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Abstract. The paper establishes a sharp and rigid isoperimetric-type
inequality in Lorentzian signature under the assumption of Ricci curva-
ture bounded below in the timelike directions. The inequality is proved
in the high generality of Lorentzian pre-length spaces satisfying time-
like Ricci lower bounds in a synthetic sense via optimal transport, the
so-called TCDep(K,N) spaces. The results are new already for smooth
Lorentzian manifolds. Applications include an upper bound on the area
of Cauchy hypersurfaces inside the interior of a black hole (original al-
ready in Schwarzschild) and an upper bound on the area of Cauchy
hypersurfaces in cosmological space-times.
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1. Introduction

Brief account on the isoperimetric problem in Riemannian sig-
nature. The isoperimetric problem is one of the most classical problems
in Mathematics, having its roots in the Greek legend of Dido, queen of
Cartaghe. In Riemannian signature, it amounts to answer the following
question:

“What is the maximal volume that can be enclosed by a given area?”

Equivalently, it can be stated as the problem of finding the maximal function
I(M,g)(·) : [0,∞) → [0,∞) such that for every subset E ⊂ M with smooth

boundary ∂E in the (n+ 1)-dimensional Riemannian manifold (Mn+1, g), it
holds

(1.1) Volng (∂E) ≥ I(M,g)(Voln+1
g (E)),

where Voln+1
g (E) (resp. Volng (∂E)) denotes the (n+ 1)-dimensional measure

of E with respect to g (resp. the n-dimensional measure of ∂E with respect
to the restriction of g).

The literature on the isoperimetric problem in Riemannian signature is
highly extensive (see, for instance, [48, 50]). Even in Euclidean spaces, the
complete solution is relatively recent and required several significant break-
throughs. In the broader context of sets with finite perimeter, a complete
proof was established by De Giorgi [19] (refer to [20] for the English trans-
lation), following a long series of noteworthy intermediate results. It is
worth mentioning Steiner [53], who introduced a now-classical symmetriza-
tion technique that now bears his name, with this objective in mind.

In the framework of Riemannian manifolds with Ricci curvature bounded
below, an isoperimetric inequality in the form (1.1) (with the function
I(M,g)(·) here depending only on the dimension and on the Ricci lower bound)
was proved by Gromov [29] in case of positive Ricci lower bound, following a
previous work by Lévy [39]. After several contributions, the case of bounded
diameter and a general Ricci lower bound was established in the sharp form
by E. Milman [44] to which we refer for a complete account on the bibliog-
raphy.

Isoperimetric bounds of the type (1.1) have proven to be extremely influ-
ential in mathematical general relativity. Noteworthy developments include
the concept of isoperimetric mass introduced by Huisken [31, 32]; the es-
tablishment that initial data sets (with non-negative scalar curvature and
positive mass) are foliated at infinity by isoperimetric spheres, providing a
canonical center of coordinates, as demonstrated by Chodosh-Eichmair-Shi-
Yu [17] following prior work by Eichmair-Metzger [22], as well as the pioneer-
ing paper by Huisken-Yau [34]; the examination of the isoperimetric prob-
lem in the doubled Riemannian Schwarzschild metric by Brendle-Eichmair
[10] following Bray [7]; and lastly the work by Brendle [9], generalizing
the Alexandrov theorem to a class of Riemannian warped products, which



AN ISOPERIMETRIC-TYPE INEQUALITY IN LORENTZIAN SPACES 3

encompasses Riemannian deSitter-Schwarzschild and Riemannian Reissner-
Nordstrom metrics.

An alike area bound, playing a pivotal role in mathematical general rela-
tivity, is the celebrated Penrose inequality, relating the area of a black hole
horizon with the total mass of a space-time. More precisely, in 1973, Penrose
[49] put forth an argument suggesting that the total mass of a space-time
containing black holes with event horizons totaling an area A should be
bounded below by

√
A/16π. This statement has a significant mathematical

implication in Riemannian geometry, known as the Riemannian Penrose in-
equality. This inequality was initially established by Huisken-Ilmanen [33]
for a single black hole, and later by Bray [8] for any number of black holes.
The two approaches employ distinct geometric flow techniques.

Brief account on the isoperimetric problem in Lorentzian signa-
ture. If (Mn+1, g) is a Lorentzian manifold, the maximal function I(M,g)(·) :
[0,∞) → [0,∞) satisfying (1.1) is identically 0 - at least for small volumes
and, in several examples (including Minkowski space-time), for all volumes.
The reason is that the causal diamonds have positive (n + 1)-volume, but
their boundary is a null hypersurface (with singularities of negligible mea-
sure) with zero n-volume.

Indeed, due to the different signature, a geometric minimization prob-
lem in Riemannian signature is turned into a maximization problem in
Lorentzian signature. The landmark example is given by geodesics, which
locally minimize length in Riemannian signature, and instead locally max-
imize time separation (i.e. Lorentzian length) in Lorentzian signature.
The same phenomenon appears for the isoperimetric problem which, in
Lorentzian signature, reads as:

“What is the maximal area that can be used to enclose a given volume?”

Equivalently, it can be stated as the problem to find the minimal function
J(M,g)(·) : [0,∞) → [0,∞) such that for every subset E ⊂ M with smooth

boundary ∂E in the (n+ 1)-dimensional Lorentzian manifold (Mn+1, g), it
holds

(1.2) Volng (∂E) ≤ J(M,g)(Voln+1
g (E)),

where Voln+1
g (E) (resp. Volng (∂E)) denotes the (n+ 1)-dimensional measure

of E with respect to |g| (resp. the n-dimensional measure of ∂E with respect
to the restriction of |g|).

In sharp contrast to the Riemannian signature, where the literature on the
isoperimetric problem is extensive, the literature on the isoperimetric prob-
lem in Lorentzian signature is rather limited. To the best of our knowledge,
the following are the only results in the literature at the moment:

• Bahn-Ehrlich [5] in 1999 provided an upper bound on the area of a
compact space-like achronal hypersurface S contained in the future
of a point O in the (n + 1)-dimensional Minkowski space-time, in
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terms of the volume (raised to the appropriate power to obtain scale-
invariance) of a suitably constructed past cone C(S) with base point
O:

(1.3) Volng (S) ≤ C(n) (Voln+1
g (C(S)))n/(n+1).

• Bahn [4] in 1999 obtained a similar inequality to [5] for two-dimensional
Lorentzian surfaces with Gaussian curvature bounded from above.
• Abedin-Corvino-Kapita-Wu [1] in 2009 generalized the isoperimet-

ric inequality of [5] to spacetimes I × Hn with a warped metric
g = −(dt)2 + a(t)2gHn satisfying a′′ ≤ 0. This corresponds to a
subclass of Friedman-Robertson-Walker space-times satisfying the
strong energy condition Ric(v, v) ≥ 0 for timelike vectors v.
• Lambert-Scheuer [38] in 2021 extended [1] to spacetimes N = (a, b)×
S0 with metric g = −dr2 + θ(r)2ĝ satisfying the null convergence
condition and with (S0, ĝ) compact. The relation between the area
and the volumes is as follows: if Σ ⊂ N is a spacelike, compact,
achronal, and connected hypersurface, then

Volng (Σ) ≤ ϕ(Voln+1
g (C(Σ))),

where C(Σ) is the region between Σ and a×S and ϕ is the function
which gives equality on the coordinate slices.

We also mention the work of Tsai-Wang [56] in 2020 which established an
isoperimetric-type inequality for maximal, spacelike submanifolds in Minkowski
space. With a slightly different perspective, Graf-Sormani in [28] have re-
cently improved on Truede-Grant [55] by establishing upper bounds on the
Lorentzian area and volumes of slices of the time-separation function from
a Cauchy hypersurface in terms of its mean curvature.

Arguably, one of the main motivations for such a short bibliography com-
pared with the Riemannian case is the lack of a regularity theory for crit-
ical points of the area functional which may fail to be elliptic due to the
Lorentzian signature of the ambient metric. We overcome this issue by
adopting an optimal transport approach which bypasses the regularity prob-
lems.

Main results of the paper. The results will be proved under very low
regularity assumptions both on the space-time and on the subsets, namely in
the framework of Loretzian pre-length spaces satisfying timelike Ricci cur-
vature lower bounds in a synthetic sense via optimal transport, the so-called
TCDep(K,N) spaces.
The setting of Loretzian pre-length spaces was introduced by Kunzinger-
Sämann [37] building on the notion of causal spaces pioneered by Kronheimer-
Penrose [36]. The framework comprises Lorentzian manifolds with met-
rics of low regularity; namely, locally Lipschitz Lorentzian metrics and,
more generally, continuous causally plain Lorentzian metrics, studied by
Chruściel-Grant [18]. An optimal transport characterization of Ricci curva-
ture lower bounds in the timelike directions for smooth Loretzian manifolds



AN ISOPERIMETRIC-TYPE INEQUALITY IN LORENTZIAN SPACES 5

was obtained by McCann [43] and by Mondino-Suhr [46]. The theory of
TCDep(K,N) spaces has been developed by the authors of the present paper
in [14], see also the related work by Braun [6] and the survey [15].

For the sake of the introduction, the statements will be presented in a
simplified setting (both on the ambient space-time and on the subsets in
consideration), referring to the body of the paper for the more general case.
Let us stress that the results seem to be original already in the simplified
form below.

Let (Mn+1, g) be a smooth, globally hyperbolic, Lorentzian manifold.
Denote by � the chronological relation: for x, y ∈M , we say that x� y if
there exists a Lipschitz timelike curve from x to y. Let τ : M ×M → [0,∞]
be the time-separation function on M defined by

τ(x, y) :=

{
sup{Lg(γ) | γ : I →M timelike Lipschitz curve}, if x� y,

0 otherwise,

where

Lg(γ) :=

∫
I

√
|g(γ̇t, γ̇t)| dt

is the length of the timelike Lipschitz curve γ : I →M .
The time-separation function satisfies the reverse triangle inequality (on

timelike triples) and should be thought of as a Lorentzian counterpart of
the distance function in Riemannian geometry. Given a subset V ⊂ M , we
denote its chronological future by I+(V ):

I+(V ) := {y ∈M | ∃x ∈ V such that x� y}.

The time-separation function from V is defined by

τV : I+(V )→ (0,∞], τV (x) := sup
y∈V

τ(y, x),

and it should be thought as the Lorentzian distance from V .
Let S, V ⊂ M be Cauchy hypersurfaces in M , with S contained in the

chronological future of V , i.e. S ⊂ I+(V ). Define the “distance” from V to
S by

dist(V, S) := inf
x∈S

τV (x)

and consider the geodesically conical region from V to S defined by

C(V, S) := {γt | t ∈ [0, 1], such that γ0 ∈ V, γ1 ∈ S, Lg(γ) = τV (γ1)},

i.e. C(V, S) is the region spanned by timelike geodesics from V to S, realizing
τV . We can now state the main result of the paper (in a simplified form, for
the sake of the introduction).

Theorem 1.1 (A sharp isoperimetric-type inequality). Let (Mn+1, g) be a
globally hyperbolic Lorentzian manifold satisfying Hawking-Penrose’s strong
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energy condition (i.e. Ric ≥ 0 on timelike vectors). Let V, S ⊂M be Cauchy
hypersurfaces with S ⊂ I+(V ). Then

Volng (S) dist(V, S) ≤ (n+ 1) Voln+1
g (C(V, S)).

Remark 1.2. • All the results in the literature about isoperimetric-
type inequalities in Lorentzian manifolds (or in Riemannian space-
like slices) assume the metric g to be a warped product. Let us
stress that there is no symmetry assumption on the space-time in
Theorem 1.1, but merely a lower bound on the Ricci curvature in
the timelike directions.
• Theorem 1.1 is stated for non-negative Ricci curvature just for the

sake of simplicity. A completely analogous statement holds for Ricci
curvature bounded below by K ∈ R in the timelike directions, see
Theorem 4.11.
• The isoperimetric-type inequality in Theorem 1.1 is sharp (see Propo-

sition 4.13) and rigid (see Proposition 4.14): the equality is attained
if and only if the space-time is conical.
• The isoperimetric-type inequality in Theorem 1.1 will be proved in

the higher generality of Loretzian pre-length spaces satisfying time-
like Ricci curvature lower bounds in a synthetic sense via optimal
transport, the so-called TCDep(K,N) spaces (see Definition 2.17).
Also the assumption on V can be relaxed considerably: it is enough
to assume that V is a Borel, achronal, timelike complete subset. For
the general statement, refer to Theorem 4.11.

As applications we will establish:

• An upper bound on the area of Cauchy hypersurfaces inside the in-
terior of a black hole, see Remark 4.15. The bound seems to be new
already in the interior of the Schwarzschild black hole, see Exam-
ple 4.16.
• An upper bound on the area of Cauchy hypersurfaces in cosmologi-

cal space-times. The novelty with respect to previous results (see for
instance [1, 26]) is that no symmetry is assumed; this higher gener-
ality seems to have advantages also for applications (see for instance
[24]). We refer to Remark 4.17 for more details.

Let us also mention the next result, establishing a monotonicity formula for
the area of the level sets of the distance function from a Cauchy hypersurface.

Theorem 1.3 (Area Monotonicity). Let (Mn+1, g) be a globally hyperbolic
Lorentzian manifold satisfying Hawking-Penrose’s strong energy condition
(i.e. Ric ≥ 0 on timelike vectors). Let V ⊂ M be a Cauchy hypersurface
and let Vt := {τV = t} be the achronal slice at distance t > 0 from V . Then
the map

(1.4) (0,∞) 3 t 7−→
Volng (Vt)

tN−1
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is monotonically non-increasing.

