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Abstract

Given a bounded open connected set Ω ⊂ R2 with Lipschitz boundary, we consider the
class of piecewise constant maps u taking three fixed values α, β, γ ∈ R2, vertices of an
equilateral triangle; for any u in this class, using a weak notion of Jacobian determinant
valid for BV functions, we give a precise description of Det (∇u) and show that the relaxed
graph area of u is bounded from above by a quantity related to the flat norm of Det (∇u).
The provided upper bound allows to show the validity of a De Giorgi conjecture regarding
the relaxed area functional when one restricts to this class of piecewise constant functions.
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1 Introduction

Problems of relaxation of non-convex functionals with non-standard growth arise in many con-
texts of calculus of variations. In the non-parametric approach to Plateau problem, as in cap-
illarity problems and other settings related with minimal surfaces in higher codimension, the
area functional is the canonical example of energy which, in codimension greater than 1, is
non-convex (but policonvex). This leads to non-trivial questions when one tries to relax the
functional, and a full understanding of the properties of the relaxed area functional is far from
being reached; even basic questions regarding the characterization of the domain itself and the
expression of the relaxed area functional are open.

In this paper we focus on a class of piecewise constant maps u from a planar domain to R2,
which actually generalizes the classical triple junction map. The latter was introduced by De
Giorgi in [19] (see also [1, 8, 30]) in order to prove a conjecture regarding the lack of integral
representations for the area functional. Before explaining our main results, let us introduce the
area functional and the related open questions.
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Let Ω ⊂ R2 be a bounded open set (that, without loss of generality, we assume connected).
For a given function v ∈ C1(Ω;R2) we indicate by

A(v,Ω) :=
∫
Ω

»
1 + |∇v|2 + |Det (∇v)|2dx (1.1)

the classical 2-dimensional area of the graph Gv = {(x, y) ∈ Ω × R2 : y = v(x)} of v. For any
u ∈ L1(Ω;R2) the L1-relaxed area of the graph of u is defined as

A(u,Ω) := inf{lim inf
k→+∞

A(vk,Ω), vk ∈ C1(Ω;R2), vk → u in L1(Ω;R2)}. (1.2)

It is well known that, when v is scalar valued, the study of the relaxed area is crucial in the
study of the Cartesian Plateau problem [25]. In particular, for scalar valued maps, the graph
area is obtained by relaxing the classical functional A(v,Ω) =

∫
Ω

√
1 + |∇v|2dx for v ∈ C1(Ω).

It is also well known that in this case, for any u ∈ L1(Ω), it holds

A(u,Ω) =

®∫
Ω

√
1 + |∇u|2dx+ |Dsu|(Ω) if u ∈ BV (Ω),

+∞ otherwise,
(1.3)

where ∇u is the approximate gradient of u and Dsu is the singular part of Du (see [25]). In the
case of vector-valued maps, the characterization of the domain Dom(A(·,Ω)) of A(·,Ω), and the
computation of its corresponding values seem at the moment out of reach, due to the presence
of highly nonlocal phenomena. Specifically, for vector-valued maps it can be proved that

A(u,Ω) ≥
»
1 + |∇u|2dx+ |Dsu|(Ω), (1.4)

and strict inequality might occurs (actually, equality holds only in very special cases [1]).
Starting from [19], the relaxed area of the triple junction map uT : Br(0) ⊂ R2 → R2 has been

studied. This map takes only three values α, β, γ ∈ R2, which are the vertices of an equilateral
triangle T ⊂ R2 inscribed in a circle of radius 1; in particular, |α| = |β| = |γ| = 1. The map
uT assumes these values in three equal circular sectors of the circle Br(0) whose boundaries are
three radii of Br(0) meeting at the origin with angles of 120◦. In [1], the authors positively
answered to a conjecture of De Giorgi [19], stating that the set function1 A 7→ A(uT ;A) is
not subadditive, and hence it cannot have an integral representation. These results have been
obtained using suitable estimates on A(uT ;A), for suitable subdomains A ⊂ Br(0), even if
the precise expression of A(uT ;Br(0)) is missing in [1]. Sharp estimates are instead contained
in [8, 30], where the precise value of A(uT ;Br(0)) has been proved to coincide with

A(uT ;Br(0)) = |Br(0)|+ 3mr, (1.5)

where | · | denotes the Lebesgue measure, and mr is the area of an area-minimizing minimal
surface obtained as the solution of a Dirichlet-Neumann nonparametric Plateau problem in
codimension 1. The techniques used to show (1.5) are based on the notion of integral currents,
Cartesian currents [23,24], together with a Steiner type symmetrization machinary adapted for
integral currents which strongly relies on the symmetries of the domain Ω = Br(0) and of the
target triangle T (we refer to [8,30] for details). It is here important to point out that mr enjoys
the following features: for all r > 0

(a) mr > rl, where l =
√
3 is the side of the triangle T ;

1Defined for any open set A ⊆ Br(0).
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(b) 3mr < 3rl + |T |, with |T | denoting the area of T .

As a consequence of (a) it turns out that

A(uT ;Br(0)) > |Br(0)|+ |DuT |(Br(0)),

in particular showing that, in contrast with the scalar case (1.3), the presence of the Jacobian
determinant in (1.2) plays a crucial role.

Before explaining the main consequence of (b) instead, we first point out that similar phe-
nomena have been observed for the vortex map uV : Br(0) → R2, uV (x) = x

|x| , x ̸= 0, and

more in general for functions u ∈ W 1,1(Ω; S1). Specifically, if u ∈ W 1,1(Ω;S1), in [11] it has
been proved that the distributional Jacobian determinant of u provides a nontrivial contribution
in the computation of A(u,Ω). This contribution can always be estimated from above as the
following formula shows:

A(u,Ω) ≤
∫
Ω

»
1 + |∇u|2dx+ ∥Det (∇u)∥, (1.6)

where the quantity ∥ · ∥ is a suitable norm on C0,1
c (Ω)′ equivalent to the standard flat norm

(see [11]). We emphasize that this inequality may hold strict, and an explicit example is given
in [6], where it is proved the following precise formula

A(uV , Br(0)) =

∫
Ω

»
1 + |∇uV |2dx+ Cr, (1.7)

for the vortex map, where Cr is again, in a similar fashion as in (1.5), the area of an area-
minimizing minimal surface obtained as a solution of a non-parametric Plateau problem with
partial free boundary (see [6] for details, and [7] for the general approach to this Plateau-type
problem). Here, for r small enough, it holds that Cr < 2πr, where 2πr = ∥Det (∇uV )∥ turns
out to be the ∥ · ∥-norm of the distributional determinant Det (∇uV ) = πδ0 in Br(0).

In this paper we prove a formula similar to (1.6) for piecewise constant maps u taking only
the three values α, β, γ. This requires to introduce a notion of distributional determinant for
this kind of functions; in particular, using the notion of minimal lifting introduced in [27],
in [28] the author proved that, for suitable maps u ∈ BV (Ω;R2), a component of a suitable
Cartesian current2 with underlying map u replaces the distributional Jacobian determinant
of u. In [20], extending this result to every function u ∈ BV (Ω;R2) ∩ L∞(Ω;R2), a weak
notion of Jacobian determinant for these maps is provided, and in particular it turns out that if
u ∈ BV (Ω; {α, β, γ}), then Det (Du) is well-defined and can be written, simililarly to the case
of S1-valued Sobolev maps, as a series of weighted Dirac deltas. As a consequence, it follows
that Det (Du) ∈ C0,1

c (Ω)′ and then Det (Du) has finite flat norm.
The first main result of the present paper is the following:

Theorem 1.1. Let Ω ⊂ R2 be a bounded connected open set with Lipschitz boundary and let
u ∈ BV (Ω; {α, β, γ}). Then

A(u,Ω) ≤ |Ω|+ |Du|(Ω) + 4∥Det (∇u)∥flat. (1.8)

Also in this case, we emphasize that the inequality in (1.8) can be strict. For instance, in
the case of the triple junction map uT : Br(0) → {α, β, γ}, it holds that

Det (∇uT ) = |T |δ0,
2This current, called completely vertical lifting of u, is unique.
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where |T | is the area of the triangle T with vertices α, β, γ. It then follows that ∥Det (∇uT )∥flat =
|T |r, and so for r ≥ 1 we have

A(uT , Br(0)) = |Br(0)|+ 3mr < |Br(0)|+ 3rl+ |T | ≤ |Br(0)|+ |Du|(Br(0)) + ∥Det (∇uT )∥flat,

where we have used condition (b) above. We conjecture that the inequality in (1.8) is always
strict (apart from the trivial case Det (∇u) = 0, which essentially occurs only when there is no
presence of multiple points (see Section 2.6)). The presence of the flat norm encodes, in (1.8),
the aforementioned nonlocality of the relaxed area functional.

Following De Giorgi [19], it seems interesting to consider a further relaxation of A, this time
looking at the functional A(u, ·) as a function of the open set: for every V ⊆ Ω, we set

A(u, V ) := inf

{
+∞∑
k=1

A(u,Ak) : Ak ⊆ Ω open ,
+∞⋃
k=1

Ak ⊇ V

}
. (1.9)

The advantage of this second relaxation is that, for all u ∈ L1(Ω;R2), A(u, ·) is the trace of a

regular Borel measure restricted to the open subsets of Ω. Moreover, A(u, ·) coincides with the

greatest subaddivite functional which is less or equal to A(u, ·); in some sense, A(u, ·) should
encode the local part of the relaxed area functional, just excluding the singular contribution.
Specifically, De Giorgi conjectured the following statement3:

Conjecture ( [19, Conjecture 3]). For any u ∈ L1(Ω;R2) with A(u,Ω) < +∞ it holds that

A(u,Ω) = inf{A(u,Ω \ C) : C is closed with H1(C ∩ Ω) = 0}. (1.10)

In [11] we partially answer to this conjecture, proving that it is true when u ∈ W 1,1(Ω;S1).
The second main result of this paper states that such conjecture still holds for maps u ∈
BV (Ω; {α, β, γ}). Precisely, we have the following:

Theorem 1.2. Let Ω ⊂ R2 and u be as in Theorem 1.1. Then

A(u,Ω) = |Ω|+ |Du|(Ω), (1.11)

and

A(u,Ω) = inf{A(u,Ω \ C) : C is closed with H0(C ∩ Ω) < +∞}. (1.12)

In particular (1.10) holds.

In order to prove Theorem 1.1 we approximate the map u with maps uk ∈ BV (Ω; {α, β, γ})
which are polyhedral (namely, their jump set Suk is a finite union of segments) and moreover
which enjoy the feature that for all x ∈ Suk there is a neighborhood of x in which uk takes only
two values. For this kind of maps it is known that

A(uk,Ω) = |Ω|+ |Duk|(Ω),

and so Theorem 1.1 follows if one shows that lim infk→∞ |Duk|(Ω) ≤ |Du|(Ω)+4∥Det (∇u)∥flat.
This is provided by Proposition 3.1 in Section 3. In order to show this, we use suitable density
theorems for polyhedral maps, which are proved in Section 2.5, whose starting point is the
approximation result contained in [14]. The main point here is to show that we can suitably

3The conjecture is here presented in the case Ω ⊂ R2, and u ∈ L1(Ω;R2), even if it was stated in any dimension.
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approximate the flat norm of the Jacobian determinant of u ∈ BV (Ω; {α, β, γ}). This requires
a characterization of Det (∇u), which is given in Section 2.4.

To prove Theorem 1.2 we first prove (1.11), and then we show that, erasing a suitable finite
set C of points in Ω, we can apply formula (1.8) with the domain Ω \ C and show that the flat
norm contribution can be made arbitrarily small. Notice however that the domain Ω \C is not
Lipschitz, and so we cannot apply directly Theorem 1.1, but need a technical modification of it.

The paper is divided into two main parts. In Section 2 we set the notation and give some
preliminary results. In particular we characterize the Jacobian determinant of piecewise constant
maps and show the needed density of polyhedral maps. Then in Section 3 we prove Theorems
1.1 and 1.2.

