by performing an inversion on TξSn−1 with respect to some center, say the

origin ξ of the a�ne hyperplane TξSn−1 of Rn and some radius, say
√
λ > 0. These maps

however would correspond exactly to the Möbius transformations produced by dilation

in TξSn−1 by factor 1
λ
, composed �nally with a �ip in Rn, i.e. an orthogonal map that

would change back the orientation.

We also gave explicitely the formula (2.2.4), because one can compute directly out of

it the representation of the in�nitesimal generators of Conf(Sn−1). The corresponding

formula in Rn has de�nitely appeared in the literature (see for example Formula (2.1) in

[Res13], Chapter 4, Paragraph 2) and probably its version on Sn−1 as well. In any case,
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it is an elementary exercise in di�erential geometry to obtain it by considering a general

C1-curve γ : (−δ, δ) 7→ Conf(Sn−1) for some 0 < δ � 1, where

γ(t) = R(t)φξ(t),λ(t) ; R : (−δ, δ) 7→ SO(n), ξ : (−δ, δ) 7→ Sn−1, λ : (−δ, δ) 7→ (0,∞)

with

γ(0) = idSn−1 , i.e. R(0) = In, ξ(0) = ξ ∈ Sn−1 (arbitrary), λ(0) = 1,

and simply compute the derivative γ̇(0). This leads to the following characterization,

which we will use in Chapter 4.

TidSn−1Conf(Sn−1) ≡
{
Sx+ µ

(
〈x, ξ〉x− ξ

)
: Sn−1 7→ Rn;S ∈ Skew(n), ξ ∈ Sn−1, µ ∈ R

}
.

Remark 2.2.4. The proof of Theorem 2.2.2. can also be carried out in a slightly more

general context without considering necessarily conformal di�eomorphisms of Sn−1. In-

deed, if n ≥ 3 and u ∈ W 1,n−1(Sn−1;Sn−1) is a generalized orientation-preserving\-
reversing conformal map of Sn−1 of degree 1\ -1 respectively, with the same proof as

before we can deduce that u is an orientation-preserving\-reversing Möbius transforma-

tion of Sn−1 of the form (2.2.3). The only possible subtlety is why one can choose also in

this case a Möbius transformation of Sn−1 to �x the mean value of the map at 0.

Before justifying this point, let us brie�y recall some basic facts regarding the notion

of degree for W 1,n−1-Sobolev maps from Sn−1 to itself. We follow [BN95], where the notion

and properties of the degree for appropriate classes of Sobolev and BMO maps between

smooth closed oriented manifolds of the same dimension are introduced.

In the regular case, for a map u ∈ C1(Sn−1;Sn−1) there is a classical way to de�ne

its degree from the point of view of di�erential topology. By Sard's theorem, Hn−1-

a.e. p ∈ Sn−1 is a regular value of u, i.e. u−1(p) = {x1, . . . , xk} for some k ∈ N
and also for every j = 1, . . . , k the intrinsic gradient dxju : TxjSn−1 7→ Tu(xj)Sn−1 is

a nonsingular linear map. Therefore, for the intrinsic Jacobian Jxju of dxju (computed

with respect to the local orthonormal frame {τ1, . . . , τn−1}), we have that det(Jxju) 6= 0.

The degree of u with respect to the point p ∈ Sn−1 is then de�ned as

deg(u; p) :=
k∑
j=1

sgn(det(Jxju)). (2.2.12)

A basic fact in di�erential topology is that the degree is independent of the choice of the

regular value p ∈ Sn−1 and its unique value can thus be denoted by degu. Intuitively, it

counts how many times Sn−1 is covered by u(Sn−1), with the orientation being taken into
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account each time.

If u ∈ C0(Sn−1;Sn−1) the classical way to de�ne its degree from the point of view of al-

gebraic topology is via the induced group homomorphism u∗ : Hn−1(Sn−1) 7→ Hn−1(Sn−1).

Here, Hn−1(Sn−1) is the (n − 1)-th homology group of Sn−1, which is known to be iso-

morphic to Z. It follows that there exists a ∈ Z so that u∗(m) := a ·m for every m ∈ Z.
The integer a is then called the (algebraic-topological) degree of u, and these two notions

of degree coincide for C1 maps. Another basic topological fact that we will use, is that

a map u ∈ C0(Sn−1;Sn−1) of non-zero degree must be surjective. Indeed, if there exists

p ∈ Sn−1 such that the image of u lies entirely in Sn−1 \ {p}, which is contractible, then

u must be null-homotopic and therefore must have degree 0.

For a map u ∈ C1(Sn−1;Sn−1) there is also an integral formula to calculate the degree

in terms of integration of di�erential forms. In particular, if ω is a smooth (n− 1)-form

on Sn−1, then

−
∫
Sn−1

u](ω) = degu −
∫
Sn−1

ω, (2.2.13)

which leads to the analytic expression

degu := −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1, (2.2.14)

i.e. for a su�ciently regular map from Sn−1 to itself, the averaged signed-volume has the

extra meaning of being the degree of the map.

This analytic de�nition of the degree can be extended to maps u ∈ W 1,n−1(Sn−1;Sn−1),

that is Sobolev maps u ∈ W 1,n−1(Sn−1;Rn) such that |u(x)| = 1 for Hn−1-a.e. x ∈ Sn−1.

A useful approximation lemma in this case is

Lemma 2.2.5. (see [BN95], Section I.3. Theorem 1, Section I.4. Lemma 7)

Let n ≥ 2. For every u ∈ W 1,n−1(Sn−1; Sn−1), there exists a sequence of smooth maps

(uj)j∈N ∈ C∞(Sn−1;Sn−1) with the property that

uj → u strongly in W 1,n−1(Sn−1; Sn−1) and deguj = degu ∀j ∈ N. (2.2.15)

Using this lemma, we can prove the following.

Lemma 2.2.6. Let n ≥ 3 and u ∈ W 1,n−1(Sn−1;Sn−1) be a generalized orientation-

preserving\-reversing conformal map of Sn−1 of degree 1\ − 1. Then,

(i) −
∫
Sn−1

(
|∇Tu|2
n−1

)n−1
2
dHn−1 = 1.

(ii) There exist ξ0 ∈ Sn−1 and λ0 > 0 so that −
∫
Sn−1 u ◦ φξ0,λ0 dHn−1 = 0.
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Proof. We discuss the case of a generalized orientation-preserving conformal map of

degree 1, the other case being essentially the same. Let (uj)j∈N ∈ C∞(Sn−1; Sn−1) be the

previously mentioned sequence that is strongly approximating u in W 1,n−1(Sn−1;Sn−1)

and has the property that deguj = degu = 1 for every j ∈ N. Of course, the maps

(uj)j∈N do not necessarily have to be conformal at the �rst place. Up to passing to a non-

relabeled subsequence, we can without loss of generality also suppose that uj → u and

∇Tuj → ∇Tu pointwise Hn−1-a.e. on Sn−1. For part (i), we have by all our assumptions

that Hn−1-a.e. on Sn−1,

u](dvg) =
√

det(∇Tut∇Tu) dvg =

(
|∇Tu|2

n− 1

)n−1
2

dvg, (2.2.16)

and by approximation, the analytic formula for the degree in terms of integration of

(n− 1)- forms on Sn−1 holds true for u as well, i.e.

−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1 = −
∫
Sn−1

u](dvg) = degu −
∫
Sn−1

dvg = 1. (2.2.17)

For part (ii), by the properties of the degree we have that the maps uj are surjective on

Sn−1 for every j ∈ N. Therefore, by the topological argument in the proof of Theorem

2.2.2., which actually does not rely on whether the maps (uj)j∈N are conformal or not,

there exist (ξj)j∈N ∈ Sn−1 and (λj)j∈N ∈ (0, 1], so that for every j ∈ N

−
∫
Sn−1

uj ◦ φξj ,λj dHn−1 = 0. (2.2.18)

Up to non-relabeled subsequences we can suppose that ξj → ξ0 ∈ Sn−1 and λj → λ0 ∈
[0, 1], thus φξj ,λj ⇀ φξ0,λ0 weakly in W 1,n−1(Sn−1;Sn−1) and also pointwise Hn−1 - a.e.

on Sn−1. In fact λ0 ∈ (0, 1], i.e. the Möbius transformations (φξj ,λj)j∈N do not converge

weakly to the trivial map φξ0,0(x) = ξ0.

Indeed, suppose that this was the case. Since then, uj ◦ φξj ,λj → u ◦ φξ0,0 = u(ξ0)

pointwise Hn−1-a.e. and |uj ◦ φξj ,λj | = 1, we could use the Dominated Convergence

Theorem to infer that

u(ξ0) = −
∫
Sn−1

u(ξ0) dHn−1(x) = lim
j→∞
−
∫
Sn−1

uj ◦ φξj ,λj dHn−1 = 0, (2.2.19)

|u(ξ0)| = −
∫
Sn−1

|u(ξ0)| dHn−1(x) = lim
j→∞
−
∫
Sn−1

|uj ◦ φξj ,λj | dHn−1 = 1, (2.2.20)

and derive a contradiction. Having just�ed that 0 < λ ≤ 1, and since uj◦φξj ,λj → u◦φξ0,λ0

pointwise Hn−1-a.e. and |uj ◦ φξj ,λj | = 1, what we actually obtain by the Dominated

Convergence Theorem is that

−
∫
Sn−1

u ◦ φξ0,λ0 dHn−1 = 0.
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Let us conclude this Section by mentioning that the previous arguments can eas-

ily be modi�ed in order to give a compactness statement for sequences of orientation-

preserving\-reversing degree 1\-1 approximately conformal maps on Sn−1. For simplicity,

we present again the statement in the case of orientation-preserving degree 1 maps, the

other case being completely analogous.

Proposition 2.2.7. Let n ≥ 3 and (uj)j∈N ∈ W 1,n−1(Sn−1;Sn−1) be a sequence of Hn−1−
a.e. orientation-preserving maps of degree 1, which approximate in average the conformal

group of Sn−1 in the sense that

lim
j→∞
−
∫
Sn−1

((
|∇Tuj|2

n− 1

)n−1
2

−
√

det
(
∇Tutj∇Tuj

))
dHn−1 = 0, (2.2.21)

which as a condition is in this case equivalent to

lim
j→∞
−
∫
Sn−1

(
|∇Tuj|2

n− 1

)n−1
2

dHn−1 = 1. (2.2.22)

Then there exist Möbius transformations (φj)j∈N ∈ Conf+(Sn−1) and R ∈ SO(n) so that

up to a non-relabeled subsequence

uj ◦ φj → RidSn−1 strongly in W 1,n−1(Sn−1;Sn−1). (2.2.23)

Proof. By the degree one condition, we can again �nd sequences (ξj)j∈N ∈ Sn−1 and

(λj)j∈N ∈ (0, 1], so that after setting φj := φξj ,λj ∈ Conf+(Sn−1) and ũj := uj ◦ φj, we
have −

∫
Sn−1 ũj dHn−1 = 0. Thanks to the conformal invariance of the quantities involved,

(2.2.22) is equivalent to

lim
j→∞
−
∫
Sn−1

(
|∇T ũj|2

n− 1

)n−1
2

dHn−1 = 1. (2.2.24)

Since −
∫
Sn−1 ũj = 0, the sequence (ũj)j∈N is also uniformely bounded inW 1,n−1(Sn−1; Sn−1),

hence up to a non-relabeled subsequence converges weakly in W 1,n−1(Sn−1;Sn−1) (and up

to a further one also pointwiseHn−1-a.e.) to a map ũ ∈ W 1,n−1(Sn−1;Sn−1). Since ũj → ũ

strongly in Ln−1(Sn−1;Sn−1), we obtain in particular

−
∫
Sn−1

ũ dHn−1 = lim
j→∞
−
∫
Sn−1

ũj dHn−1 = 0, (2.2.25)

and by lower semicontinuity

−
∫
Sn−1

(
|∇T ũ|2

n− 1

)n−1
2

dHn−1 ≤ lim inf
j→∞

−
∫
Sn−1

(
|∇T ũj|2

n− 1

)n−1
2

dHn−1 = 1. (2.2.26)
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We can then apply the same argument as in the proof of Theorem 2.2.2., to end up with

the chain of inequalities

1 ≥ −
∫
Sn−1

(
|∇T ũ|2

n− 1

)n−1
2

≥
(
−
∫
Sn−1

|∇T ũ|2

n− 1

)n−1
2

≥
(
−
∫
Sn−1

|ũ|2
)n−1

2

= 1, (2.2.27)

the last equality holding again because |ũ(x)| = 1 for Hn−1-a.e. x ∈ Sn−1. With the same

reasoning as before, ũ(x) = Rx for some R ∈ O(n).

Through the previous arguments we actually obtained that

ũj ⇀ ũ weakly in W 1,n−1(Sn−1;Sn−1), −
∫
Sn−1

ũ = −
∫
Sn−1

ũj = 0,

−
∫
Sn−1

(
|∇T ũ|2

n− 1

)n−1
2

dHn−1 = lim
j→∞
−
∫
Sn−1

(
|∇T ũj|2

n− 1

)n−1
2

dHn−1 = 1, (2.2.28)

so actually ũj → ũ strongly in W 1,n−1(Sn−1;Sn−1). Finally, since the degree is stable

under this notion of convergence,

1 = degũ = −
∫
Sn−1

〈
Rx,

n−1∧
i=1

∂τi(Rx)
〉
dHn−1 = detR, i.e. R ∈ SO(n).
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Chapter 3

On the stability of Isom(Sn−1) among

almost isometric maps from Sn−1 to Rn

when n ≥ 2

In this Chapter we are concerned with approximate versions of Theorem 2.1.2., or actually

its slightly more general version, i.e. Theorem 2.1.5.. As we have remarked in Section

1.2, due to the abundance of isometric immersions of Sn−1 into Rn that are less regular

than C2, an extra information about the generalized isoperimetric de�cit produced by

the maps under consideration is necessary to expect stability of rigid motions among

(almost) isometric maps de�ned on Sn−1. As the reader will notice, the results of Section

3.1 are actually special cases of the ones in Section 3.2, but since the arguments take a

somewhat simpler form, we have chosen to proceed constructively and present the results

in two separate Sections.

3.1 The case of isometric maps with small isoperimet-

ric de�cit

Recalling the De�nition 2.1.1., let us denote by I(Sn−1;Rn) the class of all generalized

isometric maps from Sn−1 into Rn, i.e. all Lipschitz maps that satisfy (2.1.2) Hn−1-a.e.

on Sn−1. By Theorem 2.1.5., we have that the quantity

εu = 1− |Vn(u)| := 1−

∣∣∣∣∣−
∫
Sn−1

〈
u;

n−1∧
i=1

∂τiu

〉
dHn−1

∣∣∣∣∣ = 1−
∣∣∣∣−∫
Bn

det∇uh(x) dx

∣∣∣∣ (3.1.1)

is nonnegative for every u ∈ I(Sn−1;Rn), represents the generalized isoperimetric de�cit

related to u, and vanishes precisely when u is a rigid motion of Sn−1. It therefore pro-

vides a natural choice for the de�cit in terms of which the stability of Isom(Sn−1) inside
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I(Sn−1;Rn) is going to be examined. To begin with, we provide a compactness statement

related to Theorem 2.1.5., which we are going to use soon.

Lemma 3.1.1. Let n ≥ 2, (uk)k∈N ∈ I(Sn−1;Rn) and suppose that

lim
k→∞

εuk = 0. (3.1.2)

There exists O ∈ O(n) so that up to a non-relabeled subsequence

uk −−
∫
Sn−1

uk dHn−1 → OidSn−1 strongly in W 1,2(Sn−1;Rn). (3.1.3)

Proof. As the statement suggests, we can translate the maps by their centers of mass

and suppose without loss of generality that −
∫
Sn−1 uk dHn−1 = 0 for all k ∈ N. Then,

sup
k∈N
‖uk‖W 1,2(Sn−1) ≤

√
n

n− 1
· sup
k∈N
‖∇Tuk‖L2(Sn−1) =

√
n < +∞,

and we can extract a non-relabeled W 1,2-weakly convergent subsequence uk ⇀ u ∈
W 1,2(Sn−1;Rn). In particular,

−
∫
Sn−1

u dHn−1 = lim
k→∞
−
∫
Sn−1

uk dHn−1 = 0, (3.1.4)

−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≤ lim inf

k→∞
−
∫
Sn−1

|∇Tuk|2

n− 1
= 1, (3.1.5)

since the fact that (uk)k∈N are isometric implies that |∇Tuk|
2

n−1
= 1 pointwise Hn−1-a.e. on

Sn−1. For the same reason, and for all k ∈ N,

−
∫
Sn−1

∣∣∣∣∣
n−1∧
i=1

∂τiuk

∣∣∣∣∣
2

dHn−1 = −
∫
Sn−1

det(∇Tu
t
k∇Tuk) dHn−1 = 1, (3.1.6)

the integrands being equal to 1 pointwise Hn−1-a.e. on Sn−1. Up to a further subsequence

we can also assume that uk → u pointwise Hn−1-a.e. on Sn−1.

We can now argue as in the proof of Theorem 2.1.5. by estimating

1− εuk =

∣∣∣∣∣−
∫
Sn−1

〈
uk,

n−1∧
i=1

∂τiuk

〉
dHn−1

∣∣∣∣∣
≤
(
−
∫
Sn−1

|uk|2 dHn−1

) 1
2

−∫
Sn−1

∣∣∣∣∣
n−1∧
i=1

∂τiuk

∣∣∣∣∣
2

dHn−1

 1
2

(3.1.7)

=

(
−
∫
Sn−1

|uk|2 dHn−1

) 1
2

.
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By letting k →∞ and since uk → u strongly in L2(Sn−1;Rn), we deduce that

−
∫
Sn−1

|u|2 dHn−1 ≥ 1.

By the fact that −
∫
Sn−1 u dHn−1 = 0 and the Poincare inequality on Sn−1 once again,

1 ≥ −
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≥ −

∫
Sn−1

|u|2 dHn−1 ≥ 1. (3.1.8)

By the equality case we have again u(x) = Ax for some A ∈ Rn×n with |A|2 = n. Since

1 = −
∫
Sn−1

|∇Tu|2

n− 1
≤ lim

k→∞
−
∫
Sn−1

|∇Tuk|2

n− 1
= 1,

the weak L2-convergence of the gradients together with the convergence of their L2-norms

actually imply that uk → u := AidSn−1 stronglyW 1,2(Sn−1;Rn). It remains to justify that

|detA| = 1, which can be done similarly to the exact case.

Indeed, having deduced that ∇Tuk → ∇Tu strongly in L2(Sn−1), up to a further non-

relabeled subsequence we can also assume that ∇Tuk −→ ∇Tu pointwise Hn−1-a.e. on

Sn−1, so that also

gk :=

〈
uk,

n−1∧
i=1

∂τiuk

〉
−→

〈
u,

n−1∧
i=1

∂τiu

〉
, pointwise Hn−1 − a.e.,

|gk| ≤

∣∣∣∣∣
n−1∧
i=1

∂τiuk

∣∣∣∣∣ |uk| = |uk|, for every k ∈ N,

|uk| −→ |u| , pointwise Hn−1 − a.e.,

sup
k∈N
−
∫
Sn−1

|uk| dHn−1 ≤ sup
k∈N
‖uk‖L2(Sn−1) � +∞, since ‖uk‖L2(Sn−1) → 1.

We recall here once again that we are using the convention that all Lebesgue norms are

taken with respect to the normalized Hn−1-measure on Sn−1. By Lebesgue's dominated

convergence theorem we obtain

0 = lim
k→∞

εuk = lim
k→∞

(
1−

∣∣∣∣∣−
∫
Sn−1

〈
uk,

n−1∧
i=1

∂τiuk

〉
dHn−1

∣∣∣∣∣
)

= 1−
∣∣∣∣−∫
Sn−1

lim
k→∞

gk dHn−1

∣∣∣∣
= 1−

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu

〉
dHn−1

∣∣∣∣∣ = 1−
∣∣∣∣−∫
Bn

det∇uh dx
∣∣∣∣ = 1− |detA| ,

i.e. |detA| = 1 and together with the fact that |A|2 = n, we conclude that A ∈ O(n).

The previous Lemma and its proof can also be made quantitative, as the next Theorem

suggests.
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Theorem 3.1.2. Let n ≥ 2. There exists a dimensional constant Cn > 0 so that for

every u ∈ I(Sn−1;Rn) there exists O ∈ O(n) such that

−
∫
Sn−1

|∇Tu−OPT |2 dHn−1 ≤ Cnεu. (3.1.9)

Proof. First of all, for every map u ∈ I(Sn−1;Rn) and O ∈ O(n) it is trivial that

−
∫
Sn−1

|∇Tu−OPT |2 ≤ 2

(
−
∫
Sn−1

|∇Tu|2 +−
∫
Sn−1

|OPT |2
)
≤ 4(n− 1).

Therefore, it su�ces to prove the theorem in the regime where εu > 0 is smaller than a

su�ciently small dimensional constant that will be chosen later, say 0 < εu ≤ ε0(n)� 1.

Without loss of generality, after possibly translating u by its center of mass if necessary,

we can assume as always that −
∫
Sn−1 u dHn−1 = 0.

Step 1. (Proof of the estimate in the W 1,2(Sn−1)-vicinity of the idSn−1)

We �rst prove a local version of the estimate under the extra assumption that

−
∫
Sn−1

|∇Tu− PT |2 dHn−1 ≤ θ2, (3.1.10)

where θ := θ(n) > 0 is a su�ciently small constant that will also be chosen later. In what

follows now, we will always assume that θ is su�ciently small, so that all the subsequent

arguments hold.

Since the map u is isometric, as we have already seen, it satis�es the pointwise identity

|∇Tu|2

n− 1
= 1 Hn−1 − a.e. on Sn−1, (3.1.11)

and averaging this identity on Sn−1 results in

−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 = 1. (3.1.12)

This last equation (3.1.12) enables us to rewrite

−
∫
Sn−1

|u|2 dHn−1 = 1− 1 +−
∫
Sn−1

|u|2 dHn−1

⇐⇒ −
∫
Sn−1

|u|2 dHn−1 = 1−
[
−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 −−

∫
Sn−1

|u|2 dHn−1

]
. (3.1.13)

If we now couple (3.1.7) with u in the place of uk (and raised to the power 2) together

with (3.1.13), we obtain

(1− εu)2 ≤
(
−
∫
Sn−1

|u|2 dHn−1

)−∫
Sn−1

∣∣∣∣∣
n−1∧
i=1

∂τiu

∣∣∣∣∣
2

dHn−1

 = −
∫
Sn−1

|u|2 dHn−1

1− 2εu + ε2
u ≤ 1−

[
−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 −−

∫
Sn−1

|u|2 dHn−1

]
,
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which implies that

−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 −−

∫
Sn−1

|u|2 dHn−1 ≤ 2εu − ε2
u,

i.e.

−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 −−

∫
Sn−1

|u|2 dHn−1 ≤ 2εu. (3.1.14)

Once again, we encounter a familiar nonnegative quantity on the left hand side, i.e. the

de�cit of u in the L2-Poincare inequality for maps with zero average on Sn−1.

For every k ∈ N we denote by Hn,k the subspace ofW 1,2(Sn−1;Rn) consisting of vector

�elds whose components are all k-th order spherical harmonics (see also Appendix B),

so that W 1,2(Sn−1;Rn) =
⊕∞

k=0Hn,k, the orthogonal sum being taken with respect to

the W 1,2-inner product. Let us also denote by Πn,k : W 1,2(Sn−1;Rn) 7→ Hn,k the corre-

sponding orthogonal projection. In our case of consideration, Πn,0u = −
∫
Sn−1 u dHn−1 = 0

and as we mention in Remark B.0.1., one always has that Πn,1u = ∇uh(0)x. The �rst

non-trivial eigenvalue of the Laplace-Beltrami operator on Sn−1 is λn,1 = n − 1 and the

second one is λn,2 = 2n. By basic properties of the decomposition in spherical harmonics

(see the Remark B.0.2.) we have

−
∫
Sn−1

(
|∇Tu|2

n− 1
− |u|2

)
= −
∫
Sn−1

(
|∇Tu−∇uh(0)PT |2

n− 1
− |u−∇uh(0)x|2

)
≥ −
∫
Sn−1

|∇Tu−∇uh(0)PT |2

n− 1
−−
∫
Sn−1

|∇Tu−∇uh(0)PT |2

2n

=

(
1

n− 1
− 1

2n

)
−
∫
Sn−1

|∇Tu−∇uh(0)PT |2

=
n+ 1

2n(n− 1)
−
∫
Sn−1

|∇Tu−∇uh(0)PT |2, (3.1.15)

so that by combining (3.1.14) with (3.1.15) we arrive at the estimate,

−
∫
Sn−1

|∇Tu−∇uh(0)PT |2 dHn−1 ≤ 4n(n− 1)

n+ 1
εu. (3.1.16)

What remains to be justi�ed is why in (3.1.16) one can replace ∇uh(0) with a matrix

belonging to O(n), and in view of assumption (3.1.10) with a matrix belonging to SO(n)

for this �rst step. This is actually the point where we are going to make use of this extra

assumption, and in the second step we are going to get rid of it by using the compactness

Lemma 3.1.1.. As said, the parameter θ > 0 will always be considered su�ciently small
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depending �nally only on n, so that all subsequent statements are true.

By the mean-value property of harmonic functions and Remark B.0.4.,

|∇uh(0)− In|2 =

∣∣∣∣−∫
Bn
∇uh − In

∣∣∣∣2 ≤ −∫
Bn
|∇uh − In|2 ≤

n

n− 1
−
∫
Sn−1

|∇Tu− PT |2 ≤
nθ2

n− 1
.

In particular, det∇uh(0) > 0 and so∇uh(0) = R0

√
∇uh(0)t∇uh(0) for some R0 ∈ SO(n),

hence

dist2(∇uh(0), SO(n)) = |
√
∇uh(0)t∇uh(0)− In|2 = |∇uh(0)−R0|2

≤ |∇uh(0)− In|2 ≤ nθ2

n− 1
.

If we label 0 < µ1 ≤ · · · ≤ µn the eigenvalues of the symmetric positive-de�nite matrix√
∇uh(0)t∇uh(0), and also for every i = 1, . . . , n set λi := µi− 1, the previous inequality

can be rewritten as

Λ2 :=
n∑
i=1

λ2
i =

n∑
i=1

(µi − 1)2 =
∣∣∣√∇uh(0)t∇uh(0)− In

∣∣∣2 ≤ nθ2

n− 1
. (3.1.17)

We now claim that there exists a constant cn,θ > 0 so that

∣∣det∇uh(0)− 1
∣∣ ≤ cn,θεu. (3.1.18)

Let us suppose for the moment that (3.1.18) holds, and see how to complete the proof of

this �rst step.

Since det∇uh(0)− 1 =
∏n

i=1 µi− 1 =
∏n

i=1(λi + 1)− 1, we can expand the polynomial

in the eigenvalues to obtain

det∇uh(0)− 1 =
n∑
i=1

λi +
∑
i 6=j

λiλj +
∑
i 6=j 6=k

λiλjλk + · · ·+ λ1λ2 · · ·λn. (3.1.19)

By choosing θ > 0 su�ciently small, we can make

Λ :=

(
n∑
i=1

λ2
i

) 1
2

≤
√

n

n− 1
θ � 1, (3.1.20)

so that for a dimensional constant c1,n > 0

∑
i 6=j 6=k

λiλjλk+ · · ·+λ1λ2 · · ·λn = O(|Λ|3) ≤ c1,n|Λ|3 ≤
√

n

n− 1
c1,nθ|Λ|2 ≤

1

4
Λ2, (3.1.21)
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if θ > 0 is chosen su�ciently small further. Setting for convenience λ :=
∑n

i=1 λi, and

combining (3.1.18), (3.1.19) and (3.1.21), we obtain

det∇uh(0)− 1 ≤ λ+
1

2

(
λ2 − Λ2

)
+

1

4
Λ2

=⇒ Λ2

4
≤
(
λ+

λ2

2

)
+ |1− det∇uh(0)|

=⇒ Λ2

4
≤
(
λ+

λ2

2

)
+ cn,θεu. (3.1.22)

In order to estimate the term
(
λ+ λ2

2

)
, we merely observe that

|∇uh(0)|2

n
≤ −
∫
Bn

|∇uh|2

n
dx ≤ −

∫
Sn−1

|∇Tu|2

n− 1
dHn−1 = 1

=⇒
∑n

i=1(λi + 1)2

n
=

∑n
i=1 µ

2
i

n
=
|∇uh(0)|2

n
≤ 1

=⇒
n∑
i=1

λ2
i + 2

n∑
i=1

λi ≤ 0

⇐⇒ λ ≤ −Λ2

2
≤ 0. (3.1.23)

In view of (3.1.20) we have |λ| ≤
√
nΛ ≤ nθ√

n−1
� 1, and therefore the previously

mentioned term in the parenthesis is estimated by

λ+
λ2

2
≤ λ+

nθ

2
√
n− 1

|λ| =
(

1− nθ

2
√
n− 1

)
λ ≤ 0,

since by choosing θ > 0 even smaller if necessary, we can also achieve 1− nθ
2
√
n−1

> 0. The

term (λ+ λ2

2
) is therefore nonpositive and (3.1.22) gives

dist2(∇uh(0);SO(n)) = |∇uh(0)−R0|2 = Λ2 ≤ 4cn,θεu. (3.1.24)

This would complete the proof of the �rst step, since going back to (3.1.16), we get

−
∫
Sn−1

|∇Tu−R0PT |2 ≤ 2

(
−
∫
Sn−1

|∇Tu−∇uh(0)PT |2 +
n− 1

n
|∇uh(0)−R0|2

)
≤ c2,nεu, (3.1.25)

where for example c2,n = 8(n − 1)
(

n
n+1

+
cn,θ
n

)
> 0, for this θ > 0 that was in the end

chosen to be a su�ciently small dimensional constant.

