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Abstract. Despite its high significance in nonlinear elasticity, the neo-Hookean energy is still
not known to admit minimisers in some appropriate admissible class. Using ideas from relaxation
theory, we propose a larger minimisation space and a modified functional that coincides with the
neo-Hookean energy on the original space. This modified energy is the sum of the neo-Hookean
energy and a term penalising the singularities of the inverse deformation. The new functional
attains its minimum in the larger space, so the initial question of existence of minimisers of the
neo-Hookean energy is thus transformed into a question of regularity of minimisers of this new
energy.

1. Introduction

1.1. Overview of the problem. The neo-Hookean model, given its widespread use, is highly
significant in nonlinear elasticity. In this model, minimisers of the neo-Hookean energy

E(u) =

∫
Ω

[
|Du|2 +H(detDu)

]
dx (1.1)

are sought in a space of orientation-preserving maps (i.e., with detDu > 0 a.e.) satisfying some
injectivity conditions (e.g., u one-to-one a.e.) in order to avoid interpenetration of matter. Here
H : (0,∞)→ [0,∞) is a convex function such that

lim
t→∞

H(t)

t
= lim

s→0
H(s) =∞, (1.2)

Ω ⊂ R3 represents the reference configuration of an elastic body and u : Ω → R3 is the
deformation map. Unfortunately, the coercivity of the neo-Hookean energy is not sufficient to
apply the current theories in calculus of variations to deduce existence of a minimiser in an
appropriate space. Indeed, the neo-Hookean energy is a borderline case of energies that admit
minimisers, like ∫

Ω
[|Du|p +H(detDu)] dx

with p > 2 or ∫
Ω

[
|Du|2 +H(detDu) + H̃(| cof Du|)

]
dx,

where H̃ is superlinear at infinity; cf., e.g., [3, 4, 29, 32, 31, 21, 22, 23, 24] and references
therein. The difficulty one has to face in minimising the neo-Hookean energy is due to the lack
of compactness of the minimisation space with respect to the H1 convergence, as shown by an
example of Conti & De Lellis [12]; see also [6, 13]. For some results on existence of minimisers
of the energy (1.1) in the axisymmetric setting we refer to [25, 7], but we emphasise that the
goal of this article is to consider the general 3D case.
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When one cannot prove the existence of minimisers via the direct method of calculus of
variations, a common strategy consists in splitting the difficulty into two steps. The first step,
called relaxation, aims at obtaining existence of minimisers of a modified energy in a bigger and
less regular space, with the requirement that the modified energy coincides with the original
one in the original space. The purpose of the second step is to prove regularity of one of the
minimisers obtained in the previous step and to show that it actually belongs to the original
smaller space. Our goal in this paper is to implement the first step for the minimisation of
the neo-Hookean energy and to transform the existence problem into a regularity problem for a
modified energy. The new energy we propose is motivated by our previous work [7] where the
same problem was considered in the particular case of axisymmetric deformations.

Before entering into details, we note that the process of relaxation gives rise to natural spaces
in calculus of variations. For instance, minimising sequences of ‖Du‖L1(Ω) among W 1,1 functions
with prescribed Dirichlet data are not compact, and a larger space more suitable to the problem
is the space of functions of bounded variation (BV ). Another example is the minimisation of
the Dirichlet energy on the space H1

b(Ω;S2)∩C0(Ω,S2) of continuous unit-valued H1 maps with
prescribed Dirichlet data b on ∂Ω, Ω ⊂ R3, a problem extensively studied beginning with the
pioneering works [10, 20, 8]. Since H1

b ∩ C0 is not weakly compact, the relaxation leads to the
minimisation of a modified energy functional in the larger space of unit-valued maps in H1

b that
satisfy the boundary condition but are not necessarily continuous.

1.2. Setting and statement of the main result. We now describe more precisely our min-
imisation setting. We work with a strong form of the Dirichlet boundary condition, namely, we

choose Ω̃ a smooth bounded domain of R3 such that Ω̃ ⊂ Ω, and we require that deformations
coincide with a bounded C1 orientation-preserving diffeomorphism b : Ω → R3 not only on ∂Ω

but on the whole of Ω \ Ω̃. We define

Ωb := b(Ω) and Ω̃b := b(Ω̃).

Since interpenetration of matter is physically unrealistic, we require the deformations to be one-
to-one a.e. We recall that u : Ω→ R3 being one-to-one a.e. means that there exists a set N of
zero Lebesgue measure such that u|Ω\N is one-to-one. We also ask these maps to be orientation
preserving, i.e., to satisfy detDu > 0 a.e. Moreover, we will impose that maps in A satisfy the
divergence identities:

Div
(
(adjDu)g ◦ u

)
= (div g) ◦ u detDu ∀ g ∈ C1

c (R3,R3), (1.3)

where Div is the distributional divergence in Ω. Maps satisfying the divergence identities (see
[28, 33, 30, 32]) enjoy extra regularity, as shown in [5], and in fact do not present cavitation or
create new surface (see [22]). All these requirements lead us to try to work with the minimisation
space

A := {u ∈ H1(Ω,R3) :u = b in Ω \ Ω̃, u is one-to-one a.e., detDu > 0 a.e.,

identity (1.3) holds and E(u) <∞}.

Unfortunately, this space is not closed with respect to the H1 weak convergence, and one has
to face a problem of lack of compactness, as shown by Conti & De Lellis in their example [12,
Theorem 6.1]. This non-compactness impedes the application of the direct method of calculus
of variations. As mentioned in the introduction, our strategy is the following: we seek a larger
space B that is compact for sequences with equibounded energy. On that space, we want a
lower semicontinuous energy F coinciding with E on A. By using the direct method of calculus
of variations, one can then obtain that the energy F admits a minimiser u on B. Then, the
existence problem of a minimiser for E is reduced to showing that u belongs (hopefully) to A.
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Our choice for the family B and the energy F is driven by the following two facts. First,
the geometric image of a map u in A, defined in Definition 2.3 and which can be thought of as
u(Ω), can be shown to be equal to Ωb in a measure theoretic sense. We refer to [7, Proposition
4.11] for a proof in the axisymmetric setting. In the general case the proof is exactly as in [5,
Theorem 4.1] but using the Brezis-Nirenberg degree, cf. [11, 12], instead of the Brouwer degree;

the conclusion is that there exists an open set U with Ω̃ b U b Ω such that

imG(u, U) = imT(u, U) = imT(b, U) = b(U) a.e.,

hence imG(u,Ω) = Ωb. Second, the inverse of a map in A belongs to W 1,1(Ωb,R3), cf. [7,
Proposition 4.12] in the axisymmetric case. In the general case, one can apply [5, Lemma 5.1] to
show that condition INV holds; as before one uses the Brezis-Nirenberg degree. Then, with [24,

