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Abstract. We prove the general version of point-to-point constructive con-
trollability results for control affine systems on compact manifolds with drift
under nonholonomic constraints on controls. Namely, we find the sufficient
(and almost necessary) conditions when arbitrarily small controls satisfying
such constraints can be found to steer the ODE from one given state to an-
other. This result provides controllability for systems having invariant mea-
sures supported on the whole phase space and being finite (for example, for
divergence-free drifts) or, more generally, for nonwandering flows.

1. Introduction

Consider the ODE over a Cp – smooth (p ∈ N
⋃
{∞}) closed manifold M

(1.1) ẋ = V (x),

where V is a given sufficiently smooth vector field on M . We assume that M
is a Riemannian manifold with the norm in each tangent space TzM at z ∈ M
denoted by | · |z. Recall some classical definitions.

Definition 1.1. Let ε > 0, T > 0. We say that a continuous function ξ :
[0, T ] → M with a piecewise continuous derivative ξ̇ is an ε – solution of (1.1)

if |ξ̇(t)− V (ξ(t))|ξ(t) ≤ ε for all t where the derivative exists.

Definition 1.2. The ODE (1.1) is called controllable by arbitrary small controls
or chain transitive, if for every couple of points x0, x1 ∈ M and every ε > 0
there exists a T ≥ 1 and an ε – solution ξ : [0, T ] → M such that ξ(0) = x0 and
ξ(T ) = x1.

Of course, such a property implies that the manifold M is connected. On
the other hand, for flows on connected manifolds, controllability is equivalent to
chain recurrence. Finally, controllability implies that for any ε > 0 an any points
x0, x1 ∈ M there exists a T ≥ 1, and a control function u(t, x) such that u(t, x)
is ε – small, i.e. ∥u∥∞ := supz∈M supt∈[0,T ] |u(t, z)|z ≤ ε and there is a solution of
system ẋ = V (x) + u(t, x) such that x(0) = x0, x(T ) = x1.

Key words and phrases. global controllability, control affine system, nonholonomic control,
Hörmander condition.
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In this paper, we consider the classical problem of controllability of (1.1) under
nonholonomic constraints. Namely, given the distribution of planes provided by
a finite number of smooth vector fields Xj j = 1, . . . ,m (which do not necessarily
form a basis of TxM at any point x), we prove the existence of a sufficiently
small control steering the state variable from one given point to another. In
other words, the control problem becomes, given x0 ∈ M and x1 ∈ M , to find
uj : [0, T ] → R, j = 1, . . . ,m such that the boundary value problem

(1.2)
ẋ = V (x) + u1(t)X1(x(t)) + . . .+ um(t)Xm(x(t)),

x(0) = x0, x(T ) = x1

is solvable while

(1.3) u(t, x) := u1(t)X1(x(t)) + . . .+ um(t)Xm(x(t))

is ε – small.

1.0.1. Background. In the driftless case V = 0 the controllability result is given
by the Chow-Rashevskǐı theorem [4, 8], see also [6]. Namely, in this case, the
control problem (1.2) is solvable when the vector fields Xj, j = 1, . . . ,m sat-
isfy Hörmander (also called Lie bracket generating) condition, which means that
the distribution of planes given by the Lie algebra generated by all Xj in every
x ∈ M is the full tangent space TxM . In other words, the rank of this distri-
bution at every point is equal to the dimension of M (see Section 3 for precise
definition). When the vector fields Xj are real analytic, this is also necessary for
nonholonomic controllability by the Nagano-Sussmann theorem (also known as
Orbit Theorem) [9], see also [10].

For the case V ̸= 0, the situation is much more subtle. If the distribution of
planes generated by all Xj spans the whole tangent space TxM for every x ∈M ,
controllability is provided when all the points of M are chain recurrent for the
flow generated by V , see [2]. In particular, this is true if V is divergence-free (see
Theorem 4.2.7 in [1] where it is formulated for real analytic vector fields).

In the presence of nonholonomic constraints, the natural requirement is that of
Hörmander condition for the vector fields V , X1, . . . , Xm. In general, this is not
sufficient for controllability. However, this requirement is sufficient in the case
when the flow, generated by V , is recurrent [3].

1.0.2. Our contribution. In this paper, we prove a general sufficient condition
on nonholonomic controllability of (1.1). In a sense, this condition is almost
necessary once the drift V and vector fields Xj are sufficiently smooth. Namely,
in this case, controllability is guaranteed if vector fields V , X1, . . . , Xm satisfy
the Hörmander condition, and (1.1) is controllable by arbitrarily small controls
(without any nonholonomic constraints). Moreover, in this case, the controls uj
can be chosen so that u = u(t, x) given by (1.3) be as small as desired. This gives
an equivalence of controllability by arbitrarily small controls in holonomic and
nonholonomic settings once V , X1, . . . , Xm satisfy Hörmander condition.
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The main obstacle for our proofs is the fact, that one cannot a priori direct
the system infinitesimally in the direction opposite the drift. Therefore, in the
classical results cited above, some conditions on the drift are used, mainly the re-
currence property. By contrast, in our paper, we only assume the controllability
of the system with arbitrarily small controls without any nonholonomic con-
straints, which is, of course, necessary for nonholonomic controllability. Finally,
mention that all our results are constructive. Namely, we provide an algorithm
to convert an arbitrary control to a nonholonomic one. Similar results may also
be obtained for flows on non-compact (including Euclidean spaces) in some as-
sumptions on the considered vector fields. This work, requiring much technical
efforts, is postponed to further papers.

