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Abstract. Let (Mn
i , gi)

GH−→ (X, dX) be a Gromov-Hausdorff converging sequence of
Riemannian manifolds with Secgi ≥ −1, diam (Mi) ≤ D, and such that the Mn

i are all
homeomorphic to tori T n. Then X is homeomorphic to a k-dimensional torus T k for some
0 ≤ k ≤ n. This answers a question of Petrunin in the affirmative. We show this result is
false is the Mn

i are homeomorphic tori which are only assumed to be Alexandrov spaces.
When n = 3, we prove the same tori stability under the weaker condition Ricgi ≥ −2.

1. Introduction

The study of collapsing Riemannian manifolds under different curvature constraints is a
subject of profound interest [16, 11, 13, 12, 3, 4, 14, 40, 5] in geometric analysis.

In this paper we focus our attention on sequences of manifolds (Mn
i , gi) with uniform

lower bounds on the sectional curvature and diameter bounds:

Secgi ≥ −1 ,

diam(Mi) ≤ D .
(1.1)

In this setting, Gromov-Hausdorff limits (Mn
i , gi)

GH−→ (Xk, d) are Alexandrov spaces of
dimension 0 ≤ k ≤ n, curvature ≥ −1 , and diam(X) ≤ D. It is also well-known that in
many situations the topology of the limit space (Xk, d) is closely tied to the topology of
the approximating manifolds Mn

i .

In the non-collapsing setting, i.e. when k = n, Perelman proved that X is homeomorphic
to Mi for i large enough [30]. When k < n and Xk is a smooth Riemannian manifold
without boundary, Yamaguchi [40] proved for large i that Mn

i is the total space of a locally
trivial fiber bundle with base space Xk.

However, the topology of collapsing sequences is not fully understood when the limits
are singular or admit boundary points, even though some general local restrictions have
been obtained by Kapovitch in [25]. The main result of this paper establishes that when
Mn

i all are homeomorphic to tori T n, then the limit must be homeomorphic to a torus,
regardless of any additional assumption on its regularity.

Theorem 1.1. Let (Mn
i , gi)

GH−−→ (Xk, dX) satisfy Secgi ≥ −1, diam (Mi) ≤ D, and
such that the Mn

i are all homeomorphic to tori T n. Then Xk is homeomorphic to the
k-dimensional torus T k for some 0 ≤ k ≤ n.

We can extend or provide counterexamples to extensions of the above in various contexts.
If we just assume that (Mn

i , di) are all Alexandrov spaces homeomorphic to T n with
curv ≥ −1 and diam (Mi) ≤ D, then for n ≤ 4 we can still prove that Xk is homeomorphic
to T k and we fully recover the conclusion of Theorem 1.1. For n ≥ 5 the situation becomes
more subtle. We can show in this case that Xk is at least homotopic to a torus T k, and an
example suggested to the authors by Vitali Kapovitch shows that this is sharp. In Section
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subsection 3.6 we will show all of this, and in particular provide an example of Alexandrov
spaces M5

i → X4 where the M5
j are all homeomorphic tori but the limit X4 is not.

The framework presented in Theorem 1.1 has garnered recent attention, as Zamora
in [41] studied sequences of tori (Mn

i , gi) that satisfy condition (1.1) and demonstrated
that they cannot converge to an interval [0, L], thus covering the case when n is arbitrary
and k = 1 in our main result. The very same result had been previously established by
Katz in [27], with a more elementary argument, under the additional assumption n = 2.
We also remark that the case when n = 3 in our main result could be handled with the
general theory of collapse under a sectional curvature lower bound in dimension 3, as
developed by Shioya and Yamaguchi in [37].1 Furthermore, in the same paper, Zamora
mentions the conjecture, due to Petrunin (see also [42]), that any limit in this setting must
necessarily be homeomorphic to a torus. Our result, as presented in Theorem 1.1, confirms
this conjecture.

Let us briefly comment the interplay between the topological assumption Mn
i

∼= T n and
the metric assumption (1.1) in Theorem 1.1.

