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Abstract. We are concerned with the existence and multiplicity of normalized solutions to the
fractional Schrödinger equation (−∆)su+ V (εx)u = λu+ h(εx)f(u) in RN ,∫

RN

|u|2dx = a,

where (−∆)s is the fractional Laplacian, s ∈ (0, 1), a, ε > 0, λ ∈ R is an unknown parameter
that appears as a Lagrange multiplier, h : RN → [0,+∞) are bounded and continuous, and f
is L2-subcritical. Under some assumptions on the potential V , we show that the existence of
normalized solutions depends on global maximum points of h when ε is small enough.

1. Introduction

1.1. Background and motivation. In this paper, we investigate the multiplicity of normalized
solutions for the fractional Schrödinger equation

(1.1) i
∂ψ

∂t
= (−∆)sψ + V (x)ψ − g(|ψ|2)ψ in RN,

where 0 < s < 1, i denotes the imaginary unit and ψ(x, t) is a complex wave. A solution of (1.1)
is called a standing wave solution if it has the form ψ(x, t) = e−iλtu(x) for some λ ∈ R. (−∆)s

stands for the fractional Laplacian and if u is small enough, it can be computed by the following
singular integral

(−∆)su = C(N, s)P.V.

∫
RN

u(x)− u(y)

|x− y|N+2s
dy.

Here the symbol P.V. is the Cauchy principal value and C(N, s) is a suitable positive normalizing
constant.

The operator (−∆)s can be seen as the infinitesimal generators of Lévy stable diffusion
processes [4], it originates from describing various phenomena in the field of applied science,
such as fractional quantum mechanics, barrier problem, markov processes and phase transition
phenomenon, see [13,20,30,31]. In recent decades, the study of problems of fractional Schrödinger
equation has attracted wide attention, see e.g. [27, 28,33] and references therein.

In [2], Alves considered the following class of elliptic problems with a L2-subcritical nonlinear
term  −∆u = λu+ h(εx)f(u) in RN ,∫

RN

|u|2dx = a.
(1.2)
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By using the variational approaches, the author shows that problem (1.2) admits multiple
normalized solutions if ε is small enough. Particularly, the numbers of normalized solutions are
at least the numbers of global maximum points of h. Moreover, for the following class of problem −∆u+ V (εx)u = λu+ f(u) in RN ,∫

RN

|u|2dx = a,

a similar result is also obtained for some negative and continuous potential V .
Motivated by [2], our interest is mainly focused on the fractional case with both potentials and

weights. Actually, our purpose of this paper is devoted to the multiplicity of normalized solutions
for the fractional Schrödinger equation (−∆)su+ V (εx)u = λu+ h(εx)f(u) in RN ,∫

RN

|u|2dx = a,
(1.3)

where s ∈ (0, 1), a, ε > 0, λ ∈ R is an unknown parameter that appears as a Lagrange multiplier.
In the local case, when s = 1, the fractional laplace (−∆)s reduces to the local differential

opterator −∆. If V (x) ≡ 0, Jeanjean’s [18] exploited the mountain pass geometry to deal
with existence of normalized solutions in purely L2-supercritical, we refer [6, 14, 15, 21] for more
results in this type of problems. In [25], they considered the related problem for q = 2 + 4

N .
The multiplicity of normalized solutions for the Schrödinger equation or systems has also been
extensively investigated, see [12,18,18,29].

For the non-potential case, a large body of literature is devoted to the following problem: −∆u = λu+ g(u) in RN ,∫
RN

|u|2dx = a2.
(1.4)

In particular, for the case g(u) = |u|p−1u, by assuming H1-precompactness of any minimizing
sequences, Cazenave and Lions [7] showed the attainability of the L2-constraint minimization
problem and orbital stability of global minimizers, it is assumed that Eα < 0 for all α > 0, and
then, the strict subadditivity condition:

(1.5) Eα+β < Eα + Eβ

holds. However, when dealing with the general function g, it is difficult to show (1.5) holds.
Shibata [29] proved the subadditivity condition (1.5) using a scaling argument.

In addition, if V (x) ̸≡ 0, Ikoma and Miyamoto [16] studies the existence and nonexistence of a
minimizer of the L2-constraint minimization problem

e(a) = inf{E(u)|u ∈ H1(RN ), |u|22 = a},

where

E(u) =
1

2

∫
RN

(|∇u|2dx+ V (x)|u|2)dx−
∫
RN

F (u)dx,

V and f satisfy some suitable assumptions. They performed a careful analysis to exclude
dichotomy and proved the precompactness of the modified minimizing sequence. When dealing
with general nonlinear terms in mass subcritical cases, one can apply the subadditive inequality
to prove the compactness of the minimzing sequence.

Zhong and Zou in [35] studied the existence of ground state normalized solution to Schrödinger
equations with potential under different assumptions, and presented a new approach to establish
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the strict sub-additive inequality. Alves and Thin [3] study the existence of multiple normalized
solutions to the following class of ellptic problems −∆u+ V (εx)u = λu+ f(u) in RN ,∫

RN

|u|2dx = a,
(1.6)

where ε > 0, V : RN → [0,∞) is a continuous function, and f is a differentiable function with L2-
subcritical growth. For normalized solutions of the nonlinear Schrödinger equation with potential,
we also see [5, 17,26] and the references therein.

In the case 0 < s < 1, few results are available. In the paper [34] the author proved some
existence and asymptotic results for the fractional nonlinear Schrödinger equation. For the
particular case of a combined nonlinearity of power type, namely f(t) = µ|u|q−2u + |u|p−2u,
h(x) = 1 and V (x) ≡ 0, i.e 2 < q < p < 2∗s = 2N

N−2s . Dinh [8] studied the existence and
nonexistence of normalized solutions for the fractional Schrödinger equations

(−∆)su+ V (x)u = |u|p−2u, in RN .(1.7)

By using the concentration-compactness principle, he showed a complete classification for the
existence and non-existence of normalized solutions for the problem (1.7). For more results about
the fractional Schrödinger equations, we can refer to [11,24] and the references therein.