2 Preliminaries

2.1 Notation

Let U ⊂ R2 be a bounded connected open set with Lipschitz boundary (a Lipschitz domain in
the sequel). Let δ > 0; we denote by

Uδ := {x ∈ R2 : dist(x, U) < δ}, (2.1)

the δ-neighborhood of U , where dist(·, U) is the distance from U .
Given a vector field ϕ = (ϕ1, ϕ2) : U → R2 we define Curl ϕ := ∂ϕ2

∂x1
− ∂ϕ1

∂x2
. We also denote

by ϕ⊥ the vector ϕ⊥ = (−ϕ2, ϕ1), namely its counterclockwise rotated by a π/2-angle.
We introduce the following quantity, for all x, y ∈ U ,

dU (x, y) := min{|x− y|, dist(x, ∂U) + dist(y, ∂U)}.

This well-known pseudometric on U is useful to describe atomic distributions (see next section)
arising as Jacobian distributional determinant of maps with values in S1 (see [13,15,16,29] and
references therein), and is related with its minimal connection when dealing with domains with
boundary (see [15, Chapter 14]).

We denote by Mb(U) the space of Radon measures with bounded total variation in U . We
denote by e1, e2, . . . , en the canonical basis of Rn, which is naturally identified with a basis of
1-vectors. The symbols dx1, dx2, . . . , dxn denote a basis of 1-covectors. We denote by Dk(U) the
space of k-forms on U , and by Dk(U) the space of k-currents on U . Any 0-current T in D0(U)
can be naturally identified with a distribution in D′(U).

We denote by Hk the k-dimensional Hausdorff measure in R2. A H1-rectifiable subset S of
R2 is said to be polyhedral if it is a finite union of segments.

Lipschitz maps and dual norms. For an open set U ⊂ R2 we denote by C0,1(U) the
space of Lipschitz functions on U , and by C0,1

c (U) its subspace of compactly supported maps.
We define l(ψ) the Lipschitz constant of ψ ∈ C0,1(U), namely

l(ψ) := sup
x,y∈U
x ̸=y

ß |ψ(x)− ψ(y)|
|x− y|

™
,

and we define the Lipschitz norm in C0,1(U) as

∥ψ∥C0,1 := max{∥ψ∥L∞ , l(ψ)}. (2.2)
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For bounded domains U , on the subspace C0,1
c (U) it turns out that l(·) is a norm equivalent to

∥ · ∥C0,1 . For any Λ ∈ C0,1
c (U)′ we introduce its flat norm as

∥Λ∥flat,U := sup
ψ∈C0,1

c (U)
l(ψ)≤1

⟨Λ, ψ⟩. (2.3)

Here, brackets ⟨·, ·⟩ denote the duality paring between C0,1
c (U)′ and C0,1

c (U). We also denote by
⟨·, ·⟩A the duality paring between C0,1

c (A)′ and C0,1
c (A), when the open set A is not clear from

the context.

Diffeomorphisms of R2. We denote by id : R2 → R2 the identity map, namely id(x) =
x for all x ∈ R2; let further I denote the 2 × 2 identity matrix. Let G : R2 → R2 be a
diffeomorphism of class C1; let δ > 0, then if ∥G − id∥W 1,∞(R2;R2) < δ it happens that also
∥G−1− id∥W 1,∞(R2;R2) < O(δ). Indeed, using the triangle inequality and the submultiplicativity

of the Frobenius norm for 2×2-matrices, it is not hard to prove that ∥∇G−1∥L∞(R2;R2) <
|I|
1−δ =

√
2

1−δ . Next, for every y ∈ R2, |G−1(y)−y| = |G−1(y)−G−1(G(y))| ≤ 2∥∇G−1∥L∞(R2;R2)|G(y)−y|,
so ∥G−1 − id∥L∞(R2;R2) < 2

√
2

1−δ∥G− id∥L∞(R2;R2). Furthermore, |∇G−1(y)− I| = |∇G−1(y)(I −
∇G(G−1(y))| ≤ |∇G−1(y)||(I−∇G(G−1(y))|, so ∥∇G−1−I∥L∞(R2;R2) <

√
2

1−δ∥∇G−I∥L∞(R2;R2).

From these two estimates we finally get ∥G−1 − id∥W 1,∞(R2;R2) < 2
√
2

1−δ δ, so O(δ) can be chosen

equal to 2
√
2

1−δ δ.
In this case, redefining δ if necessary, we will often assume that G satisfies

max{∥G− id∥W 1,∞(R2;R2), ∥G−1 − id∥W 1,∞(R2;R2)} < δ. (2.4)

We introduce the following definition:

Definition 2.1. We say that a diffeomorphism G : R2 → R2 is regular if G,G−1 ∈ C1(R2;R2),
and there exists δ > 0 such that (2.4) holds.

If G is a regular diffeomorphism as above, we can estimate, for any vector v ∈ R2,∣∣vT (∇G)∣∣ ≤ ∣∣vT (∇G− I)
∣∣+ ∣∣vT ∣∣ ≤ (1 + δ)|v|,

and hence, if φ is a Lipschitz map, φ ◦ G will be Lipschitz as well with l(φ ◦G) ≤ (1 + δ)l(φ).
In particular, the flat norm of the push-forward by G of any 0-current T ∈ D0(R2) satisfies

∥G#T∥flat,R2 = sup
φ∈C0,1

c (R2)
l(φ)≤1

T (φ ◦G) = (1 + δ) sup
φ∈C0,1

c (R2)
l(φ)≤1

T

Å
φ ◦G
(1 + δ)

ã
≤ (1 + δ)∥T∥flat,R2 . (2.5)

Therefore, if T ∈ D0(R2) ∩ C0,1
c (R2)′ then also G#T ∈ D0(R2) ∩ C0,1

c (R2)′. Further, if T has
support in the closure U of a Lipschitz domain U , one has

∥G#T∥flat,U ≤ (1 + δ)∥T∥flat,G−1(U) ≤ (1 + δ)∥T∥flat,Uδ
. (2.6)

2.2 Atomic distributions

We introduce the following subclass of Radon measures on a Lipschitz domain U :

Xf (U) :=
{
Λ ∈ Mb(U) : ∃n ∈ N, ∃(xi, yi) ∈ U × U for i = 1, . . . , n : Λ =

n∑
i=1

(δxi − δyi)
}
.

(2.7)
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Every Λ ∈ Xf (U) can be identified with an integral 0-current in D0(U). The points xi, yi are
referred to as poles of Λ. Notice that if xi ∈ ∂U , it does not contribute in Mb(U), and hence its
presence in the representation Λ =

∑n
i=1(δxi − δyi) is only taken for convenience. In particular,

a single Dirac delta Λ = δx ∈ Xf (U), because for any y ∈ ∂U it holds Λ = δx − δy.
The more general set of atomic distributions in U is defined as

X(U) :=
{
Λ ∈ C0,1

c (U)′ : ∃(xi, yi) ∈ U × U ∀i ∈ N : Λ =
+∞∑
i=1

(δxi − δyi),
+∞∑
i=1

dU (xi, yi) < +∞
}
.

(2.8)

For all Λ ∈ X(U) it holds

⟨Λ, φ⟩ =
+∞∑
i=1

(φ(xi)− φ(yi)) ∀φ ∈ C0,1
c (U). (2.9)

The fact that Λ ∈ C0,1
c (U)′ (that is equivalent to require that ∥Λ∥flat,U < +∞) implies that for

any φ ∈ C0,1
c (U) the series in (2.9) is convergent.

Remark 2.2. Notice that Λ =
∑+∞

i=1 (δxi − δyi) has not a unique representation as a series; two
sequences ((xi, yi))i∈N ⊂ U × U and ((x̂i, ŷi))i∈N ⊂ U × U define the same linear functional on
C0,1
c (U) if 〈

+∞∑
i=1

(δxi − δyi), φ

〉
=

〈
+∞∑
i=1

(δx̂i − δŷi), φ

〉
∀φ ∈ C0,1

c (U). (2.10)

We point out that the hypothesis ((xi, yi))i∈N ⊂ U × U is done for convenience, and it may
happen that for some i ∈ N, either xi ∈ ∂U or yi ∈ ∂U , or even both. Notice that if xi ∈ ∂U
then δxi = 0 in C0,1

c (U)′; the presence of xi only affects the representation of Λ, and not its
action on C0,1

c (U).

Remark 2.3. Let Λ ∈ Xf (U) be nonzero, and write Λ =
∑n

i=1(δxi − δyi) for some points
(xi, yi) ∈ U × U . We define I+(Λ) := {xi : xi ∈ U}, and I−(Λ) := {yi : yi ∈ U}. Of course, the
measure Λ depends only on the points in I+(Λ) and I−(Λ) and not on the points belonging to
∂U . Namely

Λ =
∑

i:xi∈I+(Λ)

δxi −
∑

i:yi∈I−(Λ)

δyi .

Up to erasing points xi which coincide with some yj , we can always suppose that there are no
cancellation in the sum above, namely that I+(Λ)∩ I−(Λ) = ∅. We can also relabel the indeces
of the points in I±(Λ) and suppose that

I+(Λ) = {x1, . . . , xm} I+(Λ) = {ym+1, . . . , ym+k},

where we do not exclude that there are repeated points in I+(Λ) (resp., in I−(Λ)) or that some
of these sets is empty. For all i = 1, . . . ,m we introduce a point yi ∈ ∂U so that |xi − yi| =
dist(xi, ∂U), and for all i = m + 1, . . . ,m + k we introduce a point xi ∈ ∂U so that |yi − xi| =
dist(yi, ∂U). Since these new points belong to ∂U they do not contribute on C0,1

c (U)′, and so,
Λ =

∑n
i=1(δxi − δyi), where we have renamed n := m+ k.

With this procedure we show that, given Λ ∈ Xf (U), we can always suppose that the
representation Λ =

∑n
i=1(δxi − δyi) satisfies the following property:
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(P) for all i = 1, . . . , n either xi ∈ U and yi ∈ ∂U , or xi ∈ ∂U and yi ∈ U . In the first case
|xi − yi| = dist(xi, ∂U), in the latter |xi − yi| = dist(yi, ∂U). Moreover, the two families
of points I+(Λ) := {xi : xi ∈ U} and I−(Λ) := {yi : yi ∈ U} are disjoint.

In the sequel we will consider the following class of rectifiable currents in R2:

S :=
{
S ∈ D1(R2) : S =

m∑
k=1

〚wkzk〛 for some sequence ((wk, zk))k ⊂ R2, m ∈ N
}
, (2.11)

and denote by S(U) the class in (2.11) when the currents are restricted to an open set U ⊂ R2.
Let U be a Lipschitz domain, and let Λ ∈ X(U); then the supremum in the right-hand side

of (2.3) can be extended to Lipschitz maps vanishing at the boundary, namely

∥Λ∥flat,U := sup
ψ∈C0,1

0 (U)
l(ψ)≤1

⟨Λ, ψ⟩, (2.12)

where C0,1
0 (U) denotes the space of Lipschitz maps ψ on U whose extension on U satisfies ψ = 0

on ∂U . According to [29] (see also [15] and references therin, and [11]), the supremum in (2.12)
is achieved. Moreover, standard results (see [21, page 367] and [11, Lemma 8.1]) entail

∥Λ∥flat,U = inf{|S|U : S ∈ D1(U), Λ = ∂S} ∀Λ ∈ X(U), (2.13)

and the infimum is attained. According to [11, Proposition 3.5] (which can be straightforwardly
adapted to this case), the following statement can be proved:

Proposition 2.4. Let Λ ∈ X(U); then the infimum in the right-hand side of (2.13) is attained
and there is a minimizer S ∈ D1(Ω) that is also an integer multiplicity current.

In the case that Λ ∈ Xf (U) something more can be proved for the minimizer S. Assume
that Λ =

∑n
i=1(δxi − δyi) is a representation satisfying property (P); we define

P (Λ) := {i ∈ {1, . . . , n} : xi ∈ U}, and N(Λ) := {i ∈ {1, . . . , n} : yi ∈ U}.