First, if we strengthen the sectional curvature condition to Secgi ≥ 0, a rigidity phe-
nomenon occurs: any torus in the sequence must be flat. For this rigidity it is actually
enough to assume Scalgi ≥ 0, as proven first by Schoen and Yau when n ≤ 7 [36], and
then in general dimensions by Gromov and Lawson [19]. A Gromov-Hausdorff limit of a
sequence of flat tori must be a flat torus, by Mahler’s compactness theorem [29]. When
nonnegative sectional is weakened to almost nonnegative Ricci curvature, then an “almost
rigidity” occurs and the universal cover is almost Euclidean (see [6]).

However, under the general lower curvature bound condition (1.1), we do not encounter
the same rigidity as described above. This, in fact, constitutes the primary novel aspect of
our theorem: the interaction between the topological assumption Mn

i
∼= T n and the lower

bound on the sectional curvature still controls the topology of limits, even though we are
out of the rigidity regime.

In essence, this is possible because Mn
i

∼= T n implies uniform volume non-collapsing of
the universal covers (M̃n

i , g̃i). Consequently, by selecting a suitable intermediate covering,
we can apply Perelman’s stability theorem, which ensures a uniform control over the
topology of the universal covers. Then, a careful argument is needed to gain uniform
control on the action of π1(Mi) on M̃i

∼= Rn. The application of Perelman’s stability
theorem mentioned above (and of a subsequent refinement due to Kapovitch [24]), are the
main steps where the lower sectional curvature bound plays a key role. We believe that
the remaining parts of the argument could be adapted to the case of lower Ricci curvature
bounds

We finally pose an open question about sequence of tori satisfying a lower bound on the
Ricci curvature:

Ricgi ≥ −(n − 1) ,

diam(Mi) ≤ D .
(1.2)

Question 1.2. Let (Mn
i , gi)

GH−−→ (Xk, dX) satisfy (1.2), where k is the rectifiable dimension
of X. Assume that Mn

i are all homeomorphic to tori T n. Is Xk homeomorphic to T k?

The answer to the above question is affirmative when n = 3.

1See the discussion in https://mathoverflow.net/questions/236001/gromov-hausdorff-limits-of-2-
dimensional-riemannian-surfaces
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Theorem 1.3. Let (M3
i , gi)

GH−−→ (Xk, dX) satisfy Ricgi ≥ −2, diam (Mi) ≤ D, and
such that the M3

i are all homeomorphic to tori T 3. Then Xk is homeomorphic to the
k-dimensional torus T k for some 0 ≤ k ≤ 3.

To prove Theorem 1.3, we can follow the same approach as in Theorem 1.1 with two major
modifications. First, we substitute the application of Perelman’s stability theorem with the
topological stability results presented in [38]. Second, instead of utilizing Proposition 2.7,
we employ general results about Lie group actions of homeomorphisms on topological
3-manifolds from [1]. See subsection 3.5 for more details.

Acknowledgment. The first author would like to express gratitude for the financial
support received from Bocconi University. The last author is supported by FIM-ETH
through a Hermann Weyl Instructorship.

The authors are grateful to Sergio Zamora and to the reviewer for carefully reading the
note and for useful comments. They are thankful to Vitali Kapovitch for suggesting the
example discussed in subsection 3.6.

2. Preliminary Results

2.1. Noncollapsing of Aspherical Manifolds. The noncollapsing statement below
follows from the combination of (E4) in [17, Appendix 1] and [17, Theorem 4.5.D’]. Notice
indeed that the universal cover of a Riemannian torus is geometrically contractible, as
observed at the beginning of [17, Section 4.5.D].

Theorem 2.1 (Noncollapsing of Aspherical Manifolds [17]). If (Mn, g) is homeomorphic
to a closed aspherical manifold and satisfies Ricg ≥ −(n − 1), diam(X) ≤ D, then

Volg(B1(p̃)) ≥ c(n, D) , for any p̃ ∈ M̃ , (2.1)

where M̃ is the universal cover of M .

Remark 2.2. We also refer the reader to [20], where the lower Ricci assumption was dropped
at the expense of a weaker volume conclusion.

2.2. Lattice Covers of Riemannian Tori.

Definition 2.3 (ℓ1 Word Norm). Let (Mn, g) be homeomorphic to T n, and let γ1, . . . , γn

a family of generators of Γ ≡ π1(M). We define the associated ℓ1 norm on Γ by

∥γ∥1 :=
n∑

i=1
|α1| , (2.2)

where γ = γα1
1 ◦ . . . ◦ γαn

n .