1.2. Main results. In what follows, we assume f ∈ C1(RN ,R) is odd, continuous and satisfies
the following assumptions on f .

(f1) lim
t→0

|f(t)|
|t|q−1 = c > 0, where 2 < q < p̄ = 2 + 4s

N .

(f2) lim
t→∞

|f(t)|
|t|p−1 = 0, where 2 < p < p̄ = 2 + 4s

N .

(f3) There exist α, β ∈ R satisfying 2 < α ≤ β < p̄ such that

0 < αF (t) ≤ tf(t) ≤ F (t)β for any t > 0.

Moreover, h and V satisfy the following assumptions.

(A1) h ∈ C(RN ,R+), 0 < h∞ = lim
|x|→+∞

h(x) < max
x∈RN

h(x) = h(ai) for 1 ≤ i ≤ k with a1 = 0

and aj ̸= ai if i ̸= j.
(A2) V ∈ C(RN ,R), V (ai) = inf

x∈RN
V (x) < lim

|x|→+∞
V (x) = 0 for 1 ≤ i ≤ k.

The problem (1.3) is variational and the associated energy functional is given by

(1.8) Iε(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

1

2

∫
RN

V (εx)u2dx−
∫
RN

h(εx)F (u)dx, u ∈ Hs(RN )

with ∫
RN

|(−∆)
s
2u|2dx =

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy.

It is easy to know that Iε ∈ C1(Hs(RN ),R) and

I ′ε(u)φ =

∫
RN

(−∆)
s
2u(−∆)

s
2φdx+

∫
RN

V (εx)uφdx−
∫
RN

h(εx)f(u)φdx, ∀φ ∈ Hs(RN ).

The solutions to (1.3) can be characterized as critical points of the function Iε(u) constrained on
the sphere

(1.9) Sa =

{
u ∈ Hs(RN ) :

∫
RN

|u|2dx = a

}
Now, we are ready to state the main result of this paper.
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Theorem 1.1. Suppose (A1), (A2), (f1) − (f3) hold, then there exists ε1 > 0 such that problem
(1.3) admits at least k couples (uj , λj) ∈ Hs(RN ) × R of weak solutions for ε ∈ (0, ε1) with∫
RN |uj |2dx = a, λ < 0 and Iε(uj) < 0 for j = 1, 2, · · · , k.

The paper is organized as follows. In Section 2, we study the autonomous problem and give
some useful results which will be used later. Section 3 is devoted to the non-autonomous problem.
In Section 4, the proof of Theorem 1.1 is given.

2. The autonomous problem

In this section, we focus on the existence of normalized solution for the autonomous problem

(2.1)

 (−∆)su+ ηu = λu+ µf(u) in RN ,∫
RN

|u|2dx = a,

where s ∈ (0, 1), a, µ > 0, η ≤ 0 and λ ∈ R is an unknown parameter that appears as a Lagrange
multiplier. With the assumptions (f1) − (f3), it is standard to show that the solutions to (2.1)
can be characterized as critical points of the function as follows

(2.2) J(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

η

2

∫
RN

u2dx− µ

∫
RN

F (u)dx

restricted to the sphere Sa given in (1.9). Meanwhile, set

J0(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx− µ

∫
RN

F (u)dx

and

Υa = inf
Sa

J0(u).

Theorem 2.1. Suppose that f satisfies the conditions (f1) − (f3). Then, problem (2.1) has a
couple (u, λ) solution, where u is positive, radial and λ < η.

The proof of Theorem 2.1 is standard. For the sake of convenience, we give the details. Before
the proof, some lemmas are given below.

Lemma 2.2. Assume u is a solution to (2.1), then u ∈ Sa ∩ P , where

P :=

{
u ∈ Hs(RN )|

∫
RN

|(−∆)
s
2u|2dx+

Nµ

s

∫
RN

F (u)dx− Nµ

2s

∫
RN

f(u)udx = 0

}
.

Proof. Let u be a solution (2.1), then we get

(2.3)

∫
RN

|(−∆)
s
2u|2dx+ (η − λ)

∫
RN

u2dx− µ

∫
RN

f(u)udx = 0,

In addition, one can show that u satisfies the Pohozeav identity

(N − 2s)

∫
RN

|(−∆)
s
2u|2dx+N(η − λ)

∫
RN

u2 − 2Nµ

∫
RN

F (u) = 0.

Combining with (2.3), we obtain that∫
RN

|(−∆)
s
2u|2dx+

Nµ

s

∫
RN

F (u)− Nµ

2s

∫
RN

f(u)udx = 0.

□

Lemma 2.3. Assume (f1)− (f2), then we have

(i) J is bounded from below on Sa,
(ii) any minimizing sequence for J is bounded in Hs(RN ).
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Proof. (i) According the assumptions (f1)− (f2), there exists C > 0 such that

(2.4) |F (t)| ≤ C(|t|q + |t|p), ∀t ∈ R.
By the fractional Gagliardo-Nirenberg-Sobolev inequality [10],

(2.5)

∫
RN

|u|α ≤ C(s,N, α)(

∫
RN

|(−∆)
s
2u|2)

N(α−2)
4s (

∫
RN

|u|2)
α
2
−N(α−2)

4s ,

for some positive constant C(s,N, α) > 0. Then, (2.4) and (2.5) give that

J(u) ≥1

2

∫
RN

(|(−∆)
s
2u|2 + η

2
u2)dx− µC(s,N, q)

q
a

q
2
−N(q−2)

4s (

∫
RN

|(−∆)
s
2u|2dx)

N(q−2)
4s

− µC(s,N, p)

p
a

p
2
−N(p−2)

4s (

∫
RN

|(−∆)
s
2u|2dx)

N(p−2)
4s .(2.6)

Since q, p ∈ (2, 2 + 4s
N ), we infer that 0 < N(q−2)

4s , N(p−2)
4s < 1. Therefore J(u) is bounded from

below on Sa.
(ii) Since u ∈ Sa, the conclusion immediately follows from (2.6). □

The lemma above guarantees that

Ea = inf
u∈Sa

J(u)

is well defined. Now we study the properties of the function J defined in (2.1) restrict to Sa and
prove Theorem 2.1.

