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1. Introduction

A classical result by Emilio Almansi ([1]) provides a decomposition of poly-
harmonic functions in starshaped domains. This result states, in modern
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language: assume that u ∈ C2m(Ω), x0 ∈ Ω ⊂ R2 and Ω is an open set star-
shaped with respect to x0, then u fulfils ∆m

x u = 0 on Ω if and only if there
are harmonic functions ψj such that

u(x) = ψ0(x) + ‖x− x0‖2ψ1(x) + ...+ ‖x− x0‖2(m−1)ψm−1 on Ω .

In present paper we extend this classical result by relaxing both assumptions
on domain topology and the function regularity. The aim is considering open
sets with a crack: for simplicity we refer to a disk with center at x0 = 0 and a
straight crack with endpoint at the origin. This geometry introduces several
difficulties, since some singularity is allowed at the crack-tip which affects
the decomposition focussed on that point: here and in the sequel, the term
crack-tip denotes the endpoint of either a discontinuity line or a crease line.
In this setting we make explicit the operators related to an Almansi type de-
composition for polyharmonic functions. The decomposition that we obtain
turns out to be essentially unique, up to the fact that any linear function
w ∈ L2 of two variables can be represented in two ways: either as w itself
which is harmonic, or as w = ‖x‖2 (‖x‖−2 w), where ‖x‖−2 w is harmonic off
the origin.
In addition to the decomposition we look for a compatible power series ex-
pansion around the crack-tip. In this perspective partial results were stated
in [21] for biharmonic functions only.
Results of this kind are relevant in the study of Blake & Zisserman functional
([10, 14, 17, 18, 21, 23, 44]). Moreover the analysis of crack-tip is met in the
study of variational models for image segmentation, inpainting and denoising
([2, 6, 13, 15, 16, 21, 24, 25, 30, 31, 36, 37, 45]).
Here we show several results which may have a wider range of application
than image analysis, namely the analysis of singularities for free discontinuity
problems and crack-tips in planar elasticity ([2, 4, 10]), polyharmonic func-
tions in open sets ([11, 12, 34]). We mention [35, 38, 39, 42] as basic references
about power series expansions for variational solution of elliptic problems in
an open set with a concave corner, and [4, 5, 26, 27, 28, 33] for approaches
related to a crack tip in planar elasticity and fracture.
Our main results are stated in Theorems 3.1, 4.4, 4.9 and 5.5.
Theorem 3.1 provides the decomposition in the natural framework of bihar-
monic functions v ∈ L2(B% \Γ) with ∆v ∈ L2(B% \Γ) together with their
asymptotic expansion converging in L2(B% \Γ), where B% is the disk with
center 0 and radius 0 < % < +∞ in R2 and Γ is the closed negative real
axis. Theorem 4.4 provides the decomposition for biharmonic functions in
H2(B% \Γ) which are orthogonal to restrictions on B% \ Γ of functions in
H2(B%) and the explicit form of coefficients for a series expansion in terms
of non-integer powers converging in H2(B%\ Γ). Theorem 4.9 deals with the
Almansi decomposition of an H2(B% \ Γ) function which is biharmonic on
B%\ Γ. Theorem 5.5 and Corollary 5.7 show the Almansi decomposition and
a description of the basis for a power series expansion converging in L2 in
the case of polyharmonic functions on B%\Γ.
Our choice of basis functions (see (2.1)) for the expansion is motivated by
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the Euler conditions at the free discontinuity for local minimizers of Blake
& Zisserman functional ([18]) and natural boundary conditions for the free
Kirchhoff plate ([35]).
In all cases we write explicitly the operators Φ, Ψ (see (3.3),(3.4)) providing
the explicit decomposition for biharmonic functions, the operators Φj pro-
viding the explicit decomposition for polyharmonic functions (see (5.16)) and
the coefficients of the related power series expansions strongly converging in
respective frameworks: either (3.8)-(3.9), or (4.19)-(4.20), or (5.14)-(5.16).
Starting point of the analysis are Lemmas 2.5 and 5.4 which provide an L2

converging expansion for functions which are either harmonic or harmonic
times ‖x‖2j , j ∈ N, on a disk with crack-tip at the center of the disk; this
is achieved by suitably tuned systems of orthogonal basis, made of functions
with discontinuity or crease along Γ.
Notation: The whole paper deals with functions of two variables.
x= (x, y) denotes coordinates of the points x∈R2; Γ is the closed negative
real axis in R2 and B% = {x∈R2 : ‖x‖<%} for 0<%<+∞; whenever the
polar reference in 2-d is exploited, we refer to the polar coordinates (r, θ) cen-
tered at 0∈R2; L2

r(a, b) denote the weighted L2 space of measurable functions

v in (a, b) fulfilling
∫ b
a
|v(r)|2 r dr < +∞; the Laplacean operator is denoted

by ∆x := ∂2/∂2
x + ∂2/∂2

y ; for every open set A, Hk(A) denotes the Sobolev
space of the scalar functions with domain in A and their distributional partial
derivatives in L2(A) for all orders not exceeding k.
We set M :N=

∑
i,jMi,jNi,j for every pair of square matrices M, N .

U+W denotes the algebraic sum of generic vector spaces U ,W .
Referring to Section II.4 in [43], if U and W are Hilbert spaces then we denote
by U ⊕W and U ⊗W respectively the direct sum and the tensor product
of U and W ; spanU denotes the completion of finite linear combinations of
elements in the vector space U .
Definitions of the function spaces and the basis functions tuned for Almansi
type decomposition and expansion series are postponed in Section 2 and 5,
respectively for biharmonic and polyharmonic functions.

2. Preliminary results

Here we provide the proofs of statements concerning harmonic functions with
all details, since these issues were partly announced in [21] and [23] but the
second one is rather concise, while here we provide a self-contained analysis.

Definition 2.1. Assuming 0<%<+∞, we list some function spaces which are
relevant for the aimed decomposition:

A1
% := {v ∈ L2(B%) s.t. ∆xv = 0 in B%\ Γ } ,

A2
% := {z ∈ L2(B%) s.t. ∆ 2

xz = 0 in B%\ Γ } ,
Z% := r2A1

% = {w s.t. w = r2ϕ, ϕ ∈ L2(B%), ∆xϕ = 0 in B%\ Γ } ,
Z% := {w ∈ L2(B%) s.t. w = r2ϕ, ∆xϕ = 0 in B%\ Γ } .
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We label the complex functions vk, zk (and their real counterparts) which are
relevant in the expansion we are looking for (here r > 0, |ϑ| < π) by setting:

Rn(r) := {rn−3/2} , n = 1, . . . ,
ϕk(ϑ) := exp

(
i(k − 3/2 sign k)ϑ

)
, k ∈ Z \ {0}

and define
vk(r, ϑ) := r|k|−3/2ϕk(ϑ) =

= r|k|−3/2 exp
(
i(k − 3/2 sign k)ϑ

)
, k ∈ Z \ {0},

zk(r, ϑ) := r2vk = r|k|+1/2ϕk(ϑ) =
= r|k|+1/2 exp

(
i(k − 3/2 sign k)ϑ

)
, k ∈ Z \ {0},

f1
k (r, ϑ) := r(k+3/2) cos((k + 3/2)ϑ) , k = −2,−1, 0, 1, . . .

f2
k (r, ϑ) := r(k+3/2) sin((k + 3/2)ϑ) , k = −2,−1, 0, 1, . . .

f3
k (r, ϑ) := r(k+3/2) cos((k − 1/2)ϑ) , k = 0, 1, 2, . . .

f4
k (r, ϑ) := r(k+3/2) sin((k − 1/2)ϑ) , k = 0, 1, 2, . . .

(2.1)

Figure 1. Graphs of f1
0 , f

2
0 , f

3
0 , f

4
0 , exhibiting respectively

crease, jump, crease, jump.

Figure 2. Graphs of f1
1 , f

2
1 , f

3
1 , f

4
1 , exhibiting respectively

crease, jump, crease, jump.

Remark 2.2. A1
%, A

2
% and Z% are closed subspaces of L2(B%).

Z% is the completion of Z% in L2(B%), moreover

f1
k = Re vk+3 = (vk+3 + v−k−3)/2, k = −2,−1, 0, 1, . . .

f2
k = Im vk+3 = (vk+3 − v−k−3)/2i, k = −2,−1, 0, 1, . . .

f3
k = Re zk = (zk+1 + z−k−1)/2, k = 1, 2, . . .

f4
k = Im zk = (zk+1 − z−k−1)/2i, k = 1, 2, . . . .
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We want to describe the harmonic functions with separate variables without
any a priori assumption concerning the kind of functional dependance on r
because the aim is to study solutions of PDEs in L2(B%) and their asymp-
totic expansions without prescribing boundary values; nevertheless, at higher
regularity level, the natural boundary conditions on the crack play a relevant
role, according to choice of angular dependance: see Remarks 3.3, 4.12.
We refer both to cartesian coordinates x, y and polar coordinates r, ϑ, and
work in the space L2(B%) when referring to x, y and L2(−π, π) ⊗ L2

r(0, %)
when referring to r, ϑ, by letting free all boundary conditions: we will fix ar-
bitrarily the dependance on angle referring to the system {ϕk}|k|6=0 in (2.1).

This arbitrary choice is possible in the L2 framework, where boundary traces
are meaningless; but when higher regularity is asked for, e.g. H1 or H2, only
some kinds of boundary conditions on Γ are allowed by this choice. Actually
the basis we choose in (2.1) is motivated by the boundary conditions for the
linear plate ([35]) and also fulfils several additional Euler conditions at the
free discontinuity for local minimizers of Blake & Zisserman functional ([18],
Theorems 3.4, 4.3, 4.4).

First, we recall an elementary Lemma about harmonic functions with sepa-
rated variables.

Lemma 2.3. By assuming that

u ∈ L2(B%(0)) , ∆xu = 0 in B%(0) , 0 < % < +∞
and there exist R ∈ L2

r(0, 1) and k ∈ Z \ {0} such that, referring to (2.1), u
has the following representation with separate variables in polar coordinates

u(x, y) = ϕk(ϑ)R(r) ∈ L2(−π, π)⊗ L2
r(0, %) a.e. (x, y) ∈ B%(0) ,

one obtains:

1. if |k| > 2 then u = R|k| ϕk(ϑ) = vk ;

2. if k = 2 then u is a linear combination of
r1/2ϕ2 = R2ϕ2 and r−1/2ϕ2 = R1ϕ2 = R1ϕ−1 ;

3. if k = −2 then u is a linear combination of
r1/2ϕ−2 = R2ϕ−2 and r−1/2ϕ−2 = R1ϕ−2 = R1ϕ1 ;

4. if k = 1 then u is a linear combination of
r−1/2ϕ1 = R1ϕ1 and r1/2ϕ1 = R2ϕ1 = R2ϕ−2 ;

5. if k = −1 then u is a linear combination of
r−1/2ϕ−1 = R1ϕ−1 and r1/2ϕ−1 = R2ϕ−1 = R2ϕ2 .

