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Abstract

The paper is concerned with a class of optimization problems for moving sets t 7→
Ω(t) ⊂ R2, motivated by the control of invasive biological populations. Assuming that
the initial contaminated set Ω0 is convex, we prove that a strategy is optimal if an only
if at each given time t ∈ [0, T ] the control is active along the portion of the boundary
∂Ω(t) where the curvature is maximal. In particular, this implies that Ω(t) is convex for
all t ≥ 0. The proof relies on the analysis of a one-step constrained optimization problem,
obtained by a time discretization.

1 Introduction

Motivated by a model in [6, 7], describing the control of an invasive biological species, we
consider here the evolution problem for a set Ω(t) ⊂ R2 of finite perimeter, depending on
the normal velocity assigned at every boundary point x ∈ ∂Ω(t). We think of Ω(t) as the
contaminated set at time t ≥ 0. If no control is applied, this set expands with unit speed in
all directions. By implementing a control strategy, we assume that one can reduce the area of
Ω(t) at rate M per unit time.

To model this situation, for t ∈ [0, T ] and x ∈ ∂Ω(t), we denote by β(t, x) the normal speed
of the boundary at the point x, in the direction of the interior normal. In other words, if the
sets Ω(t) are described by

Ω(t) =
{
x = (x1, x2) ∈ R2 ; ψ(t, x1, x2) > 0

}
for some differentiable function ψ, then

β
.
=

−ψt√
ψ2
x1

+ ψ2
x2

.
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We denote by
E(β)

.
= max {1 + β, 0} (1.1)

the control effort, needed to push the boundary of Ω inward with speed β.

Definition 1.1 Given a constant M > 0, we say that a set-valued function t 7→ Ω(t) is
admissible if the corresponding characteristic function t 7→ 1Ω(t) is Lipschitz continuous
from [0, T ] into L1(R2), and moreover∫

∂Ω(t)
E
(
β(t, x)

)
H1(dx) ≤ M, for a.e. t ∈ [0, T ]. (1.2)

Here β denotes the velocity of a boundary point in the inward normal direction, and the integral
is taken w.r.t. the 1-dimensional Hausdorff measure along the boundary of Ω(t).

Given an initial set Ω0 ⊂ R2 and a constant M > 0, three problems will be considered.

(NCP) Null Controllability Problem. Find an admissible set-valued function t 7→ Ω(t) and
a time T > 0 such that

Ω(0) = Ω0, Ω(T ) = ∅. (1.3)

(MTP) Minimum Time Problem. Among all admissible strategies that satisfy (1.3), find one
that minimizes the time T .

(OP) Optimization Problem. Given a time interval [0, T ] and constants c1, c2 ≥ 0, find an
admissible set-valued function t 7→ Ω(t) which minimizes the cost

J = c1

∫ T

0
L2
(
Ω(t)

)
dt+ c2 L2

(
Ω(T )

)
, (1.4)

subject to Ω(0) = Ω0 .

Here and in the sequel, we use the notation L2(Ω) to denote the 2-dimensional Lebesgue
measure of a set Ω ⊂ R2, while H1(∂Ω) will be used to denote the 1-dimensional Hausdorff
measure of its boundary.

Remark 1.1 When the control effort is zero, the set Ω(t) expands in all directions with unit
speed. On the other hand, the bound (1.2) on the instantaneous control effort allows us reduce
the area of Ω(t) at rate M per unit time. This yields a basic relation between the growth rate
of the area of Ω(t) and its perimeter:

d

dt
L2
(
Ω(t)

)
= H1

(
∂Ω(t)

)
−M. (1.5)

The Null Controllability Problem (NCP) can thus be solved if and only if we can reduce the
perimeter P (t) = H1

(
∂Ω(t)

)
to a value strictly smaller than M .

2



A more general class of optimization problems for moving sets was recently considered in
[7], proving the existence of optimal strategies and deriving some necessary conditions for
optimality.

In this paper we consider the optimization problems (MTP) and (OP), assuming that the
initial set Ω0 is convex. Our main result, Theorem 5.1, completely characterizes the optimal
strategies. Confirming a conjecture proposed in [7], we prove that a strategy is optimal if
an only if, at each given time t ∈ [0, T ], the control is active precisely along the portion of
the boundary ∂Ω(t) where the curvature is maximal. We observe that, with this control, the
perimeter P (t) also shrinks at the fastest possible rate. Moreover, all sets Ω(t) remain convex.

As a preliminary to the proof of the main theorem, Section 2 collects several geometric results
concerning r-semiconvex sets, i.e., sets that satisfy the outer sphere condition with radius r.
In particular, we prove a sharp bound on their perimeter, and give estimates on how the area
of their r-neighborhood changes, when the boundary is perturbed.

In Section 3 we study a one-step minimization problem, derived from the original evolution
problem by discretizing time. More precisely, given a compact convex set U ⊂ R2 and a
constant 0 < a < L2(U), we seek a subset Ω ⊂ U with area L2(Ω) = a, such that the area
of its r-neighborhood Br(Ω) is as small as possible. By a detailed analysis, we prove that
this optimal set Ω is always convex, see Theorem 3.1. As a consequence, the set Ω is also
optimal for the problem of minimizing the perimeter, subject to the same constraints. In the
literature, this second problem has already been studied in [16], and is well understood in
dimension n = 2. Properties of constrained perimeter-minimizing sets, described in Section 4,
play a key role in determining the optimal strategy t 7→ Ω(t) for both (OP) and (MTP).

For an introduction to geometric measure theory and BV functions we refer to [1, 12, 14].
Various other models of moving sets, subject to external control, have been considered in
[4, 5, 8, 9, 10, 11]. More detailed models of the control of an invasive biological species can be
found in [2, 3]. See also [15] for related results on controlled reaction-diffusion equations.

2 Preliminary geometric lemmas

Throughout the following, Br(x) denotes the open ball centered at x with radius r, while

Ωr .
= Ω+Br(0) =

{
x ; dist(x,Ω) < r

}
denotes the open neighborhood of radius r around the set Ω ⊂ R2, and we will use the
standard notation L2 for the Lebesgue measure in R2 and H1 for the 1-dimensional Hausdorff
measure. The closure, the interior, and the convex hull of a set Ω are denoted by closΩ, intΩ
and convΩ, respectively. Given a vector v = (v1, v2) ∈ R2, we write v⊥ = (−v2, v1) for the
perpendicular vector.

Let E ⊂ R2 be a compact convex set with nonempty interior, and let t 7→ γ(t) be an arc-length
parametrization of the boundary ∂E, oriented counterclockwise. Call S1 = {e ∈ R2 ; |e| = 1}
the set of unit vectors in R2. For every boundary point x ∈ ∂E consider the set of outer unit
normals

n(x)
.
=
{
e ∈ S1 ; e · (x− y) ≥ 0 for all y ∈ E

}
.

We observe that the (possibly multivalued) map t 7→ n(t)
.
= n

(
γ(t)

)
⊂ S1 is a set-valued
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function with closed graph and connected values. We will sometimes use the notation n(t) =
eiθ(t). In this case t 7→ θ(t) is a monotone multifunction. A few observations are in order.

1. The map t 7→ n(t) is a BV function, with total variation TV (n(·)) = 2π. The absolutely
continuous and the singular part of its measure-valued derivative will be denoted by

Dn = Dacn+Dsingn ∈ M(∂Ω,S1).

Note that with this notation we require that in the jump points the quantity
∣∣n(x+)−n(x−)

∣∣
is the length of the smaller arc

[
n(x−),n(x+)

]
, i.e. the jump

∣∣θ(t+)− θ(t−)
∣∣, x = γ(t).

2. If A ⊂ ∂E is a Borel subset, then (see Fig. 1, left)

H1

( ⋃
x∈A

x+ hn(x)

)
= H1(A) + h|Dn|(A) = H1(A) + hDθ(A), (2.1)

L2

( ⋃
x∈A, ρ∈[0,h]

x+ ρn(x)

)
= hH1(A) +

1

2
h2|Dn|(A) = hH1(A) +

1

2
h2Dθ(A). (2.2)

These formulas generalize the classical Steiner’s formulas for the perimeter and the area of
the r-neighborhood around a convex set (see Theorem 10.1 in [13]). They can be proved
by approximating E with a polygon and passing to the limit. Notice that the second is the
integral of the first one, by the coarea formula. The above identities can be extended to a
more general class of sets with finite perimeter.

Definition 2.1 Given a closed set E ⊂ R2, an open set F and a radius r > 0, we write

Er .
=
⋃
x∈E

Br(x), F−r .
=

(
F \

⋃
y/∈F

Br(y)

)
= R2 \ (R2 \ F )r.

We say that E,F are in r-duality (or simply in duality) if F = Er and E = F−r.

From the above definition, it immediately follows that the two sets Er and (Er)−r are in
duality. Note that we always have E ⊆ (Er)−r, but equality does not hold, in general.

Definition 2.2 Let E ⊂ R2 be a closed set, and let r > 0. We say that E has the exterior
r-ball property, or equivalently that E is r-semiconvex, if for every boundary point x ∈ ∂E
there is an outer ball Br(y) ⊂ R2\E with |x−y| = r. When this holds, we say that the segment
with endpoints x, y is an optimal ray.
We say that an open set F has the interior r-ball property, or equivalently that F is
r-semiconcave, if every point x ∈ F is contained in some open ball Br(y) ⊆ F .

In the following, having fixed the radius r, for shortness we will just say semiconvex/semiconcave.
As immediate consequences of the above definitions, one has:

(i) E is r-semiconvex iff E = (Er)−r.
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(ii) F is r-semiconcave iff F = (F−r)r.

(iii) For every closed set E, every point x ∈ ∂Er belongs to the boundary of a ball of radius
r contained in Er, with center in E;

(iv) For every closed set E, every point x ∈ ∂(Er)−r belongs to the boundary of a ball of
radius r contained in R2 \ E, with center in ∂Er.

We observe that, if E is compact, r-semiconvex with intE connected but not simply connected,
then each of its “holes” must contain an open ball of radius r. Therefore, the complement R2\E
can have at most finitely many connected components. To fix ideas, we call V1 the unbounded
component, and V2, . . . , VN the bounded components. Each boundary ∂Vk, k = 1, . . . , N is
a simple closed curve with finite length. Let t 7→ γk(t) be an arc-length parameterization of
∂Vk, oriented counterclockwise in the case of V1 and clockwise for V2, . . . , VN . As before, let
n(x) be the set of outer unit normals at the point x ∈ ∂E. Using complex notation, we again
write nk(t) = n(γk(t)) = eiθk(t) for the set of unit outer normal vectors at the point γk(t).
The assumption of r-semiconvexity implies that the (possibly multivalued) map t 7→ θk(t) has
bounded variation. Its distributional derivative satisfies

Dθk ≥ − 1

r
L1. (2.3)

Indeed, the negative part of the measure Dθ is absolutely continuous and has uniformly
bounded density w.r.t. 1-dimensional Lebesgue measure L1 on the unit circumference S1. For
future use, we notice that this yields:

Lemma 2.1

(i) The set R2 \ V1 is not convex if and only if there exists a point x∗ = γ1(t
∗) where the

function t 7→ θ1(t) is differentiable, with a strictly negative derivative.

(ii) For every k = 2, . . . , N , there exists a point x∗ = γk(t
∗) where the function t 7→ θk(t) is

differentiable, with a strictly negative derivative.

The identities (2.1)-(2.2) have counterparts for general r-semiconvex sets. More precisely,
consider a Borel subset A ⊆ ∂Vk ⊆ ∂E. For 0 < h ≤ r we then have

H1

( ⋃
x∈A

x+ hn(x)

)
≤ H1(A) + hDθk(A), (2.4)

L2

( ⋃
x∈A, ρ∈[0,h]

x+ ρn(x)

)
≤ hH1(A) +

1

2
h2Dθk(A). (2.5)

These formulas can again be proved by approximating the set E with polygons, then passing
to the limit. The second one is obtained from the first by an integration. We observe that, if
E is not convex, then there can be distinct points x, y ∈ ∂E such that the sets

{
x+ρn(x) ; ρ ∈

[0, h]
}
,
{
y+ρn(y) ; ρ ∈ [0, h]

}
have non-empty intersection (see Fig. 1, right). This motivates

the inequality signs in (2.4)-(2.5).
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r

A

E

E

n(x)

x

Figure 1: Left: a convex set E and its r-neighborhood. Given a measurable subset of the boundary
A ⊂ ∂E, the set of points y ∈ Er that project onto A has area computed by (2.2). Right: if the set E
is r-convex but not convex, the formula (2.5) may hold only as an inequality, because of the overlap.

