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Abstract

We characterize the maps F = F (u, A) defined for u ∈ W 1,∞ and A open, which can be written
as supremal functionals of the form F (u, A) = ess supx∈A f(x, u(x), Du(x)).

Mathematics Subject Classification (2000): 49J45, 28A20.

Keywords: supremal functionals, Calculus of Variations in L∞.

1 Introduction

The classical problems in Calculus of Variations are formulated through the introduction of an integral
functional. This viewpoint had brought to refer as ”‘variational functional”’ any functional F (u, A)
defined on a space of functions X and on a class A of open sets such that F (u, ·) is a regular measure
with respect to A (see [21], [26]).

In this way, an integral functional belongs to this class and, thanks to the representation results
shown in [14] and in [15], all the variational functionals which satisfy some lower continuity properties
with respect to u, can be written in the integral form

G(u, A) =
∫

A

g(x, u, Du)dx.

In several applications, an integral functional is not suitable to describe certain phenomena or to express
an intrinsic property of some body. In fact, in many variational problems one can be interested to control
the maximum of the pointwise values of a some quantity instead of its mean value. As consequence, in
the last years a new class of functionals has been introduced and studied. These functionals have been
called L∞-functionals since the natural setting in which they are defined is the space L∞ or W 1,∞ and
the natural form of representing them is the so called supremal form:

F (u, A) = ess sup
x∈A

f(x, u(x), Du(x)). (1.1)

For this reason they are also referred as supremal functionals (see [1]). Some concrete examples in
which it is necessary to consider these new variational functionals can be found in [10], in [8] and in
[22] where the problem of modeling the first dielectric breakdown of a composite conductor is studied.
The increasing number of variational problems formulated through supremal functionals has raised a lot
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of questions: the identification of qualitative conditions which imply the lower semicontinuity of these
functionals w.r.t. the weak* convergence of W 1,∞ (see the results stated in [8], [1], [18]), the problem of
the relaxation and more generally of the stability of this class w.r.t. Γ-convergence (see [10], [11], [25]),
the particular case of the the homogenization (see [2] for the 1-dimensional case, [17] and [12] for the
general case), the problem of the existence of absolute minimizers for a supremal functionals (see [3],
[4], [5], [6], [9], [18]) the problem of characterizing the class of the functionals which can be written in
the supremal form (1.1). In the resolution of these questions one encounters several difficulties. Indeed
the techniques that have been developed for solving this kind of problems in the integral case strongly
exploit the peculiar properties of the integral functional and do not work in the supremal case because of
intrinsic differences between supremal functionals and integral ones. First, while an integral functional
is absolutely continuous w.r.t. the Lebesgue measure, for a supremal functional sets of arbitrary small
measure can be relevant. Moreover the additivity property, characteristic for the integral functionals, is
replaced in the supremal case by the so called countable supremality, i.e.

F

(
u,

∞⋃
i=1

Ai

)
=

∞∨
i=1

F (u, Ai).

This property remains the most delicate condition that one has to verify in order to obtain the represen-
tation in a supremal form of a functional. In this paper we are concerned with the following problem:
fixed a bounded open set of RN and given a functional F (u, A) defined on the Lipschitz continuous
functions u ∈ W 1,∞(Ω) and on the open subsets A of Ω ⊂ RN we want to establish abstract conditions
under which it is possible to represent the functional F in the supremal form (1.1). This problem follows
very naturally from the paper [1] where, given a complete measure space (Ω,F , µ), the authors show a
complete characterization of the class of all l.s.c. functionals F : L∞µ ×F → R which can be represented
in the supremal form

F (u, B) = µ- ess sup
x∈B

f(x, u(x)).

Similar representation problems, proved in the case of integral functional in [23], [24],[13], [14], can find
some interesting applications in the study of many problems of calculus of variation, as Γ convergence,
homogenization and relaxation. The representation in integral form for additive functionals on W 1,p(Ω)
makes use of the Radon-Nikodym theorem for measure: after obtaining a representation formula on the
piecewise affine functions, by continuity one can extend it on W 1,p(Ω) thanks to a density argument.
In the supremal case, there is a Radon-Nikodym theorem (see [7]) but it requires the definition of the
functional on all the Borel sets, which is much too rigid for applications.