Proof. By separation of variables in the Laplace equation, if ∆x(ϕkR) = 0
on B%(0), then R must be a solution in L2

r(0, %) of an Euler-type O.D.E.

r2R′′ + rR′ −
(
k − 3/2 sign(k)

)2
R = 0

say, due to |k| > 0 and the squared power,

r2R′′ + rR′ −
(
|k| − 3/2

)2
R = 0 .
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Then

• k ∈ Z \ {0,±1,±2} entails
either R(r) = R|k|(r) = r|k|−3/2 , or R(r) = R3−|k|(r) = r3/2−|k|,

actually the second choice R(r) = r3/2−|k| must be always discarded
since it never belongs to L2

r.
• k = 2 entails

either R(r) = R2(r) = r1/2 , or R(r) = R1(r) = r−1/2 and in that
case also the second choice belongs to L2

r ;
• k = −2 entails

either R(r) = R2(r) = r1/2 , or R(r) = R1(r) = r−1/2 and in that
case also the second choice belongs to L2

r.
• k = 1 entails

either R(r) = R1(r) = r−1/2 , or R(r) = R2(r) = r1/2 ;
• k = −1 entails

either R(r) = R1(r) = r−1/2 , or R(r) = R2(r) = r1/2 . �

Remark 2.4. Under the assumption of Lemma 2.3 all choices of the kind
R|k|ϕk are allowed as k varies in Z\{0} and no other function is admissible.
Precisely, only 4 double appearances of admissible functions are present in
the list: the ones mentioned in the items 2, 3, 4, 5 of the list above.

Lemma 2.5. Referring to Definition 2.1, for every %>0 : the system{
vk(r, ϑ), k ∈ Z \ {0}

}
(2.2)

is orthogonal in L2(B%) and dense in A1
% with respect to L2(B%) norm;

the system {
zk(r, ϑ), k ∈ Z \ {0}

}
(2.3)

is orthogonal inL2(B%) and dense in Z% and Z% with respect to L2(B%) norm;
the system {

f1
k , f

2
k

}
k=−2,−1,0,1,2,...

(2.4)

is orthogonal in L2(B%) and dense in A1
% with respect to L2(B%) norm;

the system {
f3
k , f

4
k

}
k=0,1,2,...

(2.5)

is orthogonal inL2(B%) and dense in Z% and Z% with respect to L2(B%) norm.
Four systems above lead to uniqueness of related expansion series in L2(B%).

Proof. All the statements about real systems follow as soon as the ones about
complex systems are proved, since (2.4),(2.5) correspond to the real form of
(2.2),(2.3), respectively f1

k , f
2
k for k = −2,−1, 0, 1, . . . and f3

k , f
4
k for k =

0, 1, 2, . . . (see Remark 2.2).

All the claims about orthogonality stated in the sequel follow by integration
with respect to θ since the variables are separated.
We are left only to show in every case that the related system is dense.

First we consider the statements concerning A1
%.

It is well known that the system {ei(k−1/2)θ}k∈Z is dense in L2(−π, π).
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For our purposes we have rearranged and relabelled previous dense system
as in (2.1):

{
ϕk(ϑ) := exp

(
i(k − 3/2 sign k)ϑ

) }
k∈Z\{0} .

Notice that ϕ1 = ϕ−2 and ϕ−1 = ϕ2, while no other duplication occurs.

Legendre polynomials {Pn}n are an orthogonal and dense system in L2(−1, 1) :

Pn(x) =
1

2n n!

dn

dxn

(
(x2 − 1)n

)
, n = 0, 1, 2, . . . . (2.6)

By the change of coordinates x = 2r − 1, d/dx = 2 d/dr, we get the or-

thonormnal system of the shifted Legendre polynomials P̃n(r), explicitely

P̃n(r) =
√

2n+ 1 Pn(2r − 1), ‖P̃n‖L2(0,1) = 1 , n = 0, 1, 2, . . . . (2.7)

Figure 3. Graphs of Legendre polynomials Pn in L2(−1, 1)
(left) and graphs of rescaled and normalized shifted Legendre

polynomials P̃n in L2(0, 1) (right), n = 0, 1, 2, 3, 4, 5, 6.

Hence the system

{Pn(r) }n=0,1,...
def
= { P̃n(r) r−1/2 }n=0,1,... (2.8)

is orthonormal and dense in

L2
r(0, 1) :=

{
R(r);

∫ 1

0

|R(r)|2 r dr < +∞
}
,

since (Pn,Pm)L2
r(0,1) = (P̃n, P̃m)L2(0,1) for every n, m.

Moreover, due to Stone-Weierstrass Theorem,

{Rn(r)}n=1,2,... = {rn−3/2}n=1,2,... is dense in L2
r(0, 1).
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We emphasize that {Pn(r)}n=0,1,... is an orthonormal basis in L2
r(0, 1), while

{Rn(r)}n∈N is a neither orthogonal nor normalized basis. Therefore we set

ψk(ϑ) := ϕk(ϑ) / ‖ϕk(ϑ)‖L2(−π,π) = ϕk(ϑ) /
√

2π , k ∈ Z \ {0}
so that

‖Pn(r)ψk(ϑ) ‖L2(B1(0)) = ‖Pn(r)‖L2
r(0,1) ‖ψk(ϑ) ‖L2(−π,π) = 1 . (2.9)

All the subsequent statements about orthogonality follow either by integra-
tion with respect to θ when ϕk and ϕh are present with k 6= h, or integration
with respect to r when Pn and Pm are present with n 6= m, since the vari-
ables are always separated.
Linear combinations of characteristic functions of sets

{(r, θ) : 0 ≤ r1 ≤ r ≤ r2 ≤ 1, −π < θ1 ≤ θ ≤ θ2 < π}
are dense in

L2(B1) ={
v(r, θ) : 0 < r < 1, |ϑ| < π,

∫
B1

|v|2 dxdy =

∫ π

−π

∫ 1

0

|v(r, θ)|2 r dr dθ < +∞
}

;

hence the functions with separated variables {Pn(r)ψk(ϑ)}n=0,1,...,|k|6=0 are

dense in L2(B1). For any fixed k ∈ Z\{0}, we define

Wk := span{Pn(r)ψk(ϑ); n = 0, 1, . . .} = span{Rn(r)ϕk(ϑ); n = 1, 2, . . .} ,
where span denotes the completion in L2(B1) of the set of linear combi-
nations. Then, by taking into account that ϕ1 = ϕ−2 and ϕ−1 = ϕ2, we
summarize

Wk ⊥Wh in L2(B1), k 6= h, |k|>2, |h|>2 ;

Wj ⊥Wh in L2(B1), j = ±1,±2, h>2 ;

L2(B1) =
( ⊕
|k|>2

Wk

)
⊕
{
W1 +W2 +W−1 +W−2

}
where ⊕ denotes a direct and orthogonal sum. Thus every function v∈L2(B1)
can be represented by anL2(B1) converging series

v(r, ϑ) =
∑

k∈Z\{0}

+∞∑
n=1

cn,k Pn(r)ψk(ϑ) . (2.10)

Precisely, due to Lemma 2.3, since Wk is a space of functions with separate
variables, once k is fixed:

• any finite (or possibly infinite but L2(B1) convergent) linear combina-
tion of functions of the kind Rn(r)ϕk(ϑ) with n 6= |k| cannot belong to
the closed subspace Wk ∩A1

1 for |k| > 2, since it has separate variables;
• any finite (or possibly infinite but L2(B1) convergent) linear combina-

tion of functions of the kind Rn(r)ϕ1(ϑ) with n 6= 1, 2 cannot belong to
the closed subspace Wk∩A1

1 for k = 1, 2, since it has separate variables;
• any finite (or possibly infinite but L2

r convergent) linear combination of
functions of the kind Rn(r)ϕ−1(ϑ) with n 6= 1, 2 cannot belong to the
closed subspace Wk ∩A1

1 for k = −1,−2, since it has separate variables.
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So we get

A1
1 ∩W1 = span { R1ϕ1, R2ϕ1 } ,

A1
1 ∩W−1 = span { R1ϕ−1, R2ϕ−1} ,

A1
1 ∩W2 = span { R2ϕ2, R1ϕ2 } ,

A1
1 ∩W−2 = span { R2ϕ−2, R1ϕ−2 } ,

A1
1 ∩Wk = span { Rkϕk } ∀k ∈ Z : k > 2 ,

A1
1 ∩Wk = span

{
R|k|ϕk

}
∀k ∈ Z : k < −2 .

Hence, by ϕ1 = ϕ−2, ϕ2 = ϕ−1 we get
R2ϕ1 = R2ϕ−2, R2ϕ−1 = R2ϕ2, R1ϕ2 = R1ϕ−1, R1ϕ−2 = R1ϕ1, and(⊕

|k|>2Wk ∩A1
1

)
⊕
{(
W1 +W2 +W−1 +W−2

)
∩A1

1

}
=

= span {Rn ϕn, n = 1, 2, . . . ; Rn ϕ−n, n = 1, 2, . . . }
(2.11)

where
⊕

denotes a direct and L2 orthogonal sum of Hilbert spaces.
Summarizing:

dimWk = 2 (k = ±1, ±2) , dimWk = 1 (|k| > 2) .

L2(B1) = span {Pn(r)ψk(ϑ)}n=1,2,...
k∈Z\{0}

= span {Rn(r)ψk(ϑ)}n=1,2,...
k∈Z\{0}

.

Thus by taking into account that the set A1
1 is a Hilbert space when endowed

with the L2(B1) norm, we obtain that the smaller system of unitary functions{
wk =

√
2|k − 1|+ 1

2π
vk

}
k∈Z\{0}

is not only orthonormal in L2(B1) (due to orthogonality of spaces Wk) but
also dense in A1

1 with respect to L2(B1), as we prove in the sequel.

We denote by P the L2(B1)-orthogonal projection on the closed linear sub-
space A1

1 of the L2 and harmonic functions on B1\Γ.
Since Wk∩A1

1 is a closed subspace of A1
1, the restriction of P to Wk∩A1

1 is
the identity operator:

P (Wk ∩A1
1) = Wk ∩A1

1 ∀ k ∈ Z\{0}, (2.12)

and, referring to the representation (2.10), v ∈ Wk ∩ A1
1 implies P(v) =

c|k|,kR|k|ψk; therefore the fact that the system (2.2) is dense in A1
1 easily

follows from (2.11) and Lemma 2.3.