By (P) we obviously have P (Λ) ∪N(Λ) = {1, . . . , n}, and P (Λ) ∩N(Λ) = ∅. For all I ⊆ P (Λ)
we introduce T (I) the class of injective maps τ : I → N(Λ) (this class might be empty, e.g., if
I = ∅ or Λ(N) = ∅). Then we introduce the following minimum problem

m(Λ) := min
I⊆P (Λ)
τ∈T (I)

Ñ∑
i∈I

|xi − yτ(i)|+
∑

j∈P (Λ)\I

|xj − yj |+
∑

j∈N(Λ)\τ(I)

|xj − yj |

é
. (2.14)

If I = ∅ we have T (I) = ∅ and the quantity between brackets is intended to be∑
j∈P (Λ)

|xj − yj |+
∑

j∈N(Λ)

|xj − yj |.

The minimum above is always attained as the number of competitors is finite. Correspondingly,
if Imin and τmin are minimizers of (2.14), we denote by Smin ∈ S the 1-current

Smin :=
∑
i∈Imin

〚yτmin(i)xi〛 +
∑

j∈P (Λ)\Imin

〚yjxj〛 +
∑

j∈N(Λ)\τmin(Imin)

〚yjxj〛. (2.15)
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In the special case Imin = ∅ we will have

Smin :=
∑

j∈P (Λ)

〚yjxj〛 +
∑

j∈N(Λ)

〚yjxj〛.

Notice that, in any case, it trivially holds ∂Smin = Λ in D0(U). To shortcut the notation, for all
couples (I, τ) admissible for the minimum problem (2.14), we introduce the couple (Î , τ̂) defined
as follows: We set

Î := P (Λ) ∪ (N(Λ) \ τ(I)) (2.16)

(where we notice that the union is made through mutually disjoint sets) and define τ̂ : Î →
{1, . . . , n} as

τ̂(i) :=

®
τ(i) if i ∈ I,

i if i ∈ (P (Λ) \ I) ∪ (N(Λ) \ τ(I)).
(2.17)

In the special case I = ∅ we define Î = P (Λ)∪N(Λ) and τ̂(i) = i for all i. Using this notation,
for any couple (I, τ) admissible for the problem (2.14), we introduce the corresponding 1-current
S(I,τ) ∈ S defined as

S(I,τ) =
∑
i∈Î

〚yτ̂(i)xi〛. (2.18)

By (2.15) it follows that Smin = S(Imin,τmin).

Lemma 2.5. Let Λ ∈ Xf (U) with U ⊂ R2 a Lipschitz domain. Then

∥Λ∥flat,U = m(Λ), (2.19)

and there is a minimizer S for (2.13) that satisfies the following properties:

(i) S belongs to S(U);

(ii) if (I, τ) is a minimizer for (2.14), than S = Smin defined in (2.15). In particular there is
(Î , τ̂) as in (2.16) and (2.17) such that Smin = S(I,τ) in (2.18). Furthermore, for all i ∈ Î
the interior of the segment yτ̂(i)xi is contained in U , and

|S|U =
∑
i∈Î

|xi − yτ̂(i)|;

(iii) if the points in the family {xi, yj : i ∈ P (Λ), j ∈ N(Λ)} are three by three not collinear,

then for every i, j ∈ Î, i ̸= j, if yτ̂(i)xi ∩ yτ̂(j)xj ∩ U ̸= ∅, one of the following holds:

(a) xi = xj ∈ ∂U , and either yτ̂(i)xi ⊆ yτ̂(j)xj or yτ̂(j)xj ⊆ yτ̂(i)xi;

(b) yτ̂(i) = yτ̂(j) ∈ ∂U , and either yτ̂(i)xi ⊆ yτ̂(j)xj or yτ̂(j)xj ⊆ yτ̂(i)xi.

Proof. Let us prove (2.19). Let (I, τ) be a minimizer of (2.14) and let S be the current in (2.18).
Since S ∈ D1(R2) and ∂S = Λ, we obviously have, by (2.13), ∥Λ∥flat,U ≤ m(Λ). Let us prove
the opposite inequality.

Thanks to Proposition 2.4, as the minimizer S has integer multiplicity, by Federer decom-
position theorem for integral 1-currents [21, 4.2.25], we can write S :=

∑∞
i=1 Si, where Si are
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the indecomposable components of S and are the push-forward of the integration on [0, 1] by
Lipschitz maps. Hence, either ∂Si = δwi − δzi or ∂Si = 0. We exclude the second case, since
we could erase Si, define Ŝ := S − Si, and see that Ŝ becomes a better competitor than S for
(2.13), contradicting the minimality. Similarly, by minimality and indecomposability, we have
that |Si|U ≤ |〚ziwi〛|U , and one easily sees that it must be Si = 〚ziwi〛.

Let now Λ =
∑n

i=1(δxi − δyi) be a representation of Λ satisfying (P). As ∂S =
∑m

i=1 ∂Si and
Si are indecomposable, one sees4 that m ≤ n, and so S ∈ S. Hence, for any i = 1, . . . ,m we
have the following exclusive possibilities:

1. wi = xk(i) ∈ U , for some index k(i) ∈ P (Λ), and zi ∈ ∂U ;

2. zi = yh(i) for some index h(i) ∈ N(Λ), and wi ∈ ∂U ;

3. both wi, zi ∈ U , and so there are two indeces k(i) ∈ P (Λ) and h(i) ∈ N(Λ) such that
wi = xk(i) and zi = yh(i).

In all the cases, since ∂S =
∑m

i=1(δwi − δzi) = Λ we can choose the functions k and h injective,
and see that for all j ∈ P (Λ) there exists i ∈ {1, . . . ,m} such that k(i) = j, and for all j ∈ N(Λ)
there is i so that h(i) = j. Further, by minimality and property (P), we can suppose that in the
first case zi = yk(i), in the second one that wi = xh(i), and in the latter case that k(i) ̸= h(i).
We define

I := {k(i) : i ∈ {1, . . . ,m} and 3 holds},

and introduce the function τ : I → N(Λ) as τ(j) = h(k−1(j)). Finally we set

τ̂(j) :=

®
j if j ∈ P (Λ) and 1 holds, or j ∈ N(Λ) \ τ(I),
τ(j) otherwise,

for all j ∈ P (Λ)∪(N(Λ)\τ(I)). Now we observe that S coincides with the one in formula (2.18).
Further, so far we have shown that any indecomposable component Si of S is one addendum
in (2.18). Then, any segment yτ̂(i)xi cannot intersect the boundary of U in its interior, thanks
to indecomposability. Therefore, by (2.14), we conclude that ∥Λ∥flat,U = |S|U ≥ m(Λ). This
implies (2.19), (i), and (ii).

Let us now show (iii): let i ̸= j be such that yτ̂(i)xi ∩ yτ̂(j)xj ̸= ∅ and assume that the
intersection consists of a unique point q in the interior of the two segments. Then we modify τ̂
into a new function τ which differs from τ̂ only on {i, j} and τ(j) = τ̂(i) and τ(i) = τ̂(j). In
this way, since by the triangle inequality |xi− yτ̂(j)|+ |xj − yτ̂(i)| < |xi− yτ̂(i)|+ |xj − yτ̂(j)|, the
corresponding current

∑
i∈Î 〚yτ(i)xi〛 is a better competitor for (2.14), leading to a contradiction.

In particular we conclude that if yτ̂(i)xi ∩ yτ̂(j)xj ∩ U ̸= ∅ then such intersection must contain
an extremum of (at least) one of the two segments. Assume that such point is xi ∈ U ; xj and
yτ̂(j) cannot both belong to U , by assumption of non-collinearity. Hence either xj ∈ ∂U or
yτ̂(j) ∈ ∂U . Let us treat separately the two cases:

• xj ∈ ∂U : in this case we find a contradiction with minimality, since the segments xiyτ̂(j)
and xjyτ̂(i) have total length strictly smaller than |xi − yτ̂(i)|+ |xj − yτ̂(j)|;

• yτ̂(j) ∈ ∂U : we find a contradiction by the triangle inequality, because, as |xi − yτ̂(i)| ≤
|xi− yτ̂(j)| we will have, unless yτ̂(j) = yτ̂(i), that |xj − yτ̂(i)| < |xj − yτ̂(j)| which is absurd5

by property (P). If instead yτ̂(j) = yτ̂(i), we are in case (b).

4This follows since for all i = 1, . . . ,m, at least one among zi and wi must coincide with a pole xj or yj with
index j ∈ P (Λ) ∪N(Λ).

5As yτ̂(j) ∈ ∂U , necessarily τ̂(i) = i and yi minimizes the distance from xj to ∂U .
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Similarly, if the extremum of the segment belonging to yτ̂(i)xi ∩ yτ̂(j)xj ∩U ̸= ∅ is yτ̂(j), we will
end up with case (a). This concludes the proof.

Let δ > 0 and U be a Lipschitz domain. Let Λ ∈ Xf (Uδ), where Uδ is the δ-neighborhood of
U (see (2.1)). The following theorem provides a property of continuity of ∥Λ∥flat,Uδ

with respect
to δ.

Lemma 2.6. Let δ0 > 0, let U be a Lipschitz domain, and let Λ ∈ Xf (Uδ0). Then

lim
δ→0+

∥Λ∥flat,Uδ
= ∥Λ∥flat,U .

Proof. Since Uδ ⊂ Uδ′ for δ < δ′, the quantity ∥Λ∥flat,Uδ
is nondecreasing in δ, and so the limit

exists. Also, limδ→0+ ∥Λ∥flat,Uδ
≥ ∥Λ∥flat,U . Let us show the opposite inequality.

As the supremum in (2.12) is achieved, let ψδ ∈ C0,1
0 (Uδ) be a maximizer in Uδ, for all

0 < δ < δ0. We can trivially extended ψδ to zero on Uδ0 \Uδ. Up to subsequences, there is some
ψ ∈ C0,1

0 (U) such that ψδ → ψ pointwisely, and then uniformly since l(ψδ) ≤ 1 for all δ ∈ (0, δ0).
Therefore, using that Λ is a Radon measure on Uδ0 with finite total variation, we easily get

∥Λ∥flat,Uδ
= ⟨Λ, ψδ⟩R2 → ⟨Λ, ψ⟩R2 ≤ ∥Λ∥flat,U ,

as δ → 0. The thesis is achieved.

We now extend the continuity property of the flat norm for general atomic distributions
Λ ∈ X(Uδ0).

Lemma 2.7. Let δ0 > 0, let U be a Lipschitz domain, and let Λ ∈ X(Uδ0). Then

lim
δ→0+

∥Λ∥flat,Uδ
= ∥Λ∥flat,U .

Proof. Since Λ ∈ X(Uδ0), we find a sequence of couples (xi, yi) ∈ Uδ0 × Uδ0 such that Λ =∑+∞
i=1 (δxi − δyi), and

∑+∞
i=1 dUδ0

(xi, yi) < +∞. For ϵ > 0 we find N > 0 so that

+∞∑
i=N+1

dUδ0
(xi, yi) < ϵ;

this in particular implies, setting Λϵ :=
∑+∞

i=N+1(δxi − δyi) and ΛN :=
∑N

i=1(δxi − δyi), that

∥ΛN∥flat,V ≤ ∥Λ∥flat,V + ∥Λϵ∥flat,V ≤ ∥Λ∥flat,V + ϵ,

∥ΛN∥flat,V ≥ ∥Λ∥flat,V − ∥Λϵ∥flat,V ≥ ∥Λ∥flat,V − ϵ, (2.20)

for any open set V ⊂ Uδ0 . As a consequence, by Lemma 2.6, we infer

lim
δ→0+

∥Λ∥flat,Uδ
≤ ϵ+ lim

δ→0+
∥ΛN∥flat,Uδ

= ϵ+ ∥ΛN∥flat,U ≤ 2ϵ+ ∥Λ∥flat,U .