It remains to prove (3.1.18), which is actually the key estimate for this step. To do

so we use again the assumption (3.1.10), which as we have seen immediately implies that

43



∇uh(0) is su�ciently close to In, in particular |∇uh(0)− In| ≤
√

n
n−1

θ � 1 . This in turn

implies that there exists a su�ciently small constant c1,n,θ > 0 so that

|det∇uh(0)− 1| ≤ c1,n,θ and |∇uh(0)−1 − In| ≤ c1,n,θ. (3.1.26)

An explicit value for c1,n,θ is computable but not extremely important (but obviously can

be made small as θ is chosen small depending only on the dimension).

The trick here is to write the signed-volume-term which appears in the isoperimetric

de�cit εu as

−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu

〉
dHn−1 = −

∫
Bn

det∇uh = det∇uh(0) · −
∫
Bn

det
(
In +∇wh(x)

)
, (3.1.27)

where

w(x) := ∇uh(0)−1
(
u(x)−∇uh(0)x

)
. (3.1.28)

Because of (3.1.26), the map w satis�es

‖∇Tw‖L∞(Sn−1) = ‖∇uh(0)−1∇Tu−PT‖L∞ ≤ c2,n,θ :=
√
n− 1(

√
n+ c1,n,θ + 1). (3.1.29)

In the right hand side of (3.1.27), we can use the expansion of the signed-volume-term

around the identity (which we exhibit in Appendix C), to obtain

−
∫
Bn

det(In +∇wh) dx = 1 + n−
∫
Sn−1

〈w, x〉 dHn−1 +QVn(w) +−
∫
Sn−1

RVn(w,∇Tw) dHn−1.

Notice that the linear term in the last expression is vanishing, because

n−
∫
Sn−1

〈w, x〉 dHn−1 = −
∫
Bn

divwh dHn−1 = −
∫
Bn

Tr(∇wh) dx = Tr

(
−
∫
Bn
∇wh dx

)
= Tr

[
∇uh(0)−1

(
−
∫
Bn
∇uh(x) dx−∇uh(0)

)]
= 0, (3.1.30)

the last equality following again from the mean-value property of harmonic functions.

For the higher order terms including the quadratic one in them, the bound on the

Lipschitz constant of w implies that also ‖w‖L∞(Sn−1) �n,θ +∞ (note that −
∫
Sn−1 w = 0),

and therefore there also exists a constant c3,n,θ > 0 (which need not be small of course),

such that

44



∣∣∣∣QVn(w) +−
∫
Sn−1

RVn(w,∇Tw) dHn−1

∣∣∣∣ ≤ c3,n,θ−
∫
Sn−1

|∇Tw|2 dHn−1

= c3,n,θ−
∫
Sn−1

|∇uh(0)−1(∇Tu−∇uh(0)PT )|2

(3.1.26)

≤ c4,n,θ−
∫
Sn−1

|∇Tu−∇uh(0)PT |2 dHn−1

(3.1.16)

≤ c5,n,θ · εu ≤ c5,n,θ · ε0(n)� 1, (3.1.31)

for some constants c4,n,θ > 0 and c5,n,θ > 0 that can explicitely be de�ned in terms of the

previous ones. By taking the absolute value in (3.1.27) and by using the expansion of the

signed-volumed term on the right hand side, we get∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣ = det∇uh(0)

(
1 +QVn(w̃) +−

∫
Sn−1

RVn(w̃,∇T w̃)

)
, (3.1.32)

since (3.1.26) and (3.1.31) imply that both factors of the right hand side are actually

positive for θ > 0 and ε0 > 0 both su�ciently small depending only on n. Rearranging

terms, taking the absolute values again and using the triangle inequality, we arrive at

|1− det∇uh(0)| ≤

(
1−

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣
)

+ det∇uh(0)

∣∣∣∣QVn(w) +−
∫
Sn−1

RVn(w,∇Tw)

∣∣∣∣
(3.1.31)

≤
(
c5,n,θ(1 + c1,n,θ) + 1

)
εu, (3.1.33)

and the proof of this �rst step is now complete.

Step 2. (Reduction to maps in the W 1,2(Sn−1)-vicinity of the idSn−1)

The reduction to Step 1 is now a standard compactness argument. What we would like

to prove is that there exists a constant Cn > 0 so that

sup
u∈I(Sn−1;Rn)

min
O∈O(n)

−
∫
Sn−1 |∇Tu−OPT |2 dHn−1

εu
≤ Cn � +∞, (3.1.34)

whenever the denominator is non-zero. We argue by contradiction and suppose that the

latter claim is false. Then, for every k ∈ N there exist uk ∈ I(Sn−1;Rn) with εuk > 0 and

Ok ∈ O(n) such that

−
∫
Sn−1

|∇Tuk −OkPT |2 dHn−1 = min
O∈O(n)

−
∫
Sn−1

|∇Tuk −OPT |2 dHn−1 (3.1.35)
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and
−
∫
Sn−1 |∇Tuk −OkPT |2 dHn−1

εuk
≥ k. (3.1.36)

In particular,

εuk ≤
1

k
−
∫
Sn−1

|∇Tuk −OkPT |2 dHn−1 ≤ 4(n− 1)

k
,

and letting k →∞ we see that along this sequence, limk→∞ εuk = 0.

By Lemma 3.1.1. and up to passing to a subsequence, we can �nd O0 ∈ O(n) so that

uk − −
∫
Sn−1 uk dHn−1 → O0idSn−1 strongly in W 1,2(Sn−1;Rn). Without loss of generality

(up to considering Ot
0uk instead of uk if necessary) we can also suppose that O0 = In.

Then, for the dimensional constant θ chosen in Step 1, we can �nd k0 := k0(θ) ∈ N such

that

−
∫
Sn−1

|∇Tuk − PT |2 dHn−1 ≤ θ2 ∀k ≥ k0. (3.1.37)

In other words, after also translating by the centers of mass if necessary, the subsequence

(uk)k≥k0 satis�es the condition −
∫
Sn−1 uk dHn−1 = 0 and ful�lls also the apriori closeness to

the identity assumption (3.1.10). By Step 1, we deduce that there exist (Rk)k≥k0 ∈ SO(n)

such that

−
∫
Sn−1

|∇Tuk −RkPT |2 ≤ c2,nεuk ∀k ≥ k0. (3.1.38)

Combining now (3.1.35), (3.1.36) and (3.1.38), we arrive at the desired contradiction.

A closer inspection of the proofs shows that Lemma 3.1.1. and Theorem 3.1.2. remain

true for the more general class of short maps, that is maps u ∈ W 1,∞(Sn−1;Rn) for which

∇Tu
t∇Tu ≤ Ix for Hn−1-a.e. x ∈ Sn−1 in the sense of quadratic forms. One only needs

to replace the exact equalities by |∇Tu|
2

n−1
≤ 1,

∣∣∧n−1
i=1 ∂τiu

∣∣ ≤ 1, whenever they are used.

Remark 3.1.3. It is also easy to construct examples showing that the estimate (3.1.9) is

optimal in the norm appearing on the left hand side and the de�cit on the right hand side,

i.e. the exponent 1 with which εu appears cannot be improved. An example in dimension

n = 2, which can easily be generalized in higher dimensions is the following.

For 0 < ε� 2π, let uε : S1 7→ R2 be de�ned in polar coordinates via

uε(θ) :=


(cos θ, sin θ); 0 ≤ θ < 3π

2
− ε

2
,(

cos θ, 2 sin
(

3π
2
− ε

2

)
− sin θ

)
; 3π

2
− ε

2
≤ θ < 3π

2
+ ε

2

(cos θ, sin θ); 3π
2

+ ε
2
≤ θ < 2π

 .

For each 0 < ε� 2π, the map uε is an isometric map on S1, being essentially the identity

transformation except for a small circular arc of angle ε, where it is a �ip with respect

to the horizontal line at height y0 = sin
(

3π
2
− ε

2

)
. Obviously, ∇Tuε → ∇T idS1 strongly in
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L2(S1;R2) as ε→ 0+ and one can readily see that

−
∫
S1

|∇Tuε −∇T idS1|2 dH1 ∼
∫ 2π

0

|∂θuε(θ)− ∂θidS1(θ)|2 dθ

=

∫ 3π
2

+ ε
2

3π
2
− ε

2

|(− sin θ,− cos θ)− (− sin θ, cos θ)|2 dθ

= 4

∫ 3π
2

+ ε
2

3π
2
− ε

2

cos2(θ) dθ

= 2(ε− sin ε) = O(ε3), for 0 < ε� 2π.

On the other hand, using elementary plane-geometry formulas for the area of circular

triangles, we can compute the area of the �double arc-region of the unit disc missed by

uε�, so that also

εuε =
2

π

(
π · ε

2π
− 1

2
sin ε

)
=

1

π
(ε− sin ε) = O(ε3), for 0 < ε� 2π.

In higher dimensions one can construct similar examples by de�ning maps that are the

identity outside a small angular neighbourhood of an equator and in the angular neigh-

bourhood being again �ips in Rn with respect to the appropriate a�ne hyperplanes.

3.2 The case of almost isometric maps with small isoperi-

metric de�cit

3.2.1 Maps with an apriori bound on their Lipschitz constant

We would like now to take a step further and see how the results of the previous Section

can be generalized to maps that are not necessarily isometric, but are almost isometric

in the average sense introduced in Section 1.2. Since most of the arguments in the proofs

have appeared already in Section 3.1, we will mainly describe the points that have to

be slightly modi�ed, although the experienced reader may easily notice how the proofs

should be adapted in this more general setting.

It will be convenient (and is also natural in many contexts) to work with Lipschitz

maps that enjoy an apriori bound in their Lipschitz constant, something that will be a

hypothesis for us in this Subsection, while in the next one we discuss how this hypoth-

esis can be relaxed via the use of a standard truncation argument. We �rst revise the

de�nitions of our two de�cits.
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De�nition 3.2.1. Given a map u ∈ W 1,2(Sn−1;Rn) its isometric de�cit is de�ned as

δu :=

(
−
∫
Sn−1

∣∣∣√∇Tut∇Tu− Ix
∣∣∣2 dHn−1

) 1
2

(3.2.1)

and its generalized isoperimetric de�cit as

εu :=
(

1− |Vn(u)|
)

+
:=

(
1−

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣
)

+

. (3.2.2)

Here, we use the convention that (−∞)+ = 0. Note that we always have 0 ≤ εu ≤ 1,

even when |Vn(u)| =∞ and actually

0 ≤ 1− εu ≤ |Vn(u)| for every u ∈ W 1,2(Sn−1;Rn). (3.2.3)

Recall that by the generalized isoperimetric inequality, |Vn(u)| < ∞ whenever the map

u ∈ W 1,n−1(Sn−1;Rn).

In the context of this Subsection, a generalization of Lemma 3.1.1. is provided by

Lemma 3.2.2. Let n ≥ 2 and M > 0 be given. Consider a sequence of Lipschitz maps

(uk)k∈N : Sn−1 7→ Rn which for all k ∈ N satisfy the Lipschitz bound ‖∇Tuk‖L∞(Sn−1) ≤M ,

and suppose that

lim
k→∞

δuk = lim
k→∞

εuk = 0. (3.2.4)

Then there exists O ∈ O(n) so that up to a non-relabeled subsequence

uk −−
∫
Sn−1

uk dHn−1 → OidSn−1 strongly W 1,2(Sn−1;Rn). (3.2.5)

Proof. Similarly to the proof of Lemma 3.1.1., we can assume without loss of generality

that

−
∫
Sn−1

uk dHn−1 = 0 ∀ k ∈ N. (3.2.6)

Even without the assumption that (uk)k∈N have uniformely bounded Lipschitz constants,

since −
∫
Sn−1 |∇Tuk|2 dHn−1 ≤ 2(δ2

uk
+ n− 1) for all k ∈ N, by (3.2.4) and (3.2.6) we have

again

sup
k∈N
‖uk‖W 1,2(Sn−1) � +∞.

Extracting a non-relabeledW 1,2-weakly convergent subsequence uk ⇀ u ∈ W 1,2(Sn−1;Rn)

which converges also pointwise Hn−1−a.e., we have again

−
∫
Sn−1

u dHn−1 = lim
k→∞
−
∫
Sn−1

uk dHn−1 = 0,

−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≤ lim inf

k→∞
−
∫
Sn−1

|∇Tuk|2

n− 1
dHn−1 = 1.
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The last equality here is justi�ed by the trivial estimate

∣∣∣∣−∫
Sn−1

|∇Tuk|2

n− 1
dHn−1 − 1

∣∣∣∣ =
1

n− 1

∣∣∣∣−∫
Sn−1

Tr
[(√

∇Tutk∇Tuk

)2

− I2
x

]
dHn−1

∣∣∣∣
≤ 1√

n− 1
−
∫
Sn−1

∣∣∣∣(√∇Tutk∇Tuk

)2

− I2
x

∣∣∣∣ dHn−1

≤ 1√
n− 1

(
‖∇Tuk‖L∞ +

√
n− 1

)
−
∫
Sn−1

∣∣∣∣√∇Tutk∇Tuk − Ix
∣∣∣∣

. c1,n,Mδuk , (3.2.7)

where c1,n,M := M√
n−1

+ 1 > 0.

Since the determinant is a Lipschitz function and sup
k∈N
‖∇Tuk‖L∞(Sn−1) ≤ M , we can

replace in this setting the exact identity (3.1.6) by the estimate

−
∫
Sn−1

det∇Tu
t
k∇Tuk dHn−1 ≤ 1 +−

∫
Sn−1

∣∣det
(
∇Tu

t
k∇Tuk

)
− 1
∣∣ dHn−1

≤ 1 + c̃n,M−
∫
Sn−1

∣∣∇Tu
t
k∇Tuk − Ix

∣∣ dHn−1

≤ 1 + c2,n,Mδuk , (3.2.8)

where c̃n,M > 0 comes from the Lipschitz constant of the determinant in the ball BM2(0)

of R(n−1)×(n−1) and c2,n,M := c̃n,M(M +
√
n− 1) > 0.

Since 0 ≤ 1− εu ≤
∣∣Vn(u)

∣∣, we can still use (3.1.7) together with (3.2.8), apply again

the Poincare inequality and then (3.2.7), to obtain

(1− εuk)2 ≤
(
−
∫
S2

|uk|2 dHn−1

)
· (1 + c2,n,Mδuk)

≤
(
−
∫
Sn−1

|∇Tuk|2

n− 1
dHn−1

)
· (1 + c2,n,Mδuk)

≤
(
1 + c1,n,Mδuk

)(
1 + c2,n,Mδuk

)
.

(3.2.9)

By the assumptions that limk→∞ δuk = limk→∞ εuk = 0 and since uk → u strongly in

L2(Sn−1;Rn), we can let k →∞ in the last chain of inequalities to obtain again

−
∫
Sn−1

|u|2 dHn−1 = lim
k→∞
−
∫
Sn−1

|uk|2 dHn−1 = 1. (3.2.10)

Therefore, also in this slightly more general setting the limiting map u is such that
−
∫
Sn−1 u dHn−1 = 0 and

1 ≥ −
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≥ −

∫
Sn−1

|u|2 dHn−1 = 1,
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i.e. again u(x) = Ax for some A ∈ Rn×n with |A|2 = n, and uk−−
∫
Sn−1 uk → u := AidSn−1

in the strong W 1,2(Sn−1;Rn)-topology.

As in the end of the proof of Lemma 3.1.1. we can justify that |detA| = 1. Indeed,

up to a further non-relabeled subsequence we can again assume now that ∇Tuk → ∇Tu

pointwise Hn−1−a.e. on Sn−1 and by the assumption on the uniform Lipschitz bound,

gk :=

〈
uk,

n−1∧
i=1

∂τiuk

〉
→

〈
u,

n−1∧
i=1

∂τiu

〉
, pointwise Hn−1 − a.e.,

|gk| ≤

∣∣∣∣∣
n−1∧
i=1

∂τiuk

∣∣∣∣∣ |uk| ≤
(
M2

n− 1

)n−1
2

|uk|, for every k ∈ N,

|uk| −→ |u|, pointwise Hn−1 − a.e.,

sup
k∈N
−
∫
Sn−1

|uk| dHn−1 ≤ sup
k∈N
‖uk‖L2(Sn−1) � +∞, since ‖uk‖L2(Sn−1) → 1,

and we can again use Lebesgue's Dominated Convergence Theorem in the assumption

that limk→∞ εuk = 0 to conclude. Indeed, by the continuity of the positive part function,

0 = lim
k→∞

εuk = lim
k→∞

(
1−

∣∣∣∣−∫
Sn−1

gk dHn−1

∣∣∣∣)
+

=

(
1−

∣∣∣∣−∫
Sn−1

lim
k→∞

gk dHn−1

∣∣∣∣)
+

=
(

1− |Vn(u)|
)

+
=

(
1−

∣∣∣∣−∫
Bn

det(Ax)h dx

∣∣∣∣)
+

=
(
1−

∣∣detA
∣∣)

+
,

i.e. |detA| ≥ 1. If we now consider the polar decomposition A = O
√
AtA whereO ∈ O(n),

and label 0 ≤ µ1 ≤ · · · ≤ µn the eigenvalues of
√
AtA, then by the arithmetic mean-

geometric mean inequality we obtain again

1 =

(
|A|2

n

)n
2

≥ |detA| ≥ 1 =⇒ |detA| = |A|
2

n
= 1, i.e. A ∈ O(n).

The proof of the previous Lemma also contains essentially all the modi�cations that

are necessary in order to prove the more general version of Theorem 3.1.2., namely

Theorem 3.2.3. Let n ≥ 2 and M > 0 be given. There exists a constant Cn,M > 0 such

that for every map u ∈ W 1,2(Sn−1;Rn) which is such that

u ∈ W 1,∞(Sn−1;Rn) with ‖∇Tu‖L∞(Sn−1) ≤M, (HM)

there exists O ∈ O(n) so that

−
∫
Sn−1

|∇Tu−OPT |2 dHn−1 ≤ Cn,M (δu + εu) . (3.2.11)
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Before giving the proof of the Theorem, let us make some simple remarks. First of all

we can without loss of generality focus on the regime where the isometric de�cit is small,

say 0 ≤ δu ≤ 1, because if δu > 1 then one trivially has that for every O ∈ O(n),

−
∫
Sn−1

|∇Tu−OPT |2 dHn−1 ≤ 2−
∫
Sn−1

(
2
∣∣∣√∇Tut∇Tu− Ix

∣∣∣2 + 2|Ix|2 + |OPT |2
)

≤ 4δ2
u + 6(n− 1) ≤ 4δ2

u + 6(n− 1)δ2
u

≤ (6n− 2)δ2
u,

and the hypothesis (HM) as well as the presence of the generalized isoperimetric de�cit

are of course obsolete for this trivial stability result.

In the case δu = 0, i.e. the case of isometric maps u : Sn−1 7→ Rn, the hypothesis

(HM) is trivially satis�ed with M =
√
n− 1 and (3.2.11) reduces to (3.1.9) with a purely

dimensional constant.

Another interesting point in the estimate is that under the hypothesis (HM) (or the

relaxed hypotheses that we will mention in the next Subsection), the contribution of the

�isoperimetric de�cit� can be absorbed into the isometric one whenever |Vn(u)| > 1.

Proof. First of all, by the above reasoning it su�ces to actually prove our Theorem

in the regime where both de�cits are su�ciently small, say 0 ≤ δu ≤ δ0 � 1 and

0 ≤ εu ≤ ε0 � 1 for some constants δ0, ε0 depending possibly both on n and M and

which will again be chosen su�ciently small later. As always, we can also assume that
−
∫
Sn−1 u dHn−1 = 0. The proof is then divided in the same two steps as before.

Step 1. (Proof for maps in the W 1,2(Sn−1)-vicinity of the idSn−1)

Again, we �rst assume that

−
∫
Sn−1

|∇Tu− PT |2 dHn−1 ≤ θ2, (3.2.12)

where θ > 0 will be chosen in the end su�ciently small depending possibly both on n

and M .

Instead of (3.1.12) which followed by averaging a pointwise identity, we can now use

its approximate version, i.e. (3.2.7) with u instead of uk, to obtain∣∣∣∣−∫
Sn−1

|∇Tu|2

n− 1
dHn−1 − 1

∣∣∣∣ ≤ c1,n,Mδu (3.2.13)

⇐⇒ − 1− c1,n,Mδu ≤ −
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 ≤ 1 + c1,n,Mδu, (3.2.14)
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which in turn gives an approximate version of (3.1.13), namely

−
∫
Sn−1

|u|2 dHn−1 ≤ 1 + c1,n,Mδu −
[
−
∫
Sn−1

|∇Tu|2

n− 1
dHn−1 −−

∫
Sn−1

|u|2 dHn−1

]
. (3.2.15)

The �rst inequality in (3.2.9) for u instead of uk now gives

(1− εu)2 ≤
[
1 + c1,n,Mδu −−

∫
Sn−1

(
|∇Tu|2

n− 1
− |u|2

)
dHn−1

]
[1 + c2,n,Mδu] . (3.2.16)

Since −
∫
Sn−1

(
|∇Tu|2
n−1

− |u|2
)
dHn−1 ≥ 0, we can rearrange terms, discard the nonpositive

terms appearing on the right hand side and use the fact that we have assumed without

loss of generality that 0 ≤ δu ≤ 1, to arrive with the same arguments as before at the

analogue of (3.1.16), i.e.

−
∫
Sn−1

|∇Tu−∇uh(0)PT |2 dHn−1 ≤ c3,n,M(δu + εu), (3.2.17)

for a constant c3,n,M > 0 that can be made explicit in terms of c1,n,M and c2,n,M .

To justify why ∇uh(0) can be replaced by a matrix R ∈ SO(n), the procedure is

the same as in the proof of Theorem 3.1.2. for the corresponding part. Analogously to

(3.1.18), one can use the extra assumption (3.2.12) to prove that there exists a constant

cn,θ,M > 0 such that

|det∇uh(0)− 1| ≤ cn,θ,M(δu + εu). (3.2.18)

Having established this estimate, the proof of the �rst step can be completed as before,

modulo the following minor di�erence. Keeping the same notation as in the proof of

Theorem 3.1.2., the analogue of (3.1.22) via the use now of (3.2.18) would be

Λ2

4
≤
(
λ+

λ2

2

)
+ cn,θ,M(δu + εu). (3.2.19)

The term
(
λ+ λ2

2

)
is now not necessarily nonpositive, but still

|∇uh(0)|2

n
≤ −
∫
Sn−1

|∇Tu|2

n− 1

(3.2.13)

≤ 1 + c1,n,Mδu =⇒ λ ≤ −Λ2

2
+ c4,n,Mδu ≤ c4,n,Mδu,

where c4,n,M :=
nc1,n,M

2
> 0. In constrast to (3.1.23), λ now does not necessarily have a

sign, so we consider two cases:

(i) If λ ≤ 0, the argument is identical to the one in Theorem 3.1.2..
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(ii) If λ > 0, by (3.2.19) we have

dist2(∇uh(0);SO(n)) = Λ2 ≤ 4

(
λ+

λ2

2

)
+ 4cn,θ,M(δu + εu)

≤ 4c4,n,Mδu + 2c2
4,n,Mδ

2
u + 4cn,θ,M(δu + εu)

≤ c5,n,θ,M (δu + εu) , (3.2.20)

for a constant c5,n,θ,M > 0 that can be de�ned in terms of c4,n,θ,M .

The proof can then be �nished by choosing θ > 0 su�ciently small depending only on

n,M .

Returning to the proof of (3.2.18), it is also essentially the same as in the isometric

case. By writing again

Vn(u) = det∇uh(0)

(
1 +QVn(w) +−

∫
Sn−1

RVn(w,∇Tw)

)
, (3.2.21)

we have det∇uh(0) > 0 because of (3.2.12), while similarly to (3.1.31), the estimates

(3.2.17) and (3.2.12) imply that∣∣∣∣QVn(w) +−
∫
Sn−1

RVn(w,∇Tw)

∣∣∣∣ ≤ c6,n,θ,M(δu + εu) ≤ c6,n,θ,M(δ0 + ε0)� 1, (3.2.22)

as long as we choose θ su�ciently small and then the constants δ0 > 0, ε0 > 0 small

depending on n,M . In particular Vn(u) > 0 again, and we can consider the following two

cases:

(i) If Vn(u) > 1, then (3.2.21), (3.2.12), (3.2.22) together with the generalized isoperi-

metric inequality (A.0.1) imply that

|det∇uh(0)− 1| ≤ (Vn(u)− 1) + det∇uh(0)

∣∣∣∣QVn(w) +−
∫
Sn−1

RVn(w,∇Tw)

∣∣∣∣
≤
(
−
∫
Sn−1

det
(
Ix +

(√
∇Tut∇Tu− Ix

))) n
n−1

− 1 + c̃n,θ,M(δu + εu)

≤
(
−
∫
Sn−1

(
1 +On,M

(∣∣√∇Tut∇Tu− Ix
∣∣))) n

n−1

− 1 + c̃n,θ,M(δu + εu)

≤
(
1 +On,M

(
δu
)) n

n−1 − 1 + c̃n,θ,M(δu + εu)

.n,θ,M (δu + εu).
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(ii) If 0 ≤ Vn(u) ≤ 1, then again

|1− det∇uh(0)| ≤ |1− Vn(u)|+ det∇uh(0)

∣∣∣∣QVn(w̃) +−
∫
Sn−1

RVn(w,∇Tw)

∣∣∣∣
≤ (1− Vn(u))+ + c̃n,θ,M(δu + εu)

.n,θ,M (δu + εu).

Step 2. (Reduction to maps in the W 1,2(Sn−1)-vicinity of the idSn−1)

As in Step 2 in the proof of Theorem 3.1.2., �xing the centers of mass of the maps to 0,

the set of mappings under consideration is

C :=

{
u ∈ W 1,∞(Sn−1;Rn) : −

∫
Sn−1

u dHn−1 = 0, ‖∇Tu‖L∞(Sn−1) ≤M, δu + εu > 0

}
,

and what we would like to prove is that there exists a constant Cn,M > 0 so that

sup
u∈C

min
O∈O(n)

−
∫
Sn−1 |∇Tu−OPT |2 dHn−1

δu + εu
≤ Cn,M � +∞. (3.2.23)

Arguing again by contradiction, if the latter is false, then for every k ∈ N there exists

uk ∈ C and Ok ∈ O(n) such that

−
∫
Sn−1

|∇Tuk −OkPT |2 dHn−1 = min
O∈O(n)

−
∫
Sn−1

|∇Tu−OPT |2 dHn−1 (3.2.24)

and
−
∫
Sn−1 |∇Tuk −OkPT |2 dHn−1

δuk + εuk
≥ k. (3.2.25)

In particular,

δuk + εuk ≤
1

k
−
∫
Sn−1

|∇Tuk −OkPT |2 dHn−1

=⇒ δuk + εuk ≤
2

k
−
∫
Sn−1

(|∇Tuk|2 + |OkPT |2) dHn−1

=⇒ δuk + εuk ≤
2(M2 + n− 1)

k
,

and letting k →∞ we see that along this sequence limk→∞ δuk = limk→∞ εuk = 0. We can

now use the compactness property provided by Lemma 3.2.2. and derive a contradiction

as in the purely isometric case.

