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Abstract

We establish regularity results for equilibrium configurations of vectorial multidimensional
variational problems, involving bulk and surface energies. The bulk energy densities are
uniformly strictly quasiconvex functions with p-growth, p ≥ 2, without any further structure
conditions. The anisotropic surface energy is defined by means of an elliptic integrand Φ not
necessarily regular. For a minimal configuration (u,E), we prove partial Hölder continuity
of the gradient ∇u of the deformation.
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1 Introduction and statements

In this paper we study multidimensional vectorial variational problems involving bulk and surface
energies, mainly related to problems issuing from material science and computer vision. Namely,
we deal with regularity properties of solutions to such problems. The model problem∫

Ω
σE(x)|∇u|2 dx+ P (E,Ω), (1.1)

where σE(x) := a1E + b1Ω\E , 0 < a < b, with E ⊂ Ω ⊂ Rn, and P (E,Ω) stands for the
perimeter of the set E in Ω, dates back to the works of L. Ambrosio & G. Buttazzo and F.H.
Lin. In [4, 35], the authors proved the existence and regularity for minimal configurations (u,E)
of (1.1) in the scalar case. Furthermore, in [36] F.H. Lin & R.V. Kohn treated more general
Dirichlet energies as the following

F(u,E) :=

∫
Ω
(F (x, u,∇u) + 1EG(x, u,∇u)) dx+ P (E,Ω) , (1.2)

with the constraints
u = Ψ on ∂Ω and |E| = d,

Ψ ∈ H1(Ω), 0 < d < |Ω|. They considered F and G convex functions growing quadratically on
the gradient, and satisfying restrictive structure assumptions.
In the cited papers, it is proved C0,α regularity for minimizers u in Ω and some estimates on the
singular set of ∂E are given. More precisely, defined the set of regular points of ∂E as follows

Reg(E) :=
{
x ∈ ∂E ∩ Ω : ∂E is a C1,γ hypersurface in Bε(x) for some ε > 0 and γ ∈ (0, 1)

}
,
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where Bε(x) denotes the ball of center x and radius ε, and, accordingly, the set of singular points
of ∂E

Σ(E) := (∂E ∩ Ω) \ Reg(E),

then Hn−1(Σ(E)) = 0, whereas (u,E) minimizes the functional (1.2).
More recently, G. De Philippis & A. Figalli in [17] and N. Fusco & V. Julin in [27], improved
this result showing that minimal configurations of Dirichlet type functional (1.1) satisfy,

dimH(Σ(E)) ≤ n− 1− ε,

for some ε > 0 depending only on a, b. The same kind of estimate for the singular set Σ(E) has
been proved in [23, 24] for the more general Dirichlet functional (1.2).

The case of general functionals with p-growth on the gradient is still not completely un-
derstood especially regarding the regularity of the free interface ∂E and the dimension of the
singular set Σ(E). A first step in this direction has been done in [10] where the authors deal
with constrained convex scalar problems, without structure assumptions on the bulk energies.
They prove C0,α regularity for minimizers u, but they do not give estimates for the singular
set, which is an issue still unsolved, under the assumption of p-growth (see also contributions
due to [21] and [34]). Nevertheless, as originally stressed in [22], for minimizers of Dirichlet
functional (1.1), the exponent α, relative to the C0,α regularity of minimizers u, can be affected
by a closeness assumption on the coefficients a, b of σE(x) appearing in (1.1). More precisely,

in [22] it has been proved that the hypothesis 1 ≤ a
b < γn ensures that u ∈ C0, 1

2
+ε, for some

ε > 0. Exploiting this information, the regularity of the boundary ∂E can be easily achieved by
managing the bulk term as a perturbative term, since, by virtue of C0, 1

2
+ε regularity, the bulk

term is asymptotically smaller than the perimeter term. Therefore, it can be invoked a well
known regularity result for almost minimal perimeter minimizers due to Tamanini (see [40]),
thus proving the regularity of the free boundary ∂E.

Differently from the scalar case, in the vectorial setting only a few regularity results for
minimizers of integral functionals involving both bulk and interfacial energies are available in
literature. According to our knowledge, the only papers dealing with the vectorial case are [6]
and [11]. In [6] the regularity for vector valued free interface variational problems is treated
within the context of k-th order homogeneous partial differential operators A (for a detailed
study of A-quasiconvexification see [28, 29]). In [11] the authors study minimal configurations
of energy of the type

F(v,A) :=

∫
Ω
(F (Dv) + 1AG(Dv)) dx+ P (A,Ω), (1.3)

where u ∈ W 1,p
loc (Ω;R

N ) and F,G : Rn×N → R are C2 integrands, satisfying, for p > 1 and for
positive constants ℓ1, ℓ2, L1, L2 > 0, the following growth and uniformly strict p-quasiconvexity
conditions,

0 ≤ F (ξ) ≤ L1(1 + |ξ|2)
p
2 , (F1)

∫
Ω
F (ξ +Dφ) dx ≥

∫
Ω

(
F (ξ) + ℓ1|Dφ|2(1 + |Dφ|2)

p−2
2

)
dx, (F2)

0 ≤ G(ξ) ≤ L2(1 + |ξ|2)
p
2 , (G1)
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∫
Ω
G(ξ +Dφ) dx ≥

∫
Ω

(
G(ξ) + ℓ2|Dφ|2(1 + |Dφ|2)

p−2
2

)
dx, (G2)

for every ξ ∈ Rn×N and φ ∈ C1
0 (Ω;RN ).

Under these assumptions, the authors proved the existence of local minimizers for the func-
tional (1.3), for any p > 1. Furthermore, they proved a partial C1,α regularity result for minimal
configurations in the quadratic case p = 2.

In this paper, we generalize the results given in [11] under two viewpoints. First we treat the
more general case of p-growth with p ≥ 2. Moreover, we deal with anisotropic surface energies.

In the rest of the paper we focus our attention on integral functionals defined as follows,

I(v,A) :=
∫
Ω
(F (Dv) + 1AG(Dv)) dx+

∫
Ω∩∂∗A

Φ(x, νA(x)) dHn−1(x) , (1.4)

where A ⊂ Ω is a set of finite perimeter, u ∈ W 1,p
loc (Ω;R

N ), 1A is the characteristic function of
the set A. Here ∂∗A denotes the reduced boundary of A in Ω and νA is the measure-theoretic
outer unit normal to A, see Section 2.1.

We assume that Φ is an elliptic integrand on Ω (see Definition 2.6), i.e. Φ : Ω×Rn → [0,∞]
is lower semicontinuous, Φ(x, ·) is convex and positively one-omogeneous, Φ(x, tν) = tΦ(x, ν) for
every t ≥ 0. Accordingly, we define the following anisotropic surface energy of a set A of finite
perimeter in Ω:

Φ(A;G) :=

∫
G∩∂∗A

Φ(x, νA(x)) dHn−1(x), (1.5)

for every Borel set G ⊂ Ω. The assumption

1

Λ
≤ Φ(x, ν) ≤ Λ, (1.6)

with Λ > 1, allows us to compare the surface energy introduced in (1.5) with the usual perimeter.
Anisotropic surface energies arise in many physical areas such as the formation of crystals (see
[7, 8]), liquid drops (see [16, 26]), capillary surfaces (see [18, 19]). F.J. Almgren was the first to
study the regularity of surfaces that minimize anisotropic variational problems in his celebrated
paper [3].

In the early stages the studies in this area had been done in the setting of varifolds and
currents. These results can be applied to surfaces of arbitrary codimension, but with rather
strong regularity assumptions on the integrands of the anisotropic energies, see [9, 39].

More recently, the regularity assumptions on the integrands Φ of the anisotropic energies
have been weakened, see [20, 25], assuming that Φ(x, ·) is of class C1 and Φ(·, ξ) is Hölder
continuous.

In the vectorial setting debated in this paper, where the bulk energy is of general type
with p-growth, the regularity that we can expect for the gradient of the minimal deformation
u : Ω → RN , (N > 1), even in absence of a surface term, is a partial regularity result, that is
outside a negligible set. As we observed above, the regularity of the free interface ∂E can be
achieved by means of the regularity of u. On the other hand, knowing that the singular set S
of the gradient ∇u has Lebesgue measure zero does not give informations on the singular set Σ
of the free boundary that could also be totally contained in S.

We say that a pair (u,E) is a local minimizer of I in Ω, if for every open set U ⋐ Ω and
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every pair (v,A), where v− u ∈W 1,p
0 (U ;RN ) and A is a set of finite perimeter with A∆E ⋐ U ,

we have∫
U
(F (∇u) + 1EG(∇u)) dx+Φ(E;U) ≤

∫
U
(F (∇v) + 1AG(∇v)) dx+Φ(A;U).

Existence and regularity of local minimizers of integral functionals of the type∫
Ω
F (Du) dx,

with uniformly strict p-quasiconvex integrand F , and also in the non autonomous case, have
been widely investigated (we refer to [1, 2, 12, 13, 14, 15, 31, 38] and for an exhaustive treatment
to [30, 32]).

In order to prove the existence of local minimizers for functionals involving both bulk and
surface energies of general type (1.4), we invoke a result stated in [11]. The only difference in
our setting is the presence of the anisotropic term Φ(A;U), and we give a semicontinuity result
for the anisotropic energy (1.5), thus ensuring the existence got in Section 3. Therefore, we
deduce the following theorem.

Theorem 1.1. Let p > 1 and assume that (F1), (F2), (G1), (G2) hold. Then, if v ∈
W 1,p

loc (Ω;R
N ) and A ⊂ Ω is a set of finite perimeter in Ω, for every sequence {(vk, Ak)}k∈N

such that vk weakly converges to v in W 1,p
loc (Ω;R

N ) and 1Ak
strongly converges to 1A in L1

loc(Ω),
we have

I(v,A) ≤ lim inf
k→∞

I(vk, Ak).

In particular, I admits a minimal configuration (u,1E) ∈W 1,p
loc (Ω;R

N )×BVloc(Ω; [0, 1]).

Afterwards, we get C1,β partial regularity for minimizers u guaranteed by Theorem 1.1, in
the case of general interfacial energies given in (1.5) just assuming the comparability hypothesis
(1.6). Moreover, if a closeness condition on F and G is assumed, i.e. the condition (H) is in
order, then we can prove a sharp regularity for u, that is u ∈ C1,γ(Ω1) for every γ ∈ (0, 1

p′ ) for a
full measure set Ω1 ⊂ Ω. It is worth pointing out that we do not need any regularity assumption
on the integrand Φ to prove the regularity of u.

Theorem 1.2. Let (u,E) be a local minimizer of I. Let the bulk density energies satisfy (F1),
(F2), (G1), (G2), and let the surface energy be of general type (1.5) with Φ satisfying (1.6).
Then there exist an exponent β ∈ (0, 1) and an open set Ω0 ⊂ Ω with full measure such that
u ∈ C1,β(Ω0;RN ). In addition, if we assume

L2

ℓ1 + ℓ2
< 1, (H)

then there exists an open set Ω1 ⊂ Ω with full measure such that u ∈ C1,γ(Ω1;RN ) for every
γ ∈ (0, 1

p′ ).

The proof of the previous result is based on a comparison argument with solutions of a
suitable linearized system. We establish decay estimates for the “hybrid” excess functions U∗
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and U∗∗ (see (5.2) and (5.48)). We look at the points in which the excess is small and we
use, as usual for this kind of analysis, a blow-up argument reducing the problem to the study
of convergence of the minimal configurations (uh, Eh) of rescaled functionals in the unit ball.
We need two Caccioppoli type inequalities for minimizers of perturbed rescaled functionals (see
(5.17) and (5.58)) involving also the perimeter of the rescaled minimal set Eh.

