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Abstract. We present a concise point of view on the first and the second Korn’s inequality for

general exponent p and for a class of domains that includes Lipschitz domains. Our argument

is conceptually very simple and, for p = 2, uses only the classical Riesz representation theorem

in Hilbert spaces. Moreover, the argument for the general exponent 1 < p < ∞ remains the

same, the only change being invoking now the q-Riesz representation theorem (with q the

harmonic conjugate of p). We also complement the analysis with elementary derivations of

Poincaré-Korn inequalities in bounded and unbounded domains, which are essential tools in

showing the coercivity of variational problems of elasticity but also propedeutic to the proof

of the first Korn inequality.
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1. Introduction and motivation

Korn’s inequality is a fundamental result in mathematical analysis and a cornerstone of linear
elasticity theory. For an elastic body occupying a regular region Ω ⊂ R3, or more generally for
a smooth bounded domain Ω ⊂ RN , N ⩾ 1, the inequality, in its more classical form, states
the existence, for every 1 < p < ∞, of a positive constant KΩ,p > 0, depending only on Ω and
p, such that ∫

Ω
|u|p + |∇u|p ⩽ KΩ,p

∫
Ω

|u|p + |∇symu|p ∀u ∈ C∞(Ω,RN ), (1.1)

with ∇symu being the symmetric part of the Jacobian matrix ∇u, |∇symu| and |∇u| the
corresponding Frobenius norms (see sec. 2.1).

In the language of the theory of elasticity, the symmetric part of the gradient represents
the strain experienced by an elastic body when subjected to deformation. Inequality (1.1)
allows controlling the Lp-norm of the gradient of the displacement field with the Lp-norm of
the linearized strain tensor. It is a fundamental tool for establishing the existence, uniqueness,
and stability of solutions to linear and nonlinear elastic deformation problems. However, it has
applications in diverse areas of mathematics and physics. The family of open sets where the
inequality (1.1) holds, sometimes referred to as Korn domains [1], allow for a well-posed theory
of linear elasticity and, therefore, for reliable reduced models, for example, for the study of
elastic plates and shells [9, 10].

The inequality (1.1) is usually referred to as the second Korn inequality [8,39,44] to distin-
guish it from its variant in the restricted class C∞

c (Ω,RN ) of vector fields with compact support
in Ω, usually known as the first Korn inequality, which states the existence of a positive constant
KΩ,p > 0, such that ∫

Ω
|∇u|p ⩽ KΩ,p

∫
Ω

|∇symu|p ∀u ∈ C∞
c (Ω,RN ). (1.2)

(1) Dipartimento di Matematica e Applicazioni “R. Caccioppoli”, Università degli Studi di Napoli
“Federico II”, Via Cintia, 80126, Napoli, Italy.
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The first Korn inequality, for p = 2, immediately follows from the equality∫
Ω

|∇symu|2 = 1
2

∫
Ω

|∇u|2 + | div u|2 ∀u ∈ C∞
c (Ω,RN ), (1.3)

and even with a constant that does not depend on Ω (e.g., KΩ,2 = 2).
Despite their significance, available proofs of Korn inequalities are pretty involved. Their

proof strategies typically rely on approximation and compactness arguments combined with
Calderon-Zygmund estimates for singular integral operators. As described in subsection 1.1,
over the years, there has been a sporadic yet constant scientific production of different points
of view that often led to simplifications or extensions.

The primary objective of this paper is to present a concise point of view on the first and
the second Korn’s inequality, for general exponent p, and for a class of domains that includes
Lipschitz domains. Our proof is conceptually very simple and, for p = 2, gives a proof of the
second Korn’s inequality that uses only the classical Riesz representation theorem in Hilbert
spaces. Moreover, conceptually, the argument for the general exponent p remains the same,
the only change being invoking now the q-Riesz representation theorem (with q the harmonic
conjugate of p) instead of the classical 2-Riesz representation theorem. Further aspects of our
approach are detailed in section 2.

1.1. State of the art. Named after the German scientist Arthur Korn1, Korn inequalities
are a subject with more than a century of history. Their extensions to more general settings
continue to be an active area of research (see, e.g., [3,4,6,11,13,18,23,28,30,42]). The literature
on the topic is enormous, and in what follows, we only focus on the (still vast) literature that is
most pertinent to our study. For complementary aspects of the questions, we refer the reader to
the excellent and comprehensive treatments [8,39,44], [15, secs. XI.4 and XII.4], [21, sec. 3.3],
and to [29, sec. 7] for a quick survey on the applications of Korn inequalities to continuum
mechanics. As far as possible, we present the relevant literature in historical chronological
order.