Remark 1.4. • In the setting of CMC Einstein flows, a pointwise
monotonicity formula similar to (1.4) goes back to [25] and [2]. There
the spacelike hypersurfaces Σt considered are constant mean curva-
ture compact surfaces parametrized by the Hubble time t = −n/H.
Such monotonicity has then been used to study the convergence as
t→∞ of the metric; we refer to [40] for more details (see also [41] for
similar result when t → 0). Theorem 1.3 is stated for non-negative
Ricci curvature just for the sake of simplicity. A completely analo-
gous statement holds for Ricci curvature bounded below by K ∈ R
in the timelike directions, see Theorem 4.9.
• The monotonicity formula for the area (1.4) is sharp (see Remark 4.10):

the equality is attained if and only if the space-time is conical.
• The monotonicity of the area Theorem 1.1 will be proved in the

higher generality of TCDep(K,N) Loretzian pre-length spaces satis-
fying time-like Ricci curvature lower bounds in a synthetic sense via
optimal transport. Also the assumption on V can be relaxed consid-
erably: it is enough to assume that V is a Borel, achronal, timelike
complete subset. For the general statement, refer to Theorem 4.9.
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Structure of the paper. Section 2 covers the basics of the theory: first
we review the definition and some properties of Lorentzian length spaces
(Section 2.1), then we recall some concepts on Optimal Transport in the
Lorentzian setting (Section 2.2), and finally Section 2.3 recalls the defi-
nition of synthetic timelike Ricci curvature lower bounds. In particular,
Section 2.2.2 and in Section 2.3.1 review the constructions related to the
time-separation function and the localization of TMCP. Section 3 contains
the localization of the TCD condition and in Section 4 we obtain the main
result on the isoperimetric-type inequality. Finally, Section 5 is devoted to
the proof of the sharp timelike Brunn-Minkowski inequality.

2. Preliminaries

2.1. Lorentzian (pre-)length spaces. Following the work of Kunzinger-
Sämann [37], in this section we briefly recall some basic notions from the
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theory of Lorentzian (pre-)length spaces. We refer to [37] and to [14] for
further details and for the proofs.

Definition 2.1 (Causal space, Kronheimer-Penrose [36]). A causal space
(X,�,≤) is a set X endowed with a preorder ≤ and a transitive relation
� contained in ≤.

We write x < y when x ≤ y, x 6= y. We say that x and y are timelike
(resp. causally) related if x� y (resp. x ≤ y). Let A ⊂ X be an arbitrary
subset of X. We define the chronological (resp. causal) future of A the set

I+(A) := {y ∈ X : ∃x ∈ A such that x� y},
J+(A) := {y ∈ X : ∃x ∈ A such that x ≤ y},

respectively. Analogously, we define the chronological (resp. causal) past of
A. In case A = {x} is a singleton, with a slight abuse of notation, we will
write I±(x) (resp. J±(x)) instead of I±({x}) (resp. J±({x})). Moreover
we also introduce the following notations

X2
≤ := {(x, y) ∈ X ×X : x ≤ y}, X2

� := {(x, y) ∈ X ×X : x� y}.

Definition 2.2 (Lorentzian pre-length space (X, d,�,≤, τ)). A Lorentzian
pre-length space (X, d,�,≤, τ) is a causal space (X,�,≤) additionally
equipped with a proper metric d (i.e. closed and bounded subsets are com-
pact) and a lower semicontinuous function τ : X × X → [0,∞], called
time-separation function, satisfying

τ(x, y) + τ(y, z) ≤ τ(x, z) ∀x ≤ y ≤ z reverse triangle inequality

τ(x, y) = 0, if x 6≤ y, τ(x, y) > 0⇔ x� y.
(2.1)

The lower semicontinuity of τ implies that I±(x) is open, for any x ∈ X.
The set X is endowed with the metric topology induced by d. All the topo-
logical concepts on X will be formulated in terms of such metric topology.
For instance, we will denote by C the topological closure (with respect to
d) of a subset C ⊂ X.

Definition 2.3 (Causal/timelike curves). If I ⊂ R is an interval, a non-
constant curve γ : I → X is called (future-directed) timelike (resp. causal)
if γ is locally Lipschitz continuous (with respect to d) and if for all t1, t2 ∈ I,
with t1 < t2, it holds γt1 � γt2 (resp. γt1 ≤ γt2). We say that γ is a null
curve if, in addition to being causal, no two points on γ(I) are related with
respect to �.

The length of a causal curve is defined via the time separation function,
in analogy to the theory of length metric spaces: for γ : [a, b] → X future-
directed causal we set

Lτ (γ) := inf

{
N−1∑
i=0

τ(γti , γti+1) : a = t0 < t1 < . . . < tN = b, N ∈ N

}
.
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In case the interval is half-open, say I = [a, b), then the infimum is taken
over all partitions with a = t0 < t1 < . . . < tN < b (and analogously for the
other cases).

Under fairly general assumptions, these definitions coincide with the clas-
sical ones in the smooth setting, see [37, Prop. 2.32, Prop. 5.9].

A future-directed causal curve γ : [a, b]→ X is maximal if it realises the
time separation, i.e. if Lτ (γ) = τ(γa, γb).
In case the time separation function is continuous with τ(x, x) = 0 for
every x ∈ X, then any maximal timelike curve γ with finite τ -length has
a (continuous, monotonically strictly increasing) reparametrization λ by τ -
arc-length, i.e. τ(γλ(s1), γλ(s2)) = s2− s1 for all s2 ≤ s1 in the corresponding
interval (see [37, Cor. 3.35]).

We therefore adopt the following convention: a curve γ will be called
(causal) geodesic if it is maximal and continuous when parametrized by τ -
arc-lenght. In other words, the set of (causal) geodesics is

(2.2) Geo(X) := {γ ∈ C([0, 1], X) : τ(γs, γt) = (t− s) τ(γ0, γ1) ∀s < t}.

The set of timelike geodesic is defined as follows:

(2.3) TGeo(X) := {γ ∈ Geo(X) : τ(γ0, γ1) > 0}.

Given x ≤ y ∈ X we set

Geo(x, y) := {γ ∈ Geo(X) : γ0 = x, γ1 = y}(2.4)

I(x, y, t) := {γt : γ ∈ Geo(x, y)}(2.5)

respectively the space of geodesics, and the set of t-intermediate points from
x to y.
If x� y ∈ X, we call

TGeo(x, y) := {γ ∈ TGeo(X) : γ0 = x, γ1 = y}.

Given two subsets A,B ⊂ X, we denote

(2.6) I(A,B, t) :=
⋃

x∈A,y∈B
I(x, y, t)

the subset of t-intermediate points of geodesics from points in A to points
in B.

Definition 2.4 (Timelike non-branching). A Lorentzian pre-length space
(X, d,�,≤, τ) is said to be forward timelike non-branching if and only if for
any γ1, γ2 ∈ TGeo(X), it holds:

∃ t̄ ∈ (0, 1) such that ∀t ∈ [0, t̄ ] γ1
t = γ2

t =⇒ γ1
s = γ2

s , ∀s ∈ [0, 1].

It is said to be backward timelike non-branching if the reversed causal struc-
ture is forward timelike non-branching. In case it is both forward and back-
ward timelike non-branching it is said timelike non-branching.
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By Cauchy Theorem, it is clear that if (M, g) is a space-time whose
Christoffel symbols are locally-Lipschitz (e.g. in case g ∈ C1,1) then the
associated synthetic structure is timelike non-branching. For spacetimes
with a metric of lower regularity (e.g. g ∈ C1 or g ∈ C0) timelike branching
may occur.

2.1.1. Causal Ladder. Concerning the causal ladder, we follow [45]. In or-
der to streamline the presentation we will only consider Lorentzian geodesic
spaces, i.e. Lorentzian pre-length spaces (X, d,�,≤, τ) that additionally
are:

• d-Compatible: every x ∈ X admits a neighbourhood U and a con-
stant C such that Ld(γ) ≤ C for every causal curve γ contained in
U ;
• Geodesic: for all x, y ∈ X with x < y there is a future-directed

causal curve γ from x to y with τ(x, y) = Lτ (γ).

A Lorentzian geodesic space is in particular a Lorentzian length space, see
[37, Def. 3.22].

Hence from [45, Cor. 3.8] we can consider the following version of global
hyperbolicity that fits with the previous literature. A Lorentzian geodesic
space (X, d,�,≤, τ) is called

• Causal : if ≤ is also antisymmetric, i.e. ≤ is an order;
• Globally hyperbolic: if it is causal and for every x, y ∈ X the causal

diamond J+(x) ∩ J−(y) is compact in X.

From [45, Thm. 3.7] this definition of global hyperbolicity is equivalent
with the one adopted in [37] (that we omit). Also global hyperbolicity
implies that the relation ≤ is a closed subset of X×X. It was proved in [37,
Thm. 3.28] that for a globally hyperbolic Lorentzian geodesic space (X, d,�
,≤, τ), the time-separation function τ is finite and continuous: in particular
the previous remark on the existence of constant τ -speed parametrizations
for maximal causal curves applies, thus any two distinct causally related
points are joined by a causal geodesic.
From [45] it also follows that if X is globally hyperbolic and K1,K2 b X
are compact subsets then

I(K1,K2, t) b
⋃

t∈[0,1]

I(K1,K2, t) b X, ∀t ∈ [0, 1].

2.2. Optimal transport in Lorentzian geodesic spaces. We briefly re-
view some basics on optimal transport in the Lorentzian synthetic setting.
For simplicity of presentation, we will assume that (X, d,�,≤, τ) is a glob-
ally hyperbolic Lorentzian geodesic space; we refer to [14] for more general
results.

Given µ, ν ∈ P(X), the space of probability measures, the set of transport
plans is

Π(µ, ν) := {π ∈ P(X ×X) : (P1)]π = µ, (P2)]π = ν}.
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The set of causal and timelike transport plans are defined by

Π≤(µ, ν) := {π ∈ Π(µ, ν) : π(X2
≤) = 1},

Π�(µ, ν) := {π ∈ Π(µ, ν) : π(X2
�) = 1}.

As X2
≤ ⊂ X2 is a closed subset, π ∈ Π≤(µ, ν) if and only if suppπ ⊂ X2

≤. For

p ∈ (0, 1], given µ, ν ∈ P(X), the p-Lorentz-Wasserstein distance is defined
by

(2.7) `p(µ, ν) := sup
π∈Π≤(µ,ν)

(∫
X×X

τ(x, y)p π(dxdy)

)1/p

.

If Π≤(µ, ν) = ∅ we set `p(µ, ν) := −∞. A plan π ∈ Π≤(µ, ν) maximising in
(2.7) is said `p-optimal. The set of `p-optimal plans from µ to ν is denoted

by Πp-opt
≤ (µ, ν).

An alternative formulation of (2.7) can be obtained by using the following
function:

(2.8) `(x, y)p :=

{
τ(x, y)p if x ≤ y
−∞ otherwise.

Clearly, if π ∈ Π≤(µ, ν), then π-a.e. one has τ(x, y) = `(x, y). More-
over, using the convention that ∞ − ∞ = −∞, if π ∈ Π(µ, ν) satisfies∫
X×X `(x, y)p π(dxdy) > −∞ then π ∈ Π≤(µ, ν). Thus the maximization

problem (2.7) is equivalent (i.e. the sup and the set of maximisers coincide)
to the maximisation problem

(2.9) sup
π∈Π(µ,ν)

(∫
X×X

`(x, y)p π(dxdy)

)1/p

.

The advantage of the formulation (2.9) is that `p is upper semi-continuous
on X ×X. One can therefore invoke standard optimal transport techniques
(e.g. [57]) to ensure the existence of a solution of the Monge-Kantorovich
problem (2.9).

Proposition 2.5. Let (X, d,�,≤, τ) be a globally hyperbolic Lorentzian
geodesic space and let µ, ν ∈ P(X). If Π≤(µ, ν) 6= ∅ and if there exist
measurable functions a, b : X → R, with a⊕b ∈ L1(µ⊗ν) such that `p ≤ a⊕b
on suppµ × supp ν (e.g. when µ and ν are compactly supported) then the
sup in (2.7) is attained and finite.

In Proposition 2.5 we used the following standard notation: given µ, ν ∈
P(X), µ⊗ ν ∈ P(X2) is the product measure; given u, v : X → R ∪ {+∞}
, u⊕ v : X2 → R ∪ {+∞} is defined by u⊕ v(x, y) := u(x) + v(y).

The Lorentzian-Wasserstein ditance `p satisfies the reverse triangle in-
equality:

(2.10) `p(µ0, µ1) + `p(µ1, µ2) ≤ `p(µ0, µ2), ∀µ0, µ1, µ2 ∈ P(X),
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where we adopt the convention that∞−∞ = −∞ to interpret the left hand
side of (2.10).

We also recall two relevant notions of cyclical monotonicity.

Definition 2.6 (τp-cyclical monotonicity and `p-cyclical monotonicity). A
subset Γ ⊂ X2

≤ is said to be τp-cyclically monotone (resp. `p-cyclically

monotone) if, for any N ∈ N and any family (x1, y1), . . . , (xN , yN ) of points
in Γ, the next inequality holds:

(2.11)

N∑
i=1

τ(xi, yi)
p ≥

N∑
i=1

τ(xi+1, yi)
p,

(resp.
∑N

i=1 `
p(xi, yi) ≥

∑N
i=1 `

p(xi+1, yi)) with the convention xN+1 = x1.

