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1. Introduction

Blaschke-Santaló diagrams represent a powerful tool in shape optimization, to investi-
gate the relations of triples of shape functionals F1, F2, F3, defined in a class of admissible
shapes A. These diagrams consist in studying the range of the vector shape functional
(F1, F2) : A → R2, under the constraint F3(Ω) = 1, namely the set{

(x, y) ∈ R2 : ∃Ω ∈ A, x = F1(Ω) , y = F2(Ω) , F3(Ω) = 1
}
.

When dealing with homogeneous shape functionals, an equivalent diagram is{
(x, y) ∈ R2 : ∃Ω ∈ A, x = Fα

3 (Ω)F1(Ω) , y = F β
3 (Ω)F2(Ω)

}
,

where the powers α and β are chosen so that Fα
3 F1 and F β

3 F2 are scale invariant.
First used by Santaló in [18], this approach has now become a standard tool in shape

optimization. We cite, e.g., [2, 3, 6, 7, 8, 11, 12, 16], in which shape functionals of
spectral and geometric type are studied. As it appears from the literature, the theoretical
analysis, even if very fine, is in general not enough for an accurate description of the
diagram. Therefore it is often accompanied by numerical simulations. In this respect we
cite the recent paper [5], in which the authors give a new and interesting way to generate
random shapes whose images distribute uniformly in D.

In the present paper, we work in dimension 2 and we consider the following triple of
shape functionals: the area A(Ω), the perimeter P (Ω), and the moment of inertia W (Ω)
with respect to the center of gravity

W (Ω) :=

�
Ω

[(x− xG)
2 + (y − yG)

2] dx dy,

where (xG, yG) are the coordinates of the center of gravity of Ω.
The three functionals under study are invariant under rigid motion and are positively

homogeneous. Therefore, as mentioned above, the Blaschke-Santaló diagram associated
to (A,P,W )

{(x, y) ∈ R2 : ∃Ω ∈ A , A(Ω) = 1 , x = P (Ω) , y =W (Ω)}
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can be deduced from the diagram

D :=

{
(x, y) ∈ R2 : ∃Ω ∈ A , x =

1

2π

A2(Ω)

W (Ω)
, y = 4π

A(Ω)

P 2(Ω)

}
,

in which the area constraint is enclosed into the coordinate shape functionals, which are
now scale invariant. The pre-factors 1/2π and 4π are normalization constants and serve
the purpose of making the diagram fit the unit square (cf. Proposition 2.2).

In the present paper we study D for the following class of planar shapes:

A := {Ω ⊂ R2 : Ω open, convex, with 2 orthogonal axis of symmetry}.

The double symmetry assumption allows us to rewrite the moment of inertia as

W (Ω) =

�
Ω

(x2 + y2) dx dy,

since we may assume that the two axis of symmetry coincide with the coordinate axis so
that the center of gravity is located at the origin.

We prove that the diagram is simply connected and coincides with the planar region
enclosed between two increasing curves which connect the point (0, 0) to the point (1, 1).
The point (0, 0) is attained asymptotically by the image of thin shapes, whereas the
point (1, 1) corresponds (only) to the disks. The behavior of D near these two points is
investigated using the technique of shape derivatives, either of thin domains or of nearly
spherical sets, and it is described by the slopes of the boundary curves in the two extremal
points of the diagram.

The two boundary curves are the graphs of

L±(x) := max /min

{
4π

A(Ω)

P 2(Ω)
: Ω ∈ A ,

1

2π

A2(Ω)

W (Ω)
= x

}
.

Optimal shapes for L+ turn out to be C1,1 shapes, whereas that for L− are polygons.
For values of x less than 3/π we are able to characterize optimal shapes for L−(x): they
are rhombi, going from the segment, in the limit as x → 0+, to the square, for x = 3/π.
The key argument here is the minimization of the ratio y/x for (x, y) ∈ D, namely the
maximization of F (Ω) := P 2(Ω)A(Ω)/W (Ω) for Ω ∈ A. We mention that the same issue,
in the wider class of convex sets, was addressed by G. Pólya in [17]: according to the
conjecture, still unsolved, the maximiser of F should be the equilateral triangle.

For all the remaining cases, namely for L+(x), x ∈ (0, 1], and for L−(x), x ∈ (3/π, 1],
optimizers are searched numerically. We look for the optimal shapes corresponding to
points on L+(x) through their support functions. We choose to decompose the support
function in Fourier series, the unknowns being the Fourier coefficients. For the optimal
shapes corresponding to points on L−(x), since we know that they are polygonal, we
choose a different strategy: the unknowns being the coordinates of the vertices.

The paper is organized as follows. In Section 2 we present the notation and we gather
the first results: in Proposition 2.8 we show that the diagram is simply connected and its
boundary is the union of two graphs of functions L± : (0, 1] → R2, which have the same
limit as x → 0+ and coincide (only) for x = 1. The properties of the shapes associated
to boundary points are summarized in Theorem 2.9. The continuity and monotonicity of
L± is investigated in the two subsequent sections, in Proposition 3.5 and 4.4. Section 5 is
dedicated to the study of the ratio P 2A/W , which allows us to give the explicit expression
of L−(x) for x ∈ [0, 3/π]. In Section 6 we analyse the diagram near its “corners”, i.e, near
x = 0 and x = 1. The final section is devoted to numerical shape optimization.

2. Definitions and first properties

Notation. Throughout the paper, we denote by x(·) and y(·) the coordinate shape func-
tionals defining the diagram, that is

x(Ω) :=
1

2π

A2(Ω)

W (Ω)
, y(Ω) := 4π

A(Ω)

P 2(Ω)
.

We use the letter D to refer to the disk of radius 1, centered at the origin.
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We will also assume that the shapes of A are centered at the origin and that the
coordinate system is oriented so that the axis of symmetry are the horizontal and vertical
axis.

We endow the class of admissible shapes of the complementary Hausodrff distance,
denoted by dH. Neighborhoods of shapes are intended with respect to the complementary
Hausdorff distance.

With the symbol
�
Ω
f we denote the average of the function f over the set Ω, that is,�

Ω
f = (

�
Ω
f)/(|Ω|).

Definition 2.1. Let Ω be an admissible set. We define small deformation of Ω a family
{Ωϵ}ϵ∈[0,ϵ0), ϵ0 > 0, with the following properties:

- for ϵ = 0 there holds Ω0 = Ω
- the map ϵ 7→ Ωϵ is continuous from [0, ϵ0) to the class of admissible shapes A,
with respect to the Hausdorff distance.

Results on x(·) and y(·). Here we gather some properties concerning the two functionals
x(·) and y(·), separately. More precisely, we investigate their bounds and continuity.

Proposition 2.2. The shape functionals x(·) and y(·) take value in the interval (0, 1] and
the value 1 is attained only at the disk. In particular, the diagram D is contained into the
square (0, 1]× (0, 1].

Proof. For every admissible shape Ω both x(Ω) and y(Ω) are strictly positive, implying
that x(·) > 0 and y(·) > 0. The (sharp) upper bound on y(·) is nothing but the classical
isoperimetric inequality. As for x(·), this isoperimetric inequality asserting that the ball
minimizes the moment of inertia is also well-known. For sake of completeness, let us give
an elementary proof: we use polar coordinates with respect to the center of gravity. A
convex shape Ω containing the origin can be described as Ω = {(ρ, θ) : θ ∈ [0, 2π], ρ ∈
[0, ρmax(θ)]} for some function ρmax. Computing the area and moment of inertia in polar
coordinates yields:

x(Ω) =
1

2π

[� 2π

0

� ρmax(θ)

0
ρdρ dθ

]2
� 2π

0

� ρmax(θ)

0
ρ3dρdθ

=
1

2π

[� 2π

0
ρ2max(θ)dθ

]2
� 2π

0
ρ4max(θ)dθ

.

Finally, using Cauchy-Schwarz inequality, we infer that the last term is bounded above by
1. The threshold 1 is sharp and it is attained if and only if ρmax is constant, namely if Ω
is a disk. This concludes the proof. □

As already pointed out in the Introduction, the shape functionals x(·) and y(·) are scale
invariant, since for every t > 0

P (tΩ) = tP (Ω), A(tΩ) = t2A(Ω), W (tΩ) = t4W (Ω).

This allows us to replace, if needed, the class of admissible sets with the subclass of shapes
contained into the same compact set R2, obtaining the same diagram (for any choice of
such a compact set), as we state in the next lemma.

Lemma 2.3. Let K be a compact set. Then

D = {(x(Ω), y(Ω)) : Ω ∈ A , Ω ⊂ K} .

The advantage of working with shapes in a given box is that the classes of admissible
shapes have now some compactness, in the following sense. Exploiting the compactness
of the space {K \ Ω : Ω ∈ A} endowed with the Hausdorff distance (Blaschke selection
theorem), we deduce that for every sequence Ωn ⊂ K, Ωn ∈ A, there exists a subsequence
(not relabeled) such that

• either Ωn → Ω ∈ A, with respect to the complementary Hausdorff distance,
• or Ωn collapses to a segment or shrinks to a point.

Proposition 2.4. The shape functionals x(·) and y(·) are continuous in A with respect
to the complementary Hausdorff convergence.
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Proof. Take Ωn → Ω in A, with respect to the Hausdorff convergence, as n → ∞. By
continuity of A, P , W among convex sets, we have A(Ωn) → A(Ω), P (Ωn) → P (Ω),
W (Ωn) → W (Ω). If Ω has non empty interior, we infer that all the quantities involved
(in particular P (Ω) and W (Ω)) do not vanish for n large enough, allowing to obtain the
continuity of x(·) and y(·) at Ω. This concludes the proof. □

As we have already shown in Proposition 2.2, the origin does not belong to the diagram.
However, it has an important role in the description of its closure.

Proposition 2.5. The origin O belongs to the closure of the diagram. More precisely,
D = D ∪ {O}.

Proof. We start the proof with a direct computation of x(·) and y(·) on two particular
families of shapes: rectangles Rℓ and rhombi Sℓ, with semiaxis 1 and ℓ, with ℓ > 0. It is
straightforward that:

A(Rℓ) = 4ℓ, P (Rℓ) = 4(1 + ℓ), W (Rℓ) =
4

3
(ℓ+ ℓ3),

A(Sℓ) = 2ℓ, P (Sℓ) = 4
√

1 + ℓ2, W (Sℓ) =
1

3
(ℓ+ ℓ3),

so that

x(Rℓ) =
6

π

ℓ

1 + ℓ2
, y(Rℓ) = π

ℓ

(1 + ℓ)2
, x(Sℓ) =

6

π

ℓ

1 + ℓ2
, y(Sℓ) =

π

2

ℓ

1 + ℓ2
.

The two constructed families of points of the diagram converge to the origin as ℓ → 0 or
+∞. The former limit corresponds to shapes (rectangles/rhombi) collapsing to horizonral
segments, the latter to shapes (rectangles/rhombi) collapsing to vertical segments. This
implies that the origin is in the closure of the diagram.

Let {Qn} ⊂ D be a sequence converging to a point Q ∈ R2 (in norm). Let Ωn ∈ A be
a sequence of associated admissible shapes. Without loss of generality (see Lemma 2.3),
we may assume that the sequence is uniformly bounded. Then two situations may occur:
either a subsequence converges with respect to the complementary Hausdorff distance to
some admissible shape Ω, or Ωn collapses/shrinks to a segment/point. In the former, we
infer that, by continuity of x(·) and y(·) in A, Q = (x(Ω), y(Ω)) ∈ D. Let us examine
the second situation. The case in which the chosen Ωn shrinks to a point can be easily

treated as before, since we may replace every Ωn with a homothetic copy Ω̂n, obtaining
a sequence which has inradii bounded from below by a positive constant. The previous

result then applies to Ω̂n: we find a subsequence (not relabaled) such that Ω̂n → Ω ∈ A
and Qn = (x(Ω̂n), y(Ω̂n)) → Q = (x(Ω), y(Ω)) ∈ D. The last case that we have to consider
is that of {Ωn} thin domains, collapsing to a segment. Without loss of generality (by the
scale invariance and the invariance under rotations of the functionals) may assume that
Ωn all cross the horizontal axis exactly in the segment of length 1. Moreover, they all cross
the vertical axis on a centered segment of some length ℓ(n) which goes to 0 as n → ∞.
We easily obtain (by convexity) that Ωn is contained into the centered rectangle Rℓ(n)

with sides 2 and 2ℓ(n) and it contains the centered rhombus Sℓ(n) with semiaxis of length
1 and ℓ(n). In particular,

0 < x(Ωn) ≤
A2(Rℓ(n))

2πW (Sℓ(n))
=

24

π

ℓ(n)

1 + ℓ2(n)
→ 0

0 < y(Ωn) ≤
4πA(Rℓ(n))

P 2(Sℓ(n))
= π

ℓ(n)

(1 + ℓ2(n))
→ 0.

This means that the limit point is Q = (0, 0). □

Proposition 2.6. The diagrams D is connected by arcs.