The first and the second Korn’s inequality, for p = 2, were formulated and proved by Korn
himself (cf. [34, 36]). While the original proof in [34] for the first case is clear and essentially
based on the identity (1.3), the proof of the second Korn inequality given by Korn in [36] is,
in the words of Friedrichs [24], very complicated, to the level that Friedrichs himself had to
admit he was unable to verify Korn’s proof for the second case. The reason for that, according
to Friedrichs, other than the length of the involved arguments, was their nested structure:
the proof given in [36] refers to previous results presented in [35], which still refer to earlier

1Arthur Korn was a mathematician, physicist, and inventor. Korn was born on May 20, 1870, in Breslau, Ger-

many (now Wrocław, Poland). He studied physics and mathematics first at the University of Freiburg/Breisgau

(with Emil Warburg) and then at the University of Leipzig (with Carl Neumann), where he graduated in 1890.

Afterward, he studied in Berlin, Paris, London, and Würzburg, benefiting from the guidance of other prominent

figures like Henri Poincaré during his time in Paris. In 1895, he became Priv.-Doz. in physics at the University

of Munich, where he was appointed professor in 1903. In 1914, he accepted the chair of physics at the Berlin

Institute of Technology. He emigrated to the USA with his family in 1939, where he became a professor of

mathematics and physics at the Stevens Institute of Technology in Hoboken (New Jersey) in the same year. In

1945 he received American citizenship. He died at the age of 75 in the Jersey City Medical Center [51]. To

the general public, Arthur Korn is primarily recognized for his pioneering contributions to telecommunications

engineering. In 1902, he patented the first apparatus which enabled the transmission of images through tele-

graph lines, and with this system, in 1904, as part of a public demonstration, a portrait of Kaiser Wilhelm II

from Munich to Nuremberg. In 1907, The New York Times published an article headlined “Photographs by
Telegraph: Television Next?” that boldly declared that the «successful test of Prof. Korn’s remarkable

invention indicates the possibility of another field for scientific discoverer» [50]. For a comprehensive account of

Arthur Korn’s life, including his groundbreaking contributions to telephotography, we refer to [37].
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papers of Korn. Giving direct proof of Korn’s inequality in the second case was what motivated
Friedrichs contribution [36].

Starting from the work of Friedrichs, several authors proposed alternative proofs and gener-
alizations. The work of Friedrichs assumes that ⟨curlu⟩Ω = 0, i.e., the curl of the displacement
vector field u in (1.1) is null-average in Ω. Also, it assumes that the region of integration is
what he calls a Ω-domain, a more stringent notion than the one of a Lipschitz domain. In [46],
Payne and Weinberger investigate the best possible Korn constants KΩ,2 in balls and show that
if Korn’s inequality holds on a finite number of domains, each of which is C2-diffeomorphic to
balls, it also holds on their union.

The extension to domains with the cone property and without the null-average assumption
on the curl of u comes with the work of Gobert [27], who fruitful uses some previous strate-
gies sketched by Smith to investigate formally positive integro-differential forms [48]. Later
on, Nitsche [43], who, like Friedrichs, also labels Korn’s original proof as doubtful, provides
an alternative argument for Korn’s second inequality based on the idea of strain-preserving
extension operators which reduces the study of Korn inequalities on bounded Lipschitz do-
mains to the one on (not necessarily bounded) C1-domains. All the cited references are pretty
technical and involved. Only with the works of Kondratiev and Oleinik [33], but still, for
p = 2, a much shorter, simpler, yet not elementary proof appears. The relatively recent work
of Ciarlet [7] proposes a new proof of the second Korn inequality based on a distributional
version of the Saint-Venant lemma. In the same paper, the author also recalls an elegant
proof of the second Korn’s inequality from [15], yet based on what he refers to as a remarkably
difficult-to-prove lemma of J.L. Lions (for the proof of Lions’ lemma, see, e.g., [38, Lemma 11.2,
p. 316], [21, Thm 3.2, p. 111], and [31]).

All the references cited so far cover only the quadratic setting p = 2. The generalization to
the general exponent p ∈]1, ∞[, i.e., inequalities (1.1) and (1.2), introduces new severe difficulties
even in the proof of the first Korn’s inequality. The proofs of (1.1) and (1.2) can be found in
Mikhlin [40] and, under weaker hypotheses, in Mosolov and Mjasnikov [41]. Both [40] and [41]
use Calderon-Zygmund estimates. A simpler and self-contained proof not relying on the theory
of singular integrals is given by Kondratiev and Oleinik in [32].