2 Notation and Preliminary Results

Let Ω be a bounded open set in Rn, n ≥ 2. We deal with vectorial functions u : Ω → RN ,
N > 1. The open ball centered at x ∈ Rn of radius r > 0 is defined as

Br(x) := {y ∈ Rn : |y − x| < r} .

We denote by Sn−1 the unit sphere of Rn and by c a generic constant that may vary in the
same formula and between formulae. Relevant dependencies on parameters and special con-
stants will be suitably emphasized using parentheses or subscripts. For Br(x0) ⊂ Rn and
u ∈ L1(Br(x0);RN ) we denote

(u)x0,r :=

∫
Br(x0)

u(x) dx.

We omit the dependence on the center when it is clear from the context.

⟨ξ, η⟩ := trace(ξT η),

for the usual inner product of ξ and η, and accordingly |ξ| := ⟨ξ, ξ⟩
1
2 .

If F : Rn×N → R is sufficiently differentiable, we write

DF (ξ)η :=
N∑
α=1

n∑
i=1

∂F

∂ξαi
(ξ)ηαi and D2F (ξ)ηη :=

N∑
α,β=1

n∑
i,j=1

∂F

∂ξαi ∂ξ
β
j

(ξ)ηαi η
β
j ,

for ξ, η ∈ Rn×N .
It is well–known that for quasiconvex C1 integrands the assumptions (F1) and (G1) yield

the upper bounds

|DξF (ξ)| ≤ c1L1(1 + |ξ|2)
p−1
2 and |DξG(ξ)| ≤ c2L2(1 + |ξ|2)

p−1
2 (2.1)

for all ξ ∈ Rn×N , with c1 and c2 constants depending only on p (see [32, Lemma 5.2] or [38]).
Furthermore, if F and G are C2, then (F2) and (G2) imply the following strong Legendre-
Hadamard conditions

N∑
α,β=1

n∑
i,j=1

∂F

∂ξαi ∂ξ
β
j

(Q)λiλjµ
αµβ ≥ c3|λ|2|µ|2 and

N∑
α,β=1

n∑
i,j=1

∂G

∂ξαi ∂ξ
β
j

(Q)λiλjµ
αµβ ≥ c4|λ|2|µ|2,

for all Q ∈ Rn×N , λ ∈ Rn, µ ∈ RN , where c3 = c3(p, ℓ1) and c4 = c4(p, ℓ2) are positive constants
(see [32, Proposition 5.2]). We will need the following regularity result (see [30, 32]).
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Proposition 2.1. Let v ∈W 1,2(Ω;RN ) be such that∫
Ω
QijαβDiv

αDjφ
β dx = 0,

for every φ ∈ C∞
c (Ω;RN ), where Q = {Qijαβ} is a constant matrix satisfying |Qijαβ| ≤ L and the

strong Legendre-Hadamard condition

Qijαβλiλjµ
αµβ ≥ ℓ|λ|2|µ|2,

for all λ ∈ Rn, µ ∈ RN and for some positive constants ℓ, L > 0. Then v ∈ C∞ and, for any
BR(x0) ⊂ Ω, the following estimate holds∫

BR
2
(x0)

|Dv − (Dv)x0,R2
|2 dx ≤ cR2

∫
BR(x0)

|Dv − (Dv)x0,R|2 dx,

where c = c(n,N, ℓ, L) > 0 .

The next iteration lemma has important applications in the regularity theory (for its proof
we refer to [32, Lemma 6.1]).

Lemma 2.2. Let 0 < ρ < R and let ψ : [ρ,R] → R be a bounded nonnegative function. Assume
that for all ρ ≤ s < t ≤ R we have

ψ(s) ≤ ϑψ(t) +A+
B

(s− t)α
+

C

(s− t)β

where ϑ ∈ [0, 1), α > β > 0 and A,B,C ≥ 0 are constants. Then there exists a constant
c = c(ϑ, α) > 0 such that

ψ
(
ρ
)
≤ c

(
A+

B

(R− ρ)α
+

C

(R− ρ)β

)
.

Given a C1 function f : Rn×N → R, Q ∈ Rn×N and λ > 0, we set

fQ,λ(ξ) :=
f(Q+ λξ)− f(Q)−Df(Q)λξ

λ2
, ∀ξ ∈ Rn×N .

We state the following lemma about the growth of fQ,λ and DfQ,λ, whose proof can be found
in [2, Lemma II.3].

Lemma 2.3. Let p ≥ 2, and let f be a C2(Rn×N ) function such that

|f(ξ)| ≤ C
(
1 + |ξ|p) and |Dξf(ξ)| ≤ C

(
1 + |ξ|p−1

)
,

for any ξ ∈ Rn×N . Then for every M > 0 there exists a constant c = c(M) > 0 such that, for
every Q ∈ Rn×N , |Q| ≤M and λ > 0, it holds that

|fQ,λ(ξ)| ≤ c(|ξ|2 + λp−2|ξ|p) and |DfQ,λ(ξ)| ≤ c(|ξ|+ λp−2|ξ|p−1), (2.2)

for all ξ ∈ Rn×N .
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2.1 Sets of finite perimeter

If E ⊂ Rn and t ∈ [0, 1], the set of points of E of density t is defined as

E(t) =
{
x ∈ Rn : |E ∩Br(x)| = t|Br(x)|+ o(rn) as r → 0+

}
.

Given a Lebesgue measurable set E ⊂ Rn and an open set U ⊂ Rn, we say that E is of locally
finite perimeter in U if there exists a Rn-valued Radon measure µE (called the Gauss-Green
measure of E) on U such that∫

E
∇ϕ dx =

∫
U
ϕdµE , ∀ϕ ∈ C1

c (U).

Moreover, we denote the perimeter of E relative to G ⊂ U by P (E,G) = |µE |(G).
The support of µE can be characterized by

sptµE =
{
x ∈ U : 0 < |E ∩Br(x)| < ωnr

n, ∀r > 0
}
, (2.3)

(see [37, Proposition 12.19]). It holds that sptµE ⊂ U ∩ ∂E. The essential boundary of E is
defined as ∂eE := Rn \ (E0 ∪E1). If E is of finite perimeter in an open set U , then the reduced
boundary ∂∗E ⊂ U of E is the set of those x ∈ U such that

νE(x) := lim
r→0+

µE(Br(x))

|µE |(Br(x))
(2.4)

exists and belongs to Sn−1. It is well known that

∂∗E ⊂ U ∩ ∂eE ⊂ sptµE ⊂ U ∩ ∂E, U ∩ ∂∗E = sptµE .

Federer’s criterion, see for instance [37, Theorem 16.2], ensures that

Hn−1((U ∩ ∂eE) \ ∂∗E) = 0.

Remark 2.4 (Minimal topological boundary). If E ⊂ Rn is a set of locally finite perimeter
in U and F ⊂ Rn is such that |(E∆F ) ∩ U | = 0, then F is a set of locally finite perimeter in
U with µE = µF . In the rest of the paper, the topological boundary ∂E must be understood by
considering the correct representative of E. We will choose E(1) as representative of E. With
such a choice it can be easily verified that

U ∩ ∂E =
{
x ∈ U : 0 < |E ∩Br(x)| < ωnr

n,∀r > 0
}
.

Therefore, by (2.3),
∂∗E = sptµE = ∂E ∩ U.

Finally by De Giorgi’s rectifiability theorem (see [37, Theorem 15.5]) we get

µE = νEHn−1⌞∂∗E, (2.5)

on Borel sets compactly contained in U where, given a Radon measure µ and a Borel set G, by
µ⌞G we refer to the measure given by µ⌞G(F ) = µ(G ∩ F ).

It is well known that if E and F are of locally finite perimeter in U then E ∩ F , E ∪ F and
E\F are sets of locally finite perimeter in U . In this paper we use competitors obtained using set
operations to test minimality inequalities. In fact, we just need properties involving the union
of sets. A convenient way to handle these inequalities is to use the properties of Gauss–Green
measures. The following result can be found in [37, Theorem 16.3].

7



Proposition 2.5 (Gauss-Green measure and set operations). If E and F are sets of finite
perimeter it results that νE(x) = ±νF (x) for Hn−1-a.e. x ∈ ∂∗E ∩ ∂∗F . Setting

{νE = νF } = {x ∈ ∂∗E ∩ ∂∗F | νE(x) = νF (x)},

then
µE∪F = µE⌞F

(0) + µF ⌞E
(0) + νEHn−1⌞{νE = νF } . (2.6)

2.2 Anisotropic surface energy

Definition 2.6 (Elliptic integrands). Given an open set Ω in Rn, Φ : Ω × Rn → [0,∞] is
an elliptic integrand on Ω if it is lower semicontinuous, with Φ(x, ·) convex and positively one-
homogeneous for any x ∈ Ω, i.e. Φ(x, tν) = tΦ(x, ν) for every t ≥ 0. Accordingly, the anisotropic
surface energy of a set E of finite perimeter in Ω is defined as

Φ(E;G) :=

∫
G∩∂∗E

Φ(x, νE(x)) dHn−1(x), (2.7)

for every Borel set G ⊂ Ω.

Remark 2.7 (Comparability to perimeter). In order to prove the regularity of minimizers of
anisotropic surface energies, it is well known that (see the seminal paper [3]) a Ck-dependence of
the integrand Φ on the variable ν, and a continuity condition with respect to the variable x, must
be assumed. In fact, one more condition is essential, that is a non-degeneracy type condition for
the integrand Φ. More precisely, we have to assume that there exists a constant K > 1 such that

1

K
≤ Φ(x, ν) ≤ K, (2.8)

for any x ∈ Ω and ν ∈ Sn−1. We do not need any further hypotheses on the elliptic integrands.
We observe that, if the elliptic integrand Φ satisfies condition (2.8), then the anisotropic surface
energy (2.7) satisfies the following comparability condition

1

Λ
Hn−1(G ∩ ∂∗E) ≤ Φ(E;G) ≤ ΛHn−1(G ∩ ∂∗E),

for any set E of finite perimeter in Ω and any Borel set G ⊂ Ω.

Proposition 2.8. Let U ⊂ Rn be an open set and let E,F ⊂ U be two sets of finite perimeter
in U . It holds that

Φ(E ∪ F ;U) = Φ(E;F (0)) +Φ(F ;E(0)) +Φ(E; {νE = νF }).

Proof. Let us observe that, since ∂∗E ∩ F (0) ⊂ E( 1
2
) ∩ F (0) and ∂∗F ∩ E(0) ⊂ F ( 1

2
) ∩ E(0), we

deduce that (∂∗E ∩ F (0)) ∩ (∂∗F ∩ E(0)) = ∅. Similarly we have (∂∗E ∩ F (0)) ∩ {νE = νF } = ∅
and (∂∗F ∩ E(0)) ∩ {νE = νF }) = ∅. Thus, by [37, Theorem 16.3], it holds that

Φ(E ∪ F ;U) =

∫
U∩∂∗(E∪F )

Φ(x, νE∪F (x)) dHn−1(x)

=

∫
F (0)∩∂∗E

Φ(x, νE∪F (x)) dHn−1(x) +

∫
E(0)∩∂∗F

Φ(x, νE∪F (x)) dHn−1(x)
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+

∫
{νE=νF }

Φ(x, νE∪F (x)) dHn−1(x).