Proof. LetQ0 andQ1 be two points ofD. Take Ω0 and Ω1 two associated shapes. Consider
the 1-parameter family of shapes obtained with the following Minkowski sum:

Ωt := tΩ1 ⊕ (1− t)Ω0 := {ta+ (1− t)b : a ∈ Ω1 , b ∈ Ω0}, t ∈ [0, 1].

The map t 7→ Ωt preserves convexity and it is continuous with respect to the (complemen-
tary) Hausdorff distance. We know that Hausdorff convergence is equivalent to uniform
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convergence of support functions (see [19]) and that the support function of a Minkowski
sum is the combination of support functions. If we work in A, in order to preserve also
the double symmetry, we have to choose the orientation of Ω0 and Ω1 so that their (two
orthogonal) axis of symmetry coincide with the axis of the coordinate system. This im-
plies that Ωt is an admissible shape for every t ∈ [0, 1]. In view of Proposition 2.4, we
infer that the map t 7→ (x(Ωt), y(Ωt)) is continuous in D and connects Q0 to Q1 with an
arc. This concludes the proof. □

The upper and lower boundaries. In order to describe the boundary of the diagram,
we introduce the two functions: given x ∈ (0, 1] we set

L+(x) := sup{y(Ω) : Ω ∈ A, x(Ω) = x}; (2.1)

L−(x) := inf{y(Ω) : Ω ∈ A, x(Ω) = x}. (2.2)

These functions satisfy the following properties.

Proposition 2.7. The supremum defining L+ and the infimum defining L− are attained,
namely they are a maximum and a minimum, respectively. The functions L± coincide at
x = 1 and in the limit as x→ 0+.

Proof. Let x ∈ (0, 1] be fixed. Let y(Ωn) be a maximizing sequence for L+(x), with Ωn ∈ A
and such that x(Ωn) = x for every n. By Blaschke selection theorem (see also Lemma
2.3), we may extract a subsequence (not relabeled), converging to some Ω ∈ A (the fact
that x ̸= 0 ensures that the subsequence does not collapse to a segment). By continuity of
x(·) and y(·), we infer that the limit shape satisfies x(Ω) = x and y(Ω) = limn→∞ y(Ωn).
Since by assumption limn→∞ y(Ωn) = L+(x), we conclude that Ω is a maximizer. The
same strategy applies for the existence of a minimizer defining L−(x).

The fact that L± coincide at 1 and 0 (the latter as a limit), comes from Propositions
2.2, 2.4, and 2.5. □

We are now in a position to state the next result.

Proposition 2.8. The diagram D is simply connected.

Proof. The proof is borrowed from [8, Theorem 3.14], in which the authors deal with
the Blaschke-Santaló diagram of volume, perimeter, and first Dirichlet eigenvalue of the
Laplacian λ1. Here λ1 is replaced by the moment of inertia W , which is a more tractable
functional. For the benefit of the reader, let us summarize the main steps of the proof.

Step 1. Loops in the plane. Let Q0, Q1 ∈ D be two points of the diagram with the same
y-coordinate, say y ∈]0, 1[. We construct a closed (continuous) curve Γ : [0, 2] → R2 going
first from Q0 to Q1 and then back from Q1 to Q0. In order to present the construction,
let us consider Ω0,Ω1 ∈ A associated to Q0 and Q1, respectively. Let Ωt, t ∈ [0, 1], denote
the normalized Minkowski sum

Ωt :=
tΩ1 ⊕ (1− t)Ω0

A1/2(tΩ1 ⊕ (1− t)Ω0)
.

Without loss of generality, up to a rotation or π/2, we may assume that the two semi-axes
are chosen so that the horizontal one is greater than the vertical one. As we have already
shown in Proposition 2.6, Ωt ∈ A. We set

ΓΩ0,Ω1(t) :=

{
(x(Ωt), y(Ωt)) if t ∈ [0, 1],
((2− t)x(Ω1) + (t− 1)x(Ω0), y) if t ∈ [1, 2].

The curve is clearly closed and continuous (see the proof of Proposition 2.6). For t ∈ [0, 1]
the support is contained in the diagram (see Proposition 2.6), whereas for t ∈ [1, 2] it is a
horizontal segment, not necessarily contained into the diagram.

We claim that the curve is contained in the stripe R × [y,min(1, 4y)]. This is clearly
true for the horizontal part. We only need to verify that

y ≤ y(Ωt) ≤ min(1, 4y) ∀t ∈ [0, 1]. (2.3)

Let us prove the first inequality. Without loss of generality, we may assume that
A(Ω0) = A(Ω1) = 1. In particular P (Ω0) = P (Ω1) =

√
4π/y =: p. Thanks to the linearity



6 A. HENROT, R. GASTELDELLO, AND I. LUCARDESI

of the perimeter for the Minkowski sum, as well as the Brunn-Minkowski inequality for
the area, see [19], we have

P (tΩ1 ⊕ (1− t)Ω0) = tP (Ω0) + (1− t)P (Ω1) = p,

A1/2(tΩ1 ⊕ (1− t)Ω0) ≥ tA1/2(Ω1) + (1− t)A1/2(Ω0) = 1,

which immediately gives the desired estimate. Let us now prove the second inequality in
(2.3) (the upper bound 1 is trivial). Let αi and βi denote the lengths of the semi-axis of
Ωi, i = 0, 1. By convexity, since Ωi contains a rhombus and is contained into a rectangle,
we infer that A(Ωi) ≥ 2αiβi and 4

√
α2
i + β2

i ≤ P (Ωi) ≤ 4(αi+βi). In particular, recalling
that by construction αi ≥ βi, A(Ωi) = 1 and P (Ωi) = p, we deduce that for i = 0, 1,

βi ≤
1

2αi
≤ 4

p
, αi ≤

p

4
.

The previous inequalities allow us to deduce the following upper bound on the area of the
(non-normalized) Minkowski sum:

A(tΩ1 ⊕ (1− t)Ω0) ≤ 4(tα1 + (1− t)α0)(tβ1 + (1− t)β0) ≤ 4,

so that

y(Ωt) = 4π
1

P 2(Ωt)
= 4π

A(tΩ1 ⊕ (1− t)Ω0)

p2
≤ 4y.

Step 2. Sequences of loops. In this step we show that Hausdorff convergence of shapes
entails uniform convergence of associated loops. Let us write the statement. Let Ω0 and
Ω1 be two admissible shapes, different from the disk, satisfying

A(Ω0) = A(Ω1) = 1, P (Ω0) = P (Ω1) = p.

Assume to have two sequences of admissible shapes {Ω0,1}n∈N and {Ω1,n}n∈N satisfying
the following properties: for every n ∈ N

A(Ω0,n) = A(Ω1,n) = 1, P (Ω0,n) = P (Ω1,n) =: pn

and, in the limit as n→ ∞,

Ω0,n → Ω0, Ω1,n → Ω1

with respect to the complementary Hausdorff distance. Step 1 allows us to construct a
closed path associated to Ω0 and Ω1, and a family of closed paths associated to the pairs
Ω0,n,Ω1,n. For brevity, we set Γ(t) := ΓΩ0,Ω1(t) and Γn(t) := ΓΩ0,n,Ω1,n(t). We claim
that for every ϵ > 0 there exists nϵ ∈ N such that

∀n ≥ nϵ , ∀t ∈ [0, 2] , ∥Γ(t)− Γn(t)∥ < ϵ.

For t ∈ [1, 2] we have

∥Γ(t)− Γn(t)∥ ≤ 4π

∣∣∣∣ 1p2 − 1

p2n

∣∣∣∣+ 1

2π

∣∣∣∣ 1

W (Ω1)
− 1

W (Ω1,n)

∣∣∣∣+ 1

2π

∣∣∣∣ 1

W (Ω0)
− 1

W (Ω0,n)

∣∣∣∣ .
The right-hand side does not depend on t and, thanks to the Hausdorff convergence of the
shapes and to the continuity of the shape functionals under study, it is arbitrarily small
for n large enough. For t ∈ [0, 1] we have

∥Γ(t)− Γn(t)∥ ≤ |x(Ωt)− x(Ωn,t)|+ |y(Ωt)− y(Ωn,t)|. (2.4)

Set
wn(t) :=W (tΩ1,n ⊕ (1− t)Ω0,n), w(t) :=W (tΩ1 ⊕ (1− t)Ω0),

and
an(t) := A(tΩ1,n ⊕ (1− t)Ω0,n), a(t) := A(tΩ1 ⊕ (1− t)Ω0).

Let us consider the second term in the right-hand side of (2.4). Using the notation above
we have

|y(Ωt)− y(Ωn,t)| ≤
4πa(t)

p2np
2 |p2n − p2|+ 4π

p2n
|a(t)− an(t)|.

The factors a(t) and pn are uniformly bounded (and away from 0) in t and n. The term
|p2n − p2| is infinitesimal by assumption. The difference a(t) − an(t) is a polynomial of
degree 2 in t (see the properties of Minkowski mixed volumes, e.g., in [19]); its coefficients
depend on n and they go to 0 as n→ ∞, by the Hausdorff convergence of shapes. These
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estimates imply that |y(Ωt) − y(Ωn,t)| is arbitrarily small for n large enough, uniformly
in t.

The same strategy applies to the first term in the right-hand side of (2.4):

|x(Ωt)− x(Ωn,t)| =
1

2π

∣∣∣∣ a2n(t)wn(t)
− a2(t)

w(t)

∣∣∣∣ = |a2n(t)w(t)− a2(t)wn(t)|
2πwn(t)w(t)

≤ an(t) + a(t)

2πwn(t)
|an(t)− a(t)|+ a2(t)

2πwn(t)w(t)
|w(t)− wn(t)|.

As before, the factors an(t), a(t), wn(t), w(t) are uniformly bounded (and away from 0)
in t and n, and the difference an(t) − a(t) is arbitrarily small, uniformly in t. Using
polar coordinates, it is immediate to check that |wn(t) − w(t)| is bounded above by the
complementary Hausdorff distance

dn(t) := dH(tΩ1,n ⊕ (1− t)Ω0,n ; tΩ1 ⊕ (1− t)Ω0).

Since the distance dH of two shapes coincides with the L∞ norm of the difference of the
associated support functions, and since the support function is linear for a Minkowski
sum, we deduce that

dn(t) = ∥th1,n + (1− t)h0,n − th1 − (1− t)h0∥∞ ≤ t∥h1 − h1,n∥+ (1− t)∥h0 − h0,n∥∞,

where h0, h0,n, h1, and h1,n denote the support functions of Ω0, Ω0,n, Ω1, and Ω1,n,
respectively. Since Hausdorff convergence is equivalent to uniform convergence of support
functions, we conclude that dn(t), and then |w(t)−wn(t)|, are arbitrarily small for n large
enough, uniformly in t.

This concludes the proof of the uniform continuity.
Step 3. Loops around holes. We claim that D coincides with the set

{(x, y) : x ∈ (0, 1] , y ∈ [L−(x), L+(x)]}.

This fact, together with the connectedness obtained in Proposition 2.6, implies the simple
connectedness of the diagram. Assume by contradiction that this is not true. Then there
exists a point Q = (xQ, yQ) ∈ R2 \ D such that xQ ∈ (0, 1) and yQ ∈ (L−(xQ), L

+(xQ)).

Since Q ̸= O, we infer that Q ∈ R2 \ (D ∪ {O}) = R2 \ D, which is an open set. Thus
there exists a radius r > 0 such that Br(Q) ∩ D = ∅. Given a continuous closed curve
in R2 and a point not belonging to its support, it is well defined the winding number,
invariant under homotopy. Let us denote by wγ(Q) the winding number of a closed curve
γ : I → R2, being I ⊂ R an interval. Given x ∈ (0, 1), we introduce the following notation

A1(y) := {Ω ∈ A : A(Ω) = 1, y(Ω) = y}.

Given two shapes Ω0,Ω1 ∈ A1(y) we can construct, by Step 2, a continuous curve in R2,
with support ΓΩ0,Ω1 . We notice that if y ≤ yQ − r

2
, this path does not cross the point Q:

indeed, for t ∈ [0, 1] the path is contained into D, whereas for t ∈ [1, 2] it is horizontal with
ordinate y < yQ. Therefore, the winding number of the path around Q is well defined.

Let us consider the set

J =
{
0 < y ≤ yQ − r

2
: ∃Ω0,Ω1 ∈ A1(y), wΓΩ0,Ω1

(Q) ̸= 0
}
.

It is easy to see that J ̸= ∅ (the point yQ − r/2 belongs to it) and that J is bounded
from below by a positive constant (by (2.3)). Let y := inf J . Two possibilities may occur:
either y ∈ J or y /∈ J . Consider, e.g., the sequence yn = y− 1/n. We clearly have yn /∈ J .
Using [8, Corollary 3.6] (that can be easily adapted to the case of double symmetric
sets), we can construct a family of pairs (Ω0,n,Ω1,n) ∈ A1(yn) such that Ω0,n → Ω0 and
Ω1,n → Ω1 with respect to the complementary Hausdorff distance. Since yn /∈ J , we have
wΓΩ0,n,Ω1,n

(Q) = 0. The winding number being an invariant under homotopy, we get a

contradiction. The second case is similar, taking a sequence yn → y+. This concludes the
proof. □

Now, using recent results of Lamboley, Novruzi, Pierre, see [14] we prove the following

Theorem 2.9. Any convex domain, different from the disk, that minimizes y(Ω) with
x(Ω) = x0 fixed is a polygon.



