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Abstract. We establish a partial regularity result for solutions of parabolic systems
with general φ-growth, where φ is an Orlicz function. In this setting we can develop
a unified approach that is independent of the degeneracy of system and relies on two
caloric approximation results: the φ-caloric approximation, which was introduced in
[19], and an improved version of the A-caloric approximation, which we prove without
using the classical compactness method.

1. Introduction

The aim of this paper is to prove partial regularity for solutions of the following au-
tonomous parabolic system:

(1.1) ∂tu− divA(Du) = 0 in Ω× (0, T ],

where A ∈ C(RNn,RNn) ∩ C1(RNn \ {0},RNn) is modeled as the φ-Laplacian, see As-
sumption (A). We would like to point out that, already in the stationary case, the best
result we can expect for non-radial systems is the C1,α-regularity outside a set of Lebesgue
measure zero, see the survey [39] and references therein.

In this direction, a powerful tool is the comparison and closeness with suitable smooth
maps, for which excess decay estimates are available. The first use of a compactness
argument for approximately harmonic maps goes back to De Giorgi, in the context of
regularity of minimal surfaces in geometric measure theory, see [22, 44]. De Giorgi’s
Lemma states that there is a rigidity behaviour of approximately harmonic maps, in the
sense that they are close to harmonic ones. This Lemma has been generalized to strongly
elliptic bilinear forms, the so-called A-harmonic approximation, in [28] for applications to
the boundary regularity of minimizing elliptic currents. For elliptic systems and related
quasiconvex functionals of p-growth, we refer to for instance [28, 23, 24, 1, 30, 2, 7].
Here partial regularity results are proved, using a two-scale approach. As long as the
excess functional is small compared to the gradient average in a ball, one can linearize
the system via the A-harmonic approximation Lemma. When, instead, the system is
degenerate, one compares with the p-Laplacian via the p-harmonic approximation, see
[25] and also [3]. The final partial regularity result is then achieved with an exit time
argument. In a more general setting, the A-harmonic approximation in Orlicz spaces and
the φ-harmonic approximation were proven in [15] and [21], respectively, by utilizing a
refined Lipschitz truncation argument. Using these approximation results, in recent years,
partial regularity for elliptic systems or quasiconvex functionals with general growth has
been studied in [10, 43, 35, 31, 40].

Regularity results for the evolutive p-Laplacian system

∂tu− div
(
|Du|p−2Du

)
= 0 in ΩT
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were established by DiBenedetto and Friedman in [11, 12]. Their key idea was to look
at the system in a new geometry, that, in a sense, reduces the system to the classical
heat system. Roughly speaking, if the average of the gradient of a solution is locally
comparable with λ, the system looks like

∂tu = div(λp−2Du) .

This suggests to consider a “new metric” in which the scaling is homogeneous and to
consider “balls” centered at the point z0 = (x0, t0) with respect to this metric; i.e., the
cylinders:

Qλ
r (z0) := Bρ(x0)× (t0 − λ2−pr2, t0 + λ2−pr2) .

This method is known as the intrinsic scaling method. As for the evolutive Uhlenbeck
system with general φ-growth

(1.2) ∂tu− div

(
φ′(|Du|)
|Du|

Du

)
= 0 in ΩT ,

everywhere C1,α-regularity is finally established in our recent paper [41] using cylinders
that are intrinsic with respect to the function φ, namely,

Qλ
r (z0) := Br(x0)×

(
t0 −

λ2

φ(λ)
r2, t0 +

λ2

φ(λ)
r2
)
.

We also refer to [37, 18] for related regularity results for the system (1.2).
Partial regularity for parabolic systems using caloric approximations has been studied

in [26, 4, 5, 27, 6, 42]. In particular, in [6] Bögelein, Duzaar and Mingione obtained the
A-caloric and p-caloric approximations, and using these proved partial Hölder continuity
of the gradient of weak solutions to the degenerate parabolic system (1.1) with standard
p-growth. Let us review the proof of partial regularity in [6]. By assuming a smallness
condition on the relevant excess at some scale, it is possible to linearize the system at
the gradient average in the nondegenerate case, and compare the solution of the original
system with one of the linearized system. The comparison argument ensures the decay
estimate for the excess at smaller scales. In the degenerate regime, one compares with a
suitable p-Laplace evolutive system via the p-caloric approximation. At this stage, one
can proceed using the intrinsic cylinders á la Di Benedetto. Finally, the degenerate and
nondegenerate regimes are matching together keeping track of the so called “switching
radius”.

In this paper we consider degenerate parabolic systems with general φ-growth and
obtain partial Hölder continuity of the gradient of weak solutions. Our result covers a
large class of systems whose degeneracy need not to be determined. In particular, we
extend the results of the subquadratic and superquadratic systems obtained in [6].

We emphasize that our method, inspired by [6], deals with systems in a unified way,
without any distinction between the superquadratic and subquadratic cases. The main
tools are some caloric approximations in the Orlicz setting. In the nondegenerate regime,
we prove a new version of the A-caloric approximation which is more suitable to our set-
ting. We would like to mention a recent related result in [29], where the authors obtained
an A-caloric approximation using the classical compactness method, and, applying this,
they proved partial Hölder regularity for nondegenerate parabolic systems with general
growth. The proof of our version, stated in Theorem 3.8, relies on a parabolic duality
argument and an improved parabolic Lipschitz truncation, along the lines of [15] for the
elliptic case. Consequently, we can obtain closeness with comparing mappings in terms
of gradients directly, which is sharper than the one considered in [29]. Moreover, we
underline explicitly how the constant δ in Theorem 3.8 depends only on p and q instead
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of φ. As for the degenerate regime, we use the φ-caloric approximation lemma proven in
[19]. Now, we state the main theorem of our paper.

Theorem 1.1. Let u be a weak solution to (1.1) where A satisfies Assumption (A).

There exist U ⊂ ΩT with |ΩT \U | = 0 and α ∈ (0, 1) such that Du ∈ C
α,α

2
loc (U). Moreover,

we have (ΩT \ U) ⊂ (Σ1 ∪ Σ2), where

(1.3) Σ1 :=

{
z0 ∈ ΩT : lim inf

r→0+

 
Qr(z0)

|V(Du)− (V(Du))Qr(z0)|2 dz > 0

}
and

(1.4) Σ2 :=

{
z0 ∈ ΩT : lim sup

r→0+
|(Du)Qr(z0)| = ∞

}
.

Overview of the paper. In Section 2, we fix the basic notation and collect some defini-
tions and results on Orlicz functions. In Section 3, we prove the A-caloric approximation
and recall the φ-caloric one. In Section 4, we obtain the Caccioppoli inequality and the
higher integrability. In Sections 5 and 6, we consider the nondegenerate and degenerate
regimes, respectively. In Section 7, we perform the iteration procedure and then prove
the main theorem, Theorem 1.1.

2. Preliminaries

2.1. Notation. For z0 = (x0, t0) ∈ Rn × R and r, τ > 0, we define

Qr,τ (z0) := Br(x0)× (t0 − τ, t0 + τ) ,

where Br(x0) is the open ball in Rn centered at x0 with radius r. In particular, we write
Qr(z0) := Qr,r2(z) which is the usual parabolic cylinder. Moreover, for a given function

φ : (0,∞) → (0,∞) and λ > 0, we write Qλ
r (z0) := Qr,τ (z0) with τ = λ2

φ(λ)
r2. If the

center z0 is the origin or is not important, we omit writing the center of the cylinders.
The notation f ≲ g or f ∼ g means that there exists constant c ⩾ 1 such that f ⩽ cg or
1
c
f ⩽ g ⩽ cf . We write the average of a function f on Qr(z0) and on Qλ

r (z0) as

(f)r = (f)Qr(z0) :=

 
Qr(z0)

f dz and (f)λr = (f)Qλr (z0) :=

 
Qλr (z0)

f dz ,

respectively.

2.2. Orlicz functions and related operators. In this paper, φ : [0,∞) → [0,∞) is
always an N -function, that is, φ(0) = 0, there exists a right continuous derivative φ′ of
φ, φ′ is increasing with φ′(0) = 0 and φ′(t) > 0 when t > 0. For simplicity, we shall
assume that

φ(1) = 1 .

Note that if we do not assume this condition, constants c in this paper may depend on
φ(1). We say that φ satisfies the ∆2 condition denoted by ∆(φ) < ∞ if there exists
a positive constant K =: ∆(φ) such that φ(2t) ⩽ Kφ(t) for all t > 0. The conjugate
function of φ is defined as

(2.1) φ∗(t) := sup
s⩾0

(st− φ(s)) .

From the definition, the following Young’s inequality

(2.2) st ⩽ φ(t) + φ∗(s) , s, t ⩾ 0 ,
3



holds true. From now on we always assume that φ and φ∗ satisfy the ∆2 condition
and this is denoted by ∆(φ, φ∗) <∞, where ∆(φ, φ∗) denotes the relevant constants K.
We note that the exact value of φ∗ is not always explicitly computable and instead the
estimate

(2.3) φ∗
(
φ(t)

t

)
∼ φ∗(φ′(t)) ∼ φ(t)

will often be useful in computations (see [32, Theorem 2.4.10]).
If φ satisfies ∆(φ, φ∗), we define the Orlicz space Lφ(Ω,RN) as the set of all measurable

functions f : Ω → RN such that ˆ
Ω

φ(|f(x)|) dx <∞,

and the Orlicz-Sobolev space W 1,φ(Ω,RN) as the set of all f ∈ Lφ(Ω,RN)∩W 1,1(Ω,RN)
such that ˆ

Ω

φ(|Df(x)|) dx <∞.

Lφ(Ω,RN) and W 1,φ(Ω,RN) are endowed with the usual Luxembourg type norms. Then
they are reflexive Banach spaces. Moreover, for an interval I in R, the parabolic space
Lφ(I;W 1,φ(Ω,RN)) or Lφ(I;W 1,φ

0 (Ω,RN)) denotes the set of all functions f : Ω×I → RN

such that f(·, t) ∈ W 1,φ(Ω,RN) or f(·, t) ∈ W 1,φ
0 (Ω,RN) for a.e. t ∈ I andˆ

I

ˆ
Ω

φ(|Df(x, t)|) dx dt <∞.

We recall Jensen type inequality in [33, Lemma 2.2].

Lemma 2.1. If ψ : [0,∞) → [0,∞] is increasing with ψ(0) = 0 and satisfies that
ψ(t)/t ⩽ Lψ(s)/s for every 0 ⩽ t ⩽ s with constant L ⩾ 1, then

ψ

(
1

L2

 
U

|f | dz
)

⩽
 
U

ψ(|f |) dz.

Now we further assume for φ that

(2.4)
2n

n+ 2
< p ⩽

tφ′′(t)

φ′(t)
+ 1 ⩽ q, for all t ∈ (0,∞).

Without loss of generality, we always assume that p < 2 < q. Note that this implies

(2.5) 1 < p ⩽
tφ′(t)

φ(t)
⩽ q , t > 0 .

and hence the ∆2 conditions of φ and φ∗. Then we define vector valued functions V :
RNn → RNn by

(2.6) V(Q) :=

√
φ′(|Q|)
|Q|

Q.

Then we recall equivalent relations in [14, Lemmas 3 and 20] and [18, Lemma 3.1]:

(2.7)
φ′(|P|+ |Q|)
|P|+ |Q|

|P−Q|2 ∼ |V(P)−V(Q)|2 ∼ φ|Q|(|P−Q|) ,

(2.8)
φ′(|P|+ |Q|)
|P|+ |Q|

∼
ˆ 1

0

φ′(|τP+ (1− τ)Q|)
|τP+ (1− τ)Q|

dτ ,
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and

(2.9) |A(P)−A(Q)| ∼ φ′
|Q|(|P−Q|) .

Moreover, by the same proof of [16, Lemma A.2], we have that for every g ∈ Lφ(Qr;RNn),

(2.10)

 
Qr

|V(g)− (V(g))Qr |2 dz ∼
 
Qr

|V(g)−V((g)Qr)|2 dz

Finally we recall the following Young type inequality from [34, Proposition 3.8 (3)]: for
every ε ∈ (0, 1)

(2.11) φ(|P−Q|) ⩽ ε (φ(|P|) + φ(|Q|)) + cε−1|V(P)−V(Q)|2 .
Note that all constants concerned with the relation ∼ and c in above depend only on p
and q.

2.3. Shifted N-functions. The following definitions and results about shiftedN -functions
can be found in [14, 20].

For an N -function φ and for a ⩾ 0, we define the shifted N -function φa by

φa(t) :=

ˆ t

0

φ′(a+ s)s

a+ s
ds

(
i.e., φ′

a(t) =
φ′(a+ t)

a+ t
t

)
.

We note that if φ satisfies (2.4) then φa also satisfies (2.4) uniformly in a ⩾ 0 with the
same p and q.

Under assumption (2.4) on φ, we have the following relations (see, e.g., [10, Proposition
2.3] and [20]), which hold uniformly with respect to a ⩾ 0:

φa(t) ∼ φ′
a(t) t ;(2.12)

φa(t) ∼ φ′′(a+ t)t2 ∼ φ(a+ t)

(a+ t)2
t2 ∼ φ′(a+ t)

a+ t
t2 ,(2.13)

φ(a+ t) ∼ [φa(t) + φ(a)] .(2.14)

The following lemma (see [17, Corollary 26]) deals with the change of shift for N -
functions.

Lemma 2.2 (change of shift). Let φ be an N-function with ∆2(φ),∆2(φ
∗) < ∞. Then

for any η > 0 there exists cη > 0, depending only on η and ∆2(φ), such that for all
a,b ∈ Rm and t ⩾ 0

(2.15) φ|a|(t) ⩽ cηφ|b|(t) + ηφ|a|(|a− b|) .
2.4. Assumption and weak solution. We state the assumption of the main theorem,
Theorem 1.1, and the definition of weak solution to (1.1).

Assumption (A). The operator A verifies the following assumptions with constants
0 < ν ⩽ 1 ⩽ L and an N-function φ ∈ C1([0,∞)) ∩ C2((0,∞)) satisfying (2.4).

(A1) (φ-growth condition)

(2.16) |A(P)|+ |DA(P)||P| ⩽ Lφ′(|P|) ,[
DA(P)(a⊗ b)

]
: (a⊗ b) ⩾ νφ′′(|P|)|a||b| ,

for all P ∈ RNn \ {0}, a ∈ Rn and b ∈ RN .
(A2) (Off diagonal condition on A and φ)

(2.17) |DA(P)−DA(Q)|+ |D2(φ(|P|))−D2(φ(|Q|))| ⩽ L

(
|P−Q|

|P|

)γ
φ′′(|P|)

for some γ ∈ (0, 1), all P,Q ∈ RNn with |P−Q| ⩽ 1
2
|P|, a ∈ Rn and b ∈ RN .
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(A3) (Almost φ-isotropic condition near the origin) For every ε > 0 there exists δ =
δ(ε) > 0 such that

(2.18)

∣∣∣∣A(P)− φ′(|P|)
|P|

P

∣∣∣∣ ⩽ εφ′(|P|)

for all P ∈ RNn with |P| ⩽ δ.

We note that the assumption (i) implies the following monotonicity

(2.19) (A(P)−A(Q)) : (P−Q) ⩾ ν̃φ′′(|P|+ |Q|)|P−Q|2, P,Q ∈ RNn.

for some ν̃ = ν̃(ν, L) > 0.
A function u = (u1, u2, . . . , uN) ∈ Cloc(0, T ;L

2
loc(Ω,RN)) ∩ Lφloc(0, T ;W

1,φ
loc (Ω,RN)) is

said to be a (local) weak solution to (1.1) if it satisfies the following weak form of (1.1):

−
ˆ
ΩT

u · ζt dz +
ˆ
ΩT

A(Du) : Dζ dz = 0 for all ζ ∈ C∞
c (ΩT ,RN) ,

where “·” and “:” are the Euclidean inner products in RN and RNn, respectively. By
the density of smooth functions in Orlicz-Sobolev spaces and a standard approximation
argument one can see that the weak solution u to (1.1) also satisfies for every 0 < t1 <
t2 ⩽ T , ˆ

Ω′
u · ζ(x, t) dx

∣∣∣∣t=t2
t=t1

+

ˆ
Ω′

ˆ t2

t1

[−u · ζt +A(Du) : Dζ] dt dx = 0

for all ζ ∈ W 1,2([t1, t2];L
2(Ω′,RN)) ∩ Lφ([t1, t2];W 1,φ

0 (Ω′,RN)) and Ω′ ⋐ Ω.

Remark 2.3. The weak solution u to (1.1) is not weakly differentiable in t. Consequently,
we are unable to employ a test function ζ that directly involves the weak solution. How-
ever, this problem can be overcome by utilizing an approximation method known as the
Steklov average, as described in [13, I. 3-(i) and II. Proposition 3.1]. This technique
has become a standard approach for addressing such problems. Henceforth, we shall as-
sume that u is differentiable and proceed to consider test functions that involve the weak
solution without further explicit clarification.

3. A-caloric and φ-caloric approximations

In this section, we introduce two caloric approximations. They play a crucial role in
the proof of partial regularity. φ-caloric approximation was obtained in [19] and we just
recall it. On the other hand, we derive a new version of A-caloric approximation with
gradient estimates by using parabolic duality and Lipschitz truncation. In Sections 3.1
and 3.2, we obtain auxiliary lemmas for A-caloric approximation.