By using (2.6), we deduce νE∪F = νE Hn−1−a.e. on F (0) ∩ ∂∗E and νE∪F = νF Hn−1−a.e. on
E(0) ∩ ∂∗F , thus we reach the thesis.

3 Lower Semicontinuity

In this section we prove Theorem 1.1. We base ourselves on the proof given in [11], focusing our
attention on the only difference we have, the presence of the anisotropic surface energy. We get
a semicontinuity result for the anisotropic perimeter, essential to handle this novelty.

Given a one-homogeneous Borel function Φ : Ω × Rn → [0,∞] as in Definition 2.6, for any
Rn-valued Radon measure µ on Rn and any Borel set F ⊂ Rn, we define the Φ-anisotropic total
variation of µ on F as

Φ(µ, F ) =

∫
F
Φ
(
x,

µ

|µ|
(x)
)
d|µ|(x),

where µ
|µ| denotes the Radon-Nikodym derivative of µ with respect to its total variation. We

also refer to the following theorem (see [5, Theorem 2.38]).

Theorem 3.1 (Reshetnyak’s lower semicontinuity Theorem). Let Ω be an open subset of Rn

and µ, µh be two finite Rn-valued Radon measures on Ω. If µh
∗
⇀ µ in Ω then∫

Ω
Φ
(
x,

µ

|µ|
(x)
)
|µ|(x) ≤ lim inf

h→∞

∫
Ω
Φ
(
x,

µh
|µh|

(x)
)
d|µh|(x),

for every lower semicontinuous function Φ : Ω × Rn → [0,∞], positively 1-homogeneous and
convex in the second variable.

We are now able to prove the following result.

Proposition 3.2. Let Φ be an elliptic integrand as in Definition 2.6 and let Φ be defined as in
(2.7). Then

Φ(E;U) ≤ lim inf
h→∞

Φ(Eh;U),

whenever U ⊂ Rn is open, {Eh}h∈N and E are sets of locally finite perimeter such that 1Eh
→ 1E

in L1
loc(U) and µEh

∗
⇀ µE.

Proof. We recall that if E is a set of locally finite perimeter, then, by (2.5), |µE | = Hn−1⌞∂∗E
and, by the definition of reduced boundary (2.4), µE/|µE | = νE on ∂∗E. Therefore, the Φ-
anisotropic total variation of µE is equal to the Φ-surface energy of E, that is

Φ(µE ;F ) = Φ(E;F ).

Thus, the claim follows by virtue of Reshetnyak’s lower semicontinuity Theorem.
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Proof of Theorem 1.1. We omit the proof as it can be obtained following verbatim the arguments
used in [11, Section 3]. The only difference with the proof given in [11] concerns the presence
of the anisotropic perimeter. In this regard we can use the lower semicontinuity result given
above. We mention that the convergence 1Eh

→ 1E in L1
loc(U) assumed in Theorem 1.1 and the

condition lim supk→∞ P (Eh,K) <∞ for every K compact set in Ω ensure that µEh

∗
⇀ µE .

4 Higher integrability result

This section is devoted to the proof of a higher integrability result for the gradient of the function
u of the minimal configuration (u,E).

Theorem 4.1. Assume that (F1), (F2), (G1), (G2) hold and let (u,E) be a local minimizer of
I. Then there exists δ = δ(n, p, ℓ1, L1, L2) > 0 such that for every B2r(x0) ⋐ Ω it holds(∫

Br(x0)
|Du|p(1+δ) dx

) 1
1+δ

≤ C

[∫
B2r(x0)

|Du|p dx+ 1

]
,

where C = C(n, p, ℓ1, L1, L2) is a positive constant.

Proof. We consider 0 < r < s < t < 2r and let η ∈ C∞
0 (Bt) be a cut-off function between Bs

and Bt, i.e. 0 ≤ η ≤ 1, η ≡ 1 in Bs and |∇η| ≤ c
t−s .

Setting

ψ1 := η(u− (u)x0,2r) and ψ2 := (1− η)(u− (u)x0,2r),

by the uniformly strict quasiconvexity of F in (F2), we have

ℓ1

∫
Bt

|Dψ1(x)|p dx ≤
∫
Bt

F (Dψ1) dx =

∫
Bt

F (Du−Dψ2) dx. (4.1)

We write∫
Bt

F (Du−Dψ2) dx =

∫
Bt

F (Du) dx+

∫
Bt

F (Du−Dψ2) dx−
∫
Bt

F (Du) dx

=

∫
Bt

F (Du) dx−
∫
Bt

∫ 1

0
DF (Du− θDψ2)Dψ2 dθ dx

≤
∫
Bt

[
F (Du) + 1EG(Du)

]
dx−

∫
Bt

∫ 1

0
DF (Du− θDψ2)Dψ2 dθ dx

≤
∫
Bt

[
F (Du−Dψ1) + 1EG(Du−Dψ1)

]
dx−

∫
Bt

∫ 1

0
DF (Du− θDψ2)Dψ2 dθ dx, (4.2)

where we used the fact that G(ξ) ≥ 0 and the minimality of (u,E) with respect to (u− ψ1, E).
Combining (4.2) in (4.1) and using the upper bound on DF given by (2.1), we obtain

ℓ1

∫
Bs

|Du|p dx = ℓ1

∫
Bs

|Dψ1|p dx ≤
∫
Bt

F (Dψ2) dx+

∫
Bt

1EG
(
Dψ2

)
dx
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+ c(p, L1)

∫
Bt\Bs

(1 + |Du|2 + |Dψ2|2)
p−1
2 |Dψ2| dx

≤ c(p, L1, L2)

[ ∫
Bt\Bs

|Dψ2|p dy +
∫
Bt\Bs

|Du|p dx+ |Bt|
]

≤ c(p, L1, L2)

[ ∫
Bt\Bs

|Du|p dx + c

∫
Bt\Bs

|(u− (u)x0,2r)|p

(t− s)p
dx+ |Bt|

]
,

where we used assumptions (F1) and (G1), Young’s inequality and the properties of η. Adding
c(p, L1, L2)

∫
Bs

|Du|p dx to both sides of the previous estimate we get

(ℓ1 + c(p, L1, L2))

∫
Bs

|Du|p dx ≤ c(p, L1, L2)

[ ∫
Bt

|Du|p dx+

∫
Bt\Bs

|u− (u)x0,2r|p

(t− s)p
dx+ |Bt|

]
≤ c(p, L1, L2)

[ ∫
Bt

|Du|p dx+ c

∫
B2r

(
1 +

|u− (u)x0,2r|p

(t− s)p

)
dx

]
,

and, by Lemma 2.2, we deduce that∫
Br

|Du|p dx ≤ c(p, ℓ1, L1, L2)

∫
B2r

[
1 +

|u− u2r|
r

p]
dx.

The Sobolev-Poincaré inequality (see [32, p.102]) implies that

∫
Br

|Du|p dx ≤ c(n, p, ℓ1, L1, L2)

[(∫
B2r

|Du|
np
n+p dx

)n+p
n

+ 1

]
,

and the conclusion follows by virtue of Giaquinta-Modica Theorem (see [32, p.203]).

5 Decay Estimates

In this section we collect some energy estimates for minimizers of the functional (1.4) that will
be crucial in the proof of Theorem 1.2. In order to get them we will employ a well-known
blow-up technique involving a quantity called excess, which includes all the energy terms of the
functional. We have to use different type of excess depending on whether the assumption (H) is
in force or not. We consider the bulk excess function defined as

U(x0, r) :=

∫
Br(x0)

[
|Du(x)− (Du)x0,r|2 + |Du(x)− (Du)x0,r|p

]
dx, (5.1)

for Br(x0) ⊂ Ω. In the case that the assumption (H) is in force we will use the following “hybrid”
excess

U∗(x0, r) := U(x0, r) +
P (E,Br(x0))

rn−1
+ r. (5.2)
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Proposition 5.1. Let (u,E) be a local minimizer of the functional I introduced in (1.4), and
the assumptions (F1), (F2), (G1), (G2) and (H) hold. For every M > 0 and every 0 < τ < 1

4 ,
there exist ε0 = ε0(τ,M) > 0 and c∗ = c∗(n, p, ℓ1, ℓ2, L1, L2,Λ,M) > 0 such that, whenever
Br(x0) ⋐ Ω verifies

|(Du)x0,r| ≤M and U∗(x0, r) ≤ ε0 ,

then

U∗(x0, τr) ≤ c∗ τ U∗(x0, r) . (5.3)

Proof. In order to prove (5.3), we argue by contradiction. Let M > 0 and τ ∈ (0, 1/4) be such
that for every h ∈ N, C∗ > 0, there exists a ball Brh(xh) ⋐ Ω such that

|(Du)xh,rh | ≤M, U∗(xh, rh) → 0 (5.4)

and

U∗(xh, τrh) ≥ C∗τU∗(xh, rh). (5.5)

The constant C∗ will be determined later. Remark that we can confine ourselves to the case in
which E ∩Brh(xh) ̸= ∅, since the case in which Brh(xh) ⊂ Ω \ E is easier because U = U∗.

Step 1. Blow-up.

Set λ2h := U∗(xh, rh), Ah := (Du)xh,rh , ah := (u)xh,rh , and define

vh(y) :=
u(xh + rhy)− ah − rhAhy

λhrh
, ∀y ∈ B1.

One can easily check that (Dvh)0,1 = 0 and (vh)0,1 = 0.

Set

Eh :=
E − xh
rh

, E∗
h :=

E − xh
rh

∩B1.

Note that

λ2h = U∗(xh, rh) =

∫
B1

[
|Du(xh + rhy)−Ah|2 + |Du(xh + rhy)−Ah|p

]
dy +

P (E,Brh(xh))

rn−1
h

+ rh

=

∫
B1

|
[
λhDvh|2 + |λhDvh|p

]
dy + P (Eh, B1) + rh. (5.6)

It follows that rh → 0, P (Eh, B1) → 0, and

rh
λ2h

≤ 1,

∫
B1

[
|Dvh|2 + λp−2

h |Dvh|p
]
dy ≤ 1,

P (Eh, B1)

λ2h
≤ 1. (5.7)

Therefore, by (5.4) and (5.7), there exist a (not relabeled) subsequence of {vh}h∈N, A ∈ Rn×N
and v ∈W 1,2(B1;RN ), such that

vh ⇀ v weakly in W 1,2(B1;RN ), vh → v strongly in L2(B1;RN ), (5.8)

Ah → A, λhDvh → 0 in Lp(B1;Rn×N ) and pointwise a.e. in B1,

12



where we used the fact that (vh)0,1 = 0. Moreover, by (5.7) and (5.4), we also deduce that

lim
h→∞

(P (Eh, B1))
n

n−1

λ2h
= lim

h→∞
(P (Eh, B1))

1
n−1 lim sup

h→∞

P (Eh, B1)

λ2h
= 0. (5.9)

Therefore, by the relative isoperimetric inequality,

lim
h→∞

min

{
|E∗

h|
λ2h

,
|B1 \ Eh|

λ2h

}
≤ c(n) lim

h→∞

(P (Eh, B1))
n

n−1

λ2h
= 0. (5.10)

In the sequel the proof will proceed differently depending on whether

min{|E∗
h|, |B1 \ Eh|} = |E∗

h| or min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.