Theorem 2.4 below is from [23, Theorem 4.2].

Theorem 2.4 (Uniform Lattice Coverings [23]). Let (Mn, g) be homeomorphic to T n with
diam(M) ≤ D. Let (M̃, g̃) be the universal cover where Γ ≡ π1(M) acts by isometries.
Then there exists Λ ≤ Γ with Λ ≡ Zn and

(i) diam(M̃/Λ) ≤ 6nD;
(ii) There exists a family of generators {γ1, . . . , γn} of Λ such that

A(n)−1D ∥γ∥1 ≤ dM̃ (x, γ(x)) ≤ A(n)D ∥γ∥1 , ∀ γ ∈ Λ , x ∈ M̃ . (2.3)
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2.3. Lie Group actions on Euclidean Space and Tori. The statement below is a
consequence of Newman’s theorem. We refer to [2, Chapter III, Section 9] for a thorough
discussion.

Theorem 2.5. Let G be a compact Lie group (not necessarily connected). Assume that G
acts effectively by homeomorphisms on Rn. Then either G = {e} is trivial or the orbits of
G cannot be uniformly bounded with respect to the Euclidean distance.

The following two statements, originally due to [7, 8], are stated as in [2, Chapter IV,
Section 9].

Theorem 2.6 ([7, 8]). Let G be a compact connected Lie group acting effectively by
homeomorphisms on a torus T n. Then G is a torus and the action is free. Moreover, the
projection to the orbit space is a trivial principal G-fibration.

2.4. Free Actions on Noncollapsed Limits. It is a well-known result in Riemannian
Geometry that quotients with respect to free isometric group actions of smooth Riemannian
manifolds are (smooth Riemannian) manifolds. For the proof of our main result, it is
important to have a partial generalization of this statement for non-collapsed Gromov-
Hausdorff limits of manifolds with sectional curvature uniformly bounded from below.

We recall that an Alexandrov space (X, dX) of dimension n is said to be smoothable if
it can be presented as a (non-collapsed) Gromov-Hausdorff limit of a sequence (Mn

i , gi) of
smooth Riemannian manifolds with sectional curvature uniformly bounded from below,
see for instance [28]. We will say that an Alexandrov space (X, dX) is locally smoothable
if it is locally isometric to a smoothable Alexandrov space.

Proposition 2.7. Let (X, dX) be a locally smoothable Alexandrov space. If G is a compact,
connected Lie group acting freely by isometries on (X, dX), then (X/G, dX/G) is a topological
manifold.

Proof. The proof relies on the slicing theorem for Alexandrov spaces from [21], and on the
characterization of spaces of directions for noncollapsed smooth limits with lower sectional
curvature bounds [24].

Let x ∈ X and let us denote by ΣxX the space of directions at x. In particular the
tangent cone at x is given by the cone space C(Σx). Let Sx ⊂ ΣxX be the space of unit
directions tangent to the orbit G · x of x, and let νx ≡ ν(Sx) ⊂ ΣxX be the space of unit
directions normal to Sx. Namely,

νx := {v ∈ ΣxX : dΣxX(v, w) = diam(ΣxX)
2 , for any w ∈ Sx} . (2.4)

Let k = dim G. By [15] we have that Sx is isometric to a standard (k − 1)-sphere. More-
over, the space of directions at x is isometric to the join of Sx with its normal space, namely
ΣxX = Sx ∗ νx. Equivalently, ΣxX is (isometrically) the iterated spherical suspension over
νx. In particular, we can identify νx as the k-fold iterated space of directions. By [24,
Corollary 1.4] we then understand that νxX is a topological sphere.

At this stage we can apply the slice theorem for compact isometric group actions on
Alexandrov spaces from [21] to conclude that for r > 0 sufficiently small there exists a
G-equivariant homeomorphism between G × C(νx) and Br(G · x), where the action of G
on G × C(νx) is by left multiplication on the first factor and C(νx) denotes the cone over
the normal space νx. Hence π(x) ∈ X/G has a neighborhood homeomorphic to C(νx).
As we proved above that νx is a topological sphere, this shows that X/G is a topological
manifold. □
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3. Proof of the main result

Our goal in this section is to prove Theorem 1.1, which we restate below for the ease of
readability.