Another proof [12] of the second Korn’s inequality can be given by adapting the arguments
used for a nonlinear counterpart thereof, the so-called geometric rigidity inequality [25]. One
may indeed derive the equivalent statement2 that for all u ∈ C∞(Ω,RN ) there exists a skew-
symmetric matrix A such that∫

Ω
|∇u − A|p ⩽ KΩ,p

∫
Ω

|∇symu|p . (1.4)

The inequality is first proved on a square in the case of harmonic functions, to which one is
reconducted by considering an auxiliary elliptic problem and the related regularity estimates.
Then, a fine local-to-global construction making use of a Whitney covering with dyadic squares
and of a weighted Poincaré inequality (for which some regularity of the boundary is needed)
entails the general result.

We recall that for p = 1, ∞ inequalities (1.1) and (1.2) do not hold. When p = 1, this is
a consequence of a famous result of Ornstein [45] showing that a priori estimates for elliptic
operators known to hold in Lp norm (1 < p < ∞) are no longer true in the L1-norm (see
also [14] for a counterexample based on laminates). Similar results of de Leeuw and Mirkil [17],
antecedent to the ones of Ornstein, imply that Korn’s inequality cannot be true also if p =
∞ (but counterexamples for the case p = ∞ can be easily constructed). From a different

2A proof that (1.4) and (1.1) are equivalent is given in [7, Thm 2.3]: although stated for p = 2, that proof indeed

applies for general p ̸= 1.
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perspective, the result follows from the fact that the so-called ∇2- and ∆2- conditions are
sharp requirements for the first and second Korn inequalities to hold in Orlicz spaces; since the
Φ-function associated with the L1-norm does not satisfy the ∇2-condition, and the Φ-function
associated with the L∞-norm does not satisfy the ∆2-condition [3, Remark 1.3], we get that
Korn inequality cannot hold when p = 1, ∞.

Finally, we recall that Korn domains appear extremely difficult to characterize. What is
known is that not every open set is a Korn domain. Indeed, as shown by Geymonat and
Gilardi in [26] and by Weck in [52], it is possible to construct domains that satisfy the segment
property, where Korn’s second inequality does not hold.

1.2. Outline. The rest of the paper is structured as follows. Section 2 presents three Poincaré-
Korn inequalities, valid even for p = 1. One of them is the classical one needed to show that
the symmetric gradient seminorm is a norm in W 1,p) and holds for any bounded open subset
of RN . After that, we state the first and second Korn’s inequality in our geometric setting.

The proofs of the result are given in section 3. Following the ideas of [20], we first give
elementary proofs of the Poincaré-Korn inequalities, whose unique ingredient is the divergence
theorem. Then we focus on our Korn inequalities. Our proofs for the first and second inequality
are essentially the same and based on a lemma (see Lemma 1) that we state and prove in
the same section 3. The lemma allows us to prove the first Korn inequality on what we call
restriction domains and the second Korn’s inequality on extension domains; both types contain
Lipschitz domains.

2. Contributions of the present work

The main results of the present work are concise proofs of first and second Korn’s inequality,
as well as Poincaré-Korn inequalities. To state our results precisely, we need to set up the
framework, the mathematical notation, and the terminology used throughout the paper.

2.1. Notation. In what follows, we denote by e1, . . . , eN the standard basis of RN and, for
u ∈ RN we denote by |u| the euclidean norm, i.e., |u|2 := (u · e1)2 + · · · + (u · eN )2. Coherently,
the notation |u|p will stand for the p-power of the Euclidean norm, i.e.,

|u|p = ((u · e1)2 + · · · + (u · eN )2)p/2. (2.1)

For matrices Φ, Ψ ∈ RN×N , their Frobenius inner product is defined by (Φ : Ψ) := tr(ΦTΨ),
and the associated norm is given by |Φ|2 =

∑N
i,j=1(Φei · ej)2. Coherently, the notation |Φ|p will

stand for the p-power of |Φ|, i.e.,

|Φ|p =

 N∑
i,j=1

(Φei · ej)2

p/2

. (2.2)

We denote by I the identity matrix in RN×N . Observe that |I| =
√

N .
For Ω ⊆ RN open set, we denote by C∞

c (Ω,RN ) the space of infinitely differentiable vector
fields with compact support, by C∞(Ω,RN ) the space of infinitely differentiable vector fields
that are smooth up to the boundary, and by C∞(Ω,RN ) the space of infinitely differentiable
vector fields that are smooth in Ω. We denote by D′(Ω,RN ) the space of RN -valued distribu-
tions on Ω. For u ∈ D′(Ω,RN ) and φ ∈ C∞

c (Ω,RN ) we denote by ⟨u, φ⟩ the value of u on
φ.