3.1. Regularity estimates for linear systems with constant coefficients. We in-
troduce Lipschitz estimates for A-caloric maps and Calderón-Zygmund estimates for par-
abolic linear systems with constant coefficient A. Let A = (Aαβ

ij ) ∈ RN2n2
satisfy the

Legendre-Hadamard condition: for every a = (aα) ∈ RN and b = (bi) ∈ Rn,

A(a⊗ b) : (a⊗ b) = Aαβ
ij a

αaβbibj ⩾ ν|a|2|b|2

for some ν > 0. Then a weak solution h : Qr → RN to the linear system with coefficient
A

ht − div(ADh) = 0 in Qr
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is called an A-caloric map. By standard regularity theory, see for instance [9], v ∈
C∞(Qr,RN), and in particular we have the following Lipschitz estimate and excess decay
estimate, which will be used in Section 5.

Lemma 3.1. Suppose h ∈ C∞(Qr,RN) is an A-caloric map in Qr. Then we have that

(3.1) sup
Qr/2

|Dh| ⩽ c

 
Qr

|Dh| dz .

Moreover, for every θ ∈ (0, 1),

(3.2)

 
Qθr

|Dh− (Dh)θr| dz ⩽ cθ

 
Qr

|Dh− (Dh)r| dz .

Proof. In view of [9, (5.9)–(5.12)], one can have

sup
Qr/2

(|h|+ r|Dh|+ r2|D2h|) ⩽ c

 
Qr

|h|dz .

Since every hxi , i = 1, 2, . . . , n, is alsoA-harmonic, (3.1) directly follows from the previous
inequality. Let

ℓ(x) := (Dh)rx.

Suppose θ ∈ (0, 1/2]. We note from the mean value theorem for Dh in Qθρ that

sup
Qθρ

|Dh− (Dh)θr| ⩽ 2θr sup
Qθr

|D2h|+ 2θ2r2 sup
z∈Qθr

|[Dh]t|

= 2θr sup
Qθr

|D2(h− ℓ)|+ 2θ2r2 sup
Qθr

|D div[AD(h− ℓ)]|

⩽ 2θr sup
Qr/2

|D2(h− ℓ)|+ 2θ2r2 sup
Qr/2

|D3(h− ℓ)|

⩽ 2θ

(
r sup
Qr/2

|D2(h− ℓ)|+ r2 sup
Qr/2

|D3(h− ℓ)|

)
.

Since every (h− ℓ)xi , i = 1, 2, . . . , n, is also A-caloric in Qr, we have from (3.1) that

sup
Qθr

|Dh− (Dh)θr| ⩽ cθ

 
Qr

|D(h− ℓ)| dz ,

which implies (3.2). □

We introduce the parabolic Calderón-Zygmund estimates for an N -function ψ with
∆(ψ, ψ∗) < ∞. We shall assume that ψ(1) = 1 without loss of generality. In the next
lemma, if ψ(τ) = τ p, 1 < p < ∞, the estimate (3.3) is well known, see for instance [36]
and references therein. Furthermore, for general Orlicz functions it can be obtained by
applying a standard interpolation argument for linear operators as in [15, Theorem 18].
We also refer to [8] for more general results for parabolic Calderón-Zygmund estimates
in Orlicz spaces.

Lemma 3.2. (Calderón-Zygmund estimates) Let ψ be an N-function with ∆(ψ, ψ∗) <∞
and G ∈ Lψ(Qr,RNn) where Qr = Br × (−r2, r2). There exists a unique weak solution

u ∈ Lψ(−r2, r2;Lψ(Br)) with wt ∈ (Lψ((−r2, r2);W 1,ψ
0 (Ω)))′ to the system{

∂tw − div(ADw) = − div G in Qr,

w = 0 on ∂pQr,
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and we have the estimates

∥Dw∥Lψ(Qr) ⩽ c∥G∥Lψ(Qr) ,

and

(3.3)

ˆ
Qr

ψ(|Dw|) dz ⩽ c

ˆ
Qr

ψ(|G|) dz ,

where the constant c > 0 depends on n,N, ν, |A| and ∆(ψ, ψ∗).

Remark 3.3. Analogous estimates as above can be inferred for the weak solution v to

(3.4)

{
∂tv + div(ATDv) = − div G in Qr,

v = 0 on (∂Br × {−r2 < t ⩽ r2}) ∪ (Br × {t = r2}),

by considering the reflecting function ṽ(x, t) = v(x,−t). Here, AT is the transpose of A,
and note that if A satisfies the Legendre-Hadamard condition then so does AT .

We estimate the gradient of a function in Lψ(−r2, r2;W 1,ψ
0 (Br)) in terms of functions

in the dual space Lψ
∗
.

Lemma 3.4. For every w ∈ Lψ(−r2, r2;W 1,ψ
0 (Br)), we have

ˆ
Qr

ψ(|Dw|) dz ⩽ sup
G∈Lψ∗∩C∞(Qr,RNn)

(ˆ
Qr

w · (vG)t − ⟨ADw, DvG⟩ − ψ∗(|G|) dz
)
,

where vG is the weak solution to (3.4).

Proof. We note from the definition of the conjugate function in (2.1) that

ψ(t) = ψ∗∗(t) = sup
s⩾0

(st− ψ∗(s)) = tψ′(t)− ψ∗(ψ′(t)) .

Hence, denoting Gw := ψ′(|Dw|) Dw
|Dw| , we have Gw ∈ Lψ

∗
(Qr,RNn) by (2.3), and

ˆ
Qr

ψ(|Dw|) dz =
ˆ
QR

|Dw|ψ′(|Dw|)− ψ∗(ψ′(|Dw|)) dz

=

ˆ
Qr

⟨Gw, Dw⟩ − ψ∗(|Gw|) dz

⩽ sup
G∈Lψ∗ (Qr,RNn)

(ˆ
Qr

⟨G, Dw⟩ − ψ∗(|G|) dz
)

= sup
G∈Lψ∗∩C∞(Qr,RNn)

(ˆ
Qr

⟨G, Dw⟩ − ψ∗(|G|) dz
)
.

For each G ∈ Lψ
∗
(Qr,RNn) ∩ C∞(Qr,RNn), let vG be the weak solution to (3.4). Then

we see that vG ∈ C∞(Qr,RN) since A is constant, and by testing (3.4) with w we have
ˆ
Qr

⟨G, Dw⟩ dz =
ˆ
Qr

(vG)t ·w − ⟨ATDvG, Dw⟩ dz =
ˆ
Qr

w · (vG)t − ⟨ADw, DvG⟩ dz .

This concludes the proof. □
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3.2. Parabolic Lipschitz truncation. We recall the parabolic Lipschitz truncations
introduced in [19] and their main properties, in the particular case when the scaling
quantity α therein is equal to 1.

Let v ∈ Lψ(−r1, r1;W 1,1
0 (Br,RNn)) and G ∈ L1(Qr,RNn) satisfy the system

(3.5) vt = divG in Qr, v = 0 on ∂pQr,

in the distributional sense. We take as “bad set” a superlevel set for the maximal function
of the spatial gradient and of the time derivative in the following way:

Oλ := {M(χQr∇v) > λ} ∪ {M(χQrG) > λ}, λ > 0 ,

where M is the parabolic maximal operator defined by

M(f)(z̃) := sup
Qρ(z0) : z̃∈Qρ(z0)

 
Qρ(z0)

|f | dz .

Then we have the following properties, which can be inferred by [19, Theorem 2.3] with
α = 1, M := M1 and Oλ := O1

λ.

Lemma 3.5. Let v ∈ Lψ(−r2, r2;W 1,ψ
0 (Br,RNn)) satisfy the system (3.5) in the dis-

tributional sense, and let λ > 0. Then there exists vλ ∈ L1(−r2, r2;W 1,1
0 (Br)) with

|Dvλ| ∈ Lψ(Qr) such that

(1) vλ = v on (Oλ)
c.

(2) M(Dvλ) ⩽ cλ.
(3) we have ˆ

Qr

ψ(|D(vλ − v)|) dz ⩽ c

ˆ
Qr

ψ(|Dv|) dz + cψ(λ)|Oλ| .

Here the constants c > 0 depend on n,N and ∆2(ψ, ψ
∗).

We note from [19, Section 2.3] that the function vλ is determined by

(3.6) vλ := v −
∑
i

ζi(v − vi), where vi :=

{
(v)ζi if 3

4
Qi ⊂ Br × (−r2, 3r2) ,

0 otherwise,

where we extend v and G to Br × (r2, 3r2) by v(x, 2r2 − t) and −G(x, 2r2 − t) and
to the outside of Br × (−r2, 3r2) by zeros, hence this extended v satisfies the system
vt = divG in Br × (−∞,∞) in the sense of distributions, and {Qi}∞i=1 is a parabolic
Whitney covering of Oλ such that Qj = Qri(zi),

(W1)
⋃
i
1
2
Qi = Oλ,

(W2) for all j ∈ N we have 8Qi ⊂ Oλ and 16Qi ∩ (Rm+1 \ Oλ) ̸= ∅,
(W3) if Qi ∩Qj ̸= ∅ then 1

2
rj ⩽ ri ⩽ 2 rj,

(W4) 1
4
Qi ∩ 1

4
Qj = ∅ for all i ̸= j,

(W5) each x ∈ Oλ belongs to at most 120n+2 of the sets 4Qi.

Here, κQi := Qκri for κ > 0, and {ζi} ⊂ C∞
0 (Rn+1) is a partition of unity with respect to

{Qi} that satisfies

(P1) χ 1
2
Qi

⩽ ζi ⩽ χ 3
4
Qi

(P2) ∥ζi∥∞ + ri∥Dζi∥∞ + r2i ∥D2ζi∥∞ + r2i ∥(ζi)t∥∞ ⩽ c.
(P3) For each j ∈ N we define Aj := {i : 3

4
Qj ∩ 3

4
Qi ̸= ∅}. Then

∑
i∈Aj ζi = 1 on 3

4
Qj.

The following result provides an upper bound for the measure of the bad set Oλ, see
[19, Lemma 4.1] with α = 1.
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Lemma 3.6. Let v ∈ Lψ(−r2, r2;W 1,ψ
0 (Br)) and G ∈ Lψ

∗
(Qr) satisfy (3.5) in the dis-

tribution sense. Set γ > 0 such that

ψ(γ) :=

 
Qr

ψ(|Dv|) dz +
 
Qr

ψ(|G|) dz .

Then, for every m0 ∈ N, there exists λ ∈ [γ, 2m0γ] such that

|Oλ| ⩽ c
ψ(γ)

m0ψ(λ)
|Qr|

for some c > 0 depending on n,N and ∆2(ψ, ψ
∗).

We end this subsection presenting a Poincaré-type inequality. Note that the following
lemma is irrelevant to the above setting.

Lemma 3.7. Let w ∈ Lψ(−r2, r2;W 1,1
0 (Br,RNn)) and H ∈ L1(Qr,RNn) satisfy the

system

wt = divH in Qr, w = 0 on ∂pQr,

in the distributional sense. Extend w and H by w(x, 2r2 − t) and −H(x, 2r2 − t) to
Br× (r2, 3r2) and by zero outside Br× (−r2, 3r2). For any parabolic cylinder Qρ = Qρ(z)
in Rn+1 and any ζ ∈ C∞

0 (3
4
Qρ) with ζ ⩾ 0 with ∥ζ∥L∞( 3

4
Qρ)

⩽ c0|34Qρ|−1∥ζ∥L1( 3
4
Qρ)

, set

w :=

{
(w)ζ if 3

4
Qρ ⊂ Br × (−r2, 3r2) ,

0 otherwise.

Then we have
 

3
4
Qρ

ψ

(
w −w

ρ

)
dz ⩽ c

 
Qρ

ψ(|Dw|) dz + cψ

( 
Qρ

|H| dz

)
for some c > 0 depending on n,N,∆2(ψ, ψ

∗) and c0.

Proof. The proof is almost the same as the one of [19, Lemma 2.11] with replacing [19,
Lemma 2.8] by [19, Lemma 2.9]. In fact, if 3

4
Qρ ⊂ Br × (−r2, 3r2), then the inequality

follows directly from [19, Lemma 2.9].

If 3
4
Qρ ̸⊂ Br × (−r2, 3r2) and 4

5
Qρ ⊂ Br × (−∞,∞), choose ζ̃ ∈ C∞

0 (4
5
Qρ) with ζ̃ ⩾ 0,

supp(ζ̃) ⊂ 4
5
Qρ \ (Br × (−r2, 3r2)) and ∥ζ∥L∞( 4

5
Qρ)

⩽ c(n)|4
5
Qρ|−1∥ζ∥L1( 4

5
Qρ)

. Then, since

w ≡ 0 in supp(ζ̃), we have (w)ζ̃ = 0 hence again by [19, Lemma 2.9]

 
3
4
Qρ

ψ

(
w −w

ρ

)
dz =

 
3
4
Qρ

ψ

(
w − (w)ζ̃

ρ

)
dz ⩽ c

 
4
5
Qρ

ψ(|Dw|) dz+ cψ
(  

4
5
Qρ

|H| dz
)
.

Finally, if 4
5
Qρ ⊂ Br × (−∞,∞), then there exists c(n) > 0 such that |Br|

|{w(x,t)=0}∩Br}| ⩽
c(n) for a.e. time slice of Qρ. Therefore by the Poincaré inequality for the space variable,
see [14, Theorem 7], we have

 
3
4
Qρ

ψ

(
w −w

ρ

)
dz ⩽

 
Qρ

ψ

(
w

ρ

)
dz ⩽ c

 
Qρ

ψ(|Dw|) dz .

The proof is concluded. □
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3.3. Caloric approximations. We first obtain the A-caloric approximation. As a nov-
elty with respect to previous caloric type approximations, we do not need to restrict the
choice of the test functions ζ in C∞

0 (Qr), but we only assume them to be zero on the
lateral boundary. This allows us to choose as test functions also the solutions of suitable
linear systems.

Theorem 3.8. (A-caloric approximation) Let µ, σ, C0 > 0 and ψ be an N-function with
∆2(ψ, ψ

∗) < ∞. For every ε ∈ (0, 1), there exists δ > 0 depending on σ, C0, ∆2(ψ, ψ
∗)

and ε such that if u ∈ L1(−r2, r2;W 1,ψ1+σ
(Br,RN)) and H ∈ Lψ

1+σ
(Qr,RNn) satisfy

∂tu = divH in Qr,

in the distributional sense, with the inequality

(3.7)

( 
Qr

ψ(|Du|)1+σ + ψ(|H|)1+σ dz
) 1

1+σ

⩽ C0ψ(µ),

and for every ζ ∈ C∞(Qr;RN) with ζ = 0 on ∂Br × (−r2, r2),

(3.8)
1

|Qr|

∣∣∣∣∣
ˆ
Qr

u · ζt − ⟨ADu, Dζ⟩ dz −
[ˆ

Br

u · ζt dx
]t=r2
t=−r2

∣∣∣∣∣ ⩽ δµ∥Dζ∥L∞(Qr,RNn),

then

(3.9)

 
Qr

ψ(|Du−Dh|) dz ⩽ εψ(µ),

where h is the weak solution to{
∂th− div(ADh) = 0 in Qr,

h = u on ∂pQr.

Proof. It will suffice to prove the assertion in the case µ = 1 with ψ(1) = 1, as the general

case can be obtained by scaling argument with the functions ũ = µ−1u, H̃ = µ−1H and

ψ̃(τ) = ψ(µτ)
ψ(µ)

. Set w := u− h. Then w satisfies

(3.10)

{
∂tw − div(ADw) = − div (ADu+H) in Qr,

w = 0 on ∂pQr,

in the distributional sense. Moreover, by applying Lemma 3.2 to the N -function ψ1+σ

and (3.7), we see that

(3.11)

 
Qr

ψ(|Dw|)1+σ dz ⩽ c

 
Qr

ψ(|ADu+H|)1+σ dz ⩽ c .

We will apply the inequality in Lemma 3.4. Fix any G ∈ Lψ
∗
(Qr,RNn) ∩ C∞(Qr,RNn)

and consider the weak solution vG to (3.4). Note that, by Lemma 3.2 with Remark 3.3
and ψ∗ in place of ψ,

(3.12)

ˆ
Qr

ψ∗(|DvG|) dz ⩽ c

ˆ
Qr

ψ∗(|G|) dz .

Moreover, vG ∈ C∞(Qr,RN) since G ∈ C∞(Qr,RNn). To enlighten the notation, from
now on we will simply denote vG by v.

Choose γ ∈ [0,∞) such that

(3.13) ψ∗(γ) =

ˆ
Qr

ψ∗(|Dv|) dz +
ˆ
Qr

ψ∗(|ATDv +G|) dz .
11



Then, with (3.12) and the subadditivity of ψ∗ we have

ψ∗(γ) ⩽ c

ˆ
Qr

ψ∗(|G|) dz .

Let m0 ∈ N be large enough, to be determined later. Then by Lemma 3.5(1) and
Lemma 3.6 with ψ∗ in place of ψ, there exists λ ∈ [γ, 2m0γ] such that {v ̸= vλ} ⊂ Oλ

and

(3.14)
|Oλ|
|Qr|

⩽
cψ∗(γ)

m0ψ∗(λ)
⩽

c

m0

,

where vλ is the parabolic Lipschitz truncation of v provided by Lemma 3.5. Note
that v is zero on the top, but not on the base, of the cylinder Qr. Hence we apply
the Lipschitz truncation and related results in the previous subsection to the function
v(x,−t). Accordingly, v and G̃ := −ATDv − G are extended to Br × (−3r2,−r2) by

v(x, t) = v(x,−2r2−t) and G̃(x, t) = −G̃(x,−2r2−t) and to the outside ofBr×(−3r2, r2)

by zeros, hence from (3.4) v satisfies the system vt = div G̃ in BR × (−∞,∞) in the
distribution sense.