2.1 The perimeter of a semiconvex set.

Lemma 2.2 Any r-semiconvex set E has locally finite perimeter. Indeed, for any ball of
radius r, one has

H1
(
Br(x̄) ∩ ∂E

)
≤ 2πr. (2.6)

Proof. 1. As a first step, we observe that the boundary ∂E is rectifiable with length locally
finite. Indeed, for any unit vector e ∈ S1, consider the set of points x ∈ ∂E which have
an optimal ray of direction n(x) such that

∣∣n(x) − e
∣∣ < 1/2. By the outer ball property of

r-semiconvex sets, for every such an x there is an open cone Cx with axis in the direction ±e
and opening > π/6 such that ∂E∩Cx∩Br(x) = ∅: indeed, Cx∩Br(x) ⊂ Br(x+re) ⊂ R2 \E.
A standard rectifiability criterion (see Theorem 2.61 in [1]) shows that ∂E is rectifiable, and
moreover the fact that the curves are separated gives that their total length is locally finite.

2. Next, we claim that, for any fixed ball Br(x̄) and any finite family of balls Br(xi), i =
1, . . . , n, there holds

H1

(
Br(x̄) ∩ ∂

n⋃
i=1

Br(xi)

)
≤ H1

(
∂Br(x̄) ∩

n⋃
i=1

Br(xi)

)
≤ 2πr. (2.7)

Indeed, the above estimate is trivial when n = 1. By induction, assume that it holds for n
and consider an additional ball Br(xn+1). By relabeling, we can assume that ∂Br(xn+1) \
∪n
i closBr(xi) is an arc intersecting ∂Br(x̄) in at least one point.

• If the intersection

∂Br(xn+1) ∩

(
∂Br(x̄) \

n⋃
i=1

Br(xi)

)
(2.8)

consists of two distinct points y1, y2 (see Fig. 2, center), then either
(i) there is a ball Br(xi) such that Br(xi) ∩Br(x̄) ⊂ Br(xn+1) ∩Br(x̄). In this case the
ball Br(xi) can be removed from the family of balls and we can apply the recurrence
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hypothesis. Or else
(ii) we observe that

H1

(
Br(x̄) ∩ ∂

⋃n+1
i=1 Br(xi)

)
= H1

(
Br(x̄) ∩

[(
∂Br(xn+1) \

⋃n
i=1Br(xi)

)
∪
(
∂
⋃n

i=1Br(xi) \Br(xn+1)
)])

≤ H1

(
Br(x̄) ∩ ∂Br(xn+1)

)
+ H1

(
Br(x̄) ∩ ∂

⋃n
i=1Br(xi)

)
≤ H1

(
∂Br(x̄) ∩Br(xn+1)

)
+ H1

(
∂Br(x̄) ∩

⋃n
i=1Br(xi)

)
= H1

(
∂Br(x̄) ∩

⋃n+1
i=1 Br(xi)

)
.

(2.9)

Hence the first inequality in (2.7) holds.

• On the other hand, if the intersection (2.8) consists of a single point y1 (see Fig. 2, right),

then it contributes to the measure above by an arc
⌢
y1y2 ⊂ ∂Br(xn+1) ∩ Br(x̄). In this

case, the arc
⌢
y1y2 replaces the set Br(xn+1) ∩Br(x̄) ∩ ∂

(⋃n
i=1Br(xi)

)
, and either

(i) there is ball Br(xi) which is not contributing to Br(x̄)∩∂
(⋃n+1

i=1 Br(xi)
)
. This happens

when two or more balls are involved in the set Br(xn+1)∩Br(x̄)∩∂
(⋃n

i=1Br(xi)
)
. In this

case, the ball Br(xi) can be removed, and the result follows by the inductive assumption.
Or else
(ii) the arc

⌢
y1y2 replaces an arc

⌢
y0y2 = Br(xn+1)∩∂Br(xj). A simple computation shows

that
length of

⌢
y1y2 ≤ length of

⌢
y0y2 + length of

⌢
y0y1,

where
⌢
y0y1 is the the arc of ∂Br(x̄) which belongs to Br(xn+1)∩Br(x̄)\∪n

i Br(xi). Hence
again (2.7) is verified.

By induction, the estimate (2.7) holds for every n ≥ 1.

0

y
1

y
2

y
1

y
2

y

Figure 2: Left: the set Br(x̄) \
⋃n

i=1Br(xi). Center and right: the set Br(x̄) \
⋃n+1

i=1 Br(xi), in the
two cases considered in step 2 of the proof of Lemma 2.2.

3. To complete the proof, we need to consider the general case where E is any r-semiconvex
set. Since ∂E ∩ Br(x̄) is rectifiable with finite length, by the Vitali-Besicovitch Covering
Theorem [1, Theorem 2.19] for every ε > 0 there is a finite set of points xi ∈ ∂E ∩Br(x̄) and
radii ri < ε, i = 1, . . . , N , such that
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xi

ni

Br(yi)

∂ ∪j Brj(yj)

x

x+ IRe

γi(t)

Bri(xi)

Figure 3: Up to two small end parts, to each point of x ∈ ∂E ∩ graph(γi)∩Bri(xi) (red) there
corresponds at least one point of ∂ ∪j Br(yj) (light blue), giving (2.10).

1. xi belongs to the reduced boundary ∂∗E, i.e. it has a unique normal ni;

2. Bri(xi) ⊂ Br(x̄);

3. there is a Lipschitz curve γi such that

|γ̇i − n⊥
i | < ε and H1

(
graph(γi) ∩Bri(xi)

)
> (1− ε)2ri;

4. it holds ∑
i

∣∣H1(∂E ∩Br(xi))− 2ri
∣∣ < ε,

∣∣∣∣H1(∂E ∩Br(x̄))−
∑
i

2ri

∣∣∣∣ < ε.

Indeed, the balls satisfying the first 3 statements are a fine covering of ∂∗E ∩Br(x̄).

For each xi, consider the optimal ray [xi, yi] (there is only one because xi ∈ ∂∗E) and the
family of balls Br(yi) ⊂ R2 \ E. The boundary of the set ∪iBr(yi) consists of finitely many
curves, and inside every ball Bri(xi) its length must be at least

H1

(
Bri(xi) ∩ ∂

⋃
j

Br(yj)

)
> (1− 2ε)(2ri) (2.10)

for ri ≪ 1. Indeed, for each point x ∈ ∂E ∩ graph(γi) ∩ B(1−ε)ri(xi) the line x + Rni must
intersect the boundary of ∪iBr(xi) at one point inside Bri(xi) (see Fig. 3).

In view of (2.7), we thus conclude that

H1(∂E ∩Br(x̄)) ≤ ε+
∑
i

2ri ≤ ε+
1

1− 2ε

∑
i

H1

(
Bri(xi) ∩ ∂

⋃
j

Br(yj)

)

≤ ε+
1

1− 2ε
H1

(
∂Br(x̄) ∩

⋃
j

Br(yj)

)
< ε+

2πr

1− 2ε
.
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Taking the limit ε↘ 0 we obtain the bound (2.6).

Remark 2.1 In the case of different radii 0 < ρ < r, the same arguments used in the proof
of Lemma 2.2 show that the estimate (2.7) can be replaced by

H1

(
Bρ(x̄) ∩ ∂

n⋃
i=1

Br(xi)

)
≤ 2πρ. (2.11)

2.2 A property of r-semiconvex sets.

Throughout this section we consider a compact set E ⊂ R2 whose boundary is a simple closed
curve s 7→ γ(s), parameterized by arc-length and oriented counterclockwise. As before, the
unit outer normals are denoted by eiθ(s) = n(s) = −γ̇(s)⊥.

If the set E is r-semiconvex, then the negative part of of the distributional derivative of θ is
absolutely continuous w.r.t. one-dimensional Lebesgue measure. Namely,

Dθ ≥ − 1

r
L1. (2.12)

Conversely, assume that eiθ = −γ̇⊥ and that (2.12) holds, so that θ has bounded variation.
One can then define the set of unit normal vectors as

n(t) =
{
eiϕ, ϕ ∈ [θ(t−), θ(t+)]

}
.

Equivalently, n(t) is the set of unit vectors n ∈ S1 such that

lim sup
δ↘0

sup
{
n · (y − γ(t)) ; y ∈ E ∩Bδ(γ(t))

}
δ

≤ 0.

Let (2.12) hold and consider any boundary point x ∈ ∂E. As shown in Fig. 4, by moving along
the boundary of E, it is possible to get into the interior of the outer tangent ball Br

(
x+rn(x)

)
,

but only after having travelled along an arc of length > πr.

Lemma 2.3 In the above setting, if (2.12) holds, then for every x = γ(t̄) ∈ ∂E one has

Br

(
γ(t̄) + rn(t̄)

)
∩
{
γ(t) ; t ∈ [t̄− πr , t̄+ πr]

}
= ∅. (2.13)

Proof. If (2.13) fails, then there exists 0 < ρ < r such that

Br

(
γ(t̄) + ρn(t̄)

)
∩
{
γ(t) ; t ∈ [t̄− πρ , t̄+ πρ]

}
̸= ∅. (2.14)

A contradiction can then be obtained in two steps.

1. We claim that, for every t̄, there exists ε > 0 such that

Br

(
γ(t̄) + rn(t̄)

)
∩
{
γ(t) ; t ∈ [t̄− ε, t̄+ ε]

}
= ∅. (2.15)
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E

x

rn(x)

y

(t)

n

z

’γ

ρ(t )+

γ(τ)

1

11

2

γ

(t )

(t )γ

γ (t )

_

γ

Figure 4: Left: if (2.12) holds, the outer curvature radius is ≥ r. Hence in a neighborhood of x the
set E lies outside the ball Br

(
x+ rn(x)

)
. However, the boundary ∂E can enter this ball at a point y,

where the boundary arc
⌢
xy has length > πr. Right: the points γ(t1), γ(t2), γ(t̄) and γ(τ), considered

in step 2 of the proof of Lemma 2.3. Starting from γ(t̄) and moving toward γ(t1), we enter the ball
Bρ(z) (shaded region) at a point γ(τ), before reaching γ(t1). Indeed, any curve γ′ of length ≤ πρ/2
starting at γ(t̄) and remaining outside the ball Bρ(z) cannot touch the ball Bρ

(
γ(t1) + ρn(t1)

)
. The

inductive process eventually identifies a point γ(t∗) where the outer radius of curvature is ≤ ρ < r,
thus obtaining a contradiction.

Indeed, by a translation and rotation of coordinates, we can assume that t̄ = 0, γ(0) = 0 and
γ̇ = (1, 0). The equation for γ can be locally written as

ẋ(t) = cos θ(t), ẏ(t) = sin θ(t), −π
2
< θ(0−) ≤ θ(0+) <

π

2
,

where the map t 7→ θ(t) satisfies (2.12).

Since t 7→ x(t) is Lipschitz, in the interval of invertibility (i.e. as long as cos θ(t) > 0) we
obtain

θ(t2)− θ(t1)

x(t2)− x(t1)
≥ − t2 − t1

r
·
(∫ t2

t1

cos θ(τ)dτ

)−1

.

This implies that x 7→ θ(t(x)) satisfies

Dxθ(t(x)) ≥ − 1

r cos θ
, sin(θ(t(x))) ≥ −x

r
,

dy

dx
= tan θ(t(x)) ≥ − x√

r2 − x2
.

Since this argument is valid both for t > 0 and for t < 0, one concludes that

y(t) ≥ r −
√
r2 − (x(t))2

in a nonempty interval t ∈ [−ε, ε] where cos θ(t) > 0. This proves (2.15).

2. Next, to prove the global property (2.13), consider any point γ(t1) ∈ ∂E, and choose t2 > t1
so that γ(t2) is the first point where the curve γ touches again the set closBρ

(
γ(t1)+ ρn(t1)

)
.

In other words (see Fig. 4, right),

t2 = min
{
t > t1 ; γ(t) ∈ closBρ

(
t1 + ρn(t1)

)}
.