Similar notation is used when the target space is, e.g., the algebra RN×N of square matrices
of order N .
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For classical differential operators, the distributional counterparts are the familiar ones. For
u ∈ D′(Ω,R), u ∈ D′(Ω,RN ), φ ∈ C∞

c (Ω) and φ ∈ C∞
c (Ω,RN ) we set

⟨∇u, φ⟩ := −⟨u, divφ⟩, ⟨divu, φ⟩ := −⟨u, ∇φ⟩, ⟨curlu, φ⟩ := ⟨u, curlφ⟩. (2.3)
Also, we set

⟨∆u, φ⟩ := ⟨div∇u, φ⟩ = ⟨u, ∆φ⟩, ⟨∆u, φ⟩ := ⟨u, ∆φ⟩. (2.4)
We need to introduce further differential operators. For u ∈ C∞(Ω,RN ), the gradient of u
is defined by ∇u := (∇u · e1 | . . . | ∇u · eN ). In other words, ∇u is the matrix in RN×N

whose columns are the gradients of the components of u. Consistently, we denote by ∇Tu :=
(∂1u | . . . | ∂N u) the Jacobian matrix of u. The symmetric and skew-symmetric gradient of u
are, respectively, defined by

∇symu := 1
2(∇u + ∇Tu), ∇skwu := 1

2(∇u − ∇Tu). (2.5)

Given a matrix-valued field Φ := (φ1 | . . . | φN ) ∈ C∞(Ω,RN×N ), we agree that the divergence
of Φ, denoted by divΦ, is the vector field

divΦ :=
N∑

i=1
(divφi)ei =

N∑
j=1

∂jΦTej , (2.6)

obtained by applying the classical divergence to the columns of Φ. With the previous definition,
the operator div is the formal adjoint of −∇, in the sense that if u ∈ C∞(Ω,RN ) and Φ ∈
C∞

c (Ω,RN×N ), then the classical integration by parts formula holds:∫
Ω

∇u : Φ = −
∫

Ω
u · divΦ.

The symmetric and skew-symmetric divergence of Φ are defined by

divsymΦ := 1
2div(Φ + ΦT) = 1

2

N∑
j=1

∂j(ΦT + Φ)ej , (2.7)

divskwΦ := 1
2div(Φ − ΦT) = 1

2

N∑
j=1

∂j(ΦT − Φ)ej . (2.8)

Note that the operators divsym and divskw are the formal adjoints of −∇sym and −∇skw. Con-
sistently, if u ∈ D′(Ω,RN ), the distributions ∇symu ∈ D′(Ω,RN×N ) and ∇skwu ∈ D′(Ω,RN×N )
are, respectively, defined for every Φ ∈ C∞

c (Ω,RN×N ) by ⟨∇symu, Φ⟩ := −⟨u, divsymΦ⟩ and
⟨∇skwu, Φ⟩ := −⟨u, divskwΦ⟩. The definitions of ∇symu and ∇skwu are compatible with the
smooth setting. If u ∈ C∞(Ω,RN ) is a regular distributions and Φ ∈ C∞

c (Ω,RN×N ) then

⟨∇symu, Φ⟩ =
∫

Ω
∇symu : Φ, ⟨∇skwu, Φ⟩ =

∫
Ω

∇skwu : Φ. (2.9)

Similar definitions apply to the distributional version of the operator divsym and divskw,
meaning that if U ∈ D′(Ω,RN×N ), the distributions divsymU ∈ D′(Ω,RN ) and divskwU ∈
D′(Ω,RN ) are defined for every φ ∈ C∞

c (Ω,RN ) by ⟨divsymU , φ⟩ := −⟨U , ∇symΦ⟩ and
⟨divskwU , φ⟩ := −⟨U , ∇skwΦ⟩. Simple computations show that for u ∈ C∞(Ω,RN ) there
holds

−∆u = −∇divu − 2divskw∇skwu, (2.10)
−∆u = +∇divu − 2divsym∇symu, (2.11)

and very same relations hold if u ∈ D′(Ω,RN ). Note that if N = 3, we have −2divskw∇skwu =
curlcurlu and (2.10) reduces to the classical Helmholtz decomposition in R3.
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2.2. Main results. Our first result concerns Poincaré-Korn inequalities in bounded and un-
bounded domains. These inequalities are essential tools in showing the coercivity of variational
problems of elasticity. One of them (cf. (2.13)) is a propedeutic tool for the proof of the
first Korn’s inequality: it shows that the symmetric gradient seminorm is actually a norm on
C∞

c (Ω,RN ).
Theorem 1 (Poincaré-Korn inequalities). Let Ω ⊆ RN be an open set and 1 ⩽ p < ∞.
The following Poincaré-Korn inequalities hold.

i. There exists a constant Cp,N > 0 depending only on p and N , such that∫
Ω

|u|p ⩽ Cp
p,N

∫
Ω

|x|p|∇symu|p ∀u ∈ C∞
c (Ω,RN ). (2.12)

In particular, if Ω is also bounded, then there exists a constant κp,Ω > 0 depending only on
p and Ω, such that∫