Theorem 3.4] one concludes that u−1 is Sobolev, first in some open set V with Ω̃b b V b Ωb

and then in Ωb.
However, this last condition is not stable: as shown by Conti & De Lellis in their example,

the weak H1 limit of a sequence in A can have a limit with an inverse that is not in W 1,1 but
only in BV . This motivates us to define

B := {u ∈ H1(Ω,R3) :u = b in Ω \ Ω̃, u is one-to-one a.e., detDu > 0 a.e.,

Ωb = imG(u,Ω) a.e., u−1 ∈ BV (Ωb,R3), and E(u) <∞},

where imG(u,Ω) is the geometric image defined in Definition 2.3. As explained before, the
inclusion A ⊂ B holds. Then, we extend E on B by defining

F (u) := E(u) + 2‖Dsu−1‖, (1.4)

for u ∈ B. Here Dsu−1 is the singular part of the distributional gradient of the inverse, |Dsu−1|
is the total variation of Dsu−1 (which is itself a positive Radon measure), and ‖Dsu−1‖ is the
norm of the measure Dsu−1, so that ‖Dsu−1‖ = |Dsu−1|(Ωb).

The definition of F is inspired by our previous works [7] where we have proved that F admits
a minimiser among axially symmetric maps belonging to B. In the present paper we extend this
result to maps without any symmetry. Another feature of the energy F is that ‖Dsu−1‖ has an
expression resembling the notion of minimal connections that was introduced by Brezis-Coron-
Lieb in [10] and which also appears in the relaxed energy for harmonic maps; cf. [8]. We refer
to [6, Theorem 1.3] for more on this expression.

Our main theorem is the compactness of the class B and the lower semicontinuity of the func-
tional F with respect to the weak convergence in H1. This provides the existence of minimisers
for the energy F in B.

Theorem 1.1. Let {uj}j be a sequence in B such that {F (uj)}j is equibounded. Then there
exists u ∈ B such that, up to a subsequence, uj ⇀ u in H1(Ω,R3) and

lim inf
j→∞

F (uj) ≥ F (u).

In particular, the energy F has a minimiser in B.

We remark that, by definition of the relaxed energy, we have F (u) ≤ Erel(u) for every u in
the weak H1 closure of maps in A. Here the relaxed energy is defined abstractly by

Erel(u) := inf{lim inf
j→∞

E(uj) : {uj}j ⊂ A and uj ⇀ u in H1(Ω,R3)}.

It is desirable that F coincides with the relaxation of E, in order to get, possibly, a negative
result: if none of the minimisers of the relaxed energy belong to A, then E has no minimisers in
A. It is important to mention that the factor 2 in formula (1.4) appearing in front of ‖Dsu−1‖
is sharp, as shown in [6]: there exists a map u in B \ A (the nasty one provided by Conti & De
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Lellis) and a sequence {uj}j in A such that limj→∞E(uj) = F (u). However, we are not able
to prove that F coincides with the relaxed energy Erel at the moment.

A final remark is that we focus mainly on the Dirichlet part of the neo-Hookean energy, i.e.,
on |Du|2. But some recent results in [13] seem to indicate that if the convex function H satisfies
stronger coercivity properties then the compactness of the minimisation space could be restored.

In the last part of the paper, we develop further the connection with harmonic map theory.
Set H1

b(Ω, S2) := {u ∈ H1(Ω, S2) : u = b on ∂Ω}, for suitable Dirichlet data b. In [20] Hardt
& Lin showed that the minimum of

∫
Ω |Du|

2dx on H1
b can be strictly less than the infimum on

H1
b ∩ C0(Ω;S2), and in [8, Corollaries 2 and 3] Bethuel, Brezis & Coron established that

inf
u∈H1

b∩C0

∫
Ω
|Du|2dx = min

u∈H1
b

[∫
Ω
|Du|2dx+ 2

(
sup

φ∈C1(Ω)
‖∇φ‖∞≤1

〈Div
(
(adjDu)u

)
, φ〉
)]
.

In the case of unit-valued maps u that are smooth except for a finite number of singularities,
the expression involving Div

(
(adjDu)u

)
is the minimal connection length, introduced in [10],

multiplied by 4π = H2(S2). Intuitively, the natural analogue of the expression by Bethuel,
Brezis & Coron is Div

(
(adjDu)g ◦u

)
, where g : R3 → R3 is some unit-valued extension of the

normal to the singular set in the deformed configuration. However, since in the neo-Hookean
case that singular surface is not necessarily smooth and its shape and location are unknown, by
duality one is lead to consider the functional

L(u) = sup
φ∈C1(Ω), ‖∇φ‖∞≤1

g∈C1
c (R3;R3), ‖g‖∞≤1

〈Div
(
(adjDu)g ◦ u

)
, φ〉.

In [6, Proposition 5.9] this expression was shown to coincide, for axisymmetric maps, with
‖Dsu−1‖ and with the mass of the defect current associated to u, as introduced by Giaquinta,
Modica & Souček [18, 19]. In this article we show, in Proposition 5.3, that the proof of lower
semicontinuity by Bethuel, Brezis & Coron can be extended to E(u) + 2L(u). This functional,
which could play the same role as F in the relaxation strategy, does not involve the inverse map
u−1, and this might provide some advantage in future studies of the problem.

The paper is organised as follows. We start in Section 2 by recalling some definitions and
preliminary results. In Section 3 we prove the compactness of sequences of maps in B with a
uniform bound on the neo-Hookean energy and on the BV norm of their inverses. Section 4 is
devoted to the proofs of the lower semicontinuity of F in B and of Theorem 1.1. We prolong
our study of the relaxation of the neo-Hookean energy in Section 5 by establishing the lower
semicontinuity of E(u) + 2L(u).
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2. Notation and preliminaries

Let U be an open set of R3. For a vectorial map u : U → R3 we denote by Du its distributional
Jacobian matrix. When u is in BV (U,R3) we let Du = Dau + Dsu = Dau + Dju + Dcu
be the standard decomposition of Du, where Dau denotes the absolutely continuous part of
Du with respect to the Lebesgue measure, and Dsu denotes its orthogonal part. It is itself
divided into the jump part Dju and the Cantor part Dcu. We will also use the notion of
approximate differentiability (see, e.g., [16, Section 3.1.2], [31, Definition 2.3] or [23, Section 2.3]);
if u : U → R3 is approximately differentiable we denote by ∇u its approximate differential. Due
to the Calderón-Zygmund theorem, every u ∈ BV (Ω,R3) is approximately differentiable a.e.
and Dau = ∇uL3. In particular, with a small abuse of notation, for Sobolev maps Du = ∇u
a.e. The same notation applies to a scalar function φ : U → R.