Theorem 3.1. Let (Mn
i , gi)

GH−−→ (Xk, dX) satisfy Secgi ≥ −1, diam (Mi) ≤ D, and
such that the Mn

i are all homeomorphic to tori T n. Then Xk is homeomorphic to the
k-dimensional torus T k for some 0 ≤ k ≤ n.

Let us open by outlining the proof strategy. Consider the sequence of universal covers
(M̃i, g̃i, p̃i), where p̃i ∈ M̃i is any given reference point. We let Γi = π1(Mi) be the group
of deck transformations acting by isometries on M̃i, i.e. M̃i/Γi = Mi. The proof of
Theorem 3.1 will be divided into four steps:

(1) We build subgroups Λi < Γi with the property that M̃i/Λi is homeomorphic to
a torus with bounded diameter diam(M̃i/Λi) ≤ 6nD, and is uniformly volume
non-collapsing Vol(M̃i/Λi) ≥ c(n, D).

(2) We apply Perelman’s stability theorem to deduce that any limit of M̃i/Λi is
homeomorphic to a torus T n. This will be used to show that (M̃i, g̃i, p̃i) → (X̃, dX̃ , x̃)
in the pGH topology, where (X̃, dX̃) is an Alexandrov space with Sec ≥ −1 which
is homeomorphic to Rn. Moreover, the homeomorphism can be chosen to be
equivariant with respect to suitable Zn actions.

(3) We study the equivariant pGH limit (M̃i, p̃i, Γi) → (X̃, x̃, Γ) and prove that Γ ≡
Zk ⊕ Rn−k for some k ≤ n with Γ acting freely. The key point consists in showing
that Γ does not have compact subgroups, and will be achieved by means of
Theorem 2.5. We remark that we will endow Γ and all its subgroups with the
compact-open topology, as it is customary in this setting.

(4) In the last step, we are going to rely on Theorem 2.6 to see that (X, d) is a homotopy
k-torus, and then conclude it is homeomorphic to T k.

3.1. Step 1. Let us apply Theorem 2.4 to (Mn
i , gi) in order to find

Λi =< γi
1, . . . , γi

n > (3.1)
such that Λi ≡ Zn, Λi < Γi, diam(M̃i/Λi) ≤ 6nD, and

A(n)−1D∥γ∥1 ≤ dM̃i
(x, γ(x)) ≤ A(n)D∥γ∥1 , ∀ γ ∈ Λi , x ∈ M̃i . (3.2)

We claim that
(a) A(n)−1D ≤ dM̃n

i
(p̃i, γi

a(p̃i)) ≤ A(n)D for every a = 1, . . . , n.
(b) Vol(M̃i/Λi) ≥ c(n, D).

The first item immediately follows from (3.2) and the identity ∥γi
a∥1 = 1, which is simply

from the definition of ℓ1 norm. To check (b), we observe that (3.2) implies
dM̃i

(p̃i, γ(p̃i)) ≥ A(n)−1D , for every γ ∈ Λi \ {0} . (3.3)

In particular, πi : M̃i → M̃i/Λi restricts to an isometry on the ball BA(n)−1D/2(p̃i). By
Theorem 2.1 and Bishop-Gromov inequality, the balls BA(n)−1D/2(p̃i) are uniformly non-
collapsed.

3.2. Step 2. The spaces (M̃i/Λi, g̃i) have uniformly bounded diameters and they are
volume noncollapsing. Hence, up to the extraction of a subsequence, we can assume
that (M̃i, g̃i, p̃i, Λi) → (X̃, dX̃ , x̃, Λ) in the equivariant pGH topology, and (M̃i/Λi, g̃i) →
(X̃/Λ, dX̃/Λ) in the GH topology, where (X̃/Λ, dX̃/Λ) is n-dimensional Alexandrov space
with Sec ≥ −1.
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Recall now that our base assumption is that the Mn
i are homeomorphic tori, and conse-

quently M̃i/Λi are homeomorphic tori. We then have by Perelman’s stability theorem (see
[30, 31] and the exposition in [26]), that there exists a homeomorphism φ : T n → X̃/Λ.