10



Notice that, by (2.15), one has t2 ≥ t1 + ε, hence the above minimum is well defined.

If t2− t1 < ρπ, we will derive a contradiction. As shown in Fig. 4, right, let t̄ ∈ [t1, t2] be such
that the distance

∣∣γ(t̄)− (γ(t1) + ρn(t1))
∣∣ is maximal. Consider the ball Bρ(z), where

z = γ(t̄) + ρn(t̄), n(t̄) =
γ(t1) + ρn(t1)− γ(t̄)∣∣γ(t1) + ρn(t1)− γ(t̄)

∣∣ .
Since t2 − t1 ≤ πr, then one of the intervals [t1, t̄], [t̄, t2] is shorter than |t2 − t1|/2 ≤ πr/2. To
fix ideas, assume t̄−t1 ≤ t2− t̄. Starting from γ(t̄), we move along this shorter arc [t1, t̄] toward
γ(t1) until we reach a first point γ(τ) ∈ ∂Bρ

(
γ(t̄) + ρn(t̄)

)
. Notice that this first intersection

point is well defined and bounded away from γ(t̄), because of the argument in step 1.

Moreover, τ cannot coincide with t1. Indeed, the point γ(τ) lies on the half circumference{
y ∈ Bρ(z) ; (z − y) · n(t̄) ≥ 0

}
,

while γ(t1) lies on the arc of circumference{
y ∈ Bρ

(
γ(t1) + ρn(t1)

)
; (z − y) · n(t̄) ≥ 0

}
.

These two arcs do not have any point in common.

We then repeat the above construction, replacing [t1, t2] with this new interval [t̄, τ ]. By
induction, we thus obtain a sequence of nested intervals [t1,n, t2,n], with t2,n − t1,n < 2−nπr,
such that

γ(t2,n) ∈ ∂Bρ(γ(t1,n) + ρn(t1,n)), γ
(
]t1,n, t2,n[

)
∩ closBρ(γ(t1,n) + ρn(t1,n)) = ∅.

Since the length of these intervals is converging to zero, if t∗ is the limit of the sequence, then
for n ≫ 1 we obtain a contradiction with step 1, since [t1,n, t2,n] would be contained in the
set where γ does not intersect any of the tangent open balls. This concludes the proof.

Corollary 2.1 In the above setting, if (2.12) holds and H1(∂E) ≤ 2πr, then E is r-semiconvex.
More precisely, each point γ(t) + rn(t) has distance r from E, and E = (Er)−r.

Moreover, for every portion of the boundary γ of length t2 − t1 ≤ πr, the rays

ρ 7→ γ(t) + ρn(t) , ρ ∈ [0, r] , t ∈ [t1, t2]

can intersect only at the initial point ρ = 0 and final point ρ = r, at most. We can thus obtain
the same formulas (2.1)-(2.2) over this portion of ∂E. For every Borel subset A ⊂ γ([t1, t2]),
there holds

H1

( ⋃
x∈A

x+ hn(x)

)
= H1(A) + h|Dn|(A) = H1(A) + hDθ(A), (2.16)

L2

( ⋃
x∈A

x+ hn(x)

)
= hH1(A) +

1

2
h2|Dn|(A) = hH1(A) +

1

2
h2Dθ(A). (2.17)

11



2.3 Local perturbations of convex sets.

Let E be a compact convex set, with boundary parameterized by t 7→ γ(t). As before, let
eiθ(t) = n(t) = −γ̇(t)⊥. Let t̄ be a Lebesgue point for Dθ(t), so that

lim
δ→0+

1

δ

∣∣Dθ − κL1
∣∣([t̄− δ, t̄+ δ]

)
= 0.

Here κ ≥ 0 is a constant describing the local curvature. This implies that for every ε > 0 one
can find δ > 0 such that∣∣n(t)− n(t̄)− κγ̇(t̄)(t− t̄)

∣∣ ≤ ε|t− t̄| for t ∈ [t̄− δ, t̄+ δ].

Observe that, up to a rigid motion and decreasing δ in case, locally we can write the curve γ
as the graph of a positive convex function f(x), x ∈ [−δ, δ], with

f(0) = 0,
∣∣f ′(x)− κx

∣∣ ≤ ε|x|, lim
δ→0

1

δ

∣∣D2f − κL1
∣∣([−δ, δ]) = 0. (2.18)

Consider a semiconvex function ϕ ≤ 0 such that

suppϕ ⊂ [−δ, δ], D2ϕ ≥ −1

r
L1. (2.19)

It is easy to see that these conditions implies that |ϕ′(x)| ≤ δ.

Define the set E′ by

E′ = E ∪
{
y ∈ f(x) + [ϕ(x), 0], x ∈ [−δ, δ]

}
. (2.20)

Its boundary is the simple closed curve γ′ obtained by replacing the part of its graph equal to
{(x, f(x)), x ∈ [−δ, δ]} with the graph {(x, f(x)+ϕ(x)), x ∈ [−δ, δ]}. In the interval x ∈ [−δ, δ],
the curvature of γ′ is clearly a measure and its a.c. part can be easily computed as

f ′′ + ϕ′′√
1 + (f ′ + ϕ′)2

≥ −1

r
.

Next, let t be a parametrization of the new curve γ′, and for any choice of t and m = eiα with
α ∈ [θ′(t−), θ′(t+)], consider the segment{

γ(t) + σm ; 0 < σ < r
}
.

We claim that all these segments are disjoint. Indeed, it is enough to verify this statement for
segments when γ′(t) belongs to the graph of f +ϕ and ϕ ̸= 0. In this case, since the length of
the arc is O(δ) < πr, we can apply the analysis in step 1 of the proof of Lemma 2.3.

By (2.17), which can be applied to the whole ∂E′ because the optimal rays are disjoint, we
obtain

L2((E′)r)− L2(Er) = L2(E′)− L2(E) + r
(
H1(∂E′)−H1(∂E)

)
=

∫
−ϕ(x) dx+ r

∫ (√
1 + (f ′(x) + ϕ′(x))2 −

√
1 + (f ′(x))2

)
dx.

12



If t̄ is a Lebesgue point of Dθ where the derivative is θ̇(t̄) = κ = 1
ρ ≥ 0, corresponding to the

Lebesgue point x = 0 for D2f where D2ϕ(0) = ϕ′′(0) = κ = 1
ρ , for δ ≪ 1 we have

(
L2((E′)r)− L2(Er)

)
−
(
L2(E′)− L2(E)

)
= r

∫ (√
1 + (f ′(x) + ϕ′(x))2 −

√
1 + (f ′(x))2

)
dx

= r

∫
(f ′(x) + ϕ′(x))2 − (f ′(x))2√

1 + (f ′(x) + ϕ′(x))2 +
√

1 + (f ′(x))2
dx

= r

∫ δ

−δ

((
ϕ′(x)

)2
2

+ ϕ′(x)
x

ρ

)(
1 +O(δ)

)
dx.

(2.21)

To achieve the last estimate in (2.21), notice that ϕ′ = O(δ), f ′ = x
ρ (1 + O(δ)), because of

(2.18,2.19).

A useful choice of the perturbation is

ϕ(x) =


−
(
δ − |x|

)2
2a

if |x| < δ,

0 if |x| ≥ δ,

(2.22)

with a > r. In this case, if the local curvature is κ = 1
ρ > 0, then the perturbed set E′ in

(2.20) satisfies

L2((E′)r \ Er)− L2(E′ \ E) = r

∫ δ

−δ

((
ϕ′(x)

)2
2

+ ϕ′(t)
x

ρ

)(
1 +O(δ)

)
dx

= r(1 +O(δ))

∫ δ

−δ

[
(δ − |x|)2

2a2
− |x|(|δ − |x|)

aρ

]
dx

= r
(
1 + o(1)

)[ δ3
3a2

+
δ3

3aρ

]
= r

(
1 + o(1)

)(1

a
+

1

ρ

)
δ3

3a

= r
(
1 + o(1)

)(1

a
+

1

ρ

)
L2(E′ \ E).

In particular, by letting a→ +∞, we obtain the following proposition:

Proposition 2.1 If E is a convex set such that there is a Lebesgue point for the curvature
κ = 1

ρ , then for every ε > 0, there is a set E′ ⊃ E such that∣∣∣∣L2((E′)r \ Er)−
(
1 +

r

ρ

)
L2(E′ \ E)

∣∣∣∣ < εL2(E′ \ E). (2.23)

Next, we study what happens when we remove a set E′ from a convex set E, so that the
difference E \ E′ is still convex. Consider a point t̄ such that

lim inf
t→t̄

θ(t)− θ(t̄)

t− t̄
≥ 1

ρ
.
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Figure 5: Left and center: the perturbations of the convex set E considered at (2.24) and at (2.27).
Right: the perturbation of the semiconvex set E considered at (2.31).

We first consider the case where t̄ is a corner point. Up to a change of coordinates (see Fig. 5),
the boundary ∂E is thus the graph of a function x2 = f(x1), with

lim
x1→0±

f ′(x1) = ±a, a > 0.

We then define (see Fig. 5, left)

E′(h)) = E ∩ {x2 ≥ h}. (2.24)

Using (2.2), one obtains

L2(E \ E′(h)) =
h2

a

(
1 + o(1)

)
,

L2(Er \ (E′(h))r)− L2(E \ E′(h)) = r
(
H1(∂E)−H1(∂E′(h))

)
= r

(√
1 + a2 − 1

)2h
a

(
1 + o(1)

)
=

2r

h

(√
1 + a2 − 1

)
L2(E \ E′(h))

(
1 + o(1)

)
.

(2.25)

A similar computation can be done in the case

lim
x1→0

f ′(x1) = 0, lim
x1→0

f ′(x1)

x1
= +∞.

In this case, indeed, for h ≪ 1 one has |f ′(x1)| > k|x1|, f(x1) < h, with k ≫ 1 arbitrarily
large. Defining again E′(h) = E ∩ {x2 ≥ h}, one finds

L2(Er \ (E′(h))r)− L2(E \ E′(h)) = r
(
H1(∂E)−H1(∂E′(h))

)
= r

∫
f(x1)<h

(√
1 + (f ′(x1))2 − 1

)
dx1 ≥ r

2
(1 + o(1))

∫
f(x1)<h

(f ′(x1))
2dx1

≥ rk

2

∫
f(x1)<h

x1f
′(x1) =

rk

2
L2(E \ E).

(2.26)

Finally, assume that

lim
x→0±

f ′(x)

x
=

1

ρ
,

so that f(x1) =
x2
1

2ρ

(
1 + o(1)

)
. Choosing a > ρ and defining (see Fig. 5, right)

E′(h) = E ∩
{
x2 ≥ g(x1)

.
= h+

(x1)
2

2a

}
, (2.27)
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we now obtain

L2(E \ E′(h)) =

∫
f<g

x1
(
f ′(x1)− g′(x1)

)
dx1 =

(
1 + o(1)

)(1

ρ
− 1

a

)∫
f<g

(x1)
2dx1,

L2(Er \ (E′(h))r)− L2(E \ E′(h)) = r
(
H1(∂E)−H1(∂E′(h))

)
= r

∫
f<g

(√
1 +

(
f ′(x1)

)2 −√1 +
(
g′(x1)

)2
)

)
dx1

=
r

2

(
1 + o(1)

) ∫
f<g

(
(f ′(x1))

2 − (g′(x1))
2
)
dx1

=
r

2

(
1 + o(1)

)( 1

ρ2
− 1

a2

)∫
f<g

x21 dx1

=
r

2

(
1 + o(1)

)(1

ρ
+

1

a

)
L2(E \ E′(h)).