Lemma 2.4. For any a > 0 and η ≤ 0, there holds Ea < 0. In particular, we have Ea <
ηa
2 .

Proof. According (f1), lim
t→0

qF (t)
tq = c > 0 and then there exists ζ > 0 such that

(2.7)
qF (t)

tq
≥ c

2
, ∀t ∈ [0, ζ].

In fact, taking u ∈ Sa ∩ L∞(RN ) as a fixed nonnegative function, we define

(τ ∗ u)(x) = e
N
2
τu(eτx), for all x ∈ RN and all τ ∈ R,

then τ ∗ u ∈ Sa. Moreover, for τ < 0 and |τ | large enough, we have

0 ≤ e
N
2
τu(x) ≤ ζ, ∀x ∈ RN ,

which combines with (2.7) give that∫
RN

F (τ ∗ u)dx ≥ Ce
(q−2)Nτ

2

∫
RN

|u|qdx.

It follows that

J(τ ∗ u) =1

2

∫
RN

|(−∆)
s
2 (τ ∗ u)|2dx+

ηa

2
− µ

∫
RN

F (τ ∗ u)dx

≤1

2
e2sτ

∫
RN

|(−∆)
s
2u|2dx+

ηa

2
− µCe

(q−2)Nτ
2

∫
RN

|u|qdx.(2.8)

Since q ∈ (2, 2 + 4s
N ), increasing |τ | if necessary, we have

1

2
e2sτ

∫
RN

|(−∆)
s
2u|2dx− µCe

(q−2)Nτ
2

∫
RN

|u|qdx = Kτ < 0.

Hence, we obtain

J(τ ∗ u) ≤ Kτ +
ηa

2
< 0

and then Ea < 0. In particular, we have Ea <
ηa
2 . The proof is complete. □
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In the following, we adopt some idea introduced in [35] to get the sub-additive inequality.

Lemma 2.5. For µ > 0, η ≤ 0 and let a, b > 0, then

(i) a 7→ Ea is nonincreasing,
(ii) a 7→ Ea is continuous,
(iii) Ea+b ≤ Ea + Eb. If Ea or Eb can be attained, then Ea+b < Ea + Eb.

Proof. (i). For any ε > 0 small, there exist u ∈ Sa ∩ C∞
0 (RN ) and v ∈ Sb−a ∩ C∞

0 (RN ) such that

J(u) ≤ Ea + ε, J0(v) ≤ Υb−a + ε.

Since u and v have compact support, by using parallel translation, we can take R large enough
satisfying

ṽ(x) = v(x−R), supp u ∩ supp ṽ = ∅.

Then u+ ṽ ∈ Sb and

Eb ≤ J(u+ ṽ) =
1

2

∫∫
R2N

|(u+ ṽ)(x)− (u+ ṽ)(y)|2

|x− y|N+2s
dxdy +

η

2
|u+ ṽ|22 − µ

∫
RN

F (u+ ṽ)dx

=J(u) + J(ṽ) +

∫∫
R2N

(u(x)− u(y))(ṽ(x)− ṽ(y))

|x− y|N+2s
dxdy,

Suppose that

supp u ⊂ BR(0) and supp ṽ ⊂ B3R(0)\B2R(0),

we obtain∫∫
R2N

(u(x)− u(y))(ṽ(x)− ṽ(y))

|x− y|N+2s
dxdy =

∫∫
R2N

u(x)ṽ(x)− 2u(x)ṽ(y) + u(y)ṽ(y)

|x− y|N+2s
dxdy

=

∫∫
R2N

−2u(x)ṽ(y)

|x− y|N+2s
dxdy,

Noting that |x− y| ≥ R large enough, we have

Eb ≤ J(u+ ṽ) ≤ J(u) + J(ṽ) + ε ≤ J(u) + J0(v) + ε ≤ Ea +Υb−a + 3ε ≤ Ea + 3ε.(2.9)

Here we used the fact Υb−a < 0. Then by (2.9) and the arbitrariness of ε, we obtain that Eb ≤ Ea

for any b > a > 0.
(ii). We prove the following two claims.

Claim 1: lim
h→0+

Ea−h ≤ Ea.

For ε > 0, by the definition of Ea, there exists u ∈ Sa such that

(2.10) Ea ≤ J(u) ≤ Ea + ε.

Setting

t = t(h) = (
a− h

a
)

1
N

and ut(x) = u(xt ), we get

(2.11) lim
h→0+

t = 1 and |ut|22 = tNa = a− h.
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Then, by using (i), we have J(ut) ≥ Ea−h. In addition,

J(ut) =
tN−2s

2

∫
RN

|(−∆)
s
2u|2dx+

ηtN

2

∫
RN

u2dx− µtN
∫
RN

F (u)dx

=
tN−2s

2

∫
RN

|(−∆)
s
2u|2dx+ tN (J(u)− 1

2

∫
RN

|(−∆)
s
2u|2dx)

=tNJ(u) +
tN−2s(1− t2s)

2

∫
RN

|(−∆)
s
2u|2dx

by (2.10) and (2.11), we obtain
lim

h→0+
Ea−h ≤ Ea + ε.

Since ε is arbitrary, the claim holds.

Claim 2: lim
h→0+

Ea+h ≥ Ea,

Actually, we consider the case h = 1
n , n ∈ N. Take un ∈ Sa+ 1

n
such that J(un) ≤ Ea+ 1

n
+ 1

n .

Set

vn(x) :=

√
na

na+ 1
un(x).

By Lemma 2.3, we know {un} is bounded in Hs(RN ). Morever, we have

|vn|22 =
na

na+ 1
|un|22 =

na

na+ 1
(a+

1

n
) = a.