Ω
|u|p ⩽ κp

p,Ω

∫
Ω

|∇symu|p ∀u ∈ C∞
c (Ω,RN ). (2.13)

ii. If Ω is a bounded Lipschitz domain, then there exist constants κp,Ω, κp,∂Ω > 0, depending
only on p and Ω such that∫

Ω
|u|p ⩽ κp

p,Ω

∫
Ω

|∇symu|p + κp,∂Ω

∫
∂Ω

|u|p ∀u ∈ C∞
c (Ω,RN ). (2.14)

We give an elementary proof of Theorem 1 in section 4. Here instead, we make some
remarks. First, we stress that in contrast to Korn’s inequality which does not hold for p = 1,
the Poincaré-Korn inequality holds even for p = 1 and arbitrary open sets. Second, we note
that ii. implies (2.13). Indeed, if Ω is bounded but not Lipschitz, one can extend by zero an
element u ∈ C∞

c (Ω,RN ) to an element of u0 ∈ C∞
c (B,RN ) where B is a ball containing Ω,

and evaluate (2.14) on u0 (and with Ω replaced by B) to get back to (2.13). We opted for
presenting (2.13) as a particular case of (2.12). Finally, we point out that, as it will be clear
from the proof, one can take

Cp,N := (1 + |p − 2| +
√

N) · p

p + N
, κp,Ω := (diam Ω)Cp,N , κp,∂Ω := p

(
p + 1
p + N

)
(diam Ω).

(2.15)
Our second contribution is the main objective of our paper and concerns a concise point of
view on the first and second Korn inequality. To state the results in the generality we want,
we need to introduce the proper functional setting.

For every 1 ⩽ p < ∞, we denote by E1,p(Ω,RN ) the vector space of Lp-vector-fields, whose
symmetric gradient, in the distributional sense, is still in Lp, i.e.,

E1,p(Ω,RN ) := {u ∈ Lp(Ω,RN ) : ∇symu ∈ Lp(Ω,RN×N )}. (2.16)
It is standard to show (see, e.g., [49]) that E1,p(Ω) is a Banach space when endowed with the
norm

∥u∥E1,p := (∥u∥p
Lp + ∥∇symu∥p

Lp)1/p =
(∫

Ω
|u|p + |∇symu|p

)1/p

. (2.17)

Also, the Poincaré-Korn inequality (2.13) assures that on the Banach subspace of E1,p(Ω,RN ),
given by

E1,p
0 (Ω,RN ) := C∞

c (Ω,RN ), (2.18)
i.e., defined as the closure of C∞

c (Ω,RN ) in E1,p(Ω,RN ), the seminorm ∥∇symu∥Lp is actually
a norm equivalent to (2.17). It is standard to show that, as happens for the space W 1,p

0 (Ω,RN ),
even E1,p

0 (Ω,RN ) has the extension-by-zero property. Namely, if u ∈ E1,p
0 (Ω,RN ) then

ũ ∈ E1,p(RN ,RN ) and ∇symũ = ∇̃symu, (2.19)
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where we denoted by ũ and ∇̃symu the extensions by zero of u and ∇symu to the whole of
RN . Indeed, if u ∈ E1,p

0 (Ω,RN ) and (φn)n∈N is a sequence in C∞
c (Ω,RN ) such that φn → u

in E1,p
0 (Ω,RN ), then for every Φ ∈ C∞

c (RN ,RN×N ) we have that

⟨∇symũ, Φ⟩RN = −
∫

Ω
u · divsymΦ = − lim

n→∞

∫
Ω

φn · divsymΦ = lim
n→∞

∫
Ω

∇symφn : Φ

=
∫
RN

∇̃symu : Φ = ⟨∇̃symu, Φ⟩RN . (2.20)

But the extension-by-zero property is not the only feature that the spaces E1,p
0 (Ω,RN ) and

W 1,p
0 (Ω,RN ) share. Indeed, as we show in Theorem 2 below, when 1 < p < ∞ and Ω is what

we call a restriction domain (see Definition 1), then E1,p
0 (Ω,RN ) = W 1,p

0 (Ω,RN ) and their
associated norms are equivalent. Similarly, when 1 < p < ∞ and Ω is an extension domain,
one has E1,p(Ω,RN ) = W 1,p(Ω,RN ).

Let us make precise the meaning of restriction and extension domains.

Definition 1. We say that a bounded open set Ω is an extension domain (for E1,p) when any
element u ∈ E1,p(Ω,RN ) can be extended to an element of E1,p(RN ,RN ). We say that the
bounded open set Ω is a restriction domain (for W 1,p) when every element u ∈ W 1,p(RN ,RN )
such that supp u ⊆ Ω is in W 1,p

0 (Ω,RN ).