The main result of this paper is the abstract representation result stated by Theorem 2.2. The argu-
ment of its proof are new and based on some fine properties of the Lipschitz-continuous functions. The
formula (3.5) which identifies the right function f which represents the supremal functional is different
from the one which gives the integrand for an integral functional. In fact, for a supremal functional F
given by (1.1) in order to deduce f(x, u, ξ) it is necessary to minimize F in the class of all Lipschitz
continuous functions u which are differentiable in x with u(x) = u and Du(x) = ξ. In the integral case
in order to compute the integrand g it is sufficient to know the values of the functional on the affine
functions (see Lemma 2.7 in [14] and Theorem 1.1 in [13]). This difference comes from the fact that a
supremal functional is not uniquely defined by its values on the smooth functions. In the next section,
we give an example of two different l.s.c. supremal functionals which coincide on the smooth functions.

The paper is organized as follows: We state and discuss the representation result in a first part (section
2). The second part (section 3) is devoted to proofs.

2 Statement of the supremal representation

In this section we state the main result of this paper which is the supremal representation theorem for
w∗ lower semicontinuous functionals on W 1,∞(Ω). Let us first introduce some notations. Throughout
this paper, we assume that Ω is some open bounded domain of RN . We denote by A the family of open
subsets of Ω, and by BN the Borel σ-field of RN (when N = 1 we will write simply B). Moreover we
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denote by | · | the euclidean norm on R and by || · || the euclidean norm on RN , by Br(x) the open ball
{y ∈ Ω : ||x−y|| < r} and by L the Lebesgue measure on RN . In the sequel we will work with supremal
functionals on W 1,∞(Ω), which means with functionals of the form

F (u) = ess sup
x∈Ω

f(x, u(x), Du(x)).

We refer to the function f , which represents the functional, as supremand. We give the following precise
definitions.

Definition 2.1 A function f : Ω×R×RN → R is said to be

(a) a Caratheodory supremand if:

(i) for every (t, ξ) ∈ R×RN the function x 7→ f(x, t, ξ) is measurable in Ω

(ii) for a. a. x ∈ Ω the function (t, ξ) 7→ f(x, t, ξ) is continuous in R×RN

(b) a level convex Caratheodory supremand if f is a Caratheodory supremand and f(x, u, ·) is level
convex on RN for almost every x ∈ Ω and for every u ∈ R, i.e. for every t ∈ R the level set{
ξ ∈ Rd : f(x, u, ·) ≤ t

}
is convex;

In this paper we show that any mapping F : W 1,∞(Ω)×A → R satisfying a certain set of assumptions
may actually be written as a supremal functional for a suitable normal supremand f .

Theorem 2.2 Let F : W 1,∞(Ω) × A → R be a functional. Assume that F satisfies the following
properties:

(i) (locality) F (u, A) = F (v,B) for every u, v ∈ W 1,∞(Ω) such that u(x) = v(x) for any x ∈ A ∪B and
for every A,B ∈ A with L(A4B) = 0

(ii) (countable supremality) for every Ai ∈ A and u ∈ W 1,∞(Ω)

F

(
u,

∞⋃
i=1

Ai

)
=

∞∨
i=1

F (u, Ai) (2.2)

(iii) (strong continuity) for any M > 0 there exists some modulus ωM such that

|F (u, A)− F (v,A)| ≤ ωM (||u− v||W 1,∞(A))

for every A ∈ A, for every u, v ∈ W 1,∞(Ω) s.t. ||u||W 1,∞(Ω), ||v||W 1,∞(Ω) ≤ M ;

(iv) (w∗ lower semicontinuity): F (·, A) is weakly* lower semicontinuous for every A ∈ A;

(v) (coercivity): there exists an increasing continuous function α : R+ → R+ such that limt→+∞ α(t) =
+∞ and for every A ∈ A, F (·, A) ≥ α(|| · ||W 1,∞(A)).

Then there exists a Caratheodory supremand f : Ω×R×Rd → R such that

F (u, A) = ess sup
A

f(x, u(x), Du(x)) (2.3)

for any u ∈ W 1,∞(Ω) and any A ∈ A.

The proof of the result is given in the next section. Now some comments of the result are in order.

