Upper bounds for the relaxed area of S'-valued Sobolev maps
and its countably subadditive interior envelope

Giovanni Bellettini* Riccardo Scalaf Giuseppe Scianna, ¥

July 10, 2023

Abstract

Given a bounded open connected Lipschitz set @ C R?, we show that the relaxed Carte-
sian area functional A(u, Q) of a map u € W11(2;S!) is finite, and provide a useful upper
bound for its value. Using this estimate, we prove a modified version of a De Giorgi conjec-
ture [17] adapted to W1 1(Q;S!), on the largest countably subadditive set function A(u, -)

smaller than or equal to A(u, ).
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1 Introduction

Let Q C R? be a bounded open set. For a given v € C1(2;R?) we indicate by

A(v, Q) ;:/ I+ VP + [ Ju2de (1.1)
Q

the classical 2-dimensional area of the graph G, = {(z,y) € Q@ x R? : y = v(z)} of v, where

Jv = 3%3*52 - %% denotes the Jacobian determinant of v. For any u € L*(Q; R?) we consider

the L'-relaxed area of the graph of u, namely

A(u, Q) = inf{l}im inf A(vg; Q), v € CHQ;R?), v — u in L' (Q;R?)}. (1.2)

—+00

It is well known that, when v is scalar valued, the study of the relaxed area is crucial in the
study of the Cartesian Plateau problem [22]. The characterization of the domain Dom(A(-, Q2))
of A(+,Q), and the computation of its corresponding values, seem at the moment out of reach,
due to the presence of highly nonlocal phenomena. More specifically, for a givenE| u € L1 (S R?),

the set function 2 D A — A(u, A) turns out to be not subadditive when restricted to open sets.
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'This is true for general maps, unless some specific cases which trivialize the functional (see [1] for details).



In particular A(u,-) is not a measure, and thus it cannot be represented in integral form; for
this reason, only a few partial results are available (see e.g. [5,9,/10]). In these references it is
shown that nonlocality is due to at least two reasons: one is the presence of singularities in the
map u; the other one is the possible interaction of such singularities with 0. In both cases, it
appears that, in general, interesting and rather involved Plateau-type problems must be solved,
in order to get the exact value of A(u, Q) (see the discussion below on the maps uy and ur). So,
the computation of A(u, () is, in general, quite difficult; on the other hand, looking for upper
bounds that do not take into account the above mentioned Plateau problems in full generality,
seems realistid?]
In this paper we are concerned with maps in

W (Q; S := {u e WH(Q;R?) : ju| =1 ae. in Q},

where St = {(z1,72) € R? : 2} + 22 = 1}. Given a distribution A € D'(2), let us introduce the
quantity

[Alla o = sup { (A, @) @ € Lipg(2). [pllimey < L. ol Vol pmiey <1}, (13)
where By )
1
_ _1 1.4
“=lom] T2 (14

and Lip(€2) are the Lipschitz functions on € vanishing on 9Q. Our first result (Section [6)) reads
as follows:

Theorem 1.1. Let Q2 C R? be a bounded open set with Lipschitz boundary and u € WH1(Q;Sh).
Then

A(u, Q) < / 1+ [Vul2dz + || Det (Vi) gaa < +00. (1.5)
Q

In particular
Whl(Q;S') € Dom(A(-, Q)).

Estimate (1.5)) in general is not sharp. Indeed, consider the map uy(x) := %I defined on
B, (0) \ {0} for r > 0, whose distributional Jacobian determinant is Det (Vu,) = mdg. Theorem
implies that

A(uy, B-(0)) < / \/1+ |Vul2dz + min{27r, 7}. (1.6)
B (0)

On the other hand, according to [6, Theorem 1.1], one has

Aluy, B, (0)) = /B,.(m 1+ [Vul2dz + F(r), (1.7)

where the singular contribution F'(r) € (0, 7] has the meaning of the area of a minimal surface
solving a suitable non-parametric Plateau problem with partial free boundary. Specifically,
F(r) coincides with half of the area of a sort of catenoid S C R?® = R? x R with boundary
(St x {0}) U (St x {2r}) and constrained to contain the segment {0} x [0,2r]. In particular it
can be seen that there exists a number 7 € (0, %) such that for » > 7 this catenoid reduces to

2Notice that, if one replaces the L' convergence in (1.2) with stronger topologies, some sharp estimates can
be given (see for instance [3}/41|25] where the strict convergence in BV has been investigated).