2. Notation and preliminaries

With a slight abuse of notation, we write a vector field X over M as X : M →
TM with TM standing for the tangent bundle of M , meaning that X(z) ∈ TzM
for every z ∈ M . By Ck(M,TM) we denote the set of all X : M → TM with
all derivatives up to the order k continuous (resp. all derivatives continuous, if
k = ∞). Denote φV

t (y) := x(t), where x(·) is a solution of the system (1.1)
satisfying x(0) = y. Similarly, we define flows for other systems.
For any metric space M , we denote by Bρ(z) the open ball centered at z ∈M

with radius ρ > 0, and for E ⊂ M its closure is denoted by Ē. Along with the
notation presented in Introduction, we also denote by | · | the Euclidean norm in
a finite-dimensional Euclidean space Rn, and by ∥ · ||∞ the supremum norm for
real-valued functions defined over an interval. Given real numbers a and b, we
denote their minimum by a ∧ b.

The matrix norm ∥·∥ for real n×nmatrices will always be chosen to correspond
to the Euclidean norm | · | in Rn. By ej, we denote the j-th unit coordinate vector
in Rn. Given a Lipschitz continuous function/vector field F we denote by LipF
its Lipschitz constant. Finally, we use the notion idn for the unit matrix n× n.

3. Hörmander conditions

Let Xj : M → TM , j = 0, . . . ,m be vector fields over a smooth manifold M .
We consider the set Xp of all Xj and all their Lie brackets of orders ≤ p (if the
vector fields are smooth enough so that the respective brackets be defined), i.e.

Xp = {X0, . . . , Xm} ∪
m⋃

i,j=0

[Xi, Xj] ∪
m⋃

i,j,k=0

[[Xi, Xj], Xk] ∪ . . .

For an Y ∈ Xp, we inductively define the maximum order of Lie brackets forming
Y (frequently abbreviated as the order of Lie brackets, or just order, if there is
no possibility of confusion) as follows:

(i) it is zero when Y = Xj for some j,
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(ii) if Y = [U, V ] for some {U, V } ⊂ Xp, then the maximum order of Lie
bracket of this particular representation of Y is maximum between the
orders of U and V plus one, and the maximum order of Lie brackets of Y
is minimum among all the orders of possible representations.

We denote then by Xk the set of all Xj and all their Lie brackets up to the
maximum order k ∈ N, so that Xp = ∪kXk. For instance, if dimM = 3, and
X1, X2 is a pair of vector fields over M generating noninvolutive distribution of
planes, then the orders of X1 and X2 are zero, and the order of [X1, X2] is one,
and hence X0 = {X1, X2}, X1 = {[X1, X2]}.

Definition 3.1. The vector fields Xj : M → TM , j = 0, . . . ,m satisfy Hörman-
der condition, if Xj ∈ Cp(M,TM) for all j = 0, . . . ,m and

span {Y (x) : Y ∈ Xp} = TxM.

Remark 3.2. Observe that for a compact manifold, the Hörmander condition
implies that even for p = ∞ a finite number of vector fields Y is enough to span
spaces TxM for all x ∈M .

Example 3.3. Let M := (R/Z)3 be the three-dimensional torus. Assume 0 <
R1 < R2 < R3 < R4 < R5 < 0.5, and let η45 stand for a smooth function such
that η45(x) = 1 for x ∈ BR4(0), η45(x) = 0 for x ̸∈ BR5(0) and |η45(x)| ≤ 1
for all x ∈ M . Consider the vector fields X1(x) := (e1 + x2e3)η45(x), X2(x) :=
(e2 − x1e3)η45(x). Let η12 be a C∞ smooth function such that η12(x) = 1 if
x ∈ B̄R1(0), η12(x) = 0 for x ̸∈ BR2(0) and |η12(x)| ≤ 1 for all x ∈ M , and
consider the vector fields

X3(x) := e1(1− η12(x)), X4(x) := e2(1− η12(x)), X5(x) := e3(1− η12(x)).

We have then that the vector fields X1, X2, X3, X4, X5 satisfy Hörmander condi-
tion. In fact, let R := min{R4 − R3, R3 − R2}. Then for every z ∈ BR3(0) one
has BR(z) ⊂ BR4(0) and the 3 × 3 matrix Y1(z) := (X1(z), X2(z), [X1, X2](z))
is non-degenerate for any z. On the other hand, for every y ̸∈ BR3(0) one has
BR(y) ⊂ Ω2 := M \ B̄R2(0) and the 3× 3 matrix Y2(z) := (X3(z), X4(z), X5(z))
is an identity matrix for all z ∈ BR4(0).

4. Technical tools

Our principal tool is the following statement proven in Appendix A.

Lemma 4.1. There is an ε0 > 0 such that for every Y ∈ Xk there exist an
α = α(Y ) ∈ (0, 1], l = l(Y ) ∈ N, cj = cj(Y ) > 0, j = 1, . . . , l, and vector fields
{Z1, . . . , Zl, Z

′
1, . . . , Z

′
l} ⊂ {0}

⋃
{V + Xj, V − Xj : j = 1, . . . ,m} for which the

function ∆: (−ε̄0, ε̄0)× Rn → Rn defined by

(4.1) ∆(ε, x) :=

{
(φZ1

c1εα ◦ . . . ◦ φZl
clεα

)(x)− φV∑
j cjε

α(x), ε ≥ 0,

(φ
Z′
1

−c1|ε|α ◦ . . . ◦ φZ′
l

−cl|ε|α)(x)− φV
−

∑
j cj |ε|α

(x), ε < 0,



CONSTRUCTIVE NONHOLONOMIC CONTROLLABILITY OF AFFINE SYSTEMS 5

satisfies
∆′

ε(ε, x)|ε=0 = Y (x).