The Lebesgue measure of a measurable set A ⊂ R3 is denoted by |A|. We say that two sets
A,B are equal a.e. and we write A = B a.e. if |A \ B| = |B \ A| = 0. Given a measurable set
A ⊂ R3 and a point x ∈ R3, we define the density of A at x by

D(A,x) := lim
r→0

|B(x, r) ∩A|
|B(x, r)|

(2.1)

when the limit exists. Here B(x, r) is the open ball centred at x of radius r.
The set of 3 × 3 matrices with coefficients in R is denoted by R3×3, while R3×3

+ is its subset

of matrices with positive determinant. The adjoint and cofactor of A ∈ R3×3 are denoted by
adjA and cofA, respectively, so that A(adjA) = (adjA)A = (detA) Id and cofA = (adjA)T .

We recall the area formula of Federer ([31, Proposition 2.6] and [16, Theorem 3.2.5 and
Theorem 3.2.3]). We will use the notation N (u, A,y) for the number of preimages of a point y
in the set A under u. In this section, Ω is any bounded domain of R3.

Proposition 2.1. Let u be approximately differentiable a.e. in Ω, and denote the set of ap-
proximate differentiability points of u by Ωd. Then, for any measurable set A ⊂ Ω and any
measurable function ϕ : R3 → R,∫

A
(ϕ ◦ u) |det∇u|dx =

∫
R3

ϕ(y)N (u,Ωd ∩A,y) dy

whenever either integral exists. Moreover, if a map ψ : A→ R is measurable and ψ̄ : u(Ωd∩A)→
R is given by

ψ̄(y) :=
∑

x∈Ωd∩A, u(x)=y

ψ(x)

then ψ̄ is measurable and∫
A
ψ(ϕ ◦ u) |det∇u| dx =

∫
u(Ωd∩A)

ψ̄ ϕdy, y ∈ u(Ωd ∩A), (2.2)

whenever the integral on the left-hand side of (2.2) exists.

We observe that the previous proposition implies that, for u approximately differentiable a.e.,

|u(N ∩ Ωd)| = 0 whenever |N | = 0. (2.3)

We will need to work with a set of points satisfying more properties than just approximate
differentiability.

Definition 2.2. Let u be approximately differentiable a.e. and such that detDu 6= 0 a.e. We
define Ω0 as the set of x ∈ Ω for which the following are satisfied:

(1) the approximate differential of u at x exists and equals Du(x).
(2) there exist w ∈ C1(R3,R3) and a compact set K ⊂ Ω of density 1 at x such that

u|K = w|K and ∇u|K = Dw|K ,
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(3) det∇u(x) 6= 0.

It can be seen from [16, Theorem 3.1.8], Rademacher’s Theorem and Whitney’s Theorem that
Ω0 is a set of full Lebesgue measure in Ω, i.e., |Ω \ Ω0| = 0.

Definition 2.3. For any measurable set A of Ω, the geometric image of A under an a.e. ap-
proximately differentiable map u is defined by

imG(u, A) := u(A ∩ Ω0),

with Ω0 as in Definition 2.2.

We will need the following result.

Lemma 2.4. ([31, Lemma 2.5]) Let u : Ω→ R3 be approximately differentiable in almost all Ω
and suppose that det∇u(x) 6= 0 for almost every x ∈ Ω. Let Ω0 be as in Definition 2.2. Then
for every x ∈ Ω0 and every measurable set A ⊂ Ω,

D(imG(u, A),u(x)) = 1 whenever D(A,x) = 1,

where the density is defined in (2.1).

In order to define the inverse of maps which are approximately differentiable, one-to-one a.e.
and such that det∇u 6= 0 a.e., we first give the following lemma.

Lemma 2.5. ([21, Lemma 3]) Let u : Ω → R3 be approximately differentiable in almost all Ω,
one-to-one a.e., and suppose that det∇u(x) 6= 0 for a.e. x ∈ Ω. Let Ω0 be as in Definition 2.2.
Then u|Ω0 is one-to-one.

Definition 2.6. Let u : Ω → R3 be approximately differentiable in almost all Ω, one-to-one
a.e., and suppose that detDu(x) 6= 0 for a.e. x ∈ Ω. Let Ω0 be as in Definition 2.2. Then we
define the inverse u−1 as the map u−1 : imG(u,Ω)→ R3 that sends every y ∈ imG(u,Ω) to the
only x ∈ Ω0 such that u(x) = y.

Proposition 2.7. Let u ∈ H1(Ω,R3) be such that detDu(x) 6= 0 for a.e. x ∈ Ω and u is
one-to-one a.e. Let Ω0 be as in Definition 2.2. Then u−1 is approximately differentiable at
every y ∈ imG(u,Ω) = u(Ω0) and its approximate differential satisfies

∇u−1
(
u(x)

)
= Du(x)−1 =

adjDu(x)

detDu(x)
for every x ∈ Ω0. (2.4)

In particular, if we assume that imG(u,Ω) = Ωb a.e. then ∇u−1 ∈ L1(Ωb) with

‖∇u−1‖L1(Ωb) ≤
1√
3
‖Du‖2L2(Ω). (2.5)

If we assume furthermore that u−1 ∈ BV (Ωb,R3) then Dau−1(u(x)) = Du(x)−1 for a.e. x ∈ Ω.

Proof. The proof is adapted from [22, Theorem 2 iii)]. Let x0 ∈ Ω0 and define y0 := u(x0)
and F := Du(x0). Thanks to Definition 2.2, F is invertible and thanks to Lemma 2.4 we have
D(imG(u,Ω),y0) = 1. Define, for each δ > 0,

Eδ :=

{
x ∈ Ω0 \ {x0} :

|u(x)− u(x0)− F (x− x0)|
|x− x0|

< δ

}
.

Since u is approximately differentiable at x0 and the set Ω0 is of full measure in Ω, we deduce
that D(Eδ,x0) = 1 for all δ > 0. Now for each ε > 0 we set

Aε :=

{
y ∈ imG(u,Ω) \ {u(x0)} :

|u−1(y)− x0 −Du(x0)−1(y − u(x0))|
|y − u(x0)|

> ε

}
.
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Let x ∈ Ω0 \ {x0} and y := u(x). Thanks to Lemma 2.5, we have y 6= y0. Set r := y − y0 −
F (x− x0). Then

|x− x0 − F−1(y − y0)|
|y − y0|

≤ |F−1| |r|
|x− x0|

|x− x0|
|y − y0|

≤ |F−1| |r|
|x− x0|

1∣∣∣F x−x0
|x−x0|

∣∣∣− |r|
|x−x0|

.