Hence, we get un ∈ Sa. On the other hand,

||vn − un||Hs(RN ) = (1−
√

na

na+ 1
)||un||Hs(RN ) → 0 as n→ +∞,

Then
Ea ≤ lim inf

n→+∞
J(vn) = lim inf

n→+∞
[J(un) + on(1)] = lim

h→0+
Ea+h.

Thus, we obtain that
lim

h→0+
Ea+h ≥ Ea.

Moreover, Ea−h ≥ Ea ≥ Ea+h holds due to (i). Hence, we get

lim
h→0+

Ea−h ≥ Ea ≥ lim
h→0+

Ea+h.

We complete the proof of (ii).
(iii). Firstly, we prove that

Eθa ≤ θEa for θ > 1 closing to 1.

For any ε > 0, we take u ∈ Sa ∩ P such that

J(u) ≤ Ea + ε.

Setting ũ(x) = u(ν−
1
N x) for ν ≥ 1, by the assumption, we have |ũ|22 = νa and

J(ũ) =
1

2

∫
RN

|(−∆)
s
2 ũ|2dx+

η

2

∫
RN

ũ2dx− µ

∫
RN

F (ũ)dx

=
1

2
ν

N−2s
N

∫
RN

|(−∆)
s
2u|2dx+

ην

2

∫
RN

u2dx− µν

∫
RN

F (u)dx.

Then, we get that

d

dν
J(ũ) =

N − 2s

2N
ν−

2s
N

∫
RN

|(−∆)
s
2u|2dx+

η

2

∫
RN

u2dx− µ

∫
RN

F (u)dx.
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Since u ∈ P , we know∫
RN

|(−∆)
s
2u|2dx+

Nµ

s

∫
RN

F (u)− Nµ

2s

∫
RN

f(u)udx = 0.

Thus

d

dν
J(ũ)− J(u) =(

N − 2s

2N
ν−

2s
N − 1

2
)

∫
RN

|(−∆)
s
2u|2dx.

=(
N − 2s

2N
ν−

2s
N − 1

2
)
Nµ

s

∫
RN

[
1

2
f(u)u− F (u)]dx

=(
N − 2s

2s
µν−

2s
N − Nµ

2s
)

∫
RN

[
1

2
f(u)u− F (u)]dx.

Obviously, if ξ > 0 small, it follows that

(2.12)
N − 2s

2s
µν−

2s
N − Nµ

2s
< 0, for ν ∈ [1, 1 + ξ].

Then by (2.12) and (f3), we obtain that

d

dν
J(ũ)− J(u) ≤ (

N − 2s

2s
µν−

2s
N − Nµ

2s
)(
α− 2

2
)

∫
RN

F (u)dx < 0,

Namely,
d

dν
J(ũ)− J(u) < 0, for ∀ν ∈ [1, 1 + ξ].

Therefore, for any θ ∈ (1, 1 + ξ), we have

J(ũ)− J(u) =

∫ θ

1

d

dν
J(ũ)dν <

∫ θ

1
J(u)dν = J(u)(θ − 1).

Then, it is easy to see that

Eθa ≤ J(ũ) ≤ θJ(u) ≤ θ(Ea + ε),

Since the arbitrariness of ε, we get

Eθa ≤ θEa, θ ∈ (1, 1 + ξ).

and if Ea is attained, we can take u as a minimizer in the above step, then we have

Eθa ≤ J(ũ) < θJ(u) = θEa, θ ∈ (1, 1 + ξ).

Furthermore, following the proof of (i), since Ea is nonincreasing, if Ea < 0, for any b ∈ (a,+∞),
we can get some uniform ξ > 0 satisfying

Eθc ≤ θEc, ∀θ ∈ [1, 1 + ξ),∀c ∈ [a, b].

Now, for any a > 0 with Ea < 0 and θ > 1, we take ξ > 0 such that

E(1+k)c ≤ (1 + k)Ec,∀k ∈ [0, ξ), ∀c ∈ [a, θb]

Then, we may choose k0 ∈ (0, ξ) and n ∈ N such that

(1 + k0)
n < θ < (1 + k0)

n+1,

and so

Eθa = E(1+k0)
θ

1+k0
a ≤(1 + k0)E θ

1+k0
a ≤ (1 + k0)

2E θ
(1+k0)

2 a

≤(1 + k0)
nE θ

(1+k0)
n a ≤ (1 + k0)

n θ

(1 + k0)n
Ea = θEa.
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Then, if Ea is attained, we get that Eθa < θEa for any θ > 1. For 0 < b ≤ a, we obtain that

Ea+b = Ea+b
a

a ≤ a+ b

a
Ea = Ea +

b

a
Ea = Ea +

b

a
Ea

b
b ≤ Ea + Eb.

If Ea or Eb is attained, we get

(2.13) Ea = Ea
b
b <

a

b
Eb,

and then Ea+b < Ea + Eb. The proof is complete. □

The next compactness lemma on Sa is useful in the study of the autonomous problem as well
as non-autonomous problem.

Lemma 2.6. Let {un} ⊂ Sa be a minimizing sequence with respect to Ea. Then, for some
subsequence, one of the following alternatives holds:

(i) {un} is strongly convergent;
(ii) There exists {yn} ⊂ Sa with |yn| → ∞ such that the sequence vn(x) = un(x + yn) is

strongly convergent to a function v ∈ Sa with J(v) = Ea.

Proof. By Lemma 2.3, we know J is coercive on Sa, the sequence {un} is bounded, so un ⇀ u in
Hs(RN ) for some subsequence. Now we consider the following three possibilities.

(1) If u ̸≡ 0 and |u|22 = b ̸= a, we must have b ∈ (0, a). Set vn = un − u, by the Brézis-Lieb
Lemma [32], ∫∫

R2N

|un(x)− un(y)|2

|x− y|N+2s
dxdy =

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dxdy

+

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy + on(1).(2.14)

Since F is a C1 function and has a subcritical growth in the Sobolev sense, then it follows that

(2.15)

∫
RN

F (un)dx =

∫
RN

F (un − u)dx+

∫
RN

F (u)dx+ on(1).