Under conditions of Lemma 4.1 we denote

τY (ε) :=

{ ∑k
j=1 cjε

α, ε ≥ 0,

−
∑k

j=1 cj|ε|α, ε < 0,
and

ψ(Y, ε)(x) :=

{
(φZ1

c1εα ◦ . . . ◦ φZl
clεα

)(x), ε ≥ 0,

(φ
Z′
1

−c1|ε|α ◦ . . . ◦ φZ′
l

−cl|ε|α)(x), ε < 0.

With these notations, we prove the key statement of this section.

Lemma 4.2. Let Ω ⊂ Rn be an open set. The following assertions hold.

(i) If V (x) ̸= 0, and for some t > 0 and x ∈ Ω the vector fields

{Y1, . . . , Yn−1} ⊂ Xk

are such that the vectors Y1(z), . . . , Yn−1(z), Yn(z) with Yn(z) := V (z) form
a basis of TzΩ = Rn for z := φV

t (x), then denoting

(4.2)
Φ(ε0, ε1, . . . , εn−1, z) :=

(ψ(Yn−1, εn−1) ◦ . . . ◦ ψ(Y1, ε1) ◦ φV
−

∑n−1
i=1 τYi (εi)

◦ φV
ε0
)(z)− z,

one has that Φ is continuous in the neighborhood of zero

{(ε0, . . . , εn−1) ∈ Rn : |(ε0, . . . , εn−1)| < t,Φ(ε0, . . . , εn−1, z) ∈ Ω},
and detΦ′

(ε0,...,εn−1)
(0, . . . , 0, z) ̸= 0.

(ii) If V (x) = 0 and the vector fields {Y1, . . . , Yn} ⊂ Xk are such that the
vectors Y1(x), . . . , Yn(x) form a basis of TxΩ, then denoting

Φ(ε1, . . . , εn, x) := (ψ(Yn, εn) ◦ . . . ◦ ψ(Y1, ε1) ◦ φV
−

∑n
i=1 τYi (εi)

)(x)− x,(4.3)

one has that Φ is a continuous map in a neighborhood of zero,

{(ε1, . . . , εn) ∈ Rn : |(ε0, . . . , εn−1)| < t,Φ(ε1, . . . , εn, z) ∈ Ω},
and detΦ′

(ε0,...,εn−1)
(0, . . . , 0, x) ̸= 0.

Proof. Given the set of vector fields {Yj}, the continuity of the map Φ is obvious.
Clearly, ψ(Yj, 0) is the identity map. So, if all εj = 0 except for j = i ̸= 0, one

has Φ(0, . . . , 0, εi, 0, . . . , 0, z) = ψ(Yi, εi) ◦ φV
−τYi (εi)

(z) − z. But from Lemma 4.1

with Yi in place of Y , εi in place of ε and φV
−τYi (εi)

(z) in place of x we get

ψ(Yi, εi) ◦ φV
−τYi (εi)

(z) = φV
−τYi (εi)

(z) + εiYi

(
φV
−τYi (εi)

(z)
)
+ o(εi)

= z + εi(Yi(z) + o(1)) + o(εi) = z + εiYi(z) + o(εi)

as εi → 0 so that

(4.4) Φ′
εj
(0, . . . , 0, z) = Yj(z).
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On the other hand, Φ(ε0, 0, . . . , 0, z) = φV
ε0
(z)− z, so that

(4.5) Φ′
ε0
(0, . . . , 0, z) = V (z).

It is known that the existence of derivatives in the direction of the basis vectors
does not imply the existence of the full derivative at zero (see the map (x, y) 7→
x + y + 3

√
xy as an appropriate counterexample). This is why we need Lemma

4.3, formulated several lines below and proven in Appendix B.
Then relationships (4.4) and (4.5) imply that the corresponding Jacobi matrices

are non-degenerate. □

Lemma 4.3. Both mappings, defined by the formulae (4.2) and (4.3) have a de-
rivative at zero with respect to n-tuples of variables (ε0, . . . , εn−1) and (ε1, . . . , εn)
respectively.

To finish our proofs we need a technical statement, proven in Appendix C.

Lemma 4.4. Let U be a neighbourhood of zero in Rn, N be a compact metric
space, and a function Φ : U × N 7→ Rn be continuous and let there exist an
invertible Jacobi matrix A(x) := Φ′

q(0, x) that is a continuous function of x.
Then for any σ > 0 there exists a δ > 0 such that for any x ∈ M the following
inclusion holds:

Bδ(0) ⊂ Φ(Bσ(0), x).

Now we go back to our problem of local controllability for the flow on the
manifold M . We let R(x0, L) stand for the set of points attainable from the
given point x0 ∈ M by using controls bounded in the uniform norm by L > 0
and prove the following statement.

Lemma 4.5. Let M be a compact Riemannian manifold and vector fields

V,X1, . . . , Xm

satisfy the Hörmander condition. Then for any δ > 0 there is a ρ > 0 such that
for any point x and z of M satisfying z = φV

t (x) with t ≥ δ all the points in
the ρ-neighborhood of z are attainable from the initial point x with the help of
piecewise constant controls uj : [0, T ] → {−1, 0, 1}, j = 1, . . . ,m. In particular,
Bρ(z) ⊂ R(x, 1) (see Fig. 1). In the case V (x) = 0 one has Bρ(x) ⊂ R(x, 1).

Proof. Taking a chart (ψ,U) on M with U ⊂ M being an open subset and
ψ : U → Ω ⊂ Rn, we can transfer the vector fields and the respective flows to
Ω. Now we can prove the existence of ρ as claimed in Lemma 4.5 but possibly
depending on z. Here we apply Lemma 4.4 to the function Φ(·, ·) acting from
Bt(0)×M to Ω. The existence of ρ independent on z follows from the compactness
of M and the fact that the radius of the ball attainable from a point z is a
continuous function of z. □
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Figure 1. Local controllability.