This shows that if u(Eδ) ∩Aε 6= ∅ for some δ, ε > 0, then

ε > |F−1| δ

inf{|Fv| : |v| = 1} − δ
. (2.6)

Fix ε > 0. Then there exists δ > 0 such that (2.6) does not hold and, hence, u(Eδ) ∩ Aε = ∅.
As D(Eδ,x0) = 1, then by Lemma 2.4, D(R3 \u(Eδ),y0) = 0, and, hence, D(Aε,y0) = 0. This
proves that u−1 is approximately differentiable at u(x0) and its approximate differential is equal
to Du(x0)−1 and, thus, (2.4) holds.

We now assume that imG(u,Ω) = Ωb a.e. Propositions 2.1 and 2.7 as well as the matrix
inequality

|A|2 ≥
√

3 |cofA| , A ∈ R3×3 (2.7)

(see [7, Lemma 2.6]) show that∫
Ωb

|∇u−1(y)|dy =

∫
Ω
| cof Du(x)| dx ≤ 1√

3

∫
Ω
|Du(x)|2 dx.

Finally, if in addition u−1 ∈ BV (Ωb,R3), then Dau−1 = ∇u−1 a.e., which implies the
conclusion. �

We now make explicit the divergence identities (1.3) by means of the functional E introduced
in [21].

Definition 2.8. Let u : Ω → R3 be measurable and approximately differentiable a.e. Suppose
that det∇u ∈ L1

loc(Ω) and cof∇u ∈ L1
loc(Ω,R3×3). For every f ∈ C1

c (Ω× R3,R3), define

E(u,f) :=

∫
Ω

[cof∇u(x) ·Dxf(x,u(x)) + det∇u(x) divy f(x,u(x))] dx,

where Df(x,y) denotes the derivative of f(·,y) evaluated at x, while div f(x,y) is the diver-
gence of f(x, ·) evaluated at y.

By definition of distributional divergence, the divergence identities hold if and only if E(u, φ g) =
0 for all φ ∈ C1

c (Ω) and g ∈ C1
c (R3,R3). In fact, by density of sums of functions of sep-

arate variables (see, e.g., [27, Corollary 1.6.5]), this holds if and only if E(u,f) = 0 for all
f ∈ C1

c (Ω× R3,R3). Of course, φ g denotes the function φ(x) g(y) for (x,y) ∈ Ω× R3.

3. Compactness of maps with equibounded F energy in B

In this section we show that the set of deformation maps such that their geometric image
is Ωb and whose inverses are in BV (Ωb,R3) is compact for the weak convergence in H1 if we
assume a uniform bound on the neo-Hookean energy and on the BV norm of the inverses.
Furthermore, those bounds also provide that the weak H1 limit is one-to-one a.e. and satisfies
that detDu > 0 a.e. In this respect, a uniform bound on the BV norm of the inverses of a
sequence of deformation maps plays the same role as a uniform bound on the surface energy
defined in [21]. An intermediate step is to show the validity of the divergence identities for u−1.

We start with the following variant of [21, Theorem 2].

Proposition 3.1. Let {uj}j be a sequence in B. Assume that {F (uj)}j is equibounded and that
uj ⇀ u in H1(Ω,R3). Then

i) detDu 6= 0 a.e.
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ii) u is one-to-one a.e.
iii) imG(u,Ω) = Ωb a.e.
iv) u−1 ∈ BV (Ωb,R3)

v) up to a subsequence, u−1
j

∗
⇀ u−1 in BV (Ωb,R3) and u−1

j → u−1 a.e.

vi) detDuj ⇀ | detDu| in L1(Ωb).

Proof. Since supj
∫

ΩH(detDuj) < ∞, by using the De la Vallée-Poussin criterion we can find

θ ∈ L1(Ω) such that

detDuj ⇀ θ in L1(Ω).

Besides, an application of Fatou’s lemma along with the properties of H in (1.2) gives θ > 0 a.e.
in Ω. Passing to a subsequence we can also assume that uj → u a.e.

We first want to show that the Jacobian determinant of u is different from zero. Let ψ :
Ωb → R be continuous and bounded. As uj is one-to-one a.e., an application of the change of
variables formula (Proposition 2.1) shows that∫

Ω
ψ(uj(x)) detDuj(x) dx =

∫
Ωb

ψ(y) dy.

Since {ψ(uj)}j is equibounded in L∞, a standard convergence result (see, e.g., [17, Proposition
2.61]) shows that ∫

Ω
ψ(u(x)) θ(x) dx =

∫
Ωb

ψ(y) dy. (3.1)

By approximation, the above formula remains valid for any ψ bounded Borel. Let V := {x ∈
Ωd : detDu(x) = 0}. Formula (2.3) shows that |u(V )| = 0. Let U be a Borel set such that
u(V ) ⊂ U and |U | = 0. By taking ψ = χU , we obtain∫

V
θ(x) dx = 0.

Since θ is positive a.e., necessarily |V | = 0, proving i).
Set vj := u−1

j . Thanks to (2.5), from the assumption that {F (uj)}j is equibounded, we
find that both the absolutely continuous and the singular parts of Dvj are equibounded, so
‖Dvj‖ is equibounded. By compactness, up to a subsequence, vj converges weakly∗ and a.e. in
BV (Ωb,R3) to some v.

Now we apply a similar argument leading to (3.1). For ϕ : Ω → R and ψ : Ωb → R both
continuous and bounded, we obtain first∫

Ω
ϕ(x)ψ(uj(x)) detDuj(x) dx =

∫
Ωb

ϕ(vj(y))ψ(y) dy,

then ∫
Ω
ϕ(x)ψ(u(x))θ(x) dx =

∫
Ωb

ϕ(v(y))ψ(y) dy

and, finally, that the above formula is valid for all ϕ and ψ bounded Borel. As a consequence,
with Ωd the set of approximate differentiability of u, Proposition 2.1 shows that∫

R3

ψ(y)
∑
x∈Ωd

u(x)=y

ϕ(x)
θ(x)

| detDu(x)|
dy =

∫
Ωb

ϕ(v(y))ψ(y)dy

for any ϕ and ψ bounded Borel. Since the formula holds for all ψ, then∑
x∈Ωd

u(x)=y

ϕ(x)
θ(x)

| detDu(x)|
= 0 for a.e. y ∈ R3 \ Ωb
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and ∑
x∈Ωd

u(x)=y

ϕ(x)
θ(x)

|detDu(x)|
= ϕ(v(y)) for a.e. y ∈ Ωb. (3.2)

From the first identity we obtain u(Ωd) ⊂ Ωb a.e., because∫
{x∈Ωd:u(x) 6∈Ωb}

ϕ(x)θ(x) dx =

∫
u(Ωd)\Ωb

∑
x∈Ωd

u(x)=y

ϕ(x)
θ(x)

| detDu(x)|
dy = 0,

so taking ϕ = χΩ and using the positivity of θ we obtain |{x ∈ Ωd : u(x) 6∈ Ωb}| = 0, and, by
(2.3), |u(Ωd) \ Ωb| = 0.