This concludes the proof thanks to arbitrariness of ϵ > 0, since on the other hand we always
have limδ→0+ ∥Λ∥flat,Uδ

≥ ∥Λ∥flat,U .
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2.3 Functions of bounded variation

Let U be a fixed bounded Lipschitz domain. Let u ∈ BV (U ;R2); we recall that the distributional
gradient of u is a measure Du ∈ Mb(U ;R2×2) which writes as

Du = ∇uL2 +Dcu+DJu,

where ∇u ∈ L1(U ;R2) is the approximate gradient, Dcu is the Cantor part of Du and DJu
is the jump part which is absolutely continuous with respect to the one dimensional Hausdorff
measure H1. As in the scalar case, there exists a 1-rectifiable set Su such that

⟨DJ
j ui, φ⟩ =

∫
Su

(u+i − u−i )νjφ dH
1, ∀φ ∈ Cc(Ω),

where ν is a unit normal vector to Su chosen so that, for H1-a.e. x ∈ Su, it holds

u+(x) = aplim y→x
(y−x)·ν>0

u(y), u−(x) = aplim y→x
(y−x)·ν<0

u(y). (2.21)

Currents induced by scalar maps. Let f ∈ BV (U) be a given real valued function. We
introduce Tf ∈ D2(Ω) the following 2-dimensional current: for every 2-form α ∈ D2(U) we set

Tf (α) :=

∫
U
⟨f(x)e1 ∧ e2, α(x)⟩dx. (2.22)

The boundary ∂Tf of Tf can be identified with the gradient of f ; namely, for all ω ∈ D1(U),
ω = ϕ1dx1 + ϕ2dx2, one has

∂Tf (ω) = Tf (dω) = Tf ( Curl ϕ dx1 ∧ dx2) =
∫
U
f(x) Curl ϕ(x)dx =

∫
U
ϕ⊥(x)dDf(x). (2.23)

Push-forward and boundaries. Let G ∈ C1(R2;R2) be a diffeomorphism which preserves
orientation. If {e1, e2} is a basis of 1-vectors in Λ1(R2), we denote by {ε1, ε2} a basis for
Λ1(G(R2)) ∼= Λ1(R2).

Given g ∈ BV (G(U)) we denote by TGg ∈ D2(G(U)) the current

TGg (β) :=

∫
G(U)

⟨g(y)ε1 ∧ ε2, β(y)⟩dy, (2.24)

for all β ∈ D2(G(U)). Further, for f ∈ BV (U) and any β ∈ D2(G(U)), writing β = φdy1 ∧ dy2
(so that G#β = (φ ◦G)dG1 ∧ dG2), we have

G#(Tf )(β) =

∫
U
⟨f(x)e1 ∧ e2, G#β(x)⟩dx =

∫
U
f(x)φ(G(x)) det (∇G(x))dx

=

∫
G(U)

f(G−1(y))φ(y)dy =

∫
G(U)

⟨f ◦G−1(y)ε1 ∧ ε2, β(y)⟩dy = TGf◦G−1(β).

Hence

G#Tf = TGf◦G−1 . (2.25)

12



As for the boundary of G#Tf , given ϖ = ϕ1dy1+ϕ2dy2 ∈ D1(G(U)), one has dϖ = Curl ϕdy1∧
dy2, and

∂G#(Tf )(ϖ) = G#(Tf )(dϖ) =

∫
G(U)

⟨f ◦G−1(y)ε1 ∧ ε2, dϖ(y)⟩dy

=

∫
G(U)

f ◦G−1(y) Curl ϕ(y)dy =

∫
G(U)

ϕ⊥(y) · dD(f ◦G−1)(y) = ∂TGf◦G−1(ϖ).

(2.26)

Let G : R2 → R2 be a regular diffeomorphism as in Definition 2.1, and let δ > 0 such that (2.4)
holds. Observe that, as G(U) ⊂ Uδ, if f : Uδ → R2, then f ◦ G : G−1(Uδ) → R2, and since
U ⊂ G−1(Uδ) both f and f ◦G are defined on U .

Let f ∈ BV (Uδ); then the currents Tf and TGf◦G−1 are well-defined in D2(Uδ) and D2(G(Uδ)),

respectively, and as G(Uδ) ⊃ U , both are well-defined in D2(U). We have, from (2.22) and (2.24),

TGf◦G−1 U = Tf◦G−1 U,

so that, from (2.25), we have

Tf◦G−1 U = (G#Tf ) U. (2.27)

BV piecewise constant maps. Let U ⊂ R2 be a Lipschitz domain and G and δ > 0 be
as above. We now discuss the special case in which the map f ∈ BV (Uδ) is piecewise constant.
This implies that the approximate gradient ∇f of f (as well as the Cantor part of Df), is
constantly null, and Df consists only of the jump part, namely

Df = (f+ − f−)ν · H1 Sf ,

where Sf ⊂ Uδ is the jump set. Let ω ∈ D1(U), ω = ϕ1dx1 + ϕ2dx2, so (2.23) and (2.26) imply

∂Tf (ω) =

∫
Sf∩U

(f+ − f−)ϕ⊥ · νdH1 =

∫
Sf

(f+ − f−)ϕ · τdH1, (2.28)

∂Tf◦G−1(ω) =

∫
Sf◦G−1∩U

((f ◦G−1)+ − (f ◦G−1)−)ϕ⊥ · νdH1

= ∂Tf (G
#ω) =

∫
Sf

(f+ − f−) ((ϕ ◦G)∇G)⊥ · νdH1

=

∫
Sf

(f+ − f−)(ϕ ◦G)∇G · τdH1 =

∫
Sf

(f+ − f−)(ϕ ◦G) · ∂G
∂τ

dH1, (2.29)

where we denote −ν⊥ = τ a unit tangent vector to Sf . Here we have used also (2.27).

2.4 Weak Jacobian determinant of vector-valued functions of bounded vari-
ation

Let U ⊂ R2 be a Lipschitz domain. If u ∈ BV (U ;R2), we will have ui ∈ BV (U), i = 1, 2.
According to formula (2.22), we have at our disposal two currents Tui ∈ D2(U), i = 1, 2.

Let u ∈ BV (U ;R2) ∩ L∞(U ;R2) be given. We introduce the measure λu ∈ Mb(U ;R2)
defined as∫

U
φ(x) · dλu(x) :=− 1

2

∫
U\Su

u1(x)φ
⊥(x) · dDu2 +

1

2

∫
U\Su

u2(x)φ
⊥(x) · dDu1

− 1

2

∫
Su

(u+2 (x)u
−
1 (x)− u+1 (x)u

−
2 (x))φ

⊥(x) · νdH1(x), (2.30)
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for all φ ∈ Cc(U ;R2). Here, u(x) denotes the Lebesgue value of u at x, defined H1-a.e. on
U \ Su. As a vector valued Borel measure with bounded total variation, λu can be identified
with a 1-current in D1(U).

Definition 2.8. Let u ∈ BV (U ;R2) ∩ L∞(U ;R2); then we denote by Ju ∈ D0(U) the current

Ju := ∂λu.

The definition of Ju ∈ D0(U) provides a weak notion of Jacobian determinant of u, and
extends the classical distributional determinant of ∇u for Sobolev maps (see [20], and also [28]).

The following theorem (see [20]) provides a property of continuity for Ju.

Theorem 2.9. Let uj , u ∈ BV (U ;R2) ∩ L∞(U ;R2) be such that uj ⇀ u strictly in BV (U ;R2)
and supj ∥uj∥L∞ < C. Then

Juj → Ju wealky in D0(Ω).

Moreover, ∥Ju∥flat,U ≤ |λu|(U) ≤ C∥u∥BV (U ;R2).

As a consequence of the last assertion in the previous theorem we get:

Corollary 2.10. Assume the hypotheses of Theorem 2.9. If |λu− λuj |(U) → 0 as j → ∞, then
Juj → Ju with respect to the flat norm.

BV functions taking three values. From now on we suppose that α, β, γ ∈ S1 are the
vertices of an equilateral triangle centered at the origin, with edge of length l :=

√
3 and

√
3

2
= α× β = β × γ = γ × α. (2.31)

Here we have noted α × β := −α · β⊥. The last requirement implies that α, β, and γ, are in
couterclockwise order on S1. Set

σ :=

√
3

4
=

|α× β|
2

=
|α× γ|

2
=

|β × γ|
2

. (2.32)

For a piecewise constant map u ∈ BV (U ; {α, β, γ}) the weak Jacobian determinant will read,
using (2.30), for all φ ∈ D(U),

Ju(φ) = −1

2

∫
Su

(u+2 (x)u
−
1 (x)− u+1 (x)u

−
2 (x))∇

⊥φ(x) · νdH1(x)

=
1

2

∫
Su

(u+ × u−)(x)
∂φ

∂τ
(x)dH1(x).

Here, since u takes values in {α, β, γ}, it holds that u+ × u− takes only a finite number of

possible values. In particular, thanks to (2.32), it happens that u+×u−
2 ∈ {±σ} H1-a.e. on Su.

In particular

λu =
1

2
(u+ × u−)τ · H1 Su (2.33)

is the multiple of an integer multiplicity 1-current (namely, the multiplicity is in {±σ}).
We will now discuss more in details the structure of the Jacobian determinant Ju when u

has polyhedral jump set. Specifically, we introduce the following definition:
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Definition 2.11. A function u ∈ BVloc(R2; {α, β, γ}) is called polyhedral if Su = ∪Ni=1nipi is
the union of finitely many segments, with nipi ⊂ U . We call ni, pi, i = 1, . . . , N (the extrema of
the open segment nipi), the vertices of Su. Additionally, we suppose that if i ̸= j, 1 ≤ i, j ≤ N
then either nipi ∩ njpj is empty or it is a vertex.

We say that a map u ∈ BV (U ; {α, β, γ}) is polyhedral if it is the restriction on U of a
polyhedral function.

Notice that if u ∈ BVloc(R2; {α, β, γ}) is polyhedral then it must be constant outside some
ball BR(0).

As a consequence of the definition, if u is polyhedral, then in the segment nipi the jump
u+ − u− of u is constant, for all i. Therefore we easily obtain

Ju(φ) =
1

2

N∑
i=1

∫
nipi

(u+ × u−)
∂φ

∂τ
dH1 =

1

2

N∑
i=1

(
u+ × u−

)
nipi (φ(pi)− φ(ni)) , (2.34)

for all φ ∈ D(R2). Using (2.32), the previous expression is equal to

Ju(φ) = σ

N∑
i=1

γi (φ(pi)− φ(ni)) , γi :=
(u+ × u−)

| (u+ × u−) |
∈ {−1,+1}.

Namely

Ju := σ
N∑
i=1

γi(δpi − δni), (2.35)

is a finite Radon measure; notice that if u ∈ BV (R2; {α, β, γ}) the points pi, ni are not in general
distinct and can also lie on ∂U . It turns out that

1

σ
Ju ∈ Xf (U).

Let us now consider a regular diffeomorphism G ∈ C1(R2;R2) satisfying (2.4). Assume u ∈
BVloc(R2; {α, β, γ}) be constant outside a ball BR(0), and let us consider the currents λu, λu◦G ∈
D1(R2) in (2.33) related to u and u ◦G: namely

λu =
1

2
(u+ × u−)τ · H1 Su,

λu◦G =
1

2
((u ◦G)+ × (u ◦G)−)τ̂ · H1 Su◦G, (2.36)

where τ̂ = −ν̂⊥, with ν̂ the unit normal to Su◦G. We can now consider the push-forward of λu◦G
by G. For all ω = ϕ1dx1 + ϕ2dx2 ∈ D1(R2) we have

G#λu◦G(ω) = λu◦G(G
#ω) =

1

2

∫
Su◦G

((u ◦G)+ × (u ◦G)−)(ϕ ◦G)∂G
∂τ̂

dH1

=
1

2

∫
Su

(u+ × u−)ϕ · τdH1 = λu(ω),

that is,

G#λu◦G = λu in D1(R2).
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In particular, ∂(G#λu◦G) = ∂λu, i.e.

G#J(u ◦G) = Ju in D0(R2). (2.37)

Equivalently, we will also have

J(u ◦G) = (G−1)#Ju in D0(R2).