5. Controllabulity

Theorem 5.1. Let M be a compact Riemannian manifold with dimM = n.
Suppose that

(i) the vector fields V , X1, . . . , Xm satisfy Hörmander condition and
(ii) the problem (1.1) be controllable by arbitrary small controls.

Then for any given {x0, x1} ⊂ M and σ > 0 there is a T > 0 and uj : [0, T ] →
{0, σ}, j = 1, . . . ,m with the above properties, so that in particular R(x0, σ) =M
for arbitrarily small σ > 0 and every x0 ∈ M , and hence, for every ε > 0 one
can take σ to be so small that ∥u∥∞ ≤ ε, where u is defined by (1.3).

Proof. First of all, we formulate a simple statement that follows from Picard’s
approximations method [5, Chapter II,§1].

Lemma 5.2. Let x(·) ∈ Rn, y(·) ∈ Rn satisfy ẋ = V (x), ẏ = V (y) + v(t),
x(0) = y(0) = z for some z ∈ Rn. Then |x(t)− y(t)| ≤ ∥v∥∞(eLipV t − 1)/LipV .

Now fix a δ ∈ (0, diamM/4∥V ∥∞ ∧ r/2∥V ∥∞). By Lemma 4.5 there is a ρ > 0
such that for every z ∈ M and for every x ∈ M satisfying z = φV

t (x) with t ≥ δ
one has that all the points in the ρ-neighborhood of z are attainable from the
initial point x with the help of piecewise constant controls uj : [0, T ] → {−1, 0, 1},
j = 1, . . . ,m, so that in particular Bρ(z) ⊂ R(x, 1),with ρ > 0 independent on z.
Let ε ∈

(
0, ∥V ∥∞ ∧ ρe−CLdiamM/2∥V ∥∞

)
. By the chain transitivity of system

(1.1), there is a continuous piecewise smooth curve x̃ : [0, T ] →M satisfying

˙̃x = V (x̃(t)) + u(t, x̃(t)), x̃(0) = x0, x̃(T ) = x1,

with T ≥ 1 for some u ∈ [0, T ]×M → TM with |u(t, x)|x̃(t) ≤ ε.
Let N ∈ N∩ (T/2δ, T/δ] (the latter intersection is nonempty because T > 2δ),

i.e. δ < T/N ≤ 2δ. Now, for each j = 0, . . . , N − 1 setting zj := φV
T/N(x̃(jT/N)),

we get Bρ(zj) ⊂ R(x̃(jT/N), 1) with piecewise constant controls taking only
values 0 or ±1. On the other hand, the inequalities

∥V ∥∞T/N ≤ 2δ∥V ∥∞ ≤ r,(5.1)

(∥V ∥∞ + ε)T/N ≤ 2δ(∥V ∥∞ + ε) ≤ 4δ∥V ∥∞ ≤ r,(5.2)
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imply both zj ∈ Br(x̃(jT/N)) and x̃((j+1)T/N) ∈ Br(x̃(jT/N)). Therefore, by
Lemma 5.2 applied with ψ∗V instead of V , ψ∗u instead of v, z := ψ(x̃(jT/N))
and t := T/N , we get

|ψ(zj)− ψ(x̃((j + 1)T/N))| ≤ CεeCLT/N ≤ Cεe2CLδ ≤ Cρ,

and hence x̃((j + 1)T/N) ∈ Bρ(zj). Lemma 4.5 implies x̃((j + 1)T/N) ∈
R(x̃(jT/N), 1), and by induction on j we get therefore x̃(T ) ∈ R(x̃(0), 1), that
is, x1 ∈ R(x0, 1) with piecewise constant controls taking only values 0 or ±1.

Furthermore, if D := maxj=1,...,m ∥Xj∥∞ ≤ ∞, then given ε > 0 let X̃j :=

εXj/mD for all j = 1, . . . ,m. The vector fields X̃j still satisfy Hörmander con-
dition. Therefore there exist a T > 0 and piecewise constant control functions
ũj : [0, T ] → {−1, 0, 1} such that the boundary value problem

ẋ = V (x) + ũ1(t)X̃1(x(t)) + . . .+ ũm(t)X̃m(x(t)), x(0) = x0, x(T ) = x1

be solvable. It suffices to set then uj := εũj/mD, j = 1, . . . ,m, to see that (1.2)
is solvable with u is defined by (1.3) satisfying ∥u∥∞ ≤ ε. □

The following corollary is valid.

Corollary 5.3. LetM be a C∞ smooth compact closed manifold, and C∞ smooth
vector fields V and Xj, j = 1, . . . ,m are such that V,X1, . . . , Xm satisfy Hörman-
der condition. The following conditions are sufficient for the ODE (1.1) to be
controllable by arbitrarily small controls belonging to the distribution of planes
defined by the vector fields X1. . . . , Xm:

(i) V has a finite invariant measure µ (that is div µV = 0 in the sense of
distributions) with suppµ = M . In particular, this is true if div V = 0
or if periodic points of (1.1) are dense in M .

(ii) All points of M are nonwandering for (1.1).

Proof. If V has a finite invariant measure µ, then by Poincaré recurrence theorem
µ-a.e. and hence all x ∈ suppµ is a nonwandering point for the flow φV

t , and
hence if suppµ =M , then every X ∈M is nonwandering for (1.1), which means
that (i) follows from (ii). To prove (ii) note that if {x0, x1} ⊂ M belongs to the
set of nonwandering points for (1.1), then by proposition 3.3 of [7] for every ε > 0
there is a T > 0 and a control function u ∈ L∞((0, T );TM) with |u(t, x)|x(t) ≤ ε
for all t ∈ (0, T ) such that the problem (1.2) admits a solution. Thus, under the
conditions of (ii) he problem (1.1) is controllable by arbitrary small controls, and
it suffices to refer now to Theorem 5.1 recalling that all he vector fields V and
Xj, j = 1, . . . ,m and their derivatives are continuous. □

Remark 5.4. The above corollary is clearly valid if the manifoldM , and the vector
fields V and Xj, j = 1, . . . ,m be a Ck rather than C∞ smooth with k ≥ 2 such
that span {Y (x) : Y ∈ Xk} = TxM for all x ∈M .
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Appendix A. Proof of Lemma 4.1

In this section, we demonstrate how one can shift solutions of system (1.1) in
prescribed directions of the set X by adding appropriate perturbations to system
(1.1). To this aim, fix the vector field Y (x) from the statement of the Lemma.