Now consider the second identity. Any point in Ωb for which formula (3.2) is valid is necessarily
in u(Ωd), since otherwise the left-hand side would always be zero, whereas one may find ϕ such
that the right-hand side is not zero. This shows that |Ωb \ u(Ωd)| = 0 and, hence, u(Ωd) = Ωb

a.e. By property (2.3), u(Ωd) = u(Ω0) a.e., so iii) is proved.
Let Ω′b be the set of y ∈ Ωb for which formula (3.2) is valid. Fix y0 ∈ Ω′b and set x0 := v(y0).

Taking any bounded Borel ϕ such that ϕ(x0) = 0 we obtain from (3.2) that∑
x∈Ωd

u(x)=y0

ϕ(x)
θ(x)

|detDu(x)|
= 0.

As there is no composition with u or v in the formula above, by approximation it remains valid
for any bounded measurable ϕ with ϕ(x0) = 0. Taking ϕ to be the characteristic function of
{x ∈ Ωd \ {x0} : θ(x) > 0} we obtain∑

x∈Ωd\{x0}
u(x)=y0, θ(x)>0

θ(x)

|detDu(x)|
= 0,

so there is no x ∈ Ωd \ {x0} such that u(x) = y0 and θ(x) > 0. This shows that u is one-to-one
in {x ∈ Ωd : u(x) ∈ Ω′b, θ(x) > 0}. Thanks to i), this set is of full measure in Ω (see, e.g.,
[5, Lemma 2.8 (c)] for a proof, which in fact is an easy consequence of Proposition 2.1). This
proves ii).

Now we take ϕ = χ{x0} in (3.2) and obtain that∑
x∈Ωd∩{x0}
u(x)=y

θ(x)

|detDu(x)|
= 1,

which implies that x0 ∈ Ωd, u(x0) = y0 and θ(x0) = |detDu(x0)|. Equality u(x0) = y0

says that v = u−1 in Ω′b and, hence, v = u−1 a.e. This proves iv) and v). Finally, equality
θ(x0) = | detDu(x0)| says that θ = | detDu| in the set {x ∈ Ωd : u(x) ∈ Ω′b}, which, as before,
has full measure in Ω. Thus, θ = |detDu| a.e. and, hence, vi) holds. �

It will be instrumental to consider the inverses of maps in B in the proof of lower semicontinuity
of F . We first study the continuity of the cofactor gradient of these inverses.

Lemma 3.2. Let {uj}j be a sequence in B. Assume that {F (uj)}j is equibounded and that

uj ⇀ u in H1(Ω,R3). Then, up to a subsequence, cof∇u−1
j ⇀ cof∇u−1 in L1(Ωb,R3×3).

Proof. The proof is divided into two steps.
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Step 1: Weak∗ convergence in the sense of measures. Let ψ ∈ C(R3,R3×3) be bounded. By
Propositions 2.1 and 2.7, and using formula adjA−1 detA = A for any invertible matrix A, we
find ∫

Ωb

adj∇u−1
j (y) ·ψ(y) dy =

∫
Ω
Duj(x) ·ψ(uj(x)) dx. (3.3)

Up to a subsequence, we know that uj → u a.e. Hence the dominated convergence theorem
shows that ψ ◦ uj → ψ ◦ u in Lq for all q <∞. This implies that∫

Ω
Duj(x) ·ψ(uj(x)) dx→

∫
Ω
Du(x) ·ψ(u(x)) dx.

Thanks to Proposition 3.1, formula (3.3) also holds for u in place of uj , so we conclude∫
Ωb

adj∇u−1
j (y) ·ψ(y) dy →

∫
Ωb

adj∇u−1(y) ·ψ(y) dy.

This shows that adj∇u−1
j

∗
⇀ adj∇u−1 in the sense of measures.

Step 2: Equiintegrability. We first show that {det∇u−1
j }j is equiintegrable. By Propositions

2.1 and 2.7, ∫
Ω
H(detDuj(x)) dx =

∫
Ω
H

(
1

det∇u−1
j (y)

)
det∇u−1

j (y) dy.

Since H1(t) := H(1/t)t is convex and satisfies (1.2), the De la Vallée-Poussin criterion shows
that {det∇u−1

j }j is equiintegrable, as {F (uj)}j is bounded.

Let V ⊂ Ωb be a Borel set. On the one hand, as in (3.3),∫
V
| adj∇u−1

j (y)| dy =

∫
u−1
j (V )

|Duj(x)| dx.

On the other hand,

|u−1
j (V )| =

∫
V

det∇u−1
j (y) dy.

Take a fixed ε > 0. Since the sequence {Duj}j is equiintegrable, there exists δ > 0 such that
for any measurable A ⊂ Ω with |A| < δ we have that for all j ∈ N∫

A
|Duj(x)|dx < ε.

We apply this to A = u−1
j (V ), complementing it with the equiintegrability of det∇u−1

j , which
gives that there exists η > 0 such that

if |V | < η then

∫
V

det∇u−1
j (y) dy < δ.

This shows that the sequence {adj∇u−1
j }j is equiintegrable, which finishes the proof thanks to

Step 1. �

The next proposition shows that inverses of maps in B satisfy the divergence identities.

Proposition 3.3. Let u be a map in B. Then u−1 satisfies the divergence identities in Ωb.
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Proof. Let φ ∈ C1
c (Ωb) and g ∈ C1

c (Rn,Rn). Then

E(u−1, φ g) =

∫
Ωb

[
g(u−1(y)) ·

(
cof∇u−1(y)Dφ(y)

)
+ φ(y) div g(u−1(y)) det∇u−1(y)

]
dy

=

∫
Ω

[
g(x) ·

(
cof∇u−1(u(x))Dφ(u(x))

)
+ φ(u(x)) div g(x) det∇u−1(u(x))

]
detDu(x) dx

=

∫
Ω

[
g(x) ·

(
Du(x)T Dφ(u(x))

)
+ φ(u(x)) div g(x)

]
dx.