Remark 3.2.4. Since the isometric de�cit δu does not detect changes in the orientation

neither in ambient space nor intrinsically, (3.2.11) is optimal also with respect to the

exponent with which δu appears on the right hand side . An example to check the opti-

mality
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(which should be compared to the one at the end of Section 3.1), is now the following.

Identify S1 with the interval [0, 1] by identifying the endpoints. For 0 < ε � 1,

consider the maps fε : [0, 1] 7→ [0, 1], de�ned as follows.

fε(t) :=


t; 0 ≤ t < ε,

2ε− t; ε ≤ t < 2ε

− 2ε
1−2ε

+ 1
1−2ε

t; 2ε ≤ t < 1


and let uε : S1 7→ S1 be the corresponding maps de�ned on the unit circle. Obviously

ε(uε) = 0. Geometrically, the maps uε travel back and forth and produce a triple cover

of a small arc on S1. With similar calculations as in the other example,

−
∫
S1

∣∣∂τuε − ∂τ idS1

∣∣2 ∼ ∫ 1

0

∣∣f ′ε(t)− 1
∣∣2 =

∫ 2ε

ε

(−2)2 +

∫ 1

2ε

(
1

1− 2ε
− 1

)2

∼ 4ε+
4ε2

1− 2ε
∼ ε+O(ε2) = O(ε) for 0 < ε� 1.

Moreover,

δ2(uε) ∼
∫ 1

0

∣∣|f ′ε(t)| − 1
∣∣2 =

∫ 1

2ε

(
1

1− 2ε
− 1

)2

∼ 4ε2

1− 2ε

∼ ε2
(
1 +O(ε)

)
= O(ε2) for 0 < ε� 1,

which reveals the optimality of the exponent of δ(u) in the estimate in the generic setting.

When n ≥ 3 one can construct similar examples, for instance by rotating the previous

one-dimensional example around a �xed axis.

A closer inspection also reveals that in (3.2.11), δu can be replaced by the slightly

sharper de�cit ‖(σn−1 − 1)+‖L2(Sn−1), where 0 ≤ σ1 ≤ · · · ≤ σn−1 are the eigenvalues of
√
∇Tut∇Tu. The latter vanishes precisely for generalized short maps (see the upcoming

[LZon] for more details.)

3.2.2 On the hypothesis of Theorem 3.2.3.

We would like to discuss here how the hypothesis (HM) in Theorem 3.2.3. can be weak-

ened. The standard Lipschitz truncation arguments (see Proposition A.1 in [FJM02] and

the references therein) are valid in our setting as well, since the constructions rely on a

partition of unity argument. In particular, what we will make use of, is the following.

Lemma 3.2.5. Let n ≥ 2 and 1 ≤ p < ∞. There exists a constant Cn,p > 0 so that for

every u ∈ W 1,p(Sn−1;Rn) and every λ > 0, there exists uλ ∈ W 1,∞(Sn−1;Rn) such that

(i) ‖∇Tuλ‖L∞(Sn−1) ≤ Cn,pλ,
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(ii) Hn−1
(
{x ∈ Sn−1 : u(x) 6= uλ(x)}

)
≤ Cn,p

λp

∫
{|∇Tu|>λ}

|∇Tu|p dHn−1,

(iii)
∫
Sn−1 |∇Tu−∇Tuλ|p dHn−1 ≤ Cn,p

∫
{|∇Tu|>λ}

|∇Tu|p dHn−1.

Let now u ∈ W 1,2(Sn−1;Rn) with 0 ≤ δu ≤ 1 be given, so that in particular

−
∫
Sn−1

|∇Tu|2 dHn−1 ≤ 2n. (3.2.26)

An application of the previous Lemma with p = 2 and λ ≥ 2
√
n− 1 gives a Lipschitz

map uλ for which

λ2Hn−1
(
{x ∈ Sn−1 : u(x) 6= uλ(x)}

)
≤ Cn,2

∫
{|∇Tu|>λ}

|∇Tu|2 dHn−1 .n δ
2
u, (3.2.27)

∫
Sn−1

|∇Tu−∇Tuλ|2 dHn−1 ≤ Cn,2

∫
{|∇Tu(x)|>λ}

|∇Tu|2 dHn−1 .n δ
2
u. (3.2.28)

Indeed, if |∇Tu| > 2
√
n− 1, then∣∣∣√∇Tut∇Tu− Ix

∣∣∣2 ≥ (∣∣∣√∇Tut∇Tu
∣∣∣−√n− 1

)2

≥
∣∣√∇Tut∇Tu

∣∣2
4

=
|∇Tu|2

4
.

As in [FJM02], one can easily check that

δuλ .n δu. (3.2.29)

Indeed, for Hn−1-a.e. x ∈ Sn−1 we have by the general polar decomposition

∇Tu(x) = U(x)
√
∇Tut∇Tu(x), ∇Tuλ(x) = Uλ(x)

√
∇Tutλ∇Tuλ(x),

where U(x), Uλ(x) : TxSn−1 7→ Rn are partial isometries, i.e. |U(x)v| = |Uλ(x)v| = |v| for
every v ∈ Tx(Sn−1). Then, we can estimate pointwise Hn−1-a.e.∣∣∣∣√∇Tutλ∇Tuλ −

√
∇Tut∇Tu

∣∣∣∣ ≤ |U t
λ − U t||∇Tuλ|+ |U t| |∇Tuλ −∇Tu| .n λ+ |∇Tuλ −∇Tu|

,

and then

δ2
uλ

.n

∫
{uλ 6=u}

∣∣∣√∇Tuλt∇Tuλ −
√
∇Tut∇Tu

∣∣∣2 + δ2
u .n

∫
{uλ 6=u}

(
λ2 + |∇Tuλ −∇Tu|2

)
+ δ2

u

.n

(
λ2Hn−1({uλ 6= u}) +

∫
Sn−1

|∇Tuλ −∇Tu|2 dHn−1 + δ2
u

)
.n δ2

u,

where we used (3.2.27), (3.2.28) and the fact that

{uλ = u}
Hn−1−a.e.

⊆ {∇Tuλ = ∇Tu} ⇐⇒ {∇Tuλ 6= ∇Tu}
Hn−1−a.e.

⊆ {uλ 6= u}.
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Of course, in our setting we also need to control the di�erence between the generalized

isoperimetric de�cits. For this purpose, let u ∈ W 1,2(Sn−1;Rn) be such that |Vn(u)| <∞
and let uλ be its Lipschitz truncation provided by Lemma 3.2.5. for p = 2 and some

λ ≥ 2
√
n− 1. If |Vn(uλ)| > 1 then εuλ = 0 ≤ εu, so we may assume without loss of

generality that |Vn(uλ)| ≤ 1. Then,

εuλ = 1− |Vn(uλ)| ≤ εu + |Vn(u)| − |Vn(uλ)| ≤ εu +
∣∣∣Vn(u)− Vn(uλ)

∣∣∣, (3.2.30)

i.e. it su�ces to control (the absolute value of) the di�erence between the corresponding

signed-volume-terms. In this respect, by denoting here v := −
∫
Sn−1 v and using the Poincare

inequality and then (3.2.28), we have

∣∣∣Vn(u)− Vn(uλ)
∣∣∣ ≤ ∣∣∣∣∣−

∫
Sn−1

〈
(uλ − u)− (uλ − u),

n−1∧
i=1

∂τiuλ

〉∣∣∣∣∣+

∣∣∣∣∣−
∫
Sn−1

〈
u− u,

n−1∧
i=1

∂τiuλ −
n−1∧
i=1

∂τiu
〉∣∣∣∣∣

.n λ
n−1−
∫
Sn−1

∣∣∣uλ − u− (uλ − u)
∣∣∣+

∣∣∣∣∣−
∫
Sn−1

〈
u− u,

n−1∧
i=1

∂τiuλ −
n−1∧
i=1

∂τiu
〉∣∣∣∣∣

.n,λ

(
−
∫
Sn−1

∣∣∣∇Tuλ −∇Tu
∣∣∣2) 1

2

+

∣∣∣∣∣−
∫
Sn−1

〈
u− u,

n−1∧
i=1

∂τiuλ −
n−1∧
i=1

∂τiu
〉∣∣∣∣∣

.n,λ δu + Au,λ, (3.2.31)

where Au,λ :=
∣∣∣−∫Sn−1

〈
u− u,

∧n−1
i=1 ∂τiuλ −

∧n−1
i=1 ∂τiu

〉∣∣∣. In the same fashion,

nωnAu,λ =

∣∣∣∣∣
∫
{u6=uλ}

〈
u− u, (∂τ1uλ − ∂τ1u) ∧

n−1∧
i=2

∂τiuλ + ∂τ1u ∧

(
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

)∣∣∣∣∣
≤ λn−2 ‖u− u‖L2 ‖∇Tuλ −∇Tu‖L2 +

∫
{u6=uλ}

∣∣∣u− u∣∣∣∣∣∣∂τ1u∣∣∣
∣∣∣∣∣
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

∣∣∣∣∣
(3.2.26)

.n,λ δu +

∫
{u6=uλ}

∣∣∣u− u∣∣∣∣∣∣∂τ1u∣∣∣
∣∣∣∣∣
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

∣∣∣∣∣ .
In this way, we arrive at the estimate∣∣∣Vn(u)− Vn(uλ)

∣∣∣ .n,λ δu +

∫
{u6=uλ}

∣∣∣u− u∣∣∣∣∣∣∂τ1u∣∣∣
∣∣∣∣∣
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

∣∣∣∣∣ . (3.2.32)

Actually, in the case n = 3, a more precise calculation yields

V3(u)− V3(uλ) = V3(u− uλ) +R1(u, uλ) +R2(u, uλ) +R3(u, uλ) +R4(u, uλ);
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where∣∣R1(u, uλ)
∣∣ :=

∣∣∣∣−∫
S2

〈
(u− uλ)− (u− uλ), ∂τ1uλ ∧ ∂τ2u

〉∣∣∣∣ . λ ‖∇Tu‖L2 ‖∇Tu−∇Tuλ‖L2 .λ δu,∣∣R2(u, uλ)
∣∣ :=

∣∣∣∣−∫
S2

〈
(u− uλ)− (u− uλ), ∂τ1(u− uλ) ∧ ∂τ2uλ

〉∣∣∣∣ . λ ‖∇Tu−∇Tuλ‖2
L2 .λ δ

2
u,∣∣R3(u, uλ)

∣∣ :=

∣∣∣∣−∫
S2

〈
uλ − uλ, ∂τ1uλ ∧ ∂τ2(u− uλ)

〉∣∣∣∣ . λ2

∫
{u6=uλ}

|∇Tu−∇Tuλ| .λ δ
2
u,∣∣R4(u, uλ)

∣∣ =

∣∣∣∣−∫
S2

〈
uλ − uλ, ∂τ1(u− uλ) ∧ ∂τ2u

〉∣∣∣∣ . ‖∇Tuλ‖L∞‖∇Tu‖L2‖∇Tu−∇Tuλ‖L2 .λ δu.

Moreover, by the generalized isoperimetric inequality and (3.2.28), we can also estimate

∣∣V3(u− uλ)
∣∣ ≤ (1

2
−
∫
S2

|∇Tu−∇Tuλ|2
) 3

2

. δ3
u.

To summarize, the integrand in Vn(u) has linear growth in u and (n − 1)-growth in

∇Tu, so that |Vn(u) − Vn(uλ)| cannot generically be controlled only with information on

the W 1,2-Sobolev norm of u− uλ, except for the case of low dimensions. To be more pre-

cise, in view of the last estimates, the hypothesis (HM) of Theorem 3.2.3. can de�nitely

be relaxed as the following Proposition suggests.

Proposition 3.2.6. (i) Let n = 2, 3. The hypothesis (HM) can be completely re-

moved, i.e. (3.2.11) holds for all u ∈ W 1,2(Sn−1;Rn) for some constant that is

only dimension-dependent.

(ii) Let n ≥ 4 and M > 0 be given. The hypothesis (HM) can be replaced by the weaker

hypothesis

u ∈ Ẇ 1,2(n−2)(Sn−1;Rn), with ‖∇Tu‖L2(n−2)(Sn−1) ≤M. (Hn,M)

Proof. Let us set

Bu,λ :=

∫
{u6=uλ}

∣∣∣u− u∣∣∣∣∣∣∂τ1u∣∣∣
∣∣∣∣∣
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

∣∣∣∣∣ .
(i) If n = 2, by the Sobolev embedding ‖u− u‖L∞(S1) ≤ ‖∂τu‖L2(S1) ≤ 2, where τ

denotes the unit tangent vector �eld to S1, and therefore

Bu,λ =

∫
{u6=uλ}

∣∣∣u− u∣∣∣∣∣∣∂τu∣∣∣ ≤ 2
(
H1({u 6= uλ})

) 1
2

(∫
S1

|∂τu|2
) 1

2 (3.2.27)

.
1

λ
δu.

If n = 3, by the previous estimates (and since w.l.o.g. 0 ≤ δu ≤ 1) we have

∣∣V3(u)− V3(uλ)
∣∣ ≤ |V3(u− uλ)|+

4∑
i=1

|Ri(u, uλ)| .λ δ
3
u + δ2

u + δu .λ δu.
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(ii) If n ≥ 4 and M > 0 is given, for every map u ∈ W 1,2(Sn−1;Rn) with 0 ≤ δu ≤ 1

that satis�es the hypothesis stated in (ii), we have by the Sobolev embedding that

‖u− u‖L∞(Sn−1) .n ‖u‖Ẇ 1,2(n−2)(Sn−1) .n M , and therefore

Bu,λ .n M

∫
{u6=uλ}

∣∣∣∂τ1u∣∣∣
∣∣∣∣∣
n−1∧
i=2

∂τiuλ −
n−1∧
i=2

∂τiu

∣∣∣∣∣
.n M

(∫
{u6=uλ}

|∂τ1u|

∣∣∣∣∣
n−1∧
i=2

∂τiuλ

∣∣∣∣∣+

∫
{u6=uλ}

|∂τ1u|

∣∣∣∣∣
n−1∧
i=2

∂τiu

∣∣∣∣∣
)

.n,λ M ‖∇Tu‖L2

(
Hn−1({u 6= uλ})

) 1
2

+M ‖∇Tu‖n−2
L2(n−2)

(∫
{u6=uλ}

|∇Tu|2
) 1

2

.

.n,λ,M δu +

(∫
{u6=uλ}∩{|∇Tu|≤λ}

|∇Tu|2 +

∫
{u6=uλ}∩{|∇Tu|>λ}

|∇Tu|2
) 1

2

.n,λ,M δu +

(
λ2Hn−1({u 6= uλ}) +

∫
{|∇Tu|>λ}

|∇Tu|2
) 1

2

(3.2.27),(3.2.28)

.n,λ,M δu.

Therefore, the previous estimates altogether give us

(i) If n = 2, then ∀ u ∈ W 1,2(S1;R2),

|V2(u)− V2(uλ)| .λ δu =⇒ εuλ .λ (εu + δu).

If n = 3, then ∀ u ∈ W 1,2(S2;R3),

|V3(u)− V3(uλ)| .λ δu =⇒ εuλ .λ (εu + δu).

(iii) If n ≥ 4, M > 0, then ∀ u ∈ W 1,2(Sn−1;Rn) satisfying the hypothesis in (ii),

|Vn(u)− Vn(uλ)| .n,λ,M δu =⇒ εuλ .n,λ,M (εu + δu).

Therefore, in each one of the above cases (for M > 0 �xed when n ≥ 4, with the new

meaning forM), we can start from a map u ∈ W 1,2(Sn−1;Rn) satisfying the corresponding

hypothesis (or no hypothesis when n = 2, 3), and replace it with the map uλ for λ =

2
√
n− 1. Since the estimate in (3.2.11) holds for the map uλ for some O ∈ O(n) (with

a purely dimensional constant because ‖∇Tuλ‖L∞(Sn−1) ≤ 2
√
n− 1Cn,2), we immediately

obtain that it also holds as well for u for the same O ∈ O(n), with the new constant

depending however both on n and the prechosen M > 0 when n ≥ 4.

59



3.3 A linear stability result for Isom+(Sn−1)

In the last Section of this Chapter we would like to give another quantitative version of

Theorem 2.1.5., essentially at a linearized level. As in the previous Section, for a map

u ∈ W 1,2(Sn−1;Rn) we use as its isometric de�cit the quantity

δu :=

(
−
∫
Sn−1

∣∣∣√∇Tut∇Tu− Ix
∣∣∣2 dHn−1

) 1
2

≥ 0. (3.3.1)

If u is further assumed to be inW 1,n−1(Sn−1;Rn) (which is a su�cient condition to ensure

that |Vn(u)| <∞) by the general version of the isoperimetric inequality (A.0.1), we have

|Vn(u)| :=

∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉∣∣∣∣∣ ≤

(
−
∫
Sn−1

√
det(∇Tut∇Tu)

) n
n−1

=: Pn−1(u). (3.3.2)

In particular, the result of Theorem 2.1.5. can alternatively be stated by saying that

if u is such that equalities hold simultaneously in (3.3.1) and (3.3.2) then u ∈ Isom(Sn−1)

up to a translation vector (more precisely u− −
∫
Sn−1 u ∈ Isom(Sn−1)).

From a variational viewpoint, we have that the identity map idSn−1 is an absolute

minimum both of the �isometric-de�cit� functional

W 1,2(Sn−1;Rn) 3 u 7→ δu ≥ 0, (3.3.3)

and of the �full generalized isoperimetric-de�cit� functional

W 1,n−1(Sn−1;Rn) 3 u 7→ ε̃u := Pn−1(u)− Vn(u) ≥ 0, (3.3.4)

so the second variation of both functionals at the idSn−1 must be nonnegative quadratic

forms in W 1,2(Sn−1;Rn). These are calculated in detail in Appendix C. Therefore,

Qn,isom(w) := −
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 dHn−1 ≥ 0 (3.3.5)

for all w ∈ W 1,2(Sn−1;Rn) and also

Qn,isop(w) :=
n

n− 1

[
−
∫
Sn−1

(
|∇Tw|2 + (divSn−1w)2

2

)
−Qn,isom(w)

]
−QVn(w) ≥ 0 (3.3.6)

for all w ∈ W 1,2(Sn−1;Rn).

The quadratic form QVn is the second variation of the generalized signed-volume-term

at the idSn−1 , given by

QVn(w) :=
n

2
−
∫
Sn−1

〈
w, (divSn−1w)x−

∑
j=1

xj∇Tw
j
〉
dHn−1, (3.3.7)
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(see again the calculations in Appendix C), and is easily seen to be invariant under trans-

lations by �xed vectors, i.e. QVn(w) = QVn

(
w − −

∫
Sn−1 w

)
.

While the nonnegativity of the form Qn,isom is of course obvious, the nonnegativity of

the form Qn,isop may not be so obvious from the �rst sight. At the level of these quadratic

forms one has a linearized analogue of Theorem 2.1.5., that we describe below.

First of all, the kernel of the nonnegative form Qn,isop is in�nite dimensional and we

will give an example of an in�nite dimensional subspace of W 1,2(Sn−1;Rn) where the form

vanishes at the end of Subsection 4.2.2.. For Qn,isom, in the case that n = 2 one can easily

see that dim(kerQ2,isom) =∞. Indeed, for any v : S1 7→ R2 written as

v(x) = φ(x)x+ ψ(x)τ(x), where φ, ψ ∈ C∞(S1,R)

and τ(x) := (−x2, x1) is the unit tangent vector �eld to S1, it is an easy calculation to

check that actually

(P t
T∇Tv)sym = (P t

T∇Tv)11 := φ− ∂τψ,

i.e. for every ψ ∈ C∞(S1;R), the map vψ(x) := ψ(x)τ(x) + ∂τψ(x)x ∈ kerQ2,isom. For

n ≥ 3 a classical (but not so immediate to prove) result in di�erential geometry, referred

to as the in�nitesimal rigidity of the sphere, asserts that actually kerQn,isom ' so(n).

What is actually straightforward to prove is the following fact, that would of course be

an immediate consequence of the aforementioned in�nitesimal rigidity property of Sn−1.

Let w ∈ W 1,2(Sn−1;Rn) be an element in the common null-space of these two non-

negative forms, i.e.

Qn,isom(w) = 0 ⇐⇒ P t
T∇Tw + (P t

T∇Tw)t

2
= 0, (3.3.8)

and

Qn,isop(w) = 0. (3.3.9)

By taking the trace in (3.3.8), we see that divSn−1w ≡ 0 on Sn−1 and then (3.3.9) reduces

to
1

2

n

n− 1
−
∫
Sn−1

|∇Tw|2 dHn−1 −QVn

(
w −−

∫
Sn−1

w

)
= 0. (3.3.10)

An integration by parts in the right hand side of (3.3.7) yields the alternative formula

QVn(w) =
n

2
−
∫
Sn−1

(
2divSn−1w〈w, x〉 − n〈w, x〉2 + |w|2

)
dHn−1, (3.3.11)

so that (3.3.10) results in(
1

n− 1
−
∫
Sn−1

|∇Tw|2 −−
∫
Sn−1

|w −−
∫
Sn−1

w|2
)

+ n−
∫
Sn−1

〈
w −−

∫
Sn−1

w, x
〉2

= 0. (3.3.12)
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Once again, the quantity in the brackets is nonnegative, being the L2-Poincare de�cit of

w and therefore the only solutions to (3.3.12) are maps w for which

w(x)−−
∫
Sn−1

w = Ax for A ∈ Rn×n and

〈
w −−

∫
Sn−1

w, x

〉
≡ 0 on Sn−1.

By the last equation, the matrix A ∈ Rn×n should satisfy

〈Ax, x〉 ≡ 0 ⇐⇒
n∑

i,j=1

Aijxixj = 0 ⇐⇒
∑

1≤i≤j≤n

(Aij + Aji)xixj ≡ 0 on Sn−1,

i.e. At = −A. Reversely, any such map is in the null-space of both quadratic forms. As

a result of these simple calculations, without refering to the in�nitesimal rigidity of the

sphere we have veri�ed that

kerQn,isom ∩ kerQn,isop ' Skew(n) ' so(n). (3.3.13)

Arguing quantitatively as in Subsection 4.4.2. (or qualitatively via a standard contradiction\
compactness argument), we obtain that for every positive combination of these two

quadratic forms the following coercivity estimate holds.

Proposition 3.3.1. For every α > 0 ∃ Cn,α > 0 such that ∀w ∈ W 1,2(Sn−1;Rn),

αQn,isom(w) +Qn,isop(w) ≥ Cn,α−
∫
Sn−1

|∇Tw − [∇wh(0)]skewPT |2 dHn−1. (3.3.14)

The last linear estimate can of course immediately imply some further estimates in a

small neighbourhoud of the idSn−1 , for example one easily obtains the following.

Corollary 3.3.2. For every n ≥ 2 there exists δ0 := δ0(n) > 0 with the following

property. For every map u ∈ W 1,∞(Sn−1; Sn−1) with ‖u− id|Sn−1‖W 1,∞ ≤ δ0, there exists

R ∈ SO(n) such that

−
∫
Sn−1

|∇Tu−RPT |2 dHn−1 ≤ Cnδ
2
u, (3.3.15)

where Cn > 0 is another dimensional constant.

Proof. In a smallW 1,∞-neighbourhood of the idSn−1 linear and nonlinear estimates are of

course essentially equivalent. For δ0 > 0 that will be chosen su�ciently small depending

on n in a bit, and u as in the statement

|∇uh(0)− In|2 ≤
n

n− 1
−
∫
Sn−1

|∇Tu− PT |2 =⇒ |∇uh(0)− In| ≤
√

n

n− 1
δ0 � 1,

and by the polar decomposition, ∇uh(0) = R
√
∇uh(0)t∇uh(0) for some R ∈ SO(n).

Note also that u has to be a map of degree 1.

62



If we therefore set ũ = Rtu ∈ W 1,∞(Sn−1;Sn−1) and w := ũ − idSn−1 , ũ is still an

orientation-preserving map of degree 1. Thanks to their rotational invariance, the two

de�cits are of course left unchanged, i.e.

δ2
u = δ2

ũ = Qn,isom(w) +−
∫
Sn−1

O(|∇Tw|3) dHn−1,

0 = ε̃u = ε̃ũ = Qn,isop(w) +−
∫
Sn−1

O(|∇Tw|3) dHn−1.

Adding these two identities results in

δ2
u = Qn,isom(w) +Qn,isop(w) +−

∫
Sn−1

O(|∇Tw|3) dHn−1. (3.3.16)

By the triangle inequality,

‖∇Tw‖L∞ = ‖Rt∇Tu− PT‖L∞ ≤ |R− In|‖∇Tu‖L∞ + ‖∇Tu− PT‖L∞

≤
(
|∇uh(0)−R|+ |∇uh(0)− In|

) (
δ0 +

√
n− 1

)
+ δ0

≤ 2|∇uh(0)− In|
(
δ0 +

√
n− 1

)
+ δ0

.n δ0 + δ2
0 .n δ0,

since δ0 > 0 will be chosen su�ciently small depending only on n. In this way, the higher

order terms are of course absorbed in the quadratic ones, i.e.∣∣∣∣−∫
Sn−1

O(|∇Tw|3) dHn−1

∣∣∣∣ ≤ cnδ0−
∫
Sn−1

|∇Tw|2 dHn−1 (3.3.17)

for a certain dimensional constant cn > 0. Proposition 3.3.1. then gives

Qn,isom(w) +Qn,isop(w) ≥ Cn,1−
∫
Sn−1

|∇Tw|2 dHn−1, (3.3.18)

because [∇wh(0)]skew =
[√
∇uh(0)t∇uh(0)− In

]
skew

= 0. Finally, by (3.3.16) we obtain

(Cn,1 − cnδ0)−
∫
Sn−1

|∇Tw|2 ≤ δ2
u =⇒ −

∫
Sn−1

|∇Tu−RPT |2 dHn−1 ≤ 2

Cn,1
δ2
u (3.3.19)

by choosing δ0 > 0 even smaller if necessary so that 0 < δ0 ≤ Cn,1
2cn

.

Remark 3.3.3. As we had mentioned at the end of Subsection 3.2.1., the exponents

in the de�cits δu, εu in the right hand side of (3.2.11) cannot generically be improved.

Nevertheless, the previous Corollary gives a very simple example of a case in which

the exponent in the isometric de�cit (which is the only one needed when one considers

orientation-preserving, degree 1 maps from Sn−1 to itself) can be improved to the expected
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optimal one.

Actually, for maps u ∈ W 1,2(Sn−1;Sn−1) a spherical version of the rigidity estimate of

G. Friesecke, R. D. James and S. Müller can be proven, namely

If n ≥ 2, there exists Cn > 0 such that for every u ∈ W 1,2(Sn−1,Sn−1) there exist

R ∈ SO(n) so that

−
∫
Sn−1

|dx(u−RidSn−1)|2 dHn−1 ≤ Cn−
∫
Sn−1

dist2(dxu;SOx) dHn−1. (3.3.20)

For every x ∈ Sn−1, after a choice of particular frames, SOx can be identi�ed with

SO(n− 1). The estimate (3.3.20) could be a consequence of the original Theorem 1.1.5.,

by extending u in a small tubular neighbourhood of Sn−1 in a way that the extension

is constant in each radial direction, applying the original Theorem 1.1.5. for the radial

extension, and then taking the limit as the thickness of the tubular neighbourhood tends

to zero.

Let us close this Chapter with two simple remarks. Firstly, although for n ≥ 3

kerQn,isom ' so(n), an estimate of the type

−
∫
Sn−1

|∇Tw − [∇wh(0)]skewPT |2 .n Qn,isom(w)

does not hold, the obstacle being (loosely speaking) the derivatives of the normal com-

ponent of w. For example, if one considers purely normal displacements wφ(x) := φ(x)x;

φ ∈ W 1,2(Sn−1), then by a straightforward computation one can check that

(P t
T∇Twφ)sym = φIx =⇒ Qn,isom(wφ) = (n− 1)−

∫
Sn−1

|φ|2,

whereas the full gradient of wφ also has derivatives of φ in it. In coordinates,

(∇Tw)ij = φ(PT )ij + xi∂τjφ,

so if the estimate above was to be valid, it would resemble some short of reverse-Poincare

inequality, which is of course generically false.