Let us first recall that in the 1-dimensional case, thanks to Theorem 4.1 in [1], the supremand f which
represents F in the supremal form (2.3) is level convex in the third variable. In the N -dimensional case,
if F satisfies a continuity property w.r.t. x we can also prove the same property for f :

Proposition 2.3 Let F be as in Theorem 2.2 and suppose that F satisfies the additional assumption:
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(vi) ( continuity) for any M > 0 there exists some modulus ρM such that

|F (u, Br(x0))− F (uxo−yo
, Br(y0))| ≤ ρM (|x0 − y0|)

where ux0−y0(z) = u(z + x0 − y0) and ||u||W 1,∞(Ω) ≤ M.

Then the function f which represents F in the supremal form (2.3) is continuous in x and level convex
with respect to the last variable.

The proof is given at the end of the next section. In the general case, i.e., without assumption (vi), it
is an open problem which are the qualitative property of f w.r.t. ξ in order to have the weak* lower
semicontinuity of the functional.

Second let us point out that the assumptions of the Theorem are very natural. Indeed, if f : Ω×R×
RN → R is a normal level convex supremand such that

(a) |f(x, u, ξ) − f(x, v, η)| ≤ ωM (|ξ − η| + |u − v|) for a.e. x ∈ Ω and for every ξ, η ∈ BM (0) and
|u|, |v| ≤ M ;

(b) f(x, u, ·) ≥ α(| · |) for a.e. x ∈ Ω and for every u ∈ R,

then the functional F defined by F (u, A) = ess supA f(x, u(x), Du(x)) for all u ∈ W 1,∞(Ω) and for all
A ∈ A, satisfies the assumptions (i), (ii), (iii), (vi), (v) of Theorem 2.2.

We now point out the differences between our result and the symmetric one in the integral case.
Recall first that the analogous representation result in the integral case (see Theorem 1.1 in [15]) only
requires with the following condition:

(i)’ F (u, A) = F (v,A) for every u, v such that u(x) = v(x) for a.e. x ∈ A

which is weaker than (i). Indeed for an integral functional the set locality property

(i)” F (u, A) = F (u, B) for every u and A,B ∈ A s.t. L(A4B) = 0

follows by the condition that F (u, ·) is a measure which is absolutely continuous w.r.t. the Lebesgue
measure. On the contrary, in the supremal case we can not weaken the assumption (i) with the assumption
(i)’. In fact, a functional F can satisfy (i)’ and the countable supremality (iii) and not verify the set
locality property (i)”. This is for instance the case of of the functional

F (u, (a, b)) :=


ess sup
x∈(a,b)

|u′(x)| if b ≤ 1 or a ≥ 1

ess sup
x∈(a,b)

|u′(x)| ∨ 1 if a < 1 < b

Note that F (0, ( 1
2 , 3

2 )) = 1 and F (0, ( 1
2 , 1) ∪ (1, 3

2 )) = 0 even if |( 1
2 , 3

2 ) \ ( 1
2 , 1) ∪ (1, 3

2 )| = 0.

Finally we want to underline another stricking difference between the integral and supremal case. In
analogy with the integral case (see the paper [14] of Buttazzo and Dal Maso), one could think of choosing
as supremand for the functional F the function f defined as

f(x, u, ξ) := inf{F (ϕx,u,ξ, A) : x ∈ A,A ∈ A} (2.4)

where ϕx,u,ξ(y) := u + ξ · (y − x). If F satisfies the properties (i), (ii), (iii), (iv), one can show that f
represents the functional F on the affine function and then on the smooth functions proceeding exactly
as in the integral case (see Lemma 2.6 in [15]). But, while an integral functional is completely determined
by its values on the affine functions and on the open sets, in the supremal case, two functionals satisfying
properties (i), (ii), (iii), (iv) and coinciding on the smooth functions, can be different on W 1,∞(Ω). More
precisely, while the following inequality always holds true:

F (u, A) ≤ ess sup
A

f(x, u(x), Du(x)) ∀u ∈ W 1,∞(Ω)
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the reverse inequality can be false. We illustrate this phenomenon by the following example: Let E ⊂
(0, 1) be a dense open set such that |E| > 0 and |Ec| > 0 (where Ec = (0, 1) \ E) and let us define

F (u) := ess sup
(0,1)

(1 + 1E(x))|u′(x)| ∀u ∈ W 1,∞(0, 1)

where

1E(x) :=
{

1 if x ∈ E
0 otherwise.

Then formula (2.4) gives

f(x, s) = |s| lim
r→0+

sup
t∈(x−r,r+x)

(1 + 1E(t)) = 2|s| .