By (a) in subsection 3.1, it is elementary to check that Λ ≡ Zn, and it acts freely on
X̃. In particular, π : X̃ → X̃/Λ is a covering map with covering group Zn. On the other
hand X̃/Λ is homeomorphic to T n, hence the Galois correspondence for covering spaces
implies that X̃ is the universal cover of X̃/Λ. Therefore we can lift the homeomorphism
φ : T n → X̃/Λ to an equivariant homeomorphism Φ : (Rn,Zn) → (X̃, Λ), where Zn is the
standard integer lattice on Rn.

3.3. Step 3. Up to extracting another subsequence we have the convergence (M̃i, g̃i, p̃i, Γi) →
(X̃, dX̃ , x̃, Γ) in the equivariant pGH topology, where Γ is an abelian Lie group acting by
isometries on X̃. We show that Γ ≡ Zk ⊕ Rn−k, and that Γ acts freely on X̃. We proceed
in three steps.

Claim 3.1: There are no non-trivial compact subgroups Γ′ < Γ.

Let us take Γ′ < Γ to be a compact subgroup. Let Φ : (Rn,Zn) → (X̃, Λ) be the
equivariant homeomorphism obtained at the end of Step 2. We induce a Γ′ action by
homeomorphisms on Rn via

γ′ · v := Φ−1(γ′ · Φ(v)) , γ′ ∈ Γ′ , v ∈ Rn . (3.4)

By the equivariance of Φ : (Rn,Zn) → (X̃, Λ) and the fact that Λ and Γ′ commute, the
induced Γ′ action on Rn commutes with the Zn action. Consequently its orbits are uni-
formly bounded with respect to any norm on Rn. By Theorem 2.5 the induced Γ′ action is
trivial and hence Γ′ = {e} as claimed. □

Claim 3.2: The group Γ acts freely on X̃.

Let x ∈ X̃ and consider the isotropy subgroup Γx := {γ ∈ Γ : γ(x) = x} < Γ. It is
immediate to check that Γx is compact (with respect to the compact-open topology). On
the other hand, we have shown in Claim 3.1 that Γ does not admit compact subgroups. □

Claim 3.3: Γ ≡ Zk ⊕ Rn−k for some k ∈ {0, . . . , n}.

It is well-known that abelian Lie groups split as

Γ ≡ Γ/Γ0 ⊕ Γ0 , (3.5)

where Γ0 < Γ is the connected component of the identity, and Γ/Γ0 is discrete. Moreover,
Γ0 must be isomorphic to T a ⊕ Rb, where a and b are nonnegative integers, as it is a
connected abelian Lie group. However, using Claim 3.1 we have that Γ has no compact
subgroups, and hence we have that Γ0 = Rb.

On the other hand let us consider the abelian group Γ/Γ0. Arguing as in Claim 3.2
we deduce that Γ/Γ0 acts discretely and freely on X̃/Γ0. Moreover, it is generated by
isometries displacing any reference point less than 2D. Consequently, Γ/Γ0 is finitely
generated, so that Γ/Γ0 = Zc ⊕

⊕
Zcj . Using Claim 3.1 we have that Γ/Γ0 is torsion free,

and hence Γ/Γ0 ≡ Zc.

Since Γ ≡ Zc ⊕ Rb acts cocompactly and freely, we can extract a lattice Λ′ ≡ Zc ⊕ Zb <
Zc ⊕ Rb ≡ Γ acting cocompactly on X̃ ∼= Rn. The quotient X̃/Λ′ is a compact aspherical



STABILITY OF TORI UNDER LOWER SECTIONAL CURVATURE 7

manifold with abelian fundamental group. By a classical argument, see for instance [39], it
is homotopy equivalent to T n. In particular Zn = π1(T n) = Zc ⊕ Zb and hence c + b = n.
This finishes the proof of Claim 3.3 and hence Step 3. □

3.4. Step 4. We are now in position to conclude the proof of Theorem 3.1.

Let Λ′ < Γ ≡ Zk ⊕ Rn−k be the sub-lattice from the end of Claim 3.3, so that
Λ′ ≡ Zk ⊕ Zn−k with Γ/Λ′ ≡ T n−k. As in Claim 3.3 we know that X̃/Λ′ is a homo-
topy torus, and additionally we know that X̃/Λ′ is a topological manifold as X̃ ≡ Rn.
By [22] for dimensions greater or equal than 5, [10] in dimension 4, the solution of the
geometrization conjecture [32, 33, 34] in dimension 3, and the classification of surfaces in
dimension 2, we have that X̃/Λ′ is homeomorphic to T n 2.