Secondly (and �nally), since the proof of Corollary 3.3.2. is intrinsic, in the sense that

it does not rely on the rigidity result in the bulk, it would be interesting to give an intrinsic

proof of (3.3.20), as an example of a global quantitative rigidity result for orientation-

preserving isometries between Riemannean manifolds (the orientation-preserving rigid

motions of Sn−1 in this case).
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Chapter 4

On the (local) stability of Conf+(Sn−1)
among almost conformal maps from

Sn−1 to Rn when n ≥ 3

In this Chapter we discuss the stability of the group of orientation-preserving Möbius

transformations of Sn−1 when n ≥ 3, in terms of the combined conformal-isoperimetric

de�cit that was de�ned in the Introduction. Although the approach is the same in dimen-

sion n = 3 and in the higher dimensional case n ≥ 4, due to some analytic di�erences,

or better said, simpli�cations that occur in dimension n = 3, we have chosen to organize

these in two di�erent Sections. Some of the steps in the analysis carry out unchanged in

both cases and in order to avoid their repetition in the second Section of the Chapter,

we will adopt the following convention. In Section 4.1 we will still denote the ambient

dimension 3 by the general letter n in the parts of the analysis which we are going to use

also in Section 4.2. The author hopes that no confusion will be caused by the alternate

use of n and the number 3 for the ambient dimension in the �rst Section to come.

4.1 The case n = 3

4.1.1 Setup of the local stability estimate

For the convenience of the reader, we �rst repeat some notation that was introduced in

Section 1.2, adjusted in this setting where the domain is S2. For some θ > 0 that will

eventually be chosen su�ciently small to serve our purposes and for ε > 0, recalling

(1.2.7) and (1.2.14), the (local) class of mappings inside which the stability of Conf+(S2)

will be investigated is de�ned by
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A3,2,θ,ε :=

u ∈ W 1,2(S2;R3) :
(i) ‖∇Tu− PT‖L2(S2;R3) ≤ θ,

(ii) D2(u) ≤ (1 + ε)V3(u)

 (4.1.1)

where the subscript 3 in the de�nition of the set A3,2,θ,ε stands for the dimension of the

ambient space, the subscript 2 for the exponent in the Sobolev norm and as we de�ned

in (1.2.7), (1.2.1)

D2(u) :=

(
1

2
−
∫
S2

|∇Tu|2 dH2

) 3
2

, V3(u) := −
∫
S2

〈
u, ∂τ1u ∧ ∂τ2u

〉
dH2. (4.1.2)

Remark 4.1.1. (i) Let us mention once again here that the positive parameter ε in

the de�nition of A3,2,θ,ε is the one that is referred to as the combined conformal-

isoperimetric de�cit of a map u ∈ A3,2,θ,ε. For every such map the last de�ning

property in (4.1.1) is invariant under translations by �xed vectors in R3, dilations by

a positive factor, rotations in R3 and compositions (from the right) with orientation-

preserving Möbius transformations of S2.

(ii) Even though the setup we are presenting here is for a local statement close to the

identity transformation of S2, we could of course reach the same conlusions if we

were to assume that the map u is apriori close to any other orientation-preserving

conformal di�eomorphism of S2. To be more precise, given any ψ ∈ Conf+(S2), for

our local estimate we could consider as well the set of maps

A3,2,ψ,θ,ε :=

u ∈ W 1,2(S2;R3) :
(̃i)‖∇Tu−∇Tψ‖L2(S2;R3) ≤ θ,

(ĩi) D2(u) ≤ (1 + ε)V3(u)

 .

It is then immediate to check that whenever u ∈ A3,2,ψ,θ,ε, the map u◦ψ−1 ∈ A3,2,θ,ε.

This follows directly from the conformal invariance of the Dirichlet energy in two

dimensions and the invariance of the combined conformal-isoperimetric de�cit un-

der precompositions with elements of Conf+(S2). Then, all the arguments that we

will present could be applied to the map u ◦ ψ−1 instead of u. For possible later

purposes we also recall here some elementary properties of this precomposed map.

First of all, by the chain rule (with the gradients viewed as linear maps between

the corresponding tangent spaces), one can easily verify that every conformal map

ψ ∈ Conf+(S2) satis�es
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|∇Tψ(ψ−1(x))|2

2
· |∇Tψ

−1(x)|2

2
= 1 ⇐⇒ |∇Tψ(ψ−1(x))| · |∇Tψ

−1(x)| = 2.

For u ∈ A3,2,ψ,θ,ε, the map u ◦ ψ−1 satis�es pointwise H2-a.e. on S2 the inequality

∣∣∇T (u ◦ ψ−1)(x)
∣∣ ≤ ∣∣∇Tu(ψ−1(x))

∣∣ ∣∣∇Tψ
−1(x))

∣∣ =
2 |∇Tu(ψ−1(x))|
|∇Tψ(ψ−1(x))|

,

therefore ∥∥∇T (u ◦ ψ−1)
∥∥
L∞(S2)

≤ 2‖∇Tu‖L∞
minS2 |∇Tψ|

,

even (of course) when the right hand side has to be interpreted as being +∞.

For the W 1,2-Sobolev norm of u ◦ψ we can estimate separately the two integrals as

follows.

−
∫
S2

|(u ◦ ψ−1)− idS2|2 dH2 = −
∫
S2

|u(y)− ψ(y)|2 g(y) dH2(y),

where the induced area-element by the change of variables x = ψ(y) is given by

g(y) :=
√

det
(
(∇Tψ(y))t∇Tψ(y)

)
=
|∇Tψ(y)|2

2
.

Hence,

−
∫
S2

|(u ◦ ψ−1)− idS2 |2 dH2 =
1

2
−
∫
S2

|u(y)− ψ(y)|2 |∇Tψ(y)|2 dH2

≤
‖∇Tψ‖2

L∞(S2)

2
−
∫
S2

|u− ψ|2 dH2,

while, as we have already mentioned, because of the conformal invariance of the

Dirichlet energy on S2,

−
∫
S2

|∇T (u ◦ ψ−1)− PT |2 dH2 = −
∫
S2

|∇Tu−∇Tψ|2 dH2.

Putting these last estimates together, we have (in case it is necessary later) that

∥∥u ◦ ψ−1 − idS2

∥∥
W 1,2(S2;R3)

≤ max

{
1,
‖∇Tψ‖L∞√

2

}
‖u− ψ‖W 1,2(S2;R3) ,

completing this easy estimate.

(iii) The apriori closeness to the idS2 in the W 1,2 − topology can be thought of as a

non-degeneracy condition. For example, it prevents the maps in consideration from

concentrating around single points. Conditions of similar �avour have been posed
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also in [Res70] and [FZ05] and in further results mentioned therein regarding quan-

titative stability for compact subsets of the conformal group CO+(n) in bounded

domains of Rn, when n ≥ 3. As we have discussed in the Introduction, such condi-

tions are imposed there to avoid degeneracy issues at the origin and at in�nity of

the �cone� CO+(n).

With the notations we adopted, the main result of this Section can be stated as follows.

Theorem 4.1.2. There exists absolute constants θ0 > 0 and C > 0 with the following

property. Given ε > 0 arbitrary, then for every u ∈ A3,2,θ0,ε there exist φu ∈ Conf+(S2),

bu ∈ R3 and λu > 0 such that∥∥∥∥(u ◦ φu − buλu

)
− idS2

∥∥∥∥
W 1,2(S2;R3)

≤ C
√
ε. (4.1.3)

Hence, loosely speaking, the map u is
√
ε-close to (λuφ

−1
u + bu) in the W 1,2(Sn−1;Rn)-

topology. Actually, the exponent 1
2
with which the ε-de�cit appears on the right hand side

of the estimate is optimal, as can be checked by considering the sequence of �a�ne� maps

(uσ)σ>0 : S2 7→ R3, where uσ(x) := Aσx, Aσ := diag(1, 1, 1 + σ) ∈ R3×3 as σ → 0+.

The proof of Theorem 4.1.2. will be given in several steps. We �rst start with an easy

Lemma that allows us to �x the center of mass and the scale of the map u and will be of

use later.

Lemma 4.1.3. Given θ > 0 (su�ciently small) and ε > 0, there exists θ̃ > 0 that

depends only on θ, so that after possibly replacing θ with θ̃, we can assume that every

u ∈ A3,2,θ̃,ε has the following additional properties:

(i) −
∫
S2 u dH2 = 0,

(ii) −
∫
S2〈u, x〉 dH2 = 1.

Proof. The �rst property is trivially obtained by considering u−−
∫
S2 u dH2 instead of u if

necessary. Regarding the second one, by the mean value property of harmonic functions,

−
∫
S2

〈u, x〉 dH2 =
1

3
−
∫
B3

divuh dx =
1

3
Tr

(
−
∫
B3

∇uh dx
)

=
Tr∇uh(0)

3
, (4.1.4)

and by a simple inequality that we also used in Chapter 3,∣∣∣∣Tr∇uh(0)

3
− 1

∣∣∣∣2 ≤ |∇uh(0)− I3|2

3
≤ −
∫
B3

|∇uh − I3|2

3
≤ −
∫
S2

|∇Tu− PT |2

2
≤ θ2

2
.
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If we thus choose θ > 0 su�ciently small, we have

0 < 1− θ√
2
<

Tr∇uh(0)

3
< 1 +

θ√
2
. (4.1.5)

In order to achieve both desired properties simultaneously, we can set

λu :=
Tr∇uh(0)

3

and replace u with the map

u1 :=
u− −

∫
S2 u dH2

λu
(4.1.6)

if necessary.

The de�ning properties of the set A3,2,θ,ε are of course only slightly a�ected by this simple

transformation. Regarding the �rst one,

‖∇Tu1 − PT‖L2(S2) =

∥∥∥∥∇T

(
u− −

∫
Sn−1 u

λu

)
− PT

∥∥∥∥
L2(S2)

=

∥∥∥∥ 1

λu
∇Tu− PT

∥∥∥∥
L2(S2)

=

∥∥∥∥ 1

λu
(∇Tu− PT ) +

(
1

λu
− 1

)
PT

∥∥∥∥
L2(S2)

≤ 1

λu
‖∇Tu− PT‖L2(S2) +

∣∣∣∣ 1

λu
− 1

∣∣∣∣ ‖PT‖L2(S2)

=
1

λu
‖∇Tu− PT‖L2(S2) +

∣∣∣∣λu − 1

λu

∣∣∣∣ ‖PT‖L2(S2)

(4.1.5)

≤ 1

1− θ√
2

θ +
1

1− θ√
2

θ√
2
·
√

2

≤

(
2

1− θ√
2

)
θ.

Therefore,

‖∇Tu1 − PT‖L2(S2) ≤ θ̃ :=

(
2

1− θ√
2

)
θ. (4.1.7)

The second de�ning property of A3,2,θ,ε is of course left unchanged due to the trans-

lational and scaling invariance of the de�cit, i.e. it holds for the map u1 as well, with the

same ε. Altogether, we have proven that

u ∈ A3,2,θ,ε =⇒ u1 :=
u− −

∫
S2 u dH2

λu
∈ A3,2,θ̃,ε, (4.1.8)
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with the constant θ̃ being given explicitely above. Although the precise value of the new

constant θ̃ is not of major importance, what is more important is that limθ→0+ θ̃ = 0, so

that when we will �nally choose θ > 0 su�ciently small, θ̃ > 0 will be su�ciently small

as well.

According to the previous Lemma, after possibly replacing the parameter θ with θ̃

(which we will not relabel in the sequel), we can focus on the set of maps

Ã3,2,θ,ε :=


u ∈ W 1,2(S2;R3) :

(i) ‖∇Tu− PT‖L2(S2;R3) ≤ θ

(ii) −
∫
S2 u dH2 = 0

(iii) −
∫
S2〈u, x〉 dH2 = 1

(iv) D2(u) ≤ (1 + ε)V3(u)


. (4.1.9)

Let us now consider u ∈ Ã3,2,θ,ε and set w := u − id|S2 , as if at �rst place the opti-

mal candidate for being the closest Möbius transformation to u in terms of the combined

conformal-isoperimetric de�cit is really the identity map on S2. We can then perform a

formal Taylor expansion of the de�cit around the identity and calculate its second varia-

tion, i.e. the quadratic term appearing in the expansion, as well as the growth behaviour

of the higher order terms. This is a standard computation that we exhibit here in our

particular case n = 3, and in Appendix C in the higher dimensional case n ≥ 4. Using

the properties of the map u ∈ Ã3,2,θ,ε, we can calculate

D2(u) =

(
1

2
−
∫
S2

|∇Tu|2 dH2

) 3
2

=

(
1 +−
∫
S2

divS2w dH2 +
1

2
−
∫
Sn−1

|∇Tw|2 dH2

) 3
2

.

We can rewrite property (iii) of u in terms of w, as

−
∫
S2

〈w, x〉 dH2 = −
∫
S2

〈u, x〉 dH2 − 1 = 0, (4.1.10)

or equivalently,

−
∫
S2

divS2w dH2 = 2−
∫
S2

〈w, x〉 dH2 = 0. (4.1.11)

Hence,

D2(u) =

(
1 +

1

2
−
∫
S2

|∇Tw|2
) 3

2

= 1 +
3

4
−
∫
S2

|∇Tw|2 +O

((
−
∫
S2

|∇Tw|2
)2
)
. (4.1.12)

Since d2

dt2

∣∣∣
t=0

(1 + t)
3
2 = 3

4
, we can take θ > 0 small enough so that by property (i) of

(4.1.9), the higher-order terms in the expansion of D2 are estimated as
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∣∣∣∣∣O
((
−
∫
S2

|∇Tw|2 dH2

)2
)∣∣∣∣∣ ≤ 1

2

(
−
∫
S2

|∇Tw|2 dH2

)2

≤ θ2

2
−
∫
S2

|∇Tw|2 dH2. (4.1.13)

For the signed-volume-term V3(u) we can write its expression as a bulk integral, i.e.

V3(u) = −
∫
S2

〈u, ∂τ1u ∧ ∂τ2u〉 dH2

= −
∫
B3

det∇uh(x) dx = −
∫
B3

det(I3 +∇wh(x)) dx

= 1 +−
∫
B3

divwhdx+
1

2
−
∫
B3

(
(divwh)

2 − Tr(∇wh)2
)
dx+−

∫
B3

det∇wh dx. (4.1.14)

All these terms are well-known null-Lagrangians, and can be written back as boundary

integrals in the following way.

−
∫
B3

divwh dx = 3−
∫
S2

〈w, x〉 dH2 = 0, (4.1.15)

∫
B3

(divwh)
2 =

∫
B3

div
(
(divwh)wh

)
−
∫
B3

〈wh,∇divwh〉

=

∫
S2

〈w, (divwh)x〉 −
∫
B3

〈wh,∇divwh〉

=

∫
S2

〈w, (divS2w)x〉+

∫
S2

〈w, x〉〈(∇wh)x, x〉 −
∫
B3

〈wh,∇divwh〉,

and∫
B3

Tr(∇wh)2 =
3∑

i,j=1

∫
B3

∂jw
i
h∂iw

j
h =

3∑
i,j=1

∫
B3

(∂j(w
i
h∂iw

j
h)− w

i
h∂i∂jw

j
h)

=
3∑
j=1

∫
B3

∂j
(
〈wh,∇wjh〉

)
−

3∑
i=1

∫
B3

wih∂i(divwh)

=
3∑
j=1

∫
S2

〈w, xj∇wjh〉 −
∫
B3

〈wh,∇divwh〉

=

∫
S2

〈
w,

3∑
j=1

xj∇Tw
j
〉

+

∫
S2

〈w, x〉〈(∇wh)x, x〉 −
∫
B3

〈wh,∇divwh〉,

and subtracting these two identities we arrive at

1

2
−
∫
B3

(
(divwh)

2 − Tr(∇wh)2
)
dx =

3

2
−
∫
S2

〈
w, (divS2w)x−

3∑
j=1

xj∇Tw
j
〉
dH2. (4.1.16)
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Of course this calculation can be carried out in every dimension. A more intrinsic calcula-

tion for this quadratic form without passing through the expression as a null-Lagrangian,

is included in Appendix C. The higher order term in the expansion in this case is of

course

−
∫
B3

det∇wh dx = −
∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2. (4.1.17)

Going back to (4.1.14), we obtain

V3(u) = 1 +QV3(w) +−
∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2, (4.1.18)

where the quadratic term in the expansion of V3 is

QV3(w) :=
3

2
−
∫
S2

〈
w, (divS2w)x−

3∑
j=1

xj∇Tw
j

〉
dH2. (4.1.19)

As far as the remainder term is concerned, if we had assumed a uniform Lipschitz bound

on u, we could estimate its growth via the Sobolev inequality on Sn−1. Since we will need

this observation in Subsection 4.2.1., we �rst recall here the inequality in every dimension

n ≥ 3 and refer the reader to [Bec93], [DEKL14] for its proof and more details.

Theorem 4.1.4. (Sobolev inequality on Sn−1) Let n ≥ 3, m ≥ 1. For every v ∈
W 1,2(Sn−1;Rm) the following interpolation inequality holds.(

−
∫
Sn−1

∣∣∣∣v −−∫
Sn−1

v

∣∣∣∣p dHn−1

) 2
p

≤ cn,p−
∫
Sn−1

|∇Tv|2 dHn−1 (4.1.20)

for every p ∈ [2,∞) in the case n = 3 and for every p ∈ [2, 2∗], where 2∗ := 2n−2
n−3

, in the

case n ≥ 4. The constant cn,p > 0 depends only on n and p and its sharp value is also

known.

Having reduced in our case of interest to −
∫
S2 w dH2 = 0, we have that for every p ≥ 2

there exists a constant cp > 0 such that(
−
∫
S2

|w|p dH2

) 2
p

≤ cp−
∫
S2

|∇Tw|2 dH2. (4.1.21)

However, in this case that n = 3, we can merely use the isoperimetric inequality to prove

Lemma 4.1.5. For every u ∈ Ã3,2,θ,ε the map w := u− idSn−1 satis�es the estimate∣∣∣∣−∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2

∣∣∣∣ ≤ (1

2
−
∫
S2

|∇Tw|2 dH2

) 3
2

, (4.1.22)

Therefore, one further has∣∣∣∣−∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2

∣∣∣∣ ≤ θ

2
√

2
−
∫
S2

|∇Tw|2 dH2. (4.1.23)
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Proof. The �rst inequality follows from (1.2.6) for n = 3. The second then follows

immediately using the �rst de�ning property of the set Ã3,2,θ,ε, since

‖∇Tw‖L2(S2;R3) ≤ ‖∇Tu− PT‖L2(S2;R3) ≤ θ.

The quadratic term QV3(w) can also be easily estimated by the Dirichlet energy, as

|QV3(w)| ≤ 3

2
−
∫
S2

|w|
∣∣∣(divS2w)x+

3∑
j=1

xj∇Tw
j
∣∣∣dH2

≤ 3

2

(
−
∫
S2

|w|2 dH2

) 1
2

−∫
S2

|(divS2w)x|2 +

∣∣∣∣∣
3∑
j=1

xj∇Tw
j

∣∣∣∣∣
2

dH2

 1
2

≤ 3

2

(
−
∫
S2

|∇Tw|2

2
dH2

) 1
2

(
−
∫
S2

|∇Tw : PT |2 +

(
3∑
j=1

x2
j

)(
3∑
j=1

|∇Tw
j|2
)

dH2

) 1
2

≤ 3
√

3

2
√

2
−
∫
S2

|∇Tw|2 dH2. (4.1.24)

Notice that it su�ces to prove Theorem 4.1.2. in the small conformal-isoperimetric

de�cit regime, i.e. we can assume without loss of generality that actually 0 ≤ ε ≤ θ2
0 � 1,

where θ0 > 0 is the constant that will be �nally chosen in the statement of the Theorem,

since if ε ≥ θ2
0 > 0 (4.1.3) holds trivially for φu = idS2 , bu = −

∫
S2 u and λu = 1. Indeed,

since −
∫
S2 idS2 = 0, by the Poincare inequality we trivially obtain

‖(u− u)− idS2‖W 1,2 = ‖(u− idS2)− (u− idS2)‖W 1,2 . ‖∇Tu− PT‖L2 ≤ θ0 ≤
√
ε.

Assuming in the next that 0 < ε ≤ θ2
0 � 1, we can now use the expansions (4.1.12) and

(4.1.18) in the combined conformal-isoperimetric de�cit ε > 0 to prove

Lemma 4.1.6. Let θ0 > 0 su�ciently small and 0 < ε ≤ θ2
0 be �xed. For every

u ∈ Ã3,2,θ0,ε, the map w := u− idS2 sati�es the estimate

Q3(w) ≤ ε+ cθ0−
∫
S2

|∇Tw|2 dH2, (4.1.25)

where Q3 is the quadratic form de�ned as

Q3(w) :=
3

4
−
∫
S2

|∇Tw|2 dH2 −QV3(w), (4.1.26)
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and cθ0 := 3
√

3
2
√

2
θ2

0 + θ0
2
√

2
(1 + θ2

0) +
θ2
0

2
> 0 is a constant that becomes arbitrarily small as θ0

becomes arbitrarily small.

Proof. As said, by using (4.1.12) and (4.1.18) and rearranging terms we have

D2(u) ≤ (1 + ε)V3(u)

⇐⇒ 1 +
3

4
−
∫
S2

|∇Tw|2 +O

((
−
∫
S2

|∇Tw|2
)2
)
≤ (1 + ε)

(
1 +QV3(w) +−

∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉
)

⇐⇒ 3

4
−
∫
S2

|∇Tw|2 dH2 −QV3(w) ≤ ε+ εQV3(w) + (1 + ε)−
∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2

−O

((
−
∫
S2

|∇Tw|2 dH2

)2
)

≤ ε+ ε|QV3(w)|+ (1 + ε)

∣∣∣∣−∫
S2

〈w, ∂τ1w ∧ ∂τ2w〉 dH2

∣∣∣∣
+

∣∣∣∣∣O
((
−
∫
S2

|∇Tw|2 dH2

)2
)∣∣∣∣∣

We �nally use (4.1.13), (4.1.23), (4.1.24) for the remainder terms and the fact that we

have assumed without loss of generality that 0 < ε ≤ θ2
0 to obtain (4.1.25) with the value

of the constant cθ0 as exhibited in the Lemma.

If we thus choose the parameter θ0 > 0 su�ciently small, we see that for every

0 < ε ≤ θ2
0 the last term on the right hand side of (4.1.25) can be set to be an arbitrarily

small multiple of the Dirichlet energy of w. We can therefore move our focus of attention

on the coercivity properties of the quadratic form Q3, which can be thought of as the

linearization of the nonlinear combined conformal-isoperimetric de�cit. This will be the

content of the next Subsection. The underlying geometric idea behind the arguments is

the invariance of the de�cit under the action of the rotation group of the sphere, so that

actually the self-adjoint operator associated to Q3 can be diagonalized simultaneously with

the Laplace-Beltrami operator.

4.1.2 On the coercivity of the quadratic form Q3

For the most part of this Subsection the results hold true in every dimension n ≥ 3 and

since we will use them also in Section 4.2, we also denote here the ambient dimension 3

with the general letter n to avoid the repetition of the arguments in the next Section.

Our goal is to examine the coercivity properties (in a purely W 1,2-setting) of the quadratic

form Qn. By the reductions we have performed, this can be considered in the space
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Hn :=

{
w ∈ W 1,2(Sn−1;Rn) : −

∫
Sn−1

w dHn−1 = 0 , −
∫
Sn−1

〈w, x〉 dHn−1 = 0

}
. (4.1.27)

For every k ≥ 1 we de�ne now Hn,k to be the linear subspace of Hn consisting of those

maps in Hn, all the components of which are k-th order spherical harmonics. As we

mention in the Appendix B, it is well-known that every element of Hn,k is the restriction

on Sn−1 of an (Rn-valued) homogeneous harmonic polynomial of degree k, the subspaces

(Hn,k)
∞
k=1 are pairwise orthogonal with respect to the L2-inner product, each one is �nite

dimensional and Hn admits the L2-orthogonal decomposition Hn =
∞⊕
k=1

Hn,k. We also

de�ne the subspaces

H̃n,k :=

wh : Bn 7→ Rn :
∆wh = 0 in Bn

wh|Sn−1 ∈ Hn,k

 , (4.1.28)

so that
∞⊕
k=1

H̃n,k is an L2-orthogonal decomposition of the vector space of harmonic map-

pings wh : Bn 7→ Rn for which wh(0) = 0 and Tr∇wh(0) = 0.

Actually, for every k ≥ 1 we can further consider the L2−orthogonal Hodge decompo-

sition

H̃n,k = H̃n,k,sol

⊕
H̃⊥n,k,sol, (4.1.29)

where

H̃n,k,sol :=
{
wh ∈ H̃n,k : divwh ≡ 0 in Bn

}
, (4.1.30)

and H̃⊥n,k,sol is its orthogonal complement in L2. In view of the k-homogeneity of the maps

in H̃n,k, we can write the latter L2-decomposition also on Sn−1, namely

Hn,k = Hn,k,sol

⊕
H⊥n,k,sol, (4.1.31)

where

Hn,k,sol :=
{
w ∈ Hn,k : wh ∈ H̃n,k,sol

}
, (4.1.32)

and H⊥n,k,sol is its L
2(Sn−1;Rn)-orthogonal complement. Let N(n, k) := dimHn,k < ∞,

N1(n, k) := dimHn,k,sol, N2(n, k) := dimH⊥n,k,sol, so that N(n, k) = N1(n, k) +N2(n, k).

According to (4.1.19), the bilinear form that corresponds to the signed-volume-term

Vn is

QVn(v, w) :=
n

2
−
∫
Sn−1

〈v,A(w)〉 dHn−1 for v, w ∈ Hn,
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where the associated linear �rst order di�erential operator A is de�ned as

A(w) := (divSn−1w)x−
n∑
j=1

xj∇Tw
j for w ∈ Hn. (4.1.33)

The main feature that we are going to use here is the �ne interplay between the operator

A and the above de�ned spaces, as it is properly described in the following.

Lemma 4.1.7. The linear operator A is self-adjoint with respect to the L2-inner prod-

uct and leaves each one of the subspaces (Hn,k)k≥1 invariant. Even more speci�cally, for

every k ≥ 1 A is a linear self-adjoint isomorphism of the spaces Hn,k,sol and H
⊥
n,k,sol with

respect to the L2-inner product.

Proof. The fact that A is self-adjoint with respect to the L2-inner product is immediate,

since it arises from the second variation of Vn at the idSn−1 , but it is also easy to verify

directly after integrating by parts that for any w, v ∈ Hn

−
∫
Sn−1

〈w,A(v)〉 dHn−1 = −
∫
Sn−1

〈A(w), v〉 dHn−1.

Let now k ≥ 1 be �xed. Since for every w in the �nite dimensional space Hn,k, its

harmonic extension wh in Bn is a (vector-valued) homogeneous harmonic polynomial

of degree k, all its derivatives will be polynomials again and hence analytic up to the

boundary. In particular, for every j = 1, 2, . . . , n we have

∇wjh = ∇Tw
j + (∂~νw

j
h)x = ∇Tw

j + kwjx on Sn−1

and

divwh = divSn−1w + 〈∂~νwh, x〉 = divSn−1w + k〈w, x〉 on Sn−1.

Therefore,

A(w) = (divSn−1w)x−
n∑
j=1

xj∇Tw
j = (divwh − k〈w, x〉)x−

n∑
j=1

xj(∇wjh − kw
jx)

= (divwh)x−
n∑
j=1

xj∇wjh on Sn−1.

Writing the operator A in terms of the full gradient and divergence operators, we easily

see that

−
∫
Sn−1

A(w) dHn−1 = −
∫
Sn−1

(divwh)x−
n∑
j=1

xj∇wjh dH
n−1 =

1

n
−
∫
Bn

(
∇divwh −

n∑
j=1

∂j∇wjh

)

= −
∫
Bn

(∇divwh −∇divwh) dx = 0
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and also

−
∫
Sn−1

〈A(w), x〉 dHn−1 = −
∫
Sn−1

〈
(divSn−1w)x−

n∑
j=1

xj∇Tw
j, x

〉
dHn−1

= −
∫
Sn−1

divSn−1w dHn−1 = (n− 1)−
∫
Sn−1

〈w, x〉 dHn−1 = 0.