Furthermore, setting dn = |vn|22, and by using

|un|22 = |vn|22 + |un|22 + on(1),

we obtain that dn ∈ (0, a) for n large enough and |vn|22 → d with a = b+ d, we infer that

Ea + on(1) =J(un)

=
1

2

∫∫
R2N

|vn(x)− vn(y)|2

|x− y|N+2s
dxdy +

η

2
|vn|22 − µ

∫
RN

F (vn)dx

+
1

2

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy +

η

2
|u|22 − µ

∫
RN

F (u)dx+ on(1)

=J(vn) + J(u) + on(1)

≥Edn + Eb + on(1).

Letting n→ +∞, by Lemma 2.5, we find that

Ea ≥Ed + Eb > Ea,

which is a contradiction. This possibility can not exist.
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(2) If |un|22 = |u|22 = a, it is well known that un → u in L2(RN ). Then, by (2.4) and (2.5), we
have that ∫

RN

F (un − u)dx ≤C1

∫
RN

|un − u|qdx+ C2

∫
RN

|un − u|pdx

≤C(
∫
RN

|un − u|2)
q
2
−N(q−2)

4s + C(

∫
RN

|un − u|2)
p
2
−N(p−2)

4s

Hence, we get
∫
RN F (un − u)dx→ 0. From (2.15), we obtain that∫

RN

F (un)dx→
∫
RN

F (u)dx.

which combines with Ea = lim
n→+∞

J(un) provide

Ea = lim
n→+∞

1

2

∫
RN

|(−∆)
s
2un|2 + ηu2n)dx− µ

∫
RN

F (u)dx

≥1

2

∫
RN

|(−∆)
s
2u|2 + ηu2)dx− µ

∫
RN

F (u)dx = J(u)

≥Ea,

Since u ∈ Sa, we infer that Ea = J(u), then ||un||2 → ||u||2, where || || denotes the usual norm in
Hs(RN ). Thus un → u in Hs(RN ), which implies that (i) occurs.

(3) If u ≡ 0, that is, un ⇀ 0 in Hs(RN ). We claim that there exists β > 0 such that

(2.16) lim inf
n→+∞

sup
y∈RN

∫
BR(y)

|un|2dx ≥ β, for some R > 0.

Indeed, otherwise by [9, Lemma 2.2], we have un → 0 in Ll(RN ) for all l ∈ (2, 2N
N−2s). Thus

Ea + on(1) = J(un) =
1

2

∫
RN

|(−∆)
s
2un|2dx+

η

2

∫
RN

u2ndx− µ

∫
RN

F (un)dx

=
1

2

∫
RN

|(−∆)
s
2un|2dx+

η

2

∫
RN

u2ndx+ on(1)

which contradicts the Lemma 2.4.
Hence, from this case, (2.16) holds and |yn| → +∞, then we consider ũn(x) = u(x + yn),

obviously {ũn} ⊂ Sa and it is also a minimizing sequence with respect to Ja. It is observed that
there exists ũ ∈ Hs(RN )\{0} such that ũn(x) ⇀ ũ in Hs(RN ). Following as in the first two
possibilities of the proof, we infer that ũn(x) → ũ in Hs(RN ), which implies that (ii) occurs. This
proves the lemma. □

In what follows, we begin to prove Theorem 2.1.

Proof of Theorem 2.1. By Lemma 2.3, Lemma 2.4, there exists a bounded minimizing sequence
{un} ⊂ Sa satisfying J(un) → Ea. Then applying Lemma 2.6, there exists u ∈ Sa such that
J(u) = Ea. By the Lagrange multiplier, there exists λ ∈ R such that

(2.17) J ′(u) = λΦ′(u) in Hs(RN )′,

where Φ(u) : Hs(RN ) → R is given by

Φ(u) =
1

2

∫
RN

|u|2dx, u ∈ Hs(RN ).

Therefore, from (2.17), we have

(2.18) (−∆)su+ ηu = λu+ µf(u) in RN ,
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By Lemma 2.2, we can get

(λ− η)

∫
RN

u2dx =

∫
RN

|(−∆)
s
2u|2dx− µ

∫
RN

f(u)udx

=− Nµ

s

∫
RN

F (u)dx+
Nµ

2s

∫
RN

f(u)udx− µ

∫
RN

f(u)udx

=− µ

s
[

∫
RN

NF (u)− N − 2s

2
f(u)udx].

Furthermore, according to the condition (f3) and the claim 3, we must have λ < η.
Next, we will prove that u can be chosen to be positive. Obviously, we have J(u) = J(|u|).

Moreover, since u ∈ Sa shows that |u| ∈ Sa, we infer that

Ea = J(u) = J(|u|) ≥ Ea.

which implies that J(|u|) = Ea, we can replace u by |u|. Furthermore, if u∗ denotes the
Symmetrization radial decreasing rearrangement of u (see [1, Section 9]), we observe that∫∫

R2N

|u∗(x)− u∗(y)|2

|x− y|N+2s
dxdy ≤

∫∫
R2N

|u(x)− u(y)|2

|x− y|N+2s
dxdy∫

RN

|u|2dx =

∫
RN

|u∗|2dx and

∫
RN

F (u)dx =

∫
RN

F (u∗)dx(2.19)

then u∗ ∈ Sa and J(u∗) = Ea, it follows that we can replace u by u∗. Similarly as in [23], one can
show that u(x) > 0 for any x ∈ R. This completes the proof.

□

3. The non-autonomous problem

In this section, we first give some properties of the functional Iε(u) given by (1.8) restricted to
the sphere Sa, and then prove Theorem 1.1. Define the following energy functionals

I∞(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx− h∞

∫
RN

F (u)dx

and for i = 1, 2, · · · , k,

Iai(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

V (ai)

2

∫
RN

u2dx− h(ai)

∫
RN

F (u)dx.

Moreover, denoted by Eε,a, Eai,a and E∞,a the following real numbers

Eε,a = inf
u∈Sa

Iε(u), Eai,a = inf
u∈Sa

Iai(u), E∞,a = inf
u∈Sa

I∞(u).

