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Abstract

We establish regularity results for equilibrium configurations of vectorial multidimensional
variational problems, involving bulk and surface energies. The bulk energy densities are
uniformly strictly quasiconvex functions with p-growth, p > 2, without any further structure
conditions. The anisotropic surface energy is defined by means of an elliptic integrand ® not
necessarily regular. For a minimal configuration (u, E), we prove partial Holder continuity
of the gradient Vu of the deformation.
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Key words. Regularity, nonlinear variational problem, free interfaces.

1 Introduction and statements

In this paper we study multidimensional vectorial variational problems involving bulk and surface
energies, mainly related to problems issuing from material science and computer vision. Namely,
we deal with regularity properties of solutions to such problems. The model problem

/QUE(:U)yqudHP(E, Q), (1.1)

where op(r) = alg + blg\g, 0 < a < b, with £ C Q C R", and P(E,Q) stands for the
perimeter of the set F in €, dates back to the works of L. Ambrosio & G. Buttazzo and F.H.
Lin. In [4, 35], the authors proved the existence and regularity for minimal configurations (u, F)
of (1.1) in the scalar case. Furthermore, in [36] F.H. Lin & R.V. Kohn treated more general
Dirichlet energies as the following

Flu, B) = / (F,u, Vi) + 1, G(x,u, Vu) de + P(E, Q) (1.2)
Q
with the constraints

u=" on 02 and |E|=d,

U e H(Q), 0 < d < |Q]. They considered F and G convex functions growing quadratically on
the gradient, and satisfying restrictive structure assumptions.

In the cited papers, it is proved C%® regularity for minimizers u in  and some estimates on the
singular set of OF are given. More precisely, defined the set of regular points of OF as follows

Reg(E) := {z € 0ENQ : OE is a C7 hypersurface in B:(z) for some ¢ > 0 and v € (0,1)},



where B.(x) denotes the ball of center = and radius €, and, accordingly, the set of singular points
of OF
Y(E):=(0ENQ)\ Reg(E),

then H"~1(X(E)) = 0, whereas (u, F) minimizes the functional (1.2).
More recently, G. De Philippis & A. Figalli in [17] and N. Fusco & V. Julin in [27], improved
this result showing that minimal configurations of Dirichlet type functional (1.1) satisfy,

dimy(X(E)) <n-—-1-—¢,

for some € > 0 depending only on a,b. The same kind of estimate for the singular set ¥(E) has
been proved in [23, 24] for the more general Dirichlet functional (1.2).

The case of general functionals with p-growth on the gradient is still not completely un-
derstood especially regarding the regularity of the free interface JF and the dimension of the
singular set 3(E). A first step in this direction has been done in [10] where the authors deal
with constrained convex scalar problems, without structure assumptions on the bulk energies.
They prove C%% regularity for minimizers u, but they do not give estimates for the singular
set, which is an issue still unsolved, under the assumption of p-growth (see also contributions
due to [21] and [34]). Nevertheless, as originally stressed in [22], for minimizers of Dirichlet
functional (1.1), the exponent «, relative to the C%® regularity of minimizers u, can be affected
by a closeness assumption on the coefficients a,b of og(z) appearing in (1.1). More precisely,
in [22] it has been proved that the hypothesis 1 < ¢ < ~, ensures that u € CO’%“, for some
e > 0. Exploiting this information, the regularity of the boundary OF can be easily achieved by
managing the bulk term as a perturbative term, since, by virtue of COate regularity, the bulk
term is asymptotically smaller than the perimeter term. Therefore, it can be invoked a well
known regularity result for almost minimal perimeter minimizers due to Tamanini (see [40]),
thus proving the regularity of the free boundary 0F.

Differently from the scalar case, in the vectorial setting only a few regularity results for
minimizers of integral functionals involving both bulk and interfacial energies are available in
literature. According to our knowledge, the only papers dealing with the vectorial case are [6]
and [11]. In [6] the regularity for vector valued free interface variational problems is treated
within the context of k-th order homogeneous partial differential operators A (for a detailed
study of A-quasiconvexification see [28, 29]). In [11] the authors study minimal configurations
of energy of the type

Flv, A) = /Q (F(Dv) + 1,G(Dv)) dz + P(A,Q), (1.3)

where u € Wl’p(Q;RN) and F,G : RN — R are C? integrands, satisfying, for p > 1 and for

loc
positive constants ¢1, ¢o, L1, Ly > 0, the following growth and uniformly strict p-quasiconvexity

conditions,

0< F(&) < Li1+¢P)5, (£1)

| P+ Doydn= [ (P +ulDeP+DoP)'E) da (F2)
Q Q

0< G(&) < Ly(1+ ¢, (G1)



/ G(& + Dy)dx > / (G(f) + lo| Dl (1 + |D<p\2)%) dx, (G2)
Q Q

for every £ € RN and ¢ € C}(Q;RY).

Under these assumptions, the authors proved the existence of local minimizers for the func-
tional (1.3), for any p > 1. Furthermore, they proved a partial C1® regularity result for minimal
configurations in the quadratic case p = 2.

In this paper, we generalize the results given in [11] under two viewpoints. First we treat the
more general case of p-growth with p > 2. Moreover, we deal with anisotropic surface energies.

In the rest of the paper we focus our attention on integral functionals defined as follows,

Z(v,A) = / (F(Dv) +1,G(Dv)) dz —l—/ ®(z,va(x)) dH" " (z), (1.4)
Q QNo*A

where A C Q is a set of finite perimeter, u € Wi)’f(Q; RN), 1,4 is the characteristic function of
the set A. Here 0* A denotes the reduced boundary of A in Q and v4 is the measure-theoretic
outer unit normal to A, see Section 2.1.

We assume that ® is an elliptic integrand on € (see Definition 2.6), i.e. ® : Q x R" — [0, oo]
is lower semicontinuous, ®(z, -) is convex and positively one-omogeneous, ®(z, tv) = t®(x, v) for
every t > 0. Accordingly, we define the following anisotropic surface energy of a set A of finite
perimeter in Q:

®(A;G) = / O(z,va(z)) dH" (), (1.5)
GNo*A
for every Borel set G C 2. The assumption

% < B(z,v) < A, (1.6)

with A > 1, allows us to compare the surface energy introduced in (1.5) with the usual perimeter.
Anisotropic surface energies arise in many physical areas such as the formation of crystals (see
[7, 8]), liquid drops (see [16, 26]), capillary surfaces (see [18, 19]). F.J. Almgren was the first to
study the regularity of surfaces that minimize anisotropic variational problems in his celebrated
paper [3].

In the early stages the studies in this area had been done in the setting of varifolds and
currents. These results can be applied to surfaces of arbitrary codimension, but with rather
strong regularity assumptions on the integrands of the anisotropic energies, see [9, 39].

More recently, the regularity assumptions on the integrands ® of the anisotropic energies
have been weakened, see [20, 25], assuming that ®(z,-) is of class C' and ®(-,&) is Hélder
continuous.

In the vectorial setting debated in this paper, where the bulk energy is of general type
with p-growth, the regularity that we can expect for the gradient of the minimal deformation
u: Q) — RV, (N > 1), even in absence of a surface term, is a partial regularity result, that is
outside a negligible set. As we observed above, the regularity of the free interface OF can be
achieved by means of the regularity of u. On the other hand, knowing that the singular set S
of the gradient Vu has Lebesgue measure zero does not give informations on the singular set X
of the free boundary that could also be totally contained in S.

We say that a pair (u, E) is a local minimizer of Z in €, if for every open set U €  and



every pair (v, A), where v —u € Wol’p(U; RM) and A is a set of finite perimeter with AAE € U,
we have

/(F(Vu)+ILEG(Vu))da:+<I>(E;U) S/(F(Vv)+ILAG(VU))dx+<I>(A;U).
U U

Existence and regularity of local minimizers of integral functionals of the type

/Q F(Du) dz,

with uniformly strict p-quasiconvex integrand F', and also in the non autonomous case, have
been widely investigated (we refer to [1, 2, 12, 13, 14, 15, 31, 38] and for an exhaustive treatment
to [30, 32]).

In order to prove the existence of local minimizers for functionals involving both bulk and
surface energies of general type (1.4), we invoke a result stated in [11]. The only difference in
our setting is the presence of the anisotropic term ®(A;U), and we give a semicontinuity result
for the anisotropic energy (1.5), thus ensuring the existence got in Section 3. Therefore, we
deduce the following theorem.

Theorem 1.1. Let p > 1 and assume that (F1), (F2), (G1), (G2) hold. Then, if v €
Wﬁ)’f(Q;RN) and A C Q is a set of finite perimeter in Q, for every sequence {(vg, Ag)}ren
such that v, weakly converges to v in VV&)’({D(Q, RY) and 14, strongly converges to 14 in L (),
we have

Z(v, A) < liminf Z(vg, Ag).
k—00

In particular, T admits a minimal configuration (u,1g) € VV;’?(Q; RM) x BWVioe(92;[0,1]).

Afterwards, we get C™8 partial regularity for minimizers u guaranteed by Theorem 1.1, in
the case of general interfacial energies given in (1.5) just assuming the comparability hypothesis
(1.6). Moreover, if a closeness condition on F and G is assumed, i.e. the condition (H) is in
order, then we can prove a sharp regularity for u, that is u € C17(£;) for every v € (0, 1%) for a
full measure set 21 C €. It is worth pointing out that we do not need any regularity assumption
on the integrand ® to prove the regularity of u.

Theorem 1.2. Let (u, E) be a local minimizer of Z. Let the bulk density energies satisfy (F'1),
(F2), (G1), (G2), and let the surface energy be of general type (1.5) with ® satisfying (1.6).
Then there exist an exponent B € (0,1) and an open set Qy C Q with full measure such that
u € CY3(Qo: RN). In addition, if we assume

Loy
<1, H
0+ 0 (5)

then there exists an open set Qy C Q with full measure such that u € CY(Qy;RN) for every
7€ (0, 5)-

The proof of the previous result is based on a comparison argument with solutions of a
suitable linearized system. We establish decay estimates for the “hybrid” excess functions U,



and U, (see (5.2) and (5.48)). We look at the points in which the excess is small and we
use, as usual for this kind of analysis, a blow-up argument reducing the problem to the study
of convergence of the minimal configurations (up, E}) of rescaled functionals in the unit ball.
We need two Caccioppoli type inequalities for minimizers of perturbed rescaled functionals (see
(5.17) and (5.58)) involving also the perimeter of the rescaled minimal set E},.