It is straightforward to verify that [A(w)]h = (divwh)x −
∑n

j=1 xj∇w
j
h in Bn, since �rst

of all it matches the boundary condition and also

∆

[
(divwh)x−

n∑
j=1

xj∇wjh

]
= [∆(divwh)]x+ 2∇(divwh)−

n∑
j=1

(
xj∆(∇wjh) + 2∂j∇wjh

)
= [div(∆wh)]x+ 2∇(divwh)−

n∑
j=1

xj∇∆wjh − 2∇(divwh)

= 0.

It is also clear that since wh is an Rn-valued k-homogeneous harmonic polynomial, [A(w)]h

is also an Rn-valued k-homogeneous harmonic polynomial and therefore its restriction on

Sn−1 is an Rn-valued k-th order spherical harmonic. This �nishes the veri�cation of the

implication w ∈ Hn,k =⇒ A(w) ∈ Hn,k.

In order to check that kerA = {0} in Hn,k,sol, let w ∈ Hn,k,sol be such that

A(w) := (divSn−1w)x−
n∑
j=1

xj∇Tw
j = 0 on Sn−1.

Since w ∈ Hn,k,sol is smooth, A(w) is smooth as well, so that the last equation can also be

understood in the strong sense. Thus, both the normal and the tangential part of A(w)

have to vanish identically, i.e.

divSn−1w = 0 and
n∑
j=1

xj∇Twj = 0 on Sn−1.

By the �rst of these last two equations and the de�nition of Hn,k,sol (in which divwh ≡ 0),

we deduce that for such a w,

〈w, x〉 =
1

k
(divwh − divSn−1w) = 0 on Sn−1.

Testing now the second one of the previous equations with the vector �eld w itself and
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integrating by parts on Sn−1, we obtain

0 = −−
∫
Sn−1

〈 n∑
j=1

xj∇Tw
j, w
〉
dHn−1 = −

n∑
j=1

−
∫
Sn−1

〈
∇Tw

j, xjw
T
〉
dHn−1

= −
∫
Sn−1

〈w, x〉
(
divSn−1w − divSn−1(〈w, x〉x)

)
+

n∑
j=1

−
∫
Sn−1

wj〈ej − xjx,w〉

= −−
∫
Sn−1

〈w, x〉
(

(n− 1)〈w, x〉+ 〈∇T 〈w, x〉, x〉
)

+−
∫
Sn−1

|w|2 −−
∫
Sn−1

〈w, x〉2

= −
∫
Sn−1

|w|2 dHn−1 − n−
∫
Sn−1

〈w, x〉2dHn−1 = −
∫
Sn−1

|w|2 dHn−1,

i.e. w ≡ 0 on Sn−1.

We �nally check that A leaves Hn,k,sol invariant. Indeed, if w ∈ Hn,k,sol then

div[A(w)]h = div

(
(divwh)x−

n∑
j=1

xj∇wjh

)
= −div

(
n∑
j=1

xj∇wjh

)
= −divwh − 〈x,∆wh〉 = 0 in Bn,

i.e. A(w) ∈ Hn,k,sol as well. This concludes the proof that A is a self-adjoint linear isomor-

phism of Hn,k,sol. Thus A leaves also H⊥n,k,sol invariant and is actually also an isomorphism

of it as we will show next.

As a consequence of the previous Lemma each one of the �nite-dimensional subspaces

(Hn,k,sol)k≥1 and (H⊥n,k,sol)k≥1 admit an eigenvalue decomposition with respect to A.

Theorem 4.1.8. The following statements are true.

(i) For every k ≥ 1, the subspace Hn,k,sol has an eigenvalue decomposition with respect

to A as

Hn,k,sol = Hn,k,1

⊕
Hn,k,2,

where Hn,k,1 is the eigenspace of A corresponding to the eigenvalue σn,k,1 := −k and

Hn,k,2 is the one corresponding to the eigenvalue σn,k,2 := 1.

(ii) For every k ≥ 1 the subspace Hn,k,3 := H⊥n,k,sol is an eigenspace with respect to A

corresponding to the eigenvalue σn,k,3 := k + n− 2.

Proof. As we just have remarked, for every k ≥ 1 there exists an L2-orthonormal

basis of eigenfunctions wn,k,1, ..., wn,k,N1(n,k) of Hn,k,sol and wn,k,N1(n,k)+1, . . . , wn,k,N(n,k)
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of H⊥n,k,sol, i.e. for every i = 1, . . . , N(n, k) the Rn-valued map wn,k,i satis�es the eigen-

value equation

A(wn,k,i) := (divSn−1wn,k,i)x−
n∑
j=1

xj∇Tw
j
n,k,i = σn,k,iwn,k,i on Sn−1. (4.1.34)

For each such eigenvalue σn,k,i we denote its corresponding eigenspace by Hn,k,i. If in the

previous eigenvalue equation we take the inner product with the unit normal vector �eld

on Sn−1, we obtain further that each eigenfunction wn,k,i satis�es the equation

divSn−1wn,k,i = σn,k,i〈wn,k,i, x〉 on Sn−1 (4.1.35)

and in terms of the full-divergence

div(wn,k,i)h = divSn−1wn,k,i+〈∂~ν(wn,k,i)h, x〉 = (σn,k,i+k) 〈wn,k,i, x〉 on Sn−1. (4.1.36)

We now �x the index k ≥ 1 and consider all the di�erent possible cases that will allow

us to �nd the eigenvalues of A in the invariant subspaces Hn,k,sol and H⊥n,k,sol respectively.

(a1) Let w be a non-trivial eigenfunction of A in Hn,k,sol, so divwh ≡ 0 in Bn. By

the (k − 1)-homogeneity of the function divwh, this is equivalent to divwh ≡ 0 on

Sn−1. By (4.1.36) we see that one possibility for the last equation to hold is for

σ = −k. We thus set σn,k,1 := −k and label Hn,k,1 := span{wn,k,1, ..., wn,k,pn,k} its
corresponding eigenspace, where pn,k := dimHn,k,1.

(a2) Let now w be a non-trivial eigenfunction of A in Hn,k,sol, with w ∈ H⊥n,k,1. The only
possibility for (4.1.36) to hold then is i�

〈w, x〉 ≡ 0 on Sn−1.

In this case w is a tangential vector �eld and by (4.1.35) we have divSn−1w ≡ 0 on

Sn−1 as well. The eigenvalue equation (4.1.34) reduces then to

σw = −
n∑
j=1

xj∇Tw
j on Sn−1.

With the very same calculation that we performed in the proof of the previous

Lemma, we test this last equation with w and integrate by parts to obtain

σ −
∫
Sn−1

|w|2 dHn−1 = −−
∫
Sn−1

〈
n∑
j=1

xj∇Tw
j, w

〉
dHn−1

= −
∫
Sn−1

|w|2 dHn−1 − n−
∫
Sn−1

〈w, x〉2 dHn−1

= −
∫
Sn−1

|w|2 dHn−1.
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We label this eigenvalue σn,k,2 := 1 and Hn,k,2 := span{wn,k,pn,k+1, ..., wn,k,N1(n,k)}
will be its corresponding eigenspace. We have thus obtained the full eigenvalue

decomposition Hn,k,sol = Hn,k,1

⊕
Hn,k,2.

(b) Let us now look at eigenfunctions of A in the subspace H⊥n,k,sol, in which the di-

vergence of wh ∈ H̃n,k does not vanish identically in Bn. Since wh is a vector-

valued k-homogeneous harmonic polynomial, we have that divwh is a scalar (k−1)-

homogeneous harmonic polynomial and therefore its restriction on Sn−1 is a scalar

(k − 1)-spherical harmonic. We can then apply the Laplace-Beltrami operator on

both sides of (4.1.36), to obtain

(k − 1)(k + n− 3)divwh = −∆Sn−1(divwh) = −(σ + k)∆Sn−1

(
〈w, x〉

)
= (σ + k)

(
〈−∆Sn−1w, x〉 − 2∇Tw : PT + 〈w,−∆Sn−1x〉

)
=
(
k(k + n− 2)− 2σ + (n− 1)

)
(σ + k)〈w, x〉

=
(
k(k + n− 2)− 2σ + (n− 1)

)
divwh on Sn−1.

Since in this case divwh does not vanish identically, we conclude that

k(k + n− 2)− 2σ + (n− 1) = (k − 1)(k + n− 3) =⇒ σ = k + n− 2.

We label this eigenvalue as σn,k,3 := k + n− 2 and its corresponding eigenspace as

Hn,k,3. In particular we have found that H⊥n,k,sol = Hn,k,3.

We have obtained in total the L2-orthogonal decomposition of our space of interest

into eigenspaces of A as

Hn :=
∞⊕
k=1

(
Hn,k,1

⊕
Hn,k,2

⊕
Hn,k,3

)
. (4.1.37)

It is easy to construct examples showing that except for Hn,1,3, none of these eigenspaces

are apriori trivial. The triviality of Hn,1,3 is a consequence of the fact that we have

already scaled properly our initial maps u, so that the corresponding maps w satisfy the

condition −
∫
Sn−1〈w, x〉 dHn−1 = 0. Indeed, let w(x) := Bx ∈ Hn,1,3 for some B ∈ Rn×n.

By assumption,

0 = −
∫
Sn−1

〈w, x〉 dHn−1 = −
∫
Sn−1

〈Bx, x〉 dHn−1 =
1

n
TrB

Therefore, divwh ≡ TrB ≡ 0 in Bn, i.e. w ∈ Hn,1,sol = H⊥n,1,3, which forces w ≡ 0.
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This eigenvalue decomposition of the space Hn into eigenspaces of A is valid in ev-

ery dimension n ≥ 3. In dimension n = 3 it immediately gives the desired coercivity

estimate for the quadratic form Q3 of Lemma 4.1.6. with optimal constant. In the

higher-dimensional case, the quadratic form associated with the combined conformal-

isoperimetric de�cit has an extra term and the study of its coercivity properties via the

previous eigenvalue decomposition is slightly more complicated. Since this is going to be

the content of Subsection 4.2.2, for the rest of this Subsection we switch back to denot-

ing the ambient dimension by the number 3. As a consequence of Theorem 4.1.8., we have

Lemma 4.1.9. (i) The quadratic forms QV3 and Q3 diagonalize on each one of the

subspaces (H3,k,i)k≥1, i=1,2,3, i.e. there exist constants (c3,k,i)i=1,2,3 and (C3,k,i)i=1,2,3,

so that for every w ∈ H3,k,i

QV3(w) = c3,k,i−
∫
S2

|∇Tw|2 dH2 and Q3(w) = C3,k,i−
∫
S2

|∇Tw|2 dH2. (4.1.38)

(ii) For every k, l ≥ 1 and i, j = 1, 2, 3 with (k, i) 6= (l, j), the subspaces H3,k,i and H3,l,j

are also QV3- and Q3-orthogonal, i.e. for every wk,i ∈ H3,k,i and wl,j ∈ H3,l,j

QV3(wk,i, wl,j) = 0 and Q3(wk,i, wl,j) = 0. (4.1.39)

Proof. The proof is immediate. For part (i) of the Lemma, by (B.0.5) we know that

−
∫
S2

|w|2 dH2 =
1

λ3,k

−
∫
S2

|∇Tw|2 dH2 for all w ∈ H3,k, with λ3,k := k(k + 1).

For every i = 1, 2, 3, if w ∈ H3,k,i we have

QV3(w) =
3

2
−
∫
S2

〈w,A(w)〉 dH2 =
3σ3,k,i

2
−
∫
S2

|w|2 dH2 =
3σ3,k,i

2λ3,k

−
∫
S2

|∇Tw|2 dH2,

which is precisely (4.1.38) for c3,k,i :=
3σ3,k,i

2λ3,k
and then

Q3(w) = C3,k,i−
∫
S2

|∇Tw|2 dH2,

where C3,k,i := 3
4
− c3,k,i. We list below the precise values of the constants, which are

important in this case since we will need to sum up the identities in order to obtain an

estimate on the full space H3.

c3,k,1 =
−3

2(k + 1)
, c3,k,2 =

3

2k(k + 1)
, c3,k,3 =

3

2k
(4.1.40)

and

C3,k,1 =
3(k + 3)

4(k + 1)
, C3,k,2 =

3(k − 1)(k + 2)

4k(k + 1)
, C3,k,3 =

3(k − 2)

4k
. (4.1.41)
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For part (ii) of the Lemma, the proof is a trivial calculation. Using that the subspaces

(H3,k,i)k≥1,i=1,2,3 are mutually orthogonal in L2(S2;R3), for any (k, i), (l, j) ∈ N∗×{1, 2, 3}
with (k, i) 6= (l, j) and any wk,i ∈ H3,k,i, wl,j ∈ H3,l,j we immediately have

QV3(wk,i, wl,j) =
3σ3,l,j

2
−
∫
S2

〈wk,i, wl,j〉 dH2 =
3σ3,l,j

2
δklδij = 0

and of course also

−
∫
S2

〈∇Twk,i,∇Twl,j〉 dH2 = λ3,k−
∫
S2

〈wk,i, wl,j〉 dH2 = λ3,kδ
klδij = 0.

Since H3,1,3 = {0} and having the precise values of the constants (C3,k,i)k≥1,i=1,2,3, we

see that C3,1,2 = C3,2,3 = 0, but otherwise it is easy to verify that

C̃ := min
k≥1, i∈{1,2,3}

(k,i)6=(1,2),(1,3),(2,3)

C3,k,i = C3,3,3 =
1

4
. (4.1.42)

Lemma 4.1.9. gives now the desired coercivity estimate for the quadratic form Q3 on the

space H3 with the sharp constant. Indeed, for any w ∈ H3 we write it as a Fourier series

in terms of the previous eigenspace decomposition as

w =
∞∑
k=1

∑
i=1,2,3

w3,k,i,

where w3,k,i ∈ H3,k,i for every k ≥ 1, i = 1, 2, 3 (and as we have justi�ed w3,1,3 = 0).

Expanding the quadratic form, we obtain

Q3(w) =
∑

(k,i),(l,j) ∈ N∗×{1,2,3}

Q3(w3,k,i, w3,l,j)

=
∑

(k,i) ∈ N∗×{1,2,3}

Q3(w3,k,i) +
∑

(k,i)6=(l,j) ∈ N∗×{1,2,3}

Q3(w3,k,i, w3,l,j)

=
∑

(k,i) 6= (1,2),(1,3),(2,3)

C3,k,i−
∫
S2

|∇Tw3,k,i|2 dH2

≥ 1

4

∑
(k,i) 6= (1,2),(1,3),(2,3)

−
∫
S2

|∇Tw3,k,i|2 dH2

=
1

4
−
∫
S2

∣∣∇Tw −∇T (w3,1,2 + w3,2,3)
∣∣2 dH2

To summarize, if for every (k, i) ∈ N∗ × {1, 2, 3} we de�ne ΠHn,k,i : Hn 7→ Hn,k,i to be

the L2-orthogonal projection of Hn on the subspace Hn,k,i, we have �nally proven the

following.
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Theorem 4.1.10. For every w ∈ H3 the following coercivity estimate holds.

Q3(w) ≥ 1

4
−
∫
S2

∣∣∇Tw −∇T (Π3,0w)
∣∣2 dH2, (4.1.43)

where H3,0 := H3,1,2

⊕
H3,2,3 is the kernel of Q3 in H3 and Π3,0 : H3 7→ H3,0 is the

W 1,2-orthogonal projection of H3 onto H3,0. The constant 1
4
in the previous estimate is

sharp.

4.1.3 Completion of proof of Theorem 4.1.2.

The presence of the degenerate space H3,0 is a small but natural obstacle to overcome

for the proof of Theorem 4.1.2. to be completed. At an in�nitesimal level, it basically

means that although the map u is apriori supposed to be θ0-close to the idS2 in the W 1,2-

topology, there might be another Möbius transformation of S2 that is also θ0-close to the

idS2 and is a better candidate for the nearest Möbius map to u in terms of its combined

conformal-isoperimetric de�cit. Similarly to [Res70] and [FZ05], a topological argument

will allow us to identify this more suitable candidate. Before doing this, let us present a

useful fact about the structure of the subspace Hn,0. The characterizations given in the

next Lemma hold true in every dimension n ≥ 3 and this is why we denote the ambient

dimension again by the general letter n in it.

Lemma 4.1.11. The following statements are true.

(i) The subspace Hn,1,2 admits the following characterization

Hn,1,2 = {w ∈ Hn : w(x) = Ax; where A ∈ Skew(n)} , (4.1.44)

and its dimension is dimHn,1,2 = n(n−1)
2

. The projection on this subspace is therefore

characterized by

ΠHn,1,2w = 0 ⇐⇒ ∇wh(0) = ∇wh(0)t. (4.1.45)

(ii) The subspace Hn,2,sol admits the following characterization

Hn,2,sol =

w ∈ Hn :
∀ k = 1, . . . , n : wk(x) = 〈Akx, x〉,

Ak ∈ Sym(n) : TrAk = 0,
∑n

l=1A
l
lk = 0

 (4.1.46)

and therefore

dimHn,2,3 = dimHn,2 − dimHn,2,sol = n.

The projection on the subspace Hn,2,3 is characterized by

ΠHn,2,3w = 0 ⇐⇒ −
∫
Sn−1

(divwh(x))x dHn−1(x) = 0. (4.1.47)

83



Proof. For part (i) of the Lemma, if w ∈ Hn,1,2, we can write it as w(x) = Ax for some

A ∈ Rn×n. In this space,

〈w, x〉 ≡ 0 on Sn−1 ⇐⇒
∑

1≤i≤j≤n

(Aij + Aji)xixj ≡ 0 on Sn−1 ⇐⇒ At = −A.

The characterization of the projection ΠHn,1,2 is then immediate. Regarding part (ii), let

w ∈ Hn,2,sol. Its harmonic extension is a homogeneous solenoidal harmonic polynomial

of degree 2, so for each k = 1, . . . , n, there exist Ak ∈ Sym(n) such that

wkh(x) = 〈Akx, x〉 =
n∑

i,j=1

Akijxixj ∈ Bn.

In particular, for each k, l = 1, . . . , n,

∂lw
k
h(x) = 2

n∑
i=1

Aklixi =⇒


0 = 1

2
∆wkh = TrAk

0 = 1
2
divwh =

∑n
k=1

(∑n
l=1A

l
lk

)
xk ⇐⇒

∑n
l=1 A

l
lk = 0.

For the last characterization,

ΠHn,2,3w = 0 ⇐⇒ ΠHn,2w ∈ Hn,2,sol ⇐⇒
n∑
l=1

(
∇2wlh(0)

)
lk

= 0 for every k = 1, . . . , n.

By the mean value property of harmonic functions again,

0 =
n∑
l=1

−
∫
Bn
∂lkw

l
h(x) dx = −

∫
Bn
∂k(divwh(x)) dx = n−

∫
Sn−1

(divwh(x))xk dHn−1(x),

which completes the proof.

It is worth noticing here that simply by counting dimensions,

dimHn,0 = dimHn,1,2 + dimHn,2,3 =
n(n+ 1)

2
,

which is also the dimension of Conf(Sn−1), the latter seen as a �nite-dimensional Lie

group. The next Lemma in which we still denote the ambient dimension 3 by the general

letter n, follows from a suitable application of the Inverse Function Theorem and is the

�nal ingredient for the completion of the proof of Theorem 4.1.2.. Note that in the state-

ment we still denote Hn,0 := Hn,1,2

⊕
Hn,2,3 the linear subspace of W 1,2(Sn−1;Rn) that

enjoys the characterizing properties described in Lemma 4.1.11., and in these subspaces

the de�ning properties of Hn, i.e. −
∫
Sn−1 w dHn−1 = 0 and −

∫
Sn−1〈w, x〉 dHn−1 = 0 still

hold. In any case, these two properties will in the end be �xed by making use of Lemma

4.1.3..
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Lemma 4.1.12. Let θ > 0 su�ciently small and ε > 0 be given. There exist θ̃ > 0

depending on θ with the following property. For every u ∈ Ãn,2,θ,ε there exists φu ∈
Conf+(Sn−1) such that

u ◦ φu ∈ An,2,θ̃,ε and ΠHn,0(u ◦ φu) = 0. (4.1.48)

Proof. Given u ∈ Ãn,2,θ,ε, we de�ne the map Ψu : Conf+(Sn−1) 7→ R
n(n+1)

2 as follows.

For every φ ∈ Conf+(Sn−1) let,

Ψu(φ) : =

(
−
∫
Sn−1

(
div(u ◦ φ)h(x)

)
x,

1

n

(
∂j(u ◦ φ)ih(0)− ∂i(u ◦ φ)jh(0)

)
1≤i<j≤n

)

=

(
−
∫
Sn−1

(
div(u ◦ φ)h(x)

)
x,

(
−
∫
Sn−1

(
(u ◦ φ)ixj − (u ◦ φ)jxi

))
1≤i<j≤n

)
.

Our goal is to show that 0 ∈ Im(Ψu). To simplify notation, let us also set Ψ := Ψ|idSn−1 .

Clearly Ψ(idSn−1) = 0. In order to apply the Inverse Function Theorem, we look

at the di�erential dΨ|idSn−1 : TidSn−1Conf+(Sn−1) 7→ R
n(n+1)

2 and we prove that it is a

non-degenerate linear map. Indeed, as we have seen in Remark 2.2.3. of Section 2.2

TidSn−1Conf+(Sn−1) ≡
{
Sx+ µ

(
〈x, ξ〉x− ξ

)
: Sn−1 7→ Rn;S ∈ Skew(n), ξ ∈ Sn−1, µ ∈ R

}
.

The di�erential of Ψ at the idSn−1 is also easy to compute. Indeed, by the linearity of all

the operations involved, for every Y ∈ TidSn−1Conf+(Sn−1), de�ned as before via

Y (x) = Sx+ µ
(
〈x, ξ〉x− ξ

)
: Sn−1 7→ Rn; St = −S, ξ ∈ Sn−1, µ ∈ R,

we can calculate (with a slight abuse of notation in the domain of de�nition of Ψ)

dΨ|idSn−1 (Y ) : =
d

dt

∣∣∣
t=0

Ψ
(

expidSn−1
(tY )

)
= Ψ

(
d

dt

∣∣∣
t=0

expidSn−1
(tY )

)
= Ψ (Y )

=

(
−
∫
Sn−1

divYh(x)x dHn−1,

(
−
∫
Sn−1

(
Y i(x)xj − Y j(x)xi

)
dHn−1

)
1≤i<j≤n

)
.

The harmonic extension of Y in Bn is given by the vector �eld

Yh(x) = Sx+ µ

(
〈x, ξ〉x−

(
|x|2 + n− 1

n

)
ξ

)
,

the divergence of which is divYh(x) = (n+2)(n−1)
n

µ〈x, ξ〉. In particular,

−
∫
Sn−1

divYh(x)x dHn−1 =
(n+ 2)(n− 1)

n2
µξ,
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while for every 1 ≤ i < j ≤ n,

−
∫
Sn−1

(
Y i(x)xj − Y j(x)xi

)
dHn−1 =

2

n
Sij.

These short calculations show that indeed ker(dΨ|idSn−1 ) = {0}, i.e. dΨ|idSn−1 is a linear

isomorphism between TidSn−1Conf+(Sn−1) and R
n(n+1)

2 .

Since the exponential mapping expidSn−1
(·) is a local di�eomorphism between a neigh-

bourhood of 0 in TidSn−1Conf+(Sn−1) and a neighbourhood of idSn−1 in Conf+(Sn−1), we

can use the Inverse Function Theorem to �nd a su�ciently small open neighbourhood U0

of idSn−1 in Conf+(Sn−1) inside which the map

Ψ|U0 : U0 ⊆ Conf+(Sn−1) 7→ Ψ(U0) ⊆ R
n(n+1)

2 is a C1 − diffeomorphism.

In particular, deg(Ψ; 0;U0) = 1.

As a next step, we justify that Ψ is homotopic to Ψu in U0. Indeed, for every φ ∈ U0,

we can estimate∣∣∣Ψu(φ)−Ψ(φ)
∣∣∣2 =

n∑
k=1

(
−
∫
Sn−1

div [(u− idSn−1) ◦ φ]h xk

)2

+
∑

1≤i<j≤n

(
−
∫
Sn−1

(
[(u− idSn−1) ◦ φ]i xj − [(u− idSn−1) ◦ φ]j xi

))2

≤ −
∫
Sn−1

(
div [(u− idSn−1) ◦ φ]h

)2
+
∑
i 6=j

−
∫
Sn−1

(
[(u− idSn−1) ◦ φ]i

)2

x2
j

≤ 2n−
∫
Sn−1

∣∣∇T [(u− idSn−1) ◦ φ]
∣∣2 +−

∫
Sn−1

∣∣(u− idSn−1) ◦ φ
∣∣2.

In the last step we used the estimate

−
∫
Sn−1

(divvh)
2 dHn−1 ≤ n−

∫
Sn−1

|∇vh|2 dHn−1 ≤ 2n−
∫
Sn−1

|∇Tv|2 dHn−1,

which follows from Cauchy-Schwartz and Remark B.0.4.. With similar estimates as the

ones we have exhibited in Remark 4.1.1., part (ii), we can also estimate separately

−
∫
Sn−1

∣∣∇T [(u− idSn−1) ◦ φ]
∣∣2 dHn−1 ≤ C1(Uo)−

∫
Sn−1

|∇Tu− PT |2 ≤ C1(Uo)θ2, (4.1.49)

where

C1(U0) ∼n sup
φ∈U0

inf
x∈Sn−1

∣∣∇Tφ
∣∣3−n > 0.

Of course, in the case of this Subsection, i.e. for n = 3, the presence of this constant is

obsolete since the Dirichlet energy is conformally invariant, so the �rst one of the last two
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inequalities is actually an exact equality (without the presence of a constant). Similarly,

−
∫
Sn−1

|(u− idSn−1) ◦ φ|2 dHn−1 ≤ C2(U0) −
∫
Sn−1

|u− idSn−1|2 dHn−1 ≤ C2(U0)θ2, (4.1.50)

where we have used the fact that −
∫
Sn−1(u−idSn−1) dHn−1 = 0 for u ∈ Ãn,2,θ,ε, the Poincare

inequality and property (i) of the class Ãn,2,θ,ε in the last inequality above. Here,

C2(U0) ∼n sup
φ∈U0

inf
x∈Sn−1

∣∣∇Tφ
∣∣1−n > 0.

The strict positivity of the constants C1(U0), C2(U0) is ensured by the fact that we can

take the neighbourhood U0 to be su�ciently small around the idSn−1 . Hence,

‖Ψu −Ψ‖L∞(U0) ≤ C(U0)θ, (4.1.51)

where C(U0) := max
{√

2nC1(U0),
√
C2(U0)

}
> 0.

We can now continue as in Proposition 4.7 of [FZ05]. For the sake of making the

proof self-contained we present the argument here, adapted to our setting.

Let (Γs)s∈[0,1] be a foliation of U0 (which can be taken for example to be a small

geodesic ball around the idSn−1) by closed hypersurfaces in Conf+(Sn−1), so that Γ0 =

{idSn−1} and Γ1 is the topological boundary of U0. Let us de�ne

m(s) := minφ∈Γs|Ψ(φ)| for every s ∈ [0, 1]. (4.1.52)

This is obviously a continuous function of s. Since Ψ|Γ0 ≡ 0 and Ψ|U0 is a homeomorphism

onto its image, we infer that

m(s) > 0 for all s ∈ (0, 1] and lim
s→0+

m(s) = 0. (4.1.53)

Notice thatm(1) > 0 depends only on the size of U0. We can then choose θ > 0 su�ciently

small so that
(
C(U0) + 1

)
θ ≤ m(1)

2
and then de�ne

sθ := inf
{
s ∈ [0, 1] : m(s) ≥

(
C(U0) + 1

)
θ
}
. (4.1.54)

Clearly, limθ→0+ sθ = 0.