8 A. HENROT, R. GASTELDELLO, AND I. LUCARDESI

Any convex domain, different from the disk, that maximizes y(Ω) with x(Ω) = x1 fixed is
C1,1.

Proof. First assertion: Minimizing y(Ω) with x(Ω) = x0 is equivalent, according to the
scale invariance of the functionals x and y to

min

{
−P (Ω)

∣∣ Ω convex , A(Ω) = 1,W (Ω) =
1

2πx0
=: w0

}
.

Now we want to use Theorem 4 in [14] with the constraint m(Ω) = (0, 0) where, using the
parametrization with the gauge function u:

m(Ω) = m(u) =

(
1

2

� 2π

0

1

u2(θ)
dθ − 1,

1

4

� 2π

0

1

u4(θ)
dθ − w0

)
and the functional to minimize is

−P (Ω) = −P (u) = −
� 2π

0

√
u2 + u′2

u2(θ)
dθ.

In order to apply this Theorem 4, we just need to prove (u0 denotes the minimizer)

• that m′(u0) in onto on R2

• that < m′′(u0)v, v > is dominated by a norm of v weaker than the H1-norm.

The first point comes from the fact that

< m′(u0), v >=

(
−
� 2π

0

v

u3
0(θ)

dθ, −
� 2π

0

v

u5
0(θ)

dθ

)
and the two linear forms are independent since u0 is not constant.
The second point comes from the fact that

< m′′(u0), v, v >=

(
3

� 2π

0

v2

u4
0(θ)

dθ, 5

� 2π

0

v2

u6
0(θ)

dθ

)
and we can estimate both terms by the L2-norm of v.

Second assertion: Now we use, exactly in the same spirit, Theorem 2 in [14], see also
Theorem 1.1 in [15]. Now, we minimize P (u) with the same constraint, and the ”convexity”
of the functional u 7→ P (u) provides the good assumptions. □

From the previous result we immediately have the following

Corollary 2.10. The two functions L+ and L− only coincide for x = 1.

3. The lower boundary of the diagram

In this section we investigate the properties of the lower boundary of the diagram,
described by the graph of the function L− (see (2.2)). We recall that L−(x) is defined as
the minimum of the shape functional y(·) when the shape functional x(·) is fixed (equal
to x).

As we have already proved in Theorem 2.9, the optimal shapes associated to L−(x) are
polygons.

To prove the regularity and monotonicity of L−, we need some preparatory results.

Lemma 3.1. Let Ω be a polygon in A. Then there exists ϵ0 > 0 and a map

[0, ϵ0] ∋ ϵ 7→ Ωϵ ∈ A

continuous with respect to the complementary Hausdorff distance, such that Ω0 = Ω and
such that ϵ 7→ x(Ωϵ) is strictly increasing.

Proof. Let V1 be one of the vertexes of Ω in the first quadrant with boundary angle
α ∈]0, π[, and let V2, V3, V4 be the corresponding (symmetric) points in the other three
quadrants. For ϵ > 0 small, let Tϵ denote the union of the four isosceles triangles, each of
them with vertex at Vi, two legs lying on ∂Ω, and base of length ϵ.
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We define the set Ωϵ as the set obtained by removing from Ω the four triangles, namely
Ωϵ := Ω \ Tϵ. This operation clearly makes A and W decrease:

A(Ωϵ) = A(Ω)

(
1−

�
Tϵ

1�
Ω
1

)
, W (Ωϵ) =W (Ω)

(
1−

�
Tϵ
(x2 + y2)�

Ω
(x2 + y2)

)
.

Therefore

x(Ωϵ) = x(Ω)

(
1− 2

�
Tϵ

1�
Ω
1

+ o(ϵ2)

)(
1 +

�
Tϵ
(x2 + y2)�

Ω
(x2 + y2)

+ o(ϵ2)

)

= x(Ω)

(
1− 2

�
Tϵ

1�
Ω
1

+

�
Tϵ
(x2 + y2)�

Ω
(x2 + y2)

+ o(ϵ2)

)
.

The integrals over Tϵ are of order ϵ and the sign of their sum, in the limit as ϵ→ 0, gives
the sign of the derivative of ϵ 7→ x(Ωϵ) at ϵ = 0. Therefore, if we are able to show that for
ϵ small enough there holds  

Ω

(x2 + y2) <
1

2

 
Tϵ

(x2 + y2),

we are done. Here the symbol
�
stands for the average. Let us now make a choice on the

Vis: we cut four triangles near the boundary points Vi satisfying the maximal distance
from the origin, namely

∥V1∥2 = ∥V2∥2 = ∥V3∥2 = ∥V4∥2 = max
S∈Ω

∥S∥2 = max
(x,y)∈Ω

(x2 + y2).

Passing to the limit as ϵ→ 0 we infer that each triangle in Tϵ shrinks to the its vertex Vi

and, by the Lebesgue theorem,  
Tϵ

(x2 + y2) → ∥V1∥2.

Therefore it is enough to prove that 
Ω

(x2 + y2) <
∥V1∥2

2
.

Let us use a parametrization of Ω in polar coordinates: θ ∈ [0, 2π] and ρ ∈ [0, ρ(θ)], so
that

 
Ω

(x2 + y2) =

� 2π

0

� ρ(θ)

0
ρ3(θ) dρdθ� 2π

0

� ρ(θ)

0
ρ(θ) dρdθ

=
1

2

� 2π

0
ρ4(θ) dθ� 2π

0
ρ2(θ) dθ

≤ 1

2
max

θ
∥ρ(θ)∥2 =

∥V1∥2

2
.

The equality holds true only if ρ(θ) = ∥V1∥ for every θ, namely when Ω is the disk. In
particular the inequality is strict in the case under study. This concludes the proof. □

Lemma 3.2. Let Ω be a polygon in A. Then there exists ϵ0 > 0 and a map

[0, ϵ0] ∋ ϵ 7→ Ωϵ ∈ A

continuous with respect to the complementary Hausdorff distance, such that Ω0 = Ω and
such that ϵ 7→ x(Ωϵ) is strictly decreasing.

Proof. The shape Ωϵ will be constructed as a small (continuous) deformation of Ω. The
deformation will be explicitly described in the first quadrant and repeated in the other
three quadrants, in order to preserve the double symmetry.

Let Ω be a given polygon in A. Let k be the number of boundary vertexes falling
in the first quadrant {x ≥ 0 , y ≥ 0}. Let {Q1, . . . , Qk} be such points, ordered in
counter-clockwise sense.

Case 1: k = 1 or k = 2 and Q1, Q2 on the axis. This two cases correspond to rectangles
and rhombi. They can be described, respectively, as the 1-parameter families {Rℓ}ℓ∈]0,1]
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and {Sℓ}ℓ∈]0,1] defined as follows: Rℓ is the rectangle associated to k = 1 with Q1 = (1, ℓ);
Sℓ is the rhombus associated to k = 2 with Q1 = (1, 0), Q2 = (0, ℓ). The functions

]0, 1] ∋ ℓ 7→ Rℓ ∈ A, ]0, 1] ∋ ℓ 7→ Sℓ ∈ A

are continuous with respect to the complementary Hausdorff distance, moreover (see also
the proof of Proposition 2.5) the maps

]0, 1] ∋ ℓ 7→ x(Rℓ) = x(Sℓ) =
6ℓ

π(1 + ℓ2)

are strictly increasing. This means that we can always increase/decrease ℓ to make x(·)
decrease in a continuous way.

Case 2: k = 2 and either Q1 or Q2 on the coordinate axis. Without loss of generality,
we can assume that Q1 is on the horizontal axis y = 0, say Q1 = (1, 0), whereas Q2 = (s, t)
for some s ∈]0, 1] and t > 0. In this case Ω is a hexagon with boundary points Q1, −Q1,
Q2 and the three reflections of Q2 in the other three quadrants. Let us denote by Hs,t

such hexagon. As before, the map

]0, 1[×]0,+∞[∋ (s, t) 7→ Hs,t ∈ A

is continuous with respect to the complementary Hausdorff distance. A direct computation
leads to

x(Hs,t) =
24

π

t(s+ 1)2

t2(3s+ 1) + s3 + s2 + s+ 1
.

By computing the gradient of this function in the variables s and t, it is immediate to check
that there is no critical point in the stripe (s, t) ∈]0, 1]×]0,+∞[. As in the previous case,
this implies that we can always find a direction which makes the directional derivative of
x(·) negative.

Case 3: k = 2 and neither Q1 nor Q2 are on the coordinate axis. In this case Ω is an
octagon. This class in A can be described as the three-parameters family Os,t,u associated
to the two points in the first quadrant Q1 = (1, s), Q2 = (t, u), where t < 1 and u > s.
We have:

x(Os,t,u) =
24

π

N(s, t, u)

D(s, t, u)
,

with

N(s, t, u) = [tu+ (1− t)(u+ s)/2]2 ,

D(s, t, u) =tu(t2 + 4u2 + t+ 2)

+ (1− t)(s3 + s2u+ st2 + 2st+ su2 + 3s+ u3 + u).

Once again this function has no critical point in the region of R3 where s, t, u live.
Case 4: k ≥ 3. Here we proceed in a different way with respect to the previous

cases: we will perform a parallel chord movement, consisting in making Q2 slide on a line
parallel to Q1Q3 passing through Q2. To preserve symmetry, we do the same thing in
the other three quadrants. Thanks to the standing assumptions, since Q2 is not aligned
to Q1 vertically nor to Q3 horizontally, we can perform such sliding in two directions.
The resulting shape is still convex, double symmetric, and has the same area (since we
keep the point Q2 at the same distance from the line passing through Q1Q3). Since this
deformation does not affect the area, it is enough to study the behavior of W : to get the
thesis we need to make W increase. More precisely, since we only perturb the shape in
the triangle Q1Q2Q3, it is enough to study the behavior of W (Q1Q2Q3). Once clarified
that we do four identical deformations in the four quadrants, we focus ourselves to what
happens in one of the triangles. Since W is invariant under rotation, we may assume that
the segment Q1Q3 is vertical. Without loss of generality we may assume that Q2 is at
distance 1 from the vertical line through Q1Q3. Thus Q2 is of the form Q2 = Q1 + (1, t)
for some positive t. Let c > 0 be the distance of Q3 from Q1, namely Q3 = Q1 + (0, c).
The admissible values of t depend on the sides of Ω adjacent to Q1Q2 and Q2Q3, however,
given an admissible t, there exists a neighborhood of t for which the associated shape is
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still admissible. Let Q1 = (a, b). A direct computation shows that

W (Q1Q2Q3) =

� 1

0

� (t−c)x+c

tx

[(x+ a)2 + (y + b)2] dy dx

=φ(a, b, c) +
c(c+ 4b)

12
t+

c

12
t2,

for some (explicit) function φ not depending on t. As a function of t, there is only one
critical point, which is a local minimizer. This implies that for every t, we can always
increase or decrease t in such a way to make W increase. This concludes the proof.

□

Corollary 3.3. Let x0 ∈]0, 1[ and Ω0 ∈ A with x(Ω0) = x0 and y(Ω0) = L−(x0). Let
{xn}n∈N ⊂]0, 1[ be a sequence such that xn → x0 as n→ ∞. Then there exists a sequence
of shapes {Ωn}n∈N ⊂ A such that for n sufficiently large x(Ωn) = xn and in the limit as
n→ ∞ there holds Ωn → Ω0 with respect to the complementary Hausdorff distance.

Proof. In view of the assumption L−(x0) = y(Ω0) and Theorem 2.9 we infer that Ω0 is a
polygon. We will distinguish the two cases of xn → x+0 and xn → x−0 . Let us detail the
case xn → x+0 . In view of Lemma 3.1, there exists some ϵ0 > 0 and a continuous map
[0, ϵ0] ∋ ϵ 7→ Ωϵ ∈ A such that ϵ 7→ x(Ωϵ) is continuous and increasing. The image of
ϵ 7→ x(Ωϵ) is the whole interval [x0, x(Ωϵ0)]. For every n large enough, xn ∈ [x0, x(Ωϵ0)]
and there exists ϵn ∈ [0, ϵ0] such that x(ϵn) = xn. As xn → x0 we have ϵn → 0. The
thesis then follows by taking Ωn := Ωϵn . The same strategy applies to the case xn → x−0
using Lemma 3.2. □

Lemma 3.4. Let Ω ∈ A be a polygon. Then it is not a local minimizer of y(·).

Proof. In order to prove the statement, it is enough to show that given a polygon Ω ∈ A, we
can construct a small deformation (see Definition 2.1) which makes y(·) strictly decrease.
The deformation will be explicitly described in the first quadrant and repeated in the
other three quadrants, in order to preserve the double symmetry.