The following results hold.

Theorem 2 (first and second Korn’s inequality). Let Ω ⊆ RN be a bounded open set
and 1 < p < ∞. The following implications hold:

i. If Ω is an extension domain, then E1,p(Ω,RN ) = W 1,p(Ω,RN ) and there exists a constant
KΩ,p > 0 such that∫

Ω
|u|p + |∇u|p ⩽ KΩ,p

∫
Ω

|u|p + |∇symu|p ∀u ∈ W 1,p(Ω,RN ). (2.21)

ii. If Ω is a restriction domain, then E1,p
0 (Ω) = W 1,p

0 (Ω) and there exists a constant KΩ,p > 0
such that ∫

Ω
|∇u|p ⩽ KΩ,p

∫
Ω

|∇symu|p ∀u ∈ W 1,p
0 (Ω,RN ). (2.22)

Remark 1. As already recalled in section 1.1, Korn inequalities are no longer true when p = 1
and the space W 1,1(Ω,RN ) and E1,1(Ω,RN ) are different. The space E1,1(Ω,RN ) is often
denoted by LD(Ω,RN ) and plays a pivotal role in the mathematical theory of plasticity. We
refer the reader to [49, Chap. II] for some of the main properties of the space LD(Ω,RN ).

Remark 2. We stress that both extension and restriction domains include the class of Lips-
chitz domains. Generally speaking, E1,p-extension domains can be investigated by transposing
the known techniques from W 1,p to E1,p. For example, the standard extension by reflection
technique shows that Lipschitz domains are E1,p-extension domains; a second example is the
observation that a notion of E1,p

0 -extension domain would not be interesting because, as we
have shown in (2.20), every bounded open set would be of this type.

The situation is more delicate for restriction domains. It is possible to show that domains
of class C0 are restriction domains (see [16, sec. 2.1] and [5] for details), but to the best of our
knowledge, it is not known how general this class can be. A simple proof of this fact, in the
C1-setting, is given in [22, Theorem 2, p. 273].

The concise proof of Theorem 2 is given at the beginning of section 3 and relies on the
following lemma, whose proof is deferred to the end of section 3.
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Lemma 1. Let Ω be an open set and 1 < p < ∞. If u ∈ E1,p(Ω,RN ), then u ∈ W 1,p
loc (Ω,RN ).

The approach we follow to prove the first and second Korn’s inequality appeared concise
and effective in showing the regularity of distributional solutions of the Poisson equation [19].
Part of our arguments has a nonempty intersection with the one Duvaut and Lions gave in [21,
Thm 3.2, p. 111]. However, our approach avoids the remarkably difficult-to-prove lemma of
J.L. Lions [15] and, for p = 2, one only needs the classical Riesz representation theorem in
Hilbert space and Weyl lemma on the C∞-regularity of harmonic distribution (for which short
and elementary proofs are available [2]). Even for general 1 < p < ∞, we rely on the same
ingredients: the q-Riesz representation theorem [47, pp. 10-11], with q such that 1/q + 1/p = 1,
and Weyl lemma. We are unaware of simple proof of the q-Riesz representation theorem when
q ̸= 2. However, our proof requires invoking the result only on balls.

3. First and second Korn’s inequality: proofs of Theorem 2 and Lemma 1

3.1. Proof of Theorem 2.i. We first show that if 1 ̸= p < ∞ then W 1,p(Ω,RN ) =
E1,p(Ω,RN ). By the very definition we have that W 1,p(Ω) ⊆ E1,p(Ω,RN ) and holds even for
p = 1. It remains to show that if 1 ̸= p < ∞ then E1,p(Ω,RN ) ⊆ W 1,p(Ω,RN ). Now, if Ω is an
extension domain for E1,p(Ω,RN ) and u ∈ E1,p(Ω,RN ), then its extension ũ ∈ E1,p(RN ,RN )
is, by Lemma 1, in W 1,p

loc (RN ,RN ). Therefore, u ∈ W 1,p(Ω,RN ).
Next, we observe that the inclusion map

ȷ : u ∈ W 1,p(Ω,RN ) 7→ u ∈ E1,p(Ω,RN ) (3.1)

is continuous for any 1 ⩽ p < ∞, because of the inequality ∥∇symu∥p
Lp ⩽ ∥∇u∥p

Lp and,
moreover, if p > 1, it is also a surjction of W 1,p(Ω,RN ) onto E1,p(Ω). But then the open
mapping theorem assures that ȷ is a topological isomorphism of W 1,p(Ω,RN ) onto E1,p(Ω,RN )
from which inequality (2.21) follows. □