2 Notation and Preliminary Results

Let Q be a bounded open set in R”, n > 2. We deal with vectorial functions u : Q@ — RY,

N > 1. The open ball centered at x € R"™ of radius r > 0 is defined as
By(z):={yeR":jly—z| <r}.

We denote by S"~! the unit sphere of R” and by ¢ a generic constant that may vary in the
same formula and between formulae. Relevant dependencies on parameters and special con-
stants will be suitably emphasized using parentheses or subscripts. For B,.(zg) C R™ and

u € LY (B, (z0); RY) we denote
()2, ::7[ u(zx) dz.
By (z0)

We omit the dependence on the center when it is clear from the context.

(&,m) = trace(¢"n),

for the usual inner product of £ and 7, and accordingly |£] := (&, £>%
If F: RN 5 R is sufficiently differentiable, we write

DF(&)n :=ZZ§§(£M§‘ and  D*F(¢ Z Z

; /3
¢ a,B=11,j=1 §°‘8§

i),

for &, n € RV,
It is well-known that for quasiconvex C! integrands the assumptions (F1) and (G1) yield
the upper bounds

IDFE)| < erLi(1+[€%)"7  and  [DeG(E)] < eaLa(1+ (€)% (2.1)

for all ¢ € R™Y with ¢; and ¢z constants depending only on p (see [32, Lemma 5.2] or [38]).
Furthermore, if F' and G are C?, then (F2) and (G2) imply the following strong Legendre-
Hadamard conditions

QNN > ez \*|u|?  and QNN > ca N |pl?,
ag:l zyz:l agaagﬁ ag:l zgzjl 85&86&

for all Q € R™N X € R, u € RY, where c3 = c3(p, £1) and ¢4 = c4(p, {2) are positive constants
(see [32, Proposition 5.2]). We will need the following regularity result (see [30, 32]).



Proposition 2.1. Let v € W12(; RY) be such that
/Q QYD Dy’ dx =0,

for every ¢ € CX(QRY), where Q = {Qgﬁ} is a constant matrix satisfying |Q35| < L and the
strong Legendre-Hadamard condition

QNN 1 = LR,

for all A € R™, € RY and for some positive constants ¢, L > 0. Then v € C™ and, for any
Br(zg) C Q, the following estimate holds

7[ |Dv — (Dv),, r|*dr < cR27[ |Dv — (D) o.r|? d,
B g (z0) 2

Br(zo)

where ¢ = ¢(n, N, ¢, L) >0 .

The next iteration lemma has important applications in the regularity theory (for its proof
we refer to [32, Lemma 6.1]).

Lemma 2.2. Let 0 < p < R and let ¢: [p, R] — R be a bounded nonnegative function. Assume
that for all p < s <t < R we have
B C

¢(S) §197/1(t)+14+ (S—t)a + (S—t)ﬁ

where ¥ € [0,1), « > 8 > 0 and A,B,C > 0 are constants. Then there exists a constant
c=c(V,a) >0 such that

B C
o)< (44 2+ )

Given a C! function f: R™N - R, Q € R™¥ and X\ > 0, we set

F(Q+ ) - f(Q) = DF(Q)AE
A2 ’

We state the following lemma about the growth of fg \ and D fg x, whose proof can be found
in [2, Lemma II.3].

fo(§) = Ve e RV,

Lemma 2.3. Let p > 2, and let f be a C?>(R™N) function such that

IFOI<CA+[EP) and |Def(€)l < C(1+[EP),

for any & € R™N . Then for every M > 0 there exists a constant ¢ = ¢c(M) > 0 such that, for
every @ € RN |Q| < M and A > 0, it holds that

[for©] < c(l€P +N72EP)  and  [Dfga(€)] < c(l€] + A2 g, (2.2)

for all £ € R™N,



2.1 Sets of finite perimeter
If ECR" and t € [0, 1], the set of points of E of density ¢ is defined as
E® = {z eR": |[ENB.(z)| =t|B(x)| + o(r") as r — 0T } .

Given a Lebesgue measurable set £ C R™ and an open set U C R™, we say that F is of locally
finite perimeter in U if there exists a R™-valued Radon measure ug (called the Gauss-Green
measure of ) on U such that

/w da;:/qﬁduE, Vo € CHU).
E U

Moreover, we denote the perimeter of F relative to G C U by P(E,G) = |ug|(G).
The support of ug can be characterized by

sptpup = {z € U : 0 < |[EN By (z)| < wpr™, Vr > 0}, (2.3)

(see [37, Proposition 12.19]). It holds that sptup C U NJE. The essential boundary of E is
defined as 9°F := R"\ (E° U E'). If E is of finite perimeter in an open set U, then the reduced
boundary 0*E C U of E is the set of those x € U such that

vp(r) := lim 7ME(BT($))

Jm B, () 24

exists and belongs to S"!. It is well known that
O*E CUNOE C sptug C UNOE, UNO*E = sptug.
Federer’s criterion, see for instance [37, Theorem 16.2], ensures that
H' L (UNOE)\ 9*E) = 0.

Remark 2.4 (Minimal topological boundary). If E C R" is a set of locally finite perimeter
in U and F C R™ is such that |(EAF)NU| = 0, then F is a set of locally finite perimeter in
U with ug = pr. In the rest of the paper, the topological boundary OF must be understood by
considering the correct representative of E. We will choose EY as representative of E. With
such a choice it can be easily verified that

UNOE ={zcU:0<|ENB(z)] <wpr",Vr>0}.

Therefore, by (2.3), _
O*E = sptug = 0ENU.

Finally by De Giorgi’s rectifiability theorem (see [37, Theorem 15.5]) we get
pe =vgH" 'LO*E, (2.5)

on Borel sets compactly contained in U where, given a Radon measure p and a Borel set G, by
uLG we refer to the measure given by . G(F) = u(GNF).

It is well known that if E and F' are of locally finite perimeter in U then ENF, E U F and
E\ F are sets of locally finite perimeter in U. In this paper we use competitors obtained using set
operations to test minimality inequalities. In fact, we just need properties involving the union
of sets. A convenient way to handle these inequalities is to use the properties of Gauss—Green
measures. The following result can be found in [37, Theorem 16.3].



Proposition 2.5 (Gauss-Green measure and set operations). If E and F are sets of finite
perimeter it results that vg(x) = +vp(x) for H '-a.e. x € 0*E N O*F. Setting

{vg=vp} ={2 € ENI'F|vg(x) =vp(z)},

then
HEUF = ,LLEI_F(O) + /_,LFI_E(O) + VEHn_ll_{VE = VF} . (2.6)

2.2 Anisotropic surface energy

Definition 2.6 (Elliptic integrands). Given an open set Q in R", ® : Q x R® — [0,00] is
an elliptic integrand on Q if it is lower semicontinuous, with ®(z,-) convex and positively one-
homogeneous for any x € Q, i.e. ®(x,tv) = t®(x,v) for everyt > 0. Accordingly, the anisotropic
surface energy of a set E of finite perimeter in £ is defined as

®(E; Q) = /Gma*E ®(z,vp(z)) dH" (), (2.7)

for every Borel set G C €.

Remark 2.7 (Comparability to perimeter). In order to prove the regularity of minimizers of
anisotropic surface energies, it is well known that (see the seminal paper [3]) a C*-dependence of
the integrand ® on the variable v, and a continuity condition with respect to the variable x, must
be assumed. In fact, one more condition is essential, that is a non-degeneracy type condition for
the integrand ®. More precisely, we have to assume that there exists a constant K > 1 such that

1
I < P(z,v) < K, (2.8)

for any x € Q and v € S*'. We do not need any further hypotheses on the elliptic integrands.
We observe that, if the elliptic integrand ® satisfies condition (2.8), then the anisotropic surface
energy (2.7) satisfies the following comparability condition

%7—[”‘1((} NO*E) < ®(E;G) < AH" H(GNO*E),

for any set E of finite perimeter in ) and any Borel set G C ().

Proposition 2.8. Let U C R™ be an open set and let E, F C U be two sets of finite perimeter
in U. It holds that

BEUF;U)=&E; FO)+&(F; EO) + &(E; {vep = vr}).

Proof. Let us observe that, since *E N F(© ¢ EG) A FO and 0*F N EO© ¢ FG) 0 EO we
deduce that (*E N FO)n (9*F N E©) = §. Similarly we have (*ENFO)N {vp =vp} =0
and (0*F N EO)N {vg = vp}) = 0. Thus, by [37, Theorem 16.3], it holds that

®(EFUF;,U) = / O(x, vpur(x)) d’H"fl(:c)
UNd* (EUF)
= / O(x,vpur(x)) d’H"il(m’) +/ O (z,vpur(x)) d?-["il(a:)
FONH*E EO)no*F

8



n—1
i /{UE:VF} (I)(J:’ VEUF(x)) i (x)

By using (2.6), we deduce vpup = vp H" '—a.e. on FO No*E and vgup = vp H" 1—a.e. on
E© N 9*F, thus we reach the thesis. O

3 Lower Semicontinuity

In this section we prove Theorem 1.1. We base ourselves on the proof given in [11], focusing our
attention on the only difference we have, the presence of the anisotropic surface energy. We get
a semicontinuity result for the anisotropic perimeter, essential to handle this novelty.

Given a one-homogeneous Borel function ® : Q x R® — [0, 00] as in Definition 2.6, for any
R™-valued Radon measure p on R™ and any Borel set F' C R", we define the ®-anisotropic total
variation of p on F' as

o(s.F) = [ oo 0@ e,

where ﬁ denotes the Radon-Nikodym derivative of y with respect to its total variation. We
also refer to the following theorem (see [5, Theorem 2.38]).