(3.4)

By the chain rule (e.g., [15, Theorem 4.2.2.4]), φ ◦ u ∈ H1(Ω) and

D(φ ◦ u)(x) = Du(x)T Dφ(u(x)), a.e. x ∈ Ω. (3.5)

Let us see that tr(φ ◦ u) = 0, where tr is the trace operator on ∂Ω. Since |u− b| ∈ H1(Ω) and

u = b in Ω \ Ω̃, we have that |u− b| ∈ H1
0 (Ω) (see, e.g., [9, Proposition 9.18]), so tr |u− b| = 0

(see, e.g., [14, Theorem 5.5.2]). Now, by [15, Theorem 5.3.2], for H2-a.e. x0 ∈ ∂Ω,

0 = tr(|u− b|)(x0) = lim
r→0

1

rn

∫
B(x0,r)∩Ω

|u− b|

and, hence, using that φ is Lipschitz,

tr(|φ ◦ u− φ ◦ b|)(x0) = lim
r→0

1

rn

∫
B(x0,r)∩Ω

|φ ◦ u− φ ◦ b| = 0,

so tr(φ◦u) = tr(φ◦b) = 0, since φ◦b is continuous, sptφ ⊂ Ωb and Ωb∩b(∂Ω) = ∅. Therefore,
by integration by parts (e.g., [15, Theorem 4.3.1]),∫

Ω
(φ ◦ u)(x) div g(x) dx = −

∫
Ω
D(φ ◦ u)(x) · g(x) dx,

which shows, thanks to (3.4) and (3.5), that E(u−1, φ g) = 0, i.e., u−1 satisfies the divergence
identities. �

Proposition 3.4. Let {uj}j be a sequence in B. Assume that {F (uj)}j is equibounded and that

uj ⇀ u in H1(Ω,R3). Then det∇u−1
j ⇀ det∇u−1 in L1(Ωb) and detDu > 0 a.e. in Ω.

Proof. By Proposition 3.1 v) and Lemma 3.2 we have u−1
j ⇀ u−1 inBV (Ωb,R3) and cof∇u−1

j ⇀

cof∇u−1 in L1(Ωb,R3×3), up to a subsequence.
As seen in Step 2 of Lemma 3.2, the sequence {det∇u−1

j }j is equiintegrable, so by Fatou’s

lemma we get a θ̂ ∈ L1(Ωb) positive a.e. such that det∇u−1
j ⇀ θ̂ in L1(Ωb). Then, Lemma 3.2,

Propositions 3.3 and 3.1, and the remark after Definition 2.8 allow us to apply [21, Theorem 1]

on the inverse and conclude that θ̂ = det∇u−1 a.e. Thus det∇u−1 > 0 a.e. and, by Proposition
2.7, detDu > 0 a.e. �

As an immediate consequence of Propositions 3.1 and 3.4, we obtain the main conclusion of
this section, namely, the compactness of maps in B with equibounded energy F .

Corollary 3.5. Let {uj}j ⊂ B be such that {F (uj)}j is bounded. Then there exists u ∈ B such
that, up to a subsequence, uj ⇀ u in H1(Ω,R3).
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4. Lower semicontinuity of F in B and proof of the theorem

The key argument to prove the lower semicontinuity of the energy F is to use a change of
variables to express the neo-Hookean energy in terms of the inverse deformations. This allows
to control from below the Dirichlet part of the neo-Hookean energy by the L1 norm of the
absolutely continuous part of the gradient of the inverses with the optimal constant 2. We then
use the theory of BV functions to obtain the desired lower semicontinuity.

The following lemma presents two matrix inequalities. We first recall that the constant in
inequality (2.7) is optimal. However, we would need a constant 2 instead of

√
3, since this would

provide the right constant in front of the total variation in (1.4), as explained in the introduction
and as shown by the construction in [6].

Lemma 4.1. a) |A|2 ≥ 2| cofA| − 2 max{1,detA} for all A ∈ R3×3
+ .

b) | cof B|2
detB ≥ 2|B| − 2 max{1,detB} for all B ∈ R3×3

+ .

Proof. We start by proving a). The three terms |A|, | cofA| and detA are invariant under
multiplication by rotations. Therefore, by singular value decomposition, we can assume that A
is diagonal with positive diagonal elements v1 ≤ v2 ≤ v3. In this case, we have

|A|4 − 4| cofA|2 =
(
v2

1 + v2
2 + v2

3

)2 − 4
(
v2

2v
2
3 + v2

1v
2
3 + v2

1v
2
2

)
=
(
v2

1 + v2
2 − v2

3

)2 − 4v2
1v

2
2,

so
|A|4 ≥ 4| cofA|2 − 4v2

1v
2
2.

Taking into account that if a ≥ b ≥ 0 then
√
a2 − b2 ≥ a− b, from the inequality above we get

|A|2 ≥ 2| cofA| − 2v1v2.

If v1v2 ≤ 1 then we are done. If v1v2 > 1, then v3 ≥ v2 > 1 and therefore

1 < v1v2 < v1v2v3 = detA = max{1,detA}.

This shows a). By taking A = B−1 = adjB
detB , since cofA = BT

detB , we get from a) that

| cofB|2

(detB)2
≥ 2

|B|
detB

− 2 max{1, 1

detB
},

and therefore b). �

The key idea in providing the lower semicontinuity of the functional F is to work with the
inverse maps, by moving from the reference configuration to the deformed one. In order to do so,
we need to check some ingredients: the behaviour of polyconvexity with respect to the passage
to the inverse, as well as the limit behaviour of the cofactor and the determinant of the inverse
of a sequence of deformations in B.

For the first ingredient we use a result due to Ball [2, Theorem 2.6] (see also [26, Proposition
1.1]).

Lemma 4.2. If W : R3×3
+ → R is polyconvex, then so is A 7→ W (A−1) detA. In particular,

the functional A 7→ | cof A|2
detA is polyconvex.

Naturally, the function W̃ (A) = | cof A|2
detA corresponds to the choice W (A) = |A|2. In fact, one

can check directly that W̃ is polyconvex by expressing

W̃ (A) = h(| cofA|,detA)

with h : (0,∞)2 → R defined as h(a, b) = a2

b . The function h(·, b) is monotone increasing for

each b > 0, while h is convex. Therefore, W̃ is polyconvex.

We are now ready to prove the lower semicontinuity.
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Proposition 4.3. The functional F is lower semicontinuous in B in the weak topology of
H1(Ω,R3).

Proof. Consider the following functional defined for maps w that are inverses of maps in B:

Ê(w) :=

∫
Ωb

| cof∇w|2

det∇w
dy.