Thus X̃/Λ′ is homeomorphic to the torus T n and there is an induced Rn−k/Λ′ ≡ T n−k

action by isometries. The quotient space (X̃/Λ′)/T n−k coincides with the limit space X.

By Theorem 2.6, this T n−k action is free and the projection to the quotient is a trivial
principal T n−k fibration. In particular, X × T n−k is homeomorphic to X̃/Λ′ ≡ T n. Since
X̃/Λ′ is locally smoothable, X is itself a topological manifold by Proposition 2.7.

As X × T n−k is homeomorphic to T n, we show that X is aspherical and π1(X) = Zk:

0 = πj(T n) = πj(X × T n−k) = πj(X) ⊕ πj(T n−k) = πj(X) j ≥ 2 ,

Zn = π1(T n) = π1(X × T n−k) = π1(X) ⊕ Zn−k =⇒ π1(X) = Zk .
(3.6)

Thus, by [39], X is a topological manifold which is homotopy equivalent to a k-torus.
Arguing as before, we have by [22] for dimensions greater or equal than 5, [10] in dimen-
sion 4, the solution of the geometrization conjecture [32, 33, 34] in dimension 3, and the
classification of surfaces in dimension 2 that X is homeomorphic to T k.

3.5. Outline of proof of Theorem 1.3. We can follow the same approach as in Theo-
rem 1.1 with two major modifications. More precisely, given a sequence of tori (M3

i , gi)
with Ricgi ≥ −2 and diam(Mi) ≤ D, we first find intermediate noncollapsing coverings
(M̃i/Λi, g̃i) as in Step 1 of proof of Theorem 1.1. Notice that the tools required for the
selection of these covers, namely Theorem 2.1 and Theorem 2.4 below, do not depend on
the lower sectional curvature bound.

In Step 2 of the proof, we replace Perelman’s stability theorem with [38, Theorem 1.7].
This allows to conclude that the limit (M̃i, g̃i, p̃i, Λi)

pGH−−−→ (X̃, dX̃ , x̃, Λ) is equivariantly
homeomorphic to (R3,Z3).

Step 3 does not require any change with respect to the case of lower sectional curvature
bounds.

In Step 4, in order to infer that the quotient of a topological T 3 with respect to a free
torus action by homeomorphisms is a topological manifold, we can rely on [1] (see also
[35]). The rest of the argument does not require any modification.

2We could avoid this heavy use of machinery by instead letting Λ′ be a refinement of Λ from Step 2,
where we have already deduced that X̃/Λ is a torus. However, this argument appears again at the end of
the proof as well, and the heavy machinery is not avoidable there.
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3.6. Stability of tori in the Alexandrov setting. In this section, we consider (Mn
i , di) →

(Xk, dX) where (Mn
i , di) are n-dimensional Alexandrov spaces with curv ≥ −1 and

diam(Mi) ≤ D.
As anticipated in the introduction, if Mn

i are all homeomorphic to tori T n, then Xk is
homotopy equivalent to T k. This follows from the fact that Xk × T n−k is homeomorphic
to T n, as a consequence of our proof of Theorem 1.1, and that X is a CW-complex.

3.6.1. Failure of the topological stability. We now discuss an example of a sequence
(T 5, di)

GH−−→ (Y 4, d) of Alexandrov spaces (T 5, di) homeomorphic to the torus T 5 and
converging under a uniform lower curvature bound to an Alexandrov space (Y 4, d) which is
not homeomorphic to T 4. The example was indicated to the authors by Vitali Kapovitch.
Its effect is to show that Theorem 1.1 does not generalize to Alexandrov spaces.

The main idea for the construction is borrowed from [24], see in particular Example 1.5,
Corollary 1.6 and its proof therein.

Let Σ3 be the Poincaré homology sphere with the metric of constant curvature 1. Recall
that it can be constructed as a quotient of S3 endowed with its standard metric of constant
curvature 1 with respect to a free isometric action of the icosahedral group.