The first case is easier to handle. To understand the reason let us introduce the expansion of F
and G around Ah as follows:

Fh(ξ) :=
F (Ah + λhξ)− F (Ah)−DF (Ah)λhξ

λ2h
, (5.11)

Gh(ξ) :=
G(Ah + λhξ)−G(Ah)−DG(Ah)λhξ

λ2h
,

for any ξ ∈ Rn×N . In the first case the suitable rescaled functional to consider in the blow-up
procedure is the following

Ih(w) :=
∫
B1

[
Fh(Dw)dy + 1E∗

h
Gh(Dw)

]
dy . (5.12)

We claim that vh satisfies the minimality inequality

Ih(vh) ≤ Ih(vh + ψ) +
1

λh

∫
B1

1E∗
h
DG(Ah)Dψ(y) dy, (5.13)

for any ψ ∈W 1,p
0 (B1;RN ). Indeed, using the change of variable x = xh+ rhy, the minimality of

(u,E) with respect to (u+φ,E), for φ ∈W 1,p
0 (Brh(xh);RN ), setting ψ(y) :=

φ(xh+rhy)
rh

, it holds
that∫

B1

[
(Fh(Dvh(y)) + 1E∗

h
Gh(Dvh(y))

]
dy

≤
∫
B1

[
Fh(Dvh(y) +Dψ(y)) + 1E∗

h
Gh(Dvh(y) +Dψ(y))

]
dy +

1

λh

∫
B1

1E∗
h
DG(Ah)Dψ(y) dy,

and (5.13) follows by the definition of Ih in (5.12).
In the second case the suitable rescaled functional to consider in the blow-up procedure is

Hh(w) :=

∫
B1

[
Fh(Dw) +Gh(Dw)

]
dy.

Then we claim that

Hh(vh) ≤ Hh(vh + ψ) +
L2

λ2h

∫
(B1\Eh)∩suppψ

(µ2 + |Ah + λhDvh|2)
p
2 dy, (5.14)
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for all ψ ∈ W 1,p
0 (B1;RN ). Indeed, the minimality of (u,E) with respect to (u + φ,E), for

φ ∈W 1,p
0 (Brh(xh);RN ), implies that∫
Brh

(xh)
(F +G)(Du) dx =

∫
Brh

(xh)

[
F (Du) + 1EG(Du)

]
dx+

∫
Brh

(xh)\E
G(Du)dx

≤
∫
Brh

(xh)

[
F (Du+Dφ) + 1EG(Du+Dφ)

]
dx+

∫
Brh

(xh)\E
G(Du)dx

=

∫
Brh

(xh)
(F +G)(Du+Dφ)dx+

∫
Brh

(xh)\E

[
G(Du)−G(Du+Dφ)

]
dx

≤
∫
Brh

(xh)
(F +G)(Du+Dφ)dx+

∫
(Brh

(xh)\E)∩suppφ
G(Du)dx, (5.15)

where we used that the last integral vanishes outside the support of φ and that G ≥ 0. Using
the change of variable x = xh + rhy in the previous formula, we get∫

B1

(F +G)(Du(xh + rhy))dy ≤
∫
B1

(F +G)(Du(xh + rhy) +Dφ(xh + rhy)) dy

+

∫
(B1\Eh)∩suppψ

G(Du(xh + rhy))dy,

or, equivalently, using the definitions of vh,∫
B1

(F +G)(Ah + λhDvh)dy ≤
∫
B1

(F +G)(Ah + λh(Dvh +Dψ)) dy

+

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh)dy

where ψ(y) := φ(xh+rhy)
λhrh

, for y ∈ B1. Therefore, setting

Hh := Fh +Gh,

by the definition of Fh and Gh in (5.11) and using the assumption (G1), we have that∫
B1

Hh(Dvh)dy ≤
∫
B1

Hh(Dvh +Dψ)dy +
1

λ2h

∫
(B1\Eh)∩suppψ

G(Ah + λhDvh) dy

≤
∫
B1

Hh(Dvh +Dψ) dy +
L2

λ2h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhDvh|2

) p
2 dy, (5.16)

i.e. (5.14).

Step 2. A Caccioppoli type inequality.

We claim that there exists a constant c = c(n, p, ℓ1, ℓ2, L2,M) > 0 such that for every 0 < ρ < 1
there exists h0 = h0(n, ρ) ∈ N such that for all h > h0 we have∫

B ρ
2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy (5.17)
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≤ c

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

P (Eh, B1)
n

n−1

λ2h

]
We divide the proof into two substeps.

Substep 2.a The case min{|E∗
h|, |B1 \ Eh|} = |E∗

h|.

Consider 0 < ρ
2 < s < t < ρ < 1 and let η ∈ C∞

0 (Bt) be a cut off function between Bs and Bt,
i.e., 0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c

t−s . Set bh := (vh)Bρ , Bh := (Dvh)B ρ
2
, and set

wh(y) := vh(y)− bh −Bhy,

for any y ∈ B1. Proceeding similarly as in (5.6) let us rescale F and G around Ah + λhBh,

F̃h(ξ) :=
F (Ah + λhBh + λhξ)− F (Ah + λhBh)−DF (Ah + λhBh)λhξ

λ2h
, (5.18)

G̃h(ξ) :=
G(Ah + λhBh + λhξ)−G(Ah + λhBh)−DG(Ah + λhBh)λhξ

λ2h
,

for any ξ ∈ Rn×N . It is easy to check that Lemma 2.3 applies to each F̃h and G̃h, for some
constants that depend on M (see (5.4)) and could also depend on ρ through |λhBh|. However,
given ρ we may choose h0 = h0(n, ρ) large enough to have |λhBh| < λhωn

ρ
n
2

< 1, for any h ≥ h0.

Indeed, by (5.7) we have

|Bh| =
∣∣∣∣∫
B ρ

2

Dvh dy

∣∣∣∣ ≤ (∫
B ρ

2

|Dvh|2 dy
) 1

2 1

|B ρ
2
|
1
2

≤ c(n)

ρ
n
2

,

and so the constant in (2.2) can be taken independently of ρ.
Set

ψ1,h := ηwh and ψ2,h := (1− η)wh.

By the uniformly strict quasiconvexity of F̃h we have

ℓ1

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ ℓ1

∫
Bt

(
1 + |λhDψ1,h|2

) p−2
2 |Dψ1,h|2 dy ≤

∫
Bt

F̃h(Dψ1,h) dy =

∫
Bt

F̃h(Dwh −Dψ2,h) dy

=

∫
Bt

F̃h(Dwh) dy +

∫
Bt

F̃h(Dwh −Dψ2,h) dy −
∫
Bt

F̃h(Dwh) dy

=

∫
Bt

F̃h(Dwh) dy −
∫
Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy. (5.19)

We estimate separately the two addends in the right-hand side of the previous chain of inequali-
ties. We deal with the first addend by means of a rescaling of the minimality condition of (u,E).
Using the change of variable x = xh + rhy, the fact that G ≥ 0 and the minimality of (u,E)
with respect to (u+ φ,E) for φ ∈W 1,p

0 (Brh(xh);RN ), we have∫
B1

F (Du(xh + rhy))dy ≤
∫
B1

[
F (Du(xh + rhy)) + 1E∗

h
G(Du(xh + rhy))

]
dy
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≤
∫
B1

[
F (Du(xh + rhy) +Dφ(xh + rhy)) + 1E∗

h
G(Du(xh + rhy) +Dφ(xh + rhy))

]
dy,

i.e., by the definitions of vh and wh,∫
B1

F (Ah + λhBh + λhDwh)dy

≤
∫
B1

[
F (Ah + λhBh + λh(Dwh +Dψ)) + 1E∗

h
G(Ah + λhBh + λh(Dwh +Dψ))

]
dy,

for ψ := φ(xh+rhy)
λhrh

∈ W 1,p
0 (B1;RN ). Therefore, recalling the definitions of F̃h and G̃h in (5.18),

we have that ∫
B1

F̃h(Dwh)dy ≤
∫
B1

[
F̃h(Dwh +Dψ) + 1E∗

h
G̃h(Dwh +Dψ)

]
dy

+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λh(Dwh +Dψ)

]
dy.

Choosing ψ = −ψ1,h as test function in the previous inequality, we get∫
Bt

F̃h(Dwh) dy ≤
∫
Bt

[
F̃h
(
Dwh −Dψ1,h

)
dy + 1E∗

h
G̃h(Dwh −Dψ1,h)

]
dy (5.20)

+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λh(Dwh −Dψ1,h)

]
dy

=

∫
Bt\Bs

[
F̃h(Dψ2,h) + 1E∗

h
G̃h(Dψ2,h)

]
dy

+
1

λ2h

∫
B1

1E∗
h

[
G(Ah + λhBh) +DG(Ah + λhBh)λhDψ2,h)

]
dy

≤ c(M)

∫
Bt\Bs

[
|Dψ2,h|2 + λp−2

h |Dψ2,h|p|
]
dy + c(n, p, L2,M)

[
|E∗

h|
λ2h

+
1

λh

∫
E∗

h

|Dψ2,h| dy
]
,

where we used Lemma 2.3 and the second estimate in (2.1), Hölder’s inequality, and the fact
that |Ah+λhBh| ≤M +1. Now we estimate the second addend in the right-hand side of (5.19).
Using the upper bound on DF̃h in Lemma 2.3, we obtain∫

Bt

∫ 1

0
DF̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (5.21)

≤ c(M)

∫
Bt\Bs

∫ 1

0

(
|Dwh − θDψ2,h|+ λp−2

h |Dwh − θDψ2,h|p−1
)
|Dψ2,h| dθ dy

≤ c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p + |Dψ2,h|2 + λp−2
h |Dψ2,h|p

)
dy.

Hence, combining (5.19) with (5.20) and (5.21), using the properties of η, we obtain

ℓ1

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy
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≤ c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p + |Dψ2,h|2 + λp−2
h |Dψ2,h|p

)
dy

+ c(n, p, L2,M)

[
1

λh

∫
E∗

h

|Dψ2,h| dy +
|E∗

h|
λ2h

]
≤ c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p
)
dy + c(p,M)

∫
Bt\Bs

[
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

]
dy

+ c(n, p, L2,M)

[
1

λh

(∫
E∗

h

|Dψ2,h(y)|2 dy

) 1
2

|E∗
h|

1
2 +

|E∗
h|

λ2h

]
≤ c(p,M)

∫
Bt\Bs

(
1 + λ2h|Dwh|2

) p−2
2 |Dwh|2 dy + c(p,M)

∫
Bt\Bs

[
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

]
dy

+ c(n, p, L2,M)

[
1

λh

(∫
E∗

h

|Dψ2,h(y)|2 dy
) 1

2

|E∗
h|

1
2 +

|E∗
h|

λ2h

]
≤ c(n, p, L2,M)

[ ∫
Bt\Bs

(
1 + λ2h|Dwh|2

) p−2
2 |Dwh|2 dy +

∫
Bρ

[
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

]
dy

+
|E∗

h|
λ2h

]
,

where we used Young’s inequality. By adding c(n, p, L2,M)
∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy to

both sides of the previous estimate, dividing by ℓ1 + c(n, p, L2,M), and thanks to the iteration
Lemma 2.2, we deduce that∫

B ρ
2

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy ≤ c(n, p, ℓ1, L2,M)

[ ∫
Bρ

(
|wh|2

ρ2
+ λp−2

h

|wh|p

ρp

)
dy +

|E∗
h|

λ2h

]
.

Therefore, by the definition of wh, we conclude that∫
B ρ

2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy

≤ c(n, p, ℓ1, L2,M)

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

|E∗
h|

λ2h

]
,

(5.22)

which, by the relative isoperimetric inequality and the hypothesis of this substep, i.e.
min{|E∗

h|, |B1 \ Eh|} = |E∗
h|, yields the estimate (5.17).