two disks, and then F'(r) = 7, whereas for r < 7 there exists a non-trivial catenoid whose area
is strictly smaller than the lateral area of the solid portion of the (smallest) cylinder containing
it, namely F'(r) < 2zr. This shows that for » > 7 estimate in is an equality, and that
for r < 7 is not sharp. We emphasize that a more precise estimate than , and hopefully
the sharp value of the left-hand side, seems quite difficult to obtain. On the one hand we
expect that, when the singularities of a map u are far from each other, becomes sharpﬂ
However, in the opposite case, a characterization as in needs some strong improvements
of the techniques used in [6]. Indeed, in |6] the rotational invariance of the domain and of the
map uy itself are strongly exploited to prove the lower bound, which is based on a cilindrical
Steiner-type symmetrization for integral currents. A similar technique has been employed in [27]
(see also [8]), yielding the value of A(ur, B,(0)), where ur is the symmetric triple junction map,
a piecewise constant map taking three values in S!, each value on a 120° sector. Also in that
case the symmetries of the source and the target spaces allow to use such techniques. Without
these symmetries, at the moment little can be said about the exact expression of A(-, Q).

So, the nonlocality of the L'-relaxed functional seems not removable. Thus, following De
Giorgi [17], it seems interesting to consider a further “relaxation”, this time looking at the
functional A(u,-), i.e., looking at it as a function of the open set: For every V C Q, we set

A(u,V) = inf {ZA(U,Ak) : A € Q open U A D V} . (1.8)
k=1 k=1

Actually, notice that, for all u € L'(Q;R?), j(u, -) is the trace of a regular Borel measure
restricted to open sets (in 2).
The estimate provided by Theorem allows us to prove (Proposition that

j(u, U)= / 1+ |Vul?dz, Vu € WH(Q;SY), for every open set U C Q.
U

Using this, we are able to show our next main result (Corollary 7.6)):

Theorem 1.2. Let Q C R? be a bounded open set with Lipschitz boundary and u € WH1(Q;Sh).
Then

A(u,Q) = inf {Z(U,Q \C):C c Q,H(C) < +oo}.

This theorem positively answers to an adaptation of a De Giorgi conjecture [17, Conjecture
3], provided one restricts the analysis to the space W1 1(€;S1).

Before concluding the introduction, it is worth recalling that in several works (see [12}[14}/15]
and references therein; a general survey can also be found in [13]) the authors studied the
analogue of our relaxation problem, with the area functional replaced by the total variation, for
W1 maps defined on a closed simply connected surface taking values in S'. They were able to
characterize the corresponding relaxed functional, and showed that the singular contribution is
given by

L(A) = sup (A, p) =inf{|S|q : S € D1(),T = 9S},
€Lipy (2),lip(¢)<1
which has the geometric meaning of the (geodesic) length of a minimal connection between the
poles of A. The case considered in the present paper seems much more involved, due to the
presence of the minimal surfaces briefly discussed above.

The plan of the paper is the following: In Section [2| we fix the setting and notation needed in

the sequel. In Section We investigate the minimization problem dual to (see below),

3For instance, under the further assumption that the 1-current Swin given by Lemma vanishes.



and we prove some regularity result for the minimizing currents (see also Remark in the
Appendix). In Section 4| we collect some results on the distributional Jacobian for Sobolev maps
taking values in the circle. We briefly add some details to extend the well-known results for
simply connected domains [14,/15] to the case of non-simply connected domains, for the reader
convenience. Notice that however many of these results were stated in the aforementioned
references and also summarized in [13]. In Section [5| we prove a density result for circle valued
Sobolev maps, see Proposition which needs some preparatory lemmata. Finally in Section
[6] we prove Theorem [I.1I} whereas in the last section we investigate the countably subadditive
interior envelope of the relaxed area functional and we prove Theorem

To conclude, we mention that it would be interesting to extend Theorem to maps u €
BV (;S'). We leave this effort for future investigations; we only mention that in [28] some
estimates can be given for specific piecewise constant maps.

2 Notation and preliminaries

In what follows,  C R? is a fixed connected (but not necessarily simply connected) bounded
open set with Lipschitz boundary. We denote by d(-, 9Q2) the distance from 92, and following [14,
pag. 96], by dq : © x Q — [0, +00) the function

do(z,y) := min {|z — y|,d(z,0Q) + d(y,00)}.

Hence, if do(z,y) = |x — y|, then the closed segment Z¥ joining = and y is contained in Q.