Now, if Ju has the form in (2.35), we see that

J(u ◦G) := σ
N∑
i=1

γi(δG−1(pi) − δG−1(ni)). (2.38)

We have proved the following:

Lemma 2.12. Let G ∈ C1(R2;R2) be a regular diffeomorphism as in (2.4). Assume u ∈
BVloc(R2; {α, β, γ}) be polyhedral. Then 1

σJu and 1
σJ(u◦G) are Radon measures in Xf (R2) and

write as in (2.35) and (2.38) respectively. In particular, for all φ ∈ C0,1
c (R2) one has

Ju(φ) = σ
N∑
i=1

γi(φ(pi)− φ(ni)), J(u ◦G) = σ
N∑
i=1

γi(φ(G
−1(pi))− φ(G−1(ni))). (2.39)

Observe that (2.5) and (2.6) apply to J(u ◦G) and Ju as in Lemma 2.12.

Remark 2.13. To show Lemma 2.12 we have proved (2.37); notice that this formula holds for
any piecewise constant u ∈ BVloc(R2; {α, β, γ}). In particular, if 1

σJu ∈ X(R2), also 1
σJ(u◦G) ∈

X(R2), and hence,

Ju(φ) = σ
∞∑
i=1

(φ(xi)− φ(yi)), J(u ◦G) = σ
∞∑
i=1

(φ(G−1(xi))− φ(G−1(yi))). (2.40)

2.5 Approximation of BV piecewise constant maps

Since we deal with functions taking only the 3 values α, β, γ ∈ R2, we need the following
approximation theorem contained in [14, Theorem 2.2].

Theorem 2.14. Let u ∈ BVloc(R2;Z), with Z := {z1, . . . , zm} ⊂ R2 a finite set. Assume
that u is constant outside a ball BR(0) (hence |Du|(R2) < +∞). Then there exists a sequence
uj ∈ BVloc(R2;Z) such that the jump set Suj of uj is polyhedral and uj → u in L1

loc(R2;R2).

Furthermore, there are bijective functions fj ∈ C1(R2;R2), with f−1
j ∈ C1(R2;R2) as well, such

that fj → id strongly in W 1,∞(R2;R2) and |Duj −D(u ◦ fj)|(R2) → 0 as j → ∞.

By [14, Lemma 2.7], the following extension result holds:

Theorem 2.15. Let U ⊂ R2 be a Lipschitz domain and let u ∈ BV (U ;Z), with Z :=
{z1, . . . , zm} ⊂ R2 a finite set. Then there exist C > 0 (depending only on U) and a func-
tion ũ ∈ BVloc(R2;Z) such that

ũ = u on U,

|Dũ|(∂U) = 0, (2.41)

|Dũ|(R2) ≤ C|Du|(U).
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Furthermore, we can always assume that ũ is constant outside BR(0), for some R > 0 large
enough such that U ⊂⊂ BR(0).

Remark 2.16. Let u ∈ BV (U ; {α, β, γ}), and let us denote by u itself an extension of u
as in Theorem 2.15. Let (uj) ⊂ BVloc(R2; {α, β, γ}) be the polyhedral approximations of u ∈
BVloc(R2; {α, β, γ}) provided by Theorem 2.14. Since u can be taken constant outside BR(0), we
can easily see that uj as well can be choosen constant outside BR(0), and uj = u on R2 \BR(0).

The condition |Duj −D(u ◦ fj)|(R2) → 0 as j → ∞ implies that for any U ′ with U ⊂ U ′ ⊂
BR(0) we have

|Duj −D(u ◦ fj)|(U ′) → 0, as j → ∞.

Let us denote by wj := uj − u ◦ fj and by w1
j and w2

j its components; according to (2.28), this
means that for i = 1, 2, the current ∂Twi

j
tends to zero strongly in D1(U

′) (i.e., its mass in U ′

tends to zero as j → ∞). On the other hand, since fj → id strongly in W 1,∞(R2;R2), taking
into account (2.29), also

∂Twi
j◦f

−1
j

→ 0 strongly in D1(U
′), i = 1, 2. (2.42)

Now wj ◦ f−1
j = uj ◦ f−1

j − u; hence, we easily infer6

uj ◦ f−1
j → u strongly in BV (U ′;R2) (2.43)

and

∂Tuij◦f
−1
j

→ ∂Tui strongly in D1(U
′), i = 1, 2. (2.44)

Using again (2.28) and (2.29), exploiting the fact that |u+ − u−| = l > 0, H1-a.e. on Su, we
conclude that

H1(Su∆Suj◦f−1
j

) → 0 as j → ∞. (2.45)

With (2.43) and (2.45) at our disposal we are now able to prove the following:

Theorem 2.17. Let U ⊂ R2 be a Lipschitz domain and let u ∈ BV (U ; {α, β, γ}). Then 1
σJu ∈

X(U).

Proof. As in Remark 2.16, we extend u to all R2 constantly outside BR(0), and choose polyhedral
approximations of u given by functions uj ∈ BVloc(R2; {α, β, γ}) which are constant outside
BR(0). Let fj : R2 → R2 be diffeomorphisms as in Theorem 2.14; by Lemma 2.12, we know that

Juj = σ

Nj∑
i=1

(δpi − δni),

and

J(uj ◦ f−1
j ) = σ

Nj∑
i=1

(δfj(pi) − δfj(ni)),

for some points pi, ni ∈ R2. We claim that

J(uj ◦ f−1
j ) → Ju in the flat norm. (2.46)

6Fixing any subsequence, this must be true for a suitable sub-subsequence, and hence it holds for the full
sequence.
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Indeed, let λu and λuj◦f−1
j

be the measures as in (2.36) associated with u and u◦f−1
j respectively.

Specifically,

λu◦f−1
j

=
1

2
((uj ◦ f−1

j )+ × (uj ◦ f−1
j )−)τ̂j · H1 Suj◦f−1

j
.

To prove the claim it is sufficient to show that |λuj◦f−1
j

− λu|(R2) → 0 as j → ∞. This is

straighforward, since
|λuj◦f−1

j
− λu|(R2) ≤ σH1(Su∆Suj◦f−1

j
),

which goes to zero thanks to (2.45).
We now choose a (not-relabelled) subsequence of (uj), such that

∥J(uj ◦ f−1
j )− J(uj−1 ◦ f−1

j−1)∥flat,U ≤ 1

2j
, (2.47)

for all j ≥ 1. We write (J(uj ◦f−1
j )−J(uj−1◦f−1

j−1)) = σ
∑Mj

i=Mj−1+1(δxi−δyi) and J(u0◦f
−1
0 ) =

σ
∑M0

i=1(δxi − δyi), for a suitable increasing sequence of natural numbers Mj > 0, and suitable
points xi, yi ∈ U . Notice that we can choose these representations in such a way that

∥(J(uj ◦ f−1
j )− J(uj−1 ◦ f−1

j−1)∥flat,U ≤
Mj∑

i=Mj−1+1

σ|xi − yi| ≤
1

2j−1
∀j ≥ 1.

Hence

J(un ◦ f−1
n ) = J(u0 ◦ f−1

0 ) +
n∑
j=1

Ä
J(uj ◦ f−1

j )− J(uj−1 ◦ f−1
j−1)
ä
= σ

Mn∑
i=1

(δxi − δyi),

and

Mn∑
i=1

σ|xi − yi| ≤ 2∥J(u0 ◦ f−1
0 )∥flat,U + 2.

Letting n → ∞ in the two previous expressions, we infer 1
σJu ∈ X(U). The thesis then follows

by using that
∑∞

i=1 dU (xi, yi) ≤
∑∞

i=1 |xi − yi|.

As a consequence of the previous proof we have the following:

Corollary 2.18. Let u ∈ BVloc(R2; {α, β, γ}). Then there exist a sequence of polyhedral maps
(uj) ⊂ BVloc(R2; {α, β, γ}) and a sequence (fj) ⊂ C1(R2;R2) of diffeomorphisms with fj → id
strongly in W 1,∞(R2;R2) such that

∥J(uj ◦ fj)− Ju∥flat,R2 → 0.

The previous result implies in turn

∥J(uj ◦ fj)− Ju∥flat,V → 0,

for any Lipschitz domain V ⊂ R2.
A further consequence of the proof of Theorem 2.17 is the following:

Corollary 2.19. The space X(U) is sequentially closed with respect to the flat topology.
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Proof. Let (Λk) ⊂ X(U) be a sequence converging to Λ in the flat topology. Starting from (2.47)
and replacing J(uk ◦ f−1

k ) with Λk we can employ the same argument of the proof of Theorem
2.17 and conclude that Λ ∈ X(U).

The following approximation result will be crucial to prove our main theorem.

Theorem 2.20. Let U ⊂ R2 be a Lipschitz domain and let u ∈ BV (U ; {α, β, γ}). Then there
exists a sequence (uj) ⊂ BV (U ; {α, β, γ}) of polyhedral maps such that

uj → u strictly in BV (U ; {α, β, γ}),
Juj → Ju in D0(U), (2.48)

∥Juj∥flat,U → ∥Ju∥flat,U .

Proof. We extend u to R2 constantly outside BR(0) (with R > 0 large enough so that U ⊂⊂
BR(0)). Let uj ∈ BVloc(R2; {α, β, γ}) be polyhedral approximations of u given by functions
which are constant outside BR(0), and let fj ∈ C1(R2;R2) be diffeomorphisms as in Theorem
2.14; let δ > 0 be arbitrary, and assume without loss of generality that (2.4) holds for all fj ’s.
By Theorem 2.14 we know that ∥uj − (u ◦ fj)∥BV (BR(0);R2) → 0 as j → ∞. Moreover, as a
consequence of [14, Corollary 2.4] we also know that uj → u strictly in BV (U ;R2). By Theorem
2.9, also Juj → Ju weakly in D0(U); to conclude, we have hence to prove the last condition in
(2.48).

We have

∥Juj∥flat,U ≤ ∥Juj − J(u ◦ f−1
j )∥flat,U + ∥J(u ◦ f−1

j )∥flat,U . (2.49)

The first term in the right-hand side tends to zero as j → ∞. Indeed, by (2.37), we can write
Juj − J(u ◦ f−1

j ) = (f−1
j )#(J(uj ◦ fj)− Ju); thus by (2.5), one has

∥Juj − J(u ◦ f−1
j )∥flat,U ≤ ∥Juj − J(u ◦ f−1

j )∥flat,R2 ≤ (1 + δ)∥J(uj ◦ fj)− Ju∥flat,R2 ,

the last term vanishing as j → 0 thanks to Corollary 2.18. Let us now analyse the second term
in the right-hand side of (2.49). Let δ > 0 be arbitrary, and assume j is large enough so that fj
satisfies (2.4). Thanks to Theorem 2.17, we can write

Ju = σ
∞∑
i=1

(δxi − δyi), (2.50)

for suitable points xi, yi ∈ R2. Let I := {i : either xi or yi ∈ Uδ}, so that

Ju U = σ
∑
i∈I

(δxi − δyi).

By (2.40) we also have

J(u ◦ f−1
j ) U = σ

∑
i∈I

(δfj(xi) − δfj(yi)),

because fj(xi) ∈ U implies xi ∈ Uδ (and similarly for yi). In particular, by (2.6)

∥J(u ◦ f−1
j )∥flat,U ≤ (1 + δ)∥Ju∥flat,fj(U) ≤ (1 + δ)∥Ju∥flat,Uδ

.

We can hence pass to the limsup and obtain

lim sup
j→∞

∥J(u ◦ f−1
j )∥flat,U ≤ (1 + δ)∥Ju∥flat,Uδ

,
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which holds for any δ > 0 small enough, and thus, by Lemma 2.7, we conclude

lim sup
j→∞

∥J(u ◦ f−1
j )∥flat,U ≤ ∥Ju∥flat,U .

The opposite inequality follows by the second equation in (2.48) and by lower semicontinuity of
the flat norm.

2.6 Density of polyhedral maps

Let u ∈ BVloc(R2; {α, β, γ}) be polyhedral. According to Definition 2.11, there is N > 0 such
that

Su = ∪Ni=1nipi,

for suitable points pi, ni ∈ R2, vertices of the jump set of u. We recall that every segment nipi
does not partially overlap each other, and neither trasversally intersects any other, but they
only can share an endpoint; i.e., for i ̸= j, nipi ∩ njpj is either empty or a vertex. Moreover, if
x is a vertex of Su, we define its multiplicity as m(x) := #{i ∈ {1, . . . , N} : x = ni, or x = pi}.