Given a Lipschitz continuous concerning the second argument vector field
U(t, ·), consider the system

ẋ = V (x) + U(t, x), x ∈ Rn.

and compare its solution φV+U
t (x0) satisfying initial condition x(0) = x0 with the

solution φV
t (x0) of system (1.1) satisfying the same initial condition. Recall that

∆U
t (x0) = φV+U

t (x0)− φV
t (x0).

Proof of Lemma 4.1. First of all, recall a simple estimate:

(A.1)

∫ ε

0

f(t) dt = f(ε/2)ε+O(ε3)

for any C2 – smooth function f : R → Rn. One can obtain this estimate by
writing down the Taylor series for f in ε/2.

We prove Lemma 4.1 by induction by the maximum order of Y (see the begin-
ning of Section 3).

For any k ∈ N and any Y ∈ Xk we set τY (ε) = τk = 25(1−2−k)ε2
−k
. In particular,

τ0 = ε and τk+1 = 4
√
2τk for any k ∈ Z+.

Step 1 (the simplest case). For any Y ∈ X0. For Y = V , the statement is
trivial. Let Y ∈ {X1, . . . , Xk}, consider the system ẋ = V (x) + Y (x). Here we
set Z1 = Y , c1 = 1, α = 1 so that ∆(ε, x0) = ∆Y

ε (x0). By Lemma 5.2,

|∆Y
ε (x0)| ≤ ∥Y ∥∞(exp(LipV ε)− 1)/LipV

where LipV is the Lipschitz constant for the vector field V . Therefore, there
exists a positive constant C such that

(A.2) |∆Y
ε (x0)| ≤ Cε∥Y ∥∞

for any ε sufficiently small. Now, proceed to more precise estimates. Clearly,

φV
ε (x0) = x0 +

∫ ε

0
V (φV

t (x0)) dt and

φV+Y
ε (x0) = x0 +

∫ ε

0

(
V (φV+Y

t (x0)) + Y (φV+Y
t (x0))

)
dt.
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Consequently, using the estimate (A.2), we obtain

∆Y
ε (x0) =

ε∫
0

Y (φV+Y
t (x0)) dt+

ε∫
0

(
V (φV+Y

t (x0)− V (φV
t (x0))

)
dt =

ε∫
0

Y (φV+Y
t (x0)) dt+

ε∫
0

(
DV (φV+Y

t (x0))∆
Y
t (x0) +O(∆Y

t (x0)
2)
)
dt =

εY (x0) +O(ε2) as ε→ 0.

Step 2 (base of induction). In order to shift a solution in the directions of
Lie brackets like [Xi, V ] or [Xi, Xj], we derive the analog of the famous Trotter
formula. Consider two vector fields Y1, Y2 ∈ X0. We introduce a scheme that
provides a shift of the solution in the direction close to [Y1, Y2]. Consider the
vector field which depends on t (here δ > 0 will be specified later):

U(t, x, δ) :=


Y1(x), if t ∈ [0, δ),
Y2(x), if t ∈ [δ, 2δ),
−Y1(x), if t ∈ [2δ, 3δ),
−Y2(x), if t ∈ [3δ, 4δ).

This situation corresponds to the upper (solid lines) contour of Figure 2 below.
Now consider the respective ODE

ẋ = V (x) + U(t, x, δ)

on the time segment [0, 4δ] and the corresponding solution φV+U
t (x0) with initial

condition x(0) = x0. Similarly to (A.2), we obtain

(A.3) sup
t∈[0,4δ]

|∆U
t (x0)| = O(δ), sup

t∈[0,4δ]
|φV+U

t (x0)− x0| = O(δ).

Using formulas

(A.4)

φV+U
4δ (x0) = x0 +

4δ∫
0

(
V (φV+U

t (x0)) + U(t, φV+U
t (x0)), δ

)
dt,

φV
4δ(x0) = x0 +

4δ∫
0

V (φV
t (x0)) dt,

we deduce that

(A.5) ∆U
t (x0) =


tY1(x0) +O(δ2), if t ∈ [0, δ],

δY1(x0) + (t− δ)Y2(x0) +O(δ2), if t ∈ [δ, 2δ],

(3δ − t)Y1(x0) + δY2(x0) +O(δ2), if t ∈ [2δ, 3δ],

(4δ − t)Y2(x0) +O(δ2), if t ∈ [3δ, 4δ].

Now, we proceed to more precise estimates. Equation (A.4) implies

(A.6)

∆U
4δ(x0) = φV+U

4δ (x0)− φV
4δ(x0) =

4δ∫
0

(
V (φV+U

t (x0))− V (φV
t (x0))

)
dt+

4δ∫
0

U(t, φV+U
t (x0), δ) dt
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Let us write the asymptotic estimates for both integrals in the right-hand sides
of (A.6) using (A.5). Obviously, for any t ∈ [0, 4δ)

V (φV+U
t (x0))− V (φV

t (x0)) = DV (φV
t (x0))∆

U
t (x0) +O(∆U

t (x0)
2) =

[due to (A.3)] = DV (φV
t (x0))∆

U
t (x0) +O(δ2).