The next two lemmas establish some crucial relations involving the levels Eε,a, E∞,a and Eai,a.
For any α, β ∈ R, set

Jαβ(u) =
1

2

∫
RN

|(−∆)
s
2u|2dx+

β

2

∫
RN

u2dx− α

∫
RN

F (u)dx = Eh1V1,a.

where

Eαβ,a = inf
u∈Sa

Jαβ(u),

Lemma 3.1. Fix a > 0, let 0 < h1 < h2 and V2 < V1 ≤ 0. Then Eh2V2,a < Eh1V1,a < 0.

Proof. The proof is standard and we omit the details. □

Lemma 3.2. lim sup
ε→0+

Eε,a ≤ Eai,a < E∞,a < 0, i = 1, 2, · · · , k.
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Proof. By the proof of the Theorem 2.1, choose u0 ∈ Sa such that Iai(u0) = Eai,a. For 1 ≤ i ≤ k,
we define

u = u0(x− ai
ε
), x ∈ RN .

Then u ∈ Sa for all ε > 0, we have

Eε,a ≤ Iε(u) =
1

2
|(−∆)

s
2u0|22 +

1

2

∫
RN

V (εx+ ai)u
2
0dx−

∫
RN

h(εx+ ai)F (u0)dx.

Letting ε→ 0+, by the Lebesgue dominated convergence theorem, we deduce

(3.1) lim sup
ε→0+

Eε,a ≤ lim
ε→0+

Iε(u) = Iai(u0) = Eai,a.

Noting that E∞,a can be achieved, due to 0 < h∞ < h(ai) and V (ai) < 0, we have

Eai,a < E∞,a < 0.

It completes the proof. □

Hence by Lemma 3.2, there exists ε1 > 0 satisfying Eε,a < E∞,a for all ε ∈ (0, ε1), In the
following, we always assume that ε ∈ (0, ε1). The next three lemmas will be used to prove the
(PS)c condition for Iε restricts to Sa at some levels.

Lemma 3.3. Assume {un} ⊂ Sa such that Iε(un) → c as n→ +∞ with c < E∞,a < 0, then

δ := lim inf
n→∞

sup
y∈RN

∫
B(y,1)

|un(x)|2dx > 0.

Proof. We argue by contradiction and assume that δ = 0, then up to a subsequence, we have
un → 0 in Ll(RN ) for all l ∈ (2, 2N

N−2s), by the Lebesgue dominated convergence theorem and

(f1)-(f2), we infer that

(3.2)

∫
RN

h(εx)F (un)dx→ 0 as n→ +∞.

Since V (x) → 0 as |x| → ∞, one can show that∫
RN

V (x)u2ndx = on(1),

which combining with (3.2) follows that

0 > c = Iε(un) + o(1) =
1

2

∫
RN

|(−∆)
s
2un|2dx+ o(1) ≥ 0,

which is a contradiction. □

Lemma 3.4. Under the assumption of Lemma 3.3, assume un ⇀ u in Hs(RN ), then u ̸≡ 0.

Proof. By Lemma 3.3, we have that

lim inf
n→∞

sup
y∈RN

∫
Br(y)

|un(x)|2dx > 0.
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So if u ≡ 0, there exists {yn} satisfying |yn| → ∞, let ũn = un(x+ yn), obviously {ũn} ⊂ Sa, we
have

c+ on(1) =Iε(un)

=
1

2

∫
RN

|(−∆)
s
2un|2dx+

1

2

∫
RN

V (εx)u2ndx−
∫
RN

h(εx)F (un)dx

=
1

2

∫
RN

|(−∆)
s
2 ũn|2dx+

1

2

∫
RN

V (εx+ εyn)ũ
2
ndx−

∫
RN

h(εx+ εyn)F (ũn)dx

=I∞(ũn) +
1

2

∫
RN

(V (εx+ εyn)− V∞)ũ2ndx+

∫
RN

(h∞ − h(εx+ εyn))F (ũn)dx

=I∞(ũn) + on(1) ≥ E∞,a + on(1),

which is absurd, because c < E∞,a < 0. This proves the lemma. □

Lemma 3.5. Let {un} ⊂ Sa be a (PS)c sequence of Iε restricted to Sa with c < E∞,a < 0 and let
un ⇀ uε in Hs(RN ). If un ̸→ uε in Hs(RN ), there exists β > 0 independent of ε ∈ (0, ε1) such
that

lim inf
n→+∞

|un − uε|22 ≥ β.

Proof. Setting the functional Φ : Hs(RN ) → R given by

Φ(u) =
1

2

∫
RN

|u|2dx,

It follows that Sa = Φ−1({a/2}). Then, by Willem [32, Proposition 5.12], there exists {λn} ⊂ R
such that

(3.3) ||I ′ε(un)− λnΦ
′(un)||(Hs(RN ))′ → 0 as n→ +∞.

By the boundedness of {un} in Hs(RN ), we know {λn} is a bounded sequence, thus there exists
λε such that λn → λε as n→ +∞. Then, together with (3.3), we get

I ′ε(uε)− λεΦ
′(uε) = 0 in (Hs(RN ))′,

and setting vn = un − uε, we deduce that

(3.4) ||I ′ε(vn)− λnΦ
′(vn)||(Hs(RN ))′ → 0 as n→ +∞.

By a straightforward calculation, we have

E∞,a > lim inf
n→+∞

Iε(un)

= lim inf
n→+∞

(Iε(un)−
1

2
I ′ε(un)un +

1

2
λna+ on(1))

= lim inf
n→+∞

[

∫
RN

h(εx)

2
f(un)undx−

∫
RN

h(εx)F (un)dx+
1

2
λna+ o(1)]

≥1

2
λεa

implying that

(3.5) λε ≤
2E∞,a

a
< 0, for all ε ∈ (0, ε1).