Let Ω be a given polygon in A. Let k be the number of boundary vertexes falling
in the first quadrant {x ≥ 0 , y ≥ 0}. Let {Q1, . . . , Qk} be such points, ordered in
counter-clockwise sense.

Case 1: k = 1 or k = 2 and Q1, Q2 on the axis. This two cases correspond to rectangles
and rhombi. They can be described, respectively, as the 1-parameter families {Rℓ}ℓ∈]0,1]

and {Sℓ}ℓ∈]0,1] defined as follows: Rℓ is the rectangle associated to k = 1 with Q1 = (1, ℓ);
Sℓ is the rhombus associated to k = 2 with Q1 = (1, 0), Q2 = (0, ℓ). The functions

]0, 1] ∋ ℓ 7→ Rℓ ∈ A, ]0, 1] ∋ ℓ 7→ Sℓ ∈ A
are continuous with respect to the complementary Hausdorff distance, moreover (see also
the proof of Proposition 2.5) the maps

]0, 1] ∋ ℓ 7→ y(Rℓ) =
πℓ

(1 + ℓ)2
, ]0, 1] ∋ ℓ 7→ y(Sℓ) =

πℓ

2(1 + ℓ2)

are strictly increasing. This means that we can always increase/decrease ℓ to make y(·)
decrease.

Case 2: k = 2 and either Q1 or Q2 on the coordinate axis. Without loss of generality,
we can assume that Q1 is on the horizontal axis y = 0, say Q1 = (1, 0), whereas Q2 = (s, t)
for some s ∈]0, 1] and t > 0. In this case Ω is a hexagon with boundary points Q1, −Q1,
Q2 and the three reflections of Q2 in the other three quadrants. Let us denote by Hs,t

such hexagon. As before, the map

]0, 1[×]0,+∞[∋ (s, t) 7→ Hs,t ∈ A
is continuous with respect to the complementary Hausdorff distance. A direct computation
leads to

y(Hs,t) =
π

2

s(1 + t)

[s+
√

(1− s)2 + t2]2
.

By computing the gradient of this function in the variables s and t, it is immediate to check
that there is no critical point in the stripe (s, t) ∈]0, 1]×]0,+∞[. As in the previous case,
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this implies that we can always find a direction which makes the directional derivative of
y(·) negative.

Case 3: k = 2 and neither Q1 nor Q2 are on the coordinate axis. In this case Ω is an
octagon. This class in A can be described as the three-parameters family Os,t,u associated
to the two points in the first quadrant Q1 = (1, s), Q2 = (t, u), where t < 1 and u > s.
We have:

y(Os,t,u) =
π

2

tu+ (1− t)(u+ s)/2

[t+ s+
√

(u− s)2 + (1− t)2]2

Once again this function has no critical point in the region of R3 where s, t, u live.
Case 4: k ≥ 3. Here we proceed in a different way with respect to the previous cases:

we will perform a parallel chord movement, consisting in making Q2 slide on a line parallel
to Q1Q3 passing through Q2. To preserve symmetry, we do the same thing in the other
three quadrants. Thanks to the standing assumptions, since the Q2 is not aligned to
Q1 vertically nor to Q3 horizontally, we can perform such sliding in two directions. The
resulting shape is still convex, double symmetric, and has the same area (since we keep
the point Q2 at the same distance from the line passing through Q1Q3). The deformation
can be done in two senses and at least one of the two makes the perimeter of the triangle
Q1Q2Q3 (and then of the entire shape) increase, namely the functional y(·) decreases.
When the triangle Q1Q2Q3 is isosceles, both deformations make the perimeter increase.
This concludes the proof.

□

We are now in a position to state the following.

Proposition 3.5. The function L− :]0, 1] → D is continuous and strictly increasing.

Proof. The proof is divided into three steps.
Step 1: L− is l.s.c. This property follows by construction. Let x ∈]0, 1] and {xn} ⊂

(0, 1] an arbitrary sequence converging to x. We need to prove that

L−(x) ≤ lim inf
n

L−(xn).

Assume (without loss of generality) that the lim inf is a limit. Let Ωn be the sequence of
optimal shapes for L−(xn). Since x > 0, we infer that also xn are (uniformly) far from 0.
This ensures the existence of a subsequence (not relabeled) Ωn which converges to some
admissible Ω ∈ A. By continuity x(Ω) = limn x(Ωn) = limn xn = x. Thus by definition of
L−(x) we infer that y(Ω) ≥ L−(x). Since y(Ω) = limn y(Ωn) we conclude that

L−(x) ≤ y(Ω) = lim
n
y(Ωn).

Step 2: L− is u.s.c. Take x0 ∈]0, 1] and take xn → x0 satisfying

lim sup
x→x0

L−(x) = lim
n→∞

L−(xn).

Take Ω0 an optimal shape for L−(x0), namely such that L−(x0) = y(Ω0). Its existence is
ensured by Proposition 2.7. In view of Corollary 3.3, there exists a sequence of shapes Ωn

with the following properties: for every n ∈ N

Ωn ∈ A, x(Ωn) = xn;

moreover, in the limit as n→ ∞, Ωn → Ω0 with respect to the complementary Hausdorff
distance. In particular, limn→∞ y(Ωn) = y(Ω0). Exploiting now the definition of L−, we
obtain

lim sup
x→x0

L−(x) = lim
n→∞

L−(xn) ≤ lim
n→∞

y(Ωn) = y(Ω0) = L−(x0).

Step 3: L− is strictly increasing. By the previous steps, L− is continuous. Moreover,
its infimum is 0 and it attains its maximum 1 for x = 1. Assume by contradiction that L−

is not strictly increasing. Then there exists x0 ∈]0, 1[ local minimizer of L−. Therefore
there exists a neighborhood U(x0) of x0 such that

Ω ∈ A, x(Ω) ∈ U(x0) ⇒ L−(x0) ≤ y(Ω).
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Therefore any optimal shape Ω0 for L−(Ω0), namely such that L−(x0) = y(Ω0), is a local
minimizer for y(·). In view of Theorem 2.9, Ω0 is a polygon. The contradiction comes
from Lemma 3.4, which states that a polygon can not be a local minimzer for y(·). □

4. The upper boundary of the diagram

In this section we investigate the properties of the upper boundary of the diagram,
described by the graph of the function L+ (see (2.1)). We recall that L+(x) is defined as
the maximum of the shape functional y(·) when the shape functional x(·) is fixed (equal
to x). As we have proved in in Theorem 2.9, optimal shapes for L+ are C1,1.

In order to prove the regularity and monotonicity of L+, we need two preparatory
results.

Lemma 4.1. Let x0 ∈]0, 1[ and Ω0 ∈ A with x(Ω0) = x0 and y(Ω0) = L+(x0). Let
{xn}n∈N ⊂]0, 1[ be a sequence such that xn → x0 as n→ ∞. Then there exists a sequence
of shapes {Ωn}n∈N ⊂ A such that for n sufficiently large x(Ωn) = xn and in the limit as
n→ ∞ there holds Ωn → Ω0 with respect to the complementary Hausdorff distance.

Proof. In view of the assumption y(Ω0) = L+(x0) and Theorem 2.9, we infer that Ω0 is
of class C1,1. As already done in the previous Section (cf. Lemmas 3.1 and 3.2, Corollary
3.3), it is enough to provide a deformation field V localized on the strictly convex part of
the boundary of Ω0 for which y′(Ω0, V ) ̸= 0. Then, using either V or −V , we can make the
first order shape derivative positive (or negative): the associated continuous deformation
t 7→ Ωt, for t small enough, is such that t 7→ x(Ωt) is increasing (resp. decreasing). To
conclude it is enough to take Ωn := Ωtn being tn such that x(Ωtn) = xn.

Let us now prove that such V exists. Assume by contradiction that for every V : R2 →
R2 smooth, localized on the strictly convex part Γ+ of the boundary ∂Ω0. Then, using
the Hadamard’s formula

x′(Ω0, V ) =
A(Ω0)

2πW (Ω0)
[2W (Ω0)A

′(Ω0, V )−A(Ω0, V )W ′(Ω0)]

=
A(Ω0)

2πW (Ω0)

�
∂Ω0

[
2W (Ω0)−A(Ω0)∥x∥2

]
dH1(x),

we deduce that the shape under study satisfies

∥x∥2 =
2W (Ω0)

A(Ω0)
∀x ∈ Γ+.

In other words, Γ+ is made of arcs of circle of radius
√

2W (Ω0)/A(Ω0) centered at the
origin. This implies that Ω0 is the disk. This is excluded by the assumptions. This
concludes the proof. □

Lemma 4.2. Let Ω ∈ A be of class C1,1 different from the disk. Then it is not a local
maximiser of y(·).

Proof. Let Ω ∈ A be of class C1,1. The boundary ∂Ω has the following structure:

∂Ω = Γ0 ∪ Γ+,

where Γ0 is the union of the flat parts (with 0 curvature) and Γ+ is the union of the
strictly convex parts (with positive curvature). In the following we denote by H(x) the
curvature at a point x ∈ ∂Ω. Note that Γ+ can not be the empty set, by the regularity
assumption on Ω.

In the following steps we find a small deformation, acting on Γ+ which makes y(·)
(strictly) increase. This will be done using shape derivatives, namely showing that
y′(Ω, V ) > 0 for some vector field V : R2 → R2.

Step 1. Generic shape: deformation localized on Γ+. Consider a smooth vector fields
V with support localized in a part of Γ+. Two situations may occur: either there exists
V such that y′(Ω, V ) ̸= 0 or y′(Ω, V ) = 0 for every V . In the former, up to changing V
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into −V , we obtain a small deformation of Ω making y(·) increase, concluding the proof.
In the second situation, using the Hadamard’s formula

y′(Ω, V ) =
4π

P 3(Ω)
[A′(Ω, V )P (Ω)− 2A(Ω)P ′(Ω, V )]

=
4π

P 3(Ω)

�
∂Ω

[P (Ω)− 2A(Ω)H(x)]V (x) · n(x) dH1(x),

we deduce that the shape Ω under study satisfies the following (optimality) condition:

H(x) =
P (Ω)

2A(Ω)
∀x ∈ Γ+.

In other words, Γ+ is made of arcs of circle of radius

R :=
2A(Ω)

P (Ω)
.

Since Ω is not the disk, Γ+ doe not cover the whole ∂Ω, so that Γ0 ̸= ∅. We call such
domains generalized stadiums.

Step 2. The only local maximizer of y(·) among generalized stadiums is the disk. Let
Ω be a generalized stadium satisfying the optimality condition described in Step 1. Let
{γi}ki=1 denote the boundary arcs, labeled in counter-clock wise sense, for some n ∈ N. Let
Ci denote the center of the circle of radius R to which γi belongs to. Furthermore, denote
by Si, i = 1, . . . , n, the segment joining the arc γi to the arc γi+1, with the identification
γn+1 := γ1. Using the C1,1 regularity of the boundary, we infer that every Si is tangent to
the arcs γi and Γi+1, in particular the segments joining Ci and Ci+1 to the junction points
arc-segment are orthogonal to the segment. This means that the quadrilateral obtained
by considering the segment Si and the segment CiCi+1 is a rectangle. Repeating the
same procedure to every pair arc-segment, we infer that Ω is the union of the polygon
K := C1C2 . . . Cn, n circular sectors centered at Ci, and n rectangles constructed on the
sides of K. In other words, Ω is the Minkowski sum Ω = K ⊕ B(0, R). By the classical
properties of area and perimeter of Minkowski sums, we have

A(Ω) = A(K) +RP (K) + πR2, P (Ω) = P (K) + 2πR.

Inserting these two equalities into the optimality condition relating R, A(Ω), and P (Ω),
we get

2A(K) + 2P (K)R+ 2πR2 = P (K)R+ 2πR2 ⇒ 2A(K) + P (K)R = 0,

implying that K = ∅. Thus the only possible shape is the disk, excluded by assumption.
This concludes the proof. □

Remark 4.3. We point out that the same result can be also deduced from [8, Lemma 3.5]:
the authors prove that the ball is the only local minimizer of P among planar convex sets
with area 1. Their proof consists in comparing P (Ω) with P (Ωϵ), being Ωϵ the Minkowski
sum Ω⊕ ϵB(0, 1) normalized with area 1.

We are now in a position to state the following.

Proposition 4.4. The function L+ :]0, 1] → D is continuous and strictly increasing.

Proof. The proof is divided into three steps.
Step 1: L+ is u.s.c. This property follows by construction. Let x ∈]0, 1] and {xn} ⊂

(0, 1] an arbitrary sequence converging to x. We need to prove that

L+(x) ≥ lim sup
n

L+(xn).