Thus,

(A.7)

4δ∫
0

(
V (φV+U

t (x0)) − V (φV
t (x0))

)
dt =(

δ∫
0

+
2δ∫
δ

+
3δ∫
2δ

+
4δ∫
3δ

)(
V (φV+U

t (x0))− V (φV
t (x0))

)
dt =

δ
3∑

l=0

DV

(
φV

(2l+1)δ
2

(x0)

)
∆U

(2l+1)δ
2

(x0) +O(δ3).

Here we used (A.1) to obtain the last line of the latter equality. Applying esti-
mates (A.5) we can rewrite (A.7) as follows:

(A.8)

4δ∫
0

(
V (φV+U

t (x0))− V (φV
t (x0))

)
dt =

δ2

2
DV

(
φV

δ
2

(x0)
)
Y1(x0) + δ2DV

(
φV

3δ
2

(x0)
)(

Y1(x0) +
Y2(x0)

2

)
+

δ2DV
(
φV

5δ
2

(x0)
)(

Y1(x0)

2
+ Y2(x0)

)
+

δ2

2
DV

(
φV

7δ
2

(x0)
)
Y2(x0) +O(δ3) =

2δ2DV (x0)(Y1(x0) + Y2(x0)) +O(δ3).

Now we estimate the second term of (A.6):

(A.9)

4δ∫
0

U(t, x0, δ) dt = [by (A.1)] =

ε
(
Y1

(
φV+U

δ
2

(x0)
)
+ Y2

(
φV+U

3δ
2

(x0)
)
−

Y1

(
φV+U

5δ
2

(x0)
)
− Y2

(
φV+U

7δ
2

(x0)
))

=

δ
(
Y1

(
φV+U

δ
2

(x0)
)
− Y1

(
φV+U

5δ
2

(x0)
)
+

Y2

(
φV+U

3δ
2

(x0)
)
− Y2

(
φV+U

7δ
2

(x0)
))

+O(δ3).
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Here we applied (A.1), (A.5) and (A.3) once again. Besides,

φV+U
δ
2

(x0)− φV+U
5δ
2

(x0) =
5δ/2∫
δ/2

(
V (φV+U

t (x0)) + U(t, φV+U
t (x0), δ)

)
dt =

5δ/2∫
δ/2

V (φV+U
t (x0)) dt+

2δ∫
δ

U(t, φV+U
t (x0), δ) dt+O(δ2) =

−δ(2V (x0) + Y2(x0)) +O(δ2).

Similarly, φV+U
3δ
2

(x0)− φV+U
7δ
2

(x0) = −δ(2V (x0) + Y1(x0)) +O(δ2).

All in all, we obtain from (A.9) that

4δ∫
0

U(t, x0, δ) dt = 2δ2 (DY1(x0) +DY2(x0))V (x0) + δ2[Y1, Y2](x0).

The last formula, taken together with (A.8) implies that

(A.10)

∆U
4δ(x0) = 2δ2DV (x0)(Y1(x0) + Y2(x0))−

2δ2(DY1(x0) +DY2(x0))V (x0)+

δ2DY2(x0)Y1(x0)−DY1(x0)Y2(x0) +O(δ3) =

2δ2[Y1 + Y2, V ](x0) + δ2[Y1, Y2](x0) +O(δ3).

This asymptotic estimate is the most important technical result of this section.

Remark A.1. Observe that, taking the zero vector field instead of Y2, we obtain
the expression 2δ2[Y1, V ](x0) +O(δ3) in the right-hand side of (A.10).

Let Y1 and Y2 be not collinear to V . In order to ‘model’ the Lie bracket [Y1, Y2]
we have to eliminate the ‘extra term’ 2δ2[Y1 + Y2, V ](x0) at the right-hand side
of (A.10). To do this, we use the simple formula [Y1, Y2] = [−Y1,−Y2]. Besides,

we ‘rescale’ the perturbation, selecting δ =
√
ε/2. Let Ỹ1 = Y1 for ε ≥ 0 and

Ỹ1 = −Y1 for ε ≤ 0. All in all, we apply the perturbation

(A.11) W (t, x, ε, [Y1, Y2]) :=



Ỹ1(x), if t ∈ [0,
√
|ε|/2),

Y2(x), if t ∈ [
√
|ε|/2, 2

√
|ε|/2),

−Ỹ1(x), if t ∈ [2
√
|ε|/2, 3

√
|ε|/2),

−Y2(x), if t ∈ [3
√
|ε|/2, 4

√
|ε|/2),

−Ỹ1(x), if t ∈ [4
√
|ε|/2, 5

√
|ε|/2),

−Y2(x), if t ∈ [5
√
|ε|/2, 6

√
|ε|/2),

Ỹ1(x), if t ∈ [6
√
|ε|/2, 7

√
|ε|/2),

Y2(x), if t ∈ [7
√
|ε|/2, 8

√
|ε|/2).

Roughly speaking, we add the ‘dashed contour’ of Figure 2 to cancel brackets
[Y1 + Y2, V ], see (A.12) below. Figure 3a illustrates what the trajectories of the
perturbed system look like in the considered case.
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Figure 2. The order of applying controls while modeling the Lie
bracket [Y1, Y2].

If φV+W
t (x0) is the solution of the corresponding system with the initial con-

dition x(t0) = x0, we have, due to (A.10)

(A.12)

∆W

8
√

|ε|/2
(x0) = φV+W

8
√

|ε|/2
(x0)− φV

8
√

|ε|/2
(x0) =

ε[Y1 + Y2, V ](x0) +
ε

2
[Y1, Y2](x0)−

ε[Y1 + Y2, V ](x0) +
ε

2
[Y1, Y2](x0) +O(|ε|3/2) =

ε[Y1, Y2](x0) +O(ε3/2), see Fig. 4b.