Theorem 3.1 (Reshetnyak’s lower semicontinuity Theorem). Let 2 be an open subset of R™
and p, pp, be two finite R™-valued Radon measures on Q. If pp, — p in Q then

[ (e Lo@) i) < timint [ @, 22 @) dil o),

"l h—o0 |2

for every lower semicontinuous function ® : Q x R™ — [0, 00], positively 1-homogeneous and
convex in the second variable.

We are now able to prove the following result.

Proposition 3.2. Let ® be an elliptic integrand as in Definition 2.6 and let ® be defined as in
(2.7). Then
®(E;U) <liminf ®(Ep; U),
h—o0

whenever U C R™ is open, {Ep }hen and E are sets of locally finite perimeter such that 1g, — 1g
in L (U) and pg, = pg.

Proof. We recall that if E is a set of locally finite perimeter, then, by (2.5), |ug| = H* 'LO*E
and, by the definition of reduced boundary (2.4), pg/|ur| = ve on 0*E. Therefore, the ®-
anisotropic total variation of pp is equal to the ®-surface energy of E, that is

®(up; F) = ®(E F).

Thus, the claim follows by virtue of Reshetnyak’s lower semicontinuity Theorem. O



Proof of Theorem 1.1. We omit the proof as it can be obtained following verbatim the arguments
used in [11, Section 3]. The only difference with the proof given in [11] concerns the presence
of the anisotropic perimeter. In this regard we can use the lower semicontinuity result given
above. We mention that the convergence 1g, — 1 in L} (U) assumed in Theorem 1.1 and the

condition lim supy_, ., P(Ep, K) < oo for every K compact set in Q ensure that ug, — pg. O

4 Higher integrability result

This section is devoted to the proof of a higher integrability result for the gradient of the function
u of the minimal configuration (u, E).

Theorem 4.1. Assume that (F'1), (F2), (G1), (G2) hold and let (u, E) be a local minimizer of
Z. Then there exists 6 = 6(n,p, L1, L1, La) > 0 such that for every Ba,(xo) € Q it holds

1
1+5
7[ D+ g gc[jl DulP dz + 1
By (x0) Bar(z0)

where C' = C(n,p,l1, L1, La) is a positive constant.

b

Proof. We consider 0 < r < s <t < 2r and let n € C5°(B;) be a cut-off function between B,
and By, ie. 0<n<1,n=1in Bsand |Vn| < ;%.
Setting

Y1 i=n(u— (Wap2r) and Y2 := (1 —n)(u — (W)z,2r),

by the uniformly strict quasiconvexity of F' in (F'2), we have

2 | Dy (x)|P dx < / F(Dyn)dx = / F(Du — Ds) dx. (4.1)
By By By
We write
BtF(Du—D@Dg)dx :/BtF(Du)dx—k/BtF(Du—D¢2)d1:—/BtF(Du)dx

1
= [ F(Du) daz—/ / DF(Du — 0 D)) Do df dz:
Bt Bt 0
1

< / [F(Du) 4+ 15G(Du)|dz — / / DF(Du — 0D1)g) Dipo df) dx

By B¢ JO .
g/ [F(Du—zwl)+1EG(Du—D¢1)]dx—/ / DF(Du — D)) Dipo df dx, (4.2)

By By JO

where we used the fact that G(£) > 0 and the minimality of (u, E') with respect to (u — 11, E).
Combining (4.2) in (4.1) and using the upper bound on DF given by (2.1), we obtain

El/ \Du]p dx :ﬁl/ ’le‘p dx S/ F(D’lﬁg) da:—i—/ ]lEG(D'po) dx
s Bg B Bt

10



-1
+ep, L) / (1 + |Dul + | Dy l?) 2 | Disy] da
Bt Bs

< c(p, L1, L2) [/ | Do |P dy+/
B\ Bs

Bt BS

| DulP dx + |Bt|]

_ p
< e(p. Ly, LQ)[ / DulPd + ¢ / (= @2l | th’
B\ Bs Bi\Bs (t - S)p

where we used assumptions (F'1) and (G1), Young’s inequality and the properties of 1. Adding
c(p, L1, L2) [ |DulP dx to both sides of the previous estimate we get

(01 + e(p, Ly, L)) /

— p
|DulP dz < c(p, Ll,LQ)U ]Du|pda:+/ Ju= Weoarl” ) |Bt|]
B, By Bi\Bs (

t—s)P

[u — (1) zg,2r 7
<ec(p, L1, L { DupdaH—c/ <1+0’ dx |,
(p, L1, L2)| | [Dul - =)

By

and, by Lemma 2.2, we deduce that

r

][ | Du|P dz < c(p, 51,L1,L2)J[

T
{1 Ml 1 } dz.

T B2r

The Sobolev-Poincaré inequality (see [32, p.102]) implies that

nrp

][ |Dul? dz < ¢(n,p, 61, L1, L2) [ <][ |Du]nnT$ dm) " +1
B2r

r

)

and the conclusion follows by virtue of Giaquinta-Modica Theorem (see [32, p.203]). O

5 Decay Estimates

In this section we collect some energy estimates for minimizers of the functional (1.4) that will
be crucial in the proof of Theorem 1.2. In order to get them we will employ a well-known
blow-up technique involving a quantity called excess, which includes all the energy terms of the
functional. We have to use different type of excess depending on whether the assumption (H) is
in force or not. We consider the bulk excess function defined as

Uz, ) ZZ]ZB o) [\Du(x) — (Du)gcw|2 + |Du(zx) — (Du)zo,rlp} dz, (5.1)

for B,(zo) C Q. In the case that the assumption (H) is in force we will use the following “hybrid”
excess
})(12713T(x0))

Tnfl

Ui(zo,7) := Ul(mg,7) + + 7. (5.2)

11



Proposition 5.1. Let (u, E) be a local minimizer of the functional T introduced in (1.4), and
the assumptions (F1), (F2), (G1), (G2) and (H) hold. For every M >0 and every 0 < 7 < 1,
there exist eg = eo(7,M) > 0 and ¢, = c«(n,p, 01,02, L1, Lo, A, M) > 0 such that, whenever
B, (z0) € Q verifies

|(Dw)gor| < M and Ui(zg,7) < €0,

then
Ui(zo, 1) < o 7 Us(x0, 7). (5.3)

Proof. In order to prove (5.3), we argue by contradiction. Let M > 0 and 7 € (0,1/4) be such
that for every h € N, C, > 0, there exists a ball By, (z5) € Q such that

(DW)ay | <M, Udzp,rs) — 0 (5.4)

and
Ui(xp, 1) > CotU (xR, Th). (5.5)

The constant C will be determined later. Remark that we can confine ourselves to the case in
which E N By, (z1,) # 0, since the case in which By, (z5,) C \ E is easier because U = U,.

Step 1. Blow-up.
Set /\,21 = Us(xp,mh), Ap = (D) g, ., ab = (U)z,, 1), and define

w(xy +rpy) —ap — rRAp
vp(y) = ( yz\hrh y’ Vy € By.

One can easily check that (Dvp)o1 = 0 and (vy)o,1 = 0.

Set P 5
Bpi=——"h  pr=Z""hap,
Th T
Note that
P(E, B, (z
Ap = Uilap,mh) = ]{9 [[Du(zh + rhy) — Apl® + | Dulzn + rry) — AplP] dy + (rn_hl(h)) + 73
1 h
_ 7[ | [AnDunl? + Doy P] dy + P(Ep, By) + . (5.6)
By
It follows that r, — 0, P(Ey, B1) — 0, and
_ P(E,, B
R R L= UL ER N C L (5.7
)‘h By )‘h

Therefore, by (5.4) and (5.7), there exist a (not relabeled) subsequence of {vy}nen, A € R™N
and v € W12(By; RY), such that

vp — v weakly in WH2(B;RY), v, — v strongly in L2(Bp;RY), (5.8)

A, — A, MDuvy, —0 in Lp(Bl;R"XN) and pointwise a.e. in By,

12



where we used the fact that (vp)o,1 = 0. Moreover, by (5.7) and (5.4), we also deduce that

= P(En, B
5 ) = lim (P(Eh,Bl))ﬁlimsup PEw, By h2’ )
h—o00 )\h h—o0 h—00 /\h

— 0. (5.9)

Therefore, by the relative isoperimetric inequality,

{\E?i’ [B1\ En|
AR

lim min
h—o0

} < ¢(n) lim =0. (5.10)

In the sequel the proof will proceed differently depending on whether
min{|E}|, |B1 \ Ex|} = |E}| or min{|Ep[, [By \ En|} = |B1\ Epl.

The first case is easier to handle. To understand the reason let us introduce the expansion of F'
and G around Ay, as follows:

_ F(An+ X&) — F(An) — DF(Ap)Ané

Fh(f) : )\% (5.11)
(€)= G(Ap + Mi&) — Gﬁ\?h) - DG(Ah))‘h‘57

for any € € R™ . In the first case the suitable rescaled functional to consider in the blow-up
procedure is the following

Tp(w) = / [Fu(Dw)dy + 1 Gu(Dw)] dy. (5.12)
Bi
We claim that vy, satisfies the minimality inequality
1
Tufon) < Ta(on + )+ 5 [ 1 DOLANDU() do, (51
B1

for any ¢ € VVO1 P(By;RN). Indeed, using the change of variable x = xj, + 7y, the minimality of
(u, E) with respect to (u+ ¢, E), for ¢ € Wol’p(BTh (z3); RY), setting ¥(y) = Qp(mh?ﬂitrhy), it holds
that

/B [(Fn(Dvn(y)) + 1g; Gh(Dun(y))] dy

< / [Fn(Dup(y) + Dp(y)) + 1 Gr(Dun(y) + Dy(y))] dy + % / 1 DG(Ap)Di(y) dy,
B1 h JB,

and (5.13) follows by the definition of Zj in (5.12).
In the second case the suitable rescaled functional to consider in the blow-up procedure is

Hp(w) := /B [Fi.(Dw) + Gp(Dw)] dy.