By dilation we recover also the general case of (2.12):

the restriction of P% to Wk ∩A1
% is the identity operator, (2.13)

where P% denotes the L2
r(B%)–orthogonal projection on the closed linear sub-

space A1
% of harmonic functions in B% \ Γ. Indeed, when 0 < % < +∞ ,

system {Rn(r)ϕk(ϑ) ; k ∈ Z\{0}, n = 0, 1, . . .} is dense in L2(B%) : (2.14)

L2(B%) =
( ⊕
|k|>2

Wk

)
⊕
{
W1 +W2 +W−1 +W−2

}
,
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|k|>2Wk ∩A1

%

)
⊕
{(
W1 +W2 +W−1 +W−2

)
∩A1

%

}
=

= span {Rn ϕn, n = 1, 2, . . . ; Rn ϕ−n, n = 1, 2, . . . } ,
where Wk is defined as above, up substituting span in L2(B%) in place of
L2(B1).
The set A1

% is a Hilbert space endowed with the L2(B%) norm, the dilated set

wk (orthonormal in L2(B%), dense in A1
% w.r.t. L2(B%)) reads as follows:

wk(r) =

√
2|k − 1|+ 1

2π%
vk(r/%, ϑ) =

=

√
2|k − 1|+ 1

2π%

(
r

%

)|k|−3/2

exp(i(k − 3/2 sign k)ϑ)


k∈Z\{0}

. (2.15)

Eventually, the statements about Z%: by (2.1) and Definition 2.1, zk = r2vk
belongs to Z% for any k and every f ∈ Z% fulfils f = r2g for suitable g ∈ A1

%.

By the density of (2.2) in A1
% the claims about density of (2.3) in Z% (hence

in Z%) easily follow. As usual, orthogonality follows by integration in ϑ. �

3. Decomposition and expansion of a biharmonic function near
the tip of a flat crack

We introduce the space A∆% as the natural framework to achieve an Almansi
decomposition of biharmonic functions under weak regularity assumptions:

A∆% :=
{
u ∈ L2(B%\Γ), ∆u ∈ L2(B%\Γ), ∆ 2

x u = 0 on B%\Γ
}

=

= A2
% ∩ { v : ∆v ∈ L2(B% \Γ) } .

(3.1)

Theorem 3.1. Almansi decomposition in A∆% and expansion near crack-tip

Assume 0<%<+∞. Then, u ∈ A∆% if and only if

∃ ϕ, ψ∈A1
% : u(x) = ψ(x) + ‖x‖2ϕ(x), , ∀x∈B%\ Γ. (3.2)

Decomposition (3.2) is unique up to possible linear terms in ψ.
The decomposition in A∆% is made explicit by the operators Φ and Ψ which,
in polar coordinates, read as follows:

Φ :A∆% → A1
%, Φ[u] =

1

4r

∫ r

0

∆xu(t, ϑ) dt , (3.3)

Ψ :A∆% → A1
%, Ψ[u] = u− r2 Φ[u], (3.4)

u(r, ϑ) = Ψ[u] + r2 Φ[u] , (3.5)

The (non-orthogonal) system formed by (2.2) and (2.3) together is dense in
A∆% with respect to L2(B%).
The (non-orthogonal) system formed by (2.4) and (2.5) together is dense in
A∆% with respect to L2(B%).
Moreover we have the relationships

A∆% = A1
% + (Z% ∩A∆% ) = A1

% + Z% , (3.6)
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A1
% ∩ Z% = { linear functions }, (3.7)

all terms in the neither orthogonal nor direct sum (3.6) are Hilbert spaces,
except Z% which is pre-Hilbert.
Moreover, we obtain these expansions strongly converging in L2

Ψ[u] =
∑

k∈Z\{0}

ck vk , ∀u ∈ A∆% , where

ck :=

(
u− r2Φ[u], vk

)
L2(B%\Γ)(

‖vk‖L2(B%\Γ)

)2 =

(
Ψ[u], vk

)
L2(B%\Γ)(

‖vk‖L2(B%\Γ)

)2 ,

(3.8)



Φ[u] =
∑

k∈Z\{0}

ek vk , ∀u ∈ A∆% , where

ek :=

(
(u−Ψ[u]) , zk

)
L2(B%\Γ)(

‖zk‖L2(B%\Γ)

)2 =

(
r2 Φ[u] , zk

)
L2(B%\Γ)(

‖zk‖L2(B%\Γ)

)2 .

(3.9)

Proof. We use these identities, for smooth scalar p, q or vector-valued p,q:

∆x(pq) = p∆xq + q ∆x p + 2∇x p ·∇x q ∀p, q ∈ C2(B%\Γ), (3.10)

∆x(p·q) = p·∆xq+ q·∆xp+ 2 (∇xp) : (∇xq) ∀p,q∈C2(B%\Γ,R2). (3.11)

∆x

(
‖x‖2ϕ

)
= ‖x‖2∆xϕ+ 4ϕ+ 4x · ∇xϕ = 4ϕ + 4 r

∂ϕ

∂r
∀ϕ∈C2(B%\Γ) ,

(3.12)

∆ 2
x

(
‖x‖2ϕ

)
= ‖x‖2∆ 2

xϕ+ 16∆xϕ+ 8x·(∇x∆xϕ)

∀ϕ∈C4(B%\Γ) .
(3.13)

“If part”: (3.2) entails ϕ,ψ, u ∈ C∞(B%\Γ) and u ∈ A∆% . If ∃ ϕ,ψ ∈A1
% :

u(x) = ψ(x) + ‖x‖2ϕ(x) , ∆x ϕ = ∆x ψ ≡ 0 on B%\Γ, we can set p = ‖x‖2,
q = ϕ, % = ‖x‖ : we get ∇x p = 2x , ∆xp = 4 , thus by (3.13) ∆xϕ = 0 entails
∆2

x

(
‖x‖2ϕ

)
= 0, hence ∆2

xu = 0. Eventually ϕ ∈ A1
% entails ∆x(‖x‖2ϕ) =

4ϕ+ 4rϕr ∈ L2(B%\Γ) by density of the orthonormal system vk in A1
%. Thus

(3.2) entails u ∈ A∆% .

“Only if part”: u ∈ A∆% entails (3.2).

In fact, by setting σ := 1
4 ∆x u, if we find a solution ϕ of

ϕ ∈ A1
% : r

∂ϕ

∂r
+ ϕ = σ on B%\Γ , (3.14)

then the function ψ = u − r2ϕ is harmonic (thanks to (3.12)) and ϕ, ψ
together will match the claim thank to (3.13).
Actually, it is enough showing that an explicit solution of (3.14) in polar
coordinates is given by

ϕ(r, ϑ) = r−1

∫ r

0

σ(t, ϑ) dt 0 < r < % , |ϑ|<π . (3.15)
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By Lemma 2.5 and referring to the spaces definition (2.1), we know that
the systems (2.2) and (2.4) are dense in L2(B%\Γ) for every %>0, moreover
u ∈ A∆% entails that σ belongs to A1

%; by Lemma 2.5 and referring to the basis
wk defined in (2.15), we get this expansion with uniquely defined coefficients
and strongly converging in L2(B%\Γ):

σ(r, ϑ) =
∑

k∈Z\{0}

ck

√
2|k − 1|+ 1

2π%

(
r

%

)|k|−3/2

exp
(
i(k−3/2 sign k)ϑ

)
. (3.16)

Hence, by the orthogonality in L2(B%\Γ) of the system
{
vk
}
k∈Z\{0} and by

Parseval identity (taking into account of the 2-d jacobian r):

1

%2

∑
k∈Z\{0}

2|k − 1|+ 1

2|k| − 1

(
r

%

)2|k|−1

|ck|2 < +∞ , ∀r ≤ % .

Moreover, for every u ∈ A∆% , 0 < r < % and |ϑ| < π, the operator image
Φ[u](r, ϑ) can be evaluated termwise via (3.16), due to Lebesgue dominated
convergence Theorem:

ϕ(r, ϑ) = Φ[u](r, ϑ) =
1

r

∫ r

0

σ(t, ϑ) dt =

=
∑

k∈Z\{0}

ck
|k| − 1/2

√
2|k − 1|+ 1

2π%

(
r

%

)|k|−3/2

exp
(
i(k − 3/2 sign k)ϑ

)
.

Hence, σ = 1
4∆xu is a real analytic function of two variables in B%\Γ which

belongs to L2(B%) and to L1(Σϑ,s) for every radius Σϑ,s of length s<% from
the origin with frozen ϑ, |ϑ|<π.
Thus the right-hand side in (3.15) is well defined function for every r < % and
|ϑ| < π and both Φ[u]=r−1

∫ r
0
σ and Ψ[u]=u− r2Φ[u] belong to L2(B%\Γ).

Therefore, if we prove ∆xΦ[u] = 0 on B%\Γ, then, by (3.14) we deduce that
both operators Φ, Ψ have range in A1

%.
By (3.16), we get

r σr ∈ L1(Σϑ,s) , r ( r σr )r ∈ L
1(Σϑ,s) ,

while, by definition of σ and u ∈ A∆% , ∆xσ = 1
4∆

2
xu = 0. Thus

σϑϑ = − r ( r σr )r (3.17)

say σϑϑ ∈ L1(Σϑ,s).
Summarizing, (3.15) is well defined and r → r ϕ(r, ϑ) is absolutely continu-
ous on any radius of length s < % starting at the origin.

First we prove that r ϕr + ϕ = σ on B%\Γ.
By (3.15) and integrability of σ on Σϑ,s we get, ∀ϑ ∈ (−π, π) and ∀r ∈ [0, s]:

(∂/∂r)

∫ r

0

σ dt = σ ,

∂ϕ

∂r
= r−1 σ(r, θ) − r−2

∫ r

0

σ(t, θ) dt ,
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hence

r
∂ϕ

∂r
+ ϕ = σ(r, θ) − r−1

∫ r

0

σ(t, θ) dt + r−1

∫ r

0

σ(t, θ) dt = σ .

Second, we prove ∆xϕ = 0: we compute, for any r ≤ s:

∆x ϕ(r, ϑ) =
1

r3

(
− r σ(r, ϑ) + r2 σr(r, ϑ) +

∫ r

0

(
σ(t, ϑ) + σϑϑ(t, ϑ)

)
dt

)
.