This function does not represent the functional F on W 1,∞(0, 1). Indeed, if we choose u(x) :=
∫ x

0
1Ec(s)ds,

then u ∈ W 1,∞(0, 1) \ C1(0, 1) and

F (u) = ‖u′‖∞ = 1 < 2 ess sup
(0,1)

f(x, u(x)) = 2 .

Note however that f represents the supremal functional F on C1((0, 1)).

3 Proof of the main result

The proof of Theorem 2.2 is quite intricated and shall be achieved through several intermediate steps.
We will give the proof of the result in the case α(t) = t, since it is always possible to reduce the problem
to this case.

Before starting the proof of the Theorem, we need some preliminary results.

Lemma 3.1 Let u, v belong to W 1,∞(Ω), x ∈ Ω be a point of differentiability of u and v, and suppose
that u(x) = v(x) and Du(x) = Dv(x). Then, for any ε > 0, for any r > 0, there is some r′ ∈ (0, r), some
open set A ∈ A, with Br′/2(x) ⊂ A ⊂ Br′(x) and |∂A| = 0, and some α ∈ (0, ε), β ∈ (0, ε) such that

u(y) = v(y) + α− β|y − x| ∀y ∈ ∂A and u(y) < v(y) + α− β|y − x| ∀y ∈ A .

Proof. Without loss of generality, we assume that x = 0, u(x) = v(x) = 0 and Du(x) = Dv(x) = 0.
We can find r′ ∈ (0, r), with r′ < 1, such that

|u(y)| ≤ ε

8
|y| and |v(y)| ≤ ε

8
|y| ∀y ∈ Br′(x) .

Let α ∈ ( 9r′ε
16 , 5r′ε

8 ) and β = 7ε
8 . Then, for all y ∈ ∂Br′(0),

v(y) + α− β|y| ≤ ε

8
r′ + α− βr′ ≤ −r′ε

8
≤ u(y) .

Moreover, for all y ∈ Br′/2(0),

v(y) + α− β|y| ≥ − ε

8
r′

2
+ α− β

r′

2
>

r′ε

16
≥ u(y) .

Then the open set Aα = {y ∈ Br′(x) | u(y) < v(y) + α− β|y − x|} satisfies our requirements provided it
has a zero measure. Since u and v are lipschitz continuous, this is the case for almost every α thanks to
the Coarea Formula. ut
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We are going to show the representation formula (2.3) for the functional F holds with the map f
defined as follows:

f(x, t, ξ) := inf
{
F (u, Br(x)) | r > 0, u ∈ W 1,∞(Ω) s.t. x ∈ û, with u(x) = t, Du(x) = ξ

}
(3.5)

where
û := {x ∈ Ω : x is a Lebesgue point of Du and a differentiable point of u} .

(Notice that, thanks to the Radamacher Theorem a.e. x ∈ Ω belongs to û. )

Lemma 3.2 Under the assumptions of Theorem 2.2, f is bounded on bounded sets.

Proof. Let M > 0 and (t, ξ) ∈ R ×RN such that |t| + ‖ξ‖ ≤ M. Fix x0 ∈ Ω and r > 0 such that
B2r(x0) ⊂⊂ Ω. Let ϕx,t,ξ(y) := t + ξ · (y − x) and note that ϕx,t,ξ ∈ W 1,∞(Ω) since Ω is bounded. From
the definition of f and the continuity assumption on F , for any (x, t, ξ) ∈ Br(x0)×R×RN we have

0 ≤ f(x, t, ξ) ≤ F (ϕx,t,ξ, Br(x0)) = F (ϕx,t,ξ, Br(x0))
≤ F (0,Ω) + ωm(‖ϕx,t,ξ‖W 1,∞(Br(x0)))
≤ F (0,Ω) + ωm(|t|+ ‖ξ‖(r + 1))

where m = |t|+ ‖ξ‖(diam(Ω) + 1). Hence f is bounded on bounded sets. ut

Next we show that minimizers in (3.5) are uniformly bounded.

Lemma 3.3 Let M > 0 be fixed. Then there is some constant K = K(M) such that, for any (x, t, ξ) ∈
Ω×R×RN with |t|+ ‖ξ‖ ≤ M , for any r > 0 with Br(x) ⊂ Ω, for any v ∈ W 1,∞(Ω),

[ v(x) = t and F (v,Br(x)) ≤ f(x, t, ξ) + 1 ] ⇒ ‖v‖W 1,∞(Br(x)) ≤ K .