Substep 2.b The case min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.

As in the previous substep, we fix 0 < ρ
2 < s < t < ρ < 1 and let η ∈ C∞

0 (Bt) be a cut
off function between Bs and Bt, i.e., 0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c

t−s . Also, we set
bh := (vh)Bρ , Bh := (Dvh)B ρ

2
and define

wh(y) := vh(y)− bh −Bhy,

17



for any y ∈ B1 and

H̃h := F̃h + G̃h.

We remark that Lemma 2.3 applies to H̃h, that is

|H̃h(ξ)| ≤ c(M)
(
|ξ|2 + λp−2

h |ξ|p
)
, ∀ξ ∈ Rn×N ,

and, by the uniformly strict quasiconvexity conditions (F1) and (G2),∫
B1

H̃h(ξ +Dψ) dx ≥
∫
Bt

[
H̃h(ξ) + ℓ̃

(
µ2 + |λhDψ1,h|2

) p−2
2 |Dψ1,h|2

]
dy, (5.23)

for all ψ ∈W 1,p
0 (B1;RN ), where ℓ̃ is such that

ℓ̃ ≥ ℓ1 + ℓ2 .

Set

ψ1,h := ηwh and ψ2,h := (1− η)wh.

By (5.23) and since H̃h(0) = 0, we have

ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ ℓ̃

∫
Bt

(
1 + |λhDψ1,h|2

) p−2
2 |Dψ1,h|2 dy ≤

∫
Bt

H̃h(Dψ1,h) dy =

∫
Bt

H̃h(Dwh −Dψ2,h) dy

=

∫
Bt

H̃h(Dwh) dy +

∫
Bt

H̃h(Dwh −Dψ2,h) dy −
∫
Bt

H̃h(Dwh) dy

=

∫
Bt

H̃h(Dwh) dy −
∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy. (5.24)

As in the previous step, we estimate separately the two addends in the right-hand side of
the previous chain of inequalities. We deal with the first addend by means of a rescaling of
the minimality condition of (u,E). By virtue of the minimality inequality in (5.16) and since
Dvh = Dwh +Bh, we get∫

B1

Hh(Dwh +Bh)dy ≤
∫
B1

Hh(Dwh +Bh +Dψ) dy

+
L2

λ2h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy,

or, equivalently, by the definition of H̃h,∫
B1

H̃h(Dwh)dy ≤
∫
B1

H̃h(Dwh +Dψ) dy

+
L2

λ2h

∫
(B1\Eh)∩suppψ

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy. (5.25)
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Choosing ψ = −ψ1,h as test function in (5.25) and using the fact that H̃h(0) = 0, we get∫
Bt

H̃h(Dwh) dy

≤
∫
Bt

H̃h(Dwh(y)−Dψ1,h) dy +
L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy

=

∫
Bt\Bs

H̃h

(
Dψ2,h

)
dy +

L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy

≤ c(M)

∫
Bt\Bs

(
|Dψ2,h|2 + λp−2

h |Dψ2,h|p
)
dy +

L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhBh + λhDwh|2

) p
2 dy.

By remarking that(
1 + |Ah + λhBh + λhDwh|2

) p
2 ≤

(
1 + |Ah + λhBh|2 + 2|Ah + λhBh|λh|Dwh|+ λ2h|Dwh|2

) p
2

≤
[(

1 +
1

ε

)
c(M) + (1 + ε)λ2h|Dwh|2

] p
2

≤
(
1 +

1

ε

) p
2
+1

c(M)
p
2 + (1 + ε)

p
2
+1λph|Dwh|

p,

for every ε > 0, we get∫
Bt

H̃h(Dwh) dy ≤ c(M)

∫
Bt\Bs

(
|Dψ2,h|2 + λp−2

h |Dψ2,h|p
)
dy (5.26)

+ (1 + ε)
p
2
+1L2λ

p−2
h

∫
Bt

|Dwh|p dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2h
.

Now we estimate the second addend in the right-hand side of (5.24). Using the upper bound on
DH̃h in Lemma 2.3, we obtain∫

Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (5.27)

≤ c(M)

∫
Bt\Bs

∫ 1

0

(
|Dwh − θDψ2,h|+ λp−2

h |Dwh − θDψ2,h|p−1
)
|Dψ2,h| dθ dy

≤ c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p + |Dψ2,h|2 + λp−2
h |Dψ2,h|p

)
dy.

Inserting (5.26) and (5.27) in (5.24), we infer that

ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p + |Dψ2,h|2 + λp−2
h |Dψ2,h|p

)
dy

+ (1 + ε)
p
2
+1L2λ

p−2
h

∫
Bt

|Dwh|p dy + c(p, L2,M, ε)
|B1 \ Eh|

λ2h

≤ c(p,M)

∫
Bt\Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy + c(p,M)

∫
Bt\Bs

(
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

)
dy
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+ (1 + ε)
p
2
+1L2

∫
Bt

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy + c(p, L2,M, ε)

|B1 \ Eh|
λ2h

.

Using the hole filling technique as in the previous case, we obtain∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ (c(p,M) + (1 + ε)
p
2
+1L2)

(c(p,M) + ℓ̃)

∫
Bt

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

+

∫
Bt\Bs

(
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

)
dy + c(p, ℓ1, ℓ2, L2,M, ε)

|B1 \ Eh|
λ2h

.

The assumption (H) implies that there exists ε = ε(p, ℓ1, ℓ2, L2) > 0 such that (1+ε)
p
2+1L2

ℓ1+ℓ2
< 1.

Therefore we have
c+ (1 + ε)

p
2
+1L2

c+ ℓ̃
≤ c+ (1 + ε)

p
2
+1L2

c+ ℓ1 + ℓ2
< 1.

So, by virtue of Lemma 2.2, from the previous estimate we deduce that∫
B ρ

2

(
1+|λhDwh|2

) p−2
2 |Dwh|2 dy ≤ c(p, ℓ1, ℓ2, L2,M)

[ ∫
Bρ

(
|wh|2

ρ2
+λp−2

h

|wh|p

ρp

)
dy+

|B1 \ Eh|
λ2h

]
.

Therefore, by the definition of wh, we conclude that∫
B ρ

2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy

≤ c(p, ℓ1, ℓ2, L2,M)

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy

+
|B1 \ Eh|

λ2h

]
,

which, by the relative isoperimetric inequality and since we have |B1\Eh| = min{|E∗
h|, |B1\Eh|},

gives the estimate (5.17).

Step 3. We prove that there exists a constant c̃ = c(n,N, ℓ1, ℓ2, L1, L2) > 0 such that∫
B τ

2

|Dv − (Dv) τ
2
|2 ≤ c̃τ2

∫
Bτ

|Dv − (Dv)τ |2 dx, (5.28)

for any τ < 1.
It will follow that ∫

B τ
2

|Dv − (Dv) τ
2
|2 ≤ c̃τ2

∫
Bτ

|Dv − (Dv)τ |2 ≤ c̃τ2, (5.29)

since
∥Dv∥L2(B1)

≤ lim sup
h

∥Dvh∥L2(B1)
≤ c(n).
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As before, we will divide the proof in two substeps.

Substep 3.a The case min{|E∗
h|, |B1 \ Eh|} = |E∗

h|.

We claim that v solves the linear system∫
B1

D2F (A)DvDψ dy = 0,

for all ψ ∈ C1
0 (B1;RN ). Since vh satisfies (5.13), we have that

0 ≤ Ih(vh + sψ)− Ih(vh) +
1

λh

∫
B1

1E∗
h
DG(Ah)sDψ dy,

for every ψ ∈ C1
0 (B1;RN ) and s ∈ (0, 1). By the definition of Ih we get

0 ≤ Ih(vh + sψ)− Ih(vh) +
1

λh

∫
B1

1E∗
h
DG(Ah)sDψ dy

=
1

λh

∫
B1

(∫ 1

0

[
DF (Ah + λh(Dvh + tsDψ))

]
sDψ dt−DF (Ah)sDψ

)
dy

+
1

λh

∫
B1

1E∗
h

(∫ 1

0
DG(Ah + λh(Dvh + tsDψ))sDψ dt−DG(Ah)sDψ

)
dy

+
1

λh

∫
B1

1E∗
h
DG(Ah)sDψ(y) dy

=
1

λh

∫
B1

(∫ 1

0

[
DF (Ah + λh(Dvh + tsDψ))

]
sDψ dt−DF (Ah)sDψ

)
dy

+
1

λh

∫
B1

∫ 1

0
1E∗

h
DG(Ah + λh(Dvh + tsDψ))sDψ dt dy

We divide by s and do the limit as s→ 0, therefore we deduce that

0 ≤ 1

λh

∫
B1

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

+
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy. (5.30)

We partition the unit ball as

B1 = B+
h ∪B−

h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1}.

By (5.7), we get

|B+
h | ≤

∫
B+

h

λ2h|Dvh|2 dy ≤ λ2h

∫
B+

h

|Dvh|2 dy ≤ c(n)λ2h. (5.31)

We rewrite (5.30) as follows:

0 ≤ 1

λh

∫
B1

(DF (Ah + λhDvh)−DF (Ah))Dψ dy +
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy
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=
1

λh

∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy +
1

λh

∫
B−

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

+
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy

=
1

λh

∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

+

∫
B−

h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

+

∫
B−

h

D2F (A)DvhDψ dy +
1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy. (5.32)

By virtue of the first estimate in (2.1) and Hölder’s inequality, we get

1

λh

∣∣∣∣∣
∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

∣∣∣∣∣
≤ c(p, L1,M,Dψ)

[
|B+

h |
λh

+ λp−2
h

∫
B+

h

|Dvh|p−1 dy

]

≤ c(n, p, L1,M,Dψ)

[
λh + λh

(∫
B1

λp−2
h |Dvh|p dy

) p−1
p
(
|B+

h |
λ2h

) 1
p

]
≤ c(n, p, L1,M,Dψ)λh,

thanks to (5.4) (to bound |Ah| ≤M), (5.7) and (5.31). Thus

lim
h→∞

1

λh

∣∣∣∣ ∫
B+

h

(DF (Ah + λhDvh)−DF (Ah))Dψ dy

∣∣∣∣ = 0. (5.33)

By (5.4) and the definition of B−
h we have that |Ah+λhDvh| ≤M+1 on B−

h . Hence the uniform
continuity of D2F on bounded sets implies∣∣∣∣ ∫

B−
h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

∣∣∣∣
≤
∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣ |Dvh||Dψ| dy
≤

(∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣2 dy
) 1

2

∥Dvh∥L2(B1)
∥Dψ∥L∞(B1)

≤ c(n,Dψ)

(∫
B−

h

∣∣∣∣∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dt

∣∣∣∣2 dy
) 1

2

,

where we used (5.7). Since by (5.8), λhDvh → 0 a.e. in B1, we deduce that

lim
h→∞

∣∣∣∣ ∫
B−

h

∫ 1

0

(
D2F (Ah + tλhDvh)−D2F (A)

)
dtDvhDψ dy

∣∣∣∣ = 0. (5.34)
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Note that (5.31) yields that 1B−
h
→ 1B1 in Lr(B1), for every r <∞. Therefore, by (5.7),∣∣∣∣ ∫