Let us now consider the linear homotopy between Ψ and Ψu. For every t ∈ [0, 1] and

φ ∈ Γsθ ⊆ U0 ⊆ Conf+(Sn−1),∣∣((1− t)Ψ + tΨu

)
(φ)
∣∣ ≥ |Ψ(φ)| − t|(Ψu −Ψ)(φ)|

≥ minφ∈Γsθ
|Ψ(φ)| − ‖Ψu −Ψ‖L∞(U0)

≥ msθ − C(U0)θ ≥ θ > 0.
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In particular, (
(1− t)Ψ + tΨu

)
(φ) 6= 0 for every t ∈ [0, 1] and φ ∈ Γsθ . (4.1.55)

Since the degree around 0 remains constant through this linear homotopy, if Usθ is the

open neighbourhood around the idSn−1 in Conf+(Sn−1) such that ∂Usθ = Γsθ , then

deg(Ψu, 0; Usθ) = deg(Ψ, 0; Usθ) = 1. (4.1.56)

Therefore, there exists φu ∈ Usθ ⊆ Conf+(Sn−1) so that

Ψu(φu) = 0 ⇐⇒ ΠHn,0(u ◦ φu) = 0. (4.1.57)

In the same fashion as have estimated before,

−
∫
Sn−1

|u ◦ φu − idSn−1|2 dHn−1 ≤ 2

(
−
∫
Sn−1

|(u− idSn−1) ◦ φu|2 +−
∫
Sn−1

|φu − idSn−1|2
)

≤ 2

(
C2(U0)θ2 +−

∫
Sn−1

|φu − idSn−1|2
)

and

−
∫
Sn−1

|∇T (u ◦ φu)− PT |2 dHn−1 ≤ 2

(
−
∫
Sn−1

|∇T (u− idSn−1) ◦ φu|2 +−
∫
Sn−1

|∇Tφu − PT |2
)

≤ 2
(
C1(U0)θ2 +−

∫
Sn−1

|∇Tφu − PT |2
)
,

so that

‖∇T (u ◦ φu)− PT‖L2(Sn−1) ≤
√

2
(√

C1(U0)θ + ‖φu − idSn−1‖W 1,2(Sn−1)

)
≤
√

2
(√

C1(U0)θ + C(sθ)
)
, (4.1.58)

where

C(sθ) := max
φ∈Usθ

‖φu − idSn−1‖W 1,2(Sn−1). (4.1.59)

Of course, all topologies in the �nite dimensional manifold Conf+(Sn−1) are equivalent

and since limθ→0+ sθ = 0, we also have that limθ→0+ C(sθ) = 0. Hence, we can take the

neighbourhood U0 small enough and then θ > 0 su�ciently small so that u◦φu ∈ An,2,θ̃,ε,
where θ̃ :=

√
2
(√

C1(U0)θ + C(sθ)
)
> 0 is again su�ciently small (depending only on θ

and the dimension).

We can now combine all the previous steps to complete the proof of our main Theorem.

88



Proof of Theorem 4.1.2. For θ0 > 0 that will be chosen su�ciently small in the end

(and as we have assumed without loss of generality 0 < ε ≤ θ2
0), let us consider a map

u ∈ A3,2,θ0,ε. Using Lemma 4.1.12., we can �nd a Möbius transformation φu ∈ Conf+(S2)

such that (
u−−

∫
S2

u

)
◦ φu ∈ A3,2,θ0,ε and ΠH3,0

((
u−−

∫
S2

u

)
◦ φu

)
= 0,

where we have abused notation by not replacing θ0 with θ̃0, something that we can do

without loss of generality as we have justi�ed just above. Applying Lemma 4.1.3. to the

map
(
u− −

∫
S2 u
)
◦ φu, we can further �nd and bu ∈ R3 and λu > 0, so that by abusing

notation once more,

ũ :=
u ◦ φu − bu

λu
∈ Ã3,2,θ0,ε,

with bu := −
∫
S2 u ◦ φu dH2, λu := Tr[∇(u◦φu)h(0)]

3
. Setting w̃ := ũ − idS2 , we have as a

consequence of these two lemmata that

−
∫
S2

w̃ dH2 = 0, −
∫
S2

〈w̃, x〉 dH2 = 0 ⇐⇒ ΠH3,1,3w̃ = 0, and also ΠH3,0w̃ = 0.

Thanks to the invariances of the combined conformal-isoperimetric de�cit, the map ũ still

satis�es the inequality

D2(ũ) ≤ (1 + ε)V3(ũ).

Expanding the de�cit around the identity, we arrive again at (4.1.25) and since we have

assumed without loss of generality that 0 < ε ≤ θ2
0,

Q3(w̃) ≤ ε+ cθ0−
∫
S2

|∇T w̃|2 dH2. (4.1.60)

Since w̃ ∈ Hn and ΠH3,0w̃ = 0, the inequality (4.1.43) gives us.

Q3(w̃) ≥ 1

4
−
∫
S2

|∇T w̃|2 dH2. (4.1.61)

By choosing now θ0 small enough so that

cθ0 ≤
1

8
,

we can combine the last two estimates to infer that

−
∫
S2

∣∣∣∣∇T

(
u ◦ φu − bu

λu

)
− PT

∣∣∣∣2 dH2 = −
∫
S2

|∇T w̃|2 dH2 ≤ 8ε.

Finally, by the Poincare inequality on Sn−1,∥∥∥∥(u ◦ φu − buλu

)
− idS2

∥∥∥∥
W 1,2(S2;R3)

≤ C
√
ε; (4.1.62)

for an absolute constant C > 0, for example C = 2
√

3.
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4.2 The higher dimensional case, n ≥ 4

In this Section we would like to discuss how the results regarding the local stability of

Conf+(S2) among maps from S2 to R3 that are almost conformal and produce small

generalized isoperimetric de�cit can be generalized in higher dimensions. As we have

remarked, we are going to follow the same lines as before and therefore we will focus more

on the parts that exhibit a slight di�erence, adjusting the setting and the remaining parts

of the analysis without repeating the proofs.

4.2.1 The setup of the estimate, revisited

We �rst revise shortly the setup in which the local stability of Conf+(Sn−1) will be

investigated. This di�ers from the one of Subsection 4.1.1 only in the choice of the

topology in which the maps in consideration are assumed to be apriori close to the

idSn−1 , the reason for this being a di�erence in the growth behaviour of the higher than

quadratic order terms in the expansion of the de�cit around the idSn−1 . For some θ > 0

that will again be chosen su�ciently small eventually and ε > 0, the relevant class of

mappings is now

An,∞,θ,ε :=

u ∈ W 1,∞(Sn−1;Rn) :
(i) ‖∇Tu− PT‖L∞(Sn−1;Rn) ≤ θ,

(ii) Dn−1(u) ≤ (1 + ε)Vn(u)

 , (4.2.1)

where now

Dn−1(u) :=

(
−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

dHn−1

) n
n−1

, Vn(u) := −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1. (4.2.2)

In this higher dimensional setting, the local stability result is similar to Theorem 4.1.2.,

namely

Theorem 4.2.1. Let n ≥ 4. There exists a constant θ0 := θ0(n) > 0 and C := C(n) > 0

with the following property. Given ε > 0, then for every u ∈ An,∞,θ0,ε there exist φu ∈
Conf+(Sn−1), bu ∈ Rn and λu > 0 such that∥∥∥∥(u ◦ φu − buλu

)
− idSn−1

∥∥∥∥
W 1,2(Sn−1;Rn)

≤ C
√
ε. (4.2.3)

The exponent 1
2
in the ε-de�cit is again optimal, for the same reason as in the case

n = 3 and the proof of the theorem will follow the same steps.

First of all, since An,∞,θ,ε ⊂ An,2,θ,ε Lemma 4.1.3. applies also here with the same

proof also for maps u ∈ An,∞,θ,ε, just replacing the dimension 3 with the general ambient
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dimension n, so that again without loss of generality we can move our attention to the

set of maps

Ãn,∞,θ,ε :=


u ∈ W 1,∞(Sn−1;Rn) :

(i) ‖∇Tu− PT‖L∞(Sn−1;Rn) ≤ θ

(ii) −
∫
Sn−1 u dHn−1 = 0

(iii) −
∫
Sn−1〈u, x〉 dHn−1 = 1

(iv) Dn−1(u) ≤ (1 + ε)Vn(u)


. (4.2.4)

We can now consider u ∈ Ãn,∞,θ,ε, set again w := u− id|Sn−1 and then perform a Taylor

expansion of the de�cit around the identity. The computations are once again standard

(we include them for convenience in Appendix C), but the outcome is slightly di�erent

than before. Actually, in this case that n ≥ 4, we have

Lemma 4.2.2. Let n ≥ 4 and θ > 0. There exist constants C1, C2 > 0 depending only

on n and θ such that for every u ∈ Ãn,∞,θ,ε and after setting w := u− id|Sn−1,

(a) The (n− 1)-Dirichlet-energy-term Dn−1(u) has the formal Taylor expansion

Dn−1(u) = 1 +QDn−1(w) +−
∫
Sn−1

RDn−1(∇Tw) dHn−1, (4.2.5)

where QDn−1(w) is the quadratic form de�ned via

QDn−1(w) :=
1

2

n

n− 1
−
∫
Sn−1

(
|∇Tw|2 +

n− 3

n− 1
(divSn−1w)2

)
dHn−1 (4.2.6)

and the remainder term is of growth∣∣∣∣−∫
Sn−1

RDn−1(∇Tw) dHn−1

∣∣∣∣ = −
∫
Sn−1

O(|∇Tw|3) +O

((
−
∫
Sn−1

|∇Tw|2
)2
)

=⇒
∣∣∣∣−∫
Sn−1

RDn−1(∇Tw) dHn−1

∣∣∣∣ ≤ C1‖∇Tw‖L∞(Sn−1)−
∫
Sn−1

|∇Tw|2 dHn−1. (4.2.7)

(b) The signed-volume-term Vn(u) has the formal Taylor expansion

Vn(u) = 1 +QVn(w) +−
∫
Sn−1

RVn(w,∇Tw) dHn−1, (4.2.8)

where QVn(w) is the quadratic form de�ned via the following equivalent formulas:

QVn(w) :=



n
2
−
∫
Sn−1

〈
w, (divSn−1w)x−

∑n
j=1 xj∇Tw

j
〉
dHn−1

n
2
−
∫
Sn−1

(
2 divSn−1w〈w, x〉 − n〈w, x〉2 + |w|2

)
dHn−1

1
2
−
∫
Bn

((
divwh)

2 − Tr(∇wh)2
)
dx.

(4.2.9)
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The remainder term has the algebraic structure

−
∫
Sn−1

RVn(w,∇Tw) dHn−1 =
n∑
k=3

−
∫
Sn−1

RVn,k(w,∇Tw) dHn−1,

where for every k = 3, . . . , n, the k-th summand is of the form

−
∫
Sn−1

RVn,k(w,∇Tw) dHn−1 = −
∫
Sn−1

〈
w,An,k(w)

〉
dHn−1,

An,k being a nonlinear �rst order di�erential operator that is a �homogeneous poly-

nomial" of order k− 1 in the �rst derivatives of w. Regarding its growth behaviour,

one always has

−
∫
Sn−1

|RVn(w,∇Tw)| dHn−1 ≤ C2

(
−
∫
Sn−1

|∇Tw|2 dHn−1

) n
n−1

. (4.2.10)

Remark 4.2.3. As the last Lemma suggests, there are two basic di�erences in the ex-

pansion of the combined conformal-isoperimetric de�cit around the idSn−1 compared to

the case n = 3, both coming from the expansion of the (n − 1)−Dirichlet-energy-term.

The �rst one is already seen in QDn−1(w), where a divergence term appears with a certain

dimensional coe�cient, which for n = 3 was vanishing. The increase in the dimension

and the presence of this term will be the two new features in the study of the coerciv-

ity of Qn via the eigenspace decomposition described at the beginning of Subsection 4.1.2.

The second di�erence is seen at the growth behaviour of the remainder term in the

expansion of Dn−1(u) around the idSn−1 . In the case n = 3, we saw that this term was

growing quadratically in the L2-Dirichlet energy of w. Imposing the condition that the

map u is apriori close to the identity inW 1,2 was therefore perfectly enough to absorb this

term in the �nal (local in nature) estimate. Its behaviour in the case n ≥ 4 is di�erent,

since it grows like the cubic power of the L3-norm of the gradient of w. This is the reason

why in this setting we impose apriori-closeness of u to the idSn−1 in a stronger topology,

namely in the W 1,∞-topology, to �nally absorb this term in the local estimate. It seems

that a slightly weaker condition for our estimates to be valid, would be to impose that

∇Tu is close to PT in BMO (see [SS19] for details), but the discussion of this anyway

small re�nement goes beyond the scope of the thesis.

Regarding the Taylor expansion of the term Vn(u) around the idSn−1 and the structure

as well as the growth behaviour of the remainder terms in it, one readily sees that it is

the exact higher dimensional analogue of the one in the case n = 3, so that this part

of the de�cit does not exhibit any di�erences in its treatment. The precise algebraic

expression of −
∫
Sn−1 RVn(w,∇Tw) dHn−1 is of course more complicated than in (4.1.18),
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but its structure and the assumption that ‖∇Tu− PT‖L∞(Sn−1;Rn) ≤ θ still imply that

|RVn(w,∇Tw)| .n,O(1)+θ |w||∇Tw|2 Hn−1 − a.e. on Sn−1,which implies

−
∫
Sn−1

|RVn(w,∇Tw)| .n,θ ‖w‖
L

2(n−1)
n−3
‖|∇Tw|2‖

L
2(n−1)
n+1

.n,θ θ
2(n−3)
n+1 ‖w‖

L
2(n−1)
n−3
‖∇Tw‖

n+1
n−1

L2 .

For the last estimates only the information that ‖∇Tw‖L∞(Sn−1) is apriori bounded is

necessary and not that it is actually bounded by a small constant. We can then apply

the Sobolev inequality with the optimal exponent pn = 2n−2
n−3

in this case, to obtain the

analogue of (4.1.22), i.e. (4.2.10) with the optimal exponent n
n−1

and with C2(n, θ) = o(θ).

As in Lemma 4.1.6. we use the expansions (4.2.5) and (4.2.8) in the mixed conformal-

isoperimetric de�cit ε > 0, rearrange terms and use the de�ning conditions of the set

Ãn,∞,θ,ε to estimate the higher order terms by∣∣∣∣−∫
Sn−1

RDn−1(∇Tw) dHn−1

∣∣∣∣ ≤ C1 ‖∇Tw‖L∞(Sn−1)−
∫
Sn−1

|∇Tw|2 ≤ C1θ−
∫
Sn−1

|∇Tw|2 dHn−1,

and∣∣∣∣−∫
Sn−1

RVn(w,∇Tw) dHn−1

∣∣∣∣ ≤ C2

(
−
∫
Sn−1

|∇Tw|2
) n

n−1

≤ C2θ
2

n−1−
∫
Sn−1

|∇Tw|2 dHn−1,

and �nally arrive (again assuming without loss of generality that 0 < ε ≤ θ2
0) at

Lemma 4.2.4. Let n ≥ 4, θ0 > 0 su�ciently small and 0 < ε ≤ θ2
0 arbitrary but �xed.

For every u ∈ Ãn,∞,θ,ε, the map w := u− idSn−1 sati�es the estimate

Qn(w) ≤ ε+ cn,θ0−
∫
Sn−1

|∇Tw|2 dHn−1, (4.2.11)

where Qn is the quadratic form de�ned as

Qn(w) := QDn−1(w)−QVn(w) (4.2.12)

and cn,θ0 := n
√
n

2
√
n−1
·θ2

0 +C2(n, θ)(1+θ2
0)·θ

2
n−1 +C1(n, θ0)·θ0 > 0, where C1 := C1(n, θ0) > 0

and C2 := C2(n, θ0) > 0 are the constants of Lemma 4.2.2..

For θ0 > 0 small enough, ‖∇Tw‖L∞(Sn−1) ≤ θ0 and as we have seen both constants are

actually such that C1(n, θ0), C2(n, θ0) ∼n o(θ0). Once again, choosing θ0 > 0 su�ciently

small depending only on n, the constant cn,θ0 can be set to be arbitrarily small and

then the important feature for the local stability estimate is again the behaviour of the

quadratic term Qn. This will be studied using again the results of Subsection 4.1.2,

addressing the di�erences in this higher dimensional setting.
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4.2.2 On the coercivity of the quadratic form Qn

We would like to examine the quadratic form

Qn(w) :=
n

2
−
∫
Sn−1

(
|∇Tw|2

n− 1
+

(n− 3)(divSn−1w)2

(n− 1)2
− 〈w,A(w)

〉)
dHn−1, (4.2.13)

where

A(w) := (divSn−1w)x−
n∑
j=1

xj∇Tw
j, (4.2.14)

again in the space

Hn :=

{
w ∈ W 1,2(Sn−1;Rn) : −

∫
Sn−1

w dHn−1 = 0 , −
∫
Sn−1

〈w, x〉 dHn−1 = 0

}
, (4.2.15)

where now n ≥ 4. As we have already mentioned, Lemma 4.1.7. and Theorem 4.1.8.

hold true in every dimension n ≥ 3. In the case n = 3, where the divergence-term was

dropping out, we had a precise splitting of the quadratic form Q3 in the eigenspaces

(Hn,k,i)(k,i)∈N∗×{1,2,3}\(1,3), i.e. Lemma 4.1.9. and as a consequence of it we obtained the

desired coercivity estimate (4.1.43) with sharp constant. In this higher dimensional case,

Lemma 4.1.9. holds partially, in the sense that the quadratic form QVn is of course

splitting among these eigenspaces, but the full form Qn is not due to the presence of the

divergence term. Nevertheless, the form Qn is still proportional to the Dirichlet energy

in each one of the eigenspaces separately with constants that can be computed explicitely.

Lemma 4.2.5. Let k ≥ 1 and i = 1, 2, 3. For every w ∈ Hn,k,i one has

QVn(w) = cn,k,i−
∫
Sn−1

|∇Tw|2 dHn−1; where cn,k,i :=
nσn,k,i
2λn,k

(4.2.16)

−
∫
Sn−1

(divSn−1w)2 = αn,k,i−
∫
Sn−1

|∇Tw|2 dHn−1; αn,k,i :=
σ2
n,k,i(2λn,kcn,k,i − n)

nλn,k(2σn,k,i − n)
(4.2.17)

Qn(w) = Cn,k,i−
∫
Sn−1

|∇Tw|2 dHn−1;Cn,k,i :=
n

2(n− 1)
+
n(n− 3)

2(n− 1)2
αn,k,i − cn,k,i. (4.2.18)

Proof. We just need to justify the second identity. To do so, recall that for every v ∈ Hn

we can alternatively write QVn(v) in the form

QVn(v) =
n

2
−
∫
Sn−1

(
2divSn−1v〈v, x〉 − n〈v, x〉2 + |v|2

)
dHn−1.

For w ∈ Hn,k,i we have QVn(w) = cn,k,i−
∫
Sn−1 |∇Tw|2, −

∫
Sn−1 |w|2 = 1

λn,k
−
∫
Sn−1 |∇Tw|2 and

recalling (4.1.35), divSn−1w = σn,k,i〈w, x〉. Substituting these identities above yields the

desired identity for −
∫
Sn−1(divSn−1w)2 and the one for Qn follows then immediately.
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Let us list the values of the previously mentioned constants.

For k ≥ 1;


cn,k,1 = −n

2(k+n−2)

αn,k,1 = k(k+1)
(k+n−2)(2k+n)

Cn,k,1 = n
2

(
1

n−1
+ 1

k+n−2
+ (n−3)k(k+1)

(n−1)2(k+n−2)(2k+n)

)
 ,

For k ≥ 1;


cn,k,2 = n

2k(k+n−2)

αn,k,2 = 0

Cn,k,2 = n
2

(k−1)(k+n−1)
(n−1)k(k+n−2)

 , (4.2.19)

For k ≥ 2;


cn,k,3 = n

2k

αn,k,3 = (k+n−2)(k+n−3)
k(2k+n−4)

Cn,k,3 =
n(k−2)

(
(3n−5)k+(n2−6n+7)

)
2(n−1)2k(2k+n−4)

 ,

the last set of constants being considered for k ≥ 2, because in any case ΠHn,1,3w = 0 for

every w ∈ Hn. By taking a closer look at the values of the constants, it is seen that one

cannot merely neglect the divergence term. Indeed, although the quadratic form

1

2

n

n− 1
−
∫
Sn−1

|∇Tw|2 dHn−1 −QVn(w)

is splitting among the eigenspaces (Hn,k,i)(k,i)∈N∗×{1,2,3}\(1,3), for n ≥ 4 it does not have a

sign.

The last quadratic form is actually negative in Hn,k,3 for every k = 2, . . . , n− 2, zero

in Hn,1,2, Hn,n−1,3 and strictly positive in each one of the other eigenspaces. Therefore

the contribution of the nonnegative term 1
2
n(n−3)
(n−1)2 −

∫
Sn−1(divSn−1w)2 has to be taken into

account, the presence of which however produces mixed terms in the expression of Qn.

The interesting feature is that these mixed terms are of a particular form as the next

Lemma reveals.

Lemma 4.2.6. Let w ∈ Hn be written in Fourier series as

w =
∑

(k,i)∈N∗×{1,2,3}
(k,i)6=(1,3)

wn,k,i, where wn,k,i ∈ Hn,k,i.

Then,

Qn(w) =
∑

(k,i)∈N∗×{1,2,3}
(k,i)6=(1,3)

Qn(wn,k,i) +
1

2

n(n− 3)

(n− 1)2

∑
k≥1

−
∫
Sn−1

divSn−1wn,k,1divSn−1wn,k+2,3

+
1

2

n(n− 3)

(n− 1)2

∑
k≥3

−
∫
Sn−1

divSn−1wn,k,3divSn−1wn,k+2,1.
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Proof. Since the form 1
2

n
n−1

−
∫
Sn−1 |∇Tw|2 dHn−1−QVn(w) splits completely in the eigenspaces

(Hn,k,i)(k,i)∈N∗×{1,2,3}\(1,3), what needs to be checked is that

−
∫
Sn−1

divSn−1wn,k,idivSn−1wn,l,j dHn−1 = 0 (4.2.20)

for all pairs (k, i), (l, j) ∈ N∗ × {1, 2, 3} \ (1, 3) with (k, i) 6= (l, j), except for the pairs of

the form (k, 1), (k + 2, 3) and (k, 3), (k + 2, 1).

This can be checked again using the di�erent formulas for the quadratic form QVn .

Indeed, let wn,k,i ∈ Hn,k,i, wn,l,j ∈ Hn,l,j with (k, i) 6= (l, j). Since divSn−1w ≡ 0 whenever

w ∈ Hn,k,2, we may suppose without loss of generality that i, j ∈ {1, 3}. Then,

QVn(wn,k,i, wn,l,j) =
n

2
−
∫
Sn−1

divSn−1wn,k,i〈wn,l,j, x〉+
n

2
−
∫
Sn−1

divSn−1wn,l,j〈wn,k,i, x〉

− n2

2
−
∫
Sn−1

〈wn,k,i, x〉〈wn,l,j, x〉+
n

2
−
∫
Sn−1

〈wn,k,i, wn,l,j〉,

and by the fact that actually

QVn(wn,k,i, wn,l,j) =
nσn,l,j

2
−
∫
Sn−1

〈wn,k,i, wn,l,j〉 =
nσn,l,j

2
δklδij = 0

and (4.1.35), we obtain

0 =
n

2

(
1

σn,l,j
+

1

σn,k,i
− n

σn,k,iσn,l,j

)
−
∫
Sn−1

divSn−1wn,k,idivSn−1wn,l,j dHn−1

⇐⇒ 0 = (σn,k,i + σn,l,j − n)−
∫
Sn−1

divSn−1wn,k,idivSn−1wn,l,j dHn−1,

i.e. (4.2.20) holds, unless the pairs (k, i) 6= (l, j) are such that σn,k,i + σn,l,j = n. In this

respect,

(i) If i = j = 1, σn,k,i + σn,l,j = −k − l < 0 < n,

(ii) If i = j = 3, σn,k,i + σn,l,j = k + l + 2n− 4 ≥ 2n− 2 > n,

(iii) If i = 1, j = 3, σn,k,i + σn,l,j = n ⇐⇒ −k + l + n− 2 = n ⇐⇒ l = k + 2,

(iv) If i = 3, j = 1, σn,k,i + σn,l,j = n ⇐⇒ k + n− 2− l = n ⇐⇒ k = l + 2,

which proves the desired claim and the formula for Qn follows by the bilinearity of the

expression. Another interesting point in the formula is that the summation in the last

term of the expression starts from k = 3. The reason for this is that in any case wn,1,3 ≡ 0

whenever w ∈ Hn, but also

−
∫
Sn−1

divSn−1wn,2,3divSn−1wn,4,1 dHn−1 = 0. (4.2.21)
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To prove this last identity, recall that div(wn,4,1)h = 0 in Bn and therefore

−
∫
Sn−1

divSn−1wn,2,3divSn−1wn,4,1 dHn−1 = −4n−
∫
Sn−1

〈wn,2,3, x〉〈wn,4,1, x〉 dHn−1

= −4n−
∫
Sn−1

〈
〈(wn,2,3)h, x〉(wn,4,1)h, x

〉
dHn−1

= −4−
∫
Bn

div
(
〈(wn,2,3)h, x〉(wn,4,1)h

)
dx

= −4−
∫
Bn
〈∇〈(wn,2,3)h, x〉, (wn,4,1)h〉 dx.

To justify that the last integral is zero, observe that

−
∫
Bn
〈∇〈(wn,2,3)h, x〉, (wn,4,1)h〉 = −

∫
Bn

n∑
i=1

(wn,4,1)ih〈∂i(wn,2,3)h, x〉+ 〈(wn,4,1)h, (wn,2,3)h〉 dx

=
n∑
i=1

−
∫
Bn

(wn,4,1)ih〈∂i(wn,2,3)h, x〉 dx,

because −
∫
Bn
〈(wn,4,1)h, (wn,2,3)h〉 = 0, the reason being simply that the vector-valued ho-

mogeneous harmonic polynomials (wn,4,1)h, (wn,2,3)h are of di�erent degree. Moreover, we

observe that for every i = 1, . . . , n,

∆
(
〈∂i(wn,2,3)h, x〉

)
= 2∂idiv(wn,2,3)h in Bn. (4.2.22)

Since (wn,2,3)h is an Rn− valued 2nd order homogeneous harmonic polynomial, ∂idiv(wn,2,3)h

is simply a constant. The function 〈∂i(wn,2,3)h, x〉 − ∂idiv(wn,2,3)h|x|2
n

is therefore a homoge-

neous harmonic polynomial of degree 2, hence also L2-orthogonal to (wn,4,1)h. Thus,

−
∫
Bn

(wn,4,1)ih〈∂i(wn,2,3)h, x〉 dx =
∂idiv(wn,2,3)h

n
−
∫
Bn

(wn,4,1)ih|x|2 dx

⇐⇒ −
∫
Bn

(wn,4,1)ih〈∂i(wn,2,3)h, x〉 dx =
∂idiv(wn,2,3)h

n+ 6
−
∫
Sn−1

(wn,4,1)i dHn−1 = 0,

where we used the fact that the function (wn,4,1)ih|x|2 is 6-homogeneous, so that we can

write its integral over Bn as an integral on Sn−1, up to a multiplicative constant. The

last integral is of course zero for every nontrivial spherical harmonic. Note that the pre-

vious argument relies on the fact that ∂idiv(wn,2,3)h is constant and of course cannot be

implemented for the mixed terms of higher order.

Looking again at the values of the constants in (4.2.19), we see that the quadratic

form Qn vanishes again in the desired space Hn,0 := Hn,1,2

⊕
Hn,2,3, an issue that can
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be handled applying again Lemma 4.1.12.. Therefore, what we need to check is that the

presence of the mixed divergence-terms is harmless, i.e. it does not produce any further

zeros in Qn. A quantitative way to see this using some elementary estimates is the fol-

lowing.

For every k ≥ 1 we can apply a weighted Cauchy-Schwartz inequality, with weight

εn,k = k+n
k
> 0 to estimate

∣∣∣∣−∫
Sn−1

divSn−1wn,k,1divSn−1wn,k+2,3

∣∣∣∣ ≤ (−∫
Sn−1

(divSn−1wn,k,1)2

) 1
2
(
−
∫
Sn−1

(divSn−1wn,k+2,3)2

) 1
2

=

(
αn,k,1−

∫
Sn−1

|∇Twn,k,1|2
) 1

2
(
αn,k+2,3−

∫
Sn−1

|∇Twn,k+2,3|2
) 1

2

≤ αn,k,1εn,k
2

−
∫
Sn−1

|∇Twn,k,1|2 +
αn,k+2,3

2εn,k
−
∫
Sn−1

|∇Twn,k+2,3|2

=
(k + 1)(k + n)

2(k + n− 2)(2k + n)
−
∫
Sn−1

|∇Twn,k,1|2

+
k(k + n− 1)

2(k + 2)(2k + n)
−
∫
Sn−1

|∇Twn,k+2,3|2.