Then we observe that

(3.15)

ˆ
Qr

w · vt − ⟨ADw, Dv⟩ dz =
ˆ
Qr

w · (vλ)t − ⟨ADw, Dvλ⟩ dz

+

ˆ
Qr

w · (v − vλ)t dz −
ˆ
Qr

⟨ADw, D(v − vλ⟩ dz

=: I1 + I2 − I3 .

For I1, since w = u+ h,

I1 =

ˆ
Qr

w · (vλ)t − ⟨ADw, Dvλ⟩ dz −
[ˆ

Qr

w · vλ dx
]t=r2
t=−r2

=

ˆ
Qr

u · (vλ)t − ⟨ADu, Dvλ⟩ dz −
[ˆ

Qr

u · vλ dx
]t=r2
t=−r2

.

Then by (3.8), Lemma 3.5(2) and Young’s inequality we have that for any κ1 ∈ (0, 1),

1

|Qr|
I1 ⩽ δ∥Dvλ∥L∞(Qr,RNn) ⩽ cδλ ⩽ cκ1ψ (δ) + κ1ψ

∗(λ) ⩽ cκ1ψ (δ) + κ1ψ
∗(2m0γ).

We next estimate I3. By Young’s inequality, Hölder’s inequality and Lemma 3.5(3) with
ψ∗ in place of ψ and Lemma 3.6, we have that for any κ2 ∈ (0, 1)

|I3| ⩽ cκ2

ˆ
Oλ∩Qr

ψ(|Dw|) dz + κ2

ˆ
Oλ∩Qr

ψ∗(|D(v − vλ)|) dz

⩽ cκ2

ˆ
Oλ∩Qr

ψ(|Dw|) dz + cκ2

ˆ
Qr

ψ∗(|Dv|) dz + cκ2|Oλ|ψ∗(λ)

⩽ cκ2

(ˆ
Qr

ψ(|Dw|)1+σ dz
) 1

1+σ

|Oλ|
σ

1+σ + cκ2

ˆ
Qr

ψ∗(|Dv|) dz + cκ2|Oλ|ψ∗(λ) ,

hence applying (3.11) and (3.14)

1

|Qr|
|I3| ⩽ cκ2m

− σ
1+σ

0 + cκ2

 
Qr

ψ∗(|Dv|) dz + cκ2
m0

ψ∗(γ) .

12



Finally, we estimate I2. Recall the parabolic Whitney covering {Qi}∞i=1 of Oλ and the
partition of unity {ζi}∞i=1 ⊂ C∞

0 (3
4
Qi) with respect to v and the definition of vλ in

(3.6). In addition, we extend w and H̃ := A(Dw − Du − H) to Br × (r2, 3r2) by

w(x, t) = w(x, 2r2− t) and H̃(x, t) = −H̃(x, 2r2− t) and to the outside of Br× (−r2, 3r2)
by zeros, hence from (3.10) w satisfies the system wt = div H̃ in BR × (−∞,∞) in the
distribution sense. With this extended w, we set

wi :=

{
(w)ζi if 3

4
Qi ⊂ Br × (−r2, 3r2) ,

0 otherwise.

Then, since wi’s are constants and v solves (3.4), we have

I2 ⩽ c
∑

3
4
Qi∩Qr ̸=∅

∣∣∣∣∣
ˆ

3
4
Qi∩Qr

w · [ζi(v − vi)]t dz

∣∣∣∣∣
= c

∑
3
4
Qi∩Qr ̸=∅

∣∣∣∣∣
ˆ

3
4
Qi∩Qr

(w −wi) · [ζi(v − vi)]t dz

∣∣∣∣∣
= c

∑
3
4
Qi∩Qr ̸=∅

∣∣∣∣∣
ˆ

3
4
Qi∩Qr

(w −wi) · [(v − vi)(ζi)t + vtζi] dz

∣∣∣∣∣
= c

∑
3
4
Qi∩Qr ̸=∅

∣∣∣∣∣
ˆ

3
4
Qi∩Qr

(w −wi) · (v − vi)(ζi)t + ⟨(ATDv +G), D[(w −wi)ζi]⟩ dz

∣∣∣∣∣
⩽ c

∑
3
4
Qi∩Qr ̸=∅

ˆ
3
4
Qi∩Qr

|w −wi|
ri

|v − vi|
ri

+ (|Dv|+ |G|)
(
|Dw|+ |w −wi|

ri

)
dz .

Moreover, by Young’s inequality we have that for any κ3 ∈ (0, 1),

I2 ⩽ cκ3
∑

3
4
Qi∩Qr ̸=∅

ˆ
3
4
Qi

ψ

(
|w −wi|

ri

)
+ ψ(|Dw|) dz

+ κ3
∑

3
4
Qi∩Qr ̸=∅

ˆ
3
4
Qi

ψ∗
(
|v − vi|
ri

)
+ ψ∗(|Dv|+ |G|) dz .

Then, applying Lemma 3.7 to w and v with the extensions of w, v, H and G, we have
that ˆ

3
4
Qi

ψ

(
|w −wi|

ri

)
dz ⩽ c

ˆ
Qi

ψ(|Dw|) dz +
ˆ
Qi

ψ(|ADw −ADu−H|) dz

⩽ c

ˆ
Qi

ψ(|Dw|+ |Du|+ |H|) dz ,

and ˆ
3
4
Qi

ψ∗
(
|v − vi|
ri

)
dz ⩽ c

ˆ
Qi

ψ∗(|Dv|) dz +
ˆ
Qi

ψ∗(| − ATDv −G|) dz

⩽ c

ˆ
Qi

ψ∗(|Dv|+ |G|) dz .
13



Using these inequalities, the fact that
∑

i χQi ⩽ c(n) and considering the extension of
functions, we estimate I2 as

I2 ⩽ cκ3

ˆ
Oλ
ψ(|Dw|+ |Du|+ |H|) dz + cκ3

ˆ
Oλ
ψ∗(|Dv|+ |G|) dz

⩽ cκ3

(ˆ
Oλ
ψ(|Dw|+ |Du|+ |H|)1+σ dz

) 1
1+σ

|Oλ|
σ

1+σ + cκ3

ˆ
Oλ
ψ∗(|Dv|+ |G|) dz

⩽ cκ3

(ˆ
Qr

ψ(|Dw|+ |Du|+ |H|)1+σ dz
) 1

1+σ

|Oλ|
σ

1+σ + cκ3

ˆ
Qr

ψ∗(|Dv|+ |G|) dz .

Therefore, by Hölder’s inequality and the estimates (3.7), (3.11), (3.12) and (3.13), we
have

1

|Qr|
I2 ⩽ cκ3

(
|Oλ|
|Qr|

) σ
1+σ

+ cκ3

 
Qr

ψ(|Dv|+ |G|) dz ⩽ cκ3m
− σ

1+σ

0 + cκ3

 
Qr

ψ∗(|G|) dz .

Inserting the estimates for I1, I2 and I3 into (3.15), we have 
Qr

w · vt − ⟨ADw, Dv⟩ dz ⩽ cκ1ψ(δ) + (cκ2 + cκ3)m
− σ

1+σ

0

+ (cm0κ1 + cκ2 + cκ3)

 
Qr

ψ∗(|G|) dz .

We choose κ2, κ3 small so that cκ2+cκ3 ⩽ 1
2
, then m0 large so that (cκ2 +cκ3)m

− σ
1+σ

0 ⩽ ε
2
,

then κ1 small so that cm0κ1 ⩽
1
2
, and then δ small so that cκ1ψ(δ) ⩽

ε
2
. Then we have 

Qr

w · vt − ⟨ADw, Dv⟩ dz ⩽ ε+

 
Qr

ψ∗(|G|) dz .

Since G is an arbitrary function in Lψ(Qr,RNn)∩C∞(Qr,RNn), by Lemma 3.4 we deduce
(3.9). This concludes the proof. □

The φ-caloric approximation has been proved in [19, Theorem 4.2]. It states that every
“almost φ-caloric” function has a φ-caloric function “close enough”.

Theorem 3.9. (φ-caloric approximation) Let γ1, γ2 ∈ (0, 1), γ3 ⩾ 1, I := (t−, t+).
Suppose φ be an N-function with ∆2(φ, φ

∗) < ∞ with φ(1) = 1. Then for every ε > 0
there exists δ > 0 depending on n,N,∆2(φ, φ

∗), γ1, γ2, γ2 and ε such that the following
holds: if u ∈ Lφ(I,W 1,φ(B)) satisfying ut = divG in the distribution sense is almost
φ-caloric in the sense that for all ζ ∈ C∞

0 (Q),∣∣∣ 
Q

u · ζt +
φ′(|Du|)
|Du|

⟨Du, Dζ⟩ dz
∣∣∣ ⩽ δ

[  
Q

φ(|Du|) + φ∗(|G|) dz + φ(∥Dζ∥∞)
]
,

then there exists a φ-caloric function h such that h = u on ∂pQ and( 
I

( 
B

( |u− h|2

|t+ − t−|

)γ2
dx
) γ3
γ2 dt

) 1
γ3

+
( 

Q

|V(Du)−V(Dh)|2γ1dz
) 1
γ1

⩽ ε

 
Q

φ(|Du|) + φ∗(|G|) dz .

Note that a first version of the p-caloric approximation method was developed by
Bögelein-Duzaar-Mingione [6] by using a contradiction argument. They used it to show
a partial regularity result for solutions of parabolic systems of p-growth; that is, almost
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everywhere ∇u ∈ Cα for some α > 0. We wish to quickly point out the improvements of
the approximation lemma here with respect to the one in [6]. The proof is done directly
by a comparison argument and the parabolic Lipschitz truncation. This direct approach
allows for showing the closeness both in L2γ2(L2γ3) and Lφ

γ1 (W 1,φγ1 ) norms (the last
closeness is via the function V in (2.6)).

4. Caccioppoli type inequality and Higher integrability

Let u be a weak solution to (1.1). We always assume that φ and A satisfies Assump-
tion (A). Let ℓ : Rn → RN be any fixed linear map of the form

(4.1) ℓ(x) := P(x− x0) + b, x ∈ Rn,

where P ∈ RNn, x0 ∈ Rn and b ∈ RN , and set

(4.2) uℓ := u− ℓ .

In this section we will obtain the higher integrability of not only Du but also of Duℓ. We
follow the argument in [33].

We first recall a Gagliardo-Nirenberg type inequality for Orlicz functions, see Lemma
4.1, which has been proved in [33, Lemma 2.13]. In order to do that, we fix some notation.
A function φ : [0,∞) → [0,∞) is said to be a weak Φ-function if it is increasing with

φ(0) = 0, limt→0+ φ(t) = 0, limt→+∞ φ(t) = +∞ and such that the map t→ φ(t)
t

is almost
increasing. Note that every N -function is a weak Φ-function.

Lemma 4.1. Assume that ψ : [0,∞) → [0,∞) is a weak Φ-function and such that

t 7→ ψ(t)
tq1

is almost decreasing with constant L ⩾ 1 for some q1 ⩾ 1. For p ∈ [1, n) and
q2 > 0 we have(  

Br

ψ
(∣∣f

r

∣∣)γ dx) 1
γ

⩽ c

(  
Br

[
ψ(|Df |)p + ψ

(∣∣f
r

∣∣)p] dx) θ
p

ψ

(( 
Br

∣∣f
r

∣∣q2 dx) 1
q2

)1−θ

for some c = c(n, L, q1, q2) > 0, provided that θ ∈ (0, 1) and γ satisfies

1

γ
⩾

θ

p∗
+

(1− θ)q1
q2

.

We start with a Caccioppoli type inequality for uℓ.

Lemma 4.2 (Caccioppoli inequality for uℓ). Let u be a weak solution to (1.1). For every
pair of concentric cylinders Qr1,τ1(z0) ⊂ Qr2,τ2(z0) ⋐ ΩT with z0 = (x0, t0), 0 < r1 < r2
and 0 < τ1 < τ2, and b ∈ RN , we have

(4.3)

sup
t∈Iτ1 (t0)

ˆ
Br1 (x0)

|uℓ(t)− b|2 dx+
ˆ
Qr1,τ1 (z0)

φ|Dℓ|(|Duℓ|) dz

⩽ c

ˆ
Qr2,τ2 (z0)

[
|uℓ − b|2

τ2 − τ1
+ φ|Dℓ|

(∣∣∣uℓ − b

r2 − r1

∣∣∣)] dz

for some c = c(n,N, p, q, L, ν) > 0, where u(t) = u(x, t) and Iτ (t0) = (t0 − τ, t0 + τ).

Proof. We assume without loss of generality that the center of Qr1,τ1 and Qr2,τ2 is the
origin. Let ξ ∈ C1

0(BR) with ξ ≡ 1 in Br and |Dξ| ⩽ 2/(r2 − r1) and η ∈ C1(R) with
η ≡ 0 in (−∞,−τ2], η ≡ 1 in [−τ1,∞) and 0 ⩽ η′ ⩽ 2/(τ2 − τ1). Using

ζ(x, t) := ξ(x)qη(t)2(uℓ(x, t)− b)
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as a test function in (1.1), we have that for s ∈ Iτ1 ,ˆ s

−τ2

ˆ
Br2

[∂tu · ζ +A(Du) : Dζ] dx dt = 0 .

Moreover, since ∂tb = ∂tℓ = divA(Dℓ) = 0, we further have
ˆ s

−τ2

ˆ
Br2

[∂t(uℓ − b) · ζ + (A(Du)−A(Dℓ)) : Dζ] dx dt = 0 .

Note thatˆ s

−τ2

ˆ
Br2

∂tu · ζ dx dt =
ˆ s

−τ2

ˆ
Br2

1

2
∂t[ξ

qη2|uℓ − b|2]− ξqηη′|uℓ − b|2 dx dt

=
1

2

ˆ
Br2

ξqη(s)2|uℓ(s)− b|2 dx−
ˆ s

−τ2

ˆ
Br2

ξqηη′|uℓ − b|2 dx dt,

where uℓ(s) = uℓ(x, s). Then, applying (2.16), (2.19), (2.7) and (2.9) we have that for
every s ∈ Iτ1 ,

1

2

ˆ
Br2

ξqη(s)2|uℓ(s)− b|2 dx+ 1

c

ˆ s

σ

ˆ
Br2

ξqη2φ|Dℓ|(|Duℓ) dx dt

⩽ −q
ˆ s

−τ2

ˆ
Br2

ξq−1η2(A(Du)−A(Dℓ)) : Dξ ⊗ (uℓ − b) dx dt

+

ˆ s

−τ2

ˆ
Br2

ξqηη′|uℓ − b|2 dx dt

⩽ c

ˆ s

−τ2

ˆ
Br2

ξq−1η2φ′
|Dℓ|(|Duℓ|)

∣∣∣uℓ − b

r2 − r1

∣∣∣ dx dt+ ˆ s

−τ2

ˆ
Br2

|uℓ − b|2

τ2 − τ1
dx dt.

Finally, applying Young’s inequality (2.2) with (2.3) and using the properties the cut-off
functions ξ and η we have the estimate (4.3). □

Considering the intrinsic cylinders with the N -functions φ and φ|Dℓ|, defined by

Qλ
r (z0) := Br(x0)× Iλr (t0), where Iλr (t0) :=

(
t0 −

λ2

φ(λ)
r2, t0 +

λ2

φ(λ)
r2
)
,

and

Qλ
r (z0) := Br(x0)× Iλr (t0), where Iλr (t0) :=

(
t0 −

λ2

φ|Dℓ|(λ)
r2, t0 +

λ2

φ|Dℓ|(λ)
r2
)
,

respectively, we obtain the following Caccioppoli-type estimates.

Corollary 4.3. Let u be a weak solution to (1.1). For every Qλ
R ⋐ ΩT or Qλ

R ⋐ ΩT with
λ,R > 0 and r ∈ (0, R) and b ∈ RN , we have

(4.4)

sup
t∈Iλr

ˆ
Br

|uℓ(t)− b|2 dx+
ˆ
Qλr

φ|Dℓ|(|Duℓ|) dz

⩽ c

ˆ
QλR

[
φ(λ)

λ2

∣∣∣uℓ − b

R− r

∣∣∣2 + φ|Dℓ|

(∣∣∣uℓ − b

R− r

∣∣∣)] dz
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and

(4.5)

sup
t∈Iλr

ˆ
Br

|uℓ(t)− b|2 dx+
ˆ
Qλr
φ|Dℓ|(|Duℓ|) dz

⩽ c

ˆ
QλR

[
φ|Dℓ|(λ)

λ2

∣∣∣uℓ − b

R− r

∣∣∣2 + φ|Dℓ|

(∣∣∣uℓ − b

R− r

∣∣∣)] dz

for some c = c(n,N, p, q, L, ν) > 0, where u(t) = u(x, t).

In the remaining part of this section, we obtain higher integrability estimates for
φ|Dℓ|(|Duℓ|). Note that the higher integrability of φ(|Du|) (i.e., the case ℓ = 0) is
proved in [33]. We then follow the argument therein.