Then we claim that
Lo

+ )\2/ (1% + |Ap + M Dup )% dy, (5.14)
h /' (B1\Ep)Nsuppy

Hp(vn) < Hp(vn + )

13



for all ¢ € Wolvp(Bl;RN). Indeed, the minimality of (u, E) with respect to (u + ¢, F), for
Y e W()Lp(Brh (z3); RY), implies that

/ (F + G)(Du) dz = / [F(Du) + 15G(Du)]d + / G(Du)dz
B?“h (xh) B'f'h (xh) Brh (mh)\E

< / [F(Du+ Dy) + 1G(Du + Dy)]dz + / G(Du)dz
By, (z1) By, (zn)\E

= / (F 4+ G)(Du + Dy)dz + / |G(Du) — G(Du + Dy)]dx
BTh (zh) BTh (zh)\E

< / (F + G)(Du + Dg)dz + / G(Du)dz, (5.15)
Boy(en) (Bry (1)\ ) uppg

where we used that the last integral vanishes outside the support of ¢ and that G > 0. Using
the change of variable x = xj, + r,y in the previous formula, we get

/B (F + G)(Du(wp + rhy))dy < /B (F + G)(Dulan + ry) + Do(an + ) dy

+ / G(Du(zp, + rry))dy,
(B1\Ep)Nsuppyy

or, equivalently, using the definitions of vy,

/B (F 4+ G)(Ap + M\ Dup)dy < /B (F + G)(Ap + An(Dvp, + D)) dy

+ / G(Ap + ApDuy)dy
(B1\Ep)Nsuppy

where ¥ (y) := W, for y € By. Therefore, setting

H;, .= Fy, + Gy,

by the definition of Fj, and Gy, in (5.11) and using the assumption (G1), we have that

1
Hy(Dundy < [ Hy(Duwn+ D)y + 55 [ G(An + MnDuy) dy
B B A J(B1\By)nsuppys
L p
< [ mou+Dedy+ 3 [ (L aDo ) dy, (5.10)
By Ah (B1\Ep)Nsuppy
ie. (5.14).

Step 2. A Caccioppoli type inequality.

We claim that there exists a constant ¢ = ¢(n, p, €1, 2, Lo, M) > 0 such that for every 0 < p < 1
there exists hg = ho(n, p) € N such that for all A > hg we have

/ (1 + )\Z_2|D7)h — (Dvh)g |p72) |Dvh - (Dvh)g‘z dy (5.17)
Bp
2
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lon, — (vn),, — (Do) 2y|? lon, — (V) — (Dvp) ey|? P(E), By)n-1
<e / )p2( 5 | +/\2_2 )p 5 | dy + ( h721) !
B, p pr Ay

We divide the proof into two substeps.
Substep 2.a The case min{|E}|,|B1 \ Ex|} = |E}|.
Consider 0 < § < s <t < p < 1andletne CBy) be a cut off function between B, and B,
ie,0<n<1,n=1o0n B, and |Vn| < 5. Set b, := (va)B, , Br = (Dvh)Bg, and set

wr(y) == vn(y) — br — Bry,
for any y € B;. Proceeding similarly as in (5.6) let us rescale F' and G around Aj, + A\, Bp,
_ F(Ap 4+ By + M) — F(Ap + \Bp) — DF(Ap + A\ Bi) Ané

Fp(€) = 32 (5.18)
~ o G(AR+ By + A§) — G(Ap + A\ By) — DG(Ap + A\ Bp)Ané
Gh(g) T )\i )

for any & € R™ N, It is easy to check that Lemma 2.3 applies to each ﬁh and éh, for some
constants that depend on M (see (5.4)) and could also depend on p through |\, By|. However,
given p we may choose hy = hg(n, p) large enough to have |\, By| < A 1 for any h > hy.

p2
Indeed, by (5.7) we have

1
2 1
|By| = Duy, dy‘ < (/ |Dvh|2dy> < c(n)’
B

|B£|%
2

Bp p
2 b

and so the constant in (2.2) can be taken independently of p.
Set

Yipi=nwy  and Py = (1 —n)wp.

By the uniformly strict quasiconvexity of F}, we have

_2
€1/ (1+|>\hDWh\2)pT|th|2dy
B,
p—2 ~ -~
< /B (14 PaDvral?) 7 [Dynal? dy < /B F(Db1p) dy = /B Fu(Duwn — Doy dy
t t t

:/B ﬁh(th)dy-F/B ﬁh(th_D¢2’h)dy_/B ﬁh(th)dy

~ 1 ~
= /B F,(Dwy) dy — /B / DFy,(Dwy, — 0Dy ) Dipa p, d6 dy. (5.19)
t t 0

We estimate separately the two addends in the right-hand side of the previous chain of inequali-
ties. We deal with the first addend by means of a rescaling of the minimality condition of (u, E).
Using the change of variable x = zj, + ry, the fact that G > 0 and the minimality of (u, F)
with respect to (u+ ¢, E) for ¢ € Wol’p(Brh (z3,); RY), we have

/ F(Du(en + ruy))dy < / [F(Du(zy + ray)) + 1 G(Dulzy + )] dy
B, By
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< /B [F(Du(xh + ray) + De(xn + ray)) + L G(Du(zn + ray) + Do + ray)) ] dy,
1
i.e., by the definitions of vy, and wy,
/ F(Ap + M\ Br + ApDwp)dy
By

< / [F(Ap + A Bi + A(Dwy, + D)) + 1g: G(Ap + A Bp, + A (Dwy, + D)) dy,
B '

for ¢ = %’r:y) € ng P(By;RN). Therefore, recalling the definitions of Fj, and G}, in (5.18),
we have that

/ Fy(Dwp)dy < / [Ey(Dwp + D) + 1y Gi(Dwy, + Dip)] dy
Bl Bl

+ —= )\ / ILE* [G(Ah + )\hBh) + DG(Ah + )\hBh)Ah(th + Dw)} d
Choosing ¢ = —1)1 3, as test function in the previous inequality, we get

Fy(Dwy) dy < /
By
1

M

= / [Fn(Dion) + ]lE;éh(Dth)] dy
B¢\ B;

: [Fy,(Dwy, — Dy ) dy + lE;éh(th — Dip1 )] dy (5.20)

+ / ]lE;; [G(Ah + /\hBh) + DG(Ah + )\hBh))\h(th — D¢17h)] d
B1

1
te / Lg; [G(Ap + AnBn) + DG(Ap + A Br)AnDibap)] dy
h V' Bi1

- E; 1
§c<M)/ (D nf* + XDl dy+c<n7p,L2,M>['A2‘ 5 /
Bi\Bs h

|

where we used Lemma 2.3 and the second estimate in (2.1), Holder’s inequality, and the fact
that [Ap +ApBp| < M +1. Now we estimate the second addend in the right-hand side of (5.19).
Using the upper bound on DFj}, in Lemma 2.3, we obtain

/B /0 1 DEy(Dwy, — 0Dty ) Dby 1, d6 dy (5.21)
:
< ¢(M) /B . /01 (IDwp, — 0D | + N2 Dwy, — Do 1 |P~1) | Dip 1| d6 dy
c(p, M) /B . (IDwp|? + A= | Dwy [P + | Do | + A2 ~2| Dipg 1, [P) dy
Hence, combining (5.19) with (5.20) and (5.21), using the properties of 1, we obtain

2\ 252 2
El/ (1+‘Athh’ ) 2 ‘th’ dy
Bs
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< c(p, M) / (IDwn[* + Ay~ 2| Duwp|? + [Diba | + X% | Db |P) dy

Bt\Bs
1 E;
+¢(n,p, La, M) [A/ | Dio | dy + ’qu
hJE; h
_ |wp|? —o |wplP
§cp,M/ Dwp|? + A2 Dy, P dy—l—cp,M/ [ + A7 dy
( )Bt\Bs ( | vl ") ( )Bt\Bs (t=s)> 7" (t—s)p
1
1 2 . 1 E*
+c(n,p, La, M) [)\ </ \Dwz,h(y)IQdy> |Eplz + |)\§q
h \JE; h
p=2 |wp, |2 —o |wpl?
gcp,M)/ 1+ A2 |Dwp)?) 2 thzdy—i—c(p,M/ [ + NPT dy
( Bt\Bs( h’ ‘) ’ ‘ ) Bo\B. (t—8)2 h (t—S)p

1
1 2t B
T e{np, Ly, M) [M< / |D¢2,h<y>|2dy) Byl + ] AS’]
; h

2

p—2 w
<ctun Lot [ (D) Fiompas [ [0
Bt\BS B/J (t—s)
E*
155,

Ah

p
)\p—2 ‘wh| d
T s

p—2

where we used Young'’s inequality. By adding c(n,p, L2, M) [ (1 + [ApDwp|?) 2 |Dwy|?* dy to
both sides of the previous estimate, dividing by ¢1 + ¢(n, p, Lo, M), and thanks to the iteration
Lemma 2.2, we deduce that

p—2 2 B P E*
[0 pu) F punas < et o] [ (15 a2ty g 4
By B, \ P P Ah

Therefore, by the definition of wy,, we conclude that

/ (1+ X2 2| Dy, — (Dog) s [P=2) [ Doy, — (Duy) g | dy

Bp
2
v = (vn)p — (D) gyl? on — (o) — (Dun) syl? Jor
<e(n,p, b1, Ly, M) / | ( p2 )2 | _i_)\;}.;—z’ (vn)p )2\ dy+‘ 3'
B, P pP Ay
(5.22)

which, by the relative isoperimetric inequality and the hypothesis of this substep, i.e.
min{|E}|,|B1 \ Ep|} = |E}|, yields the estimate (5.17).

Substep 2.b The case min{|E}|,|B1 \ Ep|} = |B1 \ Epl.