Accordingly, a transport plan π is said to be τp-cyclically monotone (resp.
`p-cyclically monotone) if there exists a τp-cyclically monotone set (resp. `p-
cyclically monotone set) Γ such that π(Γ) = 1. It is straightforward to check
that τp-cyclical monotonicity implies `p-cyclical monotonicity; moreover, if
P1(Γ)×P2(Γ) ⊂ X2

≤ then `p-cyclical monotonicity is equivalent to τp-cyclical
monotonicity.

Under fairly general assumptions, cyclical monotonicity and optimality
are equivalent. Indeed:

Proposition 2.7 (Prop. 2.8 and Thm 2.26 in [14]). If (X, d,�,≤, τ) is a
globally hyperbolic Lorentzian geodesic space, p ∈ (0, 1], µ, ν ∈ P(X) with
`p(µ, ν) ∈ (0,∞), then for any π ∈ Π≤(µ, ν) the following holds:

(1) If π is `p-optimal then π is `p-cyclically monotone.
(2) If π(X2

�) = 1 and π is `p-cyclically monotone then π is `p-optimal.
(3) If π is τp-cyclically monotone then π is `p-optimal.

Finally, we recall from [14] the definition of (strongly) timelike p-dualisable
probability measures.

Definition 2.8 ((Strongly) Timelike p-dualisable measures). Let (X, d,�
,≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. We say that
(µ, ν) ∈ P(X)2 is timelike p-dualisable (by π ∈ Π�(µ, ν)) if

(1) `p(µ, ν) ∈ (0,∞);

(2) π ∈ Πp-opt
≤ (µ, ν) and π(X2

�) = 1;

(3) there exist measurable functions a, b : X → R, with a⊕b ∈ L1(µ⊗ν)
such that `p ≤ a⊕ b on suppµ× supp ν.

We say that (µ, ν) ∈ P(X)2 is strongly timelike p-dualisable if, in addition,
it satisfies:

4. there exists a measurable `p-cyclically monotone set Γ ⊂ X2
� ∩

(suppµ× supp ν) such that a coupling π ∈ Π≤(µ, ν) is `p-optimal if
and only if π is concentrated on Γ, i.e. π(Γ) = 1.
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The above notions are tighten with the validity of Kantorovich duality
(see [14, Sec. 2.4]). The notion of strongly timelike p-dualisability is non-
empty:

Lemma 2.9 (Cor. 2.29 in [14]). Fix p ∈ (0, 1]. Let (X, d,�,≤, τ) be a
globally hyperbolic Lorentzian geodesic space and assume that µ, ν ∈ P(X)
satisfy:

(1) there exist measurable functions a, b : X → R with a⊕ b ∈ L1(µ⊗ ν)
such that τp ≤ a⊕ b on suppµ× supp ν;

(2) suppµ× supp ν ⊂ X2
�.

Then (µ, ν) is strongly timelike p-dualisable.

2.2.1. Geodesics of probability measures in the Lorentz-Wasserstein space.
Let us start by introducing some classical notation. The evaluation map is
defined by

(2.12) et : C([0, 1], X)→ X, γ 7→ et(γ) := γt, ∀t ∈ [0, 1].

The stretching/restriction operator restrs2s1 : C([0, 1], X) → C([0, 1], X) is
defined by

(2.13) (restrs2s1γ)t := γ(1−t)s1+ts2 , ∀s1, s2 ∈ [0, 1], s1 < s2, ∀t ∈ [0, 1].

Definition 2.10 (`p-optimal dynamical plans and `p-geodesics). Let (X, d,�
,≤, τ) be a Lorentzian pre-length space and let p ∈ (0, 1]. We say that η ∈
P(Geo(X)) is an `p-optimal dynamical plan from µ0 ∈ P(X) to µ1 ∈ P(X)
if (e0)]η = µ0, (e1)]η = µ1 and

(2.14) (e0, e1)]η belongs to Πp-opt
≤ ((e0)]η, (e1)]η).

The set of `p-optimal dynamical plans from µ0 to µ1 is denoted by OptGeo`p(µ0, µ1).

We say that a curve curve [0, 1] 3 t 7→ µt ∈ P(X) is an `p-geodesic if there
exists an `p-optimal dynamical plan η from µ0 to µ1 such that µt = (et)]η,
for all t ∈ [0, 1].

Notice that if η ∈ OptGeo`p(µ0, µ1), then the `p-geodesic

µt := (et)]η, ∀t ∈ [0, 1],

is continuous in narrow topology and satisfies `p(µs, µt) = (t− s)`p(µ0, µ1),
for all s, t ∈ [0, 1].

Let us recall that if µ0, µ1 ∈ P(X) have compact support, then there
always exists an `p-optimal dynamical plan η ∈ OptGeo`p(µ0, µ1) (and thus

an `p-geodesic) from µ0 to µ1, see [14, Prop. 2.33] for the proof and for other
properties of `p-optimal dynamical plans.

2.2.2. Time-separation functions from sets and their transport relations. A
subset V ⊂ X is called achronal if x 6� y for every x, y ∈ V . In particular,
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if V is achronal, then I+(V ) ∩ I−(V ) = ∅, so we can define the signed
time-separation to V , τV : X → [−∞,+∞], by

(2.15) τV (x) :=


supy∈V τ(y, x), for x ∈ I+(V )

− supy∈V τ(x, y), for x ∈ I−(V )

0 otherwise

.

Note that τV is lower semi-continuous on I+(V ) as supremum of continuous
functions, and is upper semi-continuous on I−(V ).
In order for these suprema to be attained, global hyperbolicity and geodesic
property of X alone are not sufficient. One should rather demand additional
compactness properties of the set V . The following notion, introduced by
Galloway [27] in the smooth setting, is well suited to this aim.

Definition 2.11 (Future timelike complete (FTC) subsets). A subset V ⊂
X is future timelike complete (FTC), if for each point x ∈ I+(V ), the inter-
section J−(x) ∩ V ⊂ V has compact closure (w.r.t. d) in V . Analogously,
one defines past timelike completeness (PTC). A subset that is both FTC
and PTC is called timelike complete.

Lemma 2.12 (Lemma 4.1, [14]). Let (X, d,�,≤, τ) be a globally hyperbolic
Lorentzian geodesic space and let V ⊂ X be an achronal FTC (resp. PTC)
subset. Then for each x ∈ I+(V ) (resp. x ∈ I−(V )) there exists a point
yx ∈ V with τV (yx) = τ(yx, x) > 0 (resp. τV (yx) = −τ(x, yx) < 0).

Moreover for all x, z ∈ I+(V ) ∪ V ,

(2.16) τV (z)− τV (x) ≥ τ(yx, z)− τ(yx, x) ≥ τ(x, z),

provided (x, z) ∈ X2
≤. Analogous statement is valid for x ∈ I−(V ).

By considering a non-smooth analogue of the gradient flow lines of τV ,
one can obtain a partition into timelike geodesics of the future of V (up to
a set of measure zero). We briefly review this construction and refer to [14,
Sec. 4.1] for more details.
First, notice that (2.16) can be extended to the whole X2 by replacing τ
with `, defined in (2.8):

(2.17) τV (z)− τV (x) ≥ `(x, z), ∀x, z ∈ (I+(V ) ∪ I−(V ) ∪ V )2.

For ease of writing, we will use the following notation

I±(V ) := (I+(V ) ∪ I−(V ) ∪ V ).

We associate to V the following set:

ΓV := {(x, z) ∈ I±(V )2 ∩X2
≤ : τV (z)− τV (x) = τ(x, z) > 0}

∪ {(x, x) : x ∈ I±(V )}.
(2.18)

From the inequality (2.17), it follows straightforwardly that the set ΓV is `-
cyclically monotone. This implies the well-known alignment along geodesics
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of the pairs belonging to ΓV : for instance if (x, z) ∈ ΓV with x 6= z and
x ∈ I+

V , there exist y ∈ V, γ ∈ TGeo(y, z) and t ∈ (0, 1) such that

x = γt, τ(y, γs) = τV (γs) ∀s ∈ [0, 1], (γs, γt) ∈ ΓV ∀s ∈ [0, t].

An analogous property holds true if z ∈ I−(V ). Again for all the details we
refer to [14]. Next we set Γ−1

V := {(x, y) : (y, x) ∈ ΓV } and we consider the

transport relation RV and the transport set with endpoints T endV

(2.19) RV := ΓV ∪ Γ−1
V , T endV := P1(RV \ {x = y}),

where P1 denotes the projection on the first coordinate. The transport rela-
tion will be an equivalence relation on a suitable subset of T endV , constructed
below. Define the following subsets:

a(T endV ) := {x ∈ T endV : @y ∈ T endV s.t. (y, x) ∈ ΓV , y 6= x}

b(T endV ) := {x ∈ T endV : @y ∈ T endV s.t. (x, y) ∈ ΓV , y 6= x},
(2.20)

called the set of initial and final points, respectively. Define the transport
set without endpoints

(2.21) TV := T endV \ (a(T endV ) ∪ b(T endV )).

Lemma 2.13 (Lemma 4.4, [14]). If V ⊂ X is a Borel achronal timelike
complete subset, then the following identity holds true:

I+(V ) ∪ I−(V ) = T endV \ V.

If additionally X is assumed to be timelike (backward and forward) non-
branching, then the transport relation RV is an equivalence relation over
TV . The next lemma gives a clear description of the equivalences classes.

Lemma 2.14. For each equivalence class [x] of (TV,RV ) there exists a convex
set I ⊂ R of the real line and a bijective map F : I → [x] satisfying:

(2.22) τ(F (t1), F (t2)) = t2 − t1, ∀ t1 ≤ t2 ∈ I.

Moreover, calling {z ∈ [x]} the topological closure of {z ∈ [x]} ⊂ X, it holds

(2.23) {z ∈ [x]} \ {z ∈ [x]} = {z ∈ [x]} \ TV ⊂ a(T eV ) ∪ b(T eV ).

The equivalence classes of RV inside TV will be called rays.
Concerning the measurability properties of the sets we have considered

so far, the set I+(x) = {y ∈ X : τ(x, y) > 0} is open by continuity of τ
(ensured by global hyperbolicity) and the same is valid for I−(x). Accord-
ingly, I+(V ) =

⋃
x∈V I

+(x) is an open subset of X, and the same is valid for
I−(V ). Since τV is sup of continuous functions, it is lower semi-continuous.
It follows that the set ΓV is Borel measurable (see (2.18)). It follows that
also RV is Borel measurable, yielding that T endV defined in (2.19) is an ana-
lytic set (recall that analytic sets are precisely projections of Borel subsets
of complete and separable metric spaces and the σ-algebra they generate
is denoted by A, we refer to [52] for more details). The transport set TV
defined in (2.21) can be proved to be an analytic set as well [14, Lem. 4.7].
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Finally, the existence an A-measurable quotient map Q of the equivalence
relation RV over TV can be obtained by a careful use of selection theorems:

Lemma 2.15 (Prop. 4.9, [14]). There exists an A-measurable quotient map
Q : TV → X of the equivalence relation RV over TV , i.e.

(2.24) Q : TV → TV , (x,Q(x)) ∈ RV , (x, y) ∈ RV ⇒ Q(x) = Q(y).

We will denote by Q := Q(TV ) ⊂ X the quotient set (which is A-
measurable), and by Xα, with α ∈ Q, the rays. Recall that each Xα is
isometric to a real, possibly unbounded, open interval.

We refer to [14, Sect. 4.1, 4.2] for the missing details.

2.3. Synthetic Timelike Ricci curvature lower bounds. We briefly
recall the synthetic formulation of timelike Ricci lower bounds for a globally
hyperbolic measured Lorentzian geodesic space (X, d,m,�,≤, τ) as given
in [14] (after [43] and [46]), see also [15] for a survey.

Definition 2.16 (Measured Lorentzian pre-length space (X, d,m,�,≤, τ)).
A measured Lorentzian pre-length space (X, d,m,�,≤, τ) is a Lorentzian
pre-length space endowed with a Radon non-negative measure m. We say
that (X, d,m,�,≤, τ) is globally hyperbolic (resp. geodesic) if (X, d,�,≤
, τ) is so.

We denote Pac(X) (resp. Pc(X)) the space of probability measures abso-
lutely continuous with respect to m (resp. the space of probability measures
with compact support). Given µ ∈ P(X) its relative entropy w.r.t. m is
given by

Ent(µ|m) =

∫
M
ρ log ρ m,

if µ = ρm is absolutely continuous with respect to m and (ρ log ρ)+ is m-
integrable. Otherwise we set Ent(µ|m) = +∞. A simple application of
Jensen inequality using the convexity of (0,∞) 3 t 7→ t log t gives

(2.25) Ent(µ|m) ≥ − logm(suppµ) > −∞, ∀µ ∈ Pc(X).

We set Dom(Ent(·|m)) := {µ ∈ P(X) : Ent(µ|m) ∈ R} to be the finiteness
domain of the entropy. An important property of the relative entropy is the
lower-semicontinuity under narrow convergence.

The following is the definition of the synthetic timelike Ricci curvature
lower bounds.