As a first key tool, we introduce a Sobolev–Poincaré type inequality, Lemma 4.4.
The proof of (4.6) could be obtained with minor modifications as in [33, Lemma 3.4],
just replacing u and φ by uℓ and φ|Dℓ|, respectively, and modifying the estimate for
|⟨uℓ⟩ξ(t) − (uℓ)

λ
ρ | (see (4.10) below) according to assumption (2.9). However, for the

reader’s convenience, we prefer to provide a detailed proof. Note that the simplified
version of the Poincaré inequality in (4.8) can be also found in [19, Lemma 2.9].

Let ξ ∈ C∞
0 (Bρ) satisfy 0 ⩽ ξ ⩽ 1, ξ ≡ 1 in Bρ/2, |Dξ| ⩽ 4

ρ
. Note that 2−n|Bρ| ⩽

∥ξ∥1 ⩽ |Bρ|. Define

(f)λρ :=
1

∥ξ∥1

 
Iλρ

ˆ
Bρ

fξ dx dt and ⟨f⟩ξ(t) :=
1

∥ξ∥1

ˆ
Bρ

f(x, t)ξ dx for t ∈ Iλρ .

Lemma 4.4. Let u be a weak solution to (1.1). For an N-function ψ satisfying (2.5)
with 1 ⩽ p1 ⩽ q1 in place of 1 < p ⩽ q , Qλ

4ρ ⋐ ΩT with λ > 0 and ρ ⩽ r < R ⩽ 4ρ, we
have  

Qλr
ψ

(∣∣∣∣uℓ − (uℓ)
λ
ρ

r

∣∣∣∣) dz ⩽ cψ(A0) + cψ
(
T (r, R)

1
2

)(1−θ0)  
Qλr
ψ(|Duℓ|)θ0 dz,(4.6)

for some c = c(n,N, p, q, p1, q1, θ0, L, ν,Λ) > 0 provided that

θ0p1 ∈ [1, n) and
nq1

nq1 + 2p1
⩽ θ0 ⩽ 1.

Here (uℓ)
λ
ρ it the average of u on Qλ

ρ ,

(4.7) A0 :=
λ2

φ|Dℓ|(λ)

 
Qλr
φ′
|Dℓ|(|Duℓ|) dz,

T (r, R) :=

 
QλR

[∣∣∣∣uℓ − (uℓ)
λ
ρ

R− r

∣∣∣∣2 + λ2

φ|Dℓ|(λ)
φ|Dℓ|

(∣∣∣∣uℓ − (uℓ)
λ
ρ

R− r

∣∣∣∣)] dz + A2
0.

In particular, when θ0 = p1 = 1, we have

(4.8)

 
Qλr
ψ

(∣∣∣∣uℓ − (uℓ)
λ
ρ

r

∣∣∣∣) dz ⩽ c

 
Qλr
ψ(|Duℓ|) dz + cψ(A0).

Proof. The triangle inequality implies 
Qλr
ψ

(∣∣∣∣uℓ − (uℓ)
λ
ρ

r

∣∣∣∣) dz =

 
Qλr
ψ

(∣∣∣∣uℓ(z)− ⟨uℓ⟩ξ(t) + ⟨uℓ⟩ξ(t)− (uℓ)
λ
ρ

r

∣∣∣∣) dz

⩽ c

 
Iλr
ψ

(∣∣∣∣⟨uℓ⟩ξ(t)− (uℓ)
λ
ρ

r

∣∣∣∣) dt+ c

 
Qλr
ψ

(∣∣∣∣uℓ(z)− ⟨uℓ⟩ξ(t)
r

∣∣∣∣) dz.

(4.9)
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We start with an estimate of the first term in the right hand side above. By the def-
inition of ⟨uℓ⟩ξ and using the weak formulation of (1.1) with test-function ζ(x, t) :=
(ξ(x), . . . , ξ(x)), we find from (2.9) that

|⟨uℓ⟩ξ(t)− (uℓ)
λ
ρ | ⩽ sup

τ∈Iλr
|⟨uℓ⟩ξ(t)− ⟨uℓ⟩ξ(τ)| = sup

τ∈Iλr

∣∣∣∣ ˆ t

τ

∂t⟨uℓ⟩ξ(s) ds
∣∣∣∣

= sup
τ∈Iλr

∣∣∣∣ ˆ t

τ

1

∥η∥1

ˆ
Br

∂tuℓ(x, s)ξ(x) dx ds

∣∣∣∣
= sup

τ∈Iλr

∣∣∣∣ ˆ t

τ

1

∥η∥1

ˆ
Br

∂tu(x, s)ξ(x) dx ds

∣∣∣∣
≈ sup

τ∈Iλr

∣∣∣∣ ˆ t

τ

 
Br

(A(Du)−A(Dℓ))Dξ dx ds

∣∣∣∣
⩽

crλ2

φ|Dℓ|(λ)

 
Qλr
φ′
|Dℓ|(|Duℓ|) dz = rA0.

(4.10)

We next estimate the second term in (4.9). From the Gagliardo–Nirenberg type in-
equality in Lemma 4.1 with (ψ, γ, p, q1, q2) := (ψ1/p1 , p1, θ0p1,

q1
p1
, 2) we conclude that

(4.11)

 
Br

ψ
(∣∣f

r

∣∣) dx ⩽ c

( 
Br

[
ψ(|Df |)θ1 + ψ

(∣∣f
r

∣∣)θ0] dx) ψ

([ 
Br

∣∣f
r

∣∣2 dx] 1
2

)1−θ0

provided θ0p1 ∈ [1, n) and

1

p1
⩾

θ0
(θ0p1)∗

+
1− θ0

2

q1
p1

=
1

p1
− θ0
n

+
1− θ0

2

q1
p1
.

This can be written as θ0 ⩾
nq1

nq1+2p1
. Applying (4.11) with f := uℓ − ⟨uℓ⟩ξ on each time

slice gives
 
Qλr
ψ
(∣∣∣uℓ(z)− ⟨uℓ⟩ξ(t)

r

∣∣∣) dz ⩽ c

( 
Qλr

[
ψ(|Duℓ|)θ0 + ψ

(
uℓ − ⟨uℓ⟩ξ

r

)θ0]
dz

)

× ψ

((
sup
t∈Iλr

 
Br

∣∣∣∣uℓ − ⟨uℓ⟩ξ
r

∣∣∣∣2 dx

) 1
2

)1−θ0

.

(4.12)

Note that for each time slice of Qλ
r , since θ0p1 ⩾ 1, we can apply the weighted Poincaré

inequality [14, Theorem 7], so that 
Br

ψ
(∣∣∣uℓ(x, t)− ⟨uℓ⟩ξ(t)

r

∣∣∣)θ0 dx ⩽ c

 
Br

ψ(|Duℓ(x, t)|)θ0 dx .

Finally, from the Caccioppoli inequality in (4.5) with b := (uℓ)
λ
ρ and (4.10) we conclude

that

sup
t∈Iλr

 
Br

∣∣∣∣uℓ − ⟨uℓ⟩ξ
r

∣∣∣∣2 dx

⩽ c sup
t∈Iλr

 
Br

∣∣∣∣uℓ(x, t)− (uℓ)
λ
ρ

r

∣∣∣∣2 dx+ c sup
t∈Iλr

∣∣∣∣(uℓ)
λ
ρ − ⟨uℓ⟩ξ(t)

r

∣∣∣∣2
⩽ c

 
QλR

[∣∣∣∣uℓ − (uℓ)
λ
ρ

R− r

∣∣∣∣2 + λ2

φ|Dℓ|(λ)
φ|Dℓ|

(∣∣∣∣uℓ − (uℓ)
λ
ρ

R− r

∣∣∣∣)] dz + cA2
0 .
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Therefore, inserting the above two estimates into (4.12) and combining with (4.9)–(4.10),
we complete the proof of (4.6). □

The next two lemmas show that the right hand side of the estimate in Lemma 4.4 can
be controlled by suitable quantities when we are in suitable intrinsic cylinders.

Lemma 4.5. Let the assumptions of Lemma 4.4 be in force, and assume additionally
that  

Qλ4ρ
φ|Dℓ|(|Duℓ|) dz ⩽ φ|Dℓ|(λ) .

Then, for some c = c(n,N, p, q, p1, q1, θ0, L, ν,Λ) > 0, 
Qλ2ρ

ψ

(∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣) dz ⩽ cψ(A0) + cψ(λ)1−θ0
 
Qλ2ρ

ψ(|Duℓ|)θ0 dz,

where A0 is that of (4.7) with r = 2ρ.

Proof. The proof is exactly the same as the one of [33, Lemma 3.9] with uℓ and φ|Dℓ| in
place of u and φ, respectively. □

Finally, we obtain a reverse Hölder inequality for φ|Dℓ|(|Duℓ|). The proof is almost
the same as that of [33, Lemma 3.12]. The main difference is the use of the Caccioppoli
estimate (4.4) in place of the usual one [33, Lemma 3.1].

Lemma 4.6. Let u be a weak solution to (1.1) and Qλ
4ρ ⋐ ΩI with λ, ρ > 0. Suppose that

(4.13) φ|Dℓ|(λ) ⩽
 
Qλρ
φ|Dℓ|(|Duℓ|) dz and

 
Qλ4ρ

φ|Dℓ|(|Duℓ|) dz ⩽ φ|Dℓ|(λ).

Then there exist θ = θ(n, p, q) ∈ (0, 1) and c = c(n,N, p, q, L, ν,Λ) > 0 such that

(4.14)

 
Qλρ
φ|Dℓ|(|Duℓ|) dz ⩽ c

( 
Qλ4ρ

φ|Dℓ|(|Duℓ|)θ dz
) 1

θ

.

Proof. We denote p0 := 2n
n+2

, and recall A0 in (4.7). Arguing as in [33, Lemma 2.9] we

have that for every δ ∈ (0, 1) and θ0 ∈ (1− 1
q
, 1],

(4.15) A0 ⩽

δλ+ cδφ
−1
|Dℓ|

(( ffl
Qλ2ρ

φ|Dℓ|(|Duℓ|)θ0 dz
) 1
θ0

)
,

cλ .

By the Caccioppoli inequality (4.4) with b := (uℓ)
λ
ρ , we find that

(4.16) 
Qλρ
φ|Dℓ|(|Duℓ|) dz ⩽ c

φ|Dℓ|(λ)

λ2

 
Qλ2ρ

∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣2 dz + c

 
Qλ2ρ

φ|Dℓ|

(∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣) dz.

We then estimate the two integrals in the right hand side.
By Lemma 4.5 for ψ := φ|Dℓ|, considering also (4.15) and the classical Young’s inequal-

ity for conjugate exponents 1
θ0
, 1
1−θ0 , we have that for any δ ∈ (0, 1)

(4.17)

 
Qλ2ρ

φ|Dℓ|

(∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣) dz ⩽ cφ|Dℓ|(A0) + cφ|Dℓ|(λ)
(1−θ0)

 
Qλ2ρ

φ|Dℓ|(|Duℓ|)θ0 dz

⩽ cδ

( 
Qλ2ρ

φ|Dℓ|(|Duℓ|)θ0 dz

) 1
θ0

+ cδφ|Dℓ|(λ) .
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An analogous argument in the case ψ(t) := t2 and θ0 :=
p0
2
, shows that for any δ ∈ (0, 1)( 

Qλ2ρ

∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣2 dz) 1
2

⩽ cA0 + c

(
λ2−p0

 
Qλ2ρ

|Duℓ|p0 dz
) 1

2

⩽ cδ

(  
Qλ2ρ

|Duℓ|p0 dz
) 1

p0

+ cA0 + δλ.

In particular, we also have (  
Qλ2ρ

∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣2 dz) 1
2

⩽ cλ.

Now, multiplying the previous two inequalities and using Young’s inequality (2.2), (2.3),

(2.12), the Jensen inequality in Lemma 2.1 with ψ(t) := φ|Dℓ|(t
1
p0 )θ0 with θ0 ∈ (0, 1)

sufficiently close to 1 and (4.15), we obtain that for any δ ∈ (0, 1)

φ|Dℓ|(λ)

λ2

 
Qλ2ρ

∣∣∣∣uℓ − (uℓ)
λ
ρ

ρ

∣∣∣∣2 dz ⩽ cφ′
|Dℓ|(λ)

[
cδ

(  
Qλ2ρ

|Duℓ|p0 dz
) 1

p0

+ A0 + δλ

]

⩽ cδφ|Dℓ|

((  
Qλ2ρ

|Duℓ|p0 dz
) 1

p0

)
+ cδφ|Dℓ|(A0) + cδφ|Dℓ|(λ)

⩽ cδ

( 
Qλ2ρ

φ|Dℓ|(|Duℓ|)θ0 dz

) 1
θ0

+ cδφ|Dℓ|(λ).

(4.18)

Finally, inserting (4.17) and (4.18) into (4.16), we find that

 
Qλρ
φ|Dℓ|(|Duℓ|) dz ⩽ cδ

( 
Qλ2ρ

φ|Dℓ|(|Duℓ|)θ0 dz

) 1
θ0

+ cδφ|Dℓ|(λ) .

Choosing δ so small that cδ = 1
2
and absorbing the term in the left-hand side by (4.13)

we obtain the reverse Hölder inequality (4.14). □

Finally, by arguing exactly as in [33, Section 4] with φ|Dℓ| and uℓ in place of φ and u,
respectively, we have the following higher integrability result for Duℓ.

Theorem 4.7. Let u be a local weak solution to (1.1). There exists σ = σ(n,N, p, q, L, ν) >
0 such that φ|Dℓ|(|Duℓ|) ∈ L1+σ

loc (ΩT ) with the following estimate: for any Q4ρ ⋐ ΩT , 
Qρ

φ|Dℓ|(|Duℓ|)1+σ dz ⩽ c

[
(φ|Dℓ| ◦ D−1)

(  
Q2ρ

φ|Dℓ|(|Duℓ|) dz
)]σ  

Q2ρ

φ|Dℓ|(|Duℓ|) dz

for some c = c(n,N, p, q, L, ν,Λ) > 0, where D(t) := min{t2, φ|Dℓ|(t)
n+2
2 t−n} and D−1 is

the inverse of D.

Moreover, by a scaling argument, we have the following homogeneous higher integra-
bility result in intrinsic parabolic cylinders with φ.

Corollary 4.8. Let u be a local weak solution to (1.1). There exists σ = σ(n,N, p, q, L, ν) >
0 such that if Qλ

4ρ ⋐ ΩT and

(4.19)

 
Qλ4ρ

φ(|Du|) dz ⩽ φ(λ) and |Dℓ| ⩽ λ,
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then

(4.20)

( 
Qλρ

φ|Dℓ|(|Duℓ|)1+σ dz

) 1
1+σ

⩽ cφ(λ)

for some c = c(n,N, p, q, L, ν) > 0.

Proof. Let

(4.21) ũ(x, t) :=
1

λ
u(x, tλ2/φ(λ)), Ã(P) :=

λA(λP)

φ(λ)
, φ̃(τ) :=

φ(λτ)

φ(λ)
, ℓ̃ :=

1

λ
ℓ .

Note that Ã satisfies the same properties of A listed in Assumption (A), with φ̃ in place
of φ. Then ũ is a weak solution to

∂tũ− div Ã(Dũ) = 0 in Q4ρ .

Moreover, by (4.19), we have 
Q4ρ

φ̃(|Dũ|) dz ⩽ 1 and |Dℓ̃| ⩽ 1 ,

whence, taking into account (2.14), 
Q4ρ

φ̃|Dℓ̃|(|Dũℓ̃|) dz ⩽ c

 
Q4ρ

φ̃(|Dũ|+ |Dℓ̃|) dz ⩽ c .

Therefore, by Theorem 4.7 we have

(4.22)

( 
Qρ

φ̃|Dℓ̃|(|Dũℓ̃|)
1+σ dz

) 1
1+σ

⩽ c .

In addition, since by (2.13) and (4.21)

φ̃|Dℓ̃|(τ) ∼
φ′(|Dℓ|+ λτ)

φ(λ)(|Dℓ|+ λτ)
(λτ)2 ,

we have, taking into account also (2.12),

φ̃|Dℓ̃|(|Dũℓ̃|) ∼
φ′(|Dℓ|+ |Duℓ|)
φ(λ)(|Dℓ|+ |Duℓ|)

|Duℓ|2 ∼
φ|Dℓ|(|Duℓ|)

φ(λ)
.

Therefore, inserting the above estimate in (4.22) we obtain (4.20). □

5. Nondegenerate regime

In this section we consider the nondegenerate regime, which means that the average
of the gradient of solution is relatively greater than the relevant excess, see for instance
(5.6). In this regime, we apply the A-caloric approximation.
We first show that the solution u to (1.1) is an almost weak solution of a linear system

with constant coefficients.

Lemma 5.1. Let u be a weak solution to (1.1) and Qλ
r ⋐ ΩT . Then for every ζ ∈

C∞(Qλ
r ;RN) with ζ = 0 on ∂Br × Iλr , we have

(5.1)

1

Qλ
r

∣∣∣∣∣
ˆ
Qλr

uℓ · ζt −DA(Dℓ)⟨Duℓ, Dζ⟩ dz −
[ˆ

Br

uℓ · ζ dx
]t=r2/φ′′(λ)

t=−r2/φ′′(λ)

∣∣∣∣∣
⩽ cφ′(|Dℓ|) (µγ + µ)µ ∥Dζ∥L∞(Qλr ;RNn) ,
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where ℓ and uℓ are from (4.1) and (4.2) and

µ :=

(
1

φ(|Dℓ|)

 
Qλr

φ|Dℓ|(|Duℓ|) dz
) 1

2

.