The map

r →
(
− r σ + r2 σr +

∫ r

0

(σ + σϑϑ) dt

)
= r3∆xϕ (3.18)

is absolutely continuous on (0, s) for any ϑ ∈ (−π, π) and any s < % and
vanishes at r = 0 since σ and σϑϑ belong to L1(Σϑ,s) . By taking into account
(3.17) and applying ∂/∂r to (3.18):

−σ − r σr + 2 r σr + r2σrr + σ + σϑϑ = r (r σr)r + σϑϑ = 0 ∀r ≤ s .

Summarizing ϕ ∈ A1
% and r

∂ϕ

∂r
+ϕ = σ on Bs\Γ, ∀s<%, say ϕ solves (3.14).

About uniqueness of Almansi-type decomposition it is enough showing that,
if σ ≡ 0 then the solution of linear problem (3.14) is a linear combination of
cosϑ and sinϑ. Indeed the linear ODE in (3.14) entails that r ϕ is absolutely
continuous on Σϑ,s; moreover σ ≡ 0 imply r ϕ is constant on every radius
Σϑ,s (the constant may depend on ϑ), hence it entails ϕ(r, ϑ) = C(ϑ)/r; then
by ∆xϕ = 0, C(ϑ) must be a linear combination of cosϑ and sinϑ in ϕ, which
can be replaced by C(ϑ) r = r2ϕ in ψ.

Now, we prove the statements concerning decomposition (3.6) of A∆% .

By direct computation every function zk=r2vk is biharmonic in B%\Γ, more-
over zk∈A2

% for any k. Due to the equivalence proved above, A∆% is expressed

by a (non orthogonal) algebraic sum: A∆% = A1
% + Z%. More precisely, since

A1
% ⊂ A∆% , by difference A∆% = A1

% + (Z% ∩ A∆% ). Thus (3.6) is proved and by

Lemma 2.5 we achieve the density in A∆% of the whole system {vk, zk}k∈Z\{0}
defined by (2.2) and (2.3).

In order to show formula (3.7) about the intersection A1
%∩Z%, which prevents

the algebraic sum of Hilbert spaces in (3.6) to be a direct sum, we notice that
u ∈ A1

% ∩ Z% if and only if

u ∈ L2(B%\Γ), ∆u = 0 on B%\Γ, u = r2ϕ with ∆ϕ = 0 on B%\Γ ,
thus

0 = ∆u = ∆(r2ϕ) = 2ϕ+ 2x · ∇xϕ = 2 (ϕ+ r
∂ϕ

∂r
)

the general solution of ϕ = − r ∂ϕ
∂r

is ϕ = C(ϑ) r−1 and since ϕ is harmonic

we get ϕ =
(
A cos(ϑ) +B sin(ϑ)

)
/r and u = r2ϕ = Ax+By.

By exploiting the density of system (2.2) in A1
% and of the system (2.3) in Z%

(Lemma 2.5), we obtain the expansions (3.8) and (3.9), strongly convergent
in L2. The last equality in (3.9) follows by r2

∑
ekvk =

∑
ckzk. �
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Remark 3.2. The intersection at middle term of equalities (3.6) is mandatory,
since A1

% ⊂ A2
% and Z%\A∆% 6= ∅, for instance r1/2 exp(−3iϑ/2) ∈ Z%\A∆% .

Remark 3.3. We emphasize that functions in A1
% and Z% “are not required

to solve a prescribed boundary value problem”, say they are not required to
fulfil any kind of boundary conditions on Γ. Hence the convergence of series
associated to the basis (2.2), or (2.3), may be very slow even in L2; obviously
they fit better with some kind of boundary conditions: in such a case the
convergence is faster and possibly stronger, as is the case of the space V ,
introduced and studied in the next section.
The choice of the basis (2.2) and (2.3) correspond to fix a priori the basis in
the angular variable in such a way that the associated functions depending on
the radial coordinate are in L2

r(0, 1) (where the weight r is the 2-d jacobian)
and have an homogeneity property tightly dependent on the choice of the
angular basis whenever the condition of vanishing Laplacean is imposed.

Remark 3.4. The closed space A∆% is smaller than A2
% and is wider than

A1
% ∩H2(B% \Γ) and A1

% ∩H1(B% \Γ). Indeed

r1/2 exp(−3iϑ/2) ∈
(
A2
% \A∆%

)
∩
(
A2
% \A1

%

)
(3.19)

entails

A∆% ⊂6=
A2
% , (3.20)

whereas v±1 =r−1/2 exp(∓iϑ/2)∈A∆% \H1(B%\Γ) (by |∇v±1|∼a r−3/2) and

v±2 =r+1/2exp(±iϑ/2)∈
(
A∆% ∩H1(B%\Γ)

)
\H2(B%\Γ)

(by |∇v±2|∼ar−1/2, |D2v±2|∼r−3/2), together with v±1, v±2∈A1
%⊂A2

% entail

A2
% ∩H2(B%\Γ) ⊂

6=
A2
% ∩H1(B%\Γ) ⊂

6=
A∆% . (3.21)

Thus Theorem 3.1 shows that A∆% is the widest framework where the decom-
position (3.2) of a biharmonic function is achieved with summands having
both terms ϕ and ψ in L2(B%\Γ). On the other hand, the four biharmonic func-

tions r1/2 exp(±3iϑ/2) and r−1/2 exp(±5iϑ/2), though outside this frame-
work, still have an Almansi type decomposition; actually they are already
decomposed: they reduce to a single term belonging to Z%\Z% ⊂ A2

%\A∆% .
In general, if one drops the request of summands having both terms ϕ and
ψ in L2(B%\Γ) in the decomposition, still a decomposition can be achieved
as stated in the subsequent Corollary, extending the results in Theorem 3.1
about framework A∆% to the wider A2

% framework. To this aim, we add another
space to the list in Definition 2.1:

F% := {w ∈ D′(B%\Γ) s.t. r2w ∈ L2(B%\Γ), ∆xw = 0 on B%\ Γ } , (3.22)

so that

Z% = r2 F% , (3.23)

and
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ηk(ϑ) := exp
(
i(k − 7/2 sign k)ϑ

)
, k ∈ Z \ {0} (3.24)

wk(r, ϑ) := r|k|−7/2ηk(ϑ) =

= r|k|−7/2 exp
(
i(k − 7/2 sign k)ϑ

)
, k ∈ Z \ {0}, (3.25)

Notice that

{wk, k∈Z\{0} } = { vk, k∈Z\{0} } ∪ { r−3/2e±i3/2ϑ} ∪ { r−5/2e±i5/2ϑ},
(3.26)

though
A2
% + { r−3/2e±i3/2ϑ} + { r−5/2e±i5/2ϑ} ⊂

6=
F% ,

due to differently weighted L2 spaces.

Corollary 3.5. If 0<%<+∞, then the system (3.25) is orthogonal and dense
in F% with respect to L2

r4(B%\Γ) norm, moreover w ∈ A2
% if and only if

∃ ψ∈A1
%, ϕ ∈ Z% : w(x) = ψ(x) + ‖x‖2ϕ(x), , ∀x∈B%\ Γ , (3.27)

say,
A2
% = A1

% + Z% . (3.28)

Given w∈A2
% the representation (3.27) is achieved by setting ϕ = Φ̃[w] and

ψ = Ψ̃[w], with

Φ̃ : A2
% → F% , Ψ̃ : A2

% → A1
% , where

for ∆w =
∑
k 6=0

akwk = v in F% (series converging in L2
r4(B%\Γ))

Φ̃[w] :=
∑
k 6=0

ak
4 (|k| − 7/2)

wk and Ψ̃[w] := w − r2Φ̃[w] .

(3.29)

Proof. Notice that F% ⊂ L2
r4(B% \ Γ) = {w :

∫
B%\Γ |w|

2 r4 dx}
The proof of Lemma 2.5 can be easily adapted to the present case in order
to show

{Pn(r) }n=0,1,...
def
= { P̃n(r) r−5/2 }n=0,1,...

is orthonormal and dense in

L2
r5(0, 1) :=

{
R(r);

∫ 1

0

|R(r)|2 r5 dr < +∞
}
,

since (Pn,Pm)L2
r5

(0,1) = (P̃n, P̃m)L2(0,1) for every n, m; as usual orthogonal-

ity properties are plain consequences of separate variables and dependance
on ϑ; moreover, due to Stone-Weierstrass Theorem,

{Rn(r)}n=1,2,... = {rn−5/2}n=1,2,... is dense in L2
r5(0, 1) ;

{Pn(r)}n=0,1,... is an orthonormal basis in L2
r(0, 1), while {Rn(r)}n∈N is

a neither orthogonal nor normalized basis. Summarizing, the functions with
separated variables {Pn(r)ηk(ϑ)}n=0,1,...,|k|6=0 are dense in F%, say the system

(3.25) is orthogonal and dense in F% with respect to L2
r4(B%\Γ) norm.
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Moreover the proof of Theorem 3.1 can be repeated in the present case with no
change, up to one point: here the whole Laplacean of w is not integrable near
the origin along the radii and this makes meaningless an integral representa-
tion of Φ[w] of the kind (3.3). However w∈A2

% entails ∆w∈F%; thus ∆w has

an expansion in terms of wk and converging in L2
r4 ; moreover ϕ can be equiva-

lently achieved by termwise computation along the expansion of ∆w referrred
to the dense system wk and replacing each term 1

4r

∫ r
0
akwk(r, t) dt (in the

formal expansion of 1
4r

∫ r
0
∆xw dt) respectively with ak wk(r,ϑ)

4 r (|k|−7/2) , 0 < r < %.

Thus the series
∑
k 6=0 akwk in (3.29) is converging in L2

r4(B% \Γ) to ∆w,

whence r2
∑
k 6=0

ak wk(r,ϑ)
4 r (|k|−7/2) is converging in L2(B%) to r2ϕ.

Eventually, both Φ̃ and Ψ̃ map A2
% to harmonic functions in F%, r

2Φ̃ maps

A2
% to L2(B%\Γ): summarizing Ψ̃ maps A2

% to F% ∩ L2(B%\Γ) = A1
%. �

Remark 3.6. If w ∈ A2
% and ∆w =

∑
k 6=0 akwk in F% and in addition with

convergence of
∑
|k|>2 akwk to some v in L2(B%) too, then

Φ̃[w] = Φ[v]− 2
20r
−5/2(a1e

i 52ϑ+a−1e
−i 52ϑ)− 2

12r
−3/2(a2e

i 32ϑ+a−2e
−i 32ϑ) .