For every ε > 0, letting a↗ ρ we obtain that, for h > 0 small enough,∣∣∣∣L2(Er \ (E′(h))r)−
(
1 +

r

ρ

)
L2(E \ E′(h))

∣∣∣∣ < εL2(E \ E′(h)). (2.28)

We summarize the results into the following proposition:

Proposition 2.2 If E is a convex set, and there is a point where the inner radius of curvature
is 0, then for every ρ > 0 there is a perturbation E′ ⊂ E such that

L2(Er \ (E′)r)− L2(E \ E′) >
r

ρ
L2(E \ E′). (2.29)

If at a boundary point x ∈ ∂E the radius of curvature is ρ > 0, then for every ε > 0 there is
a set E′ ⊂ E such that∣∣∣∣L2

(
Er \ (E′)r

)
−
(
1 +

r

ρ

)
L2(E \ E′)

∣∣∣∣ < εL2(E \ E′). (2.30)

2.4 Local perturbations of r-semiconvex sets.

Similar computations can be done locally for a semiconvex set E. To fix ideas, consider a
boundary point x̄ = γ(t̄) ∈ ∂E. As before, denote by eiθ(t) = n(t) the set of outer normals
and assume that t̄ is a Lebesgue point of θ, with θ̇(t̄) = −1

ρ . Writing ∂E locally as the graph

of a semiconvex function x2 = f(x1) with f̈(0) = −1/ρ, we choose a > ρ and replace E with
the slightly larger sets

E′(h)
.
= E ∪

{
x2 ≥ g(x1)

.
= −h− x21

2a

}
. (2.31)
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Similarly to the previous cases, we compute

L2((E′(h))r \ Er)− L2(E′(h) \ E) ≤ r
(
H1(∂E′(h))−H1(∂E)

)
= − r

∫
f<g

(√
1 + (f ′(x1))2 −

√
1 + (g′(x1))2)

)
dx1

= − r

2

(
1 + o(1)

) ∫
f<g

(
(f ′(x1))

2 − (g′(x1))
2
)
dx1

= − r

2

(
1 + o(1)

)( 1

ρ2
− 1

a2

)∫
f<g

(x1)
2dx1

= − r

2

(
1 + o(1)

)(1

ρ
+

1

a

)
L2(E′(h) \ E).

The first inequality is due to the fact that (2.17) holds only locally, and in general there can
be point in Er belonging to more than one optimal ray. Letting a↗ ρ we obtain the following
lemma:

Proposition 2.3 Let E be a semiconcave set and x a point with outer curvature ρ. Then for
every ε > 0 there exists a set E′ ⊃ E such that∣∣∣∣L2((E′)r \ Er)−

(
1− r

ρ

)
L2(E′ \ E)

∣∣∣∣ < εL2(E′ \ E). (2.32)

R

Ω
0

r

_

Ω(Ω  ,  )r0

Figure 6: The maximum inner radius R defined at (3.1), and the set Ω̂(Ω0, ρ) (shaded region), in the
case where Ω0 is a triangle.

3 A one-step minimization problem

Given a bounded convex closed set Ω0 ⊂ R2 with nonempty interior, its inner radius is defined
by setting

R = R(Ω0)
.
= max

{
r > 0 ; Ω0 contains an open ball Br(x) of radius r

}
. (3.1)

As shown in Fig. 6, for ρ ∈ ]0, R] we also consider the open set

Ω̂(Ω0, ρ)
.
=

⋃
Bρ(x)⊆Ω0

Bρ(x) . (3.2)

In this section, given a constant 0 < a ≤ L2(Ω0), and a radius r > 0, we will study the
following one-step minimization problem:

minimize: L2(Ωr), subject to Ω ⊆ Ω0, L2(Ω) = a. (3.3)
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In other words, among all sets of fixed area a contained inside Ω0, we seek one that minimizes
the area of its r-neighborhood. We will show that the optimal solutions to (3.3) do not depend
on the radius r > 0. Namely, a set Ω̃ is optimal if and only if it solves the corresponding
minimization problem for the perimeter:

minimize: H1(∂Ω), subject to Ω ⊆ Ω0, L2(Ω) = a. (3.4)

The existence and various properties of optimal solutions to (3.4) have been established in
[16]. To show the equivalence of the two problems (3.3) and (3.4), the key step is to prove
that the optimal solutions of (3.3) are convex. This is the content of the following theorem.

Theorem 3.1 Consider a compact convex set Ω0 ⊂ R2 and let 0 < a ≤ |Ω0|. Then there
exists a set

Ω = argmin
{
L2(Ωr) ; Ω is a closed subset of Ω0 with area L2(Ω) = a

}
. (3.5)

Moreover, every such minimizer is convex.

The proof will be achieved in several steps. The existence of a minimizer follows from a
standard compactness argument. However, its convexity requires a careful analysis. First we
prove that every connected component of an optimal set Ω must be convex. Then we show
that an optimal set can have at most finitely many components. Finally, we will prove that
every optimal set Ω is connected.

3.1 Existence of a minimizer.

We prove here that the optimization problem (3.5) has a solution. Let (Ωn)n≥1 be a minimizing
sequence of compact sets, such that

Ωn ⊆ Ω0, L2(Ωn) ≥ a, lim
n→∞

L2(Ωr
n) = m

.
= inf

{
L2(Ωr) ; Ω ⊆ Ω0, L2(Ω) = a

}
.

(3.6)
By possibly replacing Ωn with the larger set (Ωr

n)
−r, which is still contained inside Ω0, we can

assume that Ωr
n and Ωn are in duality.

We use the following lemma.

Lemma 3.1 If Ωn,Ω
r
n, n ∈ N, are a family of sets in duality, with Ωn ⊂ closBR(0) for a

fixed closed ball closBR(0), then there exists a subsequence Ωnk
,Ωr

nk
, k ∈ N, and a set Ω such

that
Ωnk

→ Ω, closBR+r(0) \ Ωr
nk

→ closBR+r(0) \ Ωr,

w.r.t. the Hausdorff distance of compact sets and w.r.t. the L1-distance, respectively.
In particular, the limit sets are in duality.

Proof. 1. By possibly taking a subsequence, we obtain the convergence

Ωnk
−→

Hausdorff
ΩHaus, Ωnk

−→
L1

ΩL1 ,
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closBR+r(0) \ Ωr
nk

−→
Hausdorff

closBR+r(0) \ Ω′
Haus, Ωr

nk
−→
L1

Ω′
L1 ,

for some limit sets ΩHaus, ΩL1 , Ω′
Haus, and Ω′

L1 , all contained in the closed ball closBR+r(0).
Indeed, this follows immediately from the finite perimeter estimate (Lemma 2.2) and the
compactness of the family of compact subsets of the compact set closBR+r(0).

2. It remains to prove that

Ω′
Haus = Ωr

Haus, ΩHaus = ΩL1 , Ωr
Haus = Ω′

L1 ,

where the last two equalities should be intended as L1-equivalence of the characteristic func-
tions.

First of all, we have that if y ∈ Ωr
Haus, then there exists a point x ∈ ΩHaus such that |x− y| =

r− δr < r for some δr > 0. Then by Hausdorff convergence, there exists K ≫ 1 such that for
all k ≥ K it holds d(Ωnk

,ΩHaus) < δr/2. Then if xnk
∈ Ωnk

∩Bδr/2(x) it holds

|y − xnk
| ≤ |y − x|+ |x− xnk

| < r − δr

2
.

We thus conclude that y ∈ Ωr
nk

for all k large enough. Hence Ωr
Haus ⊂ Ω′

Haus.

A similar argument shows that, if y /∈ closΩr
Haus, then y /∈ Ωr

nk
for all k large enough.

Moreover, for every ε > 0 we obtain

(Ωr
Haus)

−ε ⊂ Ωr
nk

⊂ Ωr+ε
Haus (3.7)

for all k suitably large. Since Ωr
Haus is open, we conclude that

Ω′
Haus = Ωr

Haus.

Next, since the boundary of Ωr
Haus is rectifiable, we have

L2
(
Ωr+ε
Haus \ (Ω

r
Haus)

−ε
)

= L2
(
∂Ωr

Haus +Bε(0)
)

= (2ε+ o(ε))H1(Ωr
Haus),

and from (3.7) we get that the symmetric difference satisfies

lim
k→∞

L2
(
Ωr
nk
∆Ωr

Haus

)
= 0,

i.e. Ω′
L1 = Ωr

Haus.

Reversing the analysis, i.e. considering Ωnk
= (Ωr

nk
)−r, we obtain that for every ε > 0 there

exists K > 0 such that, for k ≥ K,

(Ωr
Haus)

−r−ε ⊂ (Ωr
nk
)−r ⊂ (Ωr

Haus)
−r+ε.

Being (Ωr
nk
)−r = Ωnk

, we obtain up to negligible sets

intΩHaus ⊂ ΩL1 ⊂ (Ωr
Haus)

−r = ΩHaus.

This yields ΩL1 = ΩHaus, because L2(∂ΩHaus) = 0.
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Applying this result to the sequence introduced at (3.6), we obtain a subset Ω = limk Ωnk

such that Ωr = limk Ω
r
nk

and

L2(Ω) = lim
k→∞

L2(Ωnk
) ≥ a, L2(Ωr) = lim

k→∞
L2(Ωr

nk
) = m.

It remains to show that L2(Ω) = a. If on the contrary L2(Ω) > a, we fix a unit vector e1 ∈ R2

and consider the smaller sets

Ω(λ)
.
=
{
x ∈ Ω ; x · e1 ≤ λ

}
. (3.8)

For a suitable λ ∈ R, one has L2(Ω(λ)) = a. But this would imply L2(Ω(λ)r) < L2(Ωr) = m,
reaching a contradiction.

We collect the results of this section into the following proposition.

Proposition 3.1 Every minimizer Ω of (3.5) satisfies

Ω = (Ωr)−r and Ω = clos(intΩ).

Proof. The first identity was already proved in Lemma 3.1. The second identity can be
proved as follows. Since L2(∂Ω) = 0, then L2

(
clos(intΩ)

)
= a. Moreover, for all x ∈ ∂(intΩ)

there is y ∈ ∂Ωr such that |x− y| = r, being ∂(intΩ) ⊂ ∂Ω. This yields

clos(intΩ) = ((clos(intΩ))r)−r.

If Ω ⊋ clos (intΩ), then Ωr ⊋ (clos(intΩ))r. Since these two sets are open, we would have
L2(Ωr) ≥ L2((clos(intΩ))r), contradicting the optimality of Ωr.

1
e

P

Ε

Q

Figure 7: Proving Lemma 3.3. If the set E is not convex, we can enlarge it in a neighborhood of
the point x∗ where the curvature of the boundary is negative. At the same time, we shrink it in a
neighborhood of the exposed point y. This yields a perturbed set Eε with same area as E, but with
L2(Er

ε ) < L2(Er). We remark that, in general, the points y and x∗ may belong to distinct connected
components of E.

3.2 Convexity of the optimal set.

Aim of this section is to prove that every connected component of a minimizer is a compact
convex set. Because of Proposition 3.1, it is enough to study the connected components with
positive measure.
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Lemma 3.2 Let Ω be any compact set and let Ω(λ) be as in (3.8). If L2(Ω(λ)) < L2(Ω), then

L2(Ωr \ Ω(λ)r) ≥ L2(Ω \ Ω(λ)). (3.9)

Proof. The inequality (3.9) is an immediate consequence of the inclusions(
Ω \ Ω(λ)

)
+ re1 ⊆ Ωr ∩ {x ; x · e1 ≥ λ+ r} ⊆ Ωr \ Ω(λ)r.

Lemma 3.3 Let Ω ⊆ Ω0 be a minimizer for (3.5). Then every connected component of intΩ
is convex.

Proof. Assume, on the contrary, that the optimal set Ω has a connected component E which
is not convex. Since Ω is r-semiconvex, according to Lemma 2.1 there is a point x∗ ∈ ∂E
where the boundary has negative curvature. We will derive a contradiction showing that Ω
is not optimal. As shown in Fig. 7, by slightly enlarging the set E near x∗ and shrinking the
set Ω at some other point y along its boundary, we can keep constant the area L2(Ω), but
decrease the area L2(Ωr) of the r-neighborhood.

1. To construct these perturbations, as stated in Lemma 2.1 we can find a boundary point
x∗ = γk(t

∗) where the derivative Dθk(t
∗) exists and is strictly negative, say

Dθk(t
∗) = − 1

ρ
,

with ρ > 0. Constructing the slightly larger sets E′(h) as in (2.31), the change in the area of
the r-neighborhoods (E′(h))r is bounded above by (2.32).