By Propositions 2.1 and 2.7,
∫

Ω |Du|
2 dx = Ê(u−1). Let V be the singular set of Du−1, i.e.,

V ⊂ Ωb is any Borel set with |V | = 0 such that |Dsu−1|(Ωb \ V ) = 0.
Let {uj}j be a sequence in B converging weakly in H1(Ω,R3) to some u ∈ B. For the proof

of lower semicontinuity of F we can assume, without loss of generality, that limj F (uj) exists

and is finite. As shown in step 2 of Lemma 3.2, {det∇u−1
j }j is equiintegrable. For ε > 0, let Vε

an open neighbourhood of V such that |Vε| < ε and
∫
Vε

det∇u−1
j < ε for any j ∈ N.

Next, by Lemma 4.1 b) we have

Ê(u−1
j ) ≥

∫
Ωb\Vε

| cof∇u−1
j |2

det∇u−1
j

dy + 2

∫
Vε

|∇u−1
j | dy − 4ε

and, hence,

Ê(u−1
j ) + 2‖Dsu−1

j ‖ ≥
∫

Ωb\Vε

| cof∇u−1
j |2

det∇u−1
j

dy + 2|Du−1
j |(Vε)− 4ε.

Now we use the convergences cof∇u−1
j ⇀ cof∇u−1 in L1(Ωb,R3×3) (Lemma 3.2), det∇u−1

j ⇀

det∇u−1 in L1(Ωb) (Proposition 3.4), detDuj ⇀ detDu in L1(Ω) (Proposition 3.1 vi) and

Proposition 3.4) and u−1
j

∗
⇀ u−1 in BV (Ωb,R3) (Proposition 3.1 v)), as well as Lemma 4.2 and

the convexity of H, to obtain

lim
j→∞

F (uj) ≥
∫

Ωb\Vε

| cof∇u−1|2

det∇u−1
dy +

∫
Ω
H(detDu) dx+ 2|Du−1|(Vε)− 4ε.

By using that |Du−1|(Vε) ≥ |Du−1|(V ) = ‖Dsu−1‖, sending ε to zero and going back to the
reference configuration in the integral in Ωb, we conclude. �

With Corollary 3.5 and Proposition 4.3, the proof of Theorem 1.1 is immediate.

5. Connection with harmonic map theory

In this section we propose another minimisation space B̃ and another functional F̃ that admits

a minimiser in B̃ and such that if such a minimiser is regular enough then it is a minimiser of the
neo-Hookean energy in the original space A. One feature of this new energy is that it does not
involve the inverse of the deformation map. It bears some similarity with the relaxed energy of
Bethuel-Brezis-Coron in the context of harmonic maps [8]. We note that in [6, Proposition 5.9],

in the axisymmetric setting, it was shown that B = B̃ and F = F̃ and that this latter energy
can be expressed in terms of Cartesian currents, cf. [18, 19].

We define

B̃ := {u ∈ H1(Ω,R3) : u = b in Ω \ Ω̃, detDu > 0 a.e.,u one-to-one a.e.,

imG(u,Ω) = Ωb a.e. and E(u) < +∞}
and

L(u) = sup{E(u, φ g) : φ ∈ C1
c (Ω), ‖Dφ‖∞ ≤ 1, g ∈ C1

c (R3,R3), ‖g‖∞ ≤ 1},
where E is defined in Definition 2.8. The new energy we propose is, for u ∈ B̃,

F̃ (u) = E(u) + 2L(u).
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We will use the following elementary observation. Any φ ∈ C1
c (Ω) is Lipschitz with constant

‖Dφ‖∞. Indeed, it is well known that the Lipschitz constant M of φ satisfies M ≥ ‖Dφ‖∞ and,

if Ω is convex, then M = ‖Dφ‖∞. Now consider the extension φ̃ of φ by zero. Then φ̃ ∈ C1
c (R3)

and ‖Dφ̃‖∞ = ‖Dφ‖∞. Thus, the Lipschitz constant M̃ of φ̃ is ‖Dφ‖∞, whereas M ≤ M̃ . This
proves the claim.

Of course, B ⊂ B̃. The following result shows that, under the assumption L(u) <∞, we have

B = B̃ and the quantities ‖Dsu−1‖ and L(u) are comparable.

Lemma 5.1. a) L(u) ≤ ‖Dsu−1‖ for all u ∈ B.

b) Any u ∈ B̃ with L(u) <∞ satisfies u ∈ B and ‖Dsu−1‖ ≤ 3L(u).

Proof. The first part of the proof is common for a) and b). Let u ∈ B̃. By Definition 2.8,

Propositions 2.1 and 2.7 and the relation A−1 = adjA
detA valid for A ∈ R3×3

+ , we have, for φ ∈
C∞c (Ω) and g ∈ C∞c (R3,R3), that

E(u, φ g) =

∫
Ω

[(cof Du(x)Dφ(x)) · g(u(x)) + detDu(x)φ(x) div g(u(x))] dx

=

∫
Ωb

[(
∇u−1(y)TDφ(u−1(y))

)
· g(y) + φ(u−1(y)) div g(y)

]
dy.

As φ ∈ C1
c (Ω) we have φ ◦ u−1 ∈ L∞(Ωb) and, by [1, Proposition 3.71] and Proposition 2.7,

that
∇(φ ◦ u−1) = (∇u−1)TDφ(u−1), (5.1)

which is in L1(Ωb) thanks to (2.5). We can then write

E(u, φ g) = 〈φ ◦ u−1,div g〉D′(Ωb) + 〈∇(φ ◦ u−1), g〉D′(Ωb,R3). (5.2)

Now we prove a). If we assume that u ∈ B, formula (5.2) can be expressed as

E(u, φ g) = 〈−D(φ ◦ u−1) +∇(φ ◦ u−1), g〉D′(Ωb,R3) = −〈Ds(φ ◦ u−1), g〉D′(Ωb,R3). (5.3)

Assume ‖Dφ‖∞ ≤ 1 and ‖g‖∞ ≤ 1. From (5.3) and the chain rule in BV (see, e.g., [1, Theorem
3.96]), using that φ is 1-Lipschitz we find that

|E(u, φ g)| ≤ ‖Ds(φ ◦ u−1)‖ ≤
∫
Ju−1

|[φ ◦ u−1]|dH2 + ‖Dcu−1‖

≤
∫
Ju−1

|[u−1]|dH2 + ‖Dcu−1‖ = ‖Dsu−1‖,

where [φ◦u−1] denotes the jump of φ◦u−1, and analogously for [φ◦u−1], and Ju−1 is the jump
set of u−1. Taking suprema in φ and g, part a) is proved.