For the last summand in the expression obtained in Lemma 4.2.6., after shifting the

summation index we can rewrite it as

∑
k≥1

−
∫
Sn−1

divSn−1wn,k+2,3divSn−1wn,k+4,1 dHn−1

and for every k ≥ 1 we can estimate as before,

∣∣∣∣−∫
Sn−1

divSn−1wn,k+2,3divSn−1wn,k+4,1

∣∣∣∣ ≤ (αn,k+2,3−
∫
Sn−1

|∇Twn,k+2,3|2
) 1

2
(
αn,k+4,1−

∫
Sn−1

|∇Twn,k+4,1|2
) 1

2

≤ αn,k+2,3

2εn,k
−
∫
Sn−1

|∇Twn,k+2,3|2 +
αn,k+4,1εn,k

2
−
∫
Sn−1

|∇Twn,k+4,1|2

=
k(k + n− 1)

2(k + 2)(2k + n)
−
∫
Sn−1

|∇Twn,k+2,3|2

+
(k + 4)(k + 5)(k + n)

2k(k + n+ 2)(2k + n+ 8)
−
∫
Sn−1

|∇Twn,k+4,1|2.

The choice of the weights was such that some of the terms match. The series appearing

are all absolutely summable, Qn(wn,1,2) = Qn(wn,2,3) = 0 and we can therefore estimate

the form Qn from below by
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Qn(w) ≥
∑

(k,i)∈N∗×{1,2,3}
(k,i)6=(1,2),(1,3),(2,3)

Qn(wn,k,i)−
1

4

n(n− 3)

(n− 1)2

∑
k≥1

(k + 1)(k + n)

(k + n− 2)(2k + n)
−
∫
Sn−1

|∇Twn,k,1|2

− 1

4

n(n− 3)

(n− 1)2

∑
k≥1

(k + 4)(k + 5)(k + n)

k(k + n+ 2)(2k + n+ 8)
−
∫
Sn−1

|∇Twn,k+4,1|2

− 1

2

n(n− 3)

(n− 1)2

∑
k≥1

k(k + n− 1)

(k + 2)(2k + n)
−
∫
Sn−1

|∇Twn,k+2,3|2.

After rearranging terms we arrive at the estimate,

Qn(w) ≥
∑
k≥1

C̃n,k,1−
∫
Sn−1

|∇Twn,k,1|2+
∑
k≥2

C̃n,k,2−
∫
Sn−1

|∇Twn,k,2|2+
∑
k≥3

C̃n,k,3−
∫
Sn−1

|∇Twn,k,3|2

where the new constants are de�ned as

C̃n,k,1 :=

[
Cn,k,1 −

n(n− 3)(k + 1)

4(n− 1)2(k + n− 2)(2k + n)

(
k(k + n− 4)χm≥5(k)

k − 4
+ (k + n)

)]
,

C̃n,k,2 = Cn,k,2, k ≥ 2

and

C̃n,k,3 :=

[
Cn,k,3 −

1

2

n(n− 3)

(n− 1)2

(k − 2)(k + n− 3)

k(2k + n− 4)

]
, k ≥ 3.

By elementary algebraic calculations that we omit here one can verify that

C̃n,l,1 =
n

2

[
1

n− 1
+

1

l + n− 2
− (n− 3)(n− l)(l + 1)

2(n− 1)2(l + n− 2)(2l + n)

]
, for l = 1, 2, 3, 4,

C̃n,k,1 =
n

2

[
1

n− 1
+

1

k + n− 2
− n(n− 3)(k − 2)(k + 1)

(n− 1)2(k − 4)(k + n− 2)(2k + n)

]
, for k ≥ 5,

C̃n,k,2 =
n

2

(k − 1)(k + n− 1)

(n− 1)k(k + n− 2)
, for k ≥ 1,

C̃n,k,3 =
n(k − 2) ((n− 1)k − 1)

(n− 1)2k(2k + n− 4)
, for k ≥ 2,

and in particular,

min
k≥1

C̃n,k,1 =: Cn,1 > 0, min
k≥2

C̃n,k,2 =: Cn,2 > 0, min
k≥3

C̃n,k,3 =: Cn,3 > 0. (4.2.23)

99



Labelling Cn := min{Cn,1, Cn,2, Cn,3} > 0, we can estimate again from below,

Qn(w) ≥ Cn

(∑
k≥1

−
∫
Sn−1

|∇Twn,k,1|2 +
∑
k≥2

−
∫
Sn−1

|∇Twn,k,2|2 +
∑
k≥3

−
∫
Sn−1

|∇Twn,k,3|2
)

= Cn

(
−
∫
Sn−1

|∇Tw|2 −−
∫
Sn−1

|∇Twn,1,2|2 −−
∫
Sn−1

|∇Twn,2,3|2
)
.

In this way we arrive again at the desired estimate, namely

Theorem 4.2.7. There exists a dimensional constant Cn > 0 such that for every w ∈ Hn

the following coercivity estimate holds.

Qn(w) ≥ Cn−
∫
Sn−1

∣∣∇Tw −∇T (Πn,0w)
∣∣2 dHn−1, (4.2.24)

where Hn,0 := Hn,1,2

⊕
Hn,2,3 is the kernel of Qn in Hn, and Πn,0 : Hn 7→ Hn,0 is the

W 1,2-orthogonal projection of Hn onto Hn,0.

The proof of the local stability Theorem 4.2.1. is now essentially the same as the one

of Theorem 4.1.2. for the case n = 3. The degenerate space Hn,0 is again characterized

by Lemma 4.1.11. and then Lemma 4.1.12. applies again, so that the proof carries out

unchanged, except of course for replacing the initial set of maps A3,2,M,θ,ε with An,∞,θ,ε
and using (4.2.11) instead of (4.1.25).

Remark 4.2.8. A more abstract way to argue about the coercivity of the quadratic form

Qn that would be similar to the argument in Section 3.3, would be to notice that for every

w ∈ Hn,

Qn(w) = Qn,conf(w) +Qn,isop(w),

where

Qn,conf(w) := QDn−1(w)−QPn−1(w) =
n

n− 1
−
∫
Sn−1

∣∣∣∣(P t
T∇Tw)sym −

divSn−1w

n− 1
Ix

∣∣∣∣2 dHn−1 ≥ 0,

and

Qn,isop(w) :=
n

n− 1

[
−
∫
Sn−1

(
|∇Tw|2 + (divSn−1w)2

2

)
−Qn,isom(w)

]
−QVn(w) ≥ 0,

where by recalling (3.3.5),

Qn,isom(w) := −
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 dHn−1 ≥ 0.
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Again, the quadratic forms Qn,conf and Qn,isop are both nonnegative and the kernel of

each one of them is actually in�nite-dimensional. Indeed, for Qn,conf(w) we observe that

for every φ ∈ W 1,2(Sn−1;R) with −
∫
Sn−1 φ dHn−1 = 0 and −

∫
Sn−1 φ(x)x dHn−1 = 0 the map

wφ(x) := φ(x)x ∈ Hn and by an easy short calculation

P t
T∇Twφ = φIx =⇒ (P t

T∇Twφ)sym −
divSn−1wφ
n− 1

Ix = 0.

Since the space of such φ's is obviously in�nite dimensional we have in particular that

also dim(kerQn,conf) =∞.

Regarding the quadratic form Qn,isop, we will prove the following.

Claim. Hn,2 :=
⊕∞

k=1 Hn,k,2 ⊆ kerQn,isop =⇒ dim(kerQn,isop) =∞.

To verify the claim we �rst use the following identity, which is referred to as Korn's

identity, that is interesting in its own right and whose derivation is a simple computation

which is also included at the end of Appendix C.

For every w ∈ W 1,2(Sn−1;Rn) the following identity holds

Qn,isom(w) =
1

2
−
∫
Sn−1

|∇Tw|2 −

∣∣∣∣∣
n∑
j=1

xj∇Tw
j

∣∣∣∣∣
2

+ (divSn−1w)2

−n− 2

n
QVn(w). (4.2.25)

The interesting point of this identity is that when n ≥ 3 the quadratic form QVn of the

expansion of the signed-volume-term appears in the right hand side as some short of cur-

vature contribution, and it is really a surface identity in the sense that the corresponding

identity in the bulk is∫
U

|(∇w)sym|2 dx =
1

2

∫
U

(
|∇w|2 + (divw)2

)
dx− 1

2

∫
U

(
(divw)2 − Tr(∇w)2

)
dx,

but the last term on the right hand side is a null-Lagrangian and should be interpreted

as a boundary-term contribution.

By using Korn's identity, the quadratic form Qn,isop can be rewritten in a simpler form

as

Qn,isop(w) =
n

2(n− 1)
−
∫
Sn−1

∣∣∣∣∣
n∑
j=1

xj∇Tw
j

∣∣∣∣∣
2

− 〈w,A(w)〉

 dHn−1.

But if w ∈ Hn,2, then in this in�nite-dimensional space, A(w) = w and divSn−1w = 0 on

Sn−1, i.e. −
∑n

j=1 xj∇Tw
j = w, and therefore Qn,isop(w) = 0 which proves the claim.

If now w ∈ kerQn ⇐⇒ w ∈ kerQn,conf ∩ kerQn,isop, then again the following two

equations must be satis�ed simultaneously.
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P t
T∇Tw + (P t

T∇Tw)t

2
=

divSn−1w

n− 1
Ix and Qn,isop(w) = 0. (4.2.26)

Because of the �rst one, the second results in the equation

n

n− 1
−
∫
Sn−1

[
|∇Tw|2

2
+

(divSn−1w)2

2
− (divSn−1w)2

n− 1

]
= QVn(w)

⇐⇒ 1

n− 1
−
∫
Sn−1

|∇Tw|2 +
n− 3

(n− 1)2
−
∫
Sn−1

(divSn−1w)2 −−
∫
Sn−1

〈w,A(w)〉 = 0, (4.2.27)

i.e. we ended up back to the original equation Qn(w) = 0. Arguing directly with

the eigenvalue decomposition with respect to A also has the extra bene�t of showing

explicitely how the form Qn behaves in each one of the eigenspaces separately, as well as

giving a lower bound for the value of the optimal constant Cn in the coercivity estimate.

4.3 On a stability result for degree ±1 Möbius trans-

formations of S2

This last Section is of complementary character and its purpose is to show how the proof

of Theorem 2.2.2. can be perturbed in a quantitative manner to give an alternative and

somewhat shorter proof of a recent result due to A.B.-Mantel, C.B. Muratov and T.M. Si-

mon (see [BMMS]) regarding the rigidity of degree ±1 harmonic maps from S2 onto itself.

As it is well-known in the theory of harmonic maps, a map between two-dimensional

Riemannean manifolds is harmonic, i.e. a critical point of the Dirichlet-energy functional

i� it is generalized conformal and in particular, according to Liouville's theorem, the

class of orientation-preserving/-reversing, degree ±1 harmonic maps from S2 onto itself

is precisely the group Conf(S2).

We discuss here the case of maps of degree 1, the case of maps of degree −1 being

completely analogous, or it can be derived from the �rst case by a single �ip in the

ambient space R3. Following the notation we had in the previous Chapters that di�ers

only slightly from the ones in [BMMS], let us de�ne

AS2 :=

{
u ∈ W 1,2(S2,S2) : degu := −

∫
S2

〈u, ∂τ1u ∧ ∂τ2u〉 dH2 = 1

}
. (4.3.1)

As a particular case of (1.2.6) for n = 3 and since V3(u) = 1 for every u ∈ AS2 (see also

Lemma A.3 in [BMMS] and the references therein), in this class of mappings we know that

1

2
−
∫
S2

|∇Tu|2 ≥ 1 for every u ∈ AS2 ,
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with equality i� u ∈ Conf+(S2). Therefore, for every u ∈ AS2 the quantity

D(u) :=
1

2
−
∫
S2

|∇Tu|2 − 1 (4.3.2)

is nonnegative, invariant under both the left and the right action of Conf+(S2), and van-

ishes precisely when u ∈ Conf+(S2) providing thus an appropriate notion of conformal

de�cit for maps in the above de�ned class.

A direct application of Proposition 2.2.7 (which for our argument we use instead of

Step 1 in the proof of Theorem 2.4 in [BMMS]), for n = 3 in this case, gives

Lemma 4.3.1. Let (uj)j∈N ∈ AS2 be a sequence of mappings such that

lim
j→∞

D(uj) = 0. (4.3.3)

Then, up to a non-relabeled subsequence there exist (ψj)j∈N ∈ Conf+(S2) and R ∈ SO(3)

such that

−
∫
S2

uj ◦ ψj dH2 = 0 (4.3.4)

and

uj ◦ ψj −→ RidS2 strongly in W 1,2(S2;S2). (4.3.5)

With these notations, we present now our alternative proof of the following.

Theorem 4.3.2. (A.B.-Mantel, C.B. Muratov, T.M. Simon, [BMMS], The-

orem 2.4.) There exists a constant c > 0 such that for every u ∈ AS2 there exists

φ ∈ Conf+(S2) so that

−
∫
S2

|∇Tu−∇Tφ|2 dH2 ≤ cD(u). (4.3.6)

Proof. As we have already seen in the proof of Lemma 2.2.6., given u ∈ AS2 one can

always �nd a Möbius transformation ψ ∈ Conf+(S2) so that −
∫
S2 u ◦ ψ dH2 = 0. Hence,

if we set ũ := u ◦ ψ, thanks to the invariance of the Dirichlet-energy under conformal

reparametrizations in two dimensions and the invariance of the degree under orientation-

preserving conformal reparametrizations, we have

ũ ∈ AS2 with D(ũ) = D(u), degũ = degu = 1 and −
∫
S2

ũ dH2 = 0. (4.3.7)

The proof is again divided in two steps, where in the �rst one we prove a local version

of the statement under the assumption that our map ũ is apriori close to the idS2 in the

W 1,2(S2;S2)-topology and in the second step where we use the compactness Lemma 4.3.1.

to conclude.
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Step 1. Let us �rst prove (4.3.6) under the extra assumption that

−
∫
S2

|∇T ũ− PT |2 dH2 ≤ θ2, (4.3.8)

where θ is a su�ciently small positive constant that will be chosen later. This assumption

also implies a trivial upper bound for the conformal de�cit, since

D(ũ) =
1

2
−
∫
S2

|∇T ũ|2 dH2 − 1 ≤ −
∫
S2

(|∇T ũ− PT |2 + |PT |2) dH2 − 1 ≤ 1 + θ2. (4.3.9)

Since u ∈ W 1,2(S2;S2) and ψ ∈ Conf+(S2) their composition ũ := u ◦ ψ also satis�es the

pointwise identity

|ũ| = 1, H2 − a.e. on S2. (4.3.10)

With a trick similar to one that we have used earlier, we can alternatively write the

conformal de�cit as

D(u) =
1

2
−
∫
S2

|∇Tu|2 dH2 − 1

=
1

2
−
∫
S2

|∇T (u ◦ ψ)|2 dH2 − 1

=
1

2
−
∫
S2

|∇T ũ|2 dH2 − 1

=
1

2
−
∫
S2

|∇T ũ|2 dH2 −−
∫
S2

|ũ|2 dH2, (4.3.11)

where we used that (4.3.10) in particular implies that

−
∫
Sn−1

|ũ|2 dH2 = 1.

In other words, a feature similar to one that appeared in Chapter 3 appears in this two

dimensional conformal setting as well, i.e. the conformal de�cit of u (or equivalently

of ũ) transforms into the de�cit in the L2−Poincare inequality for the zero-average map

ũ. Once again by expanding in spherical harmonics and by using the sharp Poincare

inequality (with constant 1
6
) for the map ũ−∇ũh(0)idS2 which has vanishing mean and

vanishing linear part,

D(u) =
1

2
−
∫
S2

|∇T ũ|2 dH2 −−
∫
S2

|ũ|2 dH2

=
1

2
−
∫
S2

|∇T ũ−∇ũh(0)PT |2 dH2 −−
∫
S2

|ũ−∇ũh(0)x|2 dH2

≥
(

1

2
− 1

6

)
−
∫
S2

|∇T ũ−∇ũh(0)PT |2 dH2,
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and the last estimate can be rewritten as

−
∫
S2

|∇T ũ−∇ũh(0)PT |2 dH2 ≤ 3D(u). (4.3.12)

As the reader can notice, although we are now in a di�erent setting, (4.3.12) is similar to

(3.1.16) and (3.2.17) and once again we only have to justify why we can replace ∇ũh(0)

with a matrix R ∈ SO(3) in the last estimate. The proof of this fact follows the lines

of the analogous proofs in Theorem 3.1.2. and Theorem 3.2.3., by using the degree one

condition for ũ, the extra assumption (4.3.8) and the extra information that ũ takes

values H2-a.e. on S2. As it was argued in Chapter 3, (4.3.8) implies that

|∇ũh(0)− I3|2 ≤
3θ2

2
(4.3.13)

and by choosing θ > 0 su�ciently small, we can take ∇ũh(0) to be invertible and such

that

|∇ũh(0)|2, |[∇ũh(0)]−1|2 ∈ [2, 4] and det∇ũh(0) ∈
[

1

2
,
3

2

]
. (4.3.14)

By writing again ∇ũh(0) = R0

√
∇ũh(0)t∇ũh(0) with R0 ∈ SO(3), label the eigen-

values of
√
∇ũh(0)t∇ũh(0) ∈ Sym+(3) as 0 < µ1 ≤ µ2 ≤ µ3 and set λi := µi − 1,

λ := λ1 + λ2 + λ3 and Λ2 := λ2
1 + λ2

2 + λ2
3, we have as in (3.1.17),

Λ2 = dist2(∇ũh(0);SO(3)) ≤ |∇ũh(0)− I3|2 ≤
3θ2

2
. (4.3.15)

Setting again,

w̃(x) := ∇ũh(0)−1(ũ(x)−∇ũh(0)x), (4.3.16)

we can use the fact that deg(ũ) = 1 and the computations we performed to arrive at

(3.1.32), to obtain

1 = det∇ũh(0)

(
1 +QV3(w̃) +−

∫
S2

〈w̃, ∂τ1w̃ ∧ ∂τ2w̃〉 dH2

)
. (4.3.17)

By writing again det∇ũh(0) as a polynomial in the eigenvalues as

det∇ũh(0) = 1 + λ+
1

2
(λ2 − Λ2) + λ1λ2λ3, (4.3.18)

instead of (3.1.22) or (3.2.19) we now have the exact indentity

Λ2

2
=

(
λ+

λ2

2

)
+ λ1λ2λ3 + det∇ũh(0)

(
QV3(w̃) +−

∫
S2

〈w̃, ∂τ1w̃ ∧ ∂τ2w̃〉 dH2

)
. (4.3.19)

In the way that we have already encountered, the last identity leads to the desired esti-

mate, i.e.

dist2(∇ũh(0);SO(3)) = Λ2 ≤ c1D(u), (4.3.20)
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for an absolute constant c1 > 0.

Indeed, the summand
(
λ+ λ2

2

)
can be handled as in the proofs we saw in Chapter 3

by observing that now

|∇ũh(0)|2

3
≤ 1

2
−
∫
S2

|∇T ũ|2 dH2 = 1 +D(u) =⇒ λ ≤ 3

2
D(u)− Λ2

2
≤ 3

2
D(u)

and distinguish again between the case λ ≥ 0, where

λ+
λ2

2
≤ 3

2
D(u) +

9

8
[D(u)]2

(4.3.9)

≤
(

3

2
+

9

8
(1 + θ2)

)
D(u),

and λ < 0, where due to (4.3.8),

λ+
λ2

2
≤
(

1− 3

2
√

2
θ

)
λ < 0.

Alternatively, by decomposing the S2-valued map ũ into its linear part given by the map

x 7→ ∇ũh(0)x and the part consisting of the higher order spherical harmonics, one can

obtain

1 = −
∫
S2

|ũ|2 = −
∫
S2

|∇ũh(0)x|2 +−
∫
S2

|ũ−∇ũh(0)x|2 =
1

3
|∇ũh(0)|2 +−

∫
S2

|ũ−∇ũh(0)x|2

=⇒ 1−−
∫
S2

|ũ−∇ũh(0)x|2 =
1

3
(µ2

1 + µ2
2 + µ2

3) =
1

3
[(λ1 + 1)2 + (λ2 + 1)2 + (λ3 + 1)2]

=⇒ λ = −1

2
Λ2 − 3

2
−
∫
S2

|ũ−∇ũh(0)x|2, (4.3.21)

which is an exact identity relating λ and Λ. If we use this identity (4.3.19) results in

Λ2 = λ1λ2λ3 +

[
1

8
Λ4 +

3

4
Λ2−
∫
S2

|ũ−∇ũh(0)x|2 +
9

8

(
−
∫
S2

|ũ−∇ũh(0)x|2
)2
]

− 3

2
−
∫
S2

|ũ−∇ũh(0)x|2 + det∇ũh(0)

(
QV3(w̃) +−

∫
S2

〈w̃, ∂τ1w̃ ∧ ∂τ2w̃〉
)
. (4.3.22)

Of course,

λ1λ2λ3

AM−GM
≤

(
Λ2

3

) 3
2 (4.3.15)

≤ θ

3
√

2
Λ2 and

1

8
Λ4

(4.3.15)

≤ 3θ2

16
Λ2. (4.3.23)

By the Poincare inequality for the map ũ − ∇ũh(0)x whose linear part is vanishing, we

get

−
∫
S2

|ũ−∇ũh(0)x|2 dH2 ≤ 1

6
−
∫
S2

|∇T ũ−∇ũh(0)PT |2 dH2
(4.3.12)

≤ D(u)

2
,

so that
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3

4
Λ2−
∫
S2

|ũ−∇ũh(0)x|2 dH2 ≤ 3D(u)

8
Λ2 and

9

8

(
−
∫
S2

|ũ−∇ũh(0)x|2 dH2

)2

≤ 9

32
[D(u)]2.

Regarding the last summands, the �rst term in the second line of (4.3.22) is non-

positive, while the quadratic term in the expansion of the degree can be easily estimated

as in (4.1.24) (with a slightly better constant this time because the linear part of w̃ is

vanishing), so that

|QV3(w̃)| ≤ 3

2
√

2
−
∫
S2

|∇T w̃|2 dH2 ≤ 3

2
√

2
−
∫
S2

∣∣∇ũh(0)−1(∇T ũ−∇ũh(0)PT )
∣∣2 dH2

≤ 3|∇ũh(0)−1|2

2
√

2
−
∫
S2

∣∣∇T ũ−∇ũh(0)PT
∣∣2 dH2

≤ 18√
2
D(u), (4.3.24)

the last inequality following from (4.3.12) and (4.3.14).

The last term can be estimated by using again the functional form of the conformal-

isoperimetric inequality (1.2.6) for n = 3 and w̃, i.e.

∣∣∣∣−∫
S2

〈w̃, ∂τ1w̃ ∧ ∂τ2w̃〉 dH2

∣∣∣∣ ≤ (1

2
−
∫
S2

|∇T w̃|2 dH2

) 3
2

≤

∣∣∣[∇ũh(0)]−1
∣∣∣3

2
√

2

(
−
∫
S2

∣∣∇T ũ−∇ũh(0)PT
∣∣2) 3

2

≤ 4
√

27√
2

[
D(u)

] 3
2

≤
4
√

27(1 + θ2)√
2

D(u). (4.3.25)

where we used again (4.3.12) and (4.3.14).

By plugging in all the estimates (4.3.23)-(4.3.25) into the identity (4.3.22) and keeping

in mind (4.3.9), we obtain

Λ2 ≤
(

θ

3
√

2
+

3θ2

16
+

3D(u)

8

)
Λ2 +

3

2

(
18√

2
+

4
√

27(1 + θ2)√
2

)
D(u) +

9

32
[D(u)]2

=⇒
(

5

8
− θ

3
√

2
− 9θ2

16

)
Λ2 ≤

(
27√

2
+

6
√

27(1 + θ2)√
2

+
9

32
(1 + θ2)

)
D(u). (4.3.26)
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This �nal estimate is precisely (4.3.20), after choosing θ > 0 su�ciently small to addi-

tionally satisfy for example

5

8
− θ

3
√

2
− 9θ2

16
≥ 1

2
and then c1 := 27

√
2 + 6

√
54(1 + θ2) +

9

16
(1 + θ2).

Therefore, by combining (4.3.12) and (4.3.20) we conclude that

−
∫
S2

|∇T ũ−R0PT |2 ≤ 2−
∫
S2

|∇T ũ−∇ũh(0)PT |2 +
2

3
Λ2

=⇒ −
∫
S2

|∇T

[
(u−R0ψ

−1) ◦ ψ
]
|2 ≤

(
6 +

2

3
c1

)
D(u).

By the conformal invariance of the Dirichlet-energy in two dimensions we can rewrite the

last estimate as desired, i.e.

−
∫
S2

|∇Tu−∇Tφ|2 dH2 ≤ cD(u), (4.3.27)

where φ := R0ψ
−1 ∈ Conf+(S2), and c := 6 + 2

3
c1 > 0.

Step 2. Arguing again by contradiction, suppose that the statement of the theorem is

false. Then, for every k ∈ N there exists a map uk ∈ AS2 with D(uk) > 0 such that

−
∫
S2

|∇Tuk −∇Tφ|2 dH2 ≥ kD(uk) for all φ ∈ Conf+(S2). (4.3.28)

In particular, for every φ ∈ Conf+(S2) which we can �x for the following computation,

and for every k ≥ 5,

kD(uk) ≤ −
∫
S2

|∇Tuk −∇Tφ|2 dH2 = −
∫
S2

∣∣∇T (uk ◦ φ−1)− PT
∣∣2 dH2

≤ 2−
∫
S2

(
|∇T (uk ◦ φ−1)|2 + |PT |2

)
dH2

= 2−
∫
S2

|∇Tuk|2 dH2 + 4 = 4D(uk) + 8

=⇒ D(uk) ≤
8

k − 4
, for every k ≥ 5.

By letting k →∞ we obtain limk→∞D(uk) = 0. We can then use the compactness Lemma

4.3.1. and Step 1 to obtain a contradicition as in the end of the proof of Theorem 3.1.2.

or Theorem 3.2.3 and conclude.
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Outlook

Inspired from rigidity and stability results for isometric and conformal maps from open

bounded subdomains of Rn into Rn, in this thesis we studied similar features for maps

de�ned on Sn−1 and mapping into Rn. We would also like to collect here some open

questions that we mentioned throughout the thesis, that either originate from our study,

or that the author �nds interesting problems to be explored in general.

(1) Prove or disprove the conjecture of T. Iwaniec and G. Martin regarding the sharp-

ness of the integrability exponent n
2
for the validity of Liouville's theorem for conformal

maps in W 1,p(U ;Rn) whenever p ≥ n
2
, also in odd dimensions. One can then explore the

approximate version of the previous question (see Theorem 1.1.10. and the subsequent

comments), which for the case of even n ≥ 4 has been settled by S. Müller, V. Sverak

and B. Yan in [M�Y99].

(2) Prove more general versions of the local (with respect to the domains) estimate

(1.1.35) of D. Faraco and X. Zhong where the compact, rotationally invariant, annuli-type

subsets of CO+(n) are replaced by more general subsets of CO+(n), or even CO+(n) itself

if possible. A new PDE approach to this question would be very interesting.

(3) It would be interesting to �nd alternative proofs of the results of Section 3.2 that

do not rely somehow on the stability of the L2-Poincare inequality and can give also the

Lp-version (with respect to the de�nition of the isometric de�cit) of Theorem 3.2.3. for

1 ≤ p <∞. By using the standard truncation argument that we described in Subsection

3.2.2, one should expect that the analogue of Theorem 3.2.3. for p ≥ n−1 should be free

of any hypothesis regarding apriori boundedness in some Sobolev norm, even when n ≥ 4.

(4) Find intrinsic proofs of quantitative rigidity estimates for maps from Sn−1 to itself,

or to other closed embedded hypersurfaces in Rn with optimal exponent in the isometric

de�cit (see the comments in Remark 3.3.3.). Although not completely concrete, some

questions in this direction could be the following.