As in the previous substep, we fix 0 < § < s <t < p < 1 and let n € C§°(B;) be a cut
off function between Bs and By, ie., 0 <1 < 1,7 =1o0n By and |[Vy| < ;. Also, we set
br == (vn)B, , Br = (Dvy)p, and define
2

wp(y) == vp(y) — by, — Bry,

17

)



for any y € By and
H;, .= Fy, + Gy,

We remark that Lemma 2.3 applies to H n, that is
[Hu(©)] < e(M)(IEP + N 2lelP),  vE e RN,

and, by the uniformly strict quasiconvexity conditions (F'1) and (G2),

Hy (& + D) dz > / [HL(6) + E(42 + Dy nf2) T | Dy ] dy, (5.23)

Bl Bt

for all ¢ € W) ?(By;RY), where £ is such that

0>+,
Set
Yrpi=nw,  and Yo = (1 —n)wp.
By (5.23) and since Hy(0) = 0, we have

p—

~ 2
z/ (14 |ApDwp|?) = |Dwy|? dy
Bs

~ p—2 ~ ~
<0 (T4 |MDyinl?) 2 [Dyrp)Pdy < / Hy(DYyp)dy = | Hp(Dwy, — Dibay) dy
Bz Bz Bz

= | Huy(Dwp)dy+ | Hy(Dwy — Dipop)dy — | Hp(Dwy) dy

By By By

~ 1 ~

= Hh(th) dy — / / DHh(th — 0Dw2,h)Dw2,h do dy. (5.24)

Bt Bt 0

As in the previous step, we estimate separately the two addends in the right-hand side of
the previous chain of inequalities. We deal with the first addend by means of a rescaling of
the minimality condition of (u, E'). By virtue of the minimality inequality in (5.16) and since
Dvy, = Dwy, + By, we get

Hh(th + Bh)dy < Hh(th + By + DQ/)) dy
B1 Bl

)
A J(B1\Ew)nsuppy

D
2

+ (1 + |Ap + M\ Br + )\thhP) dy,

or, equivalently, by the definition of H, h

Hy(Dwp)dy < | Hy(Dwy, + D) dy
B1 B

i)
A J(B1\Ey)nsuppy

b
+ 2

(14 [Ap + ABp + Ay Dwy|?) 2 dy. (5.25)
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Choosing 1 = —1 , as test function in (5.25) and using the fact that fIh(O) =0, we get
Hy(Duw) dy
By

~ L
< [ Eu(Dun) - Dora)dy+ 33 [ (U An+ B+ MDunf?)
By h J B:\Ep

D
2

dy

~ L2 2 ya
= H,, (D@bg,h) dy + 2 (1 + |Ap + M\ Br + ApDwy| )2 dy
Bt\Bs h Bt\Eh

ya
2

_ L
<c(M) / (1D 1 |? + A2 | Do |P) dy + =2 / (14 |Ap + ApBy, + M Dwy|?) 2 dy.
Bi\Bs Bi\Ep,

A

By remarking that

[S14S)
[MiS)

(1 + ‘Ah + A\ By, + AhD’U)h‘Q) < (1 + ‘Ah + )\hBh’2 + 2‘Ah + )\hBh’Ah‘th’ + )\%|th‘2)

< [(1 + i)c(M) +(1+ 5)/\%|th!2} < <1 + 5) g+1c(M)

(SIS

P
+ (L4 &) 2\ [ Dwy P,
for every € > 0, we get

i (Dwp) dy < c(M) / (1Dl + N2 Dy |7 dy (5.26)
Bt Bt\Bs
|B1 \ Ep|

+(1+ 5)Z2)+1L2)\§2/ | Dwp|P dy + ¢(p, Lo, M, €) 12
By h

Now we estimate the second addend in the right-hand side of (5.24). Using the upper bound on
DHj, in Lemma 2.3, we obtain

1 ~
/ / DHy(Dwy, — 0Dtg ) Dibo p d9 dy (5.27)
B: JO
1
<o) | \ | (Dun = 600+ 372D, — 0D P ) D] db
B{\Bs J0O

< e(p, M) / \ (IDwp|? + N2 Dwp, [P + | Do g |* + N2 =2| Dipo P dy.
B\ Bs

Inserting (5.26) and (5.27) in (5.24), we infer that
~ p=2
e/ (14 [ADwy|?) 2 |Dwp|? dy
Bs

< o(p, M) / o, UDw X Dun DY+ X D) dy
B\ Bs

|B1\ Ep|

H P LN [ Dy + clp. Lo M. 2) P
By h

SC(va)/

p=2 \wh|2 _9 ]wh\p
1+ [M\,Dwp|?) 2 thQdy—i—cp,M/ < + AP d
Bi\B. ( ‘ ’ ) | ’ ( ) Bo\B. (t _ 8)2 h (t _ S)p
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p=2 B1\ E
+(1+s)§+1L2/ (1+ [AnDwp[?) 2 ]th|2dy+c(p,L2,M,5)|1)\\2h|.
By h

Using the hole filling technique as in the previous case, we obtain
p—2

/ (14 [AuDwn[?) = [Dwy|? dy

s

g+1 D
_ (ep, M) + (14 2)5 L) / (1 A Dunl?) 2 [ Do 2 dy
(c(p, M) +0) B,
[eon]? p—2_|wn|” |B1\ Ep|
Lo. M.g) 2L\ =1
+/Bt\Bs ((t_S)Q +>\h (t—s)p dy+0(p,€1,€2, 2, ’5) )\]%

()5, _

The assumption (H) implies that there exists € = &(p, ¢1, 2, L2) > 0 such that e

Therefore we have )

c+ (1+e)2L, < c+ (1+e)2t Ly
c+l T ctlbit b

So, by virtue of Lemma 2.2, from the previous estimate we deduce that

p=2 2 _ p B\ E
/ (112D )2 lthde3c<p,£1,€2,L2,M>[/ <'w’;| gl )dy+' L h’]-
By B, \ P P Ah

< 1.

Therefore, by the definition of wy,, we conclude that

[ Do = (D5l D — (Dun)y P dy

Bp
2
vp, — (Up —(Dvh)ng vp — (vp), — (Dvp) ey |P
< c(p, 1,02, Lo, M) / ’ (Vn)p i 2 | "‘/\2_2’ (vn)p )2 \ "
B, P pp
[B1\ Bn

)

Ah

which, by the relative isoperimetric inequality and since we have | By \ Ej| = min{|E}|, |B1\ Ep|},
gives the estimate (5.17).

Step 3. We prove that there exists a constant ¢ = c¢(n, N,{1,¢2, L1, La) > 0 such that

2 =2 2
][ |Dv — (Dv)z|* <ér ][ |Dv — (Dv),|* dz, (5.28)
Bz B-
for any T < 1.
It will follow that
Dv— (Do) < 572][ \Dv — (Do), |2 < &2, (5.29)
Br B,
2

since
DVl 2,y < limhsup [ Dvnll2¢p,) < c(n).
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As before, we will divide the proof in two substeps.

Substep 3.a The case min{|E}|, | B \ E|} = |Ef|.

We claim that v solves the linear system

D?*F(A)DvDvy dy = 0,
B1

for all 1 € C§(B1;RY). Since vy, satisfies (5.13), we have that

1
0< Ih(vh + 81/1) — Ih(vh) + )\7 / ﬂE;LDG(Ah)SD¢ dy,
h J B

for every ¢ € C}(B1;RY) and s € (0,1). By the definition of Z;, we get

1
0 < Zp(vp + sv) — In(vp) + )\/ ]lE;DG(Ah)SDw dy
h JB,

1
-1 ( / [DF(Ap, + Ap(Doy, + tsDv))| sDap dt — DF(Ah)stz) dy
An JBy \Jo
1
+ L[y B ( / DG(Ap, + M (Doy, + tsDvp))sDip dt — DG(Ah)sD¢> dy
Aty " \Jo

1
o / 15; DG(A3)s Dy (y) dy
h JB;

1

An JB,

1 1
+ N / / 1E;DG(A}L + M (Dup + tsDv))sD dt dy
h JBy JO

( /0 1 [DF (A} + Ay(Doy, + tsDv)) | sDap dt — DF(Ah)sDw> dy

We divide by s and do the limit as s — 0, therefore we deduce that

1
0< [ (DF(Ap+ MDuvp) — DF(Ay)) Dy dy
n B

1
+ — 1= DG(Ah + )\hDUh)DIb dy. (5.30)
Anltp,

We partition the unit ball as
B = B; U B}_L = {y € By /\h‘D'Uh‘ > 1} U {y € By /\h\Dvh\ < 1}.

By (5.7), we get

Bil< [ 3D dy <3 [ 1Duldy < o, (5.31)
B B}

h

We rewrite (5.30) as follows:

1 1
0 — (DF(Ap + A\pDvp) — DF(Ap)) Dy dy + " ]lE;DG(Ah + A Dup) D dy
h Bl h Bl
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_ 1

=5
1

+ S RE;DG(Ah + AnDvp) D dy
h

_ 1

=5

/B (DF(Ay+ MDuy) = DF(A3)) D dy + Alh | (DF(Ay+ MDwy) = DF(A43) D dy

(DF(Ay, + XDvg) = DF (Ay)) Dt dy

1
+ / / (D?F (A + tAnDuy) — D*F(A)) dtDuvy, Dy dy
> JO

1
+ [ D*F(A)Dv,Di dy + 1 [ L5 DG(A + \uDvp) Dy dy. (5.32)
B, h J By

By virtue of the first estimate in (2.1) and Holder’s inequality, we get

1
A

/}3+ (DF(Ah + )\hDvh) — DF(A;L))D¢ dy

< el 21,20, g2 [ Dot
Ah B}

p p
)\h + )\h </ )\fliz‘Dth) dy) ( )\3 > ] S c(n7p7 Ll)Ma Dw)Aha
B, h

thanks to (5.4) (to bound |Ay| < M), (5.7) and (5.31). Thus

S C(nvpuleMwa)

lim —
h—oco Ap,

/B+(DF(Ah + ApDvy) — DF(Ap)) Dy dy‘ =0. (5.33)

By (5.4) and the definition of B, we have that |A;+ A, Dvy| < M +1 on B, . Hence the uniform
continuity of D?>F on bounded sets implies

‘ / B / 1 (D*F(Ap + tAp,Dvy) — D*F(A)) dtDthz/zdy‘

/

< ¢(n, D)) (/B

h

/ (D*F (A, + tA,Dvy) — D*F(A)) dt’\DvhHledy

(Ah + tApDup,) — D2F(A)) dt

2 2
dy) HDvhHL?(Bl) ||D¢||Loo(Bl)