Assume (without loss of generality) that the lim sup is a limit. Let Ωn be the sequence of
optimal shapes for L+(xn). Since x > 0, we infer that also xn are (uniformly) far from 0.
This ensures the existence of a subsequence (not relabeled) Ωn which converges to some
admissible Ω ∈ A. By continuity x(Ω) = limn x(Ωn) = limn xn = x. Thus by definition of
L+(x) we infer that y(Ω) ≤ L+(x). Since y(Ω) = limn y(Ωn) we conclude that

L+(x) ≥ y(Ω) = lim
n
y(Ωn).
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Step 2: L+ is l.s.c. This property can be proved following the vary same strategy
adopted for the u.s.c. of L− in the previous section. For the benefit of the reader, we
rewrite it in this case. Take x0 ∈]0, 1] and take xn → x0 satisfying

lim inf
x→x0

L+(x) = lim
n→∞

L+(xn).

Take Ω0 an optimal shape for L+(x0), namely such that L+(x0) = y(Ω0). Its existence
is ensured by Proposition 2.7. Moreover, by scale invariance of the shape functionals
involved, we may assume that A(Ω0) = 1. In view of Lemma 4.1, there exists a sequence
of shapes Ωn with the following properties: for every n ∈ N

Ωn ∈ A, A(Ωn) = 1, x(Ωn) = xn;

moreover, in the limit as n→ ∞, Ωn → Ω0 with respect to the complementary Hausdorff
distance. In particular, limn→∞ y(Ωn) = y(Ω0). Exploiting now the definition of L+, we
obtain

lim inf
x→x0

L+(x) = lim
n→∞

L+(xn) ≥ lim
n→∞

y(Ωn) = y(Ω0) = L+(x0).

Step 3: L+ is strictly increasing. By the previous steps, L+ is continuous. Moreover,
its infimum is 0 and it attains its maximum 1 for x = 1. Assume by contradiction that L+

is not strictly increasing. Then there exists x0 ∈]0, 1[ local maximizer of L+. Therefore
there exists a neighborhood U(x0) of x0 such that

Ω ∈ A, x(Ω) ∈ U(x0) ⇒ L+(x0) ≥ y(Ω).

This is in contradiction with Lemma 4.2. □

5. The ratio P 2A/W

In this section, we are interested in the maximization of the ratio P 2A/W among sets
in the class A. We have two different motivations for this study:

• First of all, it will help drawing the Blaschke-Santaló diagram D since, maximizing
this ratio is equivalent to minimizing y(Ω)/x(Ω) and therefore will give a limit line
below our diagram. Moreover, we will see later that the lower part of our diagram
precisely coincides with the line y = π2x/12 for x ∈ (0, 3/π] that corresponds to
all rhombi between the segment and the square (see the proof of Theorem 5.1).

• In his paper [17], G. Pólya studies this functional F (Ω) := P 2(Ω)A(Ω)/W (Ω) as
a characteristic example of a shape functional whose maximizer is not the disk.
This is an argument against the heuristic claim: ”when the problem has many
symmetries, the disk should be the optimal domain”. Indeed the value of F for
the disk is 8π2 < 96 where 96 is the value for all rhombi. Actually, G. Pólya gives
the conjecture that the actual maximizer is the equilateral triangle, for which
F = 108. Our theorem below gives the optimal domains among convex sets with
two orthogonal axis of symmetry.

Let us give the main theorem of this section. We denote by F (Ω) the ratio F (Ω) :=

P 2(Ω)A(Ω)/W (Ω).

Theorem 5.1. The maximizers of F (Ω) among sets in the class A (i.e. convex
sets with two orthogonal axis of symmetry) are all rhombi (for example with vertices
(1, 0); (0, H); (−1, 0) : (0;−H) for any H > 0).

Corollary 5.2. The Blaschke-Santaló diagram D coincides on its lower boundary L−(x)
with the line y = π2x/12 for x ∈ (0, 3/π].

Existence of a maximizer for F is straightforward, using the Blaschke selection theorem
and the continuity of the geometric quantities involved for the Hausdorff convergence. The
strategy we use to prove Theorem 5.1 is the following:

(1) First we prove, using the same kind of arguments as in Theorem 2.9 that the
maximizer is a polygon.
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(2) Then, we want to exclude vertices of the polygon that are in the interior of the
triangle T defined by the three points (1, 0); (1, H); (0, H). For that purpose, we
will not use a first order argument (using the first order optimality conditions),
but a second order argument (using the second order optimality conditions).
Assuming that there is a vertex (xi, yi) in the interior of the triangle T , we can
move in both directions the coordinates xi, yi. We write the Hessian matrix HF

of F with respect to xi, yi and we want to prove that this Hessian matrix is not
negative.

(3) Using an affine change of variables, we are able to consider this Hessian matrix
for a triplet of points like (0, H); (t, uH); (1, 0) and we can even fix the value of
H.

(4) At some point, we need to estimate global quantities like A/P,A/P 2, A/W for
the optimal domain. This leads to (simpler) extremum problems that we solve
analogously.

(5) We conclude that there are no vertices inside the triangle by proving that the
Hessian matrix is not negative. Then it remains to consider the cases of a vertex
on the boundary of the triangle and eventually we are led just to compare the
rhombus and the rectangle.

Without loss of generality, we consider convex sets with projections 1 and H on the
two axis of symmetry. We can represent the profile of the convex set in the first quadrant
by a concave function h defined on [0, 1] with h(0) = H and h(1) = 0 and h′(0) ≤ 0.
As already mentioned, the existence of a maximizer follows by the direct methods of the
calculus of variations, either working with the family of concave functions h or with the
convex shapes .

1st step: To prove that the optimizers are polygons, we will follow the idea developed
in [13], [14]. For that purpose, let us write the optimality conditions in terms of h and
the variation v. First we recall the expressions of A,P,W at h:

A(h) =

� 1

0

h, P (h) =

� 1

0

√
1 + (h′)2, W (h) =

� 1

0

(
hx2 +

h3

3

)
.

Note that we get the total area, perimeter or moment of inertia by multiplying by 4. A
direct computation gives

⟨A′(h), v⟩ =
� 1

0

v, ⟨P ′(h), v⟩ =
� 1

0

h′v′√
1 + (h′)2

, ⟨W ′(h), v⟩ =
� 1

0

(h2 + x2)v,

and

⟨A′′(h)v, v⟩ = 0, ⟨P ′′(h)v, v⟩ = 1

2

� 1

0

(v′)2

(1 + (h′)2)3/2
, ⟨W ′′(h)v, v⟩ = 2

� 1

0

hv2.

Now, the first and second order optimality conditions (namely F ′ = 0 and F ′′ ≤ 0) read

P ′ =
P

2

(
W ′

W
− A′

A

)
,

P ′′ ≤ − P

2A
A′′ +

P

2W
W ′′ +

P

A2
(A′)2. (5.1)

Using in (5.1) the expressions of A,P ,W , A′, P ′, W ′, A′′, P ′′, W ′′, we obtain

1

2

� 1

0

(v′)2

(1 + (h′)2)3/2
≤ P

W

� 1

0

hv2 +
P

A2

(� 1

0

v

)2

.

Let Iv denote an interval containing the support of v: using the Cauchy-Schwartz inequal-
ity, we get

1

2

� 1

0

(v′)2

(1 + (h′)2)3/2
≤
[
P

W
∥h∥L∞(Iv) +

P

A2
|Iv|2

]
∥v∥2L2(Iv)

.

This estimate is true for every admissible v with the properties above. This will be crucial
for the proof that h is polygonal.

In order to prove the polygonal structure, we follow [13]. We want to prove that the
support of the measure h′′ is discrete. Assuming, this is not the case: it contains an
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accumulation point x0 and, for any εn > 0 (or εn < 0) we can find at least four point
xn1 < xn2 < xn3 < xn4 in the interval [x0, x0 + εn] such that the support of h′′ satisfies

suppt(h′′) ∩ (xnj , x
n
j+1) ̸= ∅, for j = 1, 2, 3.

Then we construct three functions vn,i with support in [x0, x0 + εn] in the following way:
vn,i solves the EDO : v′′n,i = χ(xn

i ,xini+1)
.h′′ and vn,i = 0 in (0, εn)

c, i = 1, 3.

Now, we choose three constants α1, α2, α3 such that the function vn defined as

vn =

3∑
i=1

αivn,i

satisfies v′n(x0) = v′n(x0 + εn) = 0 and then vn (extended by zero) has its support in

[x0, x0 + εn] and satisfying v′′n =
∑3

i=1 αiχ(xn
i ,xini+1)

.h′′ is admissible as a perturbation of

the optimum h.
Then we use the previous inequality, with Iv = [x0, x0 + εn]:

1

2

� 1

0

(v′n)
2

(1 + (h′)2)3/2
≤
[
P

W
∥h∥L∞(Iv) +

P

A2
|Iv|2

]
∥vn∥2L2(Iv)

,

and we can assume that there exist 0 ≤ C < +∞ such as |h′| ≤ C on Iv.
So we have

1

2(1 + C2)
3
2

∥v′n∥2L2(Iv)
≤
[
P

W
∥h∥L∞(Iv) +

P

A2
|Iv|2

]
∥vn∥2L2(Iv)

.

By using the Poincaré’s inequality on Iv, we have:

π2

ε2n
≤ 2(1 + C2)

3
2

[
P

W
∥h∥L∞(Iv) +

P

A2
|Iv|2

]
This gives us the contradiction since the left part tends to +∞ when n increases and the
right part is bounded.

Remark 5.3. Note that the sole admissible v for h linear is v ≡ 0. Therefore the
optimality conditions are (trivially) satisfied.

In view of the previous proposition, we infer that a maximizer h satisfies either h′′ ≡ 0
or h′′ =

∑k
i=1 αiδxi in the open set (0, 1) for a finite family of αi ∈ R and xi ∈ (0, 1). Our

purpose is now to exclude this second case.

2nd step Let us assume that the optimal polygon has a ”free” vertex M1 = (x1, y1).
By free, we mean that we can move infinitesimally x1 and y1 in any direction keeping
an admissible (convex) polygon. Taking the first interior vertex, we can assume that his
two neighbouring vertices are M0 = (0, H) and M2 = (x2, y2). To compute the successive
derivatives ∂F/∂x1; ∂F/∂y1; ∂

2F/∂x21; ∂
2F/∂x1∂x2; ∂

2F/∂x22, we just need to look at the

contribution of x1, y1 in the global expression of P,A,W . Let us denote by P̂ , Â, Ŵ the
remaining parts not depending on x1, y1. We have

P = P̂ + 4
(
x21 + (y1 −H)2

)1/2
+ 4

(
(x2 − x1)

2 + (y2 − y1)
2
)1/2

A = Â+ 2(x1(H − y2) + x2(y1 + y2))

W = Ŵ + 4(I1 + J1 + I2 + J2)

where, denoting by h1(x), h2(x) the expression of h(x) on the first and the second interval,
namely

h1(x) =
y1−H
x1

x+H, x ∈ [0, x1]

h2(x) =
y2−y1
x2−x1

(x− x2) + y2, x ∈ [x1, x2]

we have

I1 =
� x1

0
x2h1(x) =

1
4
y1x

3
1 +

1
12
x31H

I2 =
� x2

x1
x2h2(x) =

1
4
(y2x

3
2 − y1x

3
1)− 1

12
(x21 + x1x2 +X2

2 )(y2x1 − y1x2)

J1 =
� x1

0
1
3
h3
1(x) =

1
12
x1(y

3
1 + y21H + y1H

2 +H3)
J2 =

� x2

x1

1
3
h3
2(x) =

1
12
(x2 − x1)(y

3
1 + y21y2 + y1y

2
2 + y32)
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Using the previous formulas, we can compute the first and second derivatives of P,A,W
with respect to x1, y1 and therefore, the derivatives of F = P 2A/W . Now, the first order
optimality condition for F writes

1

W

∂W

∂x1
=

2

P

∂P

∂x1
+

1

A

∂A

∂x1
and the same for the derivative in y1. We use these relations to simplify the computations
of the second derivative. For example, ∂2F/∂x21 can be written

∂2F

∂x21
= F

(
2

P

∂2P

∂x21
+

2

P 2

(
∂P

∂x1

)2

+
4

AP

∂P

∂x1

∂A

∂x1
− 1

W

∂2W

∂x21

)
(we use here the fact that the second derivative ∂2A/∂x21 vanishes). Similarly for the other
derivatives.

Let us give the final expression of the Hessian matrix after a straightforward computa-
tion. For sake of simplicity, we introduce the two angles θ1, θ2 that the segments M0M1

and M1M2 make with the horizontal, namely

θ1 = arctan

(
H − y1
x1

)
, θ2 = arctan

(
y1 − y2
x2 − x1

)
,

and the relative coordinates

t =
x1
x2
, u =

y1 − y2
H − y2

.

We get

A
∂2F

∂x21
=
8A

P

(
sin2 θ1
M0M1

+
sin2 θ2
M1M2

)
+

32A

P 2
(cos θ1 − cos θ2)

2

+
32(H − y2)

P
(cos θ1 − cos θ2)−

2A(H − y2)

3W
(3x1 + x2u)

A
∂2F

∂x1∂y1
=
8Ax2(H − y2)

P

(
t(1− u)

M0M3
1

+
u(1− t)

M1M3
2

)
+

32A

P 2
(cos θ1 − cos θ2)(sin θ2 − sin θ1)

+
16

P
(x2(cos θ1 − cos θ2) + (H − y2)(sin θ2 − sin θ1))

− A

3W
[x2(x2 + 2x1) + (H − y2)(H + y2 + 2y1)]

A
∂2F

∂y21
=
8A

P

(
cos2 θ1
M0M1

+
cos2 θ2
M1M2

)
+

32A

P 2
(sin θ2 − sin θ1)

2

+
32x2
P

(sin θ2 − sin θ1)−
2Ax2
3W

[4H − (H − y2)((1− t) + 3(1− u))] .