3.2. Proof of Theorem 2.ii. We show that if 1 ̸= p < ∞ then W 1,p
0 (Ω,RN ) = E1,p

0 (Ω,RN ).
The inclusion W 1,p

0 (Ω,RN ) ⊆ E1,p
0 (Ω,RN ) is immediate and holds even for p = 1. Indeed, with

ȷ given by (3.1), we get that

W 1,p
0 (Ω,RN ) = ȷ(C∞

c (Ω,RN ) ⊆ ȷ(C∞
c (Ω,RN )) = E1,p

0 (Ω,RN ),

where the first closure is meant with respect to the topology induced by the W 1,p
0 -norm, while

the second closure is meant for the topology induced by the E1,p
0 -norm. Now, we already know

that if u ∈ E1,p
0 (Ω,RN ) then its extension by zero to the whole of RN , let us denote it by ũ,

is in E1,p(RN ,RN ) and has distributional support in Ω. Hence, by Lemma 1, we have that

ũ ∈ W 1,p
loc (RN ,RN ), supp ũ ⊆ Ω. (3.2)

However, Ω is a restriction domain and, therefore, u ∈ W 1,p
0 (Ω,RN ). Eventually, inequality

(2.22) follows from the fact that the inclusion map ȷ : u ∈ W 1,p
0 (Ω,RN ) 7→ u ∈ E1,p

0 (Ω,RN ) is
a continuous surjection of (W 1,p

0 (Ω,RN ), ∥∇ · ∥) onto (E1,p
0 (Ω,RN ), ∥∇sym · ∥). □

3.3. Proof of Lemma 1. The argument we present is inspired by the one in [19]. We first
give the proof for N = 3, and show afterward how to modify the proof for general N . The
proof for general N is as easy as in the case N = 3, but for N = 3, we have the familiar curl
operator at our disposal and we don’t need further notation.
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Proof of Lemma 1 for N = 3. Let u ∈ E1,p(Ω,RN ) and consider a ball B ⊆ Ω. By the
q-exponent version of the Riesz representation theorem [47, pp. 10-11] there exists an element
v ∈ W 1,p

0 (B,RN ), p > 1, such that

−1
2⟨∆v, φ⟩ = ⟨∇symu, ∇symφ⟩ ∀φ ∈ C∞

c (B,RN ). (3.3)

Indeed, the right-hand side of (3.3) defines a bounded linear functional on W 1,q
0 (B,RN ) —note

that for q = p = 2, we only need the classical Riesz representation theorem in Hilbert spaces.
Also, simple algebra and integration by parts formula, give that 2⟨∇symu, ∇symφ⟩ =

−⟨∆u + ∇divu, φ⟩ for every φ ∈ C∞
c (B,RN ). Therefore, combining this equality with (3.3),

we get that there exists v ∈ W 1,p
0 (B,RN ), p > 1, such that

−∆v = −(∆u + ∇divu) in D′(B,RN ). (3.4)

In particular, applying the divergence operator to both sides of (3.4) we infer that the distri-
bution div(u − v/2) is harmonic in B, and this, by Weyl’s lemma [2], assures that

div(u − v/2) ∈ C∞(B). (3.5)

Similarly, applying the curl operator to both sides of (3.4) we deduce that the distribution
curl(u − v) is harmonic in B and, therefore, that

curl(u − v) ∈ C∞(B,RN ). (3.6)

But then

−∆(u − v) = curlcurl(u − v) − ∇div(u − v/2) + ∇div(v/2)

∈ C∞(B,RN ) + C∞(B,RN ) + ∇div(W 1,p
0 (B,RN ))

∈ C∞(B,RN ) + C∞(B,RN ) + W −1,q′(B,RN ) (3.7)

and, therefore, given that −∆v ∈ W −1,q′(B,RN ) we obtain that

−∆u ∈ C∞(B,RN ) + W −1,q′(B,RN ). (3.8)

The previous relation completes the proof. Indeed, shrinking eventually the ball B, we get that
−∆u ∈ C∞(B̄,RN )+W −1,q′(B,RN ) = W −1,q′(B,RN ). Applying again the q-exponent version
of the Riesz representation theorem, we deduce the existence of a vector field w ∈ W 1,p

0 (B,RN )
such that −∆(u − w) = 0 in D′(B,RN ). But then, as before, harmonicity implies that
u ∈ C∞(B,RN ) + W 1,p

0 (B,RN ) ⊆ W 1,p
loc (B,RN ) and we conclude.