Proof. Since f is bounded on bounded sets, there exists a positive constant M1 = M1(M) such that
f(x, t, ξ) ≤ M1 for any (x, t, ξ) ∈ Ω×R×RN with |t|+ ‖ξ‖ ≤ M . Now fix (x, t, ξ) ∈ Ω×R×RN with
|t|+ ‖ξ‖ ≤ M. If F (v,Br(x)) ≤ f(x, t, ξ) + 1 with Br(x) ⊂ Ω and v ∈ W 1,∞(Ω) such that v(x) = t, then
from the coercivity condition on F and the upper bound on f , we have

‖Dv‖L∞(Br(x)) ≤ F (v,Br(x)) ≤ f(x, t, ξ) + 1 ≤ M1 + 1 .

Since v(x) = t and ‖Dv‖L∞(Br(x)) ≤ M1 + 1, this leads to

‖v‖L∞(Br(x)) ≤ M + ‖Dv‖L∞(Br(x))r ≤ M + (M1 + 1)diam(Ω) .

Therefore we have proved that ‖v‖W 1,∞(Br(x) is bounded by some constant K depending only on M . ut

Next we show some regularity properties of f .

Lemma 3.4 Under the assumptions of Theorem 2.2, f is a Caratheodory supremand.

Proof. In order to show (i) of definition (2.1), let (t, ξ) ∈ R×RN and λ ∈ R be fixed. Define the sets

A(x) := {u ∈ W 1,∞(Ω) : x ∈ û with u(x) = t and Du(x) = ξ, },

and

Kλ : = {x ∈ Ω : ∀u ∈ A(x) ∀r > 0 s.t. Br(x) ⊂ Ω F (u, Br(x)) ≥ λ}
= {x ∈ Ω : f(x, u, ξ) ≥ λ}.

If we prove that Kλ is measurable for every λ ∈ R, then f(·, u, ξ) is measurable. We adapt the proof of
Lemma 2.3 in [7]. Suppose that Kλ is not measurable. Then there is a set C with Kλ ⊂ C s.t. C is
measurable and of minimal measure. Let x0 ∈ Ĉ \Kλ where Ĉ the set of the Lebesgue points of density
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of C. From the definition of Kλ, there is an open set A0 ∈ A and some u ∈ A(x0) such that x0 ∈ A0 and
F (u, A0) < λ. From the strong continuity of F (·, A), one can find ε > 0 such that

‖v − u‖W 1,∞(A0) ≤ ε ⇒ F (v,A0) < λ . (3.6)

Let
A1 =

{
x ∈ A0 | x ∈ û, |u(x)− t| ≤ ε/2, |Du(x)− ξ| ≤ ε

2diam(A)

}
Note that, A1 is measurable and since x0 is a Lebesgue point of Du, then |A1| > 0.

We claim that A1 ∩Kλ = ∅. In fact, if x ∈ A1, then the function vx ∈ W 1,∞(Ω) defined by

vx(y) := u(y) + (u(x0)− u(x)) + 〈Du(x0)−Du(x), y − x〉

belongs to A(x). Since ‖vx − u‖W 1,∞(A0) ≤ ε, from (3.6), we have that F (vx, A0) < λ. So x /∈ Kλ. In
particular Kλ ⊂ C \ A1. Moreover the set C\A1 is still measurable, with a measure smaller than the
measure of C, and since K ⊂ (C\A1), we have contradicted the minimality of K.

To show (ii) of definition (2.1), let us fix x ∈ Ω, (t, ξ) ∈ R×RN , (t′, ξ′) ∈ R×RN and ε > 0. From
the definition of f we can find some r > 0 and some u ∈ W 1,∞(Ω) such that u(x) = u, Du(x) = ξ and
f(x, u, ξ) ≤ F (u, Br(x)) + ε. Then

f(x, t′, ξ′) ≤ F (u + ϕx,t′,ξ′ − ϕx,t,ξ, Br(x)) ≤ F (u, Br(x)) + ωM (‖ϕx,t′,ξ′ − ϕx,u,ξ‖W 1,∞(Br(x))) ,

where ϕx,t,ξ(y) := t + ξ · (y − x) and where M = max{‖u‖W 1,∞(Br(x), |t|, |t′|, ||ξ||, ||ξ′||}. Note that M
actually only depends on |t|, |t′|, ||ξ||, ||ξ′|| thanks to Lemma 3.3. Moreover,

‖ϕx,t′,ξ′ − ϕx,u,ξ)‖W 1,∞(Br(x)) ≤ |t′ − t|+ ||ξ′ − ξ||(1 + r) .