B−
h

D2F (A)DvhDψ dy −
∫
B1

D2F (A)DvDψ dy

∣∣∣∣
≤
∣∣∣∣ ∫

B−
h

D2F (A)DvhDψ dy −
∫
B1

D2F (A)DvhDψ dy

∣∣∣∣
+

∣∣∣∣ ∫
B1

D2F (A)DvhDψ dy −
∫
B1

D2F (A)DvDψ dy

∣∣∣∣
≤ c(Dψ)∥1B−

h
− 1B1∥L2(B1) ∥Dvh∥L2(B1)

∣∣∣∣∫ 1

0
D2F (A) dt

∣∣∣∣+ ∣∣∣∣ ∫
B1

D2F (A)(Dvh −Dv)Dψ dy

∣∣∣∣.
Thus, by the weak convergence of Dvh to Dv in L2(B1), it follows that

lim
h→∞

∫
B−

h

D2F (A)DvhDψ dy =

∫
B1

D2F (A)DvDψ dy. (5.35)

By the second estimate in (2.1), we deduce that

1

λh

∣∣∣∣∫
B1

1E∗
h
[DξG(Ah + λhDvh)Dψ dy

∣∣∣∣ ≤ c(p, L2)

λh

∫
B1

1E∗
h

(
1 + |Ah + λhDvh|2

) p−1
2 |Dψ| dy

≤ c(p, L2,M,Dψ)

[
1

λh
|E∗

h|+ λp−2
h

∫
E∗

h

|Dvh|p−1 dy

]

≤ c(p, L2,M,Dψ)

[
1

λh
|E∗

h|+ λh

(∫
B1

λp−2
h |Dvh|p dy

) p−1
p
(
|E∗

h|
λ2h

) 1
p
]

≤ c(n, p, L2,M,Dψ)

[
1

λh
|E∗

h|+ cλh

(
|E∗

h|
λ2h

) 1
p
]
,

thanks to (5.4) and (5.7). Since min{|E∗
h|, |B1 \ Eh|} = |E∗

h|, by (5.10) we have

lim
h→∞

|E∗
h|

λ2h
= 0,

and so

lim
h→∞

1

λh

∫
B1

1E∗
h
DG(Ah + λhDvh)Dψ dy = 0. (5.36)

By (5.33), (5.34), (5.35) and (5.36), passing to the limit as h→ ∞ in (5.32), we get∫
B1

DF (A)DvDψ dy ≥ 0,

and with −ψ in place of ψ we get ∫
B1

DF (A)DvDψ dy = 0,
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i.e., v solves a linear system with constant coefficients. By Proposition 2.1 we deduce that
v ∈ C∞ and, for every 0 < τ < 1, we have∫

B τ
2

|Dv − (Dv) τ
2
|2 ≤ c(n,N, ℓ1, L1)τ

2

∫
Bτ

|Dv − (Dv)τ |2 dx ≤ c(n,N, ℓ1, L1)τ
2,

since

∥Dv∥L2(B1)
≤ lim sup

h→∞
∥Dvh∥L2(B1)

≤ c(n).

Substep 3.b The case min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.

We claim that v solves the linear system∫
B1

D2(F +G)(A)DvDψ dy = 0,

for all ψ ∈ C1
0 (B1;RN ). Arguing as (5.15) and rescaling, we have that∫

B1

Hh(Dvh)dy ≤
∫
B1

Hh(Dvh + sDψ) +
1

λ2h

∫
B1\Eh

[G(Ah + λhDvh)−G(Ah + λhDvh + sλhDψ)]dy

=

∫
B1

Hh(Dvh + sDψ) dy +
1

λh

∫
B1\Eh

∫ 1

0
DG(Ah + λhDvh + tsλhDψ)sDψ dt dy

≤
∫
B1

Hh(Dvh + sDψ) dy +
c(p, L2)

λh

∫
B1\Eh

∫ 1

0

(
1 + |Ah + λhDvh + tsλhDψ|2

) p−1
2 s|Dψ| dt dy

≤
∫
B1

Hh(Dvh + sDψ) dy + c(p, L2,M)

[
1

λh

∫
B1\Eh

s|Dψ| dy

+

∫
B1\Eh

∫ 1

0
λp−2
h |Dvh + tsDψ|p−1s|Dψ| dt dy

]
,

for every ψ ∈ C1
0 (B1;RN ) and for every s ∈ (0, 1). Therefore

0 ≤
∫
B1

∫ 1

0
DHh(Dvh + sθDψ) dθsDψ dy

+ c(p, L2,M)

[
1

λh

∫
B1\Eh

s|Dψ| dy +
∫
B1\Eh

∫ 1

0
λp−2
h |Dvh + tsDψ|p−1s|Dψ| dt dy

]
.

Dividing the previous inequality by s and taking the limit as s→ 0, we obtain that

0 ≤
∫
B1

DHh(Dvh)Dψdy + c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
.

By the definition of Hh, we conclude that

0 ≤ 1

λh

∫
B1

[
D(F +G)(Ah + λhDvh)Dψ −D(F +G)(Ah)Dψ

]
dy
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+ c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
.

Just as before, we partition B1 as

B1 = B+
h ∪B−

h = {y ∈ B1 : λh|Dvh| > 1} ∪ {y ∈ B1 : λh|Dvh| ≤ 1},

and we write

0 ≤ 1

λh

∫
B1

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy (5.37)

+ c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
=

1

λh

∫
B+

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy

+
1

λh

∫
B−

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy

+ c(p, L2,M)

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
.

Arguing as in (5.33) , we obtain that

lim
h→∞

1

λh

∣∣∣∣∣
∫
B+

h

(D(F +G)(Ah + λhDvh)−D(F +G)(Ah))Dψ dy

∣∣∣∣∣ = 0, (5.38)

and, as in (5.34) and (5.35),

lim
h→∞

1

λh

∫
B−

h

[D(F +G)(Ah + λhDvh)−D(F +G)(Ah)]Dψ dy

=

∫
B1

D(F +G)(A)DvDψ dy. (5.39)

Moreover, we have that

1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

≤ c(p,Dψ)

[
|B1 \ Eh|

λh
+ λh

(∫
B1

λp−2
h |Dvh|p dy

) p−1
p
(
|B1 \ Eh|

λ2h

) 1
p

]

≤ c(n, p,Dψ)

[
|B1 \ Eh|

λh
+ λh

(
|B1 \ Eh|

λ2h

) 1
p

]
,

where we used (5.7). Since min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|, by (5.10), we have

lim
h→∞

|B1 \ Eh|
λ2h

= 0,
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and we obtain

lim
h→∞

[
1

λh

∫
B1\Eh

|Dψ|dy +
∫
B1\Eh

λp−2
h |Dvh|p−1|Dψ| dy

]
= 0. (5.40)

By (5.38), (5.39) and (5.40), passing to the limit as h→ ∞ in (5.37) we conclude that∫
B1

D2(F +G)(A)DvDψ dy ≥ 0

and with −ψ in place of ψ we finally get∫
B1

D2(F +G)(A)DvDψ dy = 0,

asserting the claim. By Proposition 2.1, we deduce also in this case that v ∈ C∞ and for every
0 < τ < 1 satisfies estimate (5.28).

Step 4. An estimate for the perimeters.
Our aim is to show that there exists a constant c = c(n, p, L2,Λ,M) > 0 such that

P (Eh, Bτ ) ≤ c

[
1

τ
P (Eh, B1)

n
n−1 + rhτ

n + rhλ
2
h

]
. (5.41)

By the minimality of (u,E) with respect to (u, Ẽ), where Ẽ is a set of finite perimeter such that
Ẽ∆E ⋐ Brh(xh) and Brh(xh) are the balls of the contradiction argument, we get∫

Brh
(xh)

1EG(Du) +Φ(E;Brh(xh)) ≤
∫
Brh

(xh)
1
Ẽ
G(Du) +Φ(Ẽ;Brh(xh)).

Using the change of variable x = xh + rhy and dividing by rn−1
h , we have

rh

∫
B1

1Eh
G(Ah + λhDvh)dy +Φh(Eh;B1) ≤ rh

∫
B1

1
Ẽh
G(Ah + λhDvh)dy +Φh(Ẽh;B1),

where

Φh(Eh;G) :=

∫
G∩∂∗Eh

Φ(xh + rhy, νEh
(y)) dHn−1(y),

for every Borel set G ⊂ Ω. Assume first that min{|B1 \ Eh|, |E∗
h|} = |B1 \ Eh|. Choosing

Ẽh := Eh ∪Bρ, we get

Φh(Eh;B1) ≤ rh

∫
B1

1BρG(Ah + λhDvh)dy +Φh(Ẽh;B1). (5.42)

By coarea formula, the relative isoperimetric inequality, the choice of the representative E
(1)
h of

Eh, which is a Borel set, we get∫ 2τ

τ
Hn−1(∂Bρ \ Eh) dρ ≤ |B1 \ Eh| ≤ c(n)P (Eh, B1)

n
n−1 .
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Therefore, we may choose ρ ∈ (τ, 2τ), independent of n, such that, up to subsequences, it holds

Hn−1(∂∗Eh ∩ ∂Bρ) = 0 and Hn−1(∂Bρ \ Eh) ≤
c(n)

τ
P (Eh, B1)

n
n−1 . (5.43)

We remark that Proposition 2.8 holds also for Φh. Thus, thanks to the choice of ρ, being
Hn−1(∂∗Eh ∩ ∂Bρ) = 0, we have that

Φh(Ẽh;B1) = Φh(Eh;B
(0)
ρ ) +Φh(Bρ;E

(0)
h ) +Φh(Eh; {νEh

= νBρ})

= Φh(Eh;B1 \Bρ) +Φh(Bρ;E
(0)
h ).

By the choice of the representative of Eh (see Remark 2.4), taking into account (2.8) and the
inequality in (5.43), it follows that

Φh(Ẽh;B1) ≤ Φh(Eh;B1 \Bρ) + ΛHn−1(∂Bρ ∩ E(0)
h ) (5.44)

≤ Φh(Eh;B1 \Bρ) + ΛHn−1(∂Bρ \ Eh).

≤ Φh(Eh;B1 \Bρ) + Λ
c(n)

τ
P (Eh, B1)

n
n−1 .

On the other hand, by (2.8) and the additivity of the measure Φh(Eh, ·) it holds that

1

Λ
P (Eh, Bτ ) ≤ Φh(Eh;Bτ ) ≤ Φh(Eh;B1)−Φh(Eh;B1 \Bρ), (5.45)

since ρ > τ . Combining (5.42), (5.44) and (5.45), we obtain

1

Λ
P (Eh, Bτ ) ≤ Φh(Eh;B1)−Φh(Eh;B1 \Bρ) (5.46)

≤ Φh(Ẽh;B1) + rh

∫
B1

1BρG(Ah + λhDvh)dy −Φh(Eh;B1 \Bρ)

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + rh

∫
B1

1BρG(Ah + λhDvh)dy

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(p, L2)rh

∫
B2τ

(1 + |Ah + λhDvh|2)
p
2 dy

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(n, p, L2,M)rhτ

n + c(p, L2)rhλ
2
h

∫
B2τ

λp−2
h |Dvh|p dy

≤ Λ
c(n)

τ
P (Eh, B1)

n
n−1 + c(n, p, L2,M)rhτ

n + c(n, p, L2)rhλ
2
h,

where we used (5.7). The previous estimate leads to (5.41). We reach the same conclusion if
min{|B1 \ Eh|, |E∗

h|} = |E∗
h|, choosing Ẽh = Eh \Bρ as a competing set.