From (3.4), we get

(3.6) |(−∆)
s
2 vn|22 +

∫
RN

V (εx)|vn|2dx− λε|vn|22 −
∫
RN

h(εx)f(vn)vndx = on(1).
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which combined with (3.5) to give

|(−∆)
s
2 vn|22 +

∫
RN

V (εx)|vn|2dx− 2E∞,a

a

∫
RN

|vn|2dx ≤
∫
RN

h(εx)f(vn)vndx+ on(1),

which leads to

(3.7)

∫
RN

|(−∆)
s
2 vn|2dx+ C3

∫
RN

|vn|2dx ≤ C2

∫
RN

|vn|pdx+ on(1),

for some constant C3 > 0 that does not depend on ε ∈ (0, ε1). If un ̸→ uε in Hs(RN ), that is
vn ̸→ 0 in Hs(RN ), we know that there exists C0 > 0 independent of ε such that

(3.8) lim inf
n→+∞

|vn|pp ≥ C0,

Then, by the fractional Gagliardo-Nirenberg-sobolev inequality,∫
RN

|vn|α ≤ C(s,N, α)(

∫
RN

|(−∆)
s
2 vn|2)

N(α−2)
4s (

∫
RN

|vn|2)
α
2
−N(α−2)

4s ,

for some positive constant C(s,N, α) > 0. We have

lim inf
n→+∞

∫
RN

|vn|p ≤C(s,N, p)(
∫
RN

|(−∆)
s
2 vn|2)

N(p−2)
4s (lim inf

n→+∞

∫
RN

|vn|2)
p
2
−N(p−2)

4s

≤C(s,N, p)K
N(p−2)

4s (lim inf
n→+∞

∫
RN

|vn|2)
p
2
−N(p−2)

4s(3.9)

Clearly also, for K > 0 is a suitable constant independent of ε satisfying the condition∫
RN |(−∆)

s
2 vn|2 ≤ K. This together with (3.8) and (3.9) gives that there exists β > 0 independent

of ε ∈ (0, ε1) such that

lim inf
n→+∞

|vn|22 ≥ β.

we get desired result. □

Next we will give the compactness lemma.

Lemma 3.6. Let

o < ρ0 < min{E∞,a − Eai,a,
β

a
(E∞,a − Eai,a)}.

Then, for each ε ∈ (0, ε1), the functional Iε satisfies the (PS)c condition restricts to Sa if
c < Eai,a + ρ0.

Proof. Let {un} be a (PS)c sequence for Iε restricts to Sa and c < Eai,a + ρ0. It follows that
c < E∞,a < 0, since {un} is bounded in Hs(RN ), let un ⇀ uε in H

s(RN ). By Lemma 3.4, uε ̸≡ 0.
Denote vn = un − uε, If un → uε in Hs(RN ), the proof is complete. If un ̸→ uε in Hs(RN ), by
Lemma 3.5,

lim inf
n→+∞

|vn|22 ≥ β.

Set b = |uε|22, dn = |vn|22 and suppose that |vn|22 → d > 0, then we get d ≥ β > 0 and a = b + d.
From dn ∈ (0, a) for n large enough, we get

(3.10) c+ on(1) = Iε(un) = Iε(vn) + Iε(uε) + on(1).

since vn ⇀ 0 in Hs(RN ), we can follow the lines in the proof of Lemma 3.4. Then

(3.11) Iε(vn) ≥ E∞,dn + on(1),

which combing with (3.10), we obtain that

c+ on(1) = Iε(un) ≥E∞,dn + Iε(uε) + on(1)

≥E∞,dn + Eai,b + on(1),
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Letting n→ ∞, by the inequation (2.13), we have

c ≥ E∞,d + Eai,b ≥
d

a
E∞,a +

b

a
Eai,a

=Eai,a +
d

a
(E∞,a − Eai,a)

≥Eai,a +
β

a
(E∞,a − Eai,a)

which is a contradiction, because c < Eai,a +
β
a (E∞,a −Eai,a). Therefore, we can obtain un → uε

in Hs(RN ). □

In what follows, let us fix ρ̄, r̄ > 0 satisfying:

(1) Bρ̄(ai) ∩Bρ̄(aj) for i ̸= j and i, j ∈ {1, . . . k}.
(2) ∪k

i=1Bρ̄(ai) ⊂ Br̄(0).

(3) Q ρ̄
2
= ∪l

i=1B ρ̄
2
(ai).

We set the function Gε : H
s(RN )\{0} → RN by

Gε(u) =

∫
RN χ(εx)|u|2dx∫

RN |u|2dx
,

where χ : RN → RN denotes the characteristic function, that is,

χ(x) =

{
x, if |x| ≤ r̄,
r̄ x
|x| , if |x| > r̄.

The next two lemmas will be useful to get important (PS) sequences for Iε restricted to Sa.

Lemma 3.7. For ε ∈ (0, ε1), there exist δ1 > 0 such that if u ∈ Sa and Iε(u) ≤ Eai,a + δ1, then

Gε(u) ∈ Q ρ̄
2
, ∀ε ∈ (0, ε1).

Proof. If the lemma does not occur, there must be δn → 0, εn → 0 and {un} ⊂ Sa such that

(3.12) Iεn(un) ≤ Eai,a + δn and Gεn(un) ̸∈ Q ρ̄
2
, ∀ε ∈ (0, ε1).

so we have

Eai,a ≤ Iai(un) ≤ Iεn(un) ≤ Eai,a + δn

then

{un} ⊂ Sa and Iai(un) → Eai,a.

According to Lemma 2.6, we have one of the following two cases:

(i) un → u in Hs(RN ) for some u ∈ Sa,
(ii) There exists {yn} ⊂ Sa with |yn| → ∞ such that the sequence vn(x) = un(x + yn) in

Hs(RN ) to some v ∈ Sa.

For (i): By Lebesgue dominated convergence theorem,

Gεn(un) =

∫
RN χ(εx)|un|2dx∫

RN |un|2dx
→

∫
RN χ(0)|u|2dx∫

RN |u|2dx
= 0 ∈ Q ρ̄

2
.

Then Gεn(un) ∈ Q ρ̄
2
for n large enough, that contradicts (3.12).