2. Next, for any h > 0 small enough, choose λ = λh so that the set Ω(λ) in (3.8) satisfies

L2(Ω \ Ω(λh)) = L2(E′(h) \ E). (3.10)

Then define the perturbed set

Ωh
.
= (Ω ∪ E′(h)) ∩ {x ; x · e1 ≤ λh}. (3.11)

The above definition implies L2(Ωh) = L2(Ω) for every h > 0 small enough. Moreover,
combining (2.28) with (3.9) we obtain

L2(Ωr
h)− L2(Ωr) ≤ L2((E′(h))r \ Er)− L2(Ωr \ Ω(Λh)

r)

≤
(
1− r

ρ
+ o(1)

)
L2(E(h) \ E)− L2(Ω \ Ω(Λh))

=

(
1− r

ρ
+ o(1)

)
L2(E(h) \ E)− L2(E(h) \ E)

=

(
− r

ρ
+ o(1)

)
h3

3
< 0

for all h > 0 small enough. This contradicts the optimality of Ω, proving the lemma.
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We observe that the same proof can be adapted to the case of a connected component with 0
measure. Indeed in this case one observes that every connected set of finite length is covered
by a closed curve. We will not need this fact, because we will prove in Lemma 3.9 that there
are only finitely many components.

ε

r

Ω
Ω

ε
x

Ω Ω j

R+r

R

y’

y

x j Ω

r
Ω

i

i

Figure 8: Left: the points xi, xj , y, y
′ considered in Lemma 3.4. Right: A slight perturbation of the

set Ω. If R is the constant curvature radius, then the increase in the area of the neighborhood Ωr

satisfies L2(Ωr
ε)− L2(Ωr) ≈ R+r

R

(
L2(Ωε)− L2(Ω)

)
.

To prove Theorem 3.1 it remains to prove that the optimal set Ω is connected. As an inter-
mediate step, we will show that Ω has at most finitely many connected components.

Let {Ωi}i∈N be the connected components of intΩ.

We will use the following lemmas, whose proofs are elementary.

Lemma 3.4 Let Ω be an optimal set, and let Ωi,Ωj be distinct connected components of intΩ.
If (closΩi)

r ∩ (closΩj)
r ̸= ∅, then there exists points y, y′, such that

∂Ωr
i ∩ ∂Ωr

j = {y, y′}.

Moreover, there exists points xi ∈ Ωi, xj ∈ Ωj such that

(closΩi)
r ∩ (closΩj)

r = Br(xi) ∩Br(xj), {xi, xj} = ∂Br(y) ∩ ∂Br(y
′). (3.12)

Finally, for every x ∈ R2

♯
{
i : x ∈ Ωr

i

}
≤ 2. (3.13)

Proof. It is clear that the boundaries of the two open convex sets ∂Ωr
i , ∂Ω

r
j intersect exactly

at two points y, y′ (see Fig. 8, left). Let xi, x
′
i,∈ ∂Ωi and xj , x

′
j ∈ ∂Ωj be points such that

|y − xi| = |y − xj | = |y′ − x′i| = |y′ − x′j | = r.

We claim that xi = x′i and xj = x′j . Indeed, if xi ̸= x′i, consider the arc along the boundary
of Ωi with endpoints xi, x

′
i. This arc has positive length and thus contains at least one point

x ∈ ∂Ωi where the unit outer normal n(x) is unique. By optimality, the point x + rn(x)
cannot lie inside the open set Ωr, otherwise we could enlarge the set Ω in a neighborhood of
x, without changing Ωr. On the other hand, the above construction implies x + rn(x) ∈ Ωr

j ,
yielding a contradictions. A similar argument yields xj = x′j .

The remaining identities (3.12) are clear.
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The last estimate follows by the following consideration of elementary geometry. If (3.13) is
false, then there is a point x such that (up to relabeling)

x ∈ Ωr
1 ∩ Ωr

2 ∩ Ωr
3,

then we are in the situation of Fig. 9: in particular we can assume that x is the intersection w of
the symmetry axis of the sides of the triangle {x1, x2, x3}. The hexagon {x1, y2, x2, y2, x3, y2}
must be convex, and then its angles satisfy∑

i=1,2,3

∠(yi−1xiyi) +
∑

i=1,2,3

∠(xiyixx+1) = 4π, x4 = x1, y0 = y3. (3.14)

Here and in the following, by ∠(xyz) we denote the angle formed at y by the two segments
xy and yz. Since w ∈ ∩i=1,2,3Br(xi), we obtain

∠(yi−1wyi) > ∠(yi−1xiyi), y0 = y3,

and then ∑
i=1,2,3

∠(yi−1xiyi) <
∑

i=1,2,3

∠(xiwxi+1) = 2π, y0 = y3.

In a similar way, let z be the intersection of the axis of symmetry of the triangle {y1, y2, y3}:
being z equidistant from yi, i = 1, 2, 3, we deduce that if |z − yi| < r then∑

i=1,2,3

∠(xiyixi+1) <
∑

i=1,2,3

∠(xiwxi+1) = 2π, x4 = x1.

This however contradicts (3.14). Hence the set Ω cannot be in duality or optimal: indeed, if
it is in duality, the set containing z and not covered by the three balls Br(yi), i = 1, 2, 3, is
not convex, and the only points belonging to ∂Ωr at distance r from this set are the points
y1, y2, y3.

In the following, given a distance δ > 0, we shall say that two components Ωi,Ωj are δ-related
if there exists a point y such that

d(y,Ωi) = d(y,Ωj) = d(y,Ω) < δ. (3.15)

By the previous analysis, this can happen only if there are points x ∈ ∂Ωi, x
′ ∈ ∂Ωj such

that, calling θ =
∣∣n(xi)∣∣, one has

r cos
θ

2
< δ. (3.16)

Corollary 3.1 For each connected component Ωi there are at most 2 sets that are (r/2)-related
to Ωi, and at most 3 sets Ωj which are (r/

√
2)-related to Ωi.

Proof. The boundary ∂Ωi can contain at most two points where
∣∣n(x)∣∣ > 2π/3. Taking

δ = r cos π
3 = r

2 by (3.16) we obtain the first assertion.

Similarly, there can be at most 3 points where
∣∣n(x)∣∣ > π/2. Taking δ = r cos π

4 = r√
2
, by

(3.16) we obtain the second assertion.

22



Ω1

Ω3

y1

y2

y3

Ω2

x2

x3

x1

z

w

Figure 9: An illustration of the last statement in Lemma 3.4. If we assume that w ∈ ∩i=1,2,3Br(xi),
then the point z, intersection of the axis of symmetry of the sides of the triangle {y1, y2, y3} cannot
belong to any of the balls Br(yi), i = 1, 2, 3.

Lemma 3.5 Let Ωi be a connected component of intΩ, where Ω is an optimal set. Let

θmax
.
= max

x∈∂Ωi

∣∣n(x)∣∣< π

be the maximal angle at corner points of ∂Ωi. Then all other components of Ω have a strictly
positive distance from Ωi. Namely

(closΩi)
ρ∩
(
Ω \ Ωi) = ∅, with ρ = r sin

(
π − θmax

2

)
. (3.17)

Proof. Consider the set of boundary points admitting a single outer normal:

Si
.
=
{
x ∈ ∂Ωi ; n(x) is a singleton

}
. (3.18)

Being Ω semiconvex and y = x + rn(x) the only point in ∂Ωr at distance r from x ∈ Si,
the open ball Br

(
x + rn(x)

)
cannot intersect Ω. As shown in Fig. 12, left, it now suffices to

observe that
Ωi ∪

⋃
x∈Si

Br

(
x+ rn(x)

)
⊇ (closΩi)

ρ,

where ρ is the radius at (3.17).

In particular, closΩi coincides with the connected components of Ω with positive measure.

From the definition (3.18) it follows that ∂Ωi \ Si is a set of corner points, admitting multiple
outer normals; hence it is countable. A further property of points x ∈ Si is now described.

Lemma 3.6 For every point x ∈ Si there exists δ = δ(x) > 0 such that{
x+ ρn(x) ; r − δ < ρ < r

}
⊂ (closΩi)

r \ clos(Ω \ closΩi)
r. (3.19)

23



B

k

Ω i
x x

n

A
y

y
n

zk
w

Figure 10: Proving Lemma 3.6. Here the arc of circumference AB along the circumference centered at
y = x+ rn(x) with radius r is entirely contained in the interior of the ball Br(yn), for n large enough.
Therefore, for k large, the point wk cannot lie inside Ω.

Proof. With reference to Fig. 10, consider a sequence of boundary points xn ∈ Si with
xn → x. Let y = x+ rn(x) and yn = xn + rn(xn). Assume that the conclusion of the Lemma
fails. Then there exists an increasing sequence ck → r−, and sequences of points zk, wk, k ≥ 1,
such that

zk = x+ ckn(x), wk ∈ Ω \ closΩi , |wk − zk| ≤ r.

Since zk → y, by possibly taking a subsequence we conclude that wk → w ∈ Ω, with |w−y| = r.

By Lemma 3.5, every point wk has uniformly positive distance from Ωi. Hence the limit point
w must lie on an arc AB of the circumference ∂Br(y) of length < πr/2. However, this is
impossible because such arc is entirely contained in the open ball Br(yn), for n ≥ 1 large
enough.

Lemma 3.7 Assume that the interior intΩ of an optimal set Ω has infinitely many connected
components. Then there exists a sequence of components Ωk such that

(i) diam(Ωk) → 0;

(ii) each set Ωk contains two corner points xk, x
′
k∈ ∂Ωk, where the sets of outer normals

n(xk), n(x
′
k) satisfy∣∣n(xk)∣∣ → π,

∣∣n(x′k)∣∣ → π, as k → ∞; (3.20)

• for k ≫ 1, writing ∂Ωk \{xk, xk′} as the union of the two Lipschitz arcs (∂Ωk)
+, (∂Ωk)

−,
only one of the two arcs may have nonempty intersection with ∂Ω0.

Proof. 1. As shown in Fig. 12, left, consider any convex component Ωi ⊂ intΩ. Assume that,
at each point x ∈ ∂Ωi, the set n(x) ⊂ S1 of outer normals covers an angle ≤ θ. Then, by the
duality relation Ω = (Ωr)−r, every other component Ωj must have distance from Ω\(closΩi)
at least

δ ≥ |x′ − x| = 2r cos
θ

2
.
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Figure 11: The situation considered in Lemma 3.7.

2. If intΩ contains infinitely many components, since each one of them has positive Lebesgue
measure, there can be only countably many of them. Since Ω is bounded, by taking a subse-
quence (Ωk)k≥1 we can assume that their barycenters bk converge to some limit point x̄. By
the previous step, there is a sequence of points xk ∈ Ωk where the sets of unit normal vectors
have 1-dimensional measures

∣∣n(xk)∣∣ → π. As shown in Fig. 12, right, call nk = eiθk the
central unit normal at xk, so that the entire set of unit normals has the representation

n(xk) =
{
eiθ ; θk − αk ≤ θ ≤ θk + αk

}
,

for suitable angles αk < π/2. By possibly taking a further subsequence, we can assume
nk → n.

3. Next, we claim that each set ∂Ωk must also contain a second point x′k, such that the sets
of unit normal vectors n(x′k) also satisfy

∣∣n(x′k)∣∣→ π.

Indeed, if the claim did not hold, we could find δ > 0 such that for each k ≥ 1, the half circle{
y ∈ R2 ; |y − xk| ≤ δ, (y − xk) · n(xk) ≤ 0

}
does not intersect any other connected component besides Ωk. This would exclude the exis-
tence of a limit point x, providing a contradiction. This establishes part (ii) of the statement.

Notice that, from the convergence
∣∣n(xk)∣∣→ π, it follows that the central unit normals n′

k at
x′n satisfy n′

k → −n, as k → ∞.

If (iii) is false, then the limit point x̄ belongs to ∂Ω0, and the suppporting cone Rn(x̄) of Ω0

would have an opening of π, which is impossible by convexity if L2(Ω0) > 0.

4. To complete the proof, assume that (i) fails. By possibly taking a subsequence, we can
assume that diam(Ωk) = |xk − x′k| ≥ δ > 0 for every k ≥ 1. Taking further subsequences,
we obtain the convergence

xk → x, x′k → x′, |x− x′| ≥ δ.

This yields an obvious contradiction with the duality assumption: Ω = (Ωr)−r.
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Figure 12: Left: The minimum distance between the component Ωi and any other component Ωj is
bounded below in terms of the angle θ. Right: the central unit normal vector nk at the point xk. If
the set ∂Ωk does not contain a second point x′k where the set of outer normals has size

∣∣n(x′k)∣∣ ≈ π,
then there is a large region to the left of Ωk which cannot intersect any other connected component.