4. Decomposition and expansion of a biharmonic function near
the tip of a flat crack in the H2 framework

In this Section we verify that all nonaffine functions in A1
% ∩H2(B%\Γ) are

orthogonal in H2(B%\Γ) to nonaffine functions belonging to Z% ∩H2(B%\Γ);
moreover any function in A2

% ∩H2(B%\Γ) can be expanded in power series in
terms of these four systems

{ vk }k∈Z\{0}, { zk }k∈Z\{0} (4.1)

{ r|k| exp(i kϑ) }k∈Z, { r|k|+2 exp(i kϑ) }k∈Z, (4.2)

altogether, to take into account of functions which are smooth across Γ;
Therefore, we exploit the splitting A∆% = A1

% +Z%, which allows us to get rid
of redundancy related to functions without jump or crease on Γ and write
expansion series based on nothing more than the system (4.1), as it is clarified
by Lemma 4.3, which refers to the strong H2(B%\Γ) topology in the subspace
V of functions orthogonal to ones which are smooth across Γ (see Definition
4.2). Eventually, Theorems 4.4 and 4.9 describe the restriction of operators Φ
and Ψ for decomposition, providing decomposition summands in the whole
H2(B%\Γ) together with explicit power series expansions converging strongly
in this space.

Definition 4.1. We introduce the sesquilinear form

(ϕ,ψ)2,% := aB%\Γ(ϕ,ψ) =

∫
B%\Γ

D2ϕ : D2ψ dx dy .

which induces a semi-norm in H2(B% \ Γ):

|v|2,% = (v, v)
1/2
2,% .
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Set

‖v‖2H2(B%\Γ) = ‖v‖2L2(B%) + ‖D2v‖2L2(B%\Γ) = ‖v‖2L2(B%) + (v, v)2,% (4.3)

Definition 4.2. Let V be the space of biharmonic functions that are orthogonal
to the smooth functions in the whole B% with respect to the scalar product
in H2(B% \ Γ) associated to the semi-norm | · |2,% and orthogonal to affine
functions with respect to the L2(B%) scalar product; precisely, referring to
Definition 2.1, we set:

V := A2
%

⋂ {
H2(B%)

}⊥H2(B%\Γ)⋂ {
affine functions

}⊥L2(B%)
(4.4)

where{
H2(B%)

}⊥H2(B%\Γ)
=
{
v ∈ H2(B%\Γ) : (v, w)% = 0 ∀w ∈ H2(B%)

}
is the Hilbert space orthogonal to H2(B%) in H2(B%\Γ), and{

affine functions
}⊥L2(B%)

=
{
v∈H2(B%\Γ) :

∫
B%

v w dxdy = 0 ∀ affine w
}
.

Note that V is a Hilbert space when endowed with the norm | · |2,%, which
turns out to be equivalent to ‖v‖2L2(B%) + ‖D2v‖2L2(B%\Γ) in V.

Lemma 4.3. Each one of the two systems{{
vk }k∈Z, |k|>2 , { zk

}
k∈Z, k 6=0

}
(complex basis) (4.5)

and { {
f1
k , f

2
k , f

3
k , f

4
k

}
k=0,1,...

}
(real basis) (4.6)

is an orthogonal system with respect to the scalar product (·, ·)%; moreover
they are both dense in V with respect to H2(B%\Γ) norm.
Therefore the terms (4.2) (corresponding to H2 functions smooth across Γ)
are redundant and unnecessary here: precisely, for any v in V there exists a
unique expansion converging to v in H2(B%\Γ), with respect to both systems
(either the complex one (4.5) or its real counterpart (4.6)), as follows

v =
∑

h∈Z\{0,±1,±2}

Chvh +
∑

h∈Z\{0}

Ehzh (4.7)

and

v =

+∞∑
h=0

rh+ 3
2

(
c1h cos

((
h+

3

2

)
ϑ

)
+ c2h sin

((
h+

3

2

)
ϑ

)
+

+ c3h cos

((
h− 1

2

)
ϑ

)
+ c4h sin

((
h− 1

2

)
ϑ

)) (4.8)

where ∀v ∈ V the coefficients Ch, Eh, c
1
h, c

2
h, c

3
h, c

4
h are uniquely defined by

Ch =
(v, vh)2,%

(|vh|2,%)2
h ∈ Z, |h| > 2, (4.9)

Eh =
(v, zh)2,%

(|zh|2,%)2
h ∈ Z \ {0}, (4.10)
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c jh =
(v, f jh)2,%

(|f jh|2,%)2
h = 0, 1, 2, . . . , j = 1, 2, 3, 4. (4.11)

Both expansions (4.7) and (4.8) are strongly convergent in H2(B% \ Γ).

Proof. Assume uh ∈ V and uh → u strongly in H2(B% \Γ) then ∆2
xu = 0

in B%\Γ and (u,w)L2(B%) = 0 for any affine w and (u,w)2,% = 0. Thus V is
complete with respect to the norm induced by the scalar product ( . , . )2,% .
Lemma 2.5 entails that the system {vk} is orthogonal and dense with respect
to L2(B%) norm in A1

% and the system {zk} is dense with respect to L2(B%)

norm in Z%. Therefore, by V ⊂ A∆% and (3.6) in Theorem 3.1, both systems

(4.5) and (4.6) are dense in V with respect to the L2(B%) norm. We have
only to show orthogonality and density in H2(B%\Γ) of the whole set (4.5).
By performing long computations, checked with software Wolfram Mathe-
matica c© 13.2 too, we obtain this list of orthogonality relationships:

(vk, vh)2,% = 0, k, h ∈ Z\{0,±1,±2}, k 6= h,

(zk, zh)2,% = 0, k, h ∈ Z\{0}, k 6= h,

(vk, zh)2,% = 0, k, h ∈ Z\{0},

(f ik, f
j
l )2,% = 0, k, l=0,1, . . . , i, j=1,2,3,4, either i 6= j or k 6= l,

(|vk|2,%)2 =
π

2
(2k − 5) (2k − 3)2 %2k−5 k ∈ Z\{0,±1,±2}

(|zk|2,%)2 = π
2 (2k − 1) (4k2 − 12k + 17) %2k−1 k ∈ Z\{0}

(4.12)

Therefore the two sets {vk, zk}k∈Z and
{
f1
k , f

2
k , f

3
k , f

4
k ,
}
k=0,1,...

are built

with independent functions mutually orthogonal with respect to the scalar
product ( · , · )2,%.
By Theorem 3.1 we know that an expansion of type (4.7) exists with coef-
ficients ch and eh (a priori, possibly different from Ch and Eh evaluated by
(4.9),(4.10)) and is strongly convergent at least in L2 for any v ∈ V ⊂ A∆% .
The orthogonality relationship (4.12) entails pairwise orthogonality in V of
terms in the expansion hence uniqueness of expansion (4.7) (if it exists); so we
are left to show the existence of such expansion for any v ∈ V , or equivalently

theH2(B%\Γ) density in V of the whole system
{
{ vk }k∈Z, k 6= 0,±1,±2 , { zk }k∈Z\{0}

}
.

A preliminary remark is that zk∈V ∀ k∈Z\{0}, but vk∈V ∀ k∈Z\{0,±1,±2}.
For any fixed v∈V, by uniqueness of projections and Parseval inequality there
exist coefficients Ch, Eh and a function w ∈ H2(B% \ Γ) such that

w =
∑

h∈Z\{0,±1,±2}

Chvh +
∑

h∈Z\{0}

Ehzh

where both series are strongly converging in H2(B% \Γ), hence in L2(B%) and
the coefficients Ch,Eh are defined by (4.9),(4.10). We will show that w = v.

By (3.6), A∆% =A1
% + Z%, the systems {vh}h∈Z\{0}, {zh}h∈Z\{0} are separately

orthogonal in L2(B%), they are dense with respect to L2(B%) norm respec-
tively in the sets A1

% and Z%, moreover, neither of them contains ln r or r2 ln r
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and the affine functions do not belong to V ⊂ A2
% ∩H2(B%\Γ);

in addition vj 6∈ V , j = ±1,±2.
Then, by taking into account that vk 6∈ V if |k|= 1, 2, every v ∈ V is repre-
sented by a uniquely defined expansion strongly converging in L2(B%\Γ):

v =
∑

h∈Z\{0,±1,±2}

chvh +
∑

h∈Z\{0}

ehzh . (4.13)

In the expansion (4.13) (ch vh + eh zh) is the unique L2(B%) projection of v
either on 2 dimensional spaces Vh := span{vh, zh} if h ∈ Z, |h| > 2 , or on
the 1 dimensional spaces Vh := span{zh} if |h| =,±1,±2.
We emphasize that the orthogonality Vh ⊥ Vl for h 6= l holds true with respect
to both scalar products (·, ·)L2(B%) and (·, ·)2,%; moreover the coefficients ch, eh
are not evaluated by scalar products of v with vh and with zh since vh, zh
are not L2(B%\Γ) mutually orthogonal: nevertheless, they can obtained by
scalar products of u with vh and of w with zh, if v = u+ w, u∈A1

%, w∈Z%.
Eventually, we claim that the expansion (4.13) is strongly converging to v in
the norm H2(B%\Γ) too; hence ch=Ch, eh=Eh, w=v thanks to (4.12).

Indeed: (vh, vl)L2(B%) = (zh, zl)L2(B%) = 0, ∀h 6= l ; (vh, zl)L2(B%) = 0, ∀h, l.
Thus v is obtained in (4.13) as an infinite sum of terms belonging to a se-
quence of 2 dimensional subspaces Vh (each one spanned by vh and zh for
any fixed h in Z with |h| > 2, or spanned by zh if h = ±1,±2) and all these
finite dimensional spaces Vh are pairwise orthogonal in L2((B%\Γ)).

Since v∈V ⊂H2(B%\Γ) and every finite truncated sum from (4.13) belongs to
H2(B%\Γ), by subtraction the sum of any residual series belongs to H2(B%\Γ)
too; precisely, the sum of the residual series (obtained by truncation at N>2)
belongs to the space orthogonal to every Vk in H2(B%\Γ), 0< |k|≤N .
Though the residual series is a priori converging in L2 only, the sum of the
residual series actually belongs to the closed space ⊕

|h|>N
Vh.