Definition 2.17 (TCDep(K,N) and wTCDep(K,N) conditions). Fix p ∈
(0, 1), K ∈ R, N ∈ (0,∞). We say that a measured Lorentzian pre-length
space (X, d,m,�,≤, τ) satisfies TCDep(K,N) (resp. wTCDep(K,N)) if the

following holds. For any pair (µ0, µ1) ∈ (Dom(Ent(·|m)))2 which is timelike
p-dualisable (resp. (µ0, µ1) ∈ [Dom(Ent(·|m)) ∩ Pc(X)]2 which is strongly

timelike p-dualisable) by some π ∈ Πp-opt
� (µ0, µ1), there exists an `p-geodesic
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(µt)t∈[0,1] such that the function [0, 1] 3 t 7→ e(t) := Ent(µt|Volg) is semi-
convex (and thus in particular it is locally Lipschitz in (0, 1)) and it satisfies

(2.26) e′′(t)− 1

N
e′(t)2 ≥ K

∫
X×X

τ(x, y)2 π(dxdy),

in the distributional sense on [0, 1].

Definition 2.17 corresponds to a differential/infinitesimal formulation of
the TCDep(K,N) condition. In order to have also an integral/global formu-
lation it is convenient to introduce the following entropy (cf. [23])

(2.27) UN (µ|m) := exp

(
−Ent(µ|m)

N

)
.

It is straightforward to check that [0, 1] 3 t 7→ e(t) is semi-convex and
satisfies (2.26) if and only if [0, 1] 3 t 7→ uN (t) := exp(−e(t)/N) is semi-
concave and satisfies

(2.28) u′′N ≤ −
K

N
‖τ‖2L2(π) uN .

Set
(2.29)

sκ(ϑ) :=


1√
κ

sin(
√
κϑ), κ > 0

ϑ, κ = 0
1√
−κ sinh(

√
−κϑ), κ < 0

, cκ(ϑ) :=

{
cos(
√
κϑ), κ ≥ 0

cosh(
√
−κϑ), κ < 0

,

and

(2.30) σ(t)
κ (ϑ) :=


sκ(tϑ)
sκ(ϑ) , κϑ2 6= 0 and κϑ2 < π2

t, κϑ2 = 0

+∞, κϑ2 ≥ π2

.

Note that the function κ 7→ σ
(t)
κ (ϑ) is non-decreasing for every fixed ϑ, t.

With the above notation, the differential inequality (2.28) is equivalent to
the integrated version (cf. [23, Lemma 2.2]):

(2.31) uN (t) ≥ σ(1−t)
K/N

(
‖τ‖L2(π)

)
uN (0) + σ

(t)
K/N

(
‖τ‖L2(π)

)
uN (1).

We thus have that both the TCDep(K,N) and the wTCDep(K,N) can be
formulated as in terms of (2.31). It has recently been shown in [6, Thm. 3.35]
that under the timelike non-branching assumption TCDep and wTCDep are
equivalent conditions for any choice of the parameters K and N .

By considering (K,N)-convexity properties only of those `p-geodesics
(µt)t∈[0,1] where µ1 is a Dirac delta one obtains the following weaker condi-
tion [14] (see also Sturm [54] and Ohta [47]) independent on p.

Definition 2.18. Fix K ∈ R, N ∈ (0,∞). The measured globally hyper-
bolic Lorentz geodesic space (X, d,m,�,≤, τ) satisfies TMCPe(K,N) if and
only if for any µ0 ∈ Pc(X) ∩ Dom(Ent(·|m)) and for any x1 ∈ X such that
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x � x1 for µ0-a.e. x ∈ X, there exists an `p-geodesic (µt)t∈[0,1] from µ0 to
µ1 = δx1 such that

(2.32) UN (µt|m) ≥ σ(1−t)
K/N

(
‖τ(·, x1)‖L2(µ0)

)
UN (µ0|m), ∀t ∈ [0, 1).

As expected, the wTCDep(K,N) condition implies the TMCPe(K,N), see
[14, Prop. 3.12]. We next recall some useful results concerning the existence
and uniqueness of optimal plans in timelike non-branching TMCPe(K,N)
spaces.

Theorem 2.19 (Prop. 3.19, Thm. 3.20 and 3.21 in [14]). Let (X, d,m,�
,≤, τ) be a timelike non-branching, globally hyperbolic Lorentzian geodesic
space satisfying TMCPe(K,N).
Let µ0, µ1 ∈ Pc(X), with µ0 ∈ Dom(Ent(·|m)). Assume that there exists

π ∈ Πp-opt
≤ (µ0, µ1) such that π ({τ > 0}) = 1.

Then there exists a unique optimal coupling π ∈ Πp-opt
≤ (µ0, µ1) such that

π ({τ > 0}) = 1 and it is induced by a map T , i.e. π = (Id, T )]µ0 and

`p(µ0, µ1)p =

∫
X
τ(x, T (x))p µ0(dx).

Moreover there exists a unique η ∈ OptGeo`p(µ0, µ1) with (e0, e1)]η ({τ >
0}) = 1 and such η is induced by a map, i.e. there exists T : X → TGeo(X)
such that η = T]µ0; in particular, (e0, e1)]η = π. Finally, the `p-geodesic
µt = (et)]η satisfies µt = ρtm� m.

2.3.1. Disintegration of m and regularity of conditional measures. The par-
tition in rays recalled in Section 2.2.2 has a natural interplay with the syn-
thetic curvature conditions: via Disintegration Theorem (after Lemma 2.15)
one can associate to the partition of the transport set a decomposition in
conditional measures of the reference measure m that inherits the synthetic
curvature-dimension properties.

Below, we briefly summarise the results from [14, Sect. 4]. We will denote
by M+(X) the space of non-negative Radon measures over (X, d).

Theorem 2.20. Let (X, d,m,�,≤, τ) be a globally hyperbolic timelike non-
branching Lorentzian geodesic space satisfying TMCPe(K,N), assume that
the causally-reversed structure satisfies the same conditions and let V ⊂ X
be a Borel achronal timelike complete subset.

Considering T endV , a(T endV ), b(T endV ) and TV defined in (2.19), (2.20), (2.21),

then m(a(T endV )) = m(b(T endV ) = 0 and the following disintegration formula
is valid:

(2.33) mxT endV
= mxTV =

∫
Q
mα q(dα)

where q is a Borel probability measure over Q ⊂ X such that Q](mxTV )� q
and the map Q 3 α 7→ mα ∈M+(X) satisfies the following properties:

(1) for any m-measurable set B, the map α 7→ mα(B) is q-measurable;
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(2) for q-a.e. α ∈ Q, mα is concentrated on Q−1(α) = Xα (strong
consistency);

(3) for q-a.e. α ∈ Q, mα � L1xXα;
(4) writing mα = h(α, ·)L1xXα, then for q-a.e. α ∈ Q it holds that

h(α, ·) ∈ L1
loc(Xα,L1xXα); moreover h(α, ·) has an almost every-

where representative that is continuous on Xα, and locally Lipschitz
and positive in the interior of Xα.

Moreover, fixed any q as above such that Q](mxTV ) � q, the disintegration
is q-essentially unique in the following sense: if any other map Q 3 α 7→
m̄α ∈ P(X) satisfies points (1)-(2), then m̄α = mα for q-a.e. α ∈ Q.

To localise curvature bounds, a larger family of Lorentz-Wasserstein geodesics
was needed: we recall a second way to construct `p-cyclically monotone sets
(introduced in [11] for the metric setting and adapted to the Lorentzian
framework in [14]).

Proposition 2.21. Let ∆ ⊂ ΓV be such that, for all (x0, y0), (x1, y1) ∈ ∆:

(2.34) (τV (x0)− τV (x1))(τV (y0)− τV (y1)) ≥ 0.

Then ∆ is `p-cyclically monotone for each p ∈ (0, 1).

3. Localization of Timelike Ricci curvature bounds

We will improve on the results of [14] concerning the regularity properties
of the marginal measures associated to the decomposition induced by τV .

To obtain the estimates for the one-dimensional densities, it is more con-
venient to use an equivalent form of the TCDep condition. This equivalent
form of TCDep, whose Riemannian counterpart is the well known CD∗(K,N)
condition of Bacher and Sturm [3], has recently been presented also in the
Lorentzian setting in [6] and is denoted by TCD∗p.

We will not use the full equivalence between TCDep and TCD∗p proven
in [6] (see also [23] for the earlier equivalence between CDe and CD∗), but
merely that TCDep implies TCD∗p. For readers’ convenience we now include
a self-contained proof of this implication.

Proposition 3.1. Let (X, d,m,�,≤, τ) be a globally hyperbolic, timelike
non-branching Lorentzian geodesic space satisfying TCDep(K,N) for some
p ∈ (0, 1),K ∈ R, N ∈ [1,∞). Let µ0, µ1 ∈ Pc(X) with µ0, µ1 ∈ Dom(Ent(·|m))

and assume that there exists π ∈ Πp-opt
≤ (µ0, µ1) such that π({τ > 0}) = 1.

Then π is the unique element of Πp-opt
≤ (µ0, µ1) concentrated on {τ >

0}. Accordingly, there exists a unique optimal dynamical plan η such that
(e0, e1)]η = π. Moreover, the `p-geodesic µt = (et)]η satisfies µt = ρtm� m
for every t ∈ [0, 1], and for η-a.e. γ ∈ TGeo(X) it holds

(3.1) ρt(γt)
− 1
N ≥ σ(1−t)

K/N (τ(γ0, γ1)) ρ0(γ0)−
1
N + σ

(t)
K/N (τ(γ0, γ1)) ρ1(γ1)−

1
N ,

for all t ∈ [0, 1].
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Proof. The first part of the claim is simply Theorem 2.19. We are left to
prove (3.1) for the `p-geodesic induced by the unique optimal dynamical
plan η. Fix the map T such that (Id, T )]µ0 = π.
Since π({τ > 0}) = 1, there exists a countable collection of Borel sets An
such that

An × T (An) ⊂ {τ > 0}, µ0 (∪n∈NAn) = 1.

Without loss of generality, we can assume that the sets {An}n∈N are pairwise
disjoint and µ0(An) > 0 for each n ∈ N. Consider πn := (Id, T )]µ0xAn/µ0(An).
Such πn is the unique `p-optimal plan between its marginal measures (that
we denote by µ0,n and µ1,n) and, accordingly, ηxe−1

0 (An)/µ0(An) the unique

optimal dynamical plan. Hence from Definition 2.17 and (2.31) it follows
that

UN (µt,n|m) ≥ σ(1−t)
K/N

(
‖τ‖L2(πn)

)
UN (µ0,n|m) +σ

(t)
K/N

(
‖τ‖L2(πn)

)
UN (µ1,n|m),

for all t ∈ [0, 1] and all n ∈ N. From here we can repeat verbatim a classical
argument already present in the literature (see [23, Thm. 3.12]) that permits,
by restricting to finer subsets of timelike geodesics via η, to obtain the
inequality (3.1) and therefore the claim. �

3.1. Localization of timelike Ricci lower bounds to τV -transport
rays. The goal of this section is to localize the timelike Ricci curvature
lower bounds TCDep(K,N) along the transport set of the signed Lorentzian-
distance function from V , namely τV .

Theorem 3.2. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic Lorentzian geodesic space satisfying TCDep(K,N) and assume that
the causally-reversed structure satisfies the same conditions.

Let V ⊂ X be a Borel achronal timelike complete subset and consider the
disintegration formula given by Theorem 2.20.

Then, for q-a.e.α, the one-dimensional metric measure space (Xα, |·|,mα)
satisfies the classical CD(K,N); namely, writing mα = h(α, ·)L1xXα, in
holds that h(α, ·) is semi-concave (and thus twice differentiable L1-a.e. on
Xα) and it satisfies the differential inequality

(3.2)
∂2

∂x2
log h(α, x) +

1

N − 1

(
∂

∂x
log h(α, x)

)2

≤ −K,

at any point x in the interior of Xα where h(α, ·) is twice differentiable.

Proof. For x ∈ TV we will write R(x) to denote its equivalence class in
(TV , RV ), i.e. the “ray passing through x” (recall Lemma 2.14). For a
subset B ⊂ TV , we denote R(B) :=

⋃
x∈B R(x).

Let Q̄ ⊂ Q be an arbitrary compact subset of positive q-measure for which
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there exist ε > 0 and a0 < a1 such that

sup
x,y∈Xα

τ(x, y) > ε, Xα ∩ {τV = a0} 6= ∅, Xα ∩ {τV = a1} 6= ∅ ∀α ∈ Q̄,

R(Q̄) ∩ τ−1
V ([a0, a1]) b X,

{(x, y) ∈ ΓV : x, y ∈ R(Q̄), τV (x) = a0, τV (y) = a1} b {τ > 0}.

For any A0, A1 ∈ (a0, a1) with A0 < A1, and L0, L1 > 0 satisfying A0 +L0 <
A1 + L1 < a1, consider the probability measures

µ0 =

∫
Q̄

L1xXα∩[A0,A0+L0]

L0
q(dα), µ1 =

∫
Q̄

L1xXα∩[A1,A1+L1]

L1
q(dα).

Proposition 2.21 ensures that the transport plan π defined as the mono-
tone rearrangement along each ray Xα of the normalized Lebesgue measure
L1xXα∩[A0,A0+L0]/L0 to L1xXα∩[A1,A1+L1]/L1 is is `p-cyclically monotone.

Since π(X2
�) = 1, we infer that π is `p-optimal thanks to Proposition 2.7.

From Theorem 2.20 it is immediate to observe that µ0, µ1 � m, no-
tice indeed that the density h(α, ·) is strictly positive in the interior of the
transport ray Xα, for q-a.e. α. Hence we can invoke Proposition 3.1 to de-
duce that π is the unique element in Πp-opt

� (µ0, µ1). Moreover, there exists
a unique optimal dynamical plan η such that (e0, e1)]η = π, and the `p-
geodesic µt = (et)]η satisfies µt = ρtm� m for every t ∈ [0, 1], and for η-a.e.
γ ∈ TGeo(X), the concavity estimate (3.1) holds.