Now, let us consider the following affine transformation given by the change of variable

x′ =
x

x2
, y′ =

y − y2
4(H − y2)

.

It has the effect of transforming the point M0 in N0 = (0, 1
4
), the point M2 in N2 = (1, 0)

and the point M1 in N1 = (x′1, y
′
1) in such a way that these three points remain in a ”con-

vex” position (we can assume H > y2, otherwise M1 would not be a vertex). Moreover,
when computing the new Hessian matrix inherited with this change of variable, we see that
it has the same properties of the original Hessian matrix, for example the determinants of
the two Hessian matrices are equal up to the positive factor 1/16x22(H − y2)

2. Therefore,
we can restrict to this particular situation with the three points ((0, 1

4
); (t, u/4); (1, 0) for

which the above formula simplifies. In particular, we will be interested in the following
quantity (1,−1)HF (1,−1)T or

E :=
∂2F

∂x21
+
∂2F

∂y21
− 2

∂2F

∂x1∂y1
(5.2)

together with the trace of the Hessian matrix

T :=
∂2F

∂x21
+
∂2F

∂y21
.
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3rd step In the second derivatives of the functional F , appear some global quantities
involving A,P,W . In order to be able to prove that the quantity E is positive, we need to
estimate A,P,W and some ratios. This is the aim of the following proposition. Without
loss of generality, we will use the following normalization: we work in the subclass:

A0 = {Ω ∈ A, h(0) = H,h(1) = 0}
where we assume H ≤ 1.

Proposition 5.4. Let Ω in A0, then we have the following inequalities

A(Ω) ≥ 2H, P (Ω) ≤ 4(1 +H),
A(Ω)

P (Ω)
≥ H

2
√
1 +H2

A(Ω)

P 2(Ω)
≥ H

8(1 +H2)
,

A(Ω)

W (Ω)
≤ 6

1 +H2
.

Proof. The two first inequalities come immediately from the fact that Ω contains the
rhombus of vertices (±1, 0); (0,±H) and is contained in the rectangle (−1, 1)× (−H,H).
To prove the three other inequalities, we solve a shape optimization problem in the class
A0. Existence of an optimal domain is immediate each time.

Minimizing A/P . Let Ω∗ be a minimizer. Working exactly as the beginning of the
proof of Theorem 5.1, we infer that Ω∗ is a polygon. Let us assume that Ω∗ contains a
free vertex (namely a vertex (x1, y1) with 0 < x1 < 1, 1 − x1 < y1 < H). Let us write
the optimality conditions we obtain by moving this vertex. On the one-hand, the first
optimality condition in x1 can be written

1

A

∂A

∂x1
− 1

P

∂P

∂x1
= 0.

Let us now compute the second derivative in x1. Taking into account that ∂2A
∂x2

1
= 0, we

get

∂2

∂x21

(
A

P

)
= − 1

A2

(
∂A

∂x1

)2

+
1

P 2

(
∂P

∂x1

)2

− 1

P

∂2P

∂x21
.

Now, using the first order optimality condition, the two first terms cancel out and we get

∂2

∂x21

(
A

P

)
= − 1

P

∂2P

∂x21
= − (y1 − y0)

2

A0A3
1

− (y1 − y2)
2

A2A3
1

the second derivative in x1 being strictly negative, we get a contradiction with the mini-
mality. Therefore, Ω∗ cannot have a free vertex and the only possibilities that remain to
be considered are

• the rhombus
• the rectangle
• another vertex on the horizontal line y = H
• or/and another vertex on the vertical line x = 1.

Actually in the two last cases, we can move freely the vertex along the horizontal (or the
vertical) line, therefore the previous computation with the variable x1 (or the variable
y1) still holds and leads to a similar contradiction. Thus it remains only to compare the
rectangle and the rhombus for which the ratio A/P equals respectively H/(1 + H) and

H/2
√
1 +H2 and a direct comparison shows that the rhombus gives the lower value.

Minimizing A/P 2. We proceed exactly in the same way. We get for the second deriv-
ative in x1:

∂2

∂x21

(
A

P 2

)
= − 1

2A2

(
∂A

∂x1

)2

− 2

P

∂2P

∂x21
and the right-hand side being negative, we conclude in the same way that we just have
to compare the rhombus and the rectangle. For the rhombus, the ratio A/P 2 is H/8(1 +
H2) while for the rectangle, it is equal to H/4(1 + H)2 and the result follows from the
comparison of these two numbers.

Maximizing A/W or minimizing W/A. This case is more complicated. The fact that
the perimeter is not in the functional makes not clear whether the maximizer is a polygon.
Let us write the optimality condition, using the formalism developed in [13] to take into
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account the concavity constraint on the function h describing the boundary of the optimal
set. Since the derivative of the area and the moment of inertia are

⟨A′(h), v⟩ =
� 1

0

vdx ⟨W ′(h), v⟩ =
� 1

0

(x2 + h2)vdx

the first order optimality condition writes: there exists a function ξ in H1(0, 1), ξ ≥ 0,
ξ = 0 on S the support of the measure h′′ such that

−W
A
ξ′′ = h2 + x2 − W

A
. (5.3)

The right-hand side of (5.3) being continuous, we see that the function ξ is indeed in
C2(0, 1). Now, the support S is closed: let us assume that there exists a (maximal) open
interval (α, β) in its complement with 0 < α < β < 1. On this interval, we have

−W
A
ξ′′ = h2 + x2 − W

A
, x ∈ (α, β)

with the boundary conditions ξ(α) = ξ(β) = 0. Moreover, since ξ is C2 and ξ ≥ 0, we must
have also ξ′(α) = ξ′(β) = 0. Now, since h′′ = 0 on (α, β) we see that h is affine on this
interval and therefore the right-hand side of the equation (5.3) is a polynomial of degree 2.
Taking into account the boundary conditions, this implies that ξ(x) = T (x− α)2(x− β)2

on (α, β). Now, coming back to the equation, we see that the term in x2 of ξ′′ should be,
on the one hand, equal to 12T and, on the other hand, negative (because it is positive
for h2 + x2). The negativity of T is in contradiction with ξ ≥ 0. In conclusion, the
complement of S cannot have an internal open interval. In other words, we are led to the
following possibilities

Sc = (0, α) ∪ (β, 1) with 0 ≤ α ≤ β ≤ 1.

Let us start with the case 0 < α < β < 1 that means that h is affine on the intervals
[0, α] ∪ [β, 1] and is strictly convex for x ∈ (α, β). On this strictly convex part, since here

ξ = 0, we have h2 + x2 =W/A: so the boundary is an arc of circle of radius R =
√
W/A.

We parametrize the boundary with two angles θ1, θ2 such that (see Figure)

• the first segment on [0, α] is given in polar coordinates as ρ = R/ sin(θ + θ2),
θ ∈ [π/2− θ2, π/2],

• the arc of circle is given by ρ = R, θ ∈ [θ1, π/2− θ2],
• the second segment on [β, 1] is given in polar coordinates as ρ = R/ cos(θ − θ1),
θ ∈ [0, θ1].
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We also have the relations R =
√

W
A

= cos θ1 and H = R/ cos θ2. Using the expressions

in polar coordinates, we immediately get

A = 2R2
(
tan θ1 +

π

2
− θ2 − θ1 + tan θ2

)
,

W = R4

(� θ1

0

dt

cos4(t)
+
π

2
− θ2 − θ1 +

� θ2

0

dt

cos4(t)

)
.

If 0 < θ1 and θ1 + θ2 < π/2, we can differentiate with respect to θ1 and we should get 0
for this derivative. Now

∂

∂θ1

(
W

A

)
=
R4

A

(
1

cos4 θ1
− 1

)
− 2WR2

A2

(
1

cos2 θ1
− 1

)
Using cos θ1 = R and R2 =W/A, this derivative can be written

∂

∂θ1

(
W

A

)
=

(1−R2)2

A
.

But if R would be equal to 1, we would have θ1 = 0 that is not the assumption. This
computation shows that the case 0 < θ1 and θ1 + θ2 < π/2 cannot occur. We can prove
exactly in the same way that 0 < θ2 and θ1+θ2 < π/2 cannot occur. Therefore, it remains
only two cases:

• either θ1 = 0 and θ2 = 0 that corresponds to the unit disk for whichW/A = R2/2,
• or θ1 + θ2 = π/2 that corresponds to a polygon with one interior vertex, say

(x1, y1).

In that case, it is more convenient to express all the quantities in the cartesian coordinates.
Let us introduce t = x1 and u = y1/H both in the interval [0, 1] The concavity assumption
is t+ u ≥ 1. With these variable, we have

A = 2H(t+ u)

W =
H

3

[
t3 + (1 + t+ t2)u+H2(t(1 + u+ u2) + u3)

]
.

As previously, we want to prove that the vertex (x1, y1) cannot be ”free”. This leads us
to study the function with two variables t, u

ψ(t, u) =
t3 + (1 + t+ t2)u+H2(t(1 + u+ u2) + u3)

t+ u
,

and prove that it cannot have a minimizer in the open set {0 < t < 1, 1− t < u < 1}. Let
us compute the derivative of ψ with respect to u:

(t+ u)2
∂ψ

∂u
= t+ t2 +H2 (t(4u2 − 1) + t2(1 + 2u) + 2u3) .

Since t +H2t(4u2 − 1) > t(1 −H2) ≥ 0, we see that the right-hand side is positive and
cannot vanish. This means that u has to be equal either to 1 − t, that corresponds to a
rhombus, or u = 1. In this last case, we compute the derivative ∂ψ/∂t and we get for
u = 1

(t+ 1)2
∂ψ

∂t
(t, 1) = 2t3 + 4t2 + 2t+ 2H2

that is positive, too. Therefore, when u = 1, the only new case is t = 1 that corresponds to
a rectangle. We conclude by comparing W/A for the rhombus (whose value is (1+H2)/6)
and for the rectangle (whose value is (1 +H2)/3). This gives the desired result. □

4th step: Conclusion We come back to the quantity E defined in (5.2) that we write
with the three points (we keep the notations t, u introduced previously to denote the
interior point) N0 = (0, H);N1 = (t, uH);N2 = (1, 0) and we use the angles θ1, θ2, in
particular to write

t = N0N1 cos θ1, (1− u)H = N0N1 sin θ1, 1− t = N1N2 cos θ2, uH = N1N2 sin θ2.

We recall that θ1 ≤ θ ≤ θ2 by convexity. The quantity AE is the sum of four terms that
we denote E1, E2, E3, E4:

E1 =
8A

P

(
1− sin(2θ1)

N0N1
+

1− sin(2θ2)

N1N2

)
.
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For the second and third terms, it is convenient to introduce δ := (θ2 − θ1)/2 and µ :=
(θ2 + θ1)/2. With these notations, we can write

E2 =
128A

P 2
sin2 δ(cosµ− sinµ)2

E3 =
64

P
(1−H) sin δ(cosµ− sinµ)

and the last term is

E4 =
2A

3W

(
1 + 2t+H2(1 + 2u)− 4H(t+ u)

)
.

It is clear that E1, E2 are always positive. This is also the case for E3 as soon as µ ≤ π/4.
Now, since H has been supposed to be less than 1/2 (we have chosen H = 1/4 previously,
the minimum of E4 is certainly obtained by taking t = 0 and u = 1 (since 2− 4H ≥ 0 and
2H2 − 4H ≤ 0). This means

E4 ≥ 2A

3W

(
1 + 2H2 − 4H

)
> 0 when H < 1− 1√

2
.

In conclusion E > 0 for H = 1/4 and µ ≤ π/4.
It remains to consider the case µ ≥ 1/4 In that case, it is easier to work with the trace

of the Hessian matrix, namely

T =
∂2F

∂x21
+
∂2F

∂y21
.

It can be written

T =
8A

P

(
1

N0N1
+

1

N1N2

)
+

128A

P 2
sin2 δ +

64

P
sin δ(H sinµ+ cosµ)− 8AH

3W
(t+ u).

Here we have also four terms T1, T2, T3, T4 that we estimate separately. Taking into account
µ ≥ π/4, we infer

π

4
≤ θ1 + θ2

2
≤ θ + θ2

2
therefore θ2 ≥ π

2
− θ. This implies that the point (t, uH) lies into the triangle defined

by the three points (1, 0); (1, H); (1−H tan θ,H). In particular, N0N1 ≤
√
1 +H2, while

N1N2 ≤ H/ cos θ. Using now 8A/P ≥ 4H/
√
1 +H2 coming from Proposition 5.4, we see

that

T1 =
8A

P

(
1

N0N1
+

1

N1N2

)
≥ 4(1 +H)

1 +H2

where we used cos θ = 1/
√
1 +H2.