Proof. It is enough to consider ζ ∈ C∞(Qλ
r ;RN) with ∥Dζ∥L∞(Qλr ;RNn) ⩽ 1 by linearity.

From the weak form of (1.1) and the fact that ℓt = div(A(Dℓ)) = 0, we observe that

(5.2)

 
Qλr

uℓ · ζt −DA(Dℓ)⟨Duℓ, Dζ⟩ dz −
[ˆ

Br

uℓ · ζ dx
]t=r2λ2/φ(λ)
t=−r2λ2/φ(λ)

=

 
Qλr

u · ζt −DA(Dℓ)⟨Duℓ, Dζ⟩ dz −
[ˆ

Br

u · ζ dx
]t=r2λ2/φ(λ)
t=−r2/λ2φ(λ)

=

 
Qλr

⟨A(Du)−A(Dℓ), Dζ⟩ −DA(Dℓ)⟨Duℓ, Dζ⟩ dz

=

 
Qλr

ˆ 1

0

⟨[DA(sDuℓ +Dℓ)−DA(Dℓ)]Duℓ, Dζ⟩ ds dz

⩽
 
Qλr

[ˆ 1

0

|DA(sDuℓ +Dℓ)−DA(Dℓ)| ds
]
|Duℓ||Dζ| dz .

Set S1 = {z ∈ Qλ
r : |Duℓ(z)| > 1

2
|Dℓ|} and S2 = {z ∈ Qλ

r : |Duℓ(z)| ⩽ 1
2
|Dℓ|}.

If z ∈ S1, using (2.8) and the fact that |Du|+ |Dℓ| ⩽ |Duℓ|+ 2|Dℓ| ⩽ 5|Duℓ|,
ˆ 1

0

|DA(sDuℓ(z) +Dℓ)−DA(Dℓ)| ds

⩽ c

ˆ 1

0

φ′′(|sDu(z) + (1− s)Dℓ|) ds+ cφ′′(|Dℓ|)

⩽ c
φ′(|Du(z)|+ |Dℓ|)
|Du(z)|+ |Dℓ|

+ c
φ′(|Du(z)|+ |Dℓ|)

|Dℓ|

⩽
c

|Dℓ|
φ′(|Duℓ(z)|) ⩽

c

|Dℓ|
φ′(|Duℓ(z)|+ |Dℓ|) 5|Duℓ(z)|

|Duℓ(z)|+ 2|Dℓ|
⩽

c

|Dℓ|
φ′
|Dℓ|(|Duℓ(z)|) ,

hence

(5.3)

 
Qλr

[ˆ 1

0

|DA(sDuℓ +Dℓ)−DA(Dℓ)| ds
]
|Duℓ|χS1 dz ⩽ cφ′(|Dℓ|)µ2 .

On the other hand, if z ∈ S2, applying (2.17) with P = Dℓ and Q = sDuℓ(z) +Dℓ

ˆ 1

0

|DA(sDuℓ(z) +Dℓ)−DA(Dℓ)| ds ⩽ c

(
|Duℓ|
|Dℓ|

)γ
φ′′(|Dℓ|)

and

|Duℓ(z)|2

|Dℓ|2
⩽
φ′(|uℓ(z)|+ |Dℓ|)
φ′(|Dℓ|)|Dℓ|

|Duℓ(z)|2

|Dℓ|

⩽
φ′(|Duℓ(z)|+ |Dℓ|)

φ′(|Dℓ|)|Dℓ|
|Duℓ(z)|2

|Duℓ|+ 1
2
|Dℓ|

⩽ c
φ|Dℓ|(|Duℓ|)
φ(|Dℓ|)

.
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Then using these estimates and the fact that ω(·) ⩽ 1 and applying Hölder’s inequality
and Jensen’s inequality to the concave function τ 7→ ω(τ 1/2), we have

(5.4)

 
Qλr

[ˆ 1

0

|DA(sDuℓ +Dℓ)−DA(Dℓ)| ds
]
|Duℓ|χS2 dz

⩽ cφ′(|Dℓ|)
 
Qλr

|Duℓ(z)|
|Dℓ|

(
|Duℓ(z)|
|Dℓ|

)γ
χS2 dz

⩽ cφ′(|Dℓ|)
[ 

Qλr

|Duℓ(z)|2

|Dℓ|2
dz

] 1
2

[ 
Qλr

(
|Duℓ(z)|
|Dℓ|

)2γ

dz

] 1
2

⩽ cφ′(|Dℓ|)
[ 

Qλr

φ|Dℓ|(|Duℓ|)
φ(|Dℓ|)

dz

] 1
2
[ 

Qλr

φ|Dℓ|(|Duℓ|)
φ(|Dℓ|)

dz

] γ
2

⩽ cφ′(|Dℓ|)µ1+γ .

Therefore, plugging (5.3) and (5.4) into (5.2) we obtain (5.1). □

Now, we derive an excess decay estimate in the non-degenerate regime.

Lemma 5.2. Let Qλ
2r = Qλ

2r(z0) ⋐ ΩT , β ∈ (0, 1), and u be a weak solution to (1.1).
Suppose that

(5.5)
λ

2K
⩽ |(Du)λ2r| ⩽ 2Kλ

for some K > 0. There exist small δ0, θ ∈ (0, 1) depending on n,N, p, q, L, ν,K, γ and β
such that if

(5.6)

 
Qλr

φ|(Du)λr |(|Du− (Du)λr |) dz ⩽ δ0φ(|(Du)λr |)

then

(5.7)

 
Qλθr

φ|(Du)λθr|
(|Du− (Du)λθr|) dz ⩽ θ2β

 
Qλr

φ|(Du)λr |(|Du− (Du)λr |) dz .

Proof. For simplicity, we assume that z0 = (x0, t0) = (0, 0). We fix the linear function

ℓ(x) := (Du)λr x+ (u)λr , x ∈ Rn.

Then we have Dℓ = (Du)λr and 
Qλ2r

φ|Dℓ|(|Duℓ|) dz =
 
Qλ2r

φ|(Du)λr |(|Du− (Du)λr |) dz .

We divide the proof into three steps.

Step 1. (Scaling) We first observe from (2.14), (5.5) and (5.6) that 
Qλr

φ(|Du|) dz ⩽ 2n+2

 
Qλ2r

φ(|Du|) dz ⩽ c

 
Qλ2r

φ|Dℓ|(|Duℓ|) dz + cφ(|Duℓ|) ⩽ cφ(λ) .

Now, we consider the following scaled functions:

ũ(x, t) :=
1

λ
u(x, tλ2/φ(λ)), Ã(P) :=

λA(λP)

φ(λ)
, φ̃(τ) :=

φ(λτ)

λφ′(λ)
, ℓ̃ :=

1

λ
ℓ .

Then, by a direct computation, we have

φ̃ a
λ
(t) =

φa(λt)

λφ′(λ)
and φ̃′

a
λ
(t) =

φ′
a(λt)

φ′(λ)
,
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whence

φ̃′
|Dℓ̃|(τ) =

φ′
|Dℓ|(λτ)

φ′(λ)
=

φ′(|Dℓ|+ λτ)

φ′(λ)(|Dℓ|+ λτ)
(λτ) .

In particular, taking into account (5.5),

φ̃′
|Dℓ̃|(1) ∼ φ̃|Dℓ̃|(1) ∼ 1 .

Moreover, ũ is a weak solution to

∂tũ− div Ã(Dũ) = 0 in Qr ,

where Ã satisfies the same properties of A listed in Assumption (A), with φ̃ in place of
φ, and satisfies

(5.8)
1

2K
⩽ |Dℓ̃| = |(Dũ)r| ⩽ 2K,

1

c
⩽
 
Qr

φ̃(|Dũ|) dz = 1

λφ′(λ)

 
Qλr

φ(|Du|) dz ⩽ c ,

and by (5.6)

(5.9) µ :=

(
1

φ(|Dℓ|)

 
Qλr

φ|Dℓ|(|Duℓ|) dz
) 1

2

⩽
√
δ0 ⩽ 1 ,

where δ0 ⩽ 1 will be determined later. Note that the last inequality also yields

(5.10)

 
Qr

φ̃|Dℓ̃|(|Dũℓ̃|) dz =
1

λφ′(λ)

 
Qλr

φ|Dℓ|(|Duℓ|) dz ∼ µ2 ⩽ δ0 .

Moreover, by Corollary 4.8 and the estimate (5.1) we also have that

(5.11)

( 
Qr/2

φ̃|Dℓ̃|(|Dũℓ̃|)
1+σ0 dz

) 1
1+σ0

⩽ cµ2 ⩽ cδ0

for some σ0 > 0 and this implies that

1

|Qr|

∣∣∣∣ˆ
Qr

ũℓ̃ · ζt −DÃ(Dℓ̃)⟨Dũℓ̃, Dζ⟩ dz −
ˆ
Br

ũℓ̃ · ζ dx
∣∣∣∣

⩽ c
((√

δ0
)γ

+
√
δ0

)
µ sup

Qr

|Dζ| ,

for all ζ ∈ C∞(Qr) with ζ = 0 on ∂Br × (−r2, r2) .

Step 2. (A-caloric approximation) Observe that

∂tũℓ = ∂tũ = div Ã(Dũ) =: div H in Qr ,

i.e., H := Ã(Dũ), in the distributional sense, and writing φ̃∗
|Dℓ̃| := (φ̃|Dℓ̃|)

∗

(5.12)

 
Qr

φ̃∗
|Dℓ̃|(|H|) dz =

 
Qr

φ̃∗
|Dℓ̃|(|Ã(Dũ)|) dz ⩽ c

 
Qr

φ̃|Dℓ̃|(|Dũ|) dz ⩽ cµ2 .

Set

p1 := min

{
p,

q

q − 1

}
and p0 :=

1 + p1
2

.

Then we see from the Jensen inequality in Lemma 2.1 with ψ(t) := φ̃|Dℓ̃|(t
1
p1 ), (5.10) and

(5.12) that ( 
Qr

|Dũℓ̃|
p1 dz

) 1
p1

⩽ cφ̃−1

|Dℓ̃|

( 
Qr

φ̃|Dℓ̃|(|Dũℓ̃|) dz
)

⩽ cφ̃−1

|Dℓ̃|(µ
2)
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and, arguing as before with ψ(t) := φ̃∗
|Dℓ̃|(t

1/p1),( 
Qr

|H|p1 dz
) 1

p1

⩽ c(φ̃∗
|Dℓ̃|)

−1

( 
Qr

φ̃∗
|Dℓ̃|(H) dz

)
⩽ c(φ̃∗

|Dℓ̃|)
−1(µ2) .

Furthermore, we notice from the first inequality in (5.8) and the fact that µ ∈ (0, 1) that

φ̃′(|Dℓ̃|+ µ)

|Dℓ̃|+ µ
∼ 1

and for τ1 ⩾ 0 satisfying that φ̃′
|Dℓ̃|(τ1) = µ,

τ1 ≲ 1 hence τ1 ∼
φ̃′(|Dℓ̃|+ τ1)

|Dℓ̃|+ τ1
τ1 = µ ,

which imply

(5.13) µ2 ∼ φ̃|Dℓ̃|(µ) and µ2 ∼ τ1µ = (φ̃′
|Dℓ̃|)

−1(µ)µ = (φ̃∗
|Dℓ̃|)

′(µ)µ ∼ φ̃∗
|Dℓ̃|(µ) .

Collecting the previous estimates, we then have

(5.14)

( 
Qr

|Dũℓ̃|
p1 dz +

 
Qr

|H|p1 dz
) 1

p1

⩽ cµ .

Therefore, by Theorem 3.8 with, in particular, A := Ã(Dℓ̃), ψ(τ) := τ p0 and σ := p1
p0
−1

(i.e., p0(1+σ) = p1), for ε ∈ (0, 1) to be determined small later, there exists small δ0 > 0
depending on n,N, L, ν, p, q, γ and ε such that

(5.15)

 
Qr

|Dũℓ̃ −Dh|p0 dz ⩽ εµp0 ,

where h is the weak solution to{
∂th− div(ADh) = 0 in Qr,

h = ũℓ̃ on ∂pQr .

We note from (3.1), (5.15), (5.14) and (5.13) that

(5.16)

( 
Qr/2

φ̃|Dℓ̃|(|Dh|)1+σ0 dz

) 1
1+σ0

⩽ cφ̃|Dℓ̃|

( 
Qr

|Dh| dz
)

⩽ cφ̃|Dℓ̃|(µ) ⩽ cµ2 .

Therefore, by Hölder’s inequality, the Jensen inequality in Lemma 2.1 with ψ−1(t) :=

φ̃|Dℓ̃|(t)
1
q and the estimates (5.11), (5.15), (5.16) and (5.13), we have that with κ0 ∈ (0, 1)

satisfying κ0
q
+ (1− κ0)(1 + σ0) = 1,

(5.17)

 
Qr/2

φ̃|Dℓ̃|(|Dũℓ̃ −Dh|) dz

⩽

( 
Qr/2

φ̃|Dℓ̃|(|Dũℓ̃ −Dh|)
1
q dz

)κ0 ( 
Qr/2

φ̃|Dℓ̃|(|Dũℓ̃ −Dh|)1+σ0 dz

)1−κ0

⩽ cφ̃|Dℓ̃|

[ 
Qr/2

|Dũℓ̃ −Dh|p0 dz

] 1
p0


κ0
q

µ2(1−κ0)(1+σ)

⩽ cε
pκ0
p0q φ̃|Dℓ̃|(µ)

κ0
q µ2(1−κ0)(1+σ) ⩽ cε

pκ0
p0q (µ2)

κ0
q
+(1−κ0)(1+σ) = cε

pκ0
p0q µ2 .

25



Moreover, by (3.1) in Lemma 3.1 with ρ = r/2, (5.16) and (5.9), we also have

sup
Qr/4

|Dh| ⩽ c(φ̃|Dℓ̃|)
−1

( 
Qr/2

φ̃|Dℓ̃|(|Dh|) dz

)
⩽ cµ ⩽ c

√
δ0.

Note that we choose δ0 small so that

(5.18) sup
Qr/4

|Dh| ⩽ cµ ⩽
1

4K
.

Step 3. (Decay estimate) Let θ ∈ (0, 1/8) to be determined later and recall function V
corresponding to the N -function φ̃ defined as in (2.6). We first observe from (5.8) and
(5.18) that

1

8
|(Dũ)r| ⩽

K

4
⩽ |(Dũ)r| − |(Dh)θr| ⩽ |(Dũ)r + (Dh)θr| ⩽ |(Dũ)r|+

1

4K
⩽

9

4
|(Dũ)r| .

Then, using (2.7), (2.10) and the preceding estimate, 
Qθr

φ̃|(Dũ)θr|(|Dũ− (Dũ)θr|)|) dz ∼
 
Qθr

|V(Dũ)−V((Dũ)θr)|2 dz

∼
 
Qθr

|V(Dũ)− (V(Dũ))θr|2 dz

⩽
 
Qθr

|V(Dũ)−V((Dũ)r + (Dh)θr)|2 dz

∼
 
Qθr

φ̃|(Dũ)r+(Dh)θr|(|Dũ− (Dũ)r − (Dh)θr|) dz

∼
 
Qθr

φ̃|(Dũ)r|(|Dũ− (Dũ)r − (Dh)θr|) dz .

Moreover, by (5.8) and (5.18) we have

φ̃|Dℓ̃|(θ|(Dh)r/4|) ∼
φ′(|(Dũ)r|+ θ|(Dh)r/4|)
|(Dũ)r|+ θ|(Dh)r/4|

θ2|(Dh)r/4|2 ∼ θ2|(Dh)r/4|2 ≲ θ2µ2 ,

Using the above two estimates, (3.2) in Lemma 3.1 with ρ = r/2 and (5.17), we obtain 
Qθr

φ̃|(Dũ)θr|(|Dũ− (Dũ)θr|) dz

⩽ c

 
Qθr

φ̃|(Dũ)r|(|Dũ− (Dũ)r − (Dh)θr|) dz

⩽ c

 
Qθr

φ̃|Dℓ̃|(|Dũℓ̃ −Dh|) dz + c

 
Qθr

φ̃|Dℓ̃|(|Dh− (Dh)θr)|) dz

⩽ cθ−(n+2)

 
Qr/2

φ̃|Dℓ̃|(|Dũℓ̃ −Dh|) dz + cφ̃|Dℓ̃|

(
θ

 
Qr/4

|Dh− (Dh)r/4| dz

)
⩽ cθ−(n+2)ε

pκ0
p0q µ2 + cθ2µ2.

Finally, choosing θ small so that cθ1−β ⩽ 1
2
and then ε small so that cθ−(n+2)ε

pκ0
p0q ⩽ 1

2
θβ+1,

we obtain  
Qθr

φ̃|(Dũ)θr|(|Dũ− (Dũ)θr|)|) dz ⩽ θ1+βµ2 ,
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whence, by scaling back, 
Qθr

φ|(Du)λθr|
(|Du− (Du)λθr|) dz ⩽ θ1+βλφ′(λ)µ2 .

This estimate, together with (5.10), yields (5.7) by choosing θ sufficiently small depending
on n,N, p, q, L, ν,K, γ and β. This concludes the proof. □

From the previous lemma, we obtain decay estimates for Du in the nondegenerate
regime.