We prove now that the whole expansion (4.13) converges in H2(B% \ Γ) too:
this follows from the uniform boundedness in H2((B% \Γ)) of finite truncated
sums of (4.13):

∃C s.t. ∀N

∣∣∣∣∣∣∣
N∑

h=−N
ch=0 if |h|≤2

(ch vh + eh zh)

∣∣∣∣∣∣∣
2

2,%

≤ C < +∞ (4.14)

since this boundedness, together with Vh ⊥ Vl in H2(B% \ Γ), implies

∃C s.t. ∀N
N∑

h=−N
ch=0 if |h|≤2

|ch vh + eh zh|22,% ≤ C < +∞ ,

hence exists w ∈ H2(B% \ Γ) s.t.

w =
∑
h∈Z,

ch=0 if |h|≤2

(ch vh + eh zh) with strong H2(B% \ Γ) convergence
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and this w must coincide with v for uniqueness of limit in L2.

Assuming by contradiction that (4.14) is false, say the uniform boundedness
in H2(B%\Γ) of truncated sums of (4.13) does not hold true, we would obtain∑

h∈Z,
ch=0 if |h|≤2

| ch vh + eh zh |22,% = +∞ ,

thus, applying Parseval inequality and the orthogonality relationships (4.12)
to (4.13), leads to a contradiction with v∈H2(B%\Γ) :

|v|22,% ≥
∑
h∈Z,

ch=0 if |h|≤2

(
| ch vh|22,%+ |eh zh |22,%

)
=

∣∣∣∣∣∣∣
∑
h∈Z,

ch=0 if |h|≤2

ch vh + eh zh

∣∣∣∣∣∣∣
2

2,%

= +∞ .

Then we have proved that (4.13) is strongly converging to v in H2(B% \ Γ)
and hence for any fixed k ∈ Z \{0,±1,±2} and N ∈ N , N ≥ k, we have

Ck =
1

(|vk|2,%)2
(v, vk)% =

=
1

(|vk|2,%)2

 ∑
h∈Z, h≤N

(chvh + ehzh) , vk


2,%

+

+
1

(|vk|2,%)2

 ∑
h∈Z, h>N

(chvh + ehzh) , vk


2,%

= ck ,

where last equality holds true since the first sum is a finite sum of H2(B%\Γ)
functions so we can exploit (4.12), while the second one (infinite sum, a priori
converging only in L2) is a function belonging to the space orthogonal to Vk
in H2(B%\Γ), hence with vanishing scalar product against vk.
By the same procedure exploited above one can show that Ek=ek, ∀k 6= 0.
Hence the system

{
{ vk }k∈Z, k 6= 0,±1 , { zk }k∈Z

}
is dense and (thanks to

orthogonality relationships in (4.12)) has no redundancy.
The density and non redundancy of {f1

k , f
2
k , f

3
k , f

4
k} follows by considering real

and imaginary parts of
{
{ vk }k∈Z, k 6= 0,±1 , { zk }k∈Z

}
(see Remark 2.2). �

Without relabeling, we consider the operators Φ, Ψ defined by (3.3),(3.4)
with domain restricted on V and related decomposition (3.2), which for this
restriction is uniquely defined, since affine functions do not belong to V .
Next statement shows that both restrictions in V of Φ, Ψ map V on A1

% ∩V .

Theorem 4.4. -
Almansi Decomposition near a crack-tip of a biharmonic function in V .
Referring to Definition 2.1, (4.4) and (4.13) we have

V =
(
A1
% ∩ V

)
⊕
(
Z% ∩ V

)
⊂
6=

H2(B%\Γ) ∩A∆% (4.15)
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where ⊕ denotes the topological direct sum in H2(B%\ Γ) of two orthogonal
subspaces (orthogonality refers to the scalar product (·, ·)%, whereas the de-
composition is not orthogonal in L2(B%)). The restrictions on V of Φ, Ψ and
the related decomposition, in polar coordinates, are given by

Φ :V → A1
% ∩ V, Φ[u] =

1

4r

∫ r

0

∆xu(t, ϑ) dt , (4.16)

Ψ :V → A1
% ∩ V, Ψ[u] = u− r2 Φ[u], (4.17)

u(r, ϑ) = Ψ[u] + r2 Φ[u] , (4.18)

and can be represented by these expansion series, both strongly converging in
H2(B%\Γ) :

Ψ[u] =
∑
|k|>2

Ck vk , ∀u ∈ V , where, for |k| > 2,

Ck :=
(u, vk)2,%

(|vk|2,%)2
=

(u− r2 Φ[u], vk)2,%

(|vk|2,%)2
=

(
Ψ[u] , vk

)
L2(B%\Γ)(

‖vk‖L2(B%\Γ)

)2 .

(4.19)


Φ[u] =

∑
k∈Z\{0}

Ek vk , ∀u ∈ V , where, for |k| > 0,

Ek :=
(u, zk)2,%

(|zk|2,%)2
=

(u−Ψ[u], zk)2,%

(|zk|2,%)2
=

(
r2 Φ[u] , zk

)
L2(B%\Γ)

‖zk‖2L2(B%\Γ)

.

(4.20)

Proof. By Theorem 3.1 we know that an Almansi decomposition (3.2) holds
true also in V ⊂

(
A2
% ∩ H2(B% \Γ)

)
⊂ A∆% (a priori with summands having

both terms ϕ and ψ in A1
% only), moreover affine functions do not belong

to V ; hence uniqueness of decomposition and the equality in (4.15) hold
true, thanks to orthogonality relationships in (4.12). Embedding in (4.15) is
a straightforward consequence of Definitions 4.1, 4.2, and Lemma 4.3; this
embedding is strict since smooth functions are missing in V .
By exploiting the density in V of the system (4.5) stated by Lemma 4.3, we
find the first equalities (coefficient defining) in the expansions (4.19),(4.20),
which are strongly converging in H2(B%\Γ) to the restrictions in V of opera-
tors Φ and Ψ: the second equalities in (4.19),(4.20) follow from (vk, zh)2,% =
0 , ∀ k, h 6= 0; the third equalities in (4.19),(4.20) follows from the fact that

Ψ[u] = u− r2Φ[u] ∈ A1
% , r2Φ[u] =

(
u−Ψ[u]

)
∈ Z% ,

hence they have a unique expansion respectively in terms of the systems
{vk}k∈Z\{0,±1,±2} and {zk}k∈Z\{0} with coefficients ck =

(
Ψ[u], vk

)
L2/‖vk‖2L2 ,

ek =
(
r2Φ[u], zk

)
L2/‖zk‖2L2 . Such expansions are not only strongly converg-

ing in L2 (by Lemma 2.5) but also strongly in H2(B% \ Γ), by uniqueness of
the expansion in V (by Lemma 4.3).
Eventually, the strong convergence in H2(B%\Γ) entails that the restriction
to V of operators Φ and Ψ have range in H2(B%\Γ); precisely Φ maps V in
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V , since, referring to the expansion (3.16) converging in H1(B%\Γ) to σ and
the operator representation (3.3) we get the expansion

Φ[v] =
∑

k∈Z\{0}

ck
4(|k| − 1/2)

√
2|k − 1|+ 1

2π

(
r

%

)|k|−3/2

exp
(
i(k−3/2 sign k)ϑ

)
which is strongly converging in H2(B%\Γ), so that the sum belongs to the
closed subspace V . Thus, the Almansi decomposition (3.3),(3.4),(3.5) already
proved in A∆% , here is achieved in V too, but with summands fulfilling natural

higher regularity: Φ[u] and Ψ[u] in A1
% ∩ V . Eventually (4.21) follows by the

proof of Lemma 4.3. �

Remark 4.5. The operators Φ and Ψ (a priori defined in domain A∆% with

range in A1
%) when restricted to V have range in A1

% ∩ V . We remind that

the decomposition of Theorem 3.1 for a function in A∆% is uniquely defined
through the operators Φ and Ψ by (3.3),(3.4), nevertheless it is not unique
in the Almansi sense due to the twofold Almansi representation of linear
functions. On the other hand, the decomposition of Theorem 4.4 is unique in
both ways, since linear functions are missing in V .

Remark 4.6. Formulas (4.19) and (4.20) are coherent with (4.9), (4.10) and
(4.11) due to the orthogonality relationships

(r2Φ[u], vk)2,% = 0 ∀k ∈ Z\{0,±1,±2} , (Ψ[u], zk)2,% = 0 ∀k ∈ Z\{0} .

Remark 4.7. As usual, the expansions (3.8) and (3.9) have a real counterpart,
referring to the basis {f1

k , f
2
k}k=−2,−1, 0,1,... and {f3

k , f
4
k}k=0,1,... defined in

(2.1) by replacing vk with f1
k , f2

k , and replacing zk with f3
k f

4
k .

Remark 4.8. The relationships (4.19)-(4.20) altogether, make clear that for
every h the term (Chvh + Ehzh) = (chvh + ehzh) of the expansion (4.7) in
the space V is the unique L2(B%) projection of v on the 2-d space Vh :=
span{vh, zh}, if h ∈ Z, |h| > 2, or on the 1-d space Vh := span{vh}, if
h = 0,±1,±2. The orthogonality Vh ⊥ Vk, ∀h 6= k hold true with respect to
both scalar product (·, ·)L2(B%) and (·, ·)2,%. Notice that coefficients ch and eh
cannot be obtained by straightforward L2 scalar products with vh, zh, since
vh and zh are not mutually orthogonal in L2 (actually they are orthogonal
with respect to (·, ·)2,%) : therefore the preliminary corrections by subtraction
in (3.8), (3.9) are mandatory. By inspection of the proof of Theorem 4.4

∀u∈V : ck = Ck ∀|k|>2, ck = 0 if 0< |k|≤2 , ek = Ek ∀k 6=0 . (4.21)

Notice that if 0 6≡ u ∈ H2(B%\Γ)\V then the equalities Ck = ck, Ek = ek
must fail for some index; moreover C±1, C±2 are always 0 in the expansions
(4.19) and (4.20) of any nontrivial u ∈ V , whereas c0, c±1, c±2 and e0 may
be non trivial.