(4a) Give an intrinsic proof of (3.3.20) without the assumption made in Corollary 3.3.2.,

i.e. the apriori closeness to the identity assumption.
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(4b) Obtain appropriate generalizations for maps u : Sn−1 7→ Nn−1, where Nn−1 is a

closed embedded hypersurface in Rn that has small isoperimetric de�cit, or satis�es

some appropriate curvature condition.

(4c) Try to obtain general quantitative estimates for orientation-preserving isometries

between orientable Riemannean manifolds of the same dimension (see [KMS19] in

this respect).

(5) Prove more global in nature results with respect to the combined conformal-

isoperimetric de�cit, starting from the local stability results for conformal maps from

Sn−1 to Rn (n ≥ 3) that were presented in Chapter 4. Explore the analogues of the

questions (4b), (4c) in the conformal setting.
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Appendix A

A generalized isoperimetric inequality

for maps on Sn−1

We would like to give here a proof of a generalized version of the isoperimetric inequality

in functional form, that we mentioned and used in the main body of the thesis, namely

Lemma A.0.1. Let n ≥ 2, u ∈ W 1,n−1(Sn−1;Rn). Then the following inequality holds,∣∣∣∣∣−
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1

∣∣∣∣∣ ≤
(
−
∫
Sn−1

√
det(∇Tut∇Tu) dHn−1

) n
n−1

. (A.0.1)

As we have mentioned, it is exactly because of this inequality that the integral on

the left hand side is �nite for maps in W 1,n−1(Sn−1;Rn). The interested reader is refered

to [NB11], [DP12] and the references therein for related results and details concerning

the regularity assumptions under which the signed-volume-functional is �nite for maps

de�ned on domains of Rn−1 and mapping into Rn. Of course, if the map u : Sn−1 7→ Rn

is an embedding, then (A.0.1) is the classical Euclidean isoperimetric inequality for the

open bounded set Eu in Rn with ∂Eu = u(Sn−1). Here, we simply want to mention

how (without refering to Almgren's general isoperimetric inequality for integral currents)

Lemma A.0.1. is a simple consequence of the following generalized isoperimetric inequality

due to S. Müller.

Lemma A.0.2 (S. Müller, [Mü90], Lemma 1.3). Let Ω ⊆ Rn be an open, bounded,

Lipschitz domain, let v ∈ W 1,n(Ω;Rn), let x ∈ Ω and let R < dist(x, ∂Ω). Then, for a.e.

r ∈ (0, R) ∣∣∣∣∫
Br(x)

detDv dy

∣∣∣∣n−1
n

≤ C

∫
∂Br(x)

|adjDv| dHn−1, (A.0.2)

where the constant C depends only on n.
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By a careful look at the proof, which is given in Section 3 in [Mü90] and relies on a

degree argument and the classical Sobolev embedding in BV (Rn), one can verify that the

inequality holds for the same constant as the classical isoperimetric inequality, i.e. for

C = n−1ω
− 1
n

n , although this might not be the optimal one for (A.0.2).

Let us see how we can obtain (A.0.1). Let u ∈ W 1,n−1(Sn−1;Rn). By a standard

density argument and Fatou's lemma we can assume without loss of generality that

u ∈ C∞(Sn−1;Rn). Indeed, if (uk)k∈N ∈ C∞(Sn−1;Rn) is such that uk → u strongly in

W 1,n−1(Sn−1;Rn) and up to subsequences uk → u, ∇Tuk → ∇Tu pointwise Hn−1-a.e.,

then |Vn(u)| ≤ lim infk→∞ |Vn(uk)|, Pn−1(u) = limk→∞ Pn−1(uk). We can then extend u

in Bn in a small (one sided) annular neighbourhood around Sn−1 as follows.

Given 0 ≤ δ � 1, let φδ ∈ C∞c (Rn;R) be a smooth cut-o� such that 0 ≤ φδ ≤ 1,

φδ ≡ 1 in Uδ(Sn−1), sptφδ ⊂⊂ U2δ(Sn−1) and then extend u to Uδ : Bn 7→ Rn by setting

Uδ(y) :=

{
φδ(y)u

(
y
|y|

)
; y 6= 0,

0; y = 0

}
.

In particular, Uδ ∈ C∞(Bn;Rn) and in polar coordinates Uδ(r, θ) = u(θ) ∀ r ∈ [1− δ, 1]

and θ ∈ Sn−1, Uδ(r, θ) = 0 ∀ r ∈ [0, 1 − 2δ] and θ ∈ Sn−1. Therefore (A.0.2) applies to

Uδ in Bn with the constant C = n−1ω
− 1
n

n , and can be rewritten as∣∣∣∣−∫
Bn

det∇Uδ dx
∣∣∣∣ ≤ (−∫

Sn−1

|adj∇Uδ| dHn−1

) n
n−1

. (A.0.3)

The last inequality is precisely (A.0.1). Indeed, recalling (1.2.2), i.e. the property of the

Jacobian determinant being a null-Lagrangian, for the left hand side we have that

−
∫
Bn

det∇Uδ dx = −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1 since Uδ ≡ u on Sn−1,

while for the right hand side the two integrands agree pointwise.

Indeed, since the extension Uδ has no radial derivative on Sn−1, for every i, j = 1, . . . , n

we have pointwise on Sn−1,

(∇Uδ)ij =
n−1∑
m=1

〈∇U i
δ, τm〉〈ej, τm〉+ ∂~νU

i
δ〈ej, x〉 =

n−1∑
m=1

〈∇Tu
i, τm〉〈ej, τm〉 =

(
∇TuP

t
T

)
ij
,

i.e.

∇Uδ = ∇TuP
t
T =

(
∇Tu

∣∣∣0) ·(P t
T

0

)
on Sn−1,

where (with respect to the local orthonormal coordinates {τ1, . . . , τn−1}) we have aug-

mented the n× (n− 1)- matrix ∇Tu to an n× n-matrix with an extra column of zeros,
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and the (n−1)×n-matrix P t
T to an n×n-matrix with an extra row of zeros. By a simple

fact from linear algebra,

adj∇Uδ = adj

(
P t
T

0

)
· adj

(
∇Tu

∣∣∣0) = cof
(
PT |0

)
· cof

(
∇Tu

t

0

)
on Sn−1.

It is easy to check that for every i, j = 1, . . . , n

[
cof
(
PT |0

)]
ij

= (−1)i+nδnjdet(〈ei, τl〉),

[
cof

(
∇Tu

t

0

)]
ij

= (−1)n+jδnidet(〈∇Tu
j, τm〉),

where (〈ei, τl〉) is the (n−1)×(n−1) minor of PT with the i-th row ommited and similarly

for (〈∇Tu
j, τm〉). Multiplying these two matrices, we get

(adj∇Uδ)ij = (−1)i+j [det(〈ei, τl〉)]
[
det(〈∇Tu

j, τm〉)
]
.

Finally,

|adj∇Uδ| =

(
n∑

i,j=1

(adj∇Uδ)2
ij

) 1
2

=

(
n∑

i,j=1

[det(〈ei, τl〉)]
2
[
det(〈∇Tu

j, τm〉)
]2
) 1

2

=

(
n∑
i=1

[det(〈ei, τl〉)]
2

) 1
2
(

n∑
j=1

[
det(〈∇Tu

j, τm〉)
]2
) 1

2

=
√

det(P t
TPT ) ·

√
det(∇Tut∇Tu) =

√
det(Ix)

√
det(∇Tut∇Tu)

=
√

det(∇Tut∇Tu)

and (A.0.1) follows. In the passage from the second to the third line in the previous

chain of equalities we have applied the Cauchy-Binet formula, according to which for any

n× d-matrix A,

det(AtA) =
∑
Ã

(detÃ)2, (A.0.4)

the sum being taken over all d× d minors Ã of A.
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Appendix B

Spherical Harmonics

It is well known that the Hilbert space W 1,2(Sn−1;Rn) admits an orthonormal basis

consisting of eigenfunctions of the Laplace-Beltrami operator. In particular, for every

k ∈ N there exists a �nite number (denoted by G(n, k)) of linearly independent maps

(ψn,k,j)j=1,2,...,G(n,k), which are called the k-th order spherical harmonics, are restrictions

on Sn−1 of (Rn-valued) homogeneous harmonic polynomials in Rn of degree k respectively
and enjoy the following properties.

(i) For every k, k′ ∈ N, j = 1, 2, ..., G(n, k), j′ = 1, 2, ..., G(n, k′),∫
Sn−1

〈ψn,k,j, ψn,k′,j′〉 dHn−1 = δkk
′
δjj
′

(B.0.1)

(ii) For every k ∈ N, j = 1, 2, ..., G(n, k)

−∆Sn−1ψn,k,j = λn,kψn,k,j, where λn,k := k(k + n− 2), (B.0.2)

or, in distributional formulation, for every φ ∈ W 1,2(Sn−1;Rn)∫
Sn−1

〈∇Tψn,k,j,∇Tφ〉 dHn−1 = λn,k

∫
Sn−1

〈ψn,k,j, φ〉 dHn−1. (B.0.3)

The dimension of each eigenspace in the scalar case is G(n, 0) = 1, G(n, 1) = n, and for

k ≥ 2 it is G(n, k) =
(
n+k−1

k

)
-
(
n+k−3
k−2

)
. The reader can refer to [Gro96] for more informa-

tion on spherical harmonics.

Remark B.0.1. For every vector �eld u := (u1, . . . , un) ∈ W 1,2(Sn−1;Rn) we have a

formal expansion of each one of its components into a Fourier series as

ui =
∞∑
k=0

G(n,k)∑
j=1

ain,k,jψn,k,j, where ain,k,j :=

∫
Sn−1

uiψn,k,j dHn−1,
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where now by an abuse of notation, (ψn,k,j)k≥0,j∈G(n,k) are the scalar spherical harmonics.

Let Pn,k,j be the k-th homogeneous harmonic polynomial in Rn whose restriction on Sn−1

is ψn,k,j. In polar coordinates (r, θ) ∈ [0,∞) × Sn−1, we can write these polynomials as

Pn,k,j(r, θ) = rkψn,k,j(θ).

For each i = 1, . . . , n, the harmonic extension uih has the same power series expansion in

the interior of the unit ball, namely

uih =
∞∑
k=0

G(n,k)∑
j=1

ain,k,jPn,k,j in Bn.

If the vector �eld u has zero average on Sn−1, then

uih(0) = −
∫
Sn−1

ui dHn−1 = 0 for every i = 1, 2, . . . , n.

In view of the homogeneity of Pn,k,j this is equivalent to ain,0 = 0 for all i = 1, 2, . . . , n.

Another immediate but as we saw useful observation, which is based on the fact that

the �rst order spherical harmonics are the coordinate functions ψn,1,j(θ) =
θj√
ωn
, is that

the linear part of u is given by the linear map x 7→ ∇uh(0)x.

Remark B.0.2. The following Parseval identities on Sn−1 hold true: If φ ∈ W 1,2(Sn−1)

with its Fourier expansion in spherical harmonics being φ =
∑∞

k=0

∑G(n,k)
j=1 an,k,jψn,k,j,

then∫
Sn−1

|φ|2 =
∞∑
k=0

G(n,k)∑
j=1

(an,k,j)
2 and

∫
Sn−1

|∇Tφ|2 =
∞∑
k=1

G(n,k)∑
j=1

λn,k(an,k,j)
2. (B.0.4)

In particular, for every k ∈ N and every j = 1, 2, ..., G(n, k), we have the identity∫
Sn−1

|∇Tψn,k,j|2 dHn−1 = λn,k

∫
Sn−1

|ψn,k,j|2 dHn−1. (B.0.5)

Remark B.0.3. The sharp Poincare inequality for functions f ∈ W 1,2(Sn−1) is then

easily deduced. Let f =
∑∞

k=0

∑G(n,k)
j=1 fn,k,jψn,k,j. Since λn,k ≥ n− 1 for every k ≥ 1, we

obtain∫
Sn−1

|∇Tf |2 ≥ (n− 1)
∞∑
k=1

G(n,k)∑
j=1

(fn,k,j)
2 = (n− 1)

∫
Sn−1

∣∣∣∣f −−∫
Sn−1

f

∣∣∣∣2 . (B.0.6)

Of course, depending on the number of vanishing �rst Fourier modes in the expansion

of f the constant in the above inequality can be improved in an obvious way. Obviously,

the Poincare inequality holds then true also for vector-valued maps u ∈ W 1,2(Sn−1;Rm).
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By expanding a function in spherical harmonics one can often obtain useful estimates.

In the next remark we mention two of them that we have used earlier.

Remark B.0.4. If u ∈ W 1,2(Sn−1;Rm) and uh : B 7→ Rm is as usual its harmonic

extension, the following estimates hold true:

(i) −
∫
Bn
|∇uh|2 dx ≤ n

n−1
−
∫
Sn−1 |∇Tu|2 dHn−1,

(ii) n
n−1

−
∫
Sn−1 |∇Tu|2 dHn−1 ≤ −

∫
Sn−1 |∇uh|2 dHn−1 ≤ 2 −

∫
Sn−1 |∇Tu|2 dHn−1.

Let us give the proof of these two simple estimates in the case that u is scalar-valued,

the case of vector-valued u being an immediate consequence. We write again

u =
∞∑
k=0

G(n,k)∑
j=1

an,k,jψn,k,j,

and its harmonic extension in polar coordinates as

uh(r, θ) =
∞∑
k=0

G(n,k)∑
j=1

rkan,k,jψn,k,j(θ).

For the �rst estimate, we have

−
∫
Bn
|∇uh|2 dx = −

∫
Bn

div(uh∇uh) dx = n−
∫
Sn−1

u ∂~νuh dHn−1

=
∞∑
k=0

G(n,k)∑
j=1

nk(an,k,j)
2 =

∞∑
k=1

G(n,k)∑
j=1

nλn,k
k + n− 2

(an,k,j)
2

≤ n

n− 1

∞∑
k=1

G(n,k)∑
j=1

λn,k(an,k,j)
2 =

n

n− 1
−
∫
Sn−1

|∇Tu|2 dHn−1,

while for the second one, we have

−
∫
Sn−1

|∇uh|2 dHn−1 = −
∫
Sn−1

|∇Tu|2 dHn−1 +−
∫
Sn−1

|∂~νuh|2 dHn−1

= −
∫
Sn−1

|∇Tu|2 dHn−1 +
∞∑
k=1

G(n,k)∑
j=1

k2(an,k,j)
2

= −
∫
Sn−1

|∇Tu|2 dHn−1 +
∞∑
k=1

G(n,k)∑
j=1

k

k + n− 2
λn,k(an,k,j)

2,

and since 1
n−1
≤ k

k+n−2
≤ 1 for every k ≥ 1, the desired estimate follows immediately.
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Appendix C

Taylor expansions of the de�cits and

proof of Korn's identity

In this Appendix we calculate in detail the Taylor expansions up to second order of the

geometric quantities that we used in the main body of the thesis. The computations

presented here are formal and we assume without further clari�cation that the maps in

question are always regular enough so that we can perform the expansions. For such a

map u : Sn−1 7→ Rn we set as always w := u− idSn−1 .

The isometric de�cit of u can be expanded as

δ2
u := −

∫
Sn−1

∣∣∣√∇Tut∇Tu− Ix
∣∣∣2 dHn−1 = −

∫
Sn−1

∣∣∣∣√(∇Twt + P t
T )(∇Tw + PT )− Ix

∣∣∣∣2 dHn−1

= −
∫
Sn−1

∣∣∣∣√Ix + P t
T∇Tw + (P t

T∇Tw)t +∇Twt∇Tw − Ix
∣∣∣∣2 dHn−1

Formally,√
Ix + P t

T∇Tw + (P t
T∇Tw)t +∇Twt∇Tw = Ix +

1

2

(
P t
T∇Tw + (P t

T∇Tw)t
)

+O(|∇Tw|2),

so that

δ2
u = −

∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2
+O(|∇Tw|2)

∣∣∣∣2 dHn−1

= −
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 dHn−1 +−
∫
Sn−1

O(|∇Tw|3) dHn−1.

Therefore, the quadratic term appearing in the expansion of the isometric de�cit δu

around the idSn−1 is

Qn,isom(w) := −
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 dHn−1.
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For the expansion of the generalized (n−1)-Dirichlet energy-term of u around the idSn−1 ,

we had seen in detail the computation in the case n = 3 in Subsection 4.1.1. For n ≥ 4,

Dn−1(u) :=

(
−
∫
Sn−1

(
|∇Tu|2

n− 1

)n−1
2

) n
n−1

=

(
−
∫
Sn−1

(
1 +

2

n− 1
divSn−1w +

|∇Tw|2

n− 1

)n−1
2

) n
n−1

=

(
−
∫
Sn−1

(
1 + divSn−1w +

1

2
|∇Tw|2 +

1

2

n− 3

n− 1
(divSn−1w)2 +O(|∇Tw|3)

)) n
n−1

=

[
1 +−
∫
Sn−1

(
(n− 1)〈w, x〉+

1

2
|∇Tw|2 +

1

2

n− 3

n− 1
(divSn−1w)2

)
+−
∫
Sn−1

O(|∇Tw|3))

] n
n−1

= 1 + n−
∫
Sn−1

〈w, x〉 dHn−1 +
n

2(n− 1)
−
∫
Sn−1

|∇Tw|2 dHn−1

+
n(n− 3)

2(n− 1)2
−
∫
Sn−1

(divSn−1w)2 dHn−1 +
n

2

(
−
∫
Sn−1

〈w, x〉
)2

+−
∫
Sn−1

O(|∇Tw|3) +O

((
−
∫
Sn−1

|∇Tw|2
)2

+

∣∣∣∣−∫
Sn−1

〈w, x〉
∣∣∣∣−∫
Sn−1

|∇Tw|2
)
.

Therefore, the quadratic term appearing in the expansion of Dn−1(u) around the idSn−1

is

QDn−1(w) :=
n

2

[
−
∫
Sn−1

(
|∇Tw|2

n− 1
+

n− 3

(n− 1)2
(divSn−1w)2

)
+

(
−
∫
Sn−1

〈w, x〉
)2
]
.

Notice that in Subsection 4.2.1 we had already translated and scaled the initial map u

properly, so that the map w was satisfying −
∫
Sn−1 w = 0, −

∫
Sn−1〈w, x〉 = 0. Thus, the last

term in QDn−1(w) was dropping out and also the structure of the higher order terms was

simplifying.

For the expansion of the generalized perimeter-term around the idSn−1 , we have

−
∫
Sn−1

√
det(∇Tut∇Tu) dHn−1 = −

∫
Sn−1

√
det(Ix + A) dHn−1,

where A := P t
T∇Tw+ (P t

T∇Tw)t +∇Tw
t∇Tw. The Taylor expansion of the determinant

around the identity matrix gives,

det(I + A) = 1 + TrA+
1

2

(
(TrA)2 − Tr(A2)

)
+O(|A|3)

and since in our case,

(a) TrA = 2divSn−1w + |∇Tw|2
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(b) (TrA)2 = 4(divSn−1w)2 +O(|∇Tw|3)

(c) Tr(A2) = |P t
T∇Tw + (P t

T∇Tw)t|2 +O(|∇Tw|3),

we obtain the formal expansion

−
∫
Sn−1

√
det(∇Tut∇Tu) dHn−1 = −

∫
Sn−1

√
1 + Θ(w) +O(|∇Tw|3) dHn−1,

where

Θ(w) := 2divSn−1w + |∇Tw|2 + 2(divSn−1w)2 − 2

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 .
Since (Θ(w))2 = 4(divSn−1w)2 + O(|∇Tw|3), we can perform a Taylor expansion of the

square root inside the integral to get

−
∫
Sn−1

√
det(∇Tut∇Tu) dHn−1 = −

∫
Sn−1

(
1 +

1

2
Θ(w)− 1

8
(Θ(w))2 +O

(
|∇Tw|3

))

= 1 + (n− 1)−
∫
Sn−1

〈w, x〉+
1

2
−
∫
Sn−1

(
|∇Tw|2 + (divSn−1w)2

)
−−
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 +−
∫
Sn−1

O
(
|∇Tw|3

)
.

A �nal Taylor expansion of the function t 7→ t
n
n−1 gives,

Pn−1(u) : =

(
−
∫
Sn−1

√
det(∇Tut∇Tu) dHn−1

) n
n−1

= 1 + n−
∫
Sn−1

〈w, x〉 dHn−1 +
n

n− 1
−
∫
Sn−1

(
|∇Tw|2

2
+

(divSn−1w)2

2

)
dHn−1

− n

n− 1
−
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 dHn−1 +−
∫
Sn−1

O
(
|∇Tw|3

)
dHn−1.

The quadratic term appearing in the expansion of Pn−1(u) around the idSn−1 is therefore

QPn−1(w) :=
n

n− 1
−
∫
Sn−1

(
|∇Tw|2

2
+

(divSn−1w)2

2
−
∣∣∣∣P t

T∇Tw + (P t
T∇Tw)t

2

∣∣∣∣2
)

dHn−1.

121



For the expansion of the generalized signed-volume-term around the idSn−1 , we can

argue as in Subsection 4.1.1. An intrinsic way to perform the calculation is the following.

Vn(u) : = −
∫
Sn−1

〈
u,

n−1∧
i=1

∂τiu
〉
dHn−1 = −

∫
Sn−1

〈
w + x,

n−1∧
i=1

(∂τiw + ∂τix)
〉
dHn−1

= −
∫
Sn−1

n−1∑
k=0

∑
|α|=k

σ(α, ᾱ)
〈
w + x,

(∧
α

∂ταw

)
∧

(∧
ᾱ

∂τᾱx

)〉
dHn−1

= I0(w) + I1(w) + I2(w) + I3(w).

Here we have used standard multiindex notation. For every k ∈ {0, 1, ..., n− 1} and
for every multiindex α := (α1, ..., αk), where (ai)

k
i=1 ∈ N with 1 ≤ α1 < ... < αk ≤ n− 1,

we denote ᾱ its complementary multiindex (with its entries also in increasing order),

σ(α, ᾱ) the sign of the permutation that maps (α, ᾱ) to the standard ordering (1, ..., n)

and ∂ταw := ∂τα1
w ∧ ... ∧ ∂ταkw. We have also denoted by (Ii(w))i=0,1,2 the zeroth, �rst

and second order terms with respect to w and ∇Tw in the expansion of Vn(u) around

the idSn−1 respectively and by I3(w) the remaining term which is a polynomial of order

at least 3 and at most n in w and its �rst derivatives. Keeping in mind that ∂τix = τi for

i = 1, ..., n− 1 and that by an abuse of notation τ1 ∧ τ2 ∧ ... ∧ τn−1 ≡ x, we can compute

each term separately.

I0(w) : = −
∫
Sn−1

〈x, ∂τ1x ∧ ... ∧ ∂τn−1x〉 dHn−1 = −
∫
Sn−1

|x|2 dHn−1 = 1.

I1(w) : = −
∫
Sn−1

〈w, x〉+
n−1∑
i=1

−
∫
Sn−1

〈
x,

(
i−1∧
l=1

τl

)
∧ ∂τiw ∧

(
n−1∧

m=i+1

τm

)〉

= −
∫
Sn−1

〈w, x〉 +−
∫
Sn−1

n∑
i=1

〈∂τiw, τi〉 = −
∫
Sn−1

〈w, x〉+−
∫
Sn−1

divSn−1w

= −
∫
Sn−1

〈w, x〉 dHn−1 + (n− 1)−
∫
Sn−1

〈w, x〉 dHn−1

= n−
∫
Sn−1

〈w, x〉 dHn−1.

For the quadratic term, we observe that we can write it as I2(w) := I2,1(w) + I2,2(w),
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where

I2,1(w) : =
n−1∑
i=1

−
∫
Sn−1

〈
w,

(
i−1∧
l=1

∂τlx

)
∧ ∂τiw ∧

(
n−1∧

m=i+1

∂τmx

)〉
dHn−1

=
n−1∑
i=1

−
∫
Sn−1

〈
w,

(
i−1∧
l=1

τl

)
∧

(
n−1∑
j=1

〈∂τiw, τj〉τj + 〈∂τiw, x〉x

)
∧

(
n−1∧

m=i+1

τm

)〉

= −
∫
Sn−1

divSn−1w〈w, x〉 dHn−1 −−
∫
Sn−1

n−1∑
i=1

〈w, τi〉〈∂τiw, x〉 dHn−1

= −
∫
Sn−1

〈
w, (divSn−1w)x−

n∑
j=1

xj∇Tw
j

〉
dHn−1.

The change of sign in the one before the last equality is due to orientation reasons, since

we have taken the local orthonormal basis {τ1, ..., τn−1} of TxSn−1 in such a way that at

every x ∈ Sn−1 the set of vectors {τ1(x), ..., τn−1(x), x} is a positively oriented frame of

Rn. Moreover,

I2,2(w) : = −
∫
Sn−1

∑
1≤i<j≤n−1

〈
x,

(
i−1∧
k=1

∂τkx

)
∧ ∂τiw ∧

(
j−1∧
l=i+1

∂τlx

)
∧ ∂τjw ∧

(
n−1∧

m=j+1

∂τmx

)〉

=
1

2
−
∫
Sn−1

∑
1≤i,j≤n−1

(
〈∂τiw, τi〉〈∂τjw, τj〉 − 〈∂τiw, τj〉〈∂τjw, τi〉

)
dHn−1.

After integrating by parts it is easy to see that the �rst term is

−
∫
Sn−1

∑
1≤i,j≤n−1

〈
∂τiw, τi〉〈∂τjw, τj

〉
dHn−1 = −

∫
Sn−1

〈
w, (n−1)(divSn−1w)x−∇TdivSn−1w

〉
dHn−1,

while

−
∫
Sn−1

∑
1≤i,j≤n−1

〈
∂τiw, τj〉〈∂τjw, τi

〉
= −
∫
Sn−1

〈
w, (divSn−1w)x−∇TdivSn−1w+(n−2)

n∑
j=1

xj∇Tw
j
〉
.

Subtracting these two identities, we arrive at

I2,2(w) : =
(n

2
− 1
)
−
∫
Sn−1

〈
w, (divSn−1w)x−

n∑
j=1

xj∇Tw
j

〉
dHn−1.
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Therefore, the quadratic term appearing in the expansion of Vn(u) around the idSn−1 is

QVn(w) := I2(w) =
n

2
−
∫
Sn−1

〈
w, (divSn−1w)x−

n∑
j=1

xj∇Tw
j

〉
dHn−1

=
n

2
−
∫
Sn−1

(
2 divSn−1w〈w, x〉 − n〈w, x〉2 + |w|2

)
dHn−1

=
1

2
−
∫
Bn

((
divwh)

2 − Tr(∇wh)2
)
dx.

The identity between the �rst and the second line above follows from a simple integra-

tion by parts, and the one between the third and the �rst line was justi�ed in Subsection

4.1.1. By the same procedure that we followed to calculate I2(w) one can also obtain the

algebraic structure of higher order terms in the expansion which was described in Lemma

4.2.2..

Let us conclude by giving a proof of Korn's identity on Sn−1 which was mentioned in

Remark 4.2.8..

Proof of Korn's identity. With the notation we introduced before, we have

−
∫
Sn−1

Tr
(
(P t

T∇Tw)2
)

=

n−1,n∑
i,j=1, k,l=1

−
∫
Sn−1

〈ek, τi〉〈el, τj〉〈∇Tw
k, τj〉〈∇Tw

l, τi〉

=
n−1∑
i,j=1

−
∫
Sn−1

〈∂τiw, τj〉〈∂τjw, τi〉 dHn−1

= −
∫
Sn−1

(divSn−1w)2 dHn−1 − 2I2,2(w)

= −
∫
Sn−1

(divSn−1w)2 dHn−1 − 2(n− 2)

n
QVn(w).

Therefore,

−
∫
Sn−1

∣∣∣∣P t
T∇Tw + (P t

T∇Tw)t

2

∣∣∣∣2 =
1

2
−
∫
Sn−1

|P t
T∇Tw|2 +

1

2
−
∫
Sn−1

Tr
(
(P t

T∇Tw)2
)

and the identity follows since −
∫
Sn−1 |P t

T∇Tw|2 = −
∫
Sn−1 |∇Tw|2−−

∫
Sn−1

∣∣∣∑n
j=1 xj∇Tw

j
∣∣∣2.
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