Equivalently, a vertex x has multiplicity m > 0 (and in such a case is called m-vertex) if
there exists δ > 0 such that, for all r ∈ (0, δ), Br(x)∩ Su consists exactly of m segments (which
will be radii of Br(x)). For this reason, the multiplicity of any vertex is at least 2.

Let x be a 3-vertex (also referred to as a triple vertex) and let r > 0 be small enough so that
Br(x) ∩ Su consists of exactly three radii R1, R2, and R3 of Br(x), chosen in counterclockwise
order around x. Let Si,i+1 be the circular sector enclosed by Ri and Ri+1, i = 1, 2, 3, with
i + 1 intended mod(3). Finally, set θi := u Si,i+1 the value of u on Si,i+1. Then, since x is
a 3-vertex, it follows that the triple (θ1, θ2, θ3) is a permutation of (α, β, γ). We say that the
3-vertex is positively (negatively) oriented if the sign of the permutation is positive (negative,
respectively).

Eventually, a couple (x, y) of distinct triple vertices is called a dipole if y is negatively and
x is positively oriented.

Let x be a vertex of Su and let xy be a segment in Su. Choose a Cartesian coordinate
system (x′, y′) with origin at x so that the halfline {x′ > 0, y′ = 0} contains the segment xy.
If τ = −ν⊥ = (1, 0) is a tangent vector to xy, thanks to (2.34), it turns out that ν = (0, 1)
and so u± corresponds to the value that u takes for y′ > 0 (for y′ < 0, respectively) just above
(below) the segment xy. In particular, if x is a 3-vertex positively oriented, the possible values of
(u+, u−) are only the following: (u+, u−) = (α, γ), (u+, u−) = (β, α), (u+, u−) = (γ, β); hence,
in any case, 1

2(u
+×u−) = σ. Therefore, if x is a positively oriented 3-vertex, using again (2.34),

by (2.31) and (2.32), we infer that

Ju Br(x) = 3σδx in D0(Br(x)), (2.51)

for r > 0 small enough. If instead x is negatively oriented, we will have a minus sign in the
right-hand side of the previous expression.

We will now state and prove the following density result:

Theorem 2.21. Let U be a Lipschitz domain and u ∈ BV (U ; {α, β, γ}). Then for all ϵ > 0
there is a map uϵ ∈ BV (U ; {α, β, γ}) such that

(i) uϵ is polyhedral, and its jump set writes as Suϵ = ∪Nϵ
i=1n

ϵ
ip
ϵ
i ∩U, for suitable points pϵi , n

ϵ
i ∈

R2, vertices of the jump set;

(ii) for all vertices x ∈ U , the multiplicity of x is at most 3;
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(iii) the vertices pϵi , n
ϵ
i of Suϵ which are contained in U form a family of three by three not

collinear points;

(iv) if Λ = Λϵ :=
1
3σJuϵ and S = Sϵ :=

∑
i∈Î 〚yτ̂(i)xi〛 is the minimizer of (2.13) provided by

Lemma 2.5, then the segments yτ̂(i)xi ∩ U , i ∈ Î, are mutually disjoint;

(v) it holds that

∥u− uϵ∥L1 +
∣∣|Du|(U)− |Duϵ|(U)

∣∣+ ∣∣∥Ju∥flat,U − ∥Juϵ∥flat,U
∣∣ ≤ ϵ. (2.52)

To prove this, we will combine the two following lemmas. We start with:

Lemma 2.22. Suppose u ∈ BV (U ; {α, β, γ}) is polyhedral. Then there exists a finite set of
couples {(xi, yi) : i = 1, . . . , N} ⊂ U ×U such that Ju = 3σ

∑N
i=1(δxi − δyi). Furthermore, there

is a sequence of polyhedral maps uj with vertices of Suj in U of multiplicities at most 3 and such
that

uj → u strongly in BV (U ;R2),

∥Juj − Ju∥flat,U → 0, (2.53)

as j → ∞.

Proof. We divide the proof into three steps.
Step 1. Let the jump set of u write as Su = ∪mi=1nipi. By Lemma 2.12 the Jacobian deter-

minant of Du has the form

Ju = σ
m∑
i=1

γi(δpi − δni),

for suitable signs γi ∈ {±1}. Up to switch the notation for pi and ni we assume that γi = 1 for
all i = 1, . . . ,m.

A vertex x of multiplicity 2 has null contribution, since in this case x = pi = nj for some i, j.
Instead, if x is a triple point then, if x ∈ U , by (2.51) we have that its contribution is ±3σδx.
Adding, if necessary, points on ∂U , the lemma is proved if any vertex has multiplicity at most
3, as we can take uj := u for all j > 0.

Step 2: Let us prove the statement for a general u. Let {xk : k = 1, . . . ,K}, be the family of
vertices in U of Su with multiplicities mk ≥ 4, k = 1, . . . ,K. Let ϵ > 0 be small enough so that
Bϵ(xk) ∩ Su consists of mk radii for all k = 1, . . . ,K and let v ∈ {α, β, γ} be a fixed vector. Let
Qϵ,k be a closed square with baricenter in xk with vertices on ∂Bϵ(xk). We define the function

uϵ(x) :=

®
u(x) if x ∈ U \ ∪Kk=1Qϵ,k

v if x ∈ ∪Kk=1Qϵ,k.

The maps uϵ ∈ BV (Ω; {α, β, γ}) are polyhedral, with vertices at most of multiplicity 3, and
satisfy uϵ → u strongly in BV (U ;R2) as ϵ→ 0. Furthermore, as uϵ and u differ only on ∪Kk=1Qϵ,k,

owing to (2.30), we easily see that λu−λuϵ is a measure concentrated only on
⋃K
k=1(Qϵ,k ∩Su)∪⋃K

k=1 ∂Qϵ,k, whose total variation goes to zero as ϵ→ 0. In particular

|λu − λuϵ |(U) → 0 as ϵ→ 0,

and then by Corollary 2.10, Juϵ → Ju in the flat norm. The same holds for uj := uϵj as j → ∞,
with ϵj an infinitesimal sequence.

Step 3: We show that the weak Jacobian determinant of u takes the form Ju = 3σ
∑N

i=1(δxi−
δyi). But this is a consequence of Corollary 2.19, applied to the distributions 1

3σJuj . The proof
is complete.
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Lemma 2.23. Let u ∈ BV (U ; {α, β, γ}) be polyhedral and such that every vertices of Su in U
has multiplicity at most 3. Then for all ϵ > 0 there is a polyhedral map uϵ ∈ BV (U ; {α, β, γ})
such that

∥uϵ − u∥L1 +
∣∣|Duϵ|(U)− |Du|(U)

∣∣+ ∣∣∥Juϵ∥flat,U − ∥Ju∥flat,U
∣∣ ≤ ϵ, (2.54)

and all the vertices of Suϵ which are contained in U have multiplicity at most 3 and are three
by three not collinear. Moreover, we can find uϵ so that, if Λ := 1

3σJuϵ and S =
∑

i∈Î 〚yτ̂(i)xi〛
is the minimizer of (2.13) provided by Lemma 2.5, then the segments yτ̂(i)xi ∩ U , i ∈ Î, are
mutually disjoint.

Proof. Let Su = ∪mi=1nipi and denote by {zi, i = 1, . . . , n} the points among pi and ni which
are contained in U . Given η > 0 small enough, let Tη := {x ∈ U : dist(x, Su) < η} be a tubular
neighborhood of Su; we assume also that the balls Bη(zi) ⊂ U are mutually disjoint. We will
modify u in Tη in order to move the points zi. For all i = 1, . . . , n, by assumption, zi is either a
2-vertex or a 3-vertex. In the first case, let w1 and w2 be the points among the zi’s which are
connected to zi by a segment in Su; we choose ẑi ∈ Bη(zi) so that ẑi does not belong to any line
ℓjk passing through zj and zk, with j, k ̸= i. We can choose ẑi arbitrarily close to zi. We now
define û in such a way that it coincides with u outside Tη and has Sû which is given by

Sû =
(
Su \ (w1zi ∪ w2zi)

)
∪ (w1ẑi ∪ w2ẑi).

If η is small enough, it is easily seen that û is uniquely determined, and it holds

∥û− u∥L1 + ||Dû|(U)− |Du|(U)| ≤ Cη,

for some constant C > 0 independent of η. Furthermore, we also estimate∣∣∥Jû∥flat,U − ∥Ju∥flat,U
∣∣ ≤ 6σ|zi − ẑi| ≤ Cη.

In the case that zi is a triple point, we proceed in the same way and define û so that

Sû =
(
Su \ (w1zi ∪ w2zi ∪ w3zi)

)
∪ (w1ẑi ∪ w2ẑi ∪ w3ẑi),

where w1, w2, and w3, are the vertices of Su linked to zi with a segment in Su. Similar estimates
lead to

∥û− u∥L1 +
∣∣|Dû|(U)− |Du|(U)

∣∣+ ∣∣∥Jû∥flat,U − ∥Ju∥flat,U
∣∣ ≤ Cη.

Then we iterate the construction moving every zi, for i = 1, . . . , n. The thesis then follows by
fixing ϵ > 0, and choosing η small enough in order that (2.54) holds for uϵ = û.

Eventually, let Λ = 1
3σJû =

∑n
i=1(δxi − δyi) be a representation satisfying (P) and let

S =
∑

i∈Î 〚yτ̂(i)xi〛 be the minimizer of (2.13) provided by Lemma 2.5. If yτ̂(i)xi∩yτ̂(j)xj∩U ̸= ∅
for some i, j ∈ Î, i ̸= j, then by Lemma 2.5 (iii) either (a) or (b) holds, and hence it means
that the four points yτ̂(i), xi, yτ̂(j), xj are on the same line. So, if for instance xi ∈ U (if not,
necessarily yτ̂(i) ∈ U), it is sufficient to repeat the preceeding procedure to move xi (respectively,
yτ̂(i)) a bit in order that it is not aligned with any segment ykxh, k, h ∈ {1, . . . , n}, h ̸= i.

We are now ready to prove Theorem 2.21.

Proof of Theorem 2.21. Given u ∈ BV (U ; {α, β, γ}) and ϵ > 0, we use the approximation result
given by Theorem 2.20, and combine this with Lemma 2.22 and Lemma 2.23.
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Corollary 2.24. Let U be a Lipschitz domain and let u ∈ BV (U ; {α, β, γ}). Then 1
3σJu ∈

X(U).

Proof. We denote by u ∈ BVloc(R2; {α, β, γ}) itself an extension of u as given by Theorem 2.15,
and let uj ∈ BVloc(R2; {α, β, γ}) be polyhedral maps as in Corollary 2.18. Thanks to Lemma
2.12 the restrictions to U of the maps uj◦fj enjoy J(uj◦fj) ∈ X(U); hence, since J(uj◦fj) → Ju
with respect to the flat distance, we conclude by Corollary 2.19.

3 Proof of the main results

In this section we prove Theorems 1.1 and 1.2. Throughtout the section Ω ⊂ R2 denotes a
Lipschitz domain.

We start with the following:

Proposition 3.1. Let u ∈ BV (Ω; {α, β, γ}) be a polyhedral map such that Su := ∪Ni=1nipi
satisfies:

(1) the points zi’s in the family {zi : i = 1, . . . ,m} of vertices ni, pi, which belong to Ω, are
three by three not collinear;

(2) the multiplicity of each vertex of Su ∩ Ω is at most 3.

Let Λ := 1
3σJu =

∑n
i=1(δxi − δyi), where we assume that this representation satisfies hypothesis

(P), let S ∈ S(U) be a minimizer of (2.13) provided by Lemma 2.5, S =
∑

i∈Î 〚yτ̂(i)xi〛, and
suppose that

(3) the segments yτ̂(i)xi ∩ Ω, i ∈ Î, are mutually disjoint.