Step 5. Conclusion.
By the change of variable x = xh + rhy and the Caccioppoli inequality in (5.17), for every

0 < τ < 1
4 we have

lim sup
h→∞

U∗(xh, τrh)

λ2h

27



≤ lim sup
h→∞

1

λ2h

∫
Bτrh

(xh)

[
|Du(x)− (Du)xh,τrh |

2 + |Du(x)− (Du)xh,τrh |
p
]
dx

+ lim sup
h→∞

P (E,Bτrh(xh))

λ2hτ
n−1rn−1

h

+ lim sup
h→∞

τrh
λ2h

≤ lim sup
h→∞

∫
Bτ

[
|Dvh − (Dvh)τ |2 + λp−2

h |Dvh − (Dvh)τ |p
]
dy + lim sup

h→∞

P (Eh, Bτ )

λ2hτ
n−1

+ τ

≤ c(n, p, ℓ1, ℓ2, L2, ,Λ,M)

{
lim sup
h→∞

∫
B2τ

[
|vh − (vh)2τ − (Dvh)τy|2

τ2
+ λp−2

h

|vh − (vh)2τ − (Dvh)τy|p

τp

]
dy

+
1

τn
lim sup
h→∞

P (Eh, B1)
n

n−1

λ2h
+

1

τn−1
lim sup
h→∞

(
rhτ

n

λ2h
+ rh

)
+ τ

}
,

where we used (5.7) and estimate (5.46). We remark that

lim
h→∞

∫
B2τ

λp−2
h |vh − (vh)2τ − (Dvh)τy|p dy = 0, (5.47)

being p > 2. Indeed, fixed r > p, we consider

p⋆ :=

{
np
n−p , if 2 < p < n,

r if p ≥ n.

There exists α ∈ (0, 1) such that
1

p
=

1− α

2
+
α

p⋆
.

Thus, we interpolate by Hölder inequality, and we get∫
B2τ

λp−2
h |vh − (vh)2τ − (Dvh)τy|p dy

= λp−2
h

(∫
B2τ

|vh − (vh)2τ − (Dvh)τy|p
⋆
dy

)αp
p⋆
(∫

B2τ

|vh − (vh)2τ − (Dvh)τy|2 dy
) (1−α)p

2

.

On one hand, by Poincaré-Wirtinger inequality and (5.29) we obtain

lim
h→∞

∫
B2τ

|vh − (vh)2τ − (Dvh)τy|2 dy =

∫
B2τ

|v − v2τ − (Dv)τy|2 dy

≤ c(n)τ2
∫
B2τ

|Dv − (Dv)τ |2 dy ≤ c(n,N, ℓ1, ℓ2, L1, L2)τ
2.

On the other hand, by Sobolev-Poincaré inequality, we infer

λp−2
h

(∫
B2τ

|vh − (vh)2τ − (Dvh)τy|p
⋆
dy

)αp
p⋆

≤ c(n, p)λp−2
h

(∫
B2τ

|Dvh − (Dvh)τ |p dy
)α

≤ c(n, p)λp−2
h

(∫
B2τ

|Dvh|p dy
)α

= c(n, p)λ
(p−2)(1−α)
h

(∫
B2τ

λp−2
h |Dvh|p dy

)α
≤ c(n, p)λ

(p−2)(1−α)
h ,
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where we used (5.28) and (5.7). Therefore (5.47) follows at once.
By virtue of the strong convergence of vh → v in L2(B1), since (Dvh)τ → (Dv)τ in Rn×N , by
(5.8), (5.9), (5.10), (5.29), (5.47) and by the Poincaré-Wirtinger inequality, we get

lim sup
h→∞

U∗(xh, τrh)

λ2h
≤ c(n, p, ℓ1, ℓ2, L2,Λ,M)

{∫
B2τ

|v − (v)2τ − (Dv)τy|2

τ2
dy + τ

}
≤ c(n, p, ℓ1, ℓ2, L2,Λ,M)

{∫
B2τ

|Dv − (Dv)τ |2 dy + τ

}
≤ c(n,N, p, ℓ1, ℓ2, L1, L2,Λ,M)

[
τ2 + τ

]
≤ C(n,N, p, ℓ1, ℓ2, L1, L2,Λ,M)τ.

The contradiction follows, by choosing C∗ such that C∗ > C, since, by (5.5),

lim inf
h

U∗(xh, τrh)

λ2h
≥ C∗τ.

Next, we prove a suitable decay estimate that allows us to prove Theorem 1.2 without the
assumption (H). To this aim, we introduce a new “hybrid” excess as

U∗∗(x0, r) := U(x0, r) +

(
P (E,Br(x0))

rn−1

) δ
1+δ

+ rβ, (5.48)

where U(x0, r) is defined in (5.1), δ has been determined in Theorem 4.1 and 0 < β < δ
1+δ .

In the proof of the following Proposition 5.2, we will only elaborate the steps substantially
different from the corresponding ones in the proof of Proposition 5.1.

Proposition 5.2. Let (u,E) be a local minimizer of I under the assumptions (F1), (F2), (G1)
and (G2). For every M > 0 and 0 < τ < 1

4 , there exist two positive constants ε0 = ε0(τ,M)
and c∗∗ = c∗∗(n, p, ℓ1, ℓ2, L1, L2,Λ, δ,M) for which, whenever Br(x0) ⋐ Ω verifies

|(Du)x0,r| ≤M and U∗∗(x0, r) ≤ ϵ0,

then
U∗∗(x0, τr) ≤ c∗∗ τ

β U∗∗(x0, r). (5.49)

Proof. In order to prove (5.49), we argue by contradiction. Let M > 0 and τ ∈ (0, 1/4) be such
that for every h ∈ N, C∗∗ > 0, there exists a ball Brh(xh) ⋐ Ω such that

|(Du)xh,rh | ≤M, U∗∗(xh, rh) → 0 (5.50)

and
U∗∗(xh, τrh) ≥ C∗∗τ

βU∗∗(xh, rh). (5.51)

The constant C∗∗ will be determined later. We remark that we can confine ourselves to the case
E ∩Brh(xh) ̸= ∅, the case Brh(xh) ⊂ Ω \ E being easier because U = U∗∗ − rβ.

Step 1. Blow-up.
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We set λ2h := U∗∗(xh, rh), Ah := (Du)xh,rh , ah := (u)xh,rh and we define as before

vh(y) :=
u(xh + rhy)− ah − rhAhy

λhrh
, ∀y ∈ B1.

One can easily check that (Dvh)0,1 = 0 and (vh)0,1 = 0. Again, as before, we set

Eh :=
E − xh
rh

, E∗
h :=

E − xh
rh

∩B1.

Let us note that

λ2h = U∗∗(xh, rh) =

∫
B1

[
|Du(xh + rhy)−Ah|2 + |Du(xh + rhy)−Ah|p

]
dy (5.52)

+

(
P (E,Brh(xh))

rn−1
h

) δ
1+δ

+ rβh

=

∫
B1

[
|λhDvh|2 + |λhDvh|p

]
dy + P (Eh, B1)

δ
1+δ + rβh .

It follows that

rh → 0, P (Eh, B1) → 0,
rβh
λ2h

≤ 1,

∫
B1

[
|Dvh|2 + λp−2

h |Dvh|p
]
≤ 1,

P (Eh, B1)
δ

1+δ

λ2h
≤ 1.

(5.53)
Therefore, by virtue of (5.50), (5.52) and (5.53), there exist a (not relabeled) subsequence
{vh}h∈N, A ∈ Rn×N and v ∈W 1,2(B1;RN ), such that

vh ⇀ vweakly inW 1,2(B1;RN ), vh → v strongly inL2(B1;RN ), (5.54)

Ah → A, λhDvh → 0 in L2(B1;RnN ) and pointwise a.e.,

where we used the fact that (vh)0,1 = 0. We also note that

r
δ

1+δ

h

λ2h
= r

δ
1+δ

−β
h

rβh
λ2h

→ 0, (5.55)

since 0 < β < δ
1+δ . Moreover, by (5.53), we deduce that

lim
h→∞

P (Eh, B1)
n

n−1
δ

1+δ

λ2h
= lim

h→∞
P (Eh, B1)

δ
(n−1)(1+δ) lim sup

h→∞

P (Eh, B1)
δ

1+δ

λ2h
= 0. (5.56)

Therefore, by the relative isoperimetric inequality,

lim
h→∞

min

{
|E∗

h|
δ

1+δ

λ2h
,
|B1 \ Eh|

δ
1+δ

λ2h

}
≤ c(n, δ) lim

h→∞

P (Eh, B1)
nδ

(1+δ)(n−1)

λ2h
= 0. (5.57)

Step 2. A Caccioppoli type inequality.
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We claim that there exists a constant c = c(n, p, ℓ1, L1, L2,M) > 0 such that, for every 0 < ρ < 1,
there exists h0 ∈ N such that for all h > h0 we have∫
B ρ

2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy (5.58)

≤ c

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

P (Eh, B1)
nδ

(n−1)(1+δ)

ρ
nδ
1+δλ2h

]
.

We divide the proof into two substeps.

Substep 2.a The case min{|E∗
h|, |B1 \ Eh|} = |E∗

h|.

The proof of this substep goes exactly as that of Substep 2.a of Proposition 5.1 up to estimate
(5.22). Next we observe that∫

B ρ
2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy

≤ c

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

|E∗
h|

λ2h

]

≤ c

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

|E∗
h|

δ
1+δ

λ2h

]
,

and this, by the relative isoperimetric inequality, yields the estimate (5.58).

Substep 2.b The case min{|E∗
h|, |B1 \ Eh|} = |B1 \ Eh|.

We fix 0 < ρ
2 < s < t < ρ < 1 and let η ∈ C∞

0 (Bt) be a cut off function between Bs and Bt, i.e.,
0 ≤ η ≤ 1, η ≡ 1 on Bs and |∇η| ≤ c

t−s . Furthermore, we set bh := (vh)Bρ , Bh := (Dvh)B ρ
2
and

define

wh(y) := vh(y)− bh −Bhy, ψ1,h := ηwh and ψ2,h := (1− η)wh,

for any y ∈ B1. By (5.24) and (5.27), we obtain

ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤
∫
Bt

H̃h(Dwh) dy −
∫
Bt

∫ 1

0
DH̃h(Dwh − θDψ2,h)Dψ2,h dθ dy (5.59)

≤
∫
Bt

H̃h(Dwh) dy + c(p,M)

∫
Bt\Bs

(
|Dwh|2 + λp−2

h |Dwh|p + |Dψ2,h|2 + λp−2
h |Dψ2,h|p

)
dy.

In order to estimate the first addend of the right-hand side of the previous inequality we recall
that ∫

Bt

H̃h(Dwh) dy ≤
∫
Bt

H̃h(Dwh(y)−Dψ1,h) dy +
L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhDvh|2

) p
2 dy
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=

∫
Bt\Bs

H̃h

(
Dψ2,h

)
dy +

L2

λ2h

∫
Bt\Eh

(
1 + |Ah + λhDvh|2

) p
2 dy. (5.60)

We remark that the reverse Hölder inequality stated in Theorem 4.1, through the change of
variable x = xh + rhy, can be rescaled in the following way:(∫

Bt

|Ah + λhDvh|p(1+δ) dy
) 1

1+δ

≤ c(n, p, ℓ1, L1, L2)

[∫
B2t

|Ah + λhDvh|p dy + 1

]
.