Lemma 5.3. Let λ > 0, β ∈ (0, 1), Qλ
2R = Qλ

2R(z0) ⋐ ΩT and u be a weak solution to
(1.1). Suppose

λ

K0

⩽ |(Du)λ2R| ⩽ K0λ

for some K0 > 0. There exists small δ1 ∈ (0, 1) depending on n,N, p, q, L, ν, β, γ and K0

such that if

(5.19)

 
QλR

φ|(Du)λR|
(|Du− (Du)λR|) dz ⩽ δ1φ(|(Du)λR|)

then the limit

(5.20) Γz0 := lim
r→0+

(Du)Qr(z0)

exists with

(5.21)
λ

2K0

⩽ |Γz0| ⩽ 2K0λ ,

and for every r ∈ (0, R),

(5.22)

 
Qλr (z0)

φ(|Du− Γz0|) dz ⩽ c
( r
R

)β1
φ(λ)

for some c = c(n,N, p, q, L, ν,K0, β, γ) > 0 and β1 = β1(p, q, β) > 0.

Proof. For simplicity, we shall omit to write the center z0. We recall the parameters θ
and δ0 from Lemma 5.2. However, we notice that for any smaller θ and δ0 satisfying
additional conditions, (5.6) and (5.7) still hold. Then we choose δ1 ⩽ δ0. We divide the
proof into two steps.

Step 1. We shall prove by induction that for every i ∈ N,

(5.23)

 
Qλ
θiR

φ|(Du)λ
θiR

|(|Du− (Du)λθiR|) dz ⩽ θ2βi
 
QλR

φ|(Du)λR|
(|Du− (Du)λR|) dz ,

and
(5.24)

1
2
|(Du)λR| ⩽

[
1− 1

4

i−1∑
k=0

2−k
]
|(Du)λR| ⩽ |(Du)λθiR| ⩽

[
1 + 1

4

i−1∑
k=0

2−k
]
|(Du)λR| ⩽ 3

2
|(Du)λR| .

Suppose i = 1. Then (5.7) yields (5.23). In order to prove (5.24), we first observe from
(2.14) and (5.19) that 

QλR

φ(|Du|) dz ⩽ c

 
QλR

φ|(Du)λR|
(|Du− (Du)λR|) dz + cφ(|(Du)λR|) ⩽ cφ(|(Du)λR|).
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and, applying (2.11) with ε = δ
1
2
0 , 

QλR

φ(|Du− (Du)λR|) dz

⩽
 
QλR

δ
1
2
0 [φ(|Du|) + φ(|(Du)λR|)] + cδ

− 1
2

0 φ|(Du)λR|
(|Du− (Du)λR|) dz ⩽ cδ

1
2
0 φ(|(Du)λR|) .

Hence we have

|(Du)λθR − (Du)λR| ⩽ θ−
n+2
p φ−1

( 
QλR

φ(|Du− (Du)λR|) dz

)
⩽ cθ−

n+2
p φ−1(δ

1
2
0 φ(|(Du)λR|)) ⩽ cθ−

n+2
p δ

1
2q

0 |(Du)λR| ⩽
1

4
|(Du)λR| ,

after choosing sufficiently small δ0 = δ0(n,N, p, q, L, ν,K0, β), which implies (5.24).
Suppose that (5.23) and (5.24) hold for i = 1, 2, . . . , j − 1 for some j ⩾ 2. Then, using

(5.23), (5.24) with i = j − 1 and (5.19), and choosing θ such that θ2β ⩽ 2−q, we have

(5.25)

 
Qλ
θj−1R

φ|(Du)λ
θj−1R

|(|Du− (Du)λθj−1R|) dz ⩽ θ2β(j−1)δ1φ(2|(Du)λθj−1R|)

⩽ δ0φ(|(Du)λθj−1R|) .

Since K0

2
⩽ |(Du)λθj−1R| ⩽ 2K0, applying Lemma 5.2 with r = θj−1R we obtain 

Qλ
θjR

φ|(Du)λ
θjR

|(|Du− (Du)λθjR|) dz ⩽ θ2β
 
Qλ
θj−1R

φ|(Du)λ
θj−1R

|(|Du− (Du)λθj−1R|) dz

⩽ θ2βj
 
QλR

φ|(Du)λR|
(|Du− (Du)λR|) dz ,

which proves (5.23) with i = j. We next prove (5.24) with i = j. As in the case i = 1,
we have from (5.25) that 

Qλ
θj−1R

φ(|Du− (Du)λθj−1R|) dz ⩽ cθβ(j−1)δ
1
2
1 φ(|(Du)λθj−1R|) ,

and hence

|(Du)λθjR − (Du)λθj−1R| ⩽ θ−
n+2
p φ−1

( 
Qλ
θj−1R

φ(|Du− (Du)λθj−1R|) dz

)
⩽ cθ−

n+2
p φ−1(δ

1
2
1 θ

β(j−1)φ(|(Du)λθj−1R|))

⩽ cθ−
n+2
p δ

1
2q

1 θ
β(j−1)
q |(Du)λθj−1R| .

Therefore, choosing θ such that θ
β
q ⩽ 2−1 and δ1 such that cθ−

n+2
p δ

1
2q

1 ⩽ 1/4, we obtain

(5.26) |(Du)λθjR − (Du)λθj−1R| ⩽ θ
β(j−1)
q |(Du)λθj−1R| ⩽

1

4
2−(j−1)|(Du)λθj−1R| ,

which, together with (5.24) with i = j − 1, implies (5.24) with i = j.
Step 2. We first note that {(Du)λθiR}i∈N is a Cauchy sequence. Indeed, by (5.26) and

(5.24), we have that any i, j ∈ N with i < j

(5.27) |(Du)λθjR − (Du)λθiR| ⩽
j−1∑
k=i

θ
βk
q |(Du)λθkR| ⩽

1

4

j−1∑
k=i

2−k|(Du)λθkR| ⩽
3

4
2−i|(Du)λR| .
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Therefore, set
Γ0 := lim

i→∞
(Du)λθiR .

Then (5.24) implies (5.21). We shall prove (5.22). Note that by (5.23), (5.19), (5.27) and
(5.24), 

Qλ
θiR

φ(|Du− Γ0|) dz ⩽ c

 
Qλ
θiR

φ(|Du− (Du)λθiR|) dz + cφ(|(Du)λθiR − Γ0|)

⩽ cθβiφ(λ) + cφ

( ∞∑
k=i

θ
βk
q λ

)
⩽ cθ

pβi
q φ(λ)

Therefore, for every r < θR with i ∈ N satisfying θi+1R ⩽ r ⩽ θiR, we have 
Qλr

φ(|Du− Γ0|) dz ⩽
1

θn+2

 
Qλ
θiR

φ(|Du− Γ0|) dz ⩽ cθ
pβi
q φ(λ) ⩽ c

( r
R

) pβ
q
φ(λ),

which implies (5.22).

It remains to prove (5.20). For 0 < r ⩽ min{1, (φ(λ)/λ2)− 1
2}θR, set

ρ := max{1, (φ(λ)/λ2)
1
2} r ⩽ θR .

Then we have Qr ⊂ Qλ
ρ and by (5.22)

|(Du)Qr − Γ0| ⩽
ρn+2λ2

φ(λ)rn+2

 
Qλρ

|Du− Γ0| dz

⩽ c
max{1, (φ(λ)/λ2)−n+2

2 }
(φ(λ)/λ2)

φ−1

(( ρ
R

) pβ
q
φ(λ)

)
⩽ c

max{1, (φ(λ)/λ2)−n+2
2 }

φ(λ)/λ2

( r
R

max{1, (φ(λ)/λ2)−
1
2}
) pβ
q2

λ −→ 0

as r → 0, which implies (5.20). Therefore, the proof is completed. □

6. Degenerate regime

We consider the degenerate regime, which means that the average of the gradient of
solution is relatively smaller than the relevant excess function, see for instance (6.12). In
this regime, we apply the φ-caloric approximation. We start by investigating regularity
results for φ-caloric maps. We refer to [41] for regularity results for φ-caloric maps.

Let h be a weak solution to

(6.1) ∂th− div

(
φ′(|Dh|)
|Dh|

Dh

)
= 0 in Qλ

R.

Then by [41, Corollary 5.3] with the scaling argument used in the proof of Corollary 4.8,
we have

(6.2) sup
Qλ
R/2

φ(|Dh|) ⩽ cφ(λ) .

for some c > 0 depending on n,N, p, q and c̃ if h satisfies 
QλR

φ(|Dh|) dz ⩽ c̃φ(λ) .

Moreover, from [41, Section 6], we have the following result concerned with C1,α-regularity
for h.
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Lemma 6.1. Let h be a weak solution to (6.1) in Qλ
R = Qλ

R(z0) with

(6.3) sup
QλR

|Dh| ⩽ λ

for some λ > 0. Then there exist α1 ∈ (0, 1) depending on n,N, p, q, a switching radius
rs ∈ [0, R] and λr > 0 for each r ∈ (0, R], such that

(6.4) λr = λrs if r ∈ (0, rs] and
( r
R

)α1

λ ⩽ λr ⩽ 2
( r
R

)α1

λ if r ∈ (rs, R] ,

(6.5) sup
Qλrr

|Dh| ⩽ λr for all r ∈ (0, R] ,

and

(6.6)

 
Qλrr

φ|(Dh)λrr |(|Dh− (Dh)λrr |) dz ⩽ c

(
r

rs

)3/4

φ(λr) if r ∈ (0, rs].

Moreover, we also have

(6.7) |(Dh)λrr | ⩾ C−1
s λr and osc

Qλrr

Dh ⩽ c

(
r

rs

)3/4

λr if r ∈ (0, rs] ,

for some Cs > 1 and c > 0 depending on n,N, p, q.

Proof. For each i = 0, 1, 2, . . . , we inductively define

λ0 := λ, λi+1 := νλi and r0 := R, ri+1 = σ̃ri,

where σ ∈ (0, 1) is from [41, Proposition 6.2], ν ∈ (0, 1) is from [41, Proposition 6.3]
corresponding to the preceding σ, and

(6.8) σ̃ := min

{
σp

1
2ν

q−2
2

2q
1
2

, ν
4q
3

}
<
σ

2
.

Note that we may assume that ν > 1/2. Then we have

r2i+1λ
2
i+1

φ(λi+1)
⩽
qσ̃2λi+1

φ′(λi+1)
r2i ⩽

qσ̃2λi
φ′(λi)νq−2

r2i ⩽
qσ̃2

pνq−2

λ2i r
2
i

φ(λi)
=
(σ
2

)2 r2i λ2i
φ(λi)

<
r2i λ

2
i

φ(λi)
,

hence Q
λi+1
ri+1 ⊂ Qλi

σ
2
ri
⊂ Qλi

ri
. Moreover, we have

λi = νiλ0 = σ̃i
ln ν
ln σ̃λ0 =

(ri
R

)α1

λ0 , where α1 :=
ln ν

ln σ̃
⩽

3

4q
,

hence for every r ∈ [ri+1, ri],

(6.9)
( r
R

)α1

λ0 ⩽ λi =
(ri+1

R

)α1

σ̃−α1λ0 =
(ri+1

R

)α1

ν−1λ0 ⩽ 2
( r
R

)α1

λ0 .

Now we consider the inequality

(6.10) |{Dh ⩽ (1− σ)λi}| ∩Qλi
ri
| > σ|Qλi

ri
| for i = 0, 1, 2, . . . .

Then we have the following three cases:

(i) (6.10) does not hold when i = 0.
(ii) There exists n0 ∈ N such that (6.10) holds when i = 0, 1, 2, . . . , n0 − 1, but not

when i = n0.
(iii) (6.10) holds for every i.
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If the case (i) holds, then by [41, Proposition 6.2] we have for every r ∈ (0, R]

osc
Qλr

Dh ⩽ c
( r
R

) 3
4
osc
QλR

Dh ,

whence, with (6.3), 
Q
λ0
r

φ|(Dh)
λ0
r |(|Dh− (Dh)λ0r |) dz

⩽ c

 
Q
λ0
r

φ′(|(Dh)λ0r |+ |Dh− (Dh)λ0r |)|Dh− (Dh)λ0r | dz

⩽ cφ′(λ0)
( r
R

) 3
4
λ0 ⩽ cφ(λ0)

( r
R

) 3
4
,

which implies the inequalities (6.4), (6.5), (6.6) and the second inequality in (6.7) with
λr = λ0 = λ for all r ∈ (0, R] and rs = R.

If the case (ii) holds, then by [41, Proposition 6.2] with R = ri, i = 0, . . . , n0 − 1 and
[41, Proposition 6.3] with R = rn0 , we have that

(6.11) sup
Q
λi
ri

|Dh| ⩽ λi for all i = 0, 1, 2, . . . , n0,

and for every r ∈ (0, rn0 ]

osc
Q
λn0
r

Dh ⩽ c

(
r

rn0

) 3
4

osc
Qλrn0

Dh ,

hence  
Q
λn0
r

φ
|(Dh)

λn0
r |

(|Dh− (Dh)
λn0
r |) dz ⩽ cφ(λn0)

(
r

rn0

)3/4

.

Therefore, choosing

λr =

{
λi when r ∈ (ri+1, ri] and i = 0, 1, . . . , n0 − 1 ,

λn0 when r ∈ (0, rni0 ] ,
and rs = rn0 .

we have (6.4) (see (6.9)) and (6.5), (6.6) and and the second inequality in (6.7).
If the case (iii) holds, we have (6.11) for all i = 0, 1, 2, . . . , which implies the desired

estimates with rs = 0 and λr = λi for every r ∈ (ri+1, ri] and i = 0, 1, 2, . . . .
Finally, we are left to prove the first inequality in (6.7). Note that, since in case (iii)

rs = 0, there is nothing to prove. Then we consider the cases (i) and (ii) where rs > 0.
By [41, Lemma 6.8] with R = rs

2
, together with [41, Lemma 6.9] with R = rs, we have

|(Dh)
Q
λrs
θjrs/2

| ⩾ 1

2
λ,

for all j ∈ N0 and for some sufficiently small θ ∈ (0, , 1) depending on n,N, p, q. If

r ∈ ( rs
2
, rs] then |(Dh)

Q
λrs
r

| ⩾ 1
2n+2 |(Du)Qλr

rs/2
| ⩾ λ/2n+3. If r ∈ ( θ

j+1rs
2

, θ
jrs
2
], |(Dh)

Q
λrs
r

| ⩾
1

θn+2 |(Dh)
Q
λrs
θj+1rs

2

| ⩾ θn+2

2
λ. Thus, we obtain the first inequality in (6.7) with C1 =

max{2n+3, 2θ−(n+2)}. □

Remark 6.2. We list some remarks about the previous lemma.

(1) The numbers rs and λr may depend on h and the center z0 of Qλ
R.

(2) Recalling the constants σ and σ̃ in the first part of the proof, one can see that if
r ∈ (0, σ̃R] then Qλr

r ⊂ Qλ
σ
2
R.
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The following lemma will be crucially used in the iteration process in Section 7.

Lemma 6.3. Let M1 ⩾ 1, λ ∈ (0, 1], χ, χ1 ∈ (0, 1] and α1 ∈ (0, 3
4q
) be given in

Lemma 6.1. There exist large constants K1, C1 ⩾ 1 depending on n,N, p, q, ν, L, γ,M1 and
α1 such that the following holds: for every ϑ ∈ (0, C−1

1 ] there exists large K ⩾ 1 depend-
ing on n,N, p, q, ν, L, γ,M1, α1 and ϑ and small ε1 ∈ (0, 1) depending on n,N, p, q, ν, L,
γ,M1, α1, ϑ and χ, such that the following holds: if

|(Du)λr | ⩽M1λ,

(6.12) χφ(|(Du)λr |) ⩽
 
Qλr

φ|(Du)λr |(|Du− (Du)λr |) dz or |(Du)λr | ⩽
λ

K

and  
Qλr

φ|(Du)λr |(|Du− (Du)λr |) dz ⩽ min{φ(λ), ε1} ,

then there exists

λ1 ∈ [ϑα1λ,C1λ]

such that Qλ1
ϑr ⊂ Qλ

σ
2
r with σ ∈ (0, 1) from Lemma 6.1,

(6.13)

 
Q
λ1
ϑr

φ|(Du)
λ1
ϑr |
(|Du− (Du)λ1ϑr|) dz ⩽ φ(λ1) and |(Du)λ12ϑr| ⩽ λ1 .

Additionally, for each α ∈ (0, α1) there exists small ϑ1 ∈ (0, C−1
1 ] depending on n,N, p, q, ν,

L,M1, α1, α and χ1 such that for every ϑ ∈ (0, ϑ1] if

(6.14) χ1φ(|(Du)λ1ϑr|) ⩽
 
Q
λ1
ϑr

φ|(Du)
λ1
ϑr |
(|Du− (Du)λ1ϑr|) dz or |(Du)λ1ϑr| ⩽

λ1
K1

,

then

(6.15) λ1 ⩽ ϑαλ.

Proof. We first observe that, from all the assumptions and (2.14), we get

(6.16)

 
Qλr

φ(|Du|) dz ⩽ c

( 
Qλr

φ|(Du)λr |(|Du− (Du)λr |) dz + φ(|(Du)λr |)
)

⩽

{
c(1 +M q

1 )φ(λ) ,

c {(1 + χ−1)ε1 +K−q} .

We divide the proof into two steps.
Step 1. (φ-caloric approximation) We show that u is an almost φ-caloric mapping.