Eventually the whole Sobolev space H2(Br\Γ) is examined in the next state-
ment.
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Theorem 4.9. -
Almansi Decomposition of biharmonic H2(B% \Γ) functions near a crack-tip.
Let u ∈ H2(B% \ Γ), 0 < % < +∞. Then

∆ 2
x u = 0 in B% \ Γ (4.22)

if and only if

∃ϕ,ψ∈H2(B% \ Γ) :

u(x) = ψ(x) + ‖x‖2ϕ(x), ∆xϕ(x) = ∆xψ(x) ≡ 0 , ∀x∈B%\ Γ.
(4.23)

Decomposition (4.23) is unique up to possible linear terms in ψ, of the kind
A% cosϑ=Ax or B% sinϑ = By, which can be replaced in ϕ by respectively
A%−1 cosϑ and B%−1 sinϑ.
By denoting Aj% := {v ∈ L2(B%) s.t. ∆j

xv = 0 in B%\Γ } the L2 j-harmonic
functions for j = 1, 2, the decomposition can be made explicit by introducing
the operators Φ and Ψ that act on every u ∈ A2

%∩H2(B%\Γ) and are expressed
in polar coordinates as follows:

Φ:A2
% ∩H2(B%\Γ)→ A1

% ∩H2(B%\Γ), Φ[u] =
1

4r

∫ r

0

∆xu(t, ϑ) dt ,(4.24)

Ψ:A2
% ∩H2(B%\Γ)→ A1

% ∩H2(B%\Γ), Ψ[u] = u− r2 Φ[u], (4.25)

u(r, ϑ) = Ψ[u] + r2 Φ[u] . (4.26)

Proof. The claim that decomposition (4.23) entails u is biharmonic follows
by a straightforward computation.
Opposite inference is a straightforward consequence of Theorem 4.4 together
with classical decomposition ([1]) of biharmonic functions in the disk B%.
Moreover, both operators Φ and Ψ map H2(B% \ Γ) into A1

% ∩ H2(B% \ Γ):
indeed this is already proved for their restriction in V (Theorem 4.4) and is
well known in H2(B%), namely in the space orthogonal to V . �

Remark 4.10. As a consequence of previous theorem, one recovers the power
series expansion of a generic function u which is biharmonic in B% \Γ and
belongs to H2(B%\Γ).
Every function u ∈ H2(B%\Γ) ∩A2

% can be expanded in the form

u =

+∞∑
h=0

rh+ 3
2

(
c1h cos

((
h+

3

2

)
ϑ

)
+ c2h sin

((
h+

3

2

)
ϑ

)
+

+ c3h cos

((
h− 1

2

)
ϑ

)
+ c4h sin

((
h− 1

2

)
ϑ

))
+

+

+∞∑
n=0

((
an cos(nϑ)+bn sin(nϑ)

)
%n+

(
αn cos(nϑ)+βn sin(nϑ)

)
%n+2

)
,

(4.27)

where the coefficients are uniquely defined first by detecting the component
of v in V (space of biharmonic functions that are orthogonal to the smooth
functions in B% with respect to the scalar product in H2(B%\ Γ) associated
to the semi-norm | · |2,% and orthogonal to affine functions with respect to
the L2(B%) scalar product, see Definition 4.2); then by expanding such v
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with Lemma 4.3 and finding explicitly the coefficients c1h, c
2
h, c

3
h, c

4
h via (4.11),

possibly by expanding in the standard way the remainder u−v, which actually
turns out to be smooth in the whole B% and can be split via the classical
Almansi Theorem.

Remark 4.11. The first part of the claim (equivalence) in Theorem 4.9, with-
out explicit mention of operators Φ and Ψ, was stated in [21].
We emphasize that the nontrivial candidate local minimizers of Blake & Zis-
serman functional (see [16],[17],[21]) fulfil the assumption of Theorem 4.9:
that is, for any % > 0, it belongs to H2(B%\Γ) and is biharmonic in B%\Γ .

Remark 4.12. In the evaluation of the coefficients of the expansion for a
function in A2

% ∩ H2(B% \Γ) one has to take into account the warnings in
Remarks 4.8 and 4.10. For instance, consider

w = r3(cos(ϑ)− cos(3ϑ)) = (x2 + y2)x+ (3x2y − x3) = r2Φ[v] + Ψ[v] ∈ A∆% ,
which is biharmonic but it is not harmonic. Figure 4 shows an approximation
in L2 of the function w by the series (3.8),(3.9) in Theorem 3.1: the first 100
coefficients are computed with software Wolfram Mathematica c© 13.2 in the
real form according to Remark 4.7.
Though the 100 terms approximation is very good, the spike at the origin
and poor accuracy along the boundary of B% \Γ are unavoidable, due to
the behavior of the basis functions; actually the truncated expansion has a
negligible error in L2 norm which is obviously vanishing in the limit.
Notice that w belongs to H2(B%)⊂A∆% but w is orthogonal to V in H2(B%\Γ).
Actually, according to Remark 4.10 the appropriate expansion is obtained
by preliminary evaluation of the component of w in V , which actually is 0
since w is smooth, then by evaluation of the expansion with integer powers
only ( cos(nϑ)%n, sin(nϑ)%n, cos(nϑ)%2n, sin(nϑ)%2n ) : thus providing a finite
expansion which is coincident with w.

Figure 4. An approximation in L2(B%) (blue graph: first 100
terms in the series) of w = r3

(
cos(ϑ) − cos(3ϑ)

)
matching the

function w itself (yellow graph).
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5. Decomposition and expansion of a polyharmonic function
near the tip of a flat crack

In this section we consider the polyharmonic functions near a flat cracktip.

Definition 5.1. For 0< %<+∞, we introduce some spaces of polyharmonic
functions indexed by j = 0, 1, 2, . . . :

A0
% :=L2(B%\Γ), Aj% := {v∈L2(B%) : ∆j

xv = 0 in B%\ Γ} , j=1, 2, . . . (5.1)

A0
% :=L2(B%\Γ), Aj% := {v∈Aj% : ∆i

xv∈L2(B%\Γ), 0 < i ≤ j}, j=1, 2 . . . (5.2)

Zj% := r2jA1
% = {w : w = r2jϕ, ϕ ∈ L2(B%\Γ), ∆xϕ = 0 in B%\Γ } (5.3)

Zj% := {w ∈ L2(B%\ Γ) s.t. w = r2jϕ, ∆xϕ = 0 in B%\ Γ } . (5.4)

Definition 5.2. We introduce the complex fuctions zjk, j = 0, 1, 2, . . . (and
their real counterparts) (here r>0, |ϑ|<π) by setting

zjk(r, ϑ) := r2jvk = r|k|+2j−3/2ϕk(ϑ) =
= r|k|+2j−3/2 exp

(
i(k − 3/2 sign k)ϑ

)
, k ∈ Z \ {0},

and for k = 2j − 2, 2j − 1, 2j, 2j + 1, . . .

f2j+1
k (r, ϑ) := r(k+3/2) cos((k + 3/2− 2j)ϑ) ,

f2j+2
k (r, ϑ) := r(k+3/2) sin((k + 3/2− 2j)ϑ) .

(5.5)

Remark 5.3. The sets Aj%, Aj% and Zj% are closed subspaces of L2(B%\Γ) and

Zj% is the completion of Zj% in L2(B%\Γ). Notice that

Z0
% =Z0

% =A1
%=A1

% , Z1
% =Z% 6=Z%=Z1

% and Z0
% ∩ Z1

% ={linear functions} ,
Aj% ⊂ Aj+1

% , Aj% ⊂ Aj+1
% for j = 0, 1, 2, . . . , and, referring to (2.1) and Defini-

tion 2.1, we have z0
k = vk, z1

k = zk ;

Zj% ⊂ Am% 0 ≤ j ≤ m− 1 ; (5.6)

Aj%⊂6=
Aj+1
% , j ≥ 2 , (5.7)

since (x2 + y2)j−1 ∈ Aj%\Aj% for j ≥ 2 ; moreover

Aj%⊂6=
Aj+1
% , j ≥ 2 , (5.8)

since (x2 + y2)j−1 ∈ Aj%\Aj% ; eventually (see (3.19))

r1/2 cos

(
3

2
ϑ

)
∈ A2

%\A∆% = A2
%\A2

% ⊂ Aj%\Aj% j ≥ 2

entails

Aj% ⊂6=
Aj% j ≥ 2 . (5.9)

Moreover notation f lk (5.5) are coherent with (2.1), for l = 1, 2, 3, 4 .
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Lemma 5.4. Referring to Definitions 5.1,5.2, for any % > 0 and j = 0, 1, 2, . . . ,
the system {

zjk(r, ϑ)
}
k∈Z\{0}

(5.10)

is orthogonal in L2(B%) and dense in Zj% and Zj% with respect to L2(B%) norm;
the system {

f2j+1
k , f2j+2

k

}
k=0,1,2,...

(5.11)

is orthogonal in L2(B%) and dense in Zj% and Zj% with respect to L2(B%) norm.

Proof. Due to Remark 5.3, the cases j = 0, 1 are already proved in Lemma
2.5. The general case j > 1 is achieved as like as in the proof of density of
system (2.3) in Zj% (Lemma 2.5): by definitions (5.3) and (5.4), zjk = r2jz0

k

belongs to Zj% for any k, and every f ∈ Zj% fulfils f = r2jg for suitable

g ∈ Z0
% . By the density in A1

% of system {z0
k}k∈Z\{0} we deduce the density

of {zjk}k∈Z\{0} in Zj% and hence in Zj% . As usual, the orthogonality property
follows by integration in ϑ. �

Theorem 5.5. Decomposition near a crack-tip of a polyharmonic function.
Assume m ≥ 2 is an integer and 0<%<+∞; then

u ∈ Am% (5.12)

if and only if{
∃ψ0, ψ1, . . . , ψm−1 ∈ A1

% such that

u(x) = ψ0(x) + ‖x‖2ψ1(x) + . . .+ ‖x‖2(m−1)ψm−1(x) on B%\Γ.
(5.13)

Precisely, given u ∈ Am% , m ≥ 2, the functions ψj in (5.13) are provided by:

ψj := ηj − r2ηj+1 j = 0, . . . ,m− 2 , ψm−1 = ηm−1, (5.14)

where

η0 := u, ηj+1 :=
(
∆m−j−1

x

)−1
[Φj [ηj ]] j = 0, . . . ,m− 2 , (5.15)

Φj [η] :=
1

4 (m− j) rm−j

∫ r

0

tj−1∆m−j
x η(t, ϑ) dt j = 1, . . . ,m−1 . (5.16)

For every 0 < % < +∞ we have

Am% =
(
Z0
% + Z1

% · · ·+ Zm−1
%

)
∩Am% = Z0

% +Z1
% · · ·+Zm−1

% ∀m ≥ 1 (5.17)

where the algebraic sum is neither orthogonal nor direct in L2(B% \Γ) and
every space appearing in the identity is a Hilbert space, except the Zj% which
are only pre-Hilbert when j>0.
Moreover ψj ∈ H2m−2j−2

0 (B%\Γ) for j = 1, . . . ,m− 1 , whereas in general ψ0

cannot have more regularity than u.