By Hölder’s inequality and inserting the previous inequality in the estimate (5.60), we get∫
Bt

H̃h(Dwh) dy

≤
∫
Bt\Bs

H̃h(Dψ2,h) dy + c(p)
L2

λ2h

(∫
Bt\Eh

(
1 + |Ah + λhDvh|p(1+δ)

)
dy

) 1
1+δ

|Bt \ Eh|
δ

1+δ

≤
∫
Bt\Bs

H̃h(Dψ2,h) dy + c(p)
L2

λ2h
t

n
1+δ

(∫
Bt

(
1 + |Ah + λhDvh|p(1+δ)

)
dy

) 1
1+δ

|B1 \ Eh|
δ

1+δ

≤
∫
Bt\Bs

H̃h

(
Dψ2,h

)
dy + c(n, p, ℓ1, L1, L2)

t
n

1+δ

λ2h

(
1 +

∫
B2t

|Ah + λhDvh|p dy
)
|B1 \ Eh|

δ
1+δ

≤
∫
Bt\Bs

H̃h

(
Dψ2,h

)
dy +

c(n, p, ℓ1, L1, L2,M)

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h
,

where we used the fact that t > ρ
2 . Hence, inserting the previous estimate in (5.59), we obtain

ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy ≤

∫
Bt\Bs

H̃h(Dψ2,h) dy +
c(n, p, ℓ1, L1, L2,M)

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

+ c(p,M)

∫
Bt\Bs

(|Dwh|+ |Dψ2,h|+ λp−2
h |Dwh|p−1 + λp−2

h |Dψ2,h|p−1)|Dψ2,h| dy.

Thanks to the Lemma 2.3, Young’s inequality and the properties of η, we get

ℓ̃

∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ c(n, p, ℓ1, L1, L2,M)

[ ∫
Bt\Bs

[
|Dψ2,h|2 + λp−2

h |Dψ2,h|p
]
dy +

1

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

+

∫
Bt\Bs

[
|Dwh|2 + λp−2

h |Dwh|p
]
dy

]
≤ c(n, p, ℓ1, L1, L2,M)

[∫
Bt\Bs

(
1 + λ2h|Dwh|2

) p−2
2 |Dwh|2 dy

+

∫
Bρ

(
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

)
dy +

1

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

]
.
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By using the hole filling technique as in the proof of the previous theorem, we get∫
Bs

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy

≤ c

c+ ℓ̃

∫
Bt

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy +

∫
Bρ

(
|wh|2

(t− s)2
+ λp−2

h

|wh|p

(t− s)p

)
dy +

1

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

By virtue of the iteration Lemma 2.2, previous estimate gives∫
B ρ

2

(
1 + |λhDwh|2

) p−2
2 |Dwh|2 dy ≤ c

[∫
Bρ

(
|wh|2

ρ2
+ λp−2

h

|wh|p

ρp

)
dy +

1

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

]
,

where c = c(n, p, ℓ1, ℓ2, L1, L2,M). Therefore, by the definition of wh, we have∫
B ρ

2

(
1 + λp−2

h |Dvh − (Dvh) ρ
2
|p−2

)
|Dvh − (Dvh) ρ

2
|2 dy

≤ c

[∫
Bρ

(
|vh − (vh)ρ − (Dvh) ρ

2
y|2

ρ2
+ λp−2

h

|vh − (vh)ρ − (Dvh) ρ
2
y|p

ρp

)
dy +

1

ρ
nδ
1+δ

|B1 \ Eh|
δ

1+δ

λ2h

]
,

which, by the relative isoperimetric inequality and since |B1 \Eh| = min{|E∗
h|, |B1 \Eh|}, gives

the estimate (5.58).

The proofs of Step 3 and Step 4 of Proposition 5.1 hold true also in this case.
Step 5. Conclusion.

The change of variable x = xh + rhy, the Caccioppoli inequality in (5.58) and (5.46), for
every 0 < τ < 1

4 , give

lim sup
h→∞

U∗∗(xh, τrh)

λ2h
≤ lim sup

h→∞

1

λ2h

∫
Bτrh

(xh)

[
|Du− (Du)xh,τrh |

2 + |Du− (Du)xh,τrh |
p
]
dx

+ lim sup
h→∞

1

λ2h

(
P (E,Bτrh)(xh)

τn−1rn−1
h

) δ
1+δ

+ lim sup
h→∞

τβrβh
λ2h

≤ lim sup
h→∞

∫
Bτ

[
|Dvh − (Dvh)τ |2 + λp−2

h |Dvh − (Dvh)τ |p
]
dy + lim sup

h→∞

1

λ2h

(
P (Eh, Bτ )

τn−1

) δ
1+δ

+ τβ

≤ c

[
lim sup
h→∞

∫
B2τ

(
|vh − (vh)2τ − (Dvh)τy|2

τ2
+ λp−2

h

|vh − (vh)2τ − (Dvh)τy|p

τp

)
dy

+ lim sup
h→∞

(
P (Eh, B1)

nδ
(n−1)(1+δ)

λ2h

1

τ
nδ
1+δ

+
r

δ
1+δ

h

λ2h
τ

δ
1+δ +

r
δ

1+δ

h

λ2h

λ
2δ
1+δ

h

τ
(n−1)δ
1+δ

)
+ τβ

]

≤ c

[
lim sup
h→∞

∫
B2τ

(
|vh − (vh)2τ − (Dvh)τy|2

τ2
+ λp−2

h

|vh − (vh)2τ − (Dvh)τy|p

τp

)
dy

+ lim sup
h→∞

(
P (Eh, B1)

nδ
(n−1)(1+δ)

λ2h

1

τ
nδ
1+δ

+
r

δ
1+δ

h

λ2h
τ

δ
1+δ +

r
δ

1+δ

h

λ2h

λ
2δ
1+δ

h

τ
(n−1)δ
1+δ

)
+ τβ

]
.
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where c = c(n, p, ℓ1, ℓ2, L1, L2,Λ, δ,M). Proceeding exactly as in Step 5 of the previous Propo-
sition, by virtue of the the strong convergence of vh → v in L2(B1), since (Dvh)τ → (Dv)τ in
RnN , by (5.29), (5.47), (5.53), (5.54), (5.55) (5.56), (5.57) and by the use of Poincaré-Wirtinger
inequality, we get

lim sup
h→∞

U∗∗(xh, τrh)

λ2h
≤ Cτβ,

where C = C(n, p, ℓ1, ℓ2, L1, L2,Λ, δ,M). The contradiction follows by choosing C∗∗ such that
C∗∗ > C, since by (5.51)

lim inf
h→∞

U∗∗(xh, τrh)

λ2h
≥ C∗∗τ

β.

6 Proof of the Main Theorem

Here we give the proof of Theorem 1.2 through a suitable iteration procedure. It is easy to get
the following lemmata, arguing exactly in the same way as in [11, Lemma 6.1].

Lemma 6.1. Let (u,E) be a minimizer of the functional I. For every M > 0, α ∈ (0, 1) and

ϑ ∈ (0, ϑ0), with ϑ0 := min

{
c
− 1

1−α
∗ , 14

}
, there exist 0 < ε1 ≤

(
1 − ϑ

1
2

)2
ϑn−1 and R > 0 such

that, if r < R and x0 ∈ Ω satisfy

Br(x0) ⋐ Ω, |Du|x0,r < M and U∗(x0, r) < ε1,

where c∗ is the constant introduced in Proposition 5.1, then

U∗(x0, ϑ
kr) ≤ ϑkαU∗(x0, r), ∀k ∈ N.

Lemma 6.2. Let (u,E) be a minimizer of the functional I and let β be the exponent of Lemma
5.2. For every M > 0 and ϑ ∈ (0, ϑ0), with ϑ0 < min

{
c∗∗,

1
4

}
, there exist ε1 > 0 and R > 0

such that, if r < R and x0 ∈ Ω satisfy

Br(x0) ⋐ Ω, |Du|x0,r < M and U∗∗(x0, r) < ε1,

where c∗∗ is the constant introduced in Proposition 5.2, then

U∗∗(x0, ϑ
kr) ≤ ϑkβU∗∗(x0, r), ∀k ∈ N.
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6.1 Proof of Theorem 1.2

Proof. We consider the set

Ω0 :=

{
x ∈ Ω : lim sup

ρ→0
|(Du)x,ρ| <∞ and lim sup

ρ→0
U∗(x, ρ) = 0

}
and let x0 ∈ Ω0. For every M > 0 and for ε1 determined in Lemma 6.1 there exists a radius
RM,ε1 > 0 such that

|Du|x0,r < M and U∗(x0, r) < ε1,

for every 0 < r < RM,ε1 . If 0 < ρ < ϑr < R, let h ∈ N be such that ϑh+1r < ρ < ϑhr, where
ϑ = ϑ0

2 and ϑ0 is the same constant appearing in Lemma 6.1. By Lemma 6.1, we obtain

U∗(x0, ρ) ≤ c(p)

∫
Bρ

[
|Du− (Du)ϑhr|2 + |Du− (Du)ϑhr|p

]
dx

+ c(p)
[
|(Du)ϑhr − (Du)x0,ρ|2 + |(Du)ϑhr − (Du)x0,ρ|p

]
+
P (E,Bρ(x0))

ρn−1
+ ρ

≤ c(p)

∫
Bρ

[
|Du− (Du)ϑhr|2 + |Du− (Du)ϑhr|p

]
dx+

P (E,Bρ(x0))

ρn−1
+ ρ

≤ c(p)

(
ϑh+1r

ϑρ

)n∫
B

ϑhr

[
|Du− (Du)ϑhr|2 + |Du− (Du)ϑhr|p

]
dx+

P (E,Bϑhr(x0))

(ϑh+1r)n−1
+ ϑhr

≤ c(p)

ϑn

∫
B

ϑhr

[
|Du− (Du)ϑhr|2 + |Du− (Du)ϑhr|p

]
dx+

1

ϑn−1

P (E,Bϑhr(x0))

(ϑhr)n−1
+ ϑhr

=
c(n, p)

ϑn0

∫
B

ϑhr

[
|Du− (Du)ϑhr|2 + |Du− (Du)ϑhr|p

]
dx+

2n−1

ϑn−1
0

P (E,Bϑhr(x0))

(ϑhr)n−1
+ ϑhr

≤ c(n, p, ϑ0)U∗(x0, ϑ
hr) ≤ c(n, p, ϑ0)c∗ϑ

hαU∗(x0, r) ≤ c(n, p, ϑ0)c∗

(ρ
r

)α
U∗(x0, r),

where we used Jensen’s inequality. The previous estimate implies that

U(x0, ρ) ≤ C∗

(ρ
r

)α
U∗(x0, r),

where C∗ = C∗(n, p, θ0, c∗). Since U∗(y, r) is continuous in y, we have that U∗(y, r) < ε1 for all
y in a suitable neighborhood I of x0. Therefore, for every y ∈ I we have that

U(y, ρ) ≤ C∗

(ρ
r

)α
U∗(y, r).

The last inequality implies, by the Campanato characterization of Hölder continuous functions
(see [32, Theorem 2.9]), that u is C1,α in I for every 0 < α < 1

2 , and we can conclude that the
set Ω0 is open and the function u has Hölder continuous derivatives in Ω0.

When the assumption (H) is not enforced, the proof goes exactly in the same way provided
we use Lemma 6.2 in place of Lemma 6.1, with

Ω1 :=

{
x ∈ Ω : lim sup

ρ→0
|(Du)x0,ρ| <∞ and lim sup

ρ→0
U∗∗(x0, ρ) = 0

}
.
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