In connection with the optimization problem (3.5), the next lemma provides necessary condi-
tions for a set Ω ⊆ Ω0 to be optimal. Namely, every component Ωi of intΩ must have the same
curvature radius R, at all points in the interior of Ω0, with the exception of countably many
corner points described in Lemma 3.4. More precisely, define the sets of boundary points

S̃i
.
=
{
x ∈ ∂Ωi ; x+ n(x)r ⊂ ∂Ωr

}
. (3.21)

Lemma 3.8 Let Ω be an optimal set for the problem (3.5), and intΩ = ∪iΩi. Then the
curvature of its boundary is constant in the set S = (∪iS̃i) \ ∂Ω0, and hence S̃i = Si, where
Si is defined in (3.18).

Proof. The identity Si = S̃i follows is all the points in S̃i have the same curvature, a conditions
which implies that n(x) is singleton.

This statement follows by removing a small area near a point x′ ∈ S where the boundary
has a smaller curvature radius R′, and adding the same area near a point x′′ ∈ S with larger
curvature radius R′′. This can be done as long as x′′ lies in the interior of Ω0.

More precisely, let Ω′ be the set obtained from Ω by removing a small region near x′, as in
(2.24), (2.27). In view of Lemma 3.6, most of the points removed from (closΩi)

r do not lie in
the set (Ω \ closΩi)

r.

By (2.28), the change in the area of the r-neighborhood is estimated by

L2(Ωr \ (Ω′)r) =

(
1 +

r

R′ + o(1)

)
L2(Ω \ Ω′).

Next, let Ω′′ be the set obtained from Ω by adding a small region near x′′, as in (2.20). By
(2.23), the change in the area of the r-neighborhood is estimated by

L2((Ω′′)r \ Ωr) =

(
1 +

r

R′′ + o(1)

)
L2(Ω′′ \ Ω).

By simultaneously performing the two modifications, we obtain a new set Ω̃ ⊂ Ω0, with
L2(Ω̃) = L2(Ω) but L2(Ω̃r) < L2(Ωr), against the optimality of Ω.
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In the following, we shall denote by R be the constant curvature radius, outside the corner
points, as in Lemma 3.8.

To prove that the configuration considered in Lemma 3.7 is not optimal, we study what
happens if we remove one of the sets Ωi.

As shown in Fig. 11, let xi, x
′
i ∈ ∂Ωi be the corner points where the set of outer normals is

large, say
∣∣n(xi)∣∣ > π − ε0,

∣∣n(x′i)∣∣ > π − ε0. By convexity, the boundary ∂Ωi is the union
of two parts, above and below the segment [xi, x

′
i], only one of which may have nonempty

intersection with ∂Ω0 by Lemma 3.7. To fix ideas, we assume that the upper boundary lies in
the interior of Ω0. The lower boundary may have nonzero intersection with ∂Ω0.

Call S+
i ⊂ ∂Ωi the set of points on the upper boundary having a unique outer normal, and

consider the set of points projecting into S+
i , namely

Y +
i

.
=
{
y ∈ R2 ; d(y,Ωi) = |y − x| for some x ∈ S+

i

}
.

We estimate how many of these points will not be in (Ω \ closΩi)
r. For this purpose, for each

x ∈ S+
i , consider the segments

ℓ(x)
.
=
{
x+ cn(x) ; c ∈ R

}
∩ Ωi , L(x)

.
= ℓ(x) + r n(x). (3.22)

We observe that, for every x ∈ S+
i ,
∣∣L(x)∣∣ = ∣∣ℓ(x)∣∣ and moreover

ℓ(x) ⊂ Ωi , L(x) ⊂ Ωr \ (Ω \ closΩi)
r. (3.23)

Indeed (see Fig. 13), let x′i−1 ∈ ∂Ωi−1 be the corner point opposite to xi as in Lemma 3.7.
Similarly, let xx+i ∈ ∂Ωi+1 be the corner point opposite to x′i. We then have the identity

Y +
i ∩ (Ω \ closΩi)

r = Y +
i ∩

(
Br(x

′
i−1) ∪Br(xi+1)

)
.

Since L(x) ∩
(
Br(x

′
i−1) ∪Br(xi+1)

)
= ∅, this yields the second relation in (3.23).

By Lemma 3.8, at every point x ∈ Si, the curvature of ∂Ωi is constantly equal to R.

Being the curve ∂Ωi convex, the map

S+
i × R ∋ x, c 7→ T (x, c) = x+ c(x) ∈ R2

is BV on the rectifiable set S+
i × R, and its a.c. Jacobian is

J(x, c) =

∣∣∣∣1 + c

R

∣∣∣∣.
This allows us to compute by the area formula

L2(Ωi) ≤
∫
Ωi

H0(T−1(y))L2(dy) =

∫
S+
i ×R−∩T−1(Ωi)

J(x, c)H1(dx)L1(dc) ≤
∫
S+
i

|ℓ(x)|H1(dx),

(3.24)
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where we observe that, being the set convex, Ωi ⊂ T (S+
i × R−). Similarly

L2
(
(Ω \ closΩi)

r ∩ Y +
i

)
= H2

(
S+
i × R+ ∩ T−1((Ω \ closΩi)

r ∩ Y +
i )
)

≥
∫
S+
i

[ ∫ r

r−|L(x)|

(
1 +

z

R

)
dz

]
H1(dx)

=

∫
S+
i

(
r +

r2

R
− (r − L(x))− (r − L(x))2

R

)
H1(dx)

=

∫
S+
i

(
R+ r

R
−
∣∣ℓ(x)∣∣
2R

)∣∣ℓ(x)∣∣ dx.
(3.25)

Combining the above inequalities, we conclude

L2
(
(Ω \ closΩi)

r ∩ Y +
i

)
L2(Ωi)

≥ 1 +
r

R
− o(1), (3.26)

where o(1) is a quantity that approaches zero as supx
∣∣ℓ(x)∣∣→ 0.

ii
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x
i

S
+

S
_l(x)
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x
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x’iΩ i

Figure 13: The configuration considered at (3.24)-(3.25). Here S+
i ⊂ ∂Ωi is the upper part of the

boundary of Ωi, excluding the points with multiple outer normals. Removing the set closΩi, all points
in the upper shaded region are no longer in the set (Ω \ closΩi)

r. These are points y ∈ Y +
i which

project into S+
i , but whose distance from x′i−1 and from xi+1 (and from all other components of Ω) is

> r.

A similar estimate can be performed for the set of points y ∈ (Ω\ closΩi)
r ∩Y −

i which project
onto the lower boundary S−

i ⊂ ∂Ωi. However, if this lower boundary touches ∂Ω0, we have
no lower bound on its curvature. With the same computations as above can only obtain the
weaker estimate

L2((Ω \ Ωi)
r ∩ Y −

i )

L2(Ωi)
≥ 1. (3.27)

This enough to conclude the non-optimality of Ω. Indeed, when Ωi is small enough, (3.26)
and (3.27) together yield

L2((Ω \ closΩi)
r

L2(Ωi)
≥ 3

2
+
r

R
,

providing a contradiction. We thus have
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Lemma 3.9 The optimal set Ω can have at most finitely many connected components.

Indeed, if there are infinitely many components, then there exists an accumulation point and
thus we are in the situation of Lemma 3.7 for arbitrary small sets: deleting one of these
very small components and transferring its mass along the boundary of another set Ωj with
curvature R, the total area L2(Ωr) will decrease.

In particular, the connected components of Ω are the closure of the connected components Ωi,
i = 1, . . . , N : with a slight abuse of notation, we will use the notation Ωi for the components
of Ω.

3.3 Completion of the proof of Theorem 3.1.

It now remains to prove that a set Ω = ∪N
i=1Ωi, with a finite number N ≥ 2 of connected

components, is not optimal. W.l.o.g., we can assume that Ω0 = convΩ. We will show that it
is possible to rigidly move each component, so that

Ωi(t) = t(z − zi) + Ωi, (3.28)

in such a way that the area of the r-neighborhood

L2(Ω(t)r) =
∑
i

L2(Ωi(t)
r)−

∑
i ̸=j

L2
(
Ωi(t)

r ∩ Ωj(t)
r
)

is strictly decreasing. Here the points z ∈ Ω0 and zi ∈ Ωi must be carefully chosen, so that all
the sets Ωi(t) remain inside Ω0, for t ∈ [0, ε] with ε > 0 small enough. In the above formula
we have used (3.13).

If Ω = ∪iΩi is an optimal set, the time derivative of the area L2(Ω(t)r) is computed as follows.
Call A the set of all couples (i, j) such that i ̸= j and

dij
.
= dist(Ωi,Ωj) = |xi − xj | < 2r.

Here xi, xj are the points considered in Lemma 3.7. At time t = 0, assuming that zi ∈ Ωi for
all i = 1, . . . , N , the time derivative is computed by

d

dt
L2

(⋃
i

Ωi(t)
r

)
t=0

=
∑

(i,j)∈A

2

√
r2 −

d2ij
4

(xi − xj) · (zj − zi) ≤ 0. (3.29)

We can always assume that Ωr = ∪iΩ
r
i is connected, otherwise the non-optimality is trivial:

indeed, with the same ideas here below, otherwise there is a component of Ωr which can
be moved freely inside Ω0 until it superimpose to another component of Ωr. Notice that
this assumption implies that, for every i, there exists j ̸= i such that Ωr

i ∩ Ωr
j ̸= ∅. As a

consequence, we can assume that the inequality (3.29) is strict.

If Ω has at least two components, the first lemma rules out the existence of an Ωi which cannot
be translated inside Ω0 (see Fig. 14).

Lemma 3.10 Let Ω ⊂ Ω0 be an optimal set. If Ω has more than one component, then for
every component Ωi the set ∂Ωi ∩ ∂Ω0 is a connected arc whose normal vectors span an angle
< π.
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Figure 14: Proving that a set Ω =
⋃

i Ωi ⊂ Ω0 with finitely many connected components cannot be
optimal. The case considered in Lemma 3.10.

Proof. 1. For a component Ωi such that ∂Ωi ∩ ∂Ω0 = ∅, the spanned angle is zero and the
conclusion is trivial.

2. Next, assume that there is a component Ωi such that ∂Ω0 \ ∂Ωi contains an arc
⌢
z′iz

′′
i

such that the angle spanned by n(x), x ∈
⌢
z′iz

′′
i , is ≤ π. We consider only the components Ωj

contained in the part of Ω0 \Ωi whose boundary contains the arc
⌢
z′iz

′′
i . There must be at least

one such set, because Ω0 = convΩ. To obtain a contradiction, we shall move only these sets.

If ∂Ωj ∩ ∂Ω0 =
⌢
z′jz

′′
j , we consider the point zj =

z′j+z′′j
2 ∈ Ωj . Otherwise, if ∂Ωj ∩ ∂Ω0 = ∅, we

take the barycenter: zj = −
∫
Ωj
x dx. In addition, we set z = zi =

z′i+z′′i
2 . Defining Ωi(t) = Ωi

while Ωj(t) = Ωj + t(z − zj), we check that Ωj(t) ⊂ Ω0 for t > 0 small. Moreover, (3.29) is
satisfied as a strict inequality. Hence Ω is not optimal.

If Ω contains more than one component, by Lemma 3.10, for every component Ωi the inter-
section ∂Ωi ∩ ∂Ω0 either is empty, or is a connected arc spanning an angle < π. The next
lemma rules out this remaining possibility.

Lemma 3.11 If Ω ⊂ Ω0 has more that one component, and every component intersects ∂Ω0

in an arc of opening < π (or does not touch ∂Ω0 at all), then Ω is not optimal.

Proof. For every component Ωi, by assumption the intersection ∂Ωi ∩ ∂Ω0 is a connected arc
⌢
z′iz

′′
i of opening < π, or it is empty (see Fig. 15).

Fix a unit vector e ∈ S1, and choose two points z1, z2 ∈ ∂Ω0 such that e ∈ n(z1), e ∈ −n(z2).
Define z = z1+z2

2 . Then, for every component Ωi, if z ∈ Ωi we define zi
.
= z. On the other

hand, if z /∈ Ωi, we consider two cases.