Remark A.2. In order to obtain Lie brackets of the form [Y1, V ], we consider the
perturbation

W (ε, t, x) =


Ỹ1(x) if t ∈ [0,

√
|ε|/2),

0 if t ∈ [
√
|ε|/2, 2

√
|ε|/2),

−Ỹ1(x) if t ∈ [2
√

|ε|/2, 3
√
|ε|/2),

0 if t ∈ [3
√
|ε|/2, 8

√
|ε|/2).

Thus, we proved the lemma for vector fields of orders 0 and 1.

Step 3. Before proceeding to the vector fields of higher orders, we prove the
following technical statement. It will allow us to apply all the perturbations on
intervals of time of the same length.

Lemma A.3. Let θ1 and θ2 be strictly increasing continuous functions and Y ∈
Xp be a vector field such that

(1) θ1(0) = θ2(0) = 0 and θ1(ε) < θ2(ε) for any ε > 0;
(2) there exists a control WY = W (t, x, ε, Y ), defined for t ∈ [0, θ1] such that

the solution φV+WY
t (x0) of system ẋ = V (x) +W (t, x, ε, Y ) is such that

φV+WY

θ1(ε)
(x0) = φV

θ1(ε)
(x0) + εY (x0) + o(ε).
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Figure 3. Trajectories of perturbed and unperturbed systems when
we model a) [Y1, Y2] with Y1, Y2 ̸= V ; b) [Y1, V ].

Then, if we set W (t, x, ε, Y ) = 0 for t > θ1(ε), we have

φV+WY

θ2(ε)
(x0) = φV

θ2(ε)
(x0) + εY (x0) + o(ε).

Proof of Lemma A.3. Let ∆WY
θ (x0) = φV+WY

θ (x0)− φV
θ (x0). Obviously,

∆WY

θ1(ε)
(x0) = εY (x0) + o(ε).

Consider the linear system

(A.13) u̇ = DV (φV
t (x0))u.

Let Ψ(t, s) be the fundamental matrix of (A.13) with Ψ(s) = idn. Observe that
Ψ(θ2(ε), θ1(ε)) = idn + o(1) as ε→ 0 since both the values θi(ε) = o(1) (they are
continuous functions that vanish at zero). Then, by theorem on differentiation
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of solutions with respect to initial conditions, we have

∆WY

θ2(ε)
(x0) = Ψ(θ2(ε), θ1(ε))∆

WY

θ1(ε)
(x0) + o

(
∆WY

θ1(ε)
(x0)

)
=

∆WY

θ1(ε)(x0)
+ o(∆WY

θ1(ε)
(x0)) = εY (x0) + o(ε)

as desired. □

Step 4 (the induction step). Now, we study the vector fields of order 2 and
higher. Since the manifold M is compact, there exists a number k ∈ N such that
for any point x0 ∈ M there exist vector fields Y1(x), . . . , Yn(x) of Xk that span
the space TxM for any point x of a neighborhood of x0.

Now, we suppose that for given k ∈ N, the desired controls W (t, x, ε, Y0) can
be constructed for any Y0 ∈ Xk. Let X ∈ Xk+1. Then there exist two vector fields
Y and Z of Xk such that X = [Y, Z]. By Lemma A.3, we may assume, without
loss of generality, that τY = τZ = τk. Then there exist controls W (t, x, ε, Y ) and
W (t, x, ε, Z), such that the solutions φV+WY

t (x0) and φ
V+UZ
t (x0) of systems

ẋ = V (x) +W (t, x, ε, Y ) and ẋ = V (x) +W (t, x, ε, Z)

respectively with initial condition x(0) = x0 satisfy asymptotic estimates

φV+WY
τk

(x0) = φV
τk
(x0) + εY (x0) + o(ε),

φV+WZ
τk

(x0) = φV
τk
(x0) + εZ(x0) + o(ε).

Let σ =
√
τk/2 = τk+1/8.

Observe that the perturbations−WY and−WZ approximate shifts in directions
−Y and −Z respectively. We can select ε−Y = εY and ε−Z = εZ .
Let us first assume that none of the fields Y and Z are collinear to V . Similarly

to (A.11), we define the perturbation corresponding to X as follows:

W (t, x, ε,X) :=



W (t, x, ε, Y ), if t ∈ [0, σ),

W (t− σ, x, ε, Z), if t ∈ [σ, 2σ),

−W (t− 2σ, x, ε, Y ), if t ∈ [2σ, 3σ),

−W (t− 3σ, x, ε, Z), if t ∈ [3σ, 4σ),

−W (t− 4σ, x, ε, Y ), if t ∈ [4σ, 5σ),

−W (t− 5σ, x, ε, Z), if t ∈ [5σ, 6σ),

W (t− 6σ, x, ε, Y ), if t ∈ [6σ, 7σ),

W (t− 7σ, x, ε, Z), if t ∈ [7σ, 8σ).

If one of the vector fields Y or Z is collinear to V , the perturbation WX can be
defined similarly to the second formula of Remark A.2.
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Now we consider the solution φV+WX
t (x0) of the Cauchy problem

ẋ = V (x) +W (t, x, ε,X), x(0) = x0.

The equality φV+WX
τk+1

(x0) = φV
τk+1

(x0) + εX(x0) + o(ε) is similar to (A.12).

In the case X = [Y, V ] (see Remark A.1) we set εX = 4σY and

W (t, x, ε,X) :=



W (t, x, ε, Y ), if t ∈ [0, σ),

0, if t ∈ [σ, 2σ),

−W (t− 2σ, x, ε, Y ), if t ∈ [2σ, 3σ),

0, if t ∈ [3σ, 8σ].