We consider the second term. From θ2 ≥ π/2 − θ, we deduce δ ≥ π/4 − θ, thus

sin δ ≥ (cos θ − sin θ)/
√
2. We use A/P 2 ≥ H/(8(1 +H2) coming from Proposition 5.4 to

infer

T2 =
128A

P 2
sin2 δ ≥ 8H(1−H)2

(1 +H2)2
.

For the third term, we use the identity H sinµ + cosµ = cos(µ − θ)/ cos θ with the

inequality µ− θ ≤ π/4− θ/2 to have cos(µ− θ) ≥ (cos θ
2
+sin θ

2
)/
√
2 ≥ 1/

√
2, and we also

use 1/P ≥ 1/4(1 +H) and sin δ ≥ (cos θ − sin θ)/
√
2 to infer

T3 =
64

P
sin δ(H sinµ+ cosµ) ≥ 8(1−H)

1 +H
.

At last, we use 8A/3W ≤ 16/(1 +H2) coming from Proposition 5.4 and t + u ≤ 2 to
deduce that the fourth term is estimated by

T4 = −8AH

3W
(t+ u) ≥ − 32H

1 +H2
.

Summing these four terms, we finally get that the trace of the Hessian matrix is estimated
from below by

T ≥ 4

(1 +H)(1 +H2)2
(
3− 6H − 4H2 − 12H3 − 3H4 − 2H5)

therefore T > 0 for H = 1/4 yielding the desires contradiction.
We are led to the only following possibilities for the optimal domain
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(1) it is the rhombus
(2) it is the rectangle
(3) it has another vertex on the horizontal line y = H
(4) or/and it has another vertex on the vertical line x = 1.

We are going to prove that we are necessarily in the two first cases. Let us assume that
the optimal domain has two vertices M1 = (t,H) and M2 = (1, uH) with (t, u) ∈ [0, 1]2.
In that case, we have

A = 2H(1 + t+ u− tu), P = 4
(
t+ uH +

√
(1− t)2 +H2(1− u)2

)
W =

H

3

(
4u+ (1− u)(1 + t+ t2 + t3)

)
+
H3

3

(
4t+ (1− t)(1 + u+ u2 + u3)

)
Let us introduce the quantity G = P 2A − 96W and we want to prove that G ≤ 0 for
any (t, u) ∈ [0, 1]2 and any H ∈ (0, 1]. For that purpose, we compute the first and second
derivative of G with respect to t, u. We denote by d the distance between M1 and M2,
namely d =

√
(1− t)2 +H2(1− u)2

∂G

∂t
= 8AP

(
1− 1− t

d

)
+ 2H(1− u)P 2 − 32H(1− u)

(
1 + 2t+ 3t2 +H2(3 + 2u+ u2)

)
.

∂G

∂u
= 8APH

(
1− H(1− u)

d

)
+2H(1−t)P 2−32H(1−t)

(
3 + 2t+ t2 +H2(1 + 2u+ 3u2)

)
.

The second derivative of G in u can be written as the sum of four terms as

∂2G

∂u2
= 32H(E1 + E2 + E3 + E4)

with

E1 = (1 + t+ u− tu)H2

(
1− H(1− u)

d

)2

E2 = (1 + t+ u− tu)H2(t+ uH + d)(1− t)2/d3

E3 = 2(1− t)H(t+ uH + d)

(
1− H(1− u)

d

)
E4 = −H2(1 + 3u)(1− t).

We follow now the same strategy than previously: thanks to the affine change of variable
x′ = x, y′ = y/(4H) we are led to examine the situation of the second derivatives where

H = 1/4. Let us look at E3 + E4. Using t+uH + d ≥
√
1 +H2 (estimate of the perimeter

by the perimeter of the rhombus) and d ≤
√
1 +H2, we get

E3 + E4 ≥ 2H(1− t)
(√

1 +H2 −H(1− u)−H2(1 + 3u)
)

now, it is clear that the right-hand side is positive for H = 1/4 for all t, u. Since the

two first terms E1, E2 are positive, we infer that the second derivative ∂2G
∂u2 is positive:

that implies that G cannot have a maximizer for 0 < u < 1. Thus, for a maximizer, we
necessarily have u = 0 or u = 1. The case u = 1 corresponds to a rectangle. It remains
to look at the case u = 0. In that case, we are going to prove directly that G(t, 0) < 0
for 0 < t < 1 it will imply that in that case, the maximizing domain is a rhombus
and a simple comparison of G in these two cases provides G = 0 for the rhombus and
G = −64H(H − 1)2 that shows that the maximizing domain is any rhombus (including
the square that we recover in the case of a rectangle with H = 1).

Let us prove that G(t, 0) < 0 when 0 < t < 1. For that purpose, we use first the

convexity of the function t 7→
√

(1− t)2 +H2 to claim that√
(1− t)2 +H2 ≤

√
1 +H2 + t(H −

√
1 +H2).

Then, we can estimate the perimeter squared by

P 2 ≤ 16
(
1 +H2 − 2t+ 2t2 + 2t(

√
1 +H2 + t(H −

√
1 +H2)

)
.

This allows to estimate G = P 2A− 96W by

G(t, 0) ≤ t(a1t
2 + a2t+ a3)
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with
a1 = 1 + 2H − 2

√
1 +H2, a2 = 2H − 1, a3 = 2

√
1 +H2 − 2− 2H2.

We have a1 ≥ 0 ⇔ H ≥ 3/4, a2 ≥ 0 ⇔ H ≥ 1/2 and a3 < 0. Then, PH(t) = a1t
2+a2t+a3

is clearly negative when H ≤ 1/2. When H > 3/4, PH(t) is increasing on [0, 1] since its
minimum is attained at a negative −a2/2a1. But PH(1) = −2(H − 1)2 ≤ 0; In the last
case, 1/2 < H ≤ 3/4, PH has a maximum at t1 = −a2/2a1 that is positive. But when

H ≥ (−3+ 2
√
21)/10 this maximum point being outside [0, 1], PH is still increasing, then

negative on [0, 1]. At last, when H ∈ [1/2, (−3 + 2
√
21)/10], t1 ∈ [0, 1] and the maximum

of PH is

PH(t1) = − a22
4a1

+ a3

and it is straightforward to check that this number is negative. Therefore, we have proved
that PH(t) = a1t

2 + a2t+ a3 is always negative when 0 < t < 1. □

6. Behavior near (0, 0) and (1, 1)

In this section we investigate the behavior of the diagram near the two “extremal”
points, on the left and on the right of the diagram. These points are: the origin, associated
to thin domains collapsing to a segment, and the point (1, 1) associated to the ball.

Behavior near the origin (0, 0). We will compute the minimal slope γ−
O and the max-

imal slope γ+
O at the origin, defined as

γ−
O := lim inf

{
yϵ
xϵ

: (xϵ, yϵ) ∈ D , (xϵ, yϵ) → (0, 0)

}
,

γ+
O := lim sup

{
yϵ
xϵ

: (xϵ, yϵ) ∈ D , (xϵ, yϵ) → (0, 0)

}
.

To this aim, let us first rewrite in a more tractable way the ratios y/x for (x, y) ∈ D. By
definition, the pair (x, y) ∈ D is associated to an admissible shape Ω ∈ A, which in turn
is characterized by its intersection with the first quadrant, say Ω+ := Ω ∩ {x ≥ 0, y ≥ 0}.
This set can be described as

Ω+ = {0 ≤ x ≤ x0, 0 ≤ y ≤ h(x)}, (6.1)

for some x0 > 0 and h concave decreasing. Therefore we can rewrite

y

x
=
y(Ω)

x(Ω)
=
π2

2

� x0

0
(x2h(x) + h3(x)/3) dx[� x0

0

√
1 + (h′(x))2 dx+ h(x0)

]2 � x0

0
h(x) dx

.

Proposition 6.1. The minimal and maximal slopes at the origin are

γ−
O =

π2

12
, γ+

O =
π2

6
.

Moreover, they are attained, e.g., by sequences of thin rhombi and thin rectangles, respec-
tively.

Proof. In view of Corollary 5.2, we immediately get γ−
O ≥ π2/12. The equality sign is

obtained e.g. by taking a sequence of thin rhombi shrinking to a segment.
Let us study the upper bound. Let Ωϵ be a sequence satisfying the lim sup characterized

by some hϵ according to (6.1). Without loss of generality, up to a rotation of π/2, we may
assume that hϵ is defined in the interval [0, 1] and that hϵ(0) → 0. Thus hϵ is of the form
hϵ(x) = cϵfϵ(x), with cϵ → 0 and fϵ in the following class:

F := {f : [0, 1] → R : f(0) = 1, f concave, decreasing, non negative}.
Then

y(Ωϵ)

x(Ωϵ)
=
π2

2

� 1

0
(x2cϵfϵ(x) + c3ϵf

3
ϵ (x)/3) dx[� 1

0

√
1 + (cϵf ′

ϵ(x))2 dx+ cϵfϵ(1)
]2 � 1

0
cϵfϵ(x) dx

=
π2

2

� 1

0
x2fϵ(x) dx+ o(1)� 1

0
fϵ(x) dx+ o(1)

.
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This ratio is clearly bounded above by π2/2. To get a finer estimate, we show that for
every f ∈ F � 1

0

(x2 − 1/3)f(x) dx ≤ 0. (6.2)

This fact easily comes by splitting the interval of integration as [0, 1] = [0, 1/
√
3]∪[1/

√
3, 1].

Using the monotonicity and positivity of f , we infer that the integrand is negative in
[0, 1/

√
3] and positive in [0, 1/

√
3]. In both cases the integrand is bounded above by the

function f(1/
√
3)(x2−1/3), which has zero average in [0, 1]. This gives (6.2), in particular

the estimate

γ−
O ≤ π2

6
.

In order to prove that γ−
O = π2/6 it is enough to exhibit a sequence of admissible shapes

for which the ratio yϵ/xϵ → π2/6. This is the case of thin rectangles, in which fϵ ≡ 1 for
every ϵ. □

Remark 6.2. Notice that the highest slope associated to thin domains coincides with the
slope of the curve associated to the stadiums. Let ΩL be the stadium associated to two
half disks of centers ±L and radius 1, then as L→ +∞, (x(ΩL), y(ΩL)) → (0, 0), since

A(ΩL) = π + 4L , P (ΩL) = 2π + 4L , W (ΩL) =
π

2
+ 4L+ πL2 +

4

3
L3.

The slope at the origin is

lim
L→+∞

y(ΩL)

x(ΩL)
=
π2

6
.

Behavior near (1, 1). As in the previous section, we aim to compute the minimal slope
γ−
D and the maximal slope γ+

D at the point (1, 1), defined as the left derivatives of L+ and
L− in x = 1, respectively. We will prove that the two following limits exist

γ−
D := lim

x→1−

L+(x)− 1

x− 1
, γ+

D := lim
x→1−

L−(x)− 1

x− 1
,

and we will compute their value.

Proposition 6.3. The minimal and maximal slopes at (1, 1) are

γ−
D =

3

4
, γ+

D = +∞.

Proof. The proof is divided into several steps.

Step 1: the sequence of regular polygons. Let Ω̂n be the regular polygons with 2n sides,
n ≥ 2, with outer radius 1. Thus we have

A(Ω̂n) = 2n sin(π/2n) cos(π/2n), P (Ω̂n) = 4n sin(π/2n),

W (Ω̂n) = n cos4(π/2n)

(
tan(π/2n) +

tan3(π/2n)

3

)
.

So that

x̂n := x(Ω̂n) =
sin(π/2n)

(π/2n) cos(π/2n)(1 + tan2(π/2n)/3)

and

ŷn := y(Ω̂n) =
(π/2n) cos(π/2n)

sin(π/2n)
.

Along this sequence, it is immediate to check that

lim
n→∞

ŷn − 1

x̂n − 1
= +∞.

Step 2: the maximal slope. Let xn → 1− be a sequence realizing

lim
n→∞

1− L−(xn)

1− xn
= lim inf

x→1

1− L−(x)

1− x
.

We can extract an increasing subsequence xnk such that x̂nk ≤ xnk ≤ x̂nk+1. On the one
hand, we clearly have 1 − xn ≤ 1 − x̂nk . On the other hand, since L− is increasing and
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defined as a minimum, we have 1− L−(xn) ≥ 1− ŷnk+1. Using these estimates together
with Step 1, we conclude that

lim
n→∞

1− L−(xn)

1− xn
≥ lim

k→∞

1− ŷnk+1

1− x̂nk

= +∞.

Step 3: the minimal slope. In this part we use the representation of shapes via polar
coordinates: Ω = {(ρ cos θ, ρ sin θ) : θ ∈ [0, 2π] , ρ ∈ [0, ρmax(θ)]}, for a suitable function
ρmax.

Let xϵ → 1− as ϵ→ 0 be a sequence realizing

lim
ϵ→0

1− L+(xϵ)

1− xϵ
= lim inf

x→1

1− L+(x)

1− x
.