The `p-geodesic µt can be written explicitly. Indeed, consider

µ̄t :=

∫
Q̄

L1
Xα∩[At,At+Lt]

Lt
q(dα), At = A0(1− t) +A1t, Lt = L0(1− t) +L1t.

Such (µ̄t)t∈[0,1] can be lifted to an optimal dynamical plan η̄ such that
(e0, e1)]η̄ = π. By the uniqueness discussed above, we infer that η̄ = η
and thus µt = µ̄t for all t ∈ [0, 1]. Since

mxTV =

∫
Q
mα q(dα) =

∫
Q
h(α, ·)L1xXα q(dα),

one has that µs = ρsm, with ρs(α, t) = 1
Lsh(α,t) , for all t ∈ [As, As + Ls].

Hence, the concavity estimate (3.1) on ρs(α, γs) writes as:

(Ls)
1
N h(α, (1− s)t0 + st1)

1
N ≥σ(1−s)

K/N (t1 − t0)(L0)
1
N h(α, t0)

1
N

+ σ
(s)
K/N (t1 − t0)(L1)

1
N h(α, t1)

1
N ,

for every s ∈ [0, 1], for L1-a.e. t0 ∈ [A0, A0+L0] and t1 obtained as the image
of t0 through the monotone rearrangement of [A0, A0 +L0] to [A1, A1 +L1].
Specializing the previous inequality for s = 1/2 and noticing that t0 =
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A0 + τL0 gives t1 = A1 + τL1, we obtain:

(L0 + L1)
1
N h(α,A1/2 + τL1/2)

1
N

≥ 2
1
N σ

(1/2)
K/N (A1 −A0 + τ |L1 − L0|)

{
(L0)

1
N h(α,A0 + τL0)

1
N

+ (L1)
1
N h(α,A1 + τL1)

1
N
}
,

for L1-a.e. τ ∈ [0, 1], where we used the notation A1/2 := A0+A1
2 , L1/2 :=

L0+L1
2 . Recalling from Theorem 2.20 that the map s 7→ h(α, s) is continuous,

we infer that the previous inequality also holds for τ = 0:

(L0 + L1)
1
N h(α,A1/2)

1
N

≥ 2
1
N σ

(1/2)
K/N (A1 −A0)

{
(L0)

1
N h(α,A0)

1
N + (L1)

1
N h(α,A1)

1
N

}
,

(3.3)

for all A0 < A1 with A0, A1 ∈ (a0, a1), all sufficiently small L0, L1 and q-a.e.
α ∈ Q, with exceptional set depending on A0, A1, L0 and L1.

Noticing that (3.3) depends in a continuous way on A0, A1, L0 and L1, it
follows that there exists a common exceptional set N ⊂ Q with the following
properties: q(N) = 0 and for each α ∈ Q \N the inequality (3.3) holds true
for all A0, A1, L0 and L1. Then one can make the following (optimal) choice

L0 := L
h(α,A0)

1
N−1

h(α,A0)
1

N−1 + h(α,A1)
1

N−1

, L1 := L
h(α,A1)

1
N−1

h(α,A0)
1

N−1 + h(α,A1)
1

N−1

,

for any L > 0 sufficiently small, and obtain that
(3.4)

h(α,A1/2)
1

N−1 ≥ 2
1

N−1σ
(1/2)
K/N (A1 −A0)

N
N−1

{
h(α,A0)

1
N−1 + h(α,A1)

1
N−1

}
.

By [3, Prop. 5.5] we now that for any K ′ < K̃ < K there exists Θ∗ > 0

such that for all 0 ≤ Θ ≤ Θ∗ it holds σ
(t)

K̃/N
(θ) ≥ σ(t)

K′/(N−1)(θ)
N−1
N t

1
N , for all

t ∈ [0, 1]. Hence

2
1

N−1σ
(1/2)

K̃/N
(θ)

N
N−1 ≥ σ(1/2)

K′/(N−1)(θ).

Plugging the last inequality into (3.4) gives

h(α,A1/2)
1

N−1 ≥ σ(1/2)
K′/N−1(A1 −A0)

{
h(α,A0)

1
N−1 + h(α,A1)

1
N−1

}
,

for all A0, A1 sufficiently close. In particular this shows that (Xα, | · |,mα)
verifies the CDloc(K

′, N) condition that is easily seen in dimension one to be
equivalent to the full CD(K ′, N) condition, as they are both equivalent to
the differential inequality (3.2), with K replaced by K ′. To prove the claim
is then enough to let K ′ converge to K and invoke the stability of the CD
condition [42, 54] to obtain that (Xα, | · |,mα) verifies CD(K,N). �
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To conclude this part we recall a straightforward consequence of the
CD(K,N) condition along the transport rays: for all x0, x1 ∈ Xα,
(3.5)(

sK/(N−1)(b− τV (x1))

sK/(N−1)(b− τV (x0))

)N−1

≤ h(α, x1)

h(α, x0)
≤
(
sK/(N−1)(τV (x1)− a)

sK/(N−1)(τV (x0)− a)

)N−1

,

with a < τV (x0) < τV (x1) < b and b − a ≤ π
√

(N − 1)/(K ∨ 0). In other
words, for q-a.e. α ∈ Q, the one-dimensional metric measure space (Xα, | ·
|,mα) also satisfies the weaker MCP(K,N).

4. A Lorentzian isoperimetric type inequality

The goal of the next definition is to define a notion of “area” for an
achronal set A ⊂ X. The rough idea is to use the signed time-separation
function τA from A to define a “future ε-tubular neighbourhood” of A, and
then define the “area of A” as the first variation of the volume of such future-
tubular neighbourhoods. This can be seen as a Lorentzian counterpart of
the outer Minkowski content in metric measure spaces.

Definition 4.1 (Timelike Minkowski content). Let A ⊂ X be a Borel
achronal set and consider the signed time-separation function τA from A,
see (2.15). We define the future Minkowski content of A by
(4.1)

m+(A) := inf
U∈U

lim sup
ε→0

m(τ−1
A ((0, ε)) ∩ U)

ε
, U := {U ⊂ X : U open, A ⊂ U}.

We define the past Minkowski content of A by

(4.2) m−(A) := inf
U∈U

lim sup
ε→0

m(τ−1
A ((−ε, 0)) ∩ U)

ε
.

The presence of the infimum over the collection U of open sets containing
A is necessary to avoid infinite volume of the future ε-enlargement of A with
respect to τ ; indeed, tipically (e.g. in Minkowski spacetime), τ−1

A ((0, ε)) has
infinite volume for every ε > 0.

Remark 4.2 (Timelike Minkowski content equals area in the smooth frame-
work). In the smooth framework, the timelike Minkowski content can be
related to the classical area of A, as illustrated below. If (M, g) is a globally
hyperbolic spacetime and A ⊂ M a smooth, spacelike, acausal and future
causally complete hypersurface, then the signed time-separation function τA
is smooth on I+(A) – outside of a set of measure zero. As τA has timelike
gradient ∇τA with g(∇τA,∇τA) = −1, the level sets τ−1

A (t) are spacelike

hypersurfaces of I+(A), for almost every t > 0. Denoting by At = τ−1
A (t),

coarea formula (see for instance [55, Prop. 3]) implies that

VolgxI+(A)=

∫
(0,+∞)

Volgt dt,



24 FABIO CAVALLETTI AND ANDREA MONDINO

where Volgt is the volume measure induced by gt, the Riemannian met-
ric induced by g over At. Hence, in the smooth setting above, the time-
like Minkowski content coincides with the area induced by the ambient
Lorentzian metric g.

Concerning the case when A is a smooth null hypersurface, then m+(A)
has to be zero like the induced volume. Let us briefly sketch the argument.
If x ∈ I+(A), then the supremum defining τA(x) cannot be realized as a
maximum. Otherwise, by the classical first variation argument, the optimal
path from x to A has to be a geodesic normal to A; but since A is null,
the normal directions are contained in the tangent space of A. This forces
the geodesic to never leave A and yields a contradiction. It follows that
all the optimal directions should leave A from its “boundary” (of higher
codimension). Because of the scaling limit in the definition, such a lower
dimensional contribution is not detected by the timelike Minkowski content
which thus has to vanish.

We will use the localization associated to a timelike complete achronal
set V to bound from above the future and past Minkowski content of an
achronal set A. To exclude lightlike variations, we introduce a stronger
condition for achronal sets.

Definition 4.3 (Empty future V -boundary, ∂+
V A = ∅). Let V ⊂ X be a

timelike complete achronal set. We say that an achronal set A ⊂ I+(V ) has
empty future V -boundary, and we write ∂+

V A = ∅, if the following property
is satisfied: for every x ∈ I+(A) and every geodesic γ : [0, 1] → X with
γ0 ∈ V , γ1 = x, such that τV (x) = τ(γ0, x), it holds that γ[0,1] ∩A 6= ∅.

If A satisfies the reversed condition in the past we say that A has empty
past V -boundary and we write ∂−V A = ∅. In case A has both past and future
V -boundaries empty, then we say that A has empty V -boundary and we
write ∂VA = ∅.

It is natural to compare Definition 4.3 with the fundamental notion of
Cauchy hypersurface. Recall that a Cauchy hypersurface is a closed achronal
set intersected exactly once by any inextendible causal curve [58, Sect. 8.3].
In case X is a smooth manifold with a continuous Lorentzian metric, then
a Cauchy hypersurface is a closed achronal topological hypersurface [51,
Prop. 5.2].

Lemma 4.4. If A is a Cauchy hypersurface, then A has empty V -boundary.

Proof. Let γ be a geodesic as in Definition 4.3 and let γ̄ to be any maximal
causal extension of γ. Then, by definition, γ̄ has to meet A and by the
reverse triangle inequality γ has to meet A. �

Remark 4.5. An elementary example (take for instance a Y shaped space-
time) shows that the reverse implication of Lemma 4.4 fails to be valid.

For the dimensional reduction we need also to specify the following no-
tation. Let (I, | · |, ν) be a one-dimensional metric measure space with I a
closed interval and ν a non-negative Radon measure.
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For a Borel set A ⊂ I, we denote
(4.3)

ν+(A) := lim sup
ε→0

ν(∪x∈A(x, x+ ε))

ε
, ν−(A) := lim sup

ε→0

ν(∪x∈A(x− ε, x))

ε
.

We will say that ν+(A) (resp. ν−(A)) is the future (resp. past) Minkowski
content of A. Note that if A is bounded and ν = f(x) dx with f continuous,
then the lim sup in (4.3) is actually a limit.

4.1. Properties of timelike Minkowski contents.

Proposition 4.6. Let (X, d,m,�,≤, τ) be a timelike non-branching, glob-
ally hyperbolic, Lorentzian geodesic space satisfying TCDep(K,N) and assume
that the causally-reversed structure satisfies the same conditions. Let V ⊂ X
be a Borel achronal timelike complete subset and consider the disintegration
given by Theorem 2.20. Then the following hold:

• For any Borel achronal set A ⊂ I+(V ) with ∂+
V A = ∅ and infx∈A τV (x) >

0, it holds:

(4.4) m+(A) ≤
∫
Q
m+
α (A ∩Xα) q(dα),

where we adopt the notation (4.3) for m+
α (A ∩Xα).

If A ⊂ I−(V ) is a Borel, achronal set with ∂−V A = ∅ and infx∈A−τV (x) >
0, then (4.4) holds replacing m+(A) by m−(A) and m+

α by m−α .
• The following inequality holds true

(4.5) m+(V ) ≥
∫
Q
m+
α (V ∩Xα) q(dα).

The inequality (4.5) remains valid if we replace m+(V ) by m−(V )
and m+

α by m−α (recall (4.3)).

Proof. We start by proving the first claim for A ⊂ I+(V ). The one for
A ⊂ I−(V ) follows by reversing the causal structure.

From A ⊂ I+(V ), it follows that I+(A) ⊂ I+(V ) implying the inclusion
τ−1
A ((0, ε)) ⊂ I+(V ). Therefore applying Lemma 2.13 and Theorem 2.20 to
V , we get

m(τ−1
A ((0, ε))) =

∫
Q
mα(τ−1

A ((0, ε)) ∩Xα) q(dα).

Consider Xα such that τ−1
A ((0, ε)) ∩Xα 6= ∅. By definition, it holds

τ−1
A ((0, ε)) ∩Xα = {y ∈ Xα ∩ I+(A) | τ(x, y) < ε,∀x ∈ A}.

Since ∂+
V A = ∅, necessarily A ∩Xα 6= ∅. As A is achronal there cannot be

two distinct points in A ∩Xα. Therefore A ∩Xα = {aα} and it holds

τ−1
A ((0, ε)) ∩Xα ⊂ {y ∈ Xα ∩ I+(A) | τ(x, y) < ε,∀x ∈ A ∩Xα}

= (A ∩Xα)ε ∩Xα,
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where with (A ∩ Xα)ε ∩ Xα we denote the right ε-enlargement of the set
A ∩Xα in the metric measure space (Xα, | · |,mα), i.e. in the sense of (4.3).
Hence,

(4.6)
m(τ−1

A ((0, ε)))

ε
≤
∫
Q

mα((A ∩Xα)ε)

ε
q(dα), ∀ε > 0.

Since A ∩ Xα = {aα}, then mα(A) = mα(A ∩ Xα) = 0. To conclude the
argument, we wish to use Fatou’s Lemma in order to pass to the limit in the
right hand side of (4.6). To this aim, we look for a function g ∈ L1(Q, q)
such that

mα((A ∩Xα)ε)−mα(A)

ε
≤ g(α), for q-a.e. α ∈ Q.