For (ii): We will study the following two case: (I) |εnyn| → +∞; (II) εnyn → y for some
y ∈ RN .
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If (I) holds, the limit vn → v in Hs(RN ) provides

Iεn(un) =
1

2
|(−∆)

s
2 vn|22 +

1

2

∫
RN

V (εnx+ εnyn)|vn|2dx−
∫
RN

h(εnx+ εnyn)F (vn)dx

→I∞(v) as n→ +∞.(3.13)

Since Iε(un) ≤ Eai,a + δn, we deduce that

E∞,a ≤ I∞(v) ≤ Eai,a.

which contradicts Eai,a < E∞,a in Lemma 3.2.
If (II) holds, by (3.13), we obtain that

Iεn(un) → Ih(y)V (y)(v) as n→ +∞,

and then Eh(y)V (y),a ≤ Ih(y)V (y)(v) ≤ Eai,a. By Lemma 3.1, we must have h(y) = h(ai) and
V (y) = V (ai). Namely, y = ai for some i = 1, 2, . . . , k. Hence

Gεn(un) =

∫
RN χ(εnx)|un|2dx∫

RN |un|2dx
=

∫
RN χ(εnx+ εnyn)|vn|2dx∫

RN |vn|2dx

→
∫
RN χ(y)|v|2dx∫

RN |v|2dx
= 0 ∈ Q ρ̄

2

which implies that Gεn(un) ∈ Q ρ̄
2
for n large enough, That contradicts (3.12). The proof is

complete. □

From now on, we will use the following notations:

• θiε:={u ∈ Sa : |Gε(u)− ai| ≤ ρ̄};
• ∂θiε:={u ∈ Sa : |Gε(u)− ai| = ρ̄};
• βiε= inf

u∈θiε
Iε(u);

• β̄iε= inf
u∈∂θiε

Iε(u).

Lemma 3.8. Let ρ0 be defined in lemma 3.6. Then there is

βiε < Eai,a + ρ0 and βiε < β̄iε, for ∀ε ∈ (0, ε1).

Proof. Let u ∈ Sa satisfy
Iai(u) = Eai,a.

For 1 ≤ i ≤ k, we define

ûiε(x) := u(x− ai
ε
), x ∈ RN .

Then ûiε(x) ∈ Sa for all ε > 0, by direct calculations give that

Iε(û
i
ε(x)) =

1

2
|(−∆)

s
2u|22 +

1

2

∫
RN

V (εx+ ai)|u|2dx−
∫
RN

h(εx+ ai)F (u)dx,

and then

(3.14) lim
ε→0

Iε(û
i
ε) = Iai(u) = Eai,a.

we know

Gε(û
i
ε) =

∫
RN χ(εx+ ai)|u|2dx∫

RN |u|2dx
→ ai as ε→ 0+.

so ûiε(x) ∈ θiε for ε small enough, which combined with (3.14) implies that

Iε(û
i
ε) < Eai,a +

δ1
2
, ∀ε ∈ (0, ε1).
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Decreasing δ1 if necessary, we know that

βiε < Eai,a + ρ0, ∀ε ∈ (0, ε1).

For any u ∈ ∂θiε, that is u ∈ Sa and |Gε(u)− ai| = ρ̄, we get that |Gε(u)| ̸∈ Q ρ̄
2
. Then by Lemma

3.7,

Iε(u) > Eai,a + δ1, for all u ∈ ∂θiε and ε ∈ (0, ε1)

which implies that

β̄iε = inf
u∈∂θiε

Iε(u) ≥ Eai,a + δ1,

Then, we have

βiε < β̄iε, for all ε ∈ (0.ε1).

□

4. Proof of Theorem 1.1

Proof. By Lemma 3.8, for each i ∈ {1, 2, . . . , k}, we can use the Ekeland’s variational principle to
find a sequence {uin} ⊂ Sa satisfying

Iε(u
i
n) → βiε and Iε(w) ≥ Iε(u

i
n)−

1

n
||w − uin||, ∀w ∈ θiε,

Recalling Lemma 3.8, βiε < β̄iε , and so uin ∈ θiε\∂θiε for n large enough.
Let w ∈ Tui

n
Sa, there exists δ > 0 such that the path γ : (−δ, δ) → Sa defined by

γ(t) = a
(uin + tw)

|uin + tw|2
,

and satisfies

γ(t) ∈ θiε\∂θiε ∀t ∈ (−δ, δ), γ(0) = uin and γ′(0) = w.

Then for any t ∈ (0, δ),

Iε(γ(t))− Iε(γ(0))

t
=
Iε(γ(t))− Iε(u

i
n)

t
≥ − 1

n
||γ(t)− uin

t
|| = − 1

n
||γ(t)− γ(0)

t
||,

Taking the limit of t → 0+, we get I ′ε(u
i
n)w ≥ − 1

n ||w||. Replacing w by −w, we obtain

|I ′ε(uin)w| ≤ 1
n ||w||. Then, we have

sup{|I ′ε(uin)(w)| : ||w|| ≤ δn} ≤ 1

n
,

Consequently,

Iε(u
i
n) → βiε as n→ +∞ and ||Iε|′Sa

(uin)|| → 0 as n→ +∞,

that is, {uin} is a (PS)βi
ε
for Iε restricts to Sa. Since β

i
ε < Eai,a + ρ0, it follows from Lemma 3.6,

there exists ui such that uin → ui in Hs(RN ). Then, we get

ui ∈ θiε, Iε(u
i
n) = βiε and Iε|′Sa

(uin) = 0.

Morever

Gε(u
i) ∈ Bρ̄(ai), Gε(u

j) ∈ Bρ̄(aj)

and

Bρ̄(ai) ∩Bρ̄(aj) = ∅ for i ̸= j,

which implies that ui ̸= uj for i ̸= j while 1 ≤ i, j ≤ k, we can get Iε has at least k nontrivial
critical points for any ε ∈ (0, ε1). Therefore, we obtain the theorem. □
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