Let Ωϵ be the associated shapes in A. So that

1− L+(xϵ)

1− xϵ
=

1− y(Ωϵ)

1− x(Ωϵ)
. (6.3)

Using the representation in polar coordinates, the shapes are characterized by a function
rϵ(θ) as follows:

Ωϵ = {(ρ cos θ, ρ sin θ) : θ ∈ [0, 2π] , ρ ∈ [0, rϵ(θ)]}.

Since xϵ → 1−, without loss of generality, we may assume that Ωϵ converges to the disk
of unit radius D, with respect to the complementary Hausdorff distance. Therefore we
infer that rϵ → 1 uniformly and it can be written as rϵ(x) = 1 + cϵfϵ(x), for some cϵ → 0
and fϵ ∈ C0([0, 2π]) with ∥fϵ∥∞ = 1. Let us write the Taylor developments in ϵ = 0 of
A,P,W computed at Ωϵ:

A(Ωϵ) =

� 2π

0

(1 + cϵfϵ)
2

2
= π + cϵ

� 2π

0

fϵ +
c2ϵ
2

� 2π

0

f2
ϵ

= A(D) + 4cϵ

� π/2

0

fϵ + 2c2ϵ

� π/2

0

f2
ϵ ,

P (Ωϵ) =

� 2π

0

√
r2ϵ + ṙϵ

2 =

� 2π

0

√
1 + 2cϵfϵ + c2ϵ(f2

ϵ + ḟ2
ϵ )

=

� 2π

0

[
1 + cϵfϵ +

c2ϵ
2
(f2

ϵ + ḟ2
ϵ )−

1

8
(2cϵfϵ)

2

]
+ o(c2ϵ)

= P (D) + 4cϵ

� π/2

0

fϵ + 2c2ϵ

� π/2

0

ḟ2
ϵ + o(c2ϵ),

W (Ωϵ) =

� 2π

0

(1 + cϵfϵ)
4

4
=

1

4

� 2π

0

[1 + 4cϵfϵ + 6c2ϵf
2
ϵ ] + o(c2ϵ)

=W (D) + 4cϵ

� π/2

0

fϵ + 6c2ϵ

� π/2

0

f2
ϵ + o(c2ϵ).

Note that here we have used the double symmetry to replace the integrals over [0, 2π]
as integrals over [0, π/2]. Inserting these expressions in (6.3), and denoting by gϵ(x) :=
fϵ(x)−

�
fϵ, we obtain

1− y(Ωϵ)

1− x(Ωϵ)
=

1

4

(� π/2

0
fϵ
)2

+ 2π
� π/2

0
(ḟ2

ϵ − f2
ϵ )

2π
� π/2

0
f2
ϵ −

(� π/2

0
fϵ
)2 + o(1) =

1

4

(� π/2

0
ġ2ϵ� π/2

0
g2ϵ

− 1

)
+ o(1).

The last expression can be bounded from below with the first non trivial Neumann eigen-
value µ1((0, π/2)) of the interval (0, π/2):

� π/2

0
ġ2ϵ� π/2

0
g2ϵ

≥ inf
�π/2
0 g=0 , g ̸≡0

� π/2

0
ġ2� π/2

0
g2

=: µ1((0, π/2)) = 4.

Thus, passing to the limit ϵ→ 0, we obtain

γ−
D ≥ 3

4
.
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If we are able to find a sequence of shapes converging to the disk with slope 3/4 we are
done. A sequence with this property is the sequence of ellipses Eϵ with semi-axes 1 and
1 + ϵ. For these shapes we have

A(Eϵ) = π(1 + ϵ), W (Ωϵ) =
π

4
[(1 + ϵ)3 + (1 + ϵ)],

P (Eϵ) =

� 2π

0

√
1− 2ϵ sin2(θ) + ϵ2 sin2(θ) dθ.

A direct computation gives

1− x(Eϵ) =
ϵ2

2
+ o(ϵ2), 1− y(Eϵ) =

3ϵ2

8
+ o(ϵ2),

therefore, in the limit as ϵ→ 0, we have the desired result:

lim
ϵ→0+

1− y(Eϵ)

1− x(Eϵ)
=

3

4
.

□

7. Numerics

In this section, we perform simple numerical methods to try to identify the optimal
domains on the upper and lower boundaries of the Blaschke-Santaló diagram. We choose
a different methods for each boundary, since we already know that the optimal domains
are ”smooth” (at least C1,1) on the upper boundary while they are polygonal on the lower
boundary. We also compare the best domains we get numerically with the candidates as
they appear for example in Reference [5].

7.1. The upper boundary L+. For a given abscissa x0 ∈ (0, 1), the problem consists
in minimizing the perimeter among convex sets Ω that satisfy for example A(Ω) = π and
W (Ω) = π/2x0. Since we know that the optimal domain is smooth, we choose to represent
the convex domain by its support function p(θ) as suggested for example in [1] and [4].
Then we have the choice

(1) either to decompose the support function in Fourier series, and the unknown are
the Fourier coefficients.

(2) or to discretize the support function by looking for its value pi on a discrete grid
θi.

These two methods are discussed and implemented (in particular for spectral problems)
in [1] and [4]. Here we choose the Fourier series decomposition. Due to the symmetries,
the Fourier series of p writes

p(θ) =

N∑
k=0

a2k cos 2kθ.

The reason of our choice is the following. First, the geometric quantities are either exactly
calculable (perimeter, area) in terms of the Fourier coefficients:

P (Ω) = 2πa0, A(Ω) =
π

2

(
2a20 +

N∑
k=1

(1− 4k2)a22k

)
or can be computed with a very good accuracy (Simpson rule for example) for the moment
of inertia:

W (Ω) =
1

12

� 2π

0

[
3p4 − 6p2p′

2 − p′
4
]
dθ.

Then, the most important point is that this choice allows us to consider a small-medium
scale optimization problem. Indeed, we have chosen to work with 16 Fourier coefficients
(where a discretization method would require several hundred unknowns for the same
accuracy). Of course, this choice has drawbacks, since it is impossible to capture shapes
with segments by considering a truncated Fourier series: our support function being C∞,
the shape is strictly convex (see [19]). As we will see, the stadium (or a stadium-like
shape) seems to be the optimal domain for a range of values x0 ∈ [0, 0.72] and it is slightly
difficult to capture: we probably need to work with more Fourier coefficients here.
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In [5], for the same problem, some numerical results are presented and the authors seem
to identify two families of optimal domains for this problem: stadium-like and ellipse-like.
We recover a similar result here, but let us mention two points:

• it is not because the shape looks like a stadium and the numerical values are very
similar that it is a stadium! We have a famous counter-example in [9]

• The ellipse cannot be an optimal domain, as it is proved in the following propo-
sition.

Proposition 7.1. An ellipse (different from a disk) cannot be a solution of the problem

min{P (Ω), with A(Ω) = A0, W (Ω) =W0}.

Proof. Let us consider an ellipse of semi-axes a > b whose parametrization is x(t) =
a cos t, y(t) = b sin t, t ∈ [0, 2π]. Since it is a convex domain C2

+ (in the sense that the
curvature is bounded from below by a positive constant), we can perform any variation of
its boundary. The shape derivative techniques, see [10, Chapter 5] shows that there exist
two Lagrange multipliers λ1, λ2 such that

∀V ∈ C0(R2,R2),

�
∂Ω

CV.ν = λ1

�
∂Ω

V.ν +

�
∂Ω

(x2 + y2)V.ν

where C is the curvature and ν the exterior normal vector. Since this is true for any V ,
this implies

C = λ1 + λ2(x
2 + y2). (7.1)

Using the parametrization of the boundary, (7.1) can be written

ab(
a2 sin2 t+ b2 cos2 t

)3/2 = λ1 + λ2(a
2 cos2 t+ b2 sin2 t). (7.2)

Differentiating (7.2) yields

3ab(b2 − a2) sin 2t

2
(
a2 sin2 t+ b2 cos2 t

)5/2 = λ2(b
2 − a2) sin 2t

and we see that the previous equality can hold for any t if and only if a = b, that proves
the claim. □

For any given abscissa x0 there is only one (up to scaling) stadium and ellipse satisfying
A2/(2πW ) = x0. In the following table, we represent for different values of x0, the
corresponding value of y = 4πA/P 2 for the ellipse (2nd column), the stadium (3rd column)
and the best domain we got with our numerical procedure where we use the routine fmincon
of Matlab, providing the gradients of the objective function and the constraints (with 16
Fourier coefficients). The convexity constraint is linear in the unknowns a2k and is simply
written as (p+ p′′)(θj) ≥ 0 for the same discretization of (0, π/2) used for computing the
moment of inertia. We recall that minimizing the perimeter is equivalent here to maximize
y, so we are looking for the largest value of y.

x0 ellipse stadium best numerical

0.1 0.1225 0.2522 ?
0.2 0.2413 0.2839 0.2420
0.3 0.3551 0.3998 0.3870
0.4 0.4634 0.5036 0.4861
0.5 0.5660 0.5977 0.5841
0.6 0.6630 0.6844 0.6777
0.7 0.7546 0.7654 0.7641
0.75 0.7985 0.8043 0.8050
0.8 0.8411 0.8425 0.8456
0.85 0.8825 0.8804 0.8851
0.9 0.9228 0.9184 0.9241
0.95 0.9619 0.9572 0.9623

Our observations are the following:
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• For x0 ≤ 0.72, we are not able to get numerically a better domain (with 16
Fourier coefficients) than the stadium. After 0.72 we are always able to get a
domain which is better than the stadium, but also better than the ellipse.

• When x0 approaches 1, the domain we get numerically gives a value of y closer
and closer to the one given by the ellipse, confirming Proposition 6.3 and the fact
that ellipses provide the slope of the curve L+ when we approach the point (1, 1).

Here we plot two possible optimal domains for the values x0 = 0.8 and 0.9.

Figure 1. A possible optimal domain for x0 = 0.8 (left), for x0 =
0.9 (right).

7.2. The lower boundary L−. We already know that the optimal domains are polygons.
We also know that for x0 ≤ 3/π ≃ 0.9549 the optimal domain is the unique rhombus (up to
scaling) satisfying A2/(2πW ) = x0. It remains to find the optimal (polygonal) domains for
3
π
< x < 1. For that purpose, we consider k+1 unknown verticesMi = (xi, yi), i = 0, . . . k

where we assume x0 = 0 and the last vertex is known and taken as Mk+1 = (1, 0). We
have 2k + 1 unknown, the quantity under consideration are

P (Ω) = 4

k∑
i=0

√
(xi+1 − xi)2 + (yi+1 − yi)2, A(Ω) = 2

(
yk +

k∑
i=1

xi(yi−1 − yi+1)

)

W (Ω) =
1

3

k∑
i=0

(xi+1 − xi)(y
3
i + y2i yi+1 + yiy

2
i+1 + y3i+1)

− 1

3

k∑
i=0

(x2i + xixi+1 + x2i+1)(xiyi+1 − xi+1yi).

In the paper [5], the optimal domains looks like some ”regular” octagon, therefore we have
compared in the array below:

• this family or regular octagons (whose vertices in the first quadrant are
(0, 1); (x1, x1); (1, 0) where x1 is chosen in such a way that A2/(2πW ) = x0

• the best hexagon we get in the family of hexagons whose vertices in the first
quadrant are (0, H); (x1, H); (1, 0),

• the best polygon we get with our numerical procedure (we still use the routine
fmincon of Matlab with a maximal value of k equal to 5.

The convexity constraint is non-linear in the unknowns and writes, for any internal vertex
1 ≤ i ≤ k:

(xi+1 − xi)yi−1 + (xi − xi−1)yi+1 − (xi+1 − xi−1)yi ≤ 0
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Since here we want to maximize the perimeter, this corresponds to the lower value of
y = 4πA/P 2.

x0 ”regular” octagon best hexagon best numerical

0.956 0.78893 0.78892 0.78892
0.96 0.8023 0.8021 0.8021
0.97 0.8376 0.8353 0.8353
0.98 0.8794 0.8682 0.8682
0.985 0.8946 0.8843 0.8843
0.99 0.9150 0.8998 0.8998
0.995 0.9362 none 0.9290

Comments: hexagons exist up to x0 = 9
√
3/(5π) ≃ 0.9924 that is the value for the regular

hexagon. By the way, the authors do not know whether the maximization of A2/W
among polygons with a given number of sides is always given by the regular polygon.
When hexagons exist, i.e. when x0 < 0.9924, the best hexagons seem to be the optimal
sets and, in particular are better than the regular octagons. After 0.9924 and before
12(

√
2 + 1)/(π(5 + 3

√
2)) ≃ 0.9977 that is the value of x for the regular octagon, see the

beginning of the proof of Proposition 6.3, we get optimal domains that are non regular
octagons. Here we plot two possible optimal domains for the values x0 = 0.985 and 0.995.

Figure 2. A possible optimal domain for x0 = 0.985 (left), for
x0 = 0.995 (right).

7.3. The Blaschke-Santaló diagram. We plot now the diagram, taking into account
all the previous information.
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