1
2 2
dy) ,

where we used (5.7). Since by (5.8), ApDvp, — 0 a.e. in Bj, we deduce that

/ 1 (D?*F(Ap, + tA\Dvy) — D*F(A)) dt
0

lim
h—o0

1
) / (D*F (A, + tA,Dvy) — D*F(A)) dt Dv, Dy dy‘ =0. (5.34)
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Note that (5.31) yields that ILB; — 1p, in L"(By), for every r < oo. Therefore, by (5.7),

’ D?F(A)Dv, Dy dy — DQF(A)Dqupdy'
B, B

<

D?F(A)Dv,Dypdy — | D*F(A)Du, Dy dy’
B, By

_l’_

D?F(A)Dv,DYpdy — | D*F(A)DvD1 dy‘
B1 Bl

1
< (DY) |- = 15, [l z2(s0) D0k 123, ‘/0 D?F(A) dt‘ + ’ i D2F(A)(Duvy, — Dv)Dip dy.
1

Thus, by the weak convergence of Dvy, to Dv in L?(By), it follows that

lim D?F(A)Dv,DYpdy = | D*F(A)DvD1 dy. (5.35)
h—o0 B, By

By the second estimate in (2.1), we deduce that

1

An

c(p, L p=L
/ Lz [DeG(Ap + ApDvp) Dy dy' < (p)\hz)/ Lg: (14 |An + ADunl?) > |Dy| dy
Bl Bl

1, _ -
< c(p, Ly, M, D)) [M|Eh|+xg 2/ |Dup|P ldy}
£y

p—1 1

1, ., -~ v [|EFf|\P

S C(pa LZaMa Dd}) |:)\h|Eh| + )\h (/];; )\fb 2|D’Uh|pdy> <‘)\£L’> :|
1 h

1
1 . Ef|\ »
h

thanks to (5.4) and (5.7). Since min{|E;|, |B1 \ Ep|} = |E}|, by (5.10) we have

E*
lim 22 =0,
h—o0 )\%L
and so )
lim / 1g=DG(Ap + ApDvp) D) dy = 0. (5.36)
h—o0 Ap, By h

By (5.33), (5.34), (5.35) and (5.36), passing to the limit as h — oo in (5.32), we get

DF(A)DvDy dy > 0,
B1

and with —¢ in place of ¥ we get

DF(A)DvDv dy = 0,
By
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i.e., v solves a linear system with constant coefficients. By Proposition 2.1 we deduce that
v € C* and, for every 0 < 7 < 1, we have

7{3 |Dv — (Dv)%|2 < ¢(n, N, El,L1)7'27[ |Dv — (Dv),|*dz < ¢(n, N, £y, Li)72,

% T
since

1Dvll 2,y < lihmsup Dol 2,y < €(n).
—00

Substep 3.b The case min{|E}|,|B1 \ Ep|} = |B1 \ Ep|.

We claim that v solves the linear system

D?*(F 4+ G)(A)DvDv dy = 0,
B1

for all 1 € C3(By; RY). Arguing as (5.15) and rescaling, we have that

1
Hh(D’Uh)dy < Hh(D’Uh + SD'Lﬁ) + 3 / [G(Ah + )\hD’Uh> — G(Ah + A\pDvy, + SAth)]dy
B1 By )\h Bl\Eh

1

= Hy,(Dvy, + sDv) dy +

1
/ / DG(A}, + My Duy, + tsh,Dip)sDip dt dy
B An JB\E, Jo

L 1 b1
< | Hp(Dvy, + sDv)dy + C(pA’z) / / (1+ [Ap + A Duy, + tsAhDW)pQ s|Dap| dt dy
B h Bi\E, JO

1
< [ Hu(Don + sDw) dy + c(p, Lo, M) [ [ sipelay
By An BB,

1
+ / / NP2 Dy, + ts D[P~ Ls| Dyp| dt dy] ,
Bi\E, JO

for every ¢ € C}(B1;RY) and for every s € (0,1). Therefore

1
0< / / DHy(Duvy + s D)) dfsD1) dy
B, Jo

1 v
+c(p,L2,M)L\ / s|Dy| dy + / AP 2]Dvh+tsDw|pls|D¢]dtdy].
h JBi\Ep, Bi\E, J0O

Dividing the previous inequality by s and taking the limit as s — 0, we obtain that

1

o< [ paDu D+ L |5 [ vty [ Du el ay)|
B1 h Bl\Eh Bl\Eh

By the definition of Hj, we conclude that

0< 1h [D(F + G)(Ap + A\Dvy) Dy — D(F + G)(Ap) Do) dy
By
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1 - _
velp ot [ Dty [ g oulDu ).
h Bl\Eh Bl\Eh

Just as before, we partition B; as
B = BZ— U B}: = {y € By : Ap|Dup| > 1} U {y € By : MAy|Dup| < 1},
and we write

0< 1h (D(F + G)(Ap + AnDvn) — D(F + G)(An)) Dib dy
B

1 — _
wetadn)| - [ Duldy [ D0l Dul ]
h JBi\E}, Bi\Ep

=— | (D(F+G)(An+ A\Dvy) — D(F + G)(Ap)) Dy dy
+ — (D(F + G)(Ap + M\yDvp) — D(F + G)(Ap)) Dy dy
1 _
weltadn)| - [ Dty [ iDulDul ).
A J BBy, Bi\Ej,
Arguing as in (5.33) , we obtain that

/ (D(F + G)(Ap + MDuy) — D(F + G)(An)) D dy| = 0,

lim / [D(F + G)(Ap + MDuvy) — D(F + G)(Ap)| Dt dy

= D(F + G)(A)DvD1 dy.
Bi

Moreover, we have that

1 — _
[ bty [ Dul Dl dy
h Bl\Eh Bl\Eh

p

—1 1

B\ E _ 2 [(|B1\ Ep|\?

B\ h“f‘)\h(/ )‘Zf; 2|Dvh|pdy> P <‘ 1\ h|>p
B,

<ec(p,D

< c(n,p, D)

)

1
|B1\ Ep| |B1\ En|\»
IPLATRE oy (2L AT
o T

where we used (5.7). Since min{|E}|,|B1 \ Exn|} = |B1\ En|, by (5.10), we have

B\ E
lim BBl _

0
h—o00 )\}21 ’
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and we obtain

1 _
lim / Dw\dy—i—/ 2| Do P~ D dy | = 0. (5.40)
h—o0 Ah Bi\E} Bi\E}

By (5.38), (5.39) and (5.40), passing to the limit as h — oo in (5.37) we conclude that
; D?*(F + G)(A)DvDv dy > 0
1
and with —¢ in place of ¢ we finally get
; D*(F + G)(A)DvDv dy = 0,
1

asserting the claim. By Proposition 2.1, we deduce also in this case that v € C°° and for every
0 < 7 < 1 satisfies estimate (5.28).

Step 4. An estimate for the perimeters.
Our aim is to show that there exists a constant ¢ = ¢(n,p, Lo, A, M) > 0 such that

1 n
P(Ey, B;) <c [P(Eh, By)nT 4 1t 4 A7 | (5.41)
T

By the minimality of (u, E') with respect to (u, E), where E is a set of finite perimeter such that
EAE € By, (z1,) and By, (z5) are the balls of the contradiction argument, we get

/ 15G(Du) + ®(F; By, (z1)) < / 1:-G(Du) + ®(E; By, (z1)).
By, (x1) By, (x1)

1

Using the change of variable x = xj, 4+ 7,y and dividing by ;™ ", we have

Th/B ]lEhG(Ah + /\hDvh)dy + ‘I)h(Eh; Bl) <rp /B lEhG<Ah + )\hDvh)dy + q)h(Eh; Bl),
1 1

where
®,(Ep; Q) = / ®(zp + 1y, v, () dH" (),
GNO*E),

for every Borel set G C Q. Assume first that min{|B; \ E4|,|E}|} = |B1 \ Ex|. Choosing
Ey = E, U B,, we get

P, (Ep; By) < Th/ ]prG(Ah + A Dup)dy + ‘I’h(Eh; By). (5.42)
B

By coarea formula, the relative isoperimetric inequality, the choice of the representative E,(ll) of
E,, which is a Borel set, we get
2T

H" (0B, \ Ep)dp < |B1 \ En| < ¢(n)P(Ey, B))w1.

T
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Therefore, we may choose p € (,27), independent of n, such that, up to subsequences, it holds

H"‘l(a*Eh N 8Bp) =0 and Hn_1<8Bp \ Eh) < wP(Eh, Bﬁﬁ (543)
T

We remark that Proposition 2.8 holds also for ®j;. Thus, thanks to the choice of p, being
H"1(0*E, N OB,) = 0, we have that
&, (Ep; By) = ®4,(Ep; BE,O)) + @4,(By; E;(lo)) + ®,(En; {vE, = vs,})
= @,(Ey; B\ B,) + ®1(By ).

By the choice of the representative of E} (see Remark 2.4), taking into account (2.8) and the
inequality in (5.43), it follows that

&,(Ep; B1) < ®4(Ep; By \ By) + AH" (0B, N E\") (5.44)

< &, (Ep; B\ By) + AH" 1(0B, \ Ep).

< ®,(Ep; B\ B,) + Ac(Tn)P(Eh, By)wT.