• If ∂Ωi ∩ ∂Ω0 =
⌢
z′iz

′′
i , we take the mid-point: zi

.
=

z′i+z′′i
2 .

• If ∂Ωi ∩ ∂Ω0 = ∅, we take the barycenter: zi = −
∫
Ωi
x dx.
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Figure 15: The configuration considered in Lemma 3.11.

By elementary geometry, we check that, for t > 0 small, all the sets Ωi(t) defined at (3.28)
remain inside Ω0. Again, the relation (3.29) is satisfied as a strict inequality. Hence Ω is not
optimal.

Combining the two above lemmas, we achieve the proof of Theorem 3.1.

4 Further properties of the optimal set

Having proved that the optimal set for the problem (3.3) is convex, by the area formula

L2(Ωr) = L2(Ω) + rH1(∂Ω) + πr2

it is clear that the same set Ω is an optimal set for the constrained isoperimetric problem
(3.4). This second problem has been studied in [16]. Recalling the definition of the sets Ω̂ at
(3.2), we collect here the main results:

Theorem 4.1 Let Ω0 ⊂ R2 be a compact, convex set. Then, for every 0 < a ≤ L2(Ω0) the
constrained minimization problem (3.4) has a solution. Moreover, the following holds.

(i) The optimal set Ω̃ = Ω̃(Ω0, a) is convex. Moreover its boundary ∂Ω̃ has curvature κ
which is constant and maximal along each connected arc in ∂Ω̃ \ ∂Ω0.

(ii) Conversely, any convex set Ω̃ ⊆ Ω0, with L2(Ω̃) = a and such that the curvature is
maximal and constant along ∂Ω̃ \ ∂Ω0, is an optimal solution to (3.3).

(iii) When 0 < a ≤ πR
2
, with R being the inner radius in (3.1), the optimal solutions are

precisely the balls Bρ(x) ⊆ Ω0 with radius ρ =
√
a/π.

(iv) When πR
2
< a ≤ L2(Ω̂(Ω0, R)), any optimal solution is contained in Ω̂(Ω0, R), and

coincides with the convex closure of two balls of radius R.
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(v) For L2(Ω̂(Ω0, R)) ≤ a ≤ L2(Ω0), the optimal solution is unique. Indeed, there exists a
unique ρ ∈ ]0, R] such that

Ω̃(Ω0, a) = Ω̂(Ω0, ρ).

(vi) For 0 < a < L2(Ω0), one has

d

da
H1(∂Ω̃(Ω0, a)) = κ, (4.1)

where κ is the maximal curvature of the boundary ∂Ω̃.

(vii) The map a 7→ H1(∂Ω̃(Ω0, a)) is monotone increasing.

Proof. 1. The existence and the convexity of solutions were the main results proved in
Theorem 3.31 of [16], together with the properties stated in (i) and (vii). Parts (iii), (iv), (v)
are proved in Theorem 3.32 of [16].

2. To prove (ii), let Ω ⊂ Ω0 be such that L2(Ω) = a and the curvature κ is constant and
maximal in the set ∂Ω \ ∂Ω0. Any relatively open connected component of ∂Ω \ ∂Ω0 is thus
an arc of a circle of radius ρ = 1/κ > 0.

Being the of every point of the boundary κ(x) ≤ 1/ρ, it follows that Ω has the internal ball
property. Namely, for every x ∈ Ω there exists a ball Bρ(y) such that x ∈ closBρ(y) ⊂ Ω.
Therefore, Ω is the closure of a union of balls of radius ρ.

We use the following observation. Let Ω be a compact convex set set whose boundary has
curvature κ(x) ≤ 1/ρ at every point x ∈ ∂Ω. If the boundary is tangent to a ball Bρ(y) at

two points z1, z2 ∈ ∂Bρ(y), then Ω must contain the arc
⌢
z1z2 ⊂ ∂Bρ(y) with minimal length

(in case where both arcs have equal length πρ, it must contain at least one of the two arcs).
If Ω contains an arc with length strictly greater than πρ (i.e., spanning an angle > π), then it
follows that Ω itself is a ball of radius ρ (case (iii) of the statement).

If an arc
⌢
z1z2 has length exactly πρ (i.e., it spans an angle = π), then the set Ω must be the

convex hull of two balls of radius ρ. Namely: Ω = clos
(⋃

α∈[0,1]Bρ

(
(1 − α)x1 + αx2

))
for

some x1, x2. Here we can take x1 to be the center of the ball whose boundary contains the

arc
⌢
z1z2, while x2 is the center of the inner ball tangent to ∂Ω at the furthest point from x1.

Hence ρ = R. This corresponds to case (iv) of the statement.

If every arc of radius ρ contained in ∂Ω has length < πρ (i.e., it spans an angle < π), we claim
that Ω = Ω̂(Ω0, ρ) (case (v) of the statement). In other words, it is impossible to enlarge Ω
by adding other balls Bρ(y) of radius ρ contained in Ω0. To prove the claim, two cases are
considered:

• If the ball Bρ(y) we add does not intersect Ω, then by convexity one arc must be ≥ π
(which contradicts the assumptions here), otherwise there are two points with distance
> 2ρ connected by an arc of radius ρ, which is impossible.

• On the other hand, if Bρ(y) ∩ ∂Ω ̸= ∅, then the intersection must be an arc
⌢
z1z2 of

curvature ρ. But since the opening of this arc is < π, Bρ(y) must be already in Ω;
otherwise Bρ(y) is not a subset of Ω0.
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Figure 16: Computing the increase in the area of in Ω̂(Ω0, ρ), as the radius ρ is reduced.

3. To prove (vi), let θi be the angle covered by the free arc Li ⊂ ∂Ω∩Ω0 of maximal curvature,
i ≥ 1. Since by definition

∂Ω \ ∂Ω0 =
⋃
i

Li, θi =
H1(Li)

ρ
,

it is enough to study the variation of area and perimeter about a single arc Li, spanning an
angle θi, which has constant curvature κ = 1/ρ. Moreover, the only non elementary case is
when the opening of the arc is < π. In this case we will use the dependence w.r.t. the maximal
radius of curvature ρ of (3.2) for 0 < ρ < R.
Up to a rigid change of coordinates, about every arc Li we are in the situation shown in

Fig. 16. If H1(Li(ρ)) is the length of the arc
⌢
z1z2 ⊂ ∂Ω̂(Ω0, ρ), one gets

H1(Li(ρ)) < H1(Li(ρ− h)) = (ρ− h)θi + 2h tan θi
2 + o(h)

= H1(Li(ρ)) + h

(
2 tan θi

2 − θi

)
+ o(h)

≤ H1(Li(ρ)) + h

(
2 tan θi

2 − θi

)
,

(4.2)

where θi = H1(Li)/ρ. Here we observed that o(h) ≤ 0 by convexity. Note that the case of
maximal growth occurs when ∂Ω̂(Ω0, ρ) coincides with the tangent cone. In particular, the
map ρ 7→ H1(Li(ρ)) is right differentiable with derivative bounded by

2 tan

(
θi
2

)
− θi.

The above arguments yield the estimate

H1(∂Ω̂(Ω0, ρ)) < H1(∂Ω̂(Ω0, ρ− h)) ≤ H1(∂Ω̂(Ω0, ρ)) + h
∑
i

(
2 tan

θi
2
− θi

)
.

Therefore the function ρ 7→ H1(∂Ω̂(Ω0, ρ)) is Lipschitz for ρ < R and strictly decreasing w.r.t.
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ρ. For every k ≥ 1, taking the derivative for a.e. 0 < ρ < R we obtain∑
i≤k

(
2 tan

θi
2
− θi

)
=
∑
i≤k

− d

dρ
H1(Li(ρ))

≤ − d

dρ
H1(∂Ω̂(Ω0, ρ)) ≤

∑
i

(
2 tan

θi
2
− θi

)
.

Since the series is convergent, for a.e. ρ we conclude that

− d

dρ
H1(∂Ω̂(Ω0, ρ)) =

∑
i

(
2 tan

θi
2
− θi

)
.

The same computation can be done for the area: the variation of area Ai(ρ) inside each region
of opening θi is computed by

L2(Ai(ρ)) < L2(Ai(ρ− h)) = L2(Ai(ρ)) +
(
ρ2 − (ρ− h)2

)(
tan

θi
2
− θi

2

)
+ o(h) (4.3)

with o(h) ≤ 0. Arguing as before, for a.e. 0 < ρ < R we obtain

− d

dρ
L2(Ω̂(Ω0, ρ)) = ρ

∑
i

(
2 tan

θi
2
− θi

)
= − ρ

d

dρ
H1(∂Ω̂(Ω0, ρ)).

This yields (4.1), for a.e. ρ. The final observation is that ρ 7→ L2(Ω̂(Ω0, ρ)) is strictly decreasing
and continuous, as seen by (4.3). Therefore the inverse map

L2(Ω̂(Ω0, ρ)) 7→ ρ

is continuous, thus implying that (4.1) holds for all ρ ∈ ]0, R[ .

Remark 4.1 We observe that the minimizer Ω̃ = Ω̃(Ω0, a) is not uniquely determined when

a < L2(Ω̂(Ω0, R)). (4.4)

As shown in Fig. 17, one can remove this ambiguity and single out a unique set Ω̃ by considering
the barycenter b of Ω̂(Ω0, R), and imposing that the barycenter of Ω̃ also coincide with b.

More precisely, for a suitable unit vector e and ℓ∗ ≥ 0, we have the representation

Ω̂(Ω0, R) =
⋃

|h|≤ℓ∗

BR(b+ he).

We can then define

Ω̃(Ω0, a)
.
=


B√

a/π
(b) if 0 ≤ a ≤ πR

2
,

⋃
|h|≤ℓ

BR(b+ he)
if πR

2
< a < L2(Ω̂(Ω0, R)),

choosing ℓ so that 2Rℓ+ πR
2
= a.

(4.5)

On the other hand, when L2(Ω̂(Ω0, R)) ≤ a ≤ L2(Ω0), the optimal set Ω̃(Ω0, a) is already
uniquely determined.
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Figure 17: Optimal sets Ω̃ = Ω̃(Ω0, a) in the cases considered at (iii) and at (iv) of Theorem 3.1,
respectively. Here Ω0 is a trapezoid. Note that in both of these cases the optimal sets are not unique.
Uniqueness can be achieved by imposing that the barycenter b of Ω̃ coincide with the barycenter of
Ω̂(Ω0, R).

Lemma 4.1 With the definition (4.5), the following holds:

(1) a1 < a2 implies Ω̃(Ω0, a1) ⊂ Ω̃(Ω0, a2).

(2) Ω̃r(Ω0, a) = Ω̃
(
Ωr
0, L2(Ω̃r(Ω0, a))

)
.

Proof. Part (1) of the lemma is obvious. To prove part (2), we first observe that, if a ≤
L2(Ω̂(Ω0, R)), the result is a simple consequence of the identity

Ω̂(Ωr
0, R+ r) = Ω̂r(Ω0, R).

To handle the remaining case where a > L2(Ω̂(Ω0, R)), we will prove that the set Ω̃r(Ω0, a),
i.e., the neighborhood of radius r around Ω̃(Ω0, a), provides an optimal solution to the problem

minimize: L2(Ωr), subject to Ω ⊆ Ωr
0, L2(Ω) = L2(Ω̃r(Ω0, a)). (4.6)

Toward this goal, we claim that Ω̃r(Ω0, a) satisfies the conditions stated in part (ii) of Lemma 2.1.
Indeed, consider any point x ∈ ∂Ω̃(Ω0, a), and call n(x) the unit outer normal. Then the cur-
vature of Ω̃r(Ω, a) at the boundary point x+ rn(x) ∈ ∂Ω̃r(Ω0, a) is computed by

κ
(
Ω̃r(Ω0, a), x+ rn(x)

)
=

κ
(
Ω̃(Ω0, a), x

)
1 + rκ

(
Ω̃(Ω0, a), x

) . (4.7)

Since by assumption the curvature κ
(
Ω̃(Ω0, a), x

)
is constant and maximal at points x ∈

∂Ω̃(Ω0, a) \ Ω0, by (4.7) the curvature κ
(
Ω̃r(Ω0, a), x + rn(x)

)
is constant and maximal at

points x+ rn(x) ∈ ∂Ω̃r(Ω0, a) \Ωr
0. Using (ii) in Lemma 2.1, we thus obtain the optimality of

the set Ω̃r(Ω0, a).