By applying (3.5) (taking as initial point 0 that can be identified with Xα ∩
V ) we obtain for all ε ∈ (0, ε0(K,N)):

mα((A ∩Xα)ε)−mα(A)

ε
=

1

ε

∫
(aα,aα+ε)

h(α, s) ds

(3.5)

≤ h(α, aα)

ε

∫
(aα,aα+ε)

(
sK/(N−1)(s)

sK/(N−1)(aα)

)N−1

ds

≤ C(K,N, inf
A
τV ) h(α, aα)

= C(K,N, inf
A
τV ) m+

α (A ∩Xα).

If Q 3 α 7→ m+
α (A ∩ Xα) is q-integrable, then we can choose g(α) :=

C(K,N, infA τV ) m+
α (A ∩Xα) as majorant and use Fatou’s Lemma to pass

to the limit in (4.6) and obtain

m+(A) ≤
∫
Q
m+
α (A ∩Xα) q(dα).

If m+
α (A ∩Xα) is not q-integrable then the claim holds trivially.

We now turn to the second claim. Fix any ray Xα from the disintegration
associated to V . Since V is achronal, there exists a unique xα such that
V ∩ Xα = {xα} and therefore for any y ∈ Xα it holds τ(xα, y) = τV (y) =
supx∈V τ(x, y). Hence:

τ−1
V ((0, ε)) ∩Xα = {y ∈ Xα | 0 < τV (y) < ε}

= {y ∈ Xα | 0 < τ(xα, y) < ε}
= (V ∩Xα)ε ∩Xα,

where by (V ∩Xα)ε∩Xα we denote the right ε-enlargement of the set V ∩Xα

in Xα, see (4.3). If U is any open set containing V , then τ−1
V ((0, ε)) ∩Xα ∩

U = (V ∩Xα)ε ∩Xα ∩ U .



AN ISOPERIMETRIC-TYPE INEQUALITY IN LORENTZIAN SPACES 27

Hence (recall that m(V ) = 0):

m(τ−1
V ((0, ε)) ∩ U)

ε
=

∫
Q

mα((V ∩Xα)ε ∩ U)

ε
q(dα).

Using Fatou’s Lemma we deduce that

lim inf
ε→0

m(τ−1
V ((0, ε) ∩ U)

ε
≥
∫
Q
m+
α (V ∩Xα) q(dα),

notice indeed that the dependance on U on the right hand side disappear
after the liminf. Finally, taking the infimum over all open sets U containing
V , we obtain the claim. �

Remark 4.7. • Notice that in the proof of the first claim of Proposi-
tion 4.6 we have also shown that, for achronal sets with empty future
V -boundary, the restriction to open sets present in the definition of
future Minkowski content (4.1) is not necessary to obtain a finite
quantity.
• It is clear from the proof that, in the first claim in Proposition 4.6,

instead of infA τV > 0 (resp. infA−τV > 0) it is sufficient to assume
that

q-ess inf{τV (Xα ∩A) : α ∈ Q s.t. Xα ∩A 6= ∅} > 0,

or, respectively, q-ess inf{−τV (Xα∩A) : α ∈ Q s.t. Xα∩A 6= ∅} > 0.

In the next section we will obtain a monotonicity formula for the rescaled
area of the spacelike hypersurface Vt := {τV = t}. As not all the integral
lines of τV will be longer than t, it will be enough to consider the following
subset of Q:

Qt := {α ∈ Q : sup
x∈Xα

τV (x) > t}, t > 0,(4.7)

Qt := {α ∈ Q : inf
x∈Xα

τV (x) < t}, t < 0.(4.8)

Notice that the equidistant set {τV = t} can be obtained as the translation
at (signed) distance t along the rays Xα, for α ∈ Qt.

Proposition 4.8. Let (X, d,m,�,≤, τ) and V ⊂ X satisfy the same as-
sumption of Proposition 4.6. Then
(4.9)

m+(Vt) =

∫
Qt

m+
α (Vt ∩Xα) q(dα), m−(Vt) =

∫
Qt

m−α (Vt ∩Xα) q(dα),

for t > 0 and t < 0, respectively.

Proof. By symmetry, we will only deal with the case t > 0.
First, we verify that ∂+

V Vt = ∅. If z ∈ I+(Vt) then τV (z) > t. By
continuity of τV , any maximizing geodesic realizing τV going from z to V
has to meet Vt.
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Next, we claim that

(4.10)

∫
Q
m+
α (Vt ∩Xα) q(dα) =

∫
Qt

m+
α (Vt ∩Xα) q(dα).

Indeed, thanks to the hypothesis t 6= 0, the only rays contributing in the
integral in the left hand side of (4.10) are those Xα for which Xα ∩ Vt 6= ∅.
Since the conditional measures mα are absolutely continuous with respect
to the Lebesgue measure L1 on Xα (see Theorem 2.20), it is enough to take
the integral in the left hand side over Qt, i.e. on those rays strictly longer
than t (otherwise the right Minkowski content on the ray would be 0). This
proves (4.10). Then the inequality ≤ in the first identity of (4.9) follows
from (4.4) combined with (4.10).

We next show the reverse inequality ≥ in the first identity of (4.9). First,
we claim that τVt , the time-separation function from Vt, satisfies:

(4.11) τVt(w) = τV (w)− t, ∀w ∈ I+(Vt).

Let w ∈ I+(Vt) ⊂ I+(V ). By Lemma 2.13 there exist zt ∈ Vt and α ∈ Q
such that zt ∈ Xα and w ∈ Xα; denoting by z the unique element of the set
Xα ∩ V , we obtain

τVt(w) ≥ τ(zt, w) = τ(z, w)− τ(z, zt) = τ(z, w)− t = τV (w)− t.

To show that τVt(w) ≤ τV (w) − t we argue as follows: for each ε > 0 there
exists ζt ∈ Vt such that τVt(w) ≤ τ(ζt, w) + ε. Since V is timelike complete,
by Lemma 2.12 there exists ζ ∈ V such that t = τV (ζt) = τ(ζ, ζt). The
reverse triangle inequality τ(ζ, w) ≥ τ(ζ, ζt) + τ(ζt, w) implies that

τVt(w) ≤ τ(ζt, w)+ε ≤ τ(ζ, w)−τ(ζ, ζt)+ε = τ(ζ, w)−t+ε ≤ τV (w)−t+ε.

Since ε > 0 was arbitrary, we conclude that τVt(w) ≤ τV (w) − t. This
completes the proof of (4.11).

From (4.11) and the disintegration (2.33), it follows that for every open
set U ⊃ Vt it holds

m
(
τ−1
Vt

((0, ε)) ∩ U
)

= m
(
τ−1
V ((t, t+ ε)) ∩ U

)
=

∫
Qt

mα(τ−1
V ((t, t+ ε)) ∩Xα ∩ U) q(dα).(4.12)

Reasoning as in the second part of the proof of Proposition 4.6 using Fatou’s
Lemma, we obtain
(4.13)

lim inf
ε→0+

1

ε

∫
Qt

mα(τ−1
V ((t, t+ ε)) ∩Xα ∩ U) q(dα) ≥

∫
Qt

m+
α (Vt ∩Xα) q(dα).

To obtain the inequality ≥ in the first of (4.9) it is then enough to take the
lim sup as ε→ 0+ in (4.12) divided by ε > 0, use (4.13) and finally take the
infimum over all open sets U ⊃ Vt.

�



AN ISOPERIMETRIC-TYPE INEQUALITY IN LORENTZIAN SPACES 29

4.2. A sharp monotonicity formula for the area of τV -level sets.
Combining the results from the previous sections, we prove the following
monotonicity formula for the area of the level sets of τV .

Theorem 4.9 (Monotonicity formula for the area). Let (X, d,m,�,≤, τ)
be a timelike non-branching, globally hyperbolic, Lorentzian geodesic space
satisfying TCDep(K,N) and assume that the causally-reversed structure sat-
isfies the same conditions. Let V ⊂ X be a Borel achronal timelike complete
subset.

Denote by Vt the achronal slice at τV -distance t from V , i.e. Vt := {τV =
t}. Then

(0,∞) 3 t 7−→ m+(Vt)

(sK/(N−1)(t))N−1
is monotonically non-increasing, and

(−∞, 0) 3 t 7−→ m−(Vt)

(sK/(N−1)(−t))N−1
is monotonically non-decreasing.

In the case K = 0, i.e. non-negative timelike Ricci (aka Hawking-Penrose
strong energy condition), the monotonicity formula takes the following neat
expression:

(0,∞) 3 t 7−→ m+(Vt)

tN−1
is monotonically non-increasing, and

(−∞, 0) 3 t 7−→ m−(Vt)

(−t)N−1
is monotonically non-decreasing.

Proof. From Proposition 4.8 by the continuity of the densities h(α, ·) (see
(4) in Theorem 2.20) we deduce that:

m+(Vt) =

∫
Qt

h(α, t) q(dα).

By the second inequality of (3.5) we have that

h(α, t) ≥
(

sK/(N−1)(t)

sK/(N−1)(T )

)N−1

h(α, T ), ∀α ∈ QT , ∀T > t > 0,

and thus, for all T > t > 0:

m+(VT )

(sK/(N−1)(T ))N−1
=

∫
QT

h(α, T )

(sK/(N−1)(T ))N−1
q(dα)

≤
∫
QT

h(α, t)

(sK/(N−1)(t))N−1
q(dα).

Since by the very definition, for T > t > 0, it holds that Qt ⊃ QT , we infer
that, for all T > t > 0:

m+(VT )

(sK/(N−1)(T ))N−1
≤
∫
Qt

h(α, t)

(sK/(N−1)(t))N−1
q(dα) =

m+(Vt)

(sK/(N−1)(t))N−1
.
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In the symmetric situation of 0 > t > T , we can use the first inequality of
(3.5) to obtain

h(α,−t) ≥
(

sK/(N−1)(−t)
sK/(N−1)(−T )

)N−1

h(α,−T )

and thus

m−(VT )

(sK/(N−1)(−T ))N−1
=

∫
QT

h(α, T )

(sK/(N−1)(−T ))N−1
q(dα)

≤
∫
Qt

h(α, t)

(sK/(N−1)(−t))N−1
q(dα) =

m−(Vt)

(sK/(N−1)(−t))N−1
.

�

Remark 4.10 (Sharpness of the monotonicity formula in Theorem 4.9).
The area mononoticity in Theorem 4.9 is sharp, as equality is achieved in
conical regions in the model spaces.

More precisely, for K = 0 and N ∈ N ≥ 2, consider the N -dimensional
Minkowski space with coordinates (x1, . . . , xN ) and Lorentzian metric dx2

1 +
. . .+ dx2

N−1 − dx2
N . Let X be the conical region

X := {0} ∪ {(x1, . . . , xN ) : x2
N ≥ a (x2

1 + . . .+ x2
N−1)}, for some a > 1.

Note that X, endowed with the standard metric and Lorentzian structure, is
a timelike non-branching Lorentzian geodesic space satisfying TCDep(0, N).
Observe that X \ {0} is a subset of the open cone of timelike vectors and
that V = {0} is a Borel achronal timelike complete subset of X. A direct
computation (see the proof of Proposition 4.13) shows that there exists
c = c(a,N) such that

m+(Vt) = ctN−1, for all t > 0.

In particular, equality is achieved in the monotonocity formula. For K >
0 (resp. K < 0), one can construct an analogous example replacing the
N -dimensional Minkowski space by the N -dimensional de Sitter space of
constant sectional curvature K/(N − 1) (resp. the N -dimensional anti-de
Sitter space of of constant sectional curvature K/(N − 1)).

4.3. A sharp and rigid isoperimetric-type inequality. We next deduce
from Theorem 3.2 and Proposition 4.6 an isoperimetric type inequality.

For V ⊂ X, Borel achronal timelike complete subset, and S ⊂ I+(V )
Borel achronal set with ∂+

V S = ∅, we will consider the conically shaped
region C(V, S) spanned by the set of τV -maximizing geodesics from V to S,
i.e.:
(4.14)
C(V, S) := {γt : γ ∈ Geo(X), t ∈ [0, 1], γ0 ∈ V, γ1 ∈ S, Lτ (γ) = τV (γ1)}.

Define also

(4.15) DK,N (t) :=
1

sK/(N−1)(t)N−1

∫ t

0
sK/(N−1)(s)

N−1 ds, t ∈ (0, TK,N )
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where sK/(N−1)(t) was defined in (2.29) and

TK,N := sup{t > 0 : sK/(N−1)(t) > 0} ∈ (0,∞].

Note that, for K = 0, one obtains simply

D0,N (t) =
t

N
.

The function DK,N admits equivalent expression: since

σ
(s/t)
K/(N−1)(t) =

sK/(N−1)(s)

sK/(N−1)(t)
,

it follows by a change of variable that

DK,N (t) =

∫ t

0
σ

(s/t)
K/(N−1)(t)

N−1 ds = t

∫ 1

0
σ

(r)
K/(N−1)(t)

N−1 dr.

Then the following isoperimetric type inequality holds true.

Theorem 4.11 (An isoperimetric-type inequality). Let (X, d,m,�,≤, τ)
be a timelike non-branching, globally hyperbolic, Lorentzian geodesic space
satisfying TCDep(K,N), and assume that the causally-reversed structure sat-
isfies the same conditions. Let V ⊂ X be a Borel achronal timelike complete
subset and S ⊂ I+(V ) a Borel achronal set with ∂+

V S = ∅ (in particular this
holds if S ⊂ I+(V ) is a Cauchy hypersurface). Then

(4.16) m+(S)DK,N (dist(V, S)) ≤ m(C(V, S)),

where

(4.17) dist(V, S) := inf{τV (x) : x ∈ S}.