Now we show b). If we assume that u ∈ B̃ and L(u) < ∞ then, by using (5.2), (5.1) and
(2.5) we find that, for ‖Dφ‖∞ ≤ 1 and ‖g‖∞ ≤ 1,

|〈φ ◦ u−1,div g〉D′(Ωb)| ≤ L(u) + ‖∇u−1‖L1(Ωb) ≤ L(u) +
1√
3
‖Du‖2L2(Ω).

Hence we find that φ ◦ u−1 ∈ BV (Ωb) for every φ ∈ C1
c (Ω) such that ‖Dφ‖L∞ ≤ 1. By

choosing φ(x) = xi for i = 1, 2, 3 in an open set U such that Ω̃b b U b Ωb, with xi the i-th

coordinate function, we see that u−1 ∈ BV (U,R3). As u−1 = b−1 in Ωb \ Ω̃b we conclude that
u−1 ∈ BV (Ωb,R3). Thus, u ∈ B. We can then use (5.3) to say that ‖Ds(φ ◦u−1)‖ ≤ L(u) and
thus, by using once more φ(x) = xi for i = 1, 2, 3, we find that

‖Dsu−1‖ ≤
3∑
i=1

‖Dsu−1
i ‖ =

3∑
i=1

|Dsu−1
i |(U) ≤ 3L(u).
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This concludes the proof of b). �

Corollary 5.2. Let {uj}j be a sequence in B̃. Assume that {F̃ (uj)}j is equibounded and that

uj ⇀ u in H1(Ω,R3). Then u is in B̃ and detDuj ⇀ detDu in L1(Ω).

Proof. From Lemma 5.1 we obtain that {uj}j is in B and {F (uj)}j is equibounded. From

Corollary 3.5 we obtain that the limit u is in B ⊂ B̃. Finally, Proposition 3.1 vi) and Proposition
3.4 show that detDuj ⇀ detDu in L1(Ω). �

We now prove the lower semicontinuity of F̃ in B̃.

Proposition 5.3. Let {uj}j be a sequence in B̃ such that {F̃ (uj)}j is equibounded and such
that uj ⇀ u in H1(Ω,R3) then

F̃ (u) ≤ lim inf
j→+∞

F̃ (uj).

Proof. By Corollary 5.2, the term
∫

ΩH(detDu)dx is semicontinuous. We shall check the semi-

continuity of ‖Du‖2L2(Ω) + 2L(u). As the supremum of lower semicontinuous functions is lower

semicontinuous, it suffices to check the semicontinuity of

u 7→ ‖Du‖2L2(Ω) + 2E(u, φ g)

for each φ ∈ C1
c (Ω), g ∈ C1

c (R3,R3) such that ‖Dφ‖∞ ≤ 1 and ‖g‖∞ ≤ 1. So take any such

φ and g, and let {uj}j be a sequence of maps in B̃ with {F̃ (uj)}j equibounded such that
uj ⇀ u in H1 and, without loss of generality, uj → u a.e. We have seen in Corollary 5.2 that
detDuj ⇀ detDu in L1(Ω). Hence thanks to [17, Proposition 2.61] we have that

Dj :=

∫
Ω

detDuj div g(uj)φ dx→
∫

Ω
detDudiv g(u)φ dx.

We now deal with the other term in E(u, φ g), which is∫
Ω

(cof Du(x)Dφ(x)) · g(u(x)) dx =

∫
Ω

(adjDu(x)g(u(x))) ·Dφ(x) dx.

We can see that

adjDug(u) = (∂2u ∧ ∂3u · g(u), ∂3u ∧ ∂1u · g(u), ∂1u ∧ ∂2u · g(u))T .

Set vj := uj −u. Thanks to the bilinearity of the vectorial product, by writing uj = u+ vj we
can check that

∂2uj ∧ ∂3uj = ∂2u ∧ ∂3u+ ∂2u ∧ ∂3vj + ∂2vj ∧ ∂3u+ ∂2vj ∧ ∂3vj .

Hence we can write ∫
Ω

(adjDuj g(uj)) ·Dφdx = Aj +Bj + Cj

with

Aj =

∫
Ω
g(uj) · (∂2u ∧ ∂3u∂1φ+ ∂3u ∧ ∂1u∂2φ+ ∂1u ∧ ∂2u∂3φ) dx,

Bj =

∫
Ω
g(uj) · (∂2vj ∧ ∂3u+ ∂2u ∧ ∂3vj)∂1φ dx+

∫
Ω
g(uj) · (∂3vj ∧ ∂1u+ ∂3u ∧ ∂1vj)∂2φ dx

+

∫
Ω
g(uj) · (∂1vj ∧ ∂2u+ ∂1u ∧ ∂2vj)∂3φ dx,

Cj =

∫
Ω
g(uj) · (∂2vj ∧ ∂3vj∂1φ+ ∂3vj ∧ ∂1vj∂2φ+ ∂1vj ∧ ∂2vj∂3φ) dx.
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Now we can see that Aj →
∫

Ω(adjDug(u)) ·Dφdx, since we have that g(uj)→ g(u) a.e. and
we can apply the dominated convergence theorem. Besides, we have that Bj → 0 since Dvj ⇀ 0
in L2(Ω) and g(uj)→ g(u) in L2(Ω).

Now we treat the term Cj . We express Cj =
∫

Ω Vj ·Dφdx with

Vj = (g(uj) · ∂2vj ∧ ∂3vj , g(uj) · ∂3vj ∧ ∂1vj , g(uj) · ∂1vj ∧ ∂2vj)
T .

By [8, Lemma 1], we have |Vj | ≤ 1
2 |Dvj |

2, and, hence, since ‖Dφ‖∞ ≤ 1,

|Cj | =
∣∣∣∣∫

Ω
Vj ·Dφdx

∣∣∣∣ ≤ ∫
Ω
|Vj |dx ≤

1

2

∫
Ω
|Dvj |2 dx.

Thus we have seen that

‖Duj‖2L2(Ω) + 2E(uj , φ g) =

∫
Ω

[
|Du|2 + |Dvj |2 + 2Du ·Dvj

]
dx+ 2 (Dj +Aj +Bj + Cj)

≥
∫

Ω

[
|Du|2 + 2Du ·Dvj

]
dx+ 2 (Dj +Aj +Bj) ,

so

lim inf
j→∞

[
‖Duj‖2L2(Ω) + 2E(uj , φ g)

]
≥ ‖Du‖2L2(Ω) + 2E(u, φ g),

which gives the desired semicontinuity. �

As a consequence of Corollary 5.2 and Proposition 5.3, we obtain the existence of minimisers

of F̃ in B̃.
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