Hence
f(x, t′, ξ′) ≤ f(x, t, ξ) + ε + ωM (|t′ − t|+ ||ξ′ − ξ||(1 + r)) ,

which leads to the desired result as ε → 0+. ut

Proof of Theorem 2.2. Let u ∈ W 1,∞(Ω). Our aim is to prove (2.3). For this, let us denote by L(u)
the set of points which are at the same time of points of differentiability of u, Lebesgue points of Du
and Lebesgue points of f(x, u(x), Du(x)). For any A ∈ A, for any x ∈ L(u) ∩ A, for any r > 0 with
Br(x) ⊂ A, we have: f(x, u(x), Du(x)) ≤ F (u, Br(x)) ≤ F (u, A). Hence

F (u, A) ≥ ess sup
x

f(x, u(x), Du(x)) .

In order to prove the reverse inequality, we first notice that there is some constant M = M(‖u‖W 1,∞(Ω))
such that, for any x ∈ L(u), for any r > 0, such that Br(x) ⊂ Ω, for any v ∈ W 1,∞(Ω),

[ v(x) = u(x) and F (v,Br(x)) ≤ f(x, u, Du(x)) + 1 ] ⇒ ‖v‖W 1,∞(Br(x)) ≤ M . (3.7)

This is a straightfoward application of Lemma 3.3 combined with the fact that f is bounded on bounded
sets (Lemma 3.2).

Let us now fix ε > 0. From the definition of f , for any x ∈ L(u) ∩ A there is some rx ∈ (0, ε) with
Brx(x) ⊂ A, some vx ∈ W 1,∞(Ω) with vx(x) = u(x), Dvx(x) = Du(x) and

f(x, u(x), Du(x)) ≥ F (vx, Brx
(x))− ε . (3.8)

According to Lemma 3.1 we can find some r′x ∈ (0, rx), some open set Ax with Br′x/2(x) ⊂ Ax ⊂ Br′x(x)
and |∂Ax| = 0, and some constants αx ∈ (0, ε), βx ∈ (0, ε) with

u(y) = vx(y) + αx − βx|y − x| on ∂Ax and u(y) < vx(y) + αx − βx|y − x| in Ax .

7



From Vitali covering Theorem (see for instance Corollary 10.6 of [19]), we can find a sequence (xn) such
that the disjoint family (Axn

)n∈N covers A: |A\
⋃

n Axn
| = 0. Let us now set

wε(x) = vxn
(x) + αxn

− βxn
|x− xn| if x belongs to some Axn

and wε(x) = u(x) otherwise. (3.9)

We claim that wε belongs to W 1,∞(Ω), with a Lipschitz constant independant of ε, that wε converges to
u in L∞ and that

ess sup
A

f(x, u(x), Du(x)) ≥ F (wε, A)− ωM (2ε)− ε , (3.10)

for some M .
Note that this statement completes the proof of the representation formula (2.3) because, from lower

semicontinuity of F , letting ε → 0+ in (3.10) gives

ess sup
A

f(x, u(x), Du(x)) ≥ lim inf
ε→0+

F (wε, A) ≥ F (u, A) .

Let us first show that the wε belongs to W 1,∞(Ω). For this we note that wε is the pointwise limit of
the Lipschitz maps vn defined inductively by v0 = u, and

vn+1(x) = vxn+1(x) + αxn+1 − βxn+1 |x− xn+1| if x belongs to Axn+1 and vn+1(x) = vn(x) otherwise.