Namely, for every ζ ∈ C∞
0 (Qλ

r )

(6.17)

∣∣∣∣ 
Qλr

u · ζt −
φ′(|Du|)
|Du|

⟨Du, Dζ⟩ dz
∣∣∣∣ ⩽ cε0

( 
Qλr

φ(|Du|) dz + φ(∥Dζ∥∞)

)
,

where ε0 > 0 is a sufficiently small constant determined later. From the weak form of
(1.1) we have∣∣∣∣ 

Qλr

u · ζt −
φ′(|Du|)
|Du|

⟨Du, Dζ⟩ dz
∣∣∣∣ = ∣∣∣∣ 

Qλr

⟨A(Du)− φ′(|Du|)
|Du|

Du, Dζ⟩ dz
∣∣∣∣ .
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Choose δ = δ(ε0) such that (2.18) holds for ε = ε0, and set E1 := {z ∈ Qλ
r : |Du(z)| ⩽ δ}

and E2 = Qλ
r \ E1. Then one has from the Young inequality (2.2) and (2.3) that

1

|Qλ
r |

∣∣∣∣ˆ
E1

⟨A(Du)− φ′(|Du|)
|Du|

Du, Dζ⟩ dz
∣∣∣∣ ⩽ ε0

 
Qλr

φ′(|Du|)∥Dζ∥∞ dz

⩽ cε0

( 
Qλr

φ(|Du|) dz + φ(∥Dζ∥∞)

)
.

On the other hand, by (2.16), the Young inequality (2.2), (2.5) and (6.16),

1

|Qλ
r |

∣∣∣∣ˆ
E2

⟨A(Du)− φ′(|Du|)
|Du|

Du, Dζ⟩ dz
∣∣∣∣

⩽
1

|Qλ
r |

ˆ
E2

(|A(Du)|+ φ′(|Du|)) ∥Dζ∥∞ dz

⩽
c∥Dζ∥∞
δ(ε0)

 
Qλr

φ(|Du|) dz

⩽ cφ∗

(
1

δ(ε0)ε
1/p
0

 
Qλr

φ(|Du|) dz

)
+ ε0φ(∥Dζ∥∞)

⩽
c

δ(ε0)qε
q/p
0

φ∗
( 

Qλr

φ(|Du|) dz
)
+ ε0φ(∥Dζ∥∞)

⩽
c

δ(ε0)qε
q/p
0

ψ
(
(1 + χ−1)ε1 +K−q)  

Qλr

φ(|Du|) dz + ε0φ(∥Dζ∥∞) ,

where ψ(t) := φ∗(t)
t

. Therefore, choosing ε1 = ε1(χ, ε0) sufficiently small and K = K(ε0)
sufficiently large, we obtain (6.17).

Therefore, by Theorem 3.9 applied with G := A(Du) and γ1 :=
1
2
, we have that for a

constant ε > 0 to be determined later, there exists ε0 = ε0(ε) such that

(6.18)

( 
Qλr

|V(Du)−V(Dh)| dz
)2

⩽ ε

 
Qλr

φ(|Du|) dz ⩽ cεφ(λ) ,

where h is the weak solution to{
∂th− div

(
φ′(|Dh|)
|Dh| Dh

)
= 0 in Qλ

r ,

h = u in ∂pQ
λ
r .

The existence and uniqueness of the solution h follows from the theory of monotone
operators or by utilizing the Galerkin approximation method, see for instance [38]. Here
from higher integrability result in (4.20) with ℓ = 0 and the Lipschitz estimate for h in
(6.2) we have

(6.19)

( 
Qλ
r/2

φ(|Du|)1+σ dz

) 1
1+σ

⩽ cφ(λ)

and

(6.20) sup
Qλ
r/2

φ(|Dh|) ⩽ cφ(λ) ,

since  
Qλr

φ(|Dh|) dz ⩽ c

 
Qλr

φ(|Du|) dz ⩽ cφ(λ)
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by a standard energy estimate of the above system. Moreover, with the change of shift
formula (2.15) and the triangle inequality, we get

 
Qλ
r/2

φ1+σ
|Dh|(|Du−Dh|) dz ⩽ c

(
cη

 
Qλ
r/2

φ1+σ(|Du−Dh|) dz + cηφ1+σ(|Dh|)

)

⩽ c̃

( 
Qλ
r/2

φ1+σ(|Du|) dz + φ1+σ(|Dh|)

)
,

whence( 
Qλ
r/2

φ1+σ
|Dh|(|Du−Dh|) dz

) 1
1+σ

⩽ c

( 
Qλ
r/2

φ1+σ(|Du|) dz

) 1
1+σ

+ φ(|Dh|)

 .

This, together with (6.19) and (6.20), implies

(6.21)

( 
Qλ
r/2

|V(Du)−V(Dh)|2(1+σ) dz

) 1
1+σ

⩽ cφ(λ) .

Therefore, by interpolation, choosing τ ∈ (0, 1) such that 1−τ
2
+τ(1+σ) = 1; i.e., τ = 1

1+2σ
,

we have, with (6.18), (6.21) and the last inequality in (6.20),

(6.22)

 
Qλ
r/2

|V(Du)−V(Dh)|2 dz

⩽

( 
Qλ
r/2

|V(Du)−V(Dh)| dz

)1−τ ( 
Qλ
r/2

|V(Du)−V(Dh)|2(1+σ) dz

)τ

⩽ cε
1−τ
2 φ(λ) .

Moreover, by applying (2.11), with (6.21) and again by (6.20), we also have

φ

(  
Qλ
r/2

|Du−Dh| dz
)

⩽
 
Qλ
r/2

φ(|Du−Dh|) dz

⩽ ε
1−τ
4

 
Qλ
r/2

[φ(|Du|) + φ(|Dh|)] dz + cε−
1−τ
4

 
Qλ
r/2

|V(Du)−V(Dh)|2 dz

⩽ cε
1−τ
4 φ(λ) ,

hence

(6.23)

 
Qλ
r/2

|Du−Dh| dz ⩽ cε
1−τ
4q λ .

Step 2. Let 0 < θ ⩽ 1. Applying Lemma 6.1 with R = r/2 and writing λθ := λθr for
each θ ∈ (0, 1] and θs :=

2rs
r
, we have that

(6.24) λθ = λθs if θ ∈ (0, θs] and θα1λ ⩽ λθ ⩽ 2θα1λ if θ ∈ (θs, 1] ,

(6.25) sup
Q
λθ
θr

|Dh| ⩽ λθ for all θ ∈ (0, 1] ,

(6.26)

 
Q
λθ
θr

φ|(Dh)
λθ
θr |

(|Dh− (Dh)λθθr |) dz ⩽ c
( θ
θs

)3/4
φ(λθ) if θ ∈ (0, θs]

34



and

(6.27) |(Dh)λθθr | ⩾ 1
Cs
λθ and osc

Q
λθ
θr

Dh ⩽ c
( θ
θs

)α1

λθ if θ ∈ (0, θs] .

Moreover, we have from Remark 6.2 (2) that Qλθ
θr ⊂ Qλ

σ
2
r.

For 0 < θ ⩽ σ̃ with σ̃ ∈ (0, 1) as in (6.8) and a large constant C0 > 1 to be determined
later, set

C1 := max{2C0, 2C
2−p
2

0 σ̃−1}.
For ϑ ∈ (0, C−1

1 ] we set

(6.28) θ := 2C
2−p
2

0 ϑ ∈ (0, σ̃] and then λ1 := C0λθ .

Note that Qλ1
2ϑr ⊂ Qλθ

θr ⊂ Qλ
σ
2
r since

(2ϑ)2λ21
φ(λ1)

⩽ 4C2−p
0 ϑ2λ2θ
φ(λθ)

=
θ2λ2θ
φ(λθ)

and that by (6.24)

ϑα1λ ⩽ θα1λ ⩽ λθ ⩽ λ1 ⩽ 2θα1C0λ ⩽ 2C0λ ⩽ C1λ .

We then prove (6.13) for ϑ ∈ (0, C−1
1 ] with choosing ε and C0. Note that using (2.7),

(2.10) and (6.24), we have 
Q
λ1
ϑr

φ|(Du)
λ1
ϑr |
(|Du− (Du)λ1ϑr|) dz ⩽ c

 
Q
λ1
ϑr

|V(Du)−V((Du)λ1ϑr)|
2 dz

⩽ c

 
Q
λ1
ϑr

|V(Du)− (V(Du))λ1ϑr|
2 dz ⩽ c

 
Q
λ1
ϑr

|V(Du)− (V(Dh))λ1ϑr|
2 dz

⩽ c

 
Q
λ1
ϑr

|V(Du)−V(Dh)|2 dz + c

 
Q
λ1
ϑr

|V(Dh)− (V(Dh))λ1ϑr|
2 dz

⩽ c
φ(λ1)λ

2
θϑ

n+2

φ(λθ)λ21θ
n+2

θ−(n+2)−(q−2)α1

 
Qλr

|V(Du)−V(Dh)|2 dz + c sup
Q
λθ
θr

φ(|Dh|) .

For the second term on the right hand side, by (6.25) and (6.28), we have

sup
Q
λθ
θr

φ(|Dh|) ⩽ φ(C−1
0 λ1) ⩽ C−p

0 φ(λ1) .

As for the first term on the right hand side, by (6.28) and (6.22), we have

φ(λ1)λ
2
θϑ

n+2

φ(λθ)λ21θ
n+2

θ−(n+2)−(q−2)α1

 
Qλr

|V(Du)−V(Dh)|2 dz

⩽ cC
q−2+

(2−p)(2n+4+(q−2)α1)
2

0 ϑ−(n+2)−(q−2)α1

 
Qλr

|V(Du)−V(Dh)|2 dz

⩽ cC
q−2+

(2−p)(2n+4+(q−2)α1)
2

−p
0 ϑ−(n+2)−(q−1)α1ε

1−τ
2 φ(λ1) .

Therefore, choosing C0 large and then ε = ε(ϑ) small, we obtain the first estimate in
(6.13). Moreover, in a similar way with Jensen’s inequality, we also have

φ
(
|(Du)λ12ϑr|

)
⩽
 
Q
λ1
2ϑr

φ(|Du|) dz ⩽ c

 
Q
λ1
2ϑr

|V(Du)|2 dz

⩽ c

 
Q
λ1
2ϑr

|V(Du)−V(Dh)|2 dz + c

 
Q
λ1
2ϑr

|V(Dh)|2 dz

⩽ cC
q−2+

(2−p)(2n+4+(q−2)α1)
2

−p
0 ϑ−(n+2)−(q−1)α1ε

1−τ
2 φ(λ1) + cC−p

0 φ(λ1) ⩽ φ(λ1) ,
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provided that C0 is large enough and then ε = ε(ϑ) is small enough, which together with
the monotonicity of φ implies the second estimate in (6.13).
We next prove (6.15) under the condition (6.14), by choosing ϑ sufficiently small. Recall

the definition of θ and we distinguish between two cases. If θ ∈ [θs, 1), by (6.24) and
(6.28), we have that for each α ∈ (0, α1)

λ1 = C0λθ ⩽ 2C0θ
α1λ = 2C0

(
2C

2−p
2

0

)α1

ϑα1−αϑαλ ⩽ ϑαλ,

where we chose ϑ small to satisfy the last inequality. Therefore, we obtain (6.15) without
considering (6.14). On the other hand, let θ ∈ (0, θs). Note that, as ϑ < θ < θs, there

hold λθs = λθ = λϑ and Qλ1
ϑr ∪Q

λϑ
ϑr ⊂ Qλθ

θr . Hence, by (2.11) and (6.23)

|(Du)λ1ϑr − (Dh)λθθr | ⩽ c

 
Q
λθ
θr

|Du− (Dh)λθθr | dz

⩽ c

 
Q
λθ
θr

|Du−Dh| dz + c

 
Q
λθ
θr

|Dh− (Dh)λθθr | dz

⩽ cθ−n−2−α1(q−2)

 
Qλ
r/2

|Du−Dh| dz + c

(
θ

θs

)α1

λθ

⩽ cϑ−n−2−α1(q−2)ε
1−τ
4q λ+ c

(
θ

θs

)α1

λθ

⩽ cϑ−κ1εκ2λ1 + c

(
θ

θs

)α1

λ1 ,

where κ1 = −n − 2 − α1(q − 2) − α1 and κ2 = 1−τ
4q

. Then using (6.27) and choosing

ε = ε(ϑ) sufficiently small we have

|(Du)λ1ϑr| ⩾ |(Dh)λθθr | − |(Du)λ1ϑr − (Dh)λθθr |

⩾

(
C−1

0 C−1
s − cϑ−κ1εκ2 − c

(
θ

θs

)α1
)
λ1

⩾

(
1

2C0Cs
− c

(
θ

θs

)α1
)
λ1 .

Moreover, if the first condition in (6.14) holds, then by (2.7) and (6.26) we have

|(Du)λ1ϑr| ⩽ χ−1
1

 
Q
λ1
ϑr

φ|(Du)
λ1
ϑr |
(|Du− (Du)λ1ϑr|) dz ⩽ cχ−1

1

 
Q
λ1
ϑr

|V(Du)− (V(Du))λ1ϑr|
2 dz

⩽ cχ−1
1

 
Q
λθ
θr

|V(Du)− (V(Du))λθθr |
2 dz ⩽ cχ−1

1

( θ
θs

)3/4
φ(λθ) ,

which implies that(
1

2C0Cs
− c

(
θ

θs

)α1
)
λ1 ⩽ cχ−q

1

(
θ

θs

) 3
4q

λθ ⩽ cχ−q
1

(
θ

θs

)α1

λ1,

hence

(6.29) θα1
s ⩽ cχ−q

1 θα1 .

If the second condition in (6.14) holds, then choosing K1 ⩾ 4C0Cs,(
1

2C0Cs
− c

(
θ

θs

)α1
)
λ1 ⩽

λ1
K1

⩽
λ1

4C0Cs
,
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which implies (6.29) again. Consequently, we have

λ1 = C0λθ = 2C0θ
α1
s λ ⩽ cχ−q

1 θα1λ ⩽ cχ−q
1 ϑα1−αϑαλ ⩽ ϑαλ ,

Therefore, choosing ϑ1 sufficiently small depending on χ1, we get

λ1 ⩽ ϑα1λ ,

whenever ϑ ∈ (0, ϑ1]. □

7. Iteration and Proof of Theorem 1.1

With the following result we will combine the degenerate and the nondegenerate
regimes by an inductive iteration scheme. Roughly speaking, as long as on an itera-
tion scale the degenerate case holds, we shall apply on this scale Lemma 6.3. On the
other hand, when on an iteration scale the nondegenerate regime occurs we can apply
Lemma 5.3 which provides a suitable excess decay estimate. Either this happens at a
certain scale ϑmR, m < ∞, or we go on by iterating the excess improvement from the
degenerate case on each scale (i.e, m = ∞), thus obtaining the desired excess decay
estimate.

Lemma 7.1. Let u be a weak solution to (1.1), M0 ⩾ 1 and α ∈ (0, α1). There exist
small ϑ, ε2 ∈ (0, 1) and large K2 ⩾ 1 depending on n,N, p, q, ν, L, α1 and M0 such that
the following holds: suppose Q2R(z0) ⋐ ΩT ,

(7.1) |(Du)Q2R(z0)| ⩽M0 ,

and

(7.2)

 
QR(z0)

φ|(Du)QR(z0)
|(|Du− (Du)QR(z0)|) dz ⩽ ε2 .

Then the limit
Γz0 := lim

r→0+
(Du)Qr(z0)

exists and there exist m ∈ N0 ∪ {∞} and positive numbers λj with j ∈ {0, 1, 2, . . . ,m}
such that λ0 = 1,
(7.3)
ϑα1λj−1 ⩽ λj ⩽ ϑαλj−1 for 1 ⩽ j < m , ϑα1λm−1 ⩽ λm ⩽ C1λm−1 for 0 < m <∞ ,

(7.4) Q
λj
ϑjR

(z0) ⊂ Q
λj−1

σ1ϑj−1R
(z0) for 1 ⩽ j ⩽ m with j <∞ ,

(7.5)
λm
2K2

⩽ |Γz0| ⩽ 2K2λm if m <∞ and Γz0 = 0 if m = ∞ ,

(7.6)

 
Q
λj

ϑjR
(z0)

φ(|Du− Γz0|) dz ⩽ cφ(λj) for 0 ⩽ j ⩽ m with j <∞ ,

and, if m <∞,

(7.7)

 
Qλmr (z0)

φ(|Du− Γz0|) dz ⩽ c
( r

ϑmR

)α2

φ(λm) for all 0 < r ⩽ ϑmR .

Proof. Step 1. (Choice of parameters) Without loss of generality, we may assume that
z0 = 0. We start by fixing the parameters. LetM1 := 2n+2M0. First, we fix K1 and C1 as
in Lemma 6.3, and then choose δ1 = δ1(K1) in Lemma 5.3 with K0 = max{M1, 2

n+2K1},
and set χ1 := δ1(K1) in Lemma 6.3. Then we next determine ϑ1 as in Lemma 6.3, and
then K as in Lemma 6.3 with ϑ ⩽ ϑ1. Then choose δ1 = δ1(K) in Lemma 5.3 with
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K0 = max{M1, 2
n+2K}, and set χ := δ1(K) in Lemma 6.3. We then determine ε1 as in

Lemma 6.3. Note that there exists j∗ ∈ N such that

(7.8) ϑαp(j∗+1) ⩽ ε1 .