□

Observe that we need to construct perturbations for finitely many vector fields
(those from Xp where p is taken from the Hörmander condition). This fact,
together with Lemma A.3, implies that we can construct all the necessary per-
turbations on time segments of the same length.

Appendix B. Proof of Lemma 4.3

We only give the proof for the map, defined by (4.2); the proof for the map
defined by (4.3) is similar. For any k ∈ Z+ and any set of smooth vector fields
Y1, . . . , Yk of X, we introduce the map

ΦY1,...,Yk(ε0, . . . , εk, z) := (ψ(Yk, εk) ◦ . . . ◦ ψ(Y1, ε1) ◦ φV
−

∑k
i=1 τYi (εi)

◦ φV
ε0
)(z)− z

and prove that it has the derivative at zero with respect to the variables ε0, . . . , εk
applying induction by k.
Step 1 (base of induction). For k = 0 (when the set {Y1, . . . , Yk} is empty)
the statement is evident. Consider k = 1 and the map

ΦY1(ε0, ε1, z) = ψ(Y1, ε1) ◦ φV
τY1 (ε1)

◦ φV
ε0
(z)− z.

By Lemma 4.1, the map ∆Y1

τY1 (ε1)
(z) = ψ(Y1, ε1)(z) − φV

τY1 (ε1)
(z) has a derivative

with respect to ε1 at zero. Then, the same is true for the function

∆̃Y1(ε1, z) := ψ(Y1, ε1)(z) ◦ φV
−τY1 (ε1)

(z)− z = ∆Y1

τY1 (ε1)
(z) + o(1)

does also have a derivative at zero. And now, we notice that

ΦY1(ε0, ε1)(z) = ∆̃Y1

τY1 (ε1)
◦ φV

ε0
(z) + φV

ε0
(z)− z

and, therefore this map has a derivative at zero with respect to the vector (ε0, ε1).

Step 2 (the induction step). Consider the map ∆̃Y1,...,Yk defined by the formula

∆̃Y1,...,Yk(ε0, . . . , εk, z) = ψ(Yk, εk) ◦ ψ(Y1, ε1)(z)− φV∑k
i=1 τYi (εi)

(z)
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and include the statement of differentiability at zero of the map ∆̃Y1,...,Yk−1 to the

induction hypothesis. For ∆̃Y1 this statement was proven in Step 1.
Observe that

∆̃Y1,...,Yk(ε0, . . . , εk, z) =

= ψ(Yk, εk) ◦ . . . ◦ ψ(Y1, ε1)(z)− φV
τYk (εk)

(z) ◦ ψ(Yk−1, εk−1) ◦ . . . ◦ ψ(Y1, ε1)(z)+
φV
τYk (εk)

(z) ◦ ψ(Yk−1, εk−1) ◦ . . . ◦ ψ(Y1, ε1)(z)− φV∑k
i=1 τYi (εi)

(z) = ∆1 +∆2

where ∆1 and ∆2 are the first and the second difference, respectively.
Further,

∆1 = ∆Yk

τYk (εk)
(ψ(Yk−1, εk−1) ◦ . . . ◦ ψ(Y1, ε1)(z)) =

Yk(ψ(Yk−1, εk−1) ◦ . . . ◦ ψ(Y1, ε1)(z))εk + o(εk) =

Yk(z)εk + o(max(|ε1|, . . . , |εk|)),

so ∆1 is differentiable at zero.
Meanwhile,

∆2 = φV
τYk (εk)

(z) ◦ ψ(Yk−1, εk−1) ◦ . . . ◦ ψ(Y1, ε1)(z)− φV∑k
i=1 τYi (εi)

(z) =

∆̃Y1,...,Yk−1(ε0, . . . , εk−1, z) + o(max(|ε1|, . . . , |εk|))

which proves the existence of the Jacobi matrix at zero for ∆2.
The trivial asymptotic estimate

ΦY1,...,Yk(ε0, . . . , εk, z) = ∆̃Y1,...,Yk(ε0, . . . , εk, z) + o(max(|ε0|, . . . , |εk|))

finishes the proof of the lemma. □

Appendix C. Proof of Lemma 4.4

Since the matrix A(x) = Φ′
q(0, x) is continuous and invertible for any x, the

matrix A−1(x) is continuous and, therefore, bounded, so we select C > 0 so that
∥A(x)∥ ≤ C for any x ∈ N . We need to prove that for any σ > 0 there exists a
δ > 0 such that for any p ∈ Bδ(0) ⊂ Rn the equation

(C.1) Φ(q, x) = p, q ∈ Bσ(0)

is solvable. We represent the function Φ(q, x) = A(x)q +R(q, x).
Let ρ > 0 be such that Br0(0) ⊂ U (recall that the function Φ is defined and

continuous at U × N). Let Sn−1 be the unit sphere in Rn. Observe that the
function γ : [0, r0]× Sn−1 ×N → Rn defined by the formula

γ(r, φ, x) :=

{
R(q, rφ)/r = (Φ(rφ, x)− A(x)rφ)/r, if r > 0;
0, if r = 0

is continuous and, hence, uniformly continuous. This is why we can select a σ > 0
such that |R(q, x)| ≤ |q|/2C for any x ∈ N and q ∈ Bσ(0).
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Now, the equation (C.1) can be rewritten in the form A(x)q+R(q, x) = p that
is equivalent to

q = T (q, x) := A−1(x)p− A−1(x)R(q, x).

If |q| ≤ σ and p ≤ σ/8C then |T (q, x)| ≤ 2C|p| + σ/2 ≤ 3σ/4. This means that
T (·, x) maps the ball Bσ(0) into itself. So, by Brouwer’s fixed point theorem, the
problem (C.1) is solvable. The lemma is proven. □
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ter, Gdańsk University of Technology, ul. Narutowicza 11/12, 80-233 Gdańsk,
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