The spherical suspension S1Σ3 over Σ3 is a 4-dimensional Alexandrov space with curv ≥ 1
which is homotopy equivalent to S4. However, it is not homeomorphic to S4. Indeed, it is
not a topological manifold as the two suspension points are not manifold points.

The distance on S1Σ3 is induced by a smooth Riemannian metric with curv ≥ 1 away
from the two suspension points. In particular, we can fix a non-singular point x ∈ S1Σ3

and find a small neighbourhood U ∋ x isometric to a smooth Riemannian manifold. Then
we can perform the connected sum S1Σ3#T 4 on U with a distance d so that (S1Σ3#T 4, d)
has curvature bounded below by some K ≤ 0 in the Alexandrov sense and such that
S1Σ3 \ U embeds isometrically in S1Σ3#T 4.

Notice that S1Σ3#T 4 is homotopy equivalent to T 4. However, it is not homeomor-
phic to T 4. Indeed, it is not a topological manifold. On the other hand, we claim that
(S1Σ3#T 4) × T 1 is homeomorphic to T 5.

In order to establish the claim, let us first notice that (S1Σ3#T 4) × T 1 is homotopy
equivalent to T 5, because S1Σ3#T 4 is homotopy equivalent to T 4, as remarked above.
Also note that the product metric on (S1Σ3#T 4) × T 1

ϵ has curvature bounded from below
by K for any ϵ > 0. Now let us first see that (S1Σ3#T 4) × T 1

ϵ is a topological manifold.
At any (metrically) singular point y ∈ (S1Σ3#T 4) × T 1

ϵ , the tangent cone is isometric to
R × C(Σ3) = C(S1Σ3). By Edwards’ double suspension theorem (cf. [9]), C(S1Σ3) is
homeomorphic to R5. Hence, by Perelman’s conical neighbourhood theorem, the metrically
singular points of (S1Σ3#T 4) × T 1

ϵ are also manifold points. Therefore, (S1Σ3#T 4) × T 1

is a topological manifold which is homotopy equivalent to T 5. Hence by [22], it is homeo-
morphic to T 5.

The sequence
(
(S1Σ3#T 4) × T 1

1/i, di

)
i∈N

, where di is the natural product distance, col-
lapses to

(
(S1Σ3#T 4), d

)
with curvature bounded from below by K ≤ 0 and diameter

bounded from above. However, (S1Σ3#T 4) × T 1 is homeomorphic to T 5, while S1Σ3#T 4

is not homeomorphic to T 4. □

3.6.2. Stability in dimension n ≤ 4. We remark that n = 5 is the lowest possible dimension
for a counterexample to the full torus stability Theorem 1.1 in the Alexandrov case. We
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discuss here only the case n = 4 and k = 3. The other cases can be treated with some
(simpler) variants of the argument below.

If (T 4, di)
GH−−→ (X3, dX) are Alexandrov tori converging under a uniform lower curvature

bound and a uniform upper diameter bound, borrowing the notation from the proof of
the main theorem, we can find a non-collapsed limit X̃4/Λ′ of intermediate coverings of
(T 4, di) such that X3 = (X̃4/Λ′)/T 1, with T 1 acting freely and by isometries.

The argument in the proof of Proposition 2.7 shows that all tangent cones of X̃4 split a
factor R isometrically. Moreover, X̃4/Λ′ is homeomorphic to T 4 by Perelman’s stability
theorem. This is sufficient to show that any tangent cone of X̃4 is isometric to R × C(S2),
for some Alexandrov metric with curvature ≥ 1 on S2. Indeed, the only other option
would be that the tangent cone is isometric to R × C(RP2) for some Alexandrov metric
with curvature ≥ 1 on RP2. However, this would be in contradiction with the topological
regularity of X̃4 by Perelman’s conical neighbourhood theorem.

Following again the argument in the proof of Proposition 2.7, it follows that the tangent
cones of (X3, dX) are all homeomorphic to R3. Hence, by Perelman’s conical neighbourhood
theorem again, X3 is a topological manifold. Combined with the fact that it is a homotopy
3-torus, this is sufficient to show that X3 is homeomorphic to T 3.
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