Proof of Lemma 1 for general N . We can resume from (3.5). Applying the ∇skw operator
to both sides of (3.4), we deduce that the distribution ∇skw(v − u) is harmonic in B and,
therefore, that ∇skw(v − u) is smooth. But then

−∆(u − v) = −2divskw∇skw(u − v) − ∇div(u − v/2) + ∇div(v/2)

∈ C∞(B,RN ) + C∞(B,RN ) + ∇div(W 1,p
0 (B,RN ))

∈ C∞(B,RN ) + C∞(B,RN ) + W −1,q′(B,RN ) (3.9)

and, therefore, given that −∆v ∈ W −1,q′(B,RN ), we are back to (3.8), and from that point
on, the proof is the same as for N = 3. □
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4. Proof of Theorem 1: Poincaré-Korn inequalities

Following the ideas of [20], we first give elementary proofs of the Poincaré-Korn inequalities,
whose unique ingredient is the divergence theorem.
Proof of Theorem 1. For every ε > 0, we consider the vector field uε : Ω → RN+1 defined
by uε := (u, ε). Note that |uε| = (|u|2 + ε2)1/2 and, therefore, |uε|α ∈ C∞(Ω,RN ) for every
α ∈ R. Here, with a convenient abuse of notation, we used the same symbol to denote the
Euclidean norms in RN+1 and RN . It is easy to check that the following equalities hold

|uε|p−2u · (∇Tux) = 1
p

div(|uε|px) − N

p
|uε|p, (4.1)

|uε|p−2u · (∇ux) = div((u · x)|uε|p−2u) − (u · x)div(|uε|p−2u) − |u|2|uε|p−2, (4.2)
from which, summing term by term, we get(

N

p
+ |u|2

|uε|2

)
|uε|p = −|uε|p−1 u

|uε|
· (∇symu x) − (u · x)div(|uε|p−2u)

+ 1
p

div(|uε|px) + div
(

|uε|p
(

u

|uε|
· x

)
u

|uε|

)
. (4.3)

The previous relation is the key ingredient in the proof of Theorem 1.
Proof of Theorem 1.i. Proof of (2.12). If u ∈ C∞

c (Ω,RN ), integrating on Ω both sides
(4.3), and then passing to the limit for ε → 0, we get that(

p + N

p

)∫
Ω

|u|p ⩽
∫

Ω
|u|p−1|∇symu||x| + lim inf

ε→0

∫
Ω

|u||div(|uε|p−2u)||x|, (4.4)

and, we are left to evaluate the last term on the right-hand side of the previous relation (4.4).
For that, we observe that

div(|uε|p−2u) = |uε|p−2
[
(p − 2)(∇symu) u

|uε|
· u

|uε|
+ divu

]
(4.5)

and, therefore, given that |divu| = |∇symu : I| ⩽
√

N |∇symu|, we have the estimate

lim inf
ε→0

∫
Ω

|u||div(|uε|p−2u)||x| ⩽ (|p − 2| +
√

N)
∫

Ω
|u|p−1|∇symu|. (4.6)

Estimating (4.4) with (4.6) we get that(
N + p

p

)∫
Ω

|u|p ⩽ (1 + |p − 2| +
√

N)
∫

Ω
|u|p−1|∇symu||x| ,

which establishes (2.12) when p = 1. For p > 1, Hölder inequality gives the Poincaré-Korn
inequality under the weighted form (2.12).
Proof of (2.13). It is sufficient to note that the proof of (2.12) works verbatim if one replaces
everywhere x with x − x0, x0 being an arbitrary point of RN . But then, if Ω is bounded, one
gets

∥u∥Lp(Ω) ⩽ Cp,N

(
inf

x0∈RN
sup
x∈Ω

|x − x0|
)

∥∇symu∥Lp(Ω) (4.7)

from which (2.13) follows as a special case. □

Proof of Theorem 1.ii. Proof of (2.14). If u ∈ C∞(Ω,RN ) and Ω is a bounded Lipschitz
domain, then integrating on Ω both sides of (4.3), passing to the limit for ε → 0, and taking
into account (4.6), we get that∫

Ω
|u|p ⩽ Cp,N

∫
x∈Ω

|u|p−1|∇symu||x| +
(

p + 1
p + N

)∫
ξ∈∂Ω

|u|p|ξ|. (4.8)
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Again, the previous computation works verbatim if one replaces everywhere x with x−x0, with
x0 an arbitrary point of RN . Therefore, we have∫

Ω
|u|p ⩽ (diam Ω)Cp,N

∫
Ω

|u|p−1|∇symu| +
(

p + 1
p + N

)
(diam Ω)

∫
∂Ω

|u|p . (4.9)

Now, if p = 1, we are done. Otherwise, by Young’s inequality for products applied to the first
term on the right-hand side of (4.9), we obtain that

1
p

∫
Ω

|u|p ⩽
(diam Ω)pCp

p,N

p

∫
Ω

|∇symu|p +
(

p + 1
p + N

)
(diam Ω)

∫
∂Ω

|u|p , (4.10)

from which (2.14) follows. □
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