On the other hand, by (2.8) and the additivity of the measure ®;(FE}, ) it holds that

1 _
KP(E]’HBT) S ‘I)h(Eh;BT) S (}h(Eh; Bl) —_ (I)h<Eh;B1 \ Bp), (545)

since p > 7. Combining (5.42), (5.44) and (5.45), we obtain

1 _
AP (Bn, Br) < @5(Ep; B1) — ®n(En: Br\ By) (5.46)

< q)h(Eh; Bl) + Th/ ﬂBpG(Ah + )\hDvh)dy — (I)h(Eh; By \Ep)
By

P(Ep, By)"1 + Th/ 15,G(Ap + ApDup)dy
B

o
—

n)

A

IN

o
S

IN
[

P(Ey, B1)"1 + ¢(p, LQ)Th/ (1+ |Ap + AnDuy ) dy
B27‘

o)
3

)

IN

A P(Eh,Bl)ﬁ + c(n,p, LQ,M)T'th +C(p, LQ)'I"h)\}%/ )\2_2\Dvh\p dy

B2T

)

IN
o
SR

A P(EhaBl)# +C(n7pv LQ,M)Tth+C(n,p, LQ)Th)‘%w

y

where we used (5.7). The previous estimate leads to (5.41). We reach the same conclusion if
min{|B; \ Ey|, |Ef|} = |E}|, choosing Ej, = EJ, \ B, as a competing set.

Step 5. Conclusion.

By the change of variable x = xp, + r,y and the Caccioppoli inequality in (5.17), for every
0<t< i we have
U, (xhv TT‘h)

lim sup 2
h—o0 h
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< limsup 2]{3 ) |Du z) — (Du)xhﬂ'rh|2 + [Du(x) — (Du)xhﬂ'rh|p] dx
TTh Ih

h—o0
E B, (x
+ lim sup P nTI"( n) +11msup
h—o0 >\h7— Th h—o0 h

< lim Supj[ [|Dvy, — (Dup)-|? + )\272|Dvh — (Dvp)-[P] dy + lim sup
B-

h—o0 h—o00

- T D T 2 — - T
c(n,p,zl,éz,Lz,,A,M>{hmsup7[ L= e 2Dty ppelon = (tn)
B2‘r

h—o0
P(Ep, B))"1 1 "
+ — hm sup + 7 lim sup +7rn | +70,
h—o0 )‘}21 T hsoo )‘2

where we used (5.7) and estimate (5.46). We remark that

lim /\Z_2|vh — (vp)2r — (Dvp)rylP dy = 0,

h—o0 Bor

being p > 2. Indeed, fixed r > p, we consider

o %, if2<p<n,
r if p>n.
There exists a € (0, 1) such that
1 1-a «

p 2
Thus, we interpolate by Holder inequality, and we get

][ “Jop — (vn)ar — (Don)ryl? dy
BQT

ap
_ * p*
:W(f fon — (un)ar — (Dop)ryl? dy) (][ \vh—<vh>2T—<Dvh>Tdey)
BQT B27—

On one hand, by Poincaré-Wirtinger inequality and (5.29) we obtain

lim lvp, — (vp)2r — (Dvh)ﬂ-y|2 dy = 7[ v — vor — (Dv)7-y|2 dy

h—o0 B2T B2T

< c(n)7‘2][ |Dv — (Dv)T|2 dy < ¢(n, N, {1, Lo, Ll,L2)7'2
Bar

On the other hand, by Sobolev-Poincaré inequality, we infer

_ « p*
N, 2 <7[ lop, — (vp)2r — (Dop)7yl? dy>
B2T
2 (f, 10w y) = ctnpy 0
B2‘r

BQT

28

P(Ey, B;)

2. n—1
ALT

(Don)ryl?

TP

(5.47)

(1—a)p

< etV (f 1o Dw)-Pay)
BQT

A22|Dvh|pdy) < c(n, p)AP~20-),

dy



where we used (5.28) and (5.7). Therefore (5.47) follows at once.
By virtue of the strong convergence of v, — v in L?(By), since (Dvy), — (Dv), in R™N | by
(5.8), (5.9), (5.10), (5.29), (5.47) and by the Poincaré-Wirtinger inequality, we get

v— (V)or — (Dv),y|?
b= e (DUl )

|Dv — (Dv),|* dy + T}

L&(xh,TTh)

< C(nap7€1;€2> L27Aa M){][
B

lim sup

2
h—oc0 )\h 2T

S C(n7p7€17€27L27A7 M){][
B27‘
< C(n,N,p,El,EQ,Ll,LQ,A, M) [7-2 + T] < C(naNapvglag%LlyLQvAa M)T
The contradiction follows, by choosing C, such that C, > C| since, by (5.5),

lim inf w > O,
h g

O]

Next, we prove a suitable decay estimate that allows us to prove Theorem 1.2 without the
assumption (H). To this aim, we introduce a new “hybrid” excess as

P(E»Br(fﬂo))) s (5.48)

Tnfl

Uis(z0,7) := U(x0,7) + <

where U(xg, ) is defined in (5.1), § has been determined in Theorem 4.1 and 0 < 5 < %5.
In the proof of the following Proposition 5.2, we will only elaborate the steps substantially
different from the corresponding ones in the proof of Proposition 5.1.

Proposition 5.2. Let (u, E) be a local minimizer of T under the assumptions (F'1), (F2), (G1)
and (G2). For every M > 0 and 0 < 7 < %, there ewist two positive constants eg = eo(t, M)
and Cys = Cox(n, p, 01,02, L1, Lo, A, 8, M) for which, whenever B,(xy) €  verifies

‘(Du)ﬂﬁoﬂ“‘ S M and U**(:Z:O,T) S €0,
then
Uss(20,77) < Con 77 Usa (o, 7). (5.49)

Proof. In order to prove (5.49), we argue by contradiction. Let M > 0 and 7 € (0,1/4) be such
that for every h € N, C,, > 0, there exists a ball B;, (z5) € 2 such that

|(Du) | < M, Uss(zp,mH) — 0 (5.50)

ThyTh

and
L&*(xh,TTh) ZjC&*Tﬁ[LW(xh,Th). (5.51)

The constant Cy, will be determined later. We remark that we can confine ourselves to the case
EN By, (z1,) # 0, the case By, (z,) C Q\ E being easier because U = U, — 7.

Step 1. Blow-up.
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We set /\,% = Uss(xh, 1), Ap = (DU, > @ = (W)z, r,, and we define as before

u(xy + 1Y) — ap — TR ARY
ARTh

vp(y) = , Yy € Bj.

One can easily check that (Dvy)o,1 = 0 and (vp)o,1 = 0. Again, as before, we set

E - I E— Th
Ey, = , E; =
Th Th

N B;.

Let us note that

A\ = Usi(zp,71) 7[ [[Du(zp, + ray) — Apl* + |Du(zy, + rhy) — AnlP] dy (5.52)
By

)
P 1+6

s
][B ’/\hD’Uh’ + ’)\hD’l)h’p] dy + P(Eh,Bl)T + T}BL.
1

+

It follows that

ALY T
h
(5.53)
Therefore, by virtue of (5.50), (5.52) and (5.53), there exist a (not relabeled) subsequence
{vp}hen, A € RPN and v € WH2(By; RY), such that

3
r, — 0, P(Ej, B;)—0, Th < 1, 7[ [|Dvy | + A§‘2|Dvh|f)] <1
B

v, — vweakly in WH2(By;RY), vy, — vstrongly in L?(By; RY), (5.54)
A — A, ApDvp, — 0 in LQ(Bl; R"N) and pointwise a.e.,

where we used the fact that (vp)o,1 = 0. We also note that

)

Pt o gy

h 146 h
=7, — — 0, (5.55)

Ah Ah

since 0 < B < 1+6 Moreover, by (5.53), we deduce that

n [ )
P(Ep, By)n-11+5 B P(E;, B1)1+
lim (Eh, 12) = lim P(Ep, By)®- DI hmsup% =0. (5.56)
h—o0 )‘h  hooo h—00 >‘h
Therefore, by the relative isoperimetric inequality,
) ) nd
EX|T+5 |B; \ E; |1+ P(E,. B;) @) (n-1)
lim min | h|2 , B1\ 2h| < ¢(n,d) hm (Eh, 1)2 =0. (5.57)
h—»00 A A h—r00 Ah

Step 2. A Caccioppoli type inequality.
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We claim that there exists a constant ¢ = ¢(n, p, £1, L1, Ly, M) > 0 such that, for every 0 < p < 1,
there exists hg € N such that for all A > hg we have

/ (1+ A7 Duy, — (Dvn)g[P=2)| Dup, — (Dup) g [* dy (5.58)

Bp
2

[on = (va)p — (Dvp) e yl? lvn = (vn)p — (Don)gyl? P(Ep, By) @9
<c / — MY ’ ) ay o+ B BY
B, P PP P2
We divide the proof into two substeps.
Substep 2.a The case min{|E;}|,|B1 \ Ex|} = |Ef|.
The proof of this substep goes exactly as that of Substep 2.a of Proposition 5.1 up to estimate

(5.22). Next we observe that
| @ NT2D0, ~ (Don)g ) Doy~ (Don) Py

Bp
2

<c

/ <|Uh 1)y = (Dun)gyl® |, lon = (on)p — (Dun)gy] >dy+|Eh
BP

2 h o ¥
on = (vn)p — (Don)eyl? — _,lon — (va), — (Dup)syl” ||
<c . + A dy + —5—1,
B, p pr )‘h

and this, by the relative isoperimetric inequality, yields the estimate (5.58).
Substep 2.b The case min{|E}|, | By \ Ep|} = | By \ E.