The maps vn are equilipschitz continuous, with a Lipschitz constant independant of ε, because the vxn

are equilipschitz continuous in Axn
from (3.7) and because αxn

∈ (0, ε) and βxn
∈ (0, ε). Hence the wε

belong to W 1,∞(Ω) with a Lipschitz norm which does not depend on ε. Let us denote by k a constant
such that ‖wε‖W 1,∞(Ω) ≤ k for any ε > 0. Now we show that (wε)ε converges to u in L∞ as ε → 0+. If
x ∈ Axn for some n, then there is some y ∈ ∂Axn with |x− y| ≤ 2rxn ≤ 2ε because Axn ⊂ Brxn

(xn) and
rxn

≤ ε. Hence

|wε(x)− u(x)| ≤ |wε(x)− wε(y)|+ |wε(y)− u(y)|+ |u(y)− u(x)| ≤ 2kε + 0 + 2kε

because wε(y) = u(y). So |wε(x) − u(x)| ≤ 4kε for any x ∈
⋃

n Axn
. Since the family (Axn

) covers A,
then |wε(x)− u(x)| ≤ 4kε for any x ∈ A. Finally |wε(x)− u(x)| ≤ 4kε for any x ∈ Ω because wε = u in
Ω\A. So we have proved that wε converges uniformly to u.

It remains to show (3.10). Since αxn ∈ (0, ε), βxn ∈ (0, ε) and Axn ⊂ Bε(xn), then, by (3.9), we have
that

‖vxn − wε‖L∞(Axn ) = sup
Axn

|αxn − βxn |x− xn|| ≤ 2ε and ‖Dvxn −Dwε‖L∞(Axn ) ≤ ε.

Thus, by using (3.8) and the continuity assumption of F , we get

f(xn, u(xn), Du(xn)) ≥ F (vxn , Axn)− ε ≥ F (wε, Axn)− ωM ′(‖vxn − wε‖W 1,∞(Axn ))− ε

where M ′ = k + 3ε. In particular we have that

f(xn, u(xn), Du(xn)) ≥ F (wε, Axn)− ωM (3ε)− ε .

Since xn belongs to L(u) ∩A, the last inequality leads to

ess sup
A

f(x, u(x), Du(x)) ≥ sup
n

f(xn, u(xn), Du(xn)) ≥ sup
n

F (wε, Axn)−ωM (3ε)−ε ≥ F (wε, A)−ωM (3ε)−ε

because of the countable supremality of F and the fact that |A\
⋃

n Axn
| = 0. So (3.10) is established

and the proof of the representation formula is complete. ut

Proof of Proposition 2.3 : We first prove that for every M > 0, and for all (t, ξ) ∈ R×RN such that
|t| + |ξ| < M there exists K = K(M) such that |f(x, t, ξ) − f(y, t, ξ)| ≤ ρK(|x − y|). In fact fix M > 0,
(t, ξ) ∈ R ×RN such that |t| + |ξ| < M and x, y ∈ Ω. Then for every ε > 0 there exists Br(y) ⊂ Ω and
u ∈ W 1,∞(Ω) such that y ∈ û, u(y) = t, Du(y) = ξ and F (u, Br(y)) ≤ f(y, u, ξ) + ε. By lemma 3.3 there
is some constant K = K(M) such that ‖u‖W 1,∞(Br(x)) ≤ K. Then

f(x, t, ξ) ≤ F (uy−x, Br(x)) ≤ F (u, Br(y)) + ρK(|x− y|) ≤ f(y, t, ξ) + ε + ρK(|x− y|)

which leads to the desired result as ε → 0+. By applying Theorem 2.7 in [8] f is level convex in the third
variable. ut

8



References

[1] E. Acerbi, G. Buttazzo, F. Prinari: The class of functionals which can be represented
by a supremum. J. Convex Anal. 9 (2002), 225–236.

[2] O. Alvarez, E. N. Barron: Homogenization in L∞. J. Differential Equations 183 (2002),
no. 1, 132–164

[3] G. Aronsson: Minimization Problems for the Functional supx F (x, f(x), f ′(x)). Ark. Mat.
6 (1965), 33–53.

[4] G. Aronsson: Minimization Problems for the Functional supx F (x, f(x), f ′(x)). II, Ark.
Mat. 6 (1966), 409–431.

[5] G. Aronsson: Extension of Functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967),
551–561.

[6] G. Aronsson: Minimization Problems for the Functional supx F (x, f(x), f ′(x)). III, Ark.
Mat. 7 (1969), 509–512.

[7] E. N. Barron, P. Cardaliaguet, R. R. Jensen: Radon-Nikodym Theorem in L∞. Appl.
Math. Optim. (2) 42 (2000), 103–126.

[8] E. N. Barron, R. R. Jensen, C.Y.Wang: Lower Semicontinuity of L∞ Functionals. Ann.
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