Finally, we notice the implication

a > L2(Ω̂(Ω0, R)) =⇒ L2(Ω̃r(Ω0, a)) > L2(Ω̂(Ωr
0, R+ r)).

This implies that the optimal solution on (4.6) is unique, completing the proof of part (2) of
the present lemma.
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5 The optimal strategy, in continuum time

We study the optimization problems (MTP), (OP) on the entire plane, assuming that the
initial set Ω0 ⊂ R2 is convex.

According to Definition 1.1, we say that the multifunction t 7→ Ω(t) ⊂ R2 with compact values
is admissible if the following holds:

• For every time t ≥ 0 and δ > 0,

Ω(t+ δ) ⊂ Ωδ(t), lim
δ→0+

L2(Ωδ(t))− L2(Ω(t+ δ))

δ
= M. (5.1)

Assuming that all sets Ω(t) have perimeter with finite length, one has

d+

dt
L2(Ω(t)) = lim

δ→0+

L2(Ω(t+ δ))− L2(Ω(t))

δ

= lim
δ→0+

L2(Ωδ(t))− L2(Ω(t))

δ
−M = H1(∂Ω(t))−M.

For a given time interval [0, T ], we are interested in finding the evolutions which minimize
the terminal area L2(Ω(T )). Assuming that the initial set Ω(0) = Ω0 is convex, we will show
that these evolutions also minimize the areas L2(Ω(t)) of all intermediate sets, for t ∈ [0, T ],
respectively.

Let a bounded, open convex set Ω0 and a constant M > 0 be given. Using the notation
introduced in Lemma 2.1 and in Lemma 4.1, we define an admissible strategy by setting

A(t) = Ω̃
(
Ωt
0, a(t)

)
, (5.2)

where the area function a(t) = L2(A(t)) satisfies

d

dt
a(t) = H1

(
∂Ω̃
(
Ωt
0, a(t)

))
−M, a(0) = L2(Ω0). (5.3)

This strategy is defined on a time interval t ∈ [0, T ∗], where

T ∗ .
= sup

{
t > 0 ; a(t) > 0

}
∈ ]0,+∞] (5.4)

is the first time when the area vanishes. We will show that this is indeed the optimal strategy.

Theorem 5.1 Let a bounded, open convex set Ω0 and a constant M > 0 be given. Then the
set valued map A(·) introduced at (5.2)–(5.4) is a well defined, admissible strategy. For any
other admissible strategy Ω(·), at every time t ∈ [0, T ∗] the areas satisfy

L2(A(t)) ≤ L2(Ω(t)). (5.5)

As a consequence, one has
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(i) Setting A(t) = ∅ for t > T ∗, the map t 7→ A(t) provides a solution to the optimization
problem (OP).

(ii) The minimum time problem (MTP) is solvable if and only if T ∗ < +∞. In this case,
the map A(·) provides an optimal solution.

Proof. 1. We begin by showing that the function a(t) is well defined. The proof of Theorem
4.1 shows that the map

(t, a) 7→ H1(∂Ω̃(Ωt
0, a))

is continuous w.r.t. both variables and monotone increasing w.r.t. a. It is also locally Lipschitz
continuous w.r.t. a as long as 0 < L2(Ω̃(Ωt

0, a)) < L2(Ωt
0). By Peano’s theorem, a solution to

the ODE (5.3) thus exists.

To prove uniqueness, consider two solutions, say a(t) ≤ a′(t). Observing that the maximum
curvature of the boundary of Ωt

0 is ≤ 1/t, using (4.1) we obtain the bound

d

dt

(
a′(t)− a(t)

)
= H1(∂Ω̃(Ωt

0, a
′(t)))−H1(∂Ω̃(Ωt

0, a(t)))

=

∫ a′(t)

a(t)

d

da
H1(∂Ω̃(Ωt

0, a)) da ≤ a′(t)− a(t)

t
,

(5.6)

valid for t > 0 sufficiently small. Therefore for 0 < s ≤ t

a′(t)− a(t) ≤ t

s

(
a′(s)− a(s)

)
. (5.7)

Since at t = 0 one has

lim
δ→0+

L2(Ωδ
0)− a(δ)

δ
= lim

δ→0+

L2(Ωδ
0)− a′(δ)

δ
= M,

we conclude that

lim
s→0

a′(s)− a(s)

s
= 0.

Letting s→ 0 in (5.7), this yields the uniqueness of the solution.

By the definition of the area function at (5.3), it follows that t 7→ A(t) is an admissible strategy.

3. We now prove the inequalities (5.5), showing that the strategy (5.2) is optimal. Given any
other admissible strategy t 7→ Ω(t), consider the sets

Z(t)
.
= Ω̃

(
Ωt
0, L2(Ω(t))

)
.

The time derivative of the function z(t)
.
= L2(Z(t)) = L2(Ω(t)) is computed by

d+

dt
z(t) = lim inf

δ→0+

L2(Z(t+ δ))− L2(Z(t))

δ

= lim
δ→0+

L2(Ω(t+ δ))− L2(Ωδ(t))

δ
+ lim inf

δ→0+

L2(Ωδ(t))− L2(Z(t))

δ

≥ −M + lim inf
δ→0+

|Zδ(t)| − L2(Z(t))

δ

= |∂Z(t)| −M.
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Therefore, z(t) = L2(Ω(t)) satisfies the differential inequality

d+

dt
z(t) ≥

∣∣∂Ω̃(Ωt
0, z(t))

∣∣−M.

Following the same line as in (5.6), a comparison with the optimal solution a(t) = L2(A(t))
now yields

d+

dt
(z(t)− a(t)) = lim inf

δ→0+

(z(r + δ)− a(t+ δ))− (z(t)− a(t))

δ
≥ z(t)− a(t)

t
,

Since the map t 7→ z(t)− a(t) is continuous, we deduce

z(t)− a(t) ≥ t

s
(z(s)− a(s)). (5.8)

On the other hand, since both strategies are admissible, at the initial time we have

lim
δ→0+

z(δ)− a(δ)

δ
= 0. (5.9)

Letting s→ 0 in (5.8) and using (5.9), for every t ∈ [0, T ∗] we thus obtain

z(t) ≥ a(t),

proving (5.5).

The two statements (i)-(ii) are now an immediate consequence of (5.5).

Remark 5.1 The optimal strategy A(t) introduced at (5.2)-(5.3) is uniquely determined for
all t ∈ [0, T ∗], thanks to the formulas (4.5) which remove any ambiguity also in the case (4.4)
where a > 0 is very small. In general, however, other optimal solutions can exist.

Calling R(t) the inner radius of the set Ωt
0, if a(t) <

∣∣Ω̂(Ωt
0, R(t))

∣∣, according to (iv) and (v)
in Theorem 4.1, the minimization problem

minimize: H1(∂Ω) subject to Ω ⊆ Ωt
0 , L2(Ω) = a(t), (5.10)

has multiple solutions. One can thus construct a different optimal strategy, say t 7→ A′(t) ⊂ Ωt
0,

where each set A′(t) is a translation of the corresponding set A(t).

6 Large time behavior

In this last section we study the large time behavior of the optimal strategy A(t).

Proposition 6.1 Let Ω0 ⊂ R2 be a bounded, open convex set. Then there exists a constant
M0 > 0 such that the following holds.

(i) For 0 < M < M0, the optimal strategy A(t) defined at (5.2)–(5.4) satisfies

lim
t→+∞

L2(A(t)) = +∞. (6.1)
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(ii) For M =M0, after some time T † ≥ 0 the set A(t) becomes a ball:

A(t) = BM/2π(x̄) for all t ≥ T †. (6.2)

(iii) For M > M0, the area L2(A(t)) shrinks to zero at a finite time T ∗ < +∞. In this case,
there exists a time T † < T ∗ such that the set A(t) is a ball for all T † ≤ t < T ∗.

Proof. 1. Since our solutions now depend on the choice of M , the notation aM (t) =
L2(AM (t)) will be used. We consider the set of all solutions aM of (5.3) which remain uniformly
bounded for all times t ≥ 0, and define

M0 = inf

{
M > 0 ; sup

t>0
aM (t) < +∞

}
. (6.3)

From the equation (5.3) it immediately follows

M ′ < M =⇒ aM (t) ≤ aM ′(t) for all t ≥ 0. (6.4)

2. To prove (i), assume M < M0. By definition, supt>0 aM (t) = +∞. By the isoperimetric
inequality, any set Ω with area L2(Ω) = a has perimeter H1(Ω) ≥ 2

√
πa. Hence from (5.3) it

follows
d

dt
aM (t) ≥ 2

√
πaM (t)−M.

In particular, if at some time τ > 0 one has 2
√
πaM (τ) > M , then the area function t 7→ aM (t)

is monotone increasing, and approaches infinity as t→ +∞. This proves part (i).

3. To prove (iii), assume M > M0. Let M0 < M ′ < M . By assumption, the solution
aM ′(t) ≥ aM (t) is also uniformly bounded. The difference between these two solutions of (5.3)
satisfies

d

dt

(
aM ′(t)− aM (t)

)
≥ M −M ′.

At all times t ≥ 0 where aM (t) is defined, this implies

aM (t) ≤
(
sup
τ>0

aM ′(τ)

)
− (M −M ′)t. (6.5)

Since the right hand side of (6.5) becomes negative for t large, by continuity there exists a
time T ∗ such that L2(AM (T ∗)) = aM (T ∗) = 0. This proves the first statement in (iii).

Next, call R0 ≥ 0 the inner radius of the convex set Ω0, i.e. the radius of the largest ball
contained inside Ω0. Then the inner radius of Ωt

0 is R(t) = R0 + t. By the definition (5.2),
when the area satisfies aM (t) = L2(AM (t)) ≤ πR2(t), the set AM (t) becomes a ball. This is
certainly true when t is sufficiently close to T ∗, because

lim
t→T ∗−

aM (t) = 0, lim
t→T ∗−

R(t) = R0 + T ∗.

This establishes the last statement in (iii).
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4. Finally, consider the case M = M0. We claim that the corresponding solution t 7→ aM (t)
remains uniformly positive, and uniformly bounded.

Indeed, assume that at some time τ > 0 one has 2
√
πaM0(τ) > M0. By continuity, there

exists ε > 0 such that 2
√
πaM ′(τ) > M ′ for every M ′ ∈ [M0,M0 + ε] as well. As remarked in

step 2, this implies aM ′(t) → +∞ as t→ +∞, reaching a contradiction with the definition of
M0.

On the other hand, assume that lim inf
t→∞

aM0(t) = 0. In this case, following the argument in

step 3, we can find a time τ such that AM0(τ) is a ball of radius R < M
2π . By continuity there

exists ε > 0 such that, for every M ′ ∈ [M0 − ε,M0], the set AM ′(τ) is also a ball of radius
R < M ′

2π . If this happens, then the area AM ′(τ) shrinks to zero in finite time. Again, this
yields a contradiction with the definition of M0.

It remains to prove that, for t sufficiently large, AM0(t) is a ball. Toward this goal we observe
that the inner radius of Ωt

0 is R(t) > t. Hence, when a = aM0(t) < πt2, the solution to the
optimization problem (5.10) is a ball. Since aM0(t) remains bounded, this inequality is true
(and hence AM0(t) is a ball) for all times t large enough. It is now clear that the radius of
this ball must be R = M

2π . Otherwise, the solution of (5.3) will tend to infinity, or else become
zero in finite time.

Remark 6.1 When the initial set Ω0 is a ball of radius R, one has M0 = 2πR = 2
√
πL2(Ω0).

For a general convex set Ω0, one has

M0 ≤ 2
√
πL2(Ω0) .

Indeed, this threshold is smaller than the threshold for the ball, since the perimeter remains
larger for the same area.

In the case where Ω0 is a square, for various values of M the optimal strategy AM (t) has
been studied in Example 8.1 of [7]. In particular, for the unit square the value of M0 can be
computed explicitly:

M0 =
4− π

1− ln 2
≈ 2.797 < 2

√
π.

In this case, for M =M0, the optimal set A(t) becomes a ball at time

T † =
1

4(1− ln 2)
− 1

2
.
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