We fix 0 < § <s<t<p<1landletne CGB;) be a cut off function between By and By, i.e.,
0<n<1,n=1on B, and |Vy| < ;. Furthermore, we set b, := (vs)B, , Br := (Dvp)B, and

2
define

wp(y) == vp(y) — bn — Bry, Y1p=nwp and ey = (1 —n)wp,
for any y € B;. By (5.24) and (5.27), we obtain

~ —2
z/ (14 [AnDwy[?) T [ D[ dy
B,
o~ 1 o~
< Hh(th)dy—/ / DHp(Dwy, — 0Dpa 1) Dipa 1, dO dy (5.59)
B, Jo

By

< [ Hp(Dwy) dy + c(p, M) / . (|IDwp|? + N 72| Dwp, [P + | Do 1 |* 4+ A2 | Do |P) dy.
Bt Bt Bs

In order to estimate the first addend of the right-hand side of the previous inequality we recall
that

p
2

~ ~ L
Hh(th) dy S Hh(th(y) — le,h) dy + 2/ \ (1 + ‘Ah + )\hDUh‘z) dy
Bi\Ey,

2
B B )\h
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D
2

~ L
- / Hy, (Do) dy + A;/ (14 |Ap 4+ ApDup|?) 2 dy. (5.60)
Bt\Bs h Bt\Eh

We remark that the reverse Holder inequality stated in Theorem 4.1, through the change of
variable x = xp + rpy, can be rescaled in the following way:

1
1496
( | A + Ap Doy [P+ dy) <c(n,p, l1, L1, L) [7[ |Ap + ApDop|P dy + 1] :
B, B

2t

By Hélder’s inequality and inserting the previous inequality in the estimate (5.60), we get

Hy(Dwy) dy
By

~ L 1+6 8
<[ Dvandy + ) ( [+ 1A+ aDu ) dy) B\ By it
B\ Bs /\h Bi\E}

~ Ly n_ (146) li‘; o
< / Hyp (Do) dy + c(p) 5t 73 7[ (1 + [Ap + A Doy [PUH) dy |B1\ Ep| T3
Bi\B, Ah B

n_
t1+3
2

~ )
S/ Hy, (Do) dy + c¢(n,p, €1, L1, Ly) —5 (1 +7[ \Ah+>\hDvh\pdy> |B1\ Ey| T3
Bt\BS Ah BQt

5

_ c(n,p. 1, Ly, Ly, M) | B, \ E,|T55

S/ Hy (Do) dy + (n.p: & n51 2 M)| 1\/\2h| ;
Bt\BS pm h

where we used the fact that ¢t > £. Hence, inserting the previous estimate in (5.59), we obtain

)
0 = 7 c(n,p, 01, L1, Lo, M) | By \ Ep|TH
Bs Bt\BS p1+6 h

+c(p, M) / (|Dwp| + [ Db p| + N2 | D, [P~1 4+ NP2 Dapy 1, [P~1) | Do | dly.

t\Bs

Thanks to the Lemma 2.3, Young’s inequality and the properties of 1, we get

~ —2
U] (14 \Dwp|?) [Dwy| dy
Bs

)
— 1 |By\ Ep|1+s
< C(mp,ﬁhLl?L%M)[/ [[ Do n|? + No2| Dapy P] dy + —5 B \)\gh‘
Bt\Bs pm h,

4 / [1Dwnl + X2 Duy 7] dy}
Bt\Bs

2 2 252 2
< e¢(n,p, b1, Ly, Lo, M) (1+ X |Dwp|?) % |Dwp|* dy
B

t\Bs
5
lwp|? —2 Jwp/? L |By\ Ey|T
+/ < + A7 dy + —;
B, \(t—s)2 " (t—s)pP TS A2
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By using the hole filling technique as in the proof of the previous theorem, we get

—2
/ (1 + |Athh\2)%]th\2 dy

<

5
B2 |wp | —2 |wpl? L B\ Ep|™
_ 1+ | M\ Dwp|?) 2 thQdy—i-/ ( + AT ) dy + —
c+/ /Bt (1+] 5 | B, \(t —s)? h (t—s)P pl—fé A2

By virtue of the iteration Lemma 2.2, previous estimate gives

)

p=2 wp|? _o |wp [P 1 |B1\ Ey|T+e
/ (1+ |ADwy|?) 7 |Dwnl?dy < ¢ / (' ’;' + AP 2] ’;' )dy+ LB} 2h|
By B, \ P p pTie A

)

where ¢ = ¢(n, p, 01,02, L1, Lo, M). Therefore, by the definition of wy, we have

/ (1+ A=%Dy, — (Dun)g[P=2)| Dup, — (Dug) g [* dy
B

L
2

I

lvn, = (vn)p — (Dup) ey |vn — (vn)p — (Dvp) e y|P 1 |By\ E,|T5
<c / p2 2 +A§’L—2 P 2 dy + [B1\ Bl
B, p pr

which, by the relative isoperimetric inequality and since |By \ Ey| = min{|E}|, | By \ Ep|}, gives
the estimate (5.58).

The proofs of Step 3 and Step 4 of Proposition 5.1 hold true also in this case.
Step 5. Conclusion.

The change of variable z = z, + r,y, the Caccioppoli inequality in (5.58) and (5.46), for
every 0 < 7 < %, give

) Ues(Zp,T18R) . 1
fim sup T = linsup 27{9 (wn) UDU - (D“):vh,Trh‘Q + [Du — (Du)ay, 1, |p] dx
TTh Th

h—o00 h— o0 h
5
. 1 (P(B,Bryy(an)\ ™ 1)
+ limsup — ( ( — 1”;;1& ) + lim sup )\Qh
h—00 h T Ty h— o0 h

[
- 1 (P(E,,B;)\ 1+
< lim sup][ [|Dvh — (Duy), > + A 2|Dvh — (Dvh)T]p] dy + lim sup 2 ((’“)> + 78

h—00 h—oo A} 7=l

_ - D - 2 B o .- D N p
gc[nmm [ (et Ol b ke~ (Dl
B2‘r

h—o00 T TP
52 = T\ 118
, P(E,, B) G D@ 1 g 5 pI p\IF
+ lim sup (En, B1) T R S v h h 4+ 8
)\2 nd )\2 AQ (n—1)¢
h—o00 h TI1+5 h h o o7oITe
2 p
i Uh — (Vn)2r — (D —2|vp — (vn)2r — (Dup,
< cfimsup § (L= onlee Z Dot | ypealon = (e~ (Dl
h—o0o JBar T T
i = 5\ 15
P(Ep, B;)»=ba+9) 1 A S I
i h s h h B
—1—hmsup< A2 T T e s | T
h—o0 h TI+6 h h 7 176
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where ¢ = ¢(n,p, 01,02, L1, La, A, 0, M). Proceeding exactly as in Step 5 of the previous Propo-
sition, by virtue of the the strong convergence of v, — v in L%(By), since (Dvy); — (Dv), in
R™N by (5.29), (5.47), (5.53), (5.54), (5.55) (5.56), (5.57) and by the use of Poincaré-Wirtinger

inequality, we get

U**(.%'h, TTh)

lim sup < CrP,

2
h—o0 )‘h

where C = C(n,p, 1,02, L1, La, A, §, M). The contradiction follows by choosing C\, such that
Cix > C, since by (5.51)

lim inf Use(@n, Trn) (n, 77h)
h—o0 A}QI

> C**Tﬁ.

6 Proof of the Main Theorem

Here we give the proof of Theorem 1.2 through a suitable iteration procedure. It is easy to get
the following lemmata, arguing exactly in the same way as in [11, Lemma 6.1].

Lemma 6.1. Let (u, E) be a minimizer of the functional Z. For every M > 0, a € (0,1) and
1

9 € (0,9), with Jp := minq ¢, '™, }1}, there exist 0 < g1 < (1 — 19%)219”_1 and R > 0 such

that, if r < R and xg € ) satisfy

B(z0) €Q, |Du|gyr <M and Ui(zg,r) <er,
where ¢4 1s the constant introduced in Proposition 5.1, then
U (0, 9%r) < 90U, (x0,7), Vke€N.
Lemma 6.2. Let (u, E) be a minimizer of the functional Z and let 3 be the exponent of Lemma
5.2. For every M > 0 and 9 € (0,9p), with Jp < min {c**, i}, there exist €1 > 0 and R > 0
such that, if 1 < R and xqg € ) satisfy
B, (z0) € Q, | Dty r < M and Uss(z0,7) < €1,

where cyy 15 the constant introduced in Proposition 5.2, then

U (20, 9%7) < 0" U,i(z0,7), VE €N.
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6.1 Proof of Theorem 1.2
Proof. We consider the set

Qg = {x € Q: limsup |(Du)s ,| < 0o and limsup Uy (z, p) = 0}
p—0 p—0

and let x¢g € Qy. For every M > 0 and for €; determined in Lemma 6.1 there exists a radius
Ry, > 0 such that

|Du|yyr < M and Us(zo,r) < €1,
for every 0 < 7 < Ry, If 0 < p < 9Jr < R, let h € N be such that I Flr < p < 97, where
Y= % and g is the same constant appearing in Lemma 6.1. By Lemma 6.1, we obtain

U*(x()v p) < C(p)j[ [|Du - (Du)ﬂh'r’Q + ‘Du - (Du)ﬁhr|p] dx

By

+ D)D)y = (D + (D), — (D) + T2 =
< c(m]{} [1Du — (Du)gn, P + | Du — (Dupgny ] da + T EBel)) )

P

LA P(E, Byn,(x
< lp) < Ip > 7{3 “Du (Du)gh,|* + [ Du — (D“)MTM dz <(19h+1ﬂrh)n(—10>) O
ohy
C(P) 2 1 ( 7 ﬁhr(fﬁo)) N
<= Du— (D +|Du— (D P P(E,B
= “gn 7[319hr [[Du — (Du)gn,|* + |Du — (Du)gn,|P] dz + T ()] + 9hy
= c(n, p) 2 2n=1 P(E, By, (x0)) h
1987{31% [[Du — (Du)gn,|* + |[Du — (Du) g, |P] da + T S S + Ol

< ¢(n, p, %) Us(w0,9"r) < c(n, p,90) e Us(0,7) < c(n, p, Do) cx (B)a Us(zo, 1),
T
where we used Jensen’s inequality. The previous estimate implies that
U(m07 p) < C* <§>a U*(an T)v

where C, = Ci(n,p,0p,cs). Since U, (y,r) is continuous in y, we have that U (y,r) < €1 for all
y in a suitable neighborhood I of xg. Therefore, for every y € I we have that

Uy, p) < C (é)aU*(y,T).

The last inequality implies, by the Campanato characterization of Holder continuous functions
(see [32, Theorem 2.9]), that u is C'* in I for every 0 < o < 3, and we can conclude that the
set g is open and the function u has Holder continuous derivatives in .

When the assumption (H) is not enforced, the proof goes exactly in the same way provided
we use Lemma 6.2 in place of Lemma 6.1, with

Q= {w € Q: limsup |(Du)g,,p| < oo and limsup U, (o, p) = 0}.
p—0 p—0
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