If K = 0, the bound (4.16) reads as

(4.18) m+(S) dist(V, S) ≤ Nm(C(V, S)).

Proof. Consider the disintegration formula associated to τV . Since S ⊂
I+(V ), then C(V, S) ⊂ I+(V ) and therefore

m(C(V, S)) =

∫
Q
mα(Xα ∩ C(V, S)) q(dα).

Since both V and S are achronal and ∂+
V S = ∅, then Xα ∩ C(V, S) can be

identified via τV to a real interval [0, bα] for some bα > 0. Then

(4.19) m(C(V, S)) =

∫
Q

∫
[0,bα]

h(α, s) ds q(dα).

By (3.5), we have that for q-a.e. α ∈ Q it holds that bα ∈ (0, TK,N );
moreover, if 0 < s < bα, then

(4.20) h(α, s) ≥ h(α, bα)
sK/(N−1)(s)

N−1

sK/(N−1)(bα)N−1
.
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Hence,∫ bα

0
h(α, s) ds ≥ h(α, bα)

sK/(N−1)(bα)N−1

∫ bα

0
sK/(N−1)(s)

N−1ds = h(α, bα)DK,N (bα).

Notice that the function (0, TK,N ) 3 t 7→ DK,N (t) is increasing. Moreover,
if we denote by {zα} = Xα ∩ S, then bα = τV (zα), yielding bα ≥ dist(V, S).
We infer that

(4.21)

∫ bα

0
h(α, s) ds ≥ h(α, bα)DK,N (dist(V, S)), q-a.e. α ∈ Q.

The combination of (4.19) and (4.21) gives

m(C(V, S)) ≥ DK,N (dist(V, S))

∫
Q
h(α, bα) q(dα)

= DK,N (dist(V, S))

∫
Q
m+
α (S ∩Xα) q(dα),

which, together with (4.4), concludes the proof of the claim. �

Remark 4.12 (Related literature in Riemannian signature). At a formal
level, the proof of Theorem 4.11 is performed following the integral lines of
the gradient flow of τV , the Lorentzian distance from V . This should be
compared with the celebrated Heintze-Karcher inequality in the Riemann-
ian setting [30], where one obtains a volume bound of a smooth Riemannian
manifold M in terms of the co-dimensional one volume of a smooth hyper-
surface V , the maximal value of the mean curvature of V and the maximal
distance from V in M . The proof of the Heintze-Karcher inequality is also
performed following the integral lines of the gradient flow of the distance
from V , however the volume bound on each integral line depends on the
mean curvature of V . The main advantage of the proof of Theorem 4.11
is that, in addition to considerably relaxing the regularity assumed on the
space, it does not assume any bound on the mean curvature of V .

We now show that Theorem 4.11 is sharp.

Proposition 4.13 (Sharpness of Theorem 4.11). The inequality (4.18) is
sharp, in the following sense. For N ∈ N, N ≥ 2:

• for K = 0, the equality in (4.18) is achieved for a conical region in
N -dimensional Minkowski space-time.
• for K > 0, the equality in (4.16) is achieved for a conical region in
N -dimensional de Sitter space-time with constant sectional curvature
K/(N − 1);
• for K < 0, the equality in (4.16) is achieved for a conical region

in N -dimensional anti-de Sitter space-time with constant sectional
curvature K/(N − 1);

Proof. We will first consider the two dimensional Minkowski space-time M2

with metric −dy2 + dx2 and reference measure the volume measure, i.e. the



AN ISOPERIMETRIC-TYPE INEQUALITY IN LORENTZIAN SPACES 33

2 dimensional Lebesgue measure. Consider the set

S = {(x, y) ∈ R2 : − y2 + x2 = −1}

and we restrict the space to

X :=

{
(x, y) : − a ≤ x ≤ a, y ≥ |x|

√
1 + a2

a

}
.

Taking V = {(0, 0)}, then

C(V, S) = {(x, y) ∈ X : −y2+x2 ≤ 1}, S = {(x,
√

1 + x2) : x ∈ (−a, a)}.

Then

L2(C(V, S)) = 2

(∫
(0,a)

√
1 + x2 dx− a

√
1 + a2

2

)
= (x

√
1 + x2 + sinh−1(x))

∣∣∣a
0
− a
√

1 + a2.

The length ` of S is instead given by

` = 2

∫ a

0

√
1− y′(x)2 dx = 2

∫ a

0

1√
1 + x2

dx = 2 sinh−1(x)
∣∣a
0
.

Since by construction dist(V, S) = 1, for this example (4.18) is an identity
for N = 2.

In higher dimension N = n + 1 ≥ 3, we consider the n + 1-dimensional
Minkowski space Mn+1 with metric g = −dt2 + dx2

1 + . . . + dx2
n. Consider

the cone

X = {(x, t) : ‖x‖ ≤ a, t ≥ ‖x‖
√

1 + a2/a}, for any a > 0,

and the surface

(4.22) S = {(x, t) ∈ X : t2 − ‖x‖2 = 1}.

The achronal set V will be the origin O.
The volume of C(V, S) will be the difference between the volume of the

cone

W := X ∩ {0 ≤ t ≤
√

1 + a2}

and the volume of E, the epigraph in W of the function t =
√

1 + ‖x‖2.
Then

Ln+1(W ) =

∫ √1+a2

0
ωn

(
a√

1 + a2

)n
rn dr =

ωn
n+ 1

(
a√

1 + a2

)n√
1 + a2

n+1

=
√

1 + a2an
ωn
n+ 1

,

Ln+1(E) = ωn

∫ √1+a2

1
(
√
r2 − 1)ndr.
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Thus

Ln+1(C(V, S)) = ωn

(
an

n+ 1

√
1 + a2 −

∫ √1+a2

1
(
√
r2 − 1)ndr

)
.

For computing the area of S, we parametrize S via the graph of the function√
1 + r2 over the polar coordinates (r,Θ) ∈ [0,∞)×Sn−1 in Rn. The tangent

space of S is spanned by ∂t and ∂Θi , i = 1, . . . , n − 1. Restricting the

Minkowski metric to S, the area form is given by rn−1/
√

1 + r2 drdΘ. Then

Area(S) =

∫
Sn−1

∫ a

0
rn−1/

√
1 + r2 dr dΘ = nωn

∫ a

0
rn−1/

√
1 + r2 dr

= nωn

∫ √1+a2

1
(
√
x2 − 1)n−2dx,

where, in the last identity, we performed the change of variables x =
√

1 + r2.
It is possible to check that, for all a > 0, n ≥ 2:

(4.23)

∫ √1+a2

1
n(
√
x2 − 1)n−2 + (n+ 1)(

√
x2 − 1)ndx = an

√
1 + a2,

yielding

Area(S) = (n+ 1)Ln+1(C(V, S)), for all a > 0, n ≥ 2.

Since, by construction, all the points in S are at distance 1 from the origin
O, we just showed that S defined in (4.22) achieves the equality in (4.18)
for V = {O}.
This shows sharpness for K = 0, N ∈ N, N ≥ 2.

For K 6= 0, N ∈ N, N ≥ 2, up to scaling we can assume that K = N − 1
(if K > 0) or K = −(N − 1) (if K < 0). One can check that equality in
(4.16) is achieved by the following choices. In the arguments above, replace
the Minkowski space by the de Sitter space (in case K = N − 1) or by the
anti-de Sitter space (in case K = −(N − 1)), the cone X by the exponential
of expp(X), the surface S by expp(S), the domain W by expp(W ) and set
V = {p}. �

We next show that Theorem 4.11 is also rigid.

Proposition 4.14 (Rigidity of Theorem 4.11). The inequality (4.16) is
rigid, in the following sense. In addition to the assumptions of Theorem 4.11,
assume that

(i) S is a smooth spacelike hypersurface;
(ii) C(V, S)\V is isometric to a smooth Lorentzian manifold (Mn+1, g),

non-complete and with boundary;
(iii) Equality is achieved in (4.16), namely

(4.24) Volng (S)DK,N (dist(V, S)) = Voln+1
g (C(V, S)),
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where Voln+1
g (resp. Volng ) denotes the n + 1-dimensional volume

measure associated to g (resp. the n-dimensional volume measure
associated to the restriction of g).

Then

(a) V = {x̄} is a singleton; denote by gS := λ−2gxTS the normalised
restriction of g to TS, where λ := dist(V, S)−2 is a normalization
constant;

(b) Let

(4.25) C(S) := [0, dist(V, S)]× S/ ∼, where (0, x) ∼ (0, y) for all x, y ∈ S,
be a (truncated) cone over S and endow it with the Lorentzian metric
(defined outside the tip {r = 0})

(4.26) gC(S) := −dr2 + sK/n(r)2gS ,

where we use the notation (r, x) ∈ [0, dist(V, S)] × S/ ∼, and s(·)(·)
is defined in (2.29).

Then there exists an isometry Ψ : C(S) → C(V, S) such that
Ψ({r = 0}) = V is the tip of the cone and Ψ({r = dist(V, S)}) = S.

If (ii) is replaced by the stronger

(ii’) C(V, S) is contained in a smooth Lorentzian manifold (Mn+1, g)
complete and without boundary,

then (b) can be improved into

(b’) (S, gS) is isometric to a subset of the n-dimensional sphere of con-
stant curvature 1, (Sn, gSn), and C(V, S) is isometric to a cone in
the model space with metric −dr2 + sK/n(r)2gSn (note that K = 0
gives Minkowski, K = n de Sitter, and K = −n anti-de Sitter) and
with tip at V = {x̄}.

Proof. For the sake of brevity we only sketch the proof.
Following the proof of Theorem 4.11, it is clear that equality in (4.16)

forces equality in (4.20) for q-a.e. α, namely:

(4.27)
h(α, s)

h(α, bα)
=

sK/(N−1)(s)
N−1

sK/(N−1)(bα)N−1
, for q-a.e. α, for all s ∈ [0, bα].

Moreover, the fact that (0, TK,N ) 3 t 7→ DK,N (t) is increasing forces

(4.28) bα = dist(V, S), for q-a.e. α.

This means that (up to a set of q-measure zero) one can identify S with the
quotient set Q and parametrize C(V, S), up to a set of m-measure zero, by
the ray map

(4.29) Ψ : [0,dist(V, S)]× S → C(V, S), Ψ(s, α) := Xα(s),

so that Ψ is a Borel bijection (up to a set of m-measure zero). Notice that,
by construction, Ψ({0} × S) = V and Ψ({dist(V, S)} × S) = S. Notice
also that (4.27) yields that the co-dimension one volume of the s-section
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Ψ({s} × S) tends to 0 as s→ 0.
Now, using the smoothness assumption on C(V, S) and standard Jacobi
fields computations, one can mimic the proof of the rigidity in Bishop-
Gromov inequality (see for instance [21, 16]) in order to infer that Ψ de-
fined in (4.29) passes to the quotient (4.25) and defines an isometry between
(C(V, S), g) and (C(S), gC(S)). This shows (a) and (b). In order to prove
(b′), it suffices to observe that the only cone metrics (4.26) which extend to
a smooth Lorentzian manifold (complete and without boundary) are if the
form in (b′). �

In the next remark, we discuss a direct application of the isoperimetric
inequality (4.18).

Remark 4.15 (An upper bound on the area of Cauchy hypersurfaces in a
black hole interior). Let (Mn+1, g) be a globally hyperbolic space-time of
finite volume and satisfying the Strong Energy Condition (SEC for short,
i.e. Ric(v, v) ≥ 0 for all v ∈ TM timelike). M shall be thought as a finite
slab in the interior of a black hole. Of course any black hole metric satisfying
the vacuum Einstein equations Ric ≡ 0 (such as Schwarzschild or Kerr) also
satisfies the SEC.

Assume there exists a subset Σ ⊂ M achronal and past complete. It is
natural to expect that the “singular set at the center of the black hole”
satisfies such properties (when M is the black hole interior), at least for a
generic black hole.

If S ⊂ I−(Σ) is a Cauchy hypersurface for M , so in particular S is
achronal and ∂ΣS = ∅ (see Lemma 4.4). The quantity dist(S,Σ) shall
be thought as the Lorentzian distance from the Cauchy surface S to the
singular set Σ.

Applying Theorem 4.11 to the causally reversed structure (i.e. backward
in time), we obtain

(4.30) Vol3g(S) dist(S,Σ) ≤ (n+ 1) Vol4g(M),

giving an upper bound on the area of the Cauchy surface S (with respect
to the 3-dimensional volume measure Vol3g associated to the restriction of g
to S) in terms of its time-distance from the singular set Σ and the volume
Vol4g(M) (of the slab) of the black hole interior M (with respect to the

4-dimensional volume measure Vol4g associated to g).

Example 4.16 (An upper bound on the area of Cauchy hypersurfaces in the
Schwarzschild black hole interior). To fix the ideas by an explicit example,
consider a finite slab {t ∈ [a, b]} in the interior of the Schwarzschild black
hole

(4.31) M := {t ∈ [a, b]} ∩ {r ≤ 2m}
with metric

(4.32) g := −
(

1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θ dϕ2)
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and with time orientation so that − ∂
∂r is future oriented. Note that in the

black hole interior, r is a timelike variable while t is a spacelike variable.
It is clear that the singulat set Σ := {r = 0, t ∈ [a, b]} is achronal and
I−(Σ) = M .
Let S ⊂ M be any Cauchy hypersurface for the Schwarzschild slab (4.31).
The bound (4.30) reads as

(4.33) Vol3g(S) inf
S
τΣ(r) ≤ 4Vol4g({r ≤ 2m, t ∈ [a, b]}) =

128

3
πm3(b− a),

where τΣ depends only on the r-coordinate and is given by the expression

(4.34) τΣ(r) = πm−
√

2mr − r2 − 2m arctan

(√
2m− r
r

)
.