Set li := |xi − yτ̂(i)|, i ∈ Î; then there exists a sequence (uk) ⊂ BV (Ω; {α, β, γ}) of polyhedral
maps satisfying:

(i) the multiplicities of the vertices of Suk ∩ Ω are at most 2;

(ii) uk → u strongly in L1(Ω;R2) as k → ∞, and

lim inf
k→∞

|Duk|(Ω) ≤ lH1(Su) + 3l
∑
i∈Î

li = |Du|(Ω) + 4∥Ju∥flat,Ω.

Proof. Let {wi : i = 1, . . . ,K} be the points among {xi, yi : i = 1, . . . , n} which are contained
in Ω. By assumption, all such points must be triple points. Let η > 0 be small enough so that
the balls Bη(wi), i = 1, . . . ,K are mutually disjoint, contained in Ω, and such that Bη(wi) ∩ Su
consists of three radii.

To prove the thesis, for all ϵ > 0 small enough we show that there exists a polyhedral map
uϵ ∈ BV (Ω; {α, β, γ}) satisfying (i) and such that

|Duϵ|(Ω) ≤ lH1(Su) + 3l

n∑
i=1

li +O(ϵ), (3.1)

where O(ϵ) → 0 as ϵ→ 0.
First we observe that, thanks to hypotheses (1), (2) and (3), by (iii) of Lemma 2.5, the

segments yτ̂(i)xi ∩ Ω are mutually disjoint and they can share only endpoints lying on ∂Ω.

Moreover, thanks again to (1), for all i ∈ Î, the segment yτ̂(i)xi enjoys one and only one of the
following:
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Figure 1: Construction in Step 1, a subcase of (a).

(a) yτ̂(i)xi is contained in a segment njpj , for some j = 1, . . . , N ;

(b) for any j = 1, . . . , N , the intersection yτ̂(i)xi ∩ njpj is either empty or is a single point.

To construct uϵ we will recursively modify u in a tubular neighborhood of the segment yτ̂(i)xi,

for all i ∈ Î.

Step 1. In this step we describe how to modify u around the segment yτ̂(i)xi in case that (a)
above holds. To simplify the notation, set p := xi, n := yτ̂(i). We first discuss the case in which
p, n ∈ Ω: Denote Tη(np) := {x ∈ R2 : dist(x, np) < η}. Up to taking η small enough, we can
suppose that Tη(np) ⊂ Ω and that u takes only two values in (Tη(np)\Bη(p))\Bη(n), say α and

β. Further, Bη(p) ∩ Su consists of three radii, r1, r2, and r3 chosen in counterclockwise order

around p, and with r1 ⊂ np. Similarly, we note by r′1, r
′
2, and r

′
3 the three radii of Bη(n) ∩ Su

chosen in clockwise order around n and r′1 ⊂ np. Let (x, y) be a Cartesian coordinate system
so that np ⊂ {y = 0}. Assume first that either for y > 0 small enough the line y = y intersects
both r2 and r′2, or for y < 0 small enough the line y = y intersects both r3 and r′3. Suppose
without loss of generality we are in the first case, and denote by p′ and n′ the corresponding
intersections between y = y and r2 and r′2, respectively. Finally we set

uϵ :=

®
γ in Qpnn′p′ ,

u elsewhere in Ω,
(3.2)

where Qpnn′p′ is the quadrilateral with vertices p, n, n′, and p′. The new family of triple points
of uϵ is {wi : i = 1, . . . ,K} \ {p, n}, and it is straightforward to check that

∥u− uϵ∥L1 ≤ ηli +O(η),

|Duϵ|(Ω) ≤ |Du|(Ω) + 2lli +O(η). (3.3)

Assume now that no lines y = y intersect both r2 and r′2, or both r3 and r′3. This means that r2
and r3 are contained in {y ≤ 0}, and r′2 and r′3 in {y ≥ 0} (or viceversa). Let v ∈ {α, β, γ} be
the value that u takes in the circular sector enclosed by r2 and r3 (which is the same value in
the sector between r′2 and r′3). Let us assume that v = γ. Then we build two parallel segments
ℓp and ℓn, originating from p and n respectively, and ending at points p′ and n′ on r′2 and r3,
respectively (see Figure 1). We then set uϵ as in (3.2). Also in this case the triple points p and
n disappear, and (3.3) holds true.

It remains to discuss the case in which one among xi and yτ̂(i) belongs to ∂Ω. As before, set
p := xi, n := yτ̂(i), assume that n ∈ ∂Ω, and that u takes the values α and β in (Tη(np)\Bη(p))\
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Figure 2: Construction in Step 2, case M = 2.

Bη(n). Let y and p′ be as above and choose a point n′ ∈ {y = y} ∩
(
Tη(np) \ Bη(p) \ Bη(n)

)
;

then we define uϵ as in (3.2). It is easy to see that the triple points of uϵ in Ω are in the family
{wi : i = 1, . . . ,K} \ {p}, and that (3.3) holds.

Step 2. Let us now treat case (b). We have to distinguish the cases in which both the points
p := xi, n := yτ̂(i) belong to Ω and in which one of them is on ∂Ω. Let us treat the first one:
Thanks to (b), the segment np intersects Su in a finite set of M ≥ 2 points, containing p and n.

Suppose first that M = 2, i.e., np does not intersect Su in its interior. Let, as in Step 1,
r1, r2, r3, and r′1, r

′
2, r

′
3 be radii in Bη(p) and Bη(n) respectively, contained in Su and with

np ∩ Bη(p), r1, r2, and r3 chosen in counterclockwise order around p, and np ∩ Bη(n), r′1, r′2,
and r′3 chosen in clockwise order around n. Let qj be the endpoint of rj on ∂Bη(p) and let q′j
the endpoint of r′j on ∂Bη(n), for j = 1, 2, 3. We choose three points (in clockwise order) sj ,
j = 1, 2, 3, between q1 and q3, on ∂Bη(p), and we choose three points (in counterclockwise order)
s′j , j = 1, 2, 3, between q′1 and q′3, on ∂Bη(n). We can choose the points sj and s′j close to the

segment np in such a way that the three segments sjs′j , j = 1, 2, 3, are parallel to np (see Figure
2).

Since p and n are two triple points, one positively and one negatively oriented, and since np
does not intersect any other point in Su except p and n, the map u takes the same values on the

arcs7 ÷qjqj+1 and ÷q′jq′j+1, for j = 1, 2, 3. Assume, without loss of generality, that u = α on ‘q3q1,
u = β on ‘q1q2, and u = γ on ‘q2q3; then we define

uϵ :=


β on T12 ∪ S12 ∪ S′

12

γ on T23 ∪ S23 ∪ S′
23

u elsewhere,

(3.4)

7These arcs are intended on ∂Bη(p) and ∂Bη(n) respectively, j is intended mod 3, and it is intended that÷qjqj+1 does not contain qj+2.
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where T12 is the region in (Ω \ Bη(p)) \ Bη(n) enclosed by s1s′1 and s2s′2, T23 is the region in

(Ω \ Bη(p)) \ Bη(n) enclosed by s2s′2 and s3s′3, S12 ⊂ Bη(p) is enclosed between q1s1 and q2s2,

S′
12 ⊂ Bη(n) is enclosed between q′1s

′
1 and q′2s

′
2, and similarly S23 and S′

23. It is not difficult to
see that the new map uϵ has not triple points in Bη(p) and Bη(n) (and neither we have added
other triple points). Moreover, it is easily checked that

∥u− uϵ∥L1 ≤ ηli +O(η),

|Duϵ|(Ω) ≤ |Du|(Ω) + 3lli +O(η). (3.5)

Let us now discuss how to modify u in the case that M > 2. The procedure is the same: we
choose the points s1, s2, and s3 as before in ∂Bη(p), and then, denoting by ℓ the first segment
in Su, starting from p, that np intersects, we choose s′1, s

′
2, and s

′
3 on ℓ in such a way that the

segments sjs′j , j = 1, 2, 3, are parallel to np. Assuming, as before, that u = α on‘q3q1, u = β on‘q1q2, and u = γ on ‘q2q3, we define

uϵ :=


β on T12 ∪ S12
γ on T23 ∪ S23
u elsewhere,

(3.6)

where T12 is the region in Ω \Bη(p) enclosed by s1s′1, s2s
′
2, and ℓ, T23 is the region in Ω \Bη(p)

enclosed by s2s′2, s3s
′
3, and ℓ, S12 and S23 defined as before. With this definition, uϵ has no

anymore triple points in Bη(p), but has a new triple point p′ either in s′1 or in s′3 (and positively
oriented). However, we notice also that the segment p′n, if η was chosen small enough, does
intersect Su in exactly (M − 1) points. Then we can repeat the argument above, inductively,
starting from the segment p′n, and redefining uϵ (M − 1) times, up to erase also the triple point
in n. We easily check that, at the end of the procedure, also in this case we have the estimate
(3.5).

To conclude Step 2, we have to describe how to modify u in the case that one point among p
and n belongs to ∂Ω. Assume without loss of generality that n ∈ ∂Ω, then if M > 2 we proceed
as in the previous case. So we have only to specify how to modify u in the case M = 2. In this
case, we proceed as before defining uϵ as in (3.6), but with the difference that we choose the
points s′1 = s′2 = s′3 = n ∈ ∂Ω. Also in this case (3.5) still holds.

Step 3. We iterate the procedure described in Step 1 and Step 2 for all couples (xi, yτ̂(i)). In

the end, summing the estimates (3.3) and (3.5) for all i ∈ Î, by the triangle inequality we can
choose η small enough so that uϵ satisfies (3.1). The thesis follows.

We are now ready to prove Theorem 1.1:

Proof of Theorem 1.1. Let u ∈ BV (Ω; {α, β, γ}) be given; we have to prove that

A(u,Ω) ≤ |Ω|+ |Du|(Ω) + 4∥Ju∥flat,Ω. (3.7)

By Theorem 2.15 there exists an extension u ∈ BVloc(R2; {α, β, γ}) of u such that |Du|(∂Ω) = 0.
For δ ∈ (0, 1), we consider the δ-neighborhood Ωδ of Ω, defined as in (2.1). Since |Du|(∂Ω) = 0,
we have

|Du|(Ωδ \ Ω) → 0 as δ → 0. (3.8)

Since δ is arbitrary, by Lemma 4.1 we can assume that Ωδ is a Lipschitz domain (and we can
take it as small as we want).

26



Furthermore, thanks to Theorem 2.17 and Lemma 2.7, we have

∥Ju∥flat,Ωδ
→ ∥Ju∥flat,Ω = ∥Ju∥flat,Ω as δ → 0. (3.9)

For all δ > 0 small enough, and all k > 0, we use Theorem 2.21 to find a polyhedral map
uδ,k ∈ BV (Ωδ; {α, β, γ}) satisfying (1), (2), and (3) of Proposition 3.1, and such that

∥u− uδ,k∥L1(Ωδ) +
∣∣|Du|(Ωδ)− |Duδ,k|(Ωδ)

∣∣+ ∣∣∥Ju∥flat,Ωδ
− ∥Juδ,k∥flat,Ωδ

∣∣ ≤ 1

k
. (3.10)

In turn, by Proposition 3.1, for all such δ and k there exists a polyhedral map ûδ,k with the
vertices of Sûδ,k in Ω having multiplicities at most 2, and such that

∥ûδ,k − uδ,k∥L1(Ωδ) ≤
1

k
, |Dûδ,k|(Ωδ) ≤ |Duδ,k|(Ωδ) + 4∥Juδ,k∥flat,Ωδ

+
1

k
. (3.11)

Moreover, using the density result in Lemma 2.23 we can assume that |Dûδ,k|(∂Ω) = 0 for all δ
and k > 0. From (3.10) and (3.11) it follows that

∥ûδ,k − u∥L1(Ω) ≤
2

k
, |Dûδ,k|(Ω) ≤ |Du|(Ωδ) + 4∥Ju∥flat,Ωδ

+
2

k
. (3.12)

We now invoke [1, Theorem 3.14], which implies that

A(ûδ,k,Ω) = |Ω|+ |Dûδ,k|(Ω) ≤ |Ω|+ |Du|(Ωδ) + 4∥Ju∥flat,Ωδ
+

2

k
.

and so, letting k → ∞, by lower semicontinuity of A, we infer

A(u,Ω) ≤ |Ω|+ |Du|(Ωδ) + 4∥Ju∥flat,Ωδ
. (3.13)

Finally, using (3.8) and (3.9), we can let δ → 0 and conclude (3.7). The thesis is achieved.