Proof. By (3.10)-(3.13), we get

∆3
x

(
‖x‖2ϕ

)
= ‖x‖2 ∆3

xϕ + 4∆2
xϕ + 4x · ∇x

(
∆2

xϕ
)

+ 16∆2
xϕ

+ 16∆2
xϕ + 8x · ∇x

(
∆2

xϕ
)

= ‖x‖2 ∆3
xϕ + 36∆2

xϕ + 12x · ∇x

(
∆2

xϕ
)
.
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By iterating we find, for suitable integer constants Cj , Ej , j = 1, 2, . . . ,

∆ j
x

(
‖x‖2ϕ

)
= ‖x‖2∆ j

xϕ + Cj∆
j−1
x ϕ+ Ejx · ∇x∆j−1

x ϕ

∆ j+1
x

(
‖x‖2ϕ

)
= ‖x‖2 ∆j+1

x ϕ + 4∆j
xϕ + 4x · ∇x

(
∆j

xϕ
)

+ Cj∆
j
xϕ

+ 2Ej∆
j
xϕ + Ej x · ∇x

(
∆j

xϕ
)

= ‖x‖2∆ j+1
x ϕ + Cj+1∆j

xϕ + Ej+1x · ∇x∆j
xϕ

By induction, we get

Cj+1 = Cj+2Ej+4 , Ej+1 = Ej+4, j = 1, 2, . . . with C1 =E1 =4. (5.18)

The recursive relationships (5.18) are solved by Ej=4 j, Cj=4 j2. By insert-
ing these values we get the next identities valid for every positive integer j :

∆ j
x

(
‖x‖2ϕ

)
= ‖x‖2∆ j

xϕ+ 4 j2 ∆j−1
x ϕ+ 4 j x · ∇x∆j−1

x ϕ (5.19)

= %2∆ j
x ϕ+ 4 j2∆j−1

x ϕ+ 4 j r
∂

∂r
∆j−1

x ϕ (5.20)

By (5.19) with j = 2, we get:

∆ϕ = 0 ⇒ ∆2
x

(
‖x‖2ϕ

)
= 0 . (5.21)

By (5.19) with j = 3 and (5.21), we get:

∆ϕ = 0 ⇒
∆3

x

(
‖x‖4ϕ

)
= ∆3

x

(
‖x‖2(‖x‖2ϕ)

)
= ‖x‖2∆3

x

(
‖x‖2ϕ)

)
= 0 .

(5.22)

By iteration of (5.19) and (5.21), we get:

∆ϕ = 0 ⇒
∆j

x

(
‖x‖2(j−1)ϕ

)
= ∆j

x

(
‖x‖2(‖x‖2(j−2)ϕ)

)
= ‖x‖2∆j

x

(
‖x‖2ϕ)

)
= 0 .

(5.23)

In particular ∆m−1
x

(
‖x‖2(m−1)ϕ)

)
= ∆m−1

x

(
‖x‖2(‖x‖2(m−2)ϕ)

)
= 0.

Summarizing (5.13) entails that ∆m
x u = 0, hence the “if part” is proved.

We are left to show the “only if ” part, that is: ∆m
x u = 0 with u ∈ Am% entails

that u has a decomposition of the kind (5.13).

We prove decomposition (5.13) for every u ∈ Am% by induction. We already
know the claim of the theorem for m = 2 (by Theorem 3.1 about biharmonic
functions in A∆% , which is denoted here by A2

%); thus, if we prove that the
validity of function decomposition stated by the theorem for all j with 2 ≤
j ≤ m − 1, entails the function decomposition validity at m, then the proof
is achieved.
For any integer j > 2 we formulate this indexed claim:

claim with index j: u∈Aj% ⇒ ∃ ξ ∈ Aj−1
% , η ∈ Aj−1

% : u = ξ + ‖x‖2η .
(5.24)

From now on we assume that claim (5.24) holds true at every integer index
s with 2 ≤ s ≤ j − 1 and that the function u belongs to Aj% for some j > 2:
we show that these assumptions entail that claim (5.24) is true at value j of
the index too.
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The implication above together with the assumption u ∈ Am% and the validity
of the decomposition stated by the theorem at m = 2 provides the aimed
decomposition for u.
We are left only to prove the implication about the claim (5.24): this will be
done as soon as, given u∈Aj% we are able to find η ∈ Aj−1

% fulfilling

∆j−1
x η = 0 and ∆j−1

x

(
‖x‖2 η

)
= ∆j−1

x u on B% \ Γ , (5.25)

by setting ξ = u− ‖x‖2η which belongs to Aj−1
% , thanks to (5.25).

By (5.20), the problem (5.25) is equivalent to:
given u∈Aj% find η∈Aj−1 solving

∆x

(
∆j−2

x η
)

= 0 on B%\Γ and

(j − 1)
(
∆j−2

x η
)

+ r
∂

∂r

(
∆j−2

x η
)

=
∆j−1

x u

4(j − 1)
on B%\Γ ,

(5.26)

which, in turn, is equivalent to
given u∈Aj% find η∈Aj−1

% s.t. ϕ = ∆j−2
x η, solves

∆xϕ = 0 on B% \ Γ and

(j − 1)ϕ + r
∂

∂r
ϕ =

∆j−1
x u

4(j − 1)
on B%\Γ ,

(5.27)

The solution of (5.27) can be achieved by a procedure similar to the one in
proof of Theorem 3.1 (proof of (3.2), “only if ” part), with these differences
only: we still have ϕ ∈ L2(B%\Γ) and ∆ϕ = 0 on B%\Γ, hence ϕ belongs to
A1
% , but here the first order ODE reads

r
∂ϕ

∂r
+ (j − 1)ϕ = σ , with σ =

1

4(j − 1)
∆j−1

x u .

The fact that u belongs to Aj% entails that σ belongs to A1
%, hence σ has an

expansion with respect to the basis {z0
k}k∈Z\{0} = {vk}k∈Z\{0}, with uniquely

defined coefficients and strongly converging in L2(B%\Γ):

σ(r, ϑ) =

+∞∑
n=1

(
cn e

(n−3/2)iϑ + c−n e
(−n+3/2)iϑ

)
rn−3/2.

Thus we can solve (5.27) in the unknown ϕ, obtaining

∆j−2
x η(r, ϑ) = ϕ(r, ϑ) :=

1

4 (j − 1) rj−1

∫ r

0

tj−2∆j−1
x u(t, ϑ) dt . (5.28)

Therefore

η(r, ϑ) =
(
∆j−2

x )−1

(
1

4 (j − 1) rj−1

∫ r

0

tj−2∆j−1
x u(t, ϑ) dt

)
(5.29)

where
(
∆j−2

x )−1 is a resolvent (whose definition is postponed) for the operator

∆j−2
x over B%\Γ, with values in Hm−2

0 (B%\Γ).

From now on we assume (5.12) and prove the explicit representation of sum-
mands ‖x‖2jψj in (5.13) via (5.14)-(5.16).
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We start from η0 = u and look for a preliminary decomposition: u = ψ0+r2η1,
with η1 solution of
given η0 :=u∈Am% find η1∈H2m−4

0 (B%\Γ) s.t. ϕ1 :=∆m−2
x η1 fulfils

ϕ1 ∈ A1
% and (m− 1)ϕ1 + r

∂ϕ1

∂r
=

∆m−1
x η0

4(m− 1)
on B%\Γ .

(5.30)

Arguing as like as in the proof of Theorem 3.1, the solution to (5.30) is:

η1 = (∆m−2
x )−1 Φ1[η0] ,

and we recover ψ0 = η0 − r2η1 = u− r2η1.
We proceed by looking for a decomposition of η2 : η1 = ψ1 + r2η2, with η2

solution of
given η1∈H2m−4

0 (B%\Γ) find η2∈H2m−6
0 (B%\Γ) s.t ϕ2 :=∆m−3

x η1

fulfils ϕ2 ∈ A1
% and (m− 2)ϕ2 + r

∂ϕ2

∂r
=

∆m−2
x η1

4(m− 2)
on B%\Γ .

(5.31)

The solution to (5.31) is:
η2 = (∆m−3

x )−1 Φ2[η1]

and we get ψ1 = η1 − r2η2.
By iteration of the same procedure we get ψj for j = 0, . . . ,m − 2 and
eventually setting ψm−1 = ηm−1, we achieve (5.14)-(5.16).

Eventually we show that ψj ∈ H2m−2j−2
0 (B%\Γ), j = 1, . . . ,m− 2.

Since v ∈ Aj% entails ∆j−1
x v ∈ L2(B% \Γ), for every j > 2, as a resolvent

(∆j−2
x )−1 for the operator ∆j−2

x on B% \ Γ we choose the unique varia-

tional solution in Hj−2
0 (B% \Γ) of ∆j−2

x η = 0, obtained via minimization

on Hj−2
0 (B% \Γ) of

∫
B%\Γ |D

j−2
x w|2 dx (this functional is equivalent to the

squared Hj−2
0 (B% \ Γ) Sobolev norm, by Poincaré inequality).

Thus, (5.14) entails, for j = 1, ...,m− 1,

ψj = ηj − r2ηj+1∈H2m−2j
0 (B%\ Γ) +H2m−2j−2

0 (B%\ Γ)⊂ H2m−2j−2
0 (B%\ Γ).

The space decomposition (5.17) is a straightforward consequence of function
decomposition (5.13). �

Remark 5.6. Obviously the decomposition (5.13) is not unique due to the
twofold Almansi representation in L2 of linear functions times ‖x‖2j , for
j = 0, 1, ...,m − 2, whenever the open set has a crack reaching the origin.
Nevertheless it has an essentially unique representation, as soon as we ini-
tialize by setting first η0 = u and iteratively evaluate ψj via (5.14)-(5.16).

Corollary 5.7. Asymptotic expansion of a polyharmonic function at the tip
of a flat crack
Referring to Definitions 5.1,5.2, for any % > 0 and m = 1, 2, . . . , the system{

z0
k , z

1
k , . . . , z

m−1
k

}
k 6=0

(5.32)

is dense in Am% with respect to L2(B%), but non orthogonal.
The system{
{f1
n}n=0,1,... , {f2

n}n=0,1,... , . . . , {f2m−1
n }n=0,1,...,... , {f2m

n }}n=0,1,...

}
(5.33)
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is dense in Am% with respect to L2(B%\Γ), but non orthogonal.
Therefore for every u ∈ Am% , relying on the non orthogonal decomposition

(5.13), the coefficients of a strongly L2(B%\Γ) converging expansion can be
evaluated by scalar products in L2(B%\Γ) of ‖x‖2jψj with zj%, j = 0, 1, . . . .

Proof. First and third claim are straightforward consequences of decomposi-
tion (5.17) and the fact that {zjk}|k|6=0 is an orthogonal dense system in Zj%
(by Lemma 5.4). Second claim follows by Remark 2.2 �
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