Notice that τΣ(r0) is the maximal proper time that may lapse for a massive
observer initially at r = r0 ∈ (0, 2m] before hitting the singularity Σ.

While well-known to experts, let us briefly sketch the proof of the expres-
sion (4.34) for completeness of presentation. Let γτ = (t(τ), r(τ), θ(τ), ϕ(τ)),
τ ∈ [0, T ], be a future directed timelike curve parametrized by proper time
τ :

1 =

(
2m

r
− 1

)−1(dr
dτ

)2

−
(

2m

r
− 1

)(
dt

dτ

)2

−r2

(
dθ

dτ

)2

−r2 sin2 θ

(
dϕ

dτ

)2

.

From the fact that γ is future directed, we infer that τ 7→ r(τ) is strictly
decreasing and

(4.35)
dr

dτ
≤ −

√
2m

r
− 1,

with equality if and only if

(4.36)

(
2m

r
− 1

)(
dt

dτ

)2

+ r2

(
dθ

dτ

)2

+ r2 sin2 θ

(
dϕ

dτ

)2

= 0.

Recall that the aim here is, given γ0 = (t0, r0, θ0, ϕ0) ∈ M , find (if it ex-
ists) the future timelike curve (γτ )τ∈[0,T ] with γT ∈ Σ (i.e. r(γT ) = 0)
parametrized by proper time, and having the maximal T . This amounts to
find the future directed timelike curve having maximal dr

dτ . From (4.35) and
(4.36), it is clear that such a curve has to be radial, i.e. γτ = (t0, r(τ), θ0, ϕ0),
and such that

T =

∫ r0

0

(
2m

r
− 1

)−1/2

= πm−
√

2mr0 − r2
0 − 2m arctan

(√
2m− r0

r0

)
.

This completes the proof of (4.34).
One can deduce analogous bounds for de-Sitter Schwarzschild and anti de

Sitter-Schwarzschild black holes, by using the more general (4.16).

Remark 4.17 (An upper bound on the area of Cauchy hypersurfaces in
cosmological space-times). Another situation where Theorem 4.11 seems
to give some new geometric information, is for cosmological spacetimes.
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In this case, the manifold is homeomorphic to a Lorentzian cone C(Σ),
with coordinates (t, x), t ≥ 0, x ∈ Σ (and diffeomorphic on the open subset
{t > 0}), with Σ×{t} spacelike slices for any t > 0 and with ∂

∂t timelike. In
such a model, the point {t = 0} corresponds to the origin of the universe,
i.e. the “big-bang”.

In Theorem 4.11, we can choose V = {t = 0} and S be any Cauchy hy-
persurface. The quantity dist(V, S) could be loosely interpreted as a kind
of “age” of S, while the lower bound K on the timelike Ricci curvature is
related to the cosmologiocal constant and the energy momentum tensor via
the Einstein equations.
In previous literature [1, Thm. 2 and Prop. 3], area bounds on Cauchy hyper-
surfaces were proved in Friedman-LeMâıtre-Robertson-Walker spacetimes
with non-negative timelike Ricci curvature (see also [26] for related results).
These are cosmological spacetimes where the time-slices Σ × {t} have con-
stant sectional curvature for all t > 0, i.e. are homogenous and isotropic.
Although such symmetries are satisfied at a very good level of approximation
at the scale of the universe, recent observations detected some anomalies in
the cosmic microwave background that are challenging such a model (see
for instance [24]). Since Theorem 4.11 does not assume any symmetry and
allows any K ∈ R, it gives an area bound on any Cauchy hypersurface S also
in the case when the timelike Ricci curvature is bounded below by a negative
constant K (thus allowing more freedom to the cosmological constant and
to the energy-momentum tensor), and the time slices Σ×{t}, t > 0, are not
necessarily homogenous and isotropic.

5. Further Localization results

For completeness, we include a brief discussion on a generalisation of
Theorem 3.2. The results of Section 2.2.2 and Section 2.3.1 are indeed valid
for a wider class of functions then time separation functions from achronal
timelike complete sets, namely for solutions of the dual Kantorovich problem
for p = 1. In analogy with the metric theory, this class coincides with the
class of timelike reverse 1-Lipschitz functions defined as follows:

u : X → R, u(x)− u(y) ≥ `(x, y), ∀ x, y ∈ X.

For a fixed timelike reverse 1-Lipschitz function u, define the transport re-
lation as

Γu := {(x, y) ∈ X≤ : u(x)− u(y) = τ(x, y)}.
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One can check that Γu is `-cyclically monotone: for any n ∈ N and any
family (x1, y1), . . . , (xn, yn) of points in Γu:

n∑
i=1

τ(xi, yi) =

n∑
i=1

u(xi)− u(yi)

=
n∑
i=1

u(xi+1)− u(yi) ≥
N∑
i=1

`(xi+1, yi).

It is then natural to define Ru, T endu , a(T endu ), b(T endu ) and Tu as in (2.19),
(2.20), (2.21) with the replacement of ΓV by Γu. By the timelike non-
branching property, Tu is partitioned by transport rays induced by u, pre-
cisely as for τV . Then Proposition 2.21 can be applied to Γu to obtain,
repeating verbatim the calculations done for τV , the following disintegra-
tion result for m.

Theorem 5.1. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic, Lorentzian geodesic space satisfying TCDep(K,N) and assume
that the causally-reversed structure satisfies the same conditions.
Let u : X → R be a timelike reverse 1-Lipschitz function.
Then m(a(T endu )) = m(b(T endu ) = 0 and the following disintegration formula
holds true:

(5.1) mxT endu
= mxTu=

∫
Q
mα q(dα) =

∫
Q
h(α, ·)L1xXα q(dα),

where

• q is a probability measure over the Borel quotient set Q ⊂ Tu;
• h(α, ·) ∈ L1

loc(Xα,L1xXα) for q-a.e. α ∈ Q;
• the map α 7→ mα(A) = h(α, ·)L1xXα(A) is q-measurable for every

Borel set A ⊂ TV .
• For q-a.e. α the one-dimensional metric measure space (Xα, | · |,mα)

satisfies the classical CD(K,N) condition, i.e. (3.2) holds.

Finally let us note notice that if one replaces the TCDep(K,N) assumption
by the weaker TMCPe(K,N), then all the claims of Theorem 5.1 remain valid
except from the last point that has to be replaced by “(Xα, | · |,mα) satisfies
the classical MCP(K,N), i.e. (3.5) holds.”

5.1. Sharp Brunn-Minkowski inequality via localization. The metric
version of Theorem 5.1 goes back to [12] and, previously, the Riemannian
version to [35]. There, many geometric inequalities (in their sharp form)
where obtained by applying the theorem to a special function u associated
to an optimal transport problem induced by a Borel function f : X → R
having zero mean

∫
X f m = 0: the function u was a Kantorovich potential

for the W1 optimal transport problem between the measures µ0 := f+ m and
µ1 := f−m, where f± are the positive and the negative part of f . In this
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cases, the disintegration induced by u localises also the zero mean property
of f : for q-a.e. α ∈ Q ∫

Xα

f mα = 0.

It would be therefore desirable to included to the list of properties of mα

of Theorem 5.1, in the case u is the Kantorovich potential associated to f ,
also the localization of the zero mean condition.

It will be obtained by directly adapting the argument of [12] with the
additional difficulty that we cannot rely on the existence of a solution to the
dual Kantorovich potential.

For ease of notation, we will drop the normalisation factor by directly
assuming that µ0 and µ1 are probability measures.

Theorem 5.2. Let (X, d,m,�,≤, τ) be a timelike non-branching, globally
hyperbolic, Lorentzian geodesic space satisfying TCDep(K,N) and assume
that the causally-reversed structure satisfies the same conditions.

Moreover assume that
∫
f m = 0 for some real valued Borel function f

and that the pair of probability measure (µ0 := f+ m, µ1 := f−m) is timelike
1-dualisable. Then there exists an `-cyclically monotone set Γf inducing the
following decomposition of the space: X = Z ∪ T , with m(Z \ {f = 0}) =
0 and T obtained as the disjoint union of a family of timelike geodesics
{Xα}α∈Q inducing the following disintegration formula:

mxT =

∫
Q
mα q(dα) =

∫
Q
h(α, ·)L1xXα q(dα), q ∈ P(Q), Q ⊂ T .

Moreover, for q-a.e. α ∈ Q, the following hold:

• h(α, ·) ∈ L1
loc(Xα,L1xXα);

•
∫
Xα

f mα = 0;

• the one-dimensional m.m.s. (Xα, | · |,mα) satisfies the CD(K,N)
condition, i.e. (3.2) holds.

Proof. By assumption, there exists an `-cyclically monotone set Γf ⊂ X2
�

and π ∈ Π≤(µ0, µ1) that is `-optimal and π(Γf ) = 1.
We now enlarge Γf by filling its possible holes so to restore the regularity

we would have if Γf was included in the subdifferential of a Kantorovich
potential. To this aim, define

Γ := {(x, y) ∈ X2
� : τ(z, w) = τ(z, x) + τ(x, y) + τ(y, w), (z, w) ∈ Γf}.
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We claim that Γ is `-cyclically monotone; indeed, for (xi, yi) ∈ Γ∑
i

τ(xi, yi) =
∑
i

τ(zi, wi)− τ(zi, xi)− τ(yi, wi)

≥
∑
i

`(zi+1, wi)− τ(zi, xi)− τ(yi, wi)

≥
∑
i

`(zi+1, xi+1) + `(xi+1, wi)− τ(zi, xi)− τ(yi, wi)

≥
∑
i

`(zi+1, xi+1) + `(xi+1, yi) + `(yi, wi)− τ(zi, xi)− τ(yi, wi)

=
∑
i

`(xi+1, yi).

This implies that the pairs belonging to Γ are aligned along geodesics: if
(x, y) ∈ Γ and γ ∈ TGeo(x, y) then (γs, γt) ∈ Γ for all 0 ≤ s ≤ t ≤ 1. Then
we can proceed by defining R, T end, a(T end), b(T end) and T like few lines
before Theorem 5.1. Thanks to Theorem 5.1 we obtain

mxT end= mxT =

∫
Q
mα q(dα) =

∫
Q
h(α, ·)L1xXα q(dα),

where q is a probability measure over the Borel quotient set Q ⊂ T , and for
q-a.e. α the one-dimensional metric measure space (Xα, | · |,mα) satisfies the
CD(K,N) condition. In particular mα = h(α, ·)L1xXα . We are only left to
prove that if Z = X \ T , then f = 0 m-a.e. over Z, and that

∫
Q f mα = 0,

for q-a.e. α.
Since µ0 ⊥ µ1, then π({(x, x) : x ∈ X}) = 0. Denoting by ∆ := {(x, x) : x ∈

X}, since π(Γ) = 1, we have

µ0(T ) = µ0(P1(Γ \∆)) ≥ π(Γ \∆) = 1;

in the same way µ1(T ) = 1. This implis that µ0(Z) = µ1(Z) = 0. Since
µ0 = f+m and µ1 = f−m, then Z is a subset of {f = 0}, up to a set of
m-measure zero.

We are left to show the balance condition
∫
Q f mα = 0, for q-a.e. α. For

any Borel subset A ⊂ Q, consider the saturated set of A, R(A) := P2(A ×
X ∩R) and compute:

µ0(R(A)) = π((R(A)×X) ∩ Γ) = π((X ×R(A)) ∩ Γ) = µ1(R(A)).

Hence for any Borel subset A ⊂ Q∫
A

∫
Xα

f+mαq(dα) =

∫
A

∫
Xα

f−mαq(dα)

implying that for any Borel subset A ⊂ Q,
∫
A

∫
Xα

f mαq(dα) = 0. The claim
is therefore proved. �



42 FABIO CAVALLETTI AND ANDREA MONDINO

Using Theorem 5.2 is routine to derive several geometric inequalities in
their sharp form (following for instance [13]). Here we simply report the
Brunn-Minkowski inequality.

Proposition 5.3 (Sharp timelike Brunn-Minkowski inequality). Let (X, d,m,�
,≤, τ) be a timelike non-branching measured Lorentzian pre-length space sat-
isfying TCDep(K,N), for some K ∈ R, N ∈ [1,∞), p ∈ (0, 1).
Let A0, A1 ⊂ X be measurable subsets with m(A0),m(A1) ∈ (0,∞). Calling
µi := 1/m(Ai)mxAi, i = 1, 2, assume that (µ0, µ1) is timelike 1-dualisable.

Then

m(At)
1/N ≥ τ (1−t)

K,N (θ)m(A0)1/N + τ
(t)
K,N (θ)m(A1)1/N

where At := I(A0, A1, t) defined in (2.6) is the set of t-intermediate points
of geodesics from A0 to A1, and Θ is the maximal/minimal time-separation
between points in A0 and A1, i.e.:

θ :=

{
sup{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K < 0,

inf{τ(x0, x1) : x0 ∈ A0, x1 ∈ A1} if K ≥ 0.

Finally τ
(t)
K/N (θ) := t

1
N σ

(t)
K/N (θ)

N−1
N .

Once Theorem 5.2 is at disposal, Proposition 5.3 can be proved following
verbatim the proof of [13, Thm. 3.1].
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