With this j∗, we determine

(7.9) ε2 = C−1
2 ϑ(n+4−p)(j∗+1)ε1 ,

where C2 > 1 is a large constant to be determined in (7.14). Finally, set

K2 = max{M1, 2
n+2K1, 2

n+2K} .

We next choose λj inductively. Set λ0 = 1. For some j ∈ N0 and λj ∈ (0, 1], we
consider the following condition:

(7.10) χ|(Du)
λj
ϑjR

| ⩽
 
Q
λj

ϑjR

φ
|(Du)

λj

ϑjR
|
(|Du− (Du)

λj
ϑjR

|) dz or |(Du)
λj
ϑjR

| ⩽ λj
K
.

If this condition holds, then by Lemma 6.3 with λj = λ there exists λj+1 ∈ [ϑα1λj, C1λj]

such that Q
λj+1

ϑj+1R
⊂ Q

λj
σ
2
ϑjR

,

(7.11)

 
Q
λj+1

ϑj+1R

φ
|(Du)

λj+1

ϑj+1R
|
(|Du−(Du)

λj+1

ϑj+1R
|) dz ⩽ φ(λj+1) and |(Du)

λj+1

2ϑj+1R
| ⩽ λj+1 .

Then we have two cases:
(7.12)

χ1|(Du)
λj+1

ϑj+1R
| ⩽

 
Q
λj+1

ϑj+1R

φ
|(Du)

λj+1

ϑj+1R
|
(|Du− (Du)

λj+1

ϑj+1R
|) dz or |(Du)

λj+1

ϑj+1R
| ⩽ λj+1

K1

,

and the other case. Set Ñ := {j ∈ N0 : (7.10) with j does not holds.} and m1 ∈ N0∪{∞}
such that {

m1 = min Ñ if Ñ ̸= ∅ ,
m1 = ∞ if Ñ = ∅ .

Step 2. (Nondegenerate decay) If m1 = 0, then the lemma with m = 0 follows directly
from Lemma 5.3 with R = r, K0 = 2n+2max{M1, K1} and δ1 = δ1(K).
We next suppose m1 ∈ N ∪ {∞}. If there exists m0 ∈ N with m0 ⩽ m1 + 1 such that

(7.12) holds for all j < m0− 1 but not j = m0− 1 then we choose m = m0. On the other
hand, if m1 ∈ N and (7.12) holds for all j ⩽ m1 − 1, then we choose m = m1. We note
that if all the assumptions of Lemma 6.3, with θjr in place of r, hold and λj ⩽ ϑαj, then
λj+1 ⩽ ϑα(j+1),

(7.13)

 
Q
λj+1

ϑj+1R

φ
|(Du)

λj+1

ϑj+1R
|
(|Du− (Du)

λj+1

ϑj+1R
|) dz ⩽ φ(λj+1) ⩽ φ(ϑα(j+1)) ⩽ ϑαp(j+1)

and

|(Du)
λj+1

ϑj+1R
| ⩽ 2n+2|(Du)

λj+1

2ϑj+1R
| ⩽ 2n+2λj+1 ⩽M1λj+1 .

Moreover if j ⩾ j∗, the estimate (7.13) together with (7.8) implies 
Q
λj+1

ϑj+1R

φ
|(Du)

λj+1

ϑj+1R
|
(|Du− (Du)

λj+1

ϑj+1R
|) dz ⩽ ε1 ,
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while if j < j∗, then by (7.9), taking into account (2.7) and (2.10),

(7.14)

 
Q
λj+1

ϑj+1R

φ
|(Du)

λj+1

ϑj+1R
|
(|Du− (Du)

λj+1

ϑj+1R
|) dz

⩽ c

 
Q
λj+1

ϑj+1R

|V(Du)− (V(Du))
λj+1

ϑj+1R
|2 dz

⩽ cϑ−(n+4−p)(j+1)

 
QR

|V(Du)− (V(Du))R|2 dz

⩽ cϑ−(n+4−p)(j∗+1)

 
QR

φ|(Du)R|(|Du− (Du)R|) dz

⩽ C2ϑ
−(n+4−p)(j∗+1)ε2 ⩽ ε1 .

Therefore, we can inductively apply Lemma 6.3 with r = θjR for j = 0, 1, . . . ,m− 1.
Moreover, by the second inequality in (7.11) with j = m− 1 and the reverse inequality

of the second one in (7.10) when m = m1, or (7.12) when m < m1, we have either

λm ⩾ |(Du)λm2ϑmR| ⩾
1

2n+2
|(Du)λmϑmR| ⩾

1

2n+2K
λm ⩾

1

K
λm ,

or

λm ⩾ |(Du)λm2ϑmR| ⩾
1

2n+2
|(Du)λmϑmR| ⩾

1

2n+2K
λm ⩾

1

K1

λm .

Therefore, applying Lemma 5.3 with R = ϑmr, K0 = max{M1, K} and δ1 = δ1(K) when
m = m1, or with R = ϑmr, K0 = max{M1, K1} and δ1 = δ1(K1) when m < m1, we can
get all the estimates except (7.6).

Thus, we are left to prove (7.6) for j ⩽ m− 1. Note that the case j = m follows from
(7.7). We first observe that if j ⩽ m − 1, we have (7.11) which, together with (2.14),
implies

(7.15)

 
Q
λj

ϑjR

φ(|Du−(Du)
λj
ϑjR

|) dz ⩽
 
Q
λj

ϑjR

φ(|Du−(Du)
λj
ϑjR

|+ |(Du)
λj
ϑjR

|) dz ⩽ cφ(λj) ,

whenever 1 ⩽ j ⩽ m. Moreover, by the same argument, we also have (7.15) when j = 0
from (7.1) and (7.2). From this estimate we have that

 
Q
λj

ϑjR
(z0)

φ(|Du− Γ0|) dz ⩽ c

 
Q
λj

ϑjR

φ(|Du− (Du)
λj
ϑjR

|) dz + cφ(|(Du)
λj
ϑjr

− Γ0|)

⩽ cφ(λj) + cφ(|(Du)
λj
ϑjR

− Γ0|) .
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Moreover, by (7.15) and (7.3),

|(Du)
λj
ϑjR

− Γ0| ⩽
m−1∑
k=j

|(Du)λk
ϑkR

− (Du)
λk+1

ϑk+1R
|+ |(Du)λmϑmR − Γ0|

⩽
m−1∑
k=j

φ−1

( |Qλk
ϑkR

|
|Qλk+1

ϑk+1R
|

 
Q
λk
ϑkR

φ(|Du− (Du)λk
ϑkR

|) dz
)
+ φ−1

(  
QλmϑmR

φ(|Du− Γ0|) dz
)

⩽
m−1∑
k=j

φ−1

(
ϑ−(n+2)φ(λk+1)λ

2
k

φ(λk)λ2k+1

φ(λk)

)
+ cλm

⩽
m−1∑
k=j

φ−1
(
ϑ−(n+2+2α1+q)φ(λk)

)
+ cλm

⩽ c
m∑
k=j

λk ⩽ cλj

m∑
k=j

ϑα(k−j) ⩽ cλj .

Therefore, combining the preceding two estimates, we obtain (7.6).
Step 3. (Degenerate decay) Suppose m1 = ∞ and (7.12) holds for all j ∈ N. Then we

choose m = ∞ and by Lemma 6.3 with r = θjR, we have the first inequality in (7.3) and
(7.4). We next prove the remaining results, namely, the second condition in (7.5) and
(7.6) with Γ0 = 0. Observe that applying Lemma 6.3 inductively, we have that for all
j ∈ N0,

(7.16)

 
Q
λj

ϑjR

φ
|(Du)

λj

ϑjR
|
(|Du− (Du)

λj
ϑjR

|) dz ⩽ φ(λj) and |(Du)
λj
2ϑjR

| ⩽ λj ⩽ ϑαj ,

hence

lim
j→∞

(Du)
λj
ϑjR

= 0 .

Fix any r ∈ (0, R). Since

Q
λj
ϑjR

⊂ Qλ0
σ̃j1R

= Qσj1R
, j ∈ N0

by (7.4), there exists j ∈ N0 such that

Qr ⊂ Q
λj
ϑjR

and Qr ̸⊂ Q
λj+1

ϑj+1R
,

which implies that

min

ϑj+1R,
ϑj+1R√

φ(λj+1)/λ2j+1

 < r ⩽ min

ϑjR, ϑjR√
φ(λj)/λ2j+1

 .
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By (7.16) and (7.15) and the inequality 2n
n+2

< p < 2, we have

|(Du)r| ⩽
 
Qr

|Du− (Du)
λj
ϑjR

| dz + |(Du)
λj
ϑjR

|

⩽ φ−1

(
|Qλj

ϑjR
|

|Qr|

 
Q
λj

ϑjR

φ(|Du− (Du)
λj
ϑjR

|) dz

)
+ |(Du)

λj
ϑjR

|

⩽ cφ−1

(
(ϑjR)n+2

rn+2
λ2j

)
+ λj

⩽ cφ−1
(
ϑ−(n+2) max{1, (φ(λj+1)/λ

2
j+1)

n+2
2 }λ2j

)
+ λj

⩽ cφ−1
(
max{λ2j , λ2j(φ(λj)/λ2j+1)

n+2
2 }
)
+ λj

⩽ cφ−1
(
max{λ2j , λ

n+2
2
p−n

j }
)
+ λj ⩽ cλ

1
q
(n+2

2
p−n)

j .

Moreover, since

r

R
⩾ ϑj+1 min

{
1, (φ(λj+1)/λ

2
j+1)

−1/2
}
⩾ ϑj+1λ

2−p
2

j+1 ⩾ cλ
1
α1

+ 2−p
2

j

by (7.3) we have

|(Du)r| ⩽ c
( r
R

) 1
q
(n+2

2
p−n)/( 1

α1
+ 2−p

2
)

−→ 0 as r → 0 ,

hence
lim
r→0+

(Du)r = 0 =: Γ0 .

Finally, by (7.15) and the second inequality in (7.16) we have 
Q
λj

ϑjR

φ(|Du|) dz ⩽ c

 
Q
λj

ϑjR

φ(|Du− (Du)
λj
ϑjR

|) dz + cφ(|(Du)
λj
ϑjR

|) ⩽ cφ(λj) ,

which proves (7.6) with m = ∞. □

Now we prove the partial Hölder continuity result for Du.

Proof of Theorem 1.1. By the parabolic Lebesgue differentiation theorem, we may assume
that Du(z) = limr→0+(Du)Qr(z) if the limit exists. Fix z0 ∈ ΩT \ (Σ1∪Σ2), where Σ1 and
Σ2 are defined in (1.3) and (1.4), respectively. Hence we have

lim inf
r→0+

 
Qr(z0)

φ|(Du)Qr(z0)|(|Du− (Du)Qr(z0)|) dz = 0 ,

lim sup
r→0+

|(Du)Qr(z0)| <∞ .

From these results and the absolute continuity of the integral, one can find R > 0 such
that Q2R(z0) ⋐ ΩT and for every z̃ ∈ QR(z0), 

QR(z̃)

φ|(Du)QR(z̃)|(|Du− (Du)QR(z̃)|) dz ⩽ ε2

with ε2 as in (7.9), and
|(Du)QR(z̃)| ⩽M0 ,

for some M0 <∞. Then, in view of Lemma 7.1, we have that for each z̃ ∈ QR(z0),

Γz̃ := lim
r→0+

(Du)Qr(z̃)
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exists and there exist mz̃ ∈ N0 ∪ {∞} and positive numbers λz̃,j with j ∈ {0, 1, . . . ,mz̃}
such that

(7.17)


λz̃,0 = 1 ,

ϑα1λz̃,j−1 ⩽ λz̃,j ⩽ ϑαλz̃,j−1 for 1 ⩽ j < mz̃ ,

ϑα1λz̃,mz̃−1 ⩽ λz̃,mz̃ ⩽ C1λz̃,mz̃−1 for 0 < mz̃ <∞ ,

λz̃,mz̃
2K2

⩽ |Γz̃| ⩽ 2K2λz̃,mz̃ ,

(7.18)

 
Q
λz̃,j

ϑjR
(z̃)

φ(|Du− Γz̃|) dz ⩽ cφ(λz̃,j) for 0 ⩽ j ⩽ mz̃ with j <∞ ,

and, if mz̃ <∞,

(7.19)

 
Q
λz̃,mz̃
r (z̃)

φ(|Du− Γz̃|) dz ⩽ c
( r

ϑmz̃R

)α2

φ(λz̃,mz̃) for all 0 < r ⩽ ϑmz̃R .

We shall prove that the mapping z 7→ Γz = Du(z) from QR/2(z0) to RNn is Hölder
continuous with respect to the parabolic distance in QR/2(z0) ⊂ Rn+1 and the Euclidean

distance in RNn. For z̃ ∈ QR/2(z0) and r ∈ (0, R), we first suppose Qr(z̃) ⊂ Q
λz̃,mz̃
ϑmz̃R(z̃).

Note that in this case mz̃ <∞. Then define ρ > 0 as

ρ := max
{
1,
√
φ(λmz̃)/λ

2
mz̃

}
r ,

so that Qr(z̃) ⊂ Q
λz̃,mz̃
ρ (z̃). Hence by (7.19), the inequality 2n

n+2
< p < 2 and (7.17), we

have  
Qr(z̃)

φ(|Du− Γz̃|) dz ⩽
|Qλz̃,mz̃

ρ (z̃)|
|Qr(z̃)|

 
Q
λz̃,mz̃
ρ (z̃)

φ(|Du− Γz̃|) dz

⩽ c
ρn+2λ2z̃,mz̃

rn+2φ(λz̃,mz̃)

( ρ

ϑmz̃R

)α2

φ(λz̃,mz̃)

= c
( ρ

ϑmz̃R

)α2

λ2z̃,mz̃ max
{
1, (φ(λz̃,mz̃)/λ

2
z̃,mz̃

)
n+2
2

}
⩽ c

( ρ

ϑmz̃R

)α3

max{λ2z̃,mz̃ , λ
n+2
2
p−n

z̃,mz̃
}

⩽ c

(
max

{
1,
√
φ(λmz̃)/λ

2
mz̃

}
r

λ
1/α
z̃,mz̃

R

)α3

λ
n+2
2
p−n

z̃,mz̃

⩽ c
( r
R

)α3

λ
−( 2−p

2
+ 1
α
)α3+α(

n+2
2
p−n)

z̃,mz̃
⩽ c

( r
R

)α3

,

where

0 < α3 ⩽ min

{
α2,

1

2

α(n+2
2
p− n)

2−p
2

+ 1
α

}
.

We next suppose Qr(z̃) ̸⊂ Q
λz̃,mz̃
ϑmz̃R(z̃). Then there exists 0 ⩽ j < mz̃ such that

Qr(z̃) ̸⊂ Q
λz̃,l+1

ϑl+1R
(z̃) and Qr(z0) ⊂ Q

λz̃,l
ϑlR

(z̃) ,

which implies
(7.20)

ϑj+1R < max
{
1,
√
φ(λz̃,j+1)/λ2z̃,j+1

}
r and ϑjR ⩾ max

{
1,
√
φ(λz̃,j)/λ2z̃,j+1

}
r .
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Then by (7.18), the first inequality in (7.20), the inequality 2n
n+2

< p < 2 and (7.17), we
have  

Qr(z̃)

φ(|Du− Γz̃|) dz ⩽
|Qλz̃,j

ϑjR
(z̃)|

|Qr(z̃)|

 
Q
λz̃,j

ϑjR
(z̃)

φ(|Du− Γz̃|) dz

⩽ c
(ϑjR)n+2λ2z̃,j
rn+2φ(λz̃,j)

φ(λz̃,j)

⩽ cλ2z̃,j max{1, (φ(λz̃,j+1)/λ
2
z̃,j+1)

n+2
2 } ⩽ λ

n+2
2
p−n

z̃,j+1 .

Moreover, by the first inequality in (7.20) again we have

r

R
>

ϑj+1

max
{
1,
√
φ(λz̃,j+1)/λ2z̃,j+1

} ⩾ cλ
1
α
z̃,j+1 min

{
1, λ

1− p
2

z̃,j+1

}
⩾ cλ

1+ 1
α
− p

2
z̃,j+1 .

Therefore, combining the above results, we have that 
Qr(z̃)

φ(|Du− Γz̃|) dz ⩽ c
( r
R

)α3

for some small α3 ∈ (0, 1).
Now, let z1, z2 ∈ QR/2(z0) be any two points with z1 ̸= z2 and r := dp(z1, z2), where

dp(z1, z2) := max{|x1 − x2|,
√

|t1 − t2|} .
Set Q := Qr(z1) ∩Qr(z2). Note that c(n)|Qr| ⩽ |Q| ⩽ |Qr|. Therefore,

|Γz1 − Γz2| ⩽
 
Q

|Du− Γz1| dz +
 
Q

|Du− Γz1| dz

⩽ c

 
Qr(z1)

|Du− Γz1| dz + c

 
Qr(z2)

|Du− Γz1 | dz

⩽ cφ−1
(( r

R

)α3
)
⩽ c

( r
R

)α3/q

= c

(
dp(z1, z2)

R

)α3/q

,

which implies the Hölder continuity of z 7→ Γz = Du(z) with respect to the parabolic
metric on QR/2(z0) with Hölder exponent α3/q. Since z0 ∈ ΩT \(Σ1∪Σ2) was an arbitrary
point and both Σ1 and Σ2 are Ln+1-null sets, the proof is complete. □
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