Remark 3.2. Notice that for the functions ûδ,k we can extract a sequence δk ↘ 0, such that,
as k → ∞, it holds

ûk := ûδk,k → u in L1(Ω),

lim sup
k→∞

|Dûk|(Ω) ≤ |Du|(Ω) + 4∥Ju∥flat,Ω,

lim sup
k→∞

A(ûk,Ω) ≤ |Ω|+ |Du|(Ω) + 4∥Ju∥flat,Ω.

Moreover, any map ûk admits an extension to Ωδ which is polyhedral with, for all the vertices of
the jump contained in Ωδ, multiplicities at most 2. This observation will be useful in the sequel.

We now focus on the proof of Theorem 1.2. We recall that if u ∈ BV (Ω; {α, β, γ}), then by
Corollary 2.24 we have

1

3σ
Ju =

∞∑
i=1

(δxi − δyi),

for suitable points xi, yi ∈ Ω, such that
∑∞

i=1 dΩ(xi, yi) < +∞.
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Proof of Theorem 1.2. We divide the proof into two steps.
Step 1(Proof of (1.11)). For all ϵ > 0 small enough we fix N > 0 so that

∞∑
i=N+1

dΩ(xi, yi) < ϵ. (3.14)

This in particular implies that, setting Λϵ := 3σ
∑∞

i=N+1(δxi − δyi), we have

∥Λϵ∥flat,Ω ≤ 3σϵ. (3.15)

Let us denote by {wk : k = 1, . . . ,m} = {xi ∈ Ω, yj ∈ Ω, i ≤ N, j ≤ N} the family of points
xi, yj (with i, j ≤ N) which are contained in Ω. We can choose r > 0 small enough so that the
closed balls B2r(wk), k = 1, . . . ,m are contained in Ω and are mutually disjoint. It turns out
that the domain Ur := Ω \ (∪mk=1Br(wk)) is a Lipschitz domain, so that we can apply Theorem
1.1 and obtain

A(u, Ur) ≤ |Ur|+ |Du|(Ur) + 4∥Ju∥flat,Ur . (3.16)

Notice that Ju Ur = Λϵ Ur in D′(Ur), so from (3.15) we readily infer

∥Ju∥flat,Ur ≤ 3σϵ. (3.17)

On the other hand, denoting Dr := ∪mk=1B2r(wk), by Theorem 2.9 we also deduce that

∥Ju∥flat,Dr ≤ C|Du|(Dr) → 0 as r → 0+,

so we choose r > 0 small enough in order that

∥Ju∥flat,Dr ≤ ϵ. (3.18)

Therefore, again Theorem 1.1 implies that

A(u,Dr) ≤ |Dr|+ |Du|(Dr) + 4ϵ. (3.19)

Eventually, by definition of A, by (3.16), (3.17), and (3.19), we get

A(u,Ω) ≤ |Ur|+ |Du|(Ur) + |Dr|+ |Du|(Dr) + oϵ(1), (3.20)

where oϵ(1) → 0 as ϵ → 0+. Since (3.20) holds for all r > 0 small enough, we conclude that

A(u,Ω) ≤ |Ω|+ |Du|(Ω) + oϵ(1), and thus

A(u,Ω) ≤ |Ω|+ |Du|(Ω),

by arbitrariness of ϵ > 0. The opposite inequality simply follows from the fact that

A(u;U) ≥ |U |+ |Du|(U),

for any open set U and any u ∈ BV (U ; {α, β, γ}), as a consequence of (1.4).

Step 2. As in Step 1, we fix ϵ > 0 and N > 0 so that (3.14), (3.15), and (3.17) hold.
Furthermore, in the Lipschitz domain Ur = Ω \ (∪mh=1Br(wh)) we consider a sequence ûk as in
Remark 3.2 (applied with Ω replaced by Ur). To emphasize the dependence of this sequence on
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r > 0 we denote such maps urk := ûk. We recall that urk admits an extension on a neighborhood
of Ur which is polyhedral with vertices of Surk in Ur of multiplicity at most 2, and

lim sup
k→∞

A(urk, Ur) ≤ |Ur|+ |Du|(Ur) + 4∥Ju∥flat,Ur ≤ |Ur|+ |Du|(Ur) + 12σϵ, (3.21)

for all r > 0 sufficiently small. In particular

A(urk, Ur) ≤ |Ur|+ |Du|(Ur) + 12σϵ+ ok(1), (3.22)

where ok(1) → 0 as k → ∞. On the other hand

lim inf
k→∞

A(urk, U2r) ≥ |U2r|+ |Du|(U2r), (3.23)

where U2r = Ω \ (∪mh=1B2r(wh)), so

A(urk, U2r) ≥ |U2r|+ |Du|(U2r) + o′k(1), (3.24)

where o′k(1) → 0 as k → ∞.

Fixing r and k, we can find a sequence (vr,kj ) ⊂ C1(Ur;R2) ∩W 1,∞(Ur;R2) such that

vr,kj → urk in L1(Ur;R2) as j → ∞,

lim
j→∞

A(vr,kj , Ur) = A(urk, Ur) = |Ur|+ |Durk|(Ur), (3.25)

where the last equality follows from [1, Theorem 3.14]. Combining with (3.21) and (3.24), we
have

|Ur \ U2r|+ |Durk|(Ur \ U2r) ≤ lim
j→∞

A(vr,kj , Ur \ U2r) = lim
j→∞

Ä
A(vr,kj , Ur)− A(vr,kj , U2r)

ä
≤ A(urk, Ur)− lim inf

j→∞
A(vr,kj , U2r) ≤ A(urk, Ur)−A(urk, U2r)

≤ |Ur|+ |Du|(Ur) + 12σϵ− |U2r| − |Du|(U2r) + ηk

= |Ur \ U2r|+ |Du|(Ur \ U2r) + 12σϵ+ ηk,

where ηk → 0 as k → ∞. From this we get

|Durk|(Ur \ U2r) ≤ |Du|(Ur \ U2r) + 12σϵ+ ηk. (3.26)

Next we observe that, since vr,kj is built by mollification (see [1, Theorem 3.14] for details),
it also follows that

vr,kj → urk strictly in BV (Ur;R2) as j → ∞. (3.27)

By Fubini and the mean value theorems we can find a set Ih ⊂ (r, 2r) of positive measure such
that for all ρ ∈ Ih we have

|Dũrk|(∂Bρ(wh)) ≤
1

r
|Durk|(B2r(wh) \Br(wh)), (3.28)

where we have denoted by ũrk ∈ BV (∂Bρ(wh);R2) the trace8 of urk on ∂Bρ(wh). By (3.27),
applying [4, Lemma 2.5], for all h = 1, . . . ,m we can find rh ∈ Ih such that (up to extracting a
subsequence)

vr,kj → ũrk strictly in BV (∂Brh(wh);R
2) as j → ∞, ∀h = 1, . . . ,m. (3.29)

8This coincides with the restriction of ur
k for a.e. ρ > 0, and we can assume this is a BV function.
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For all j we now define

vr,kj (x) =

{
vr,kj (x) if x ∈ Ω \ (∪mh=1Brh(wh))

vr,kj

Ä
wh + rh

x−wh
|x−wh|

ä
if x ∈ Brh(wh) \ {wh}, h = 1, . . . ,m.

(3.30)

Hence we have vr,kj ∈ W 1,∞
loc (Ω \ {wh : h = 1, . . . ,m};R2), it is piecewise C1-regular, and

furthermore, for x ∈ Brh(wh) \ {wh},

∇vr,kj (x) = ∇vr,kj
Å
wh + rh

x− wh
|x− wh|

ã
∇
Å
rh

x− wh
|x− wh|

ã
,

whose Jacobian determinant is null as det
Ä
∇
Ä
x−wh
|x−wh|

ää
= 0, and

|∇vr,kj (x)| ≤
∣∣∣∣∇vr,kj Åwh + x− wh

|x− wh|

ã∣∣∣∣ rh
|wh − x|

.

As a consequence

A(vr,kj ,∪mh=1(Brh(wh) \ {wh})) =
∫
∪m
h=1Brh

(wh)

√
1 + |∇vr,kj |2dx ≤ |∪mh=1Brh(wh)|+

∫
∪m
h=1Brh

(wh)
|∇vr,kj |dx

≤ 4πr2m+
m∑
h=1

∫ 2π

0

∫ rh

0
rh

∣∣∣∇vr,kj (wh + rh(cos θ, sin θ))
∣∣∣ dρdθ

= 4πr2m+
m∑
h=1

∫ rh

0

∫
∂Brh

|∇vr,kj |dH1dρ

= 4πr2m+
m∑
h=1

rh|Dũrk|(∂Brh(wh)) + oj(1), (3.31)

where, using (3.29), we have oj(1) → 0 as j → ∞. In turn, from (3.26), (3.28), and since rh ∈ Ih,
we infer

A(vr,kj ,∪mh=1(Brh(wh) \ {wh})) ≤ 4πr2m+ |Durk|(Ur \ U2r) + oj(1) (3.32)

≤ 4πr2m+ |Du|(Ur \ U2r) + 12σϵ+ ηk + oj(1).

Eventually, by (3.25) and using (3.22), this implies

A(vr,kj ,Ω \ {(wh) : h = 1, . . . ,m}) ≤ A(vr,kj , Ur) + A(vr,kj ,∪mh=1(Brh(wh) \ {wh}))
≤ A(urk, Ur) + 4πr2m+ |Du|(Ur \ U2r) + 12σϵ+ η̂k + oj(1)

≤ |Ω|+ |Du|(Ω) + 3πr2m+ 12σϵ+ η̂k + oj(1), (3.33)

where η̂k → 0 as k → ∞. Hence we conclude, by a diagonal argument, that there exists a
sequence vk := vr,kj(k) ∈W 1,∞

loc (Ω\{wh : h = 1, . . . ,m};R2), piecewise C1-regular on Ω\{wh : h =

1, . . . ,m}, such that vk → u in L1(Ω;R2) and

lim inf A(vk,Ω \ {(wh) : h = 1, . . . ,m}) ≤ |Ω|+ |Du|(Ω) + 12σϵ. (3.34)

This is sufficient to ensure that

A(u,Ω \ {(wh) : h = 1, . . . ,m}) ≤ |Ω|+ |Du|(Ω) + 12σϵ. (3.35)

Therefore, for all ϵ > 0 we have found a finite set of points Cϵ := {(wh) : h = 1, . . .m} such that
(3.35) holds, and we conclude that the right-hand side of (1.12) coincides with |Ω| + |Du|(Ω).
This is exactly A(u,Ω) as proved in Step 1, so the thesis is achieved.
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4 Appendix

We collect here two useful observations. The first one consists in the following lemma, whose
content can be found in [22] (see also references therein):

Lemma 4.1. Let U ⊂ R2 be a relatively compact set; then for a.e. δ > 0 the δ-neighborhood Uδ
of U has Lipschitz boundary.

As a second remark, we see that we can equivalently relax the area functional using W 1,∞
loc

functions instead of C1 maps:

Lemma 4.2. Let Ω ⊂ R2 be a Lipschitz domain and u ∈ L1(Ω;R2). Then

A(u,Ω) = inf{lim inf
k→+∞

A(vk,Ω), vk ∈W 1,∞
loc (Ω;R2), vk → u in L1(Ω;R2)}. (4.1)

This follows from the fact that for v ∈ W 1,∞
loc (Ω;R2) it holds A(v,Ω) = A(v,Ω) (see [1]),

which trivially implies the inequality ≤ in the formula above. The opposite inequality is obtained
by simply observing that C1(Ω;R2) ⊆W 1,∞

loc (Ω;R2).
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