Given a vector V = (V1,V3) € R2, we set V+ := (—V4, 17) its m/2-counterclockwise rotation.
If V = Vu, then V4 u stands for (Vu)'. The distributional divergence of a vector field V' =
(V1,V2) € LY(Q;R?) is the distribution

(Div V, ) := —/ V - Vdz Vo € C°(Q). (2.1)
Q

If V is sufficiently smooth, DivV equals the pointwise divergence divV = g—& +

The distributional curl of V € L'(£2;R?) is the distribution

Vo
Oxo "

(Curl V, ) ::/V-VLgodx Vo € C°(Q), (2.2)
Q

where V4t = (—g—;’;, g—;’;). If V is sufficiently smooth then Curl V = div(V+) = —g—‘ﬁ + %.
The symbols BV (A) (resp. SBV(A)) denotes the space of functions of bounded variation
(resp. special functions of bounded variation) in the open set A C R?; if u € BV (A), Vu stands
for the absolutely continuous part of the gradient measure Du. Further, [u] stands for the
difference u™ — u~ of the two traces of u on its jump set J,, provided a unit normal vector field
to J, is assigned. We denote by BV (A;R?) the space of functions of bounded variation in A

taking values in R?; if u € BV (A;R?), |Vu| stands for the Frobenius norm of Vu; see [2].

Definition 2.1 (Dipole map). Let p,n € R? be distinct, and consider two polar coordinate
systems (pp, 0p) and (pn,6n) centered at p and n, respectively, choserﬁ so that both 0, and 0,
have a jump of size 21w on £, C £, where £ is the line containing pn and £, is the halfline with
endpoint n and not containing p. We let wy, € BVioc(R?) be the dipole map, defined as

Wpp 1= 0p — On. (2.3)

4The orientation of these systems is always counterclockwise.



Thus wp,, does not jump on ¢,, while it jumps (of 27) on the relative interior of pr. Notice
that

1 1
Yy ()] < [VO,(@)] + V()] < C(y:c it n|) vr e R2\ L (2.4)

For any open set A C R% Dy(A) and D;(A) denote the zero-dimensional and 1-dimensional
currents in A, respectively. The symbol |- |4 stands for the mass of a current A in A, while supp
denotes the support of A [19].

2.1 Lipschitz maps; the flat norm

For any bounded open set A C R2 we let Lipy(A) be the space of Lipschitz functions on A
vanishing on dA, endowed with the norm

Plipgay 1= max { o] zoe ), lin(, 4) }, (2.5)
where
hp(@’ A) = sup ’30(1:) - gp(y)| (26)
cyed T =Y
Ay

In the Banach space Lipy(A), the norms lip(-, A) and || - [|ip,(4) are equivalent.
In what follows it is also convenient to introduce the equivalent norm

el Lipy(A),a = maX{HSOHLoo(A),Oélip(% A)} Vi € Lipy(A), (2.7)

with « as in (1.4]). For all these norms we drop the symbol A in the sequel, when A = .
We denote by Lipg(A)’ the dual space of Lipy(A) (endowed with one of these norms). The
(equivalent to each other) dual norms to ([2.5]), (2.7]) on Lipy(A)" are respectively:

”AHﬂat,A = sSup <A7 90>7 HAHﬂat,Oé,A = sup <A7 90>7
@€Lipg(A) @€Lipy(A) (2.8)
llellLipg(a)<1 lellLipg(a),a<l

for all A € Lipg(A)’, see (1.3]). Again, for these dual norms we usually drop the symbol A when
A = Q. The reason of the notation || - ||gat is explained by formula (2.14) below.

2.2 The classes X(Q2) and X/(2)

Let ((x,:))ien C Q x Q be a sequence of pairs of points for which 3" dq(z;,y;) < +00. We
shall always suppose that z; # y;, while we do not exclude that z; = z; and/or y;, = y, for some
i # 7, h # k. Namely, ((x;,9i))ien C Q x Q\ Diagg,, where Diag, is the diagonal of Q x Q.

The measures
n

Ay = Z((sz _6yi)7 neN,
i=1
converge in Lipy(Q)' to Y1 (6z, — 6,,). Indeed, for any ¢ € Lipy(Q) with ||¢|lLip < 1 and
any n € N, setting I,, :== {i > n+1:dao(zi,yi) = |vi —vyil}, Bn :={i > n+1:do(zi,vy) =
d(x;, 0Q) + d(y;, 02)}, we have

+o0
Z Ouy = Oy o) | = | Y (o) = (wa)| < | D (@) — ()| + D (e + o))
1=n-+1 1=n—+1 iely, i€By,
SZ!%—%H— Z( ($1739)+dyz;39 Z dQ 3317%
1€l i€Bp, i=n-+1

5



as n — 400, where we use ||Vy|oo <1 and ¢ =0 on 0.

Remark 2.2 (Non uniqueness of the representation). The representation A = 377 (8,, —
8y;) is not unique; clearly two sequences ((z;,¥i))ien C Q x O\ Diagy and ((Z;,7i))ien C
Q x Q\ Diagg with >,y do(wi,yi) < 400, Y ;enda(Zi,¥i) < +oo, define the same linear
functional on Lip(€2) if

+oo +oo
O (0n = 0y),0) = O (6, — 65.),9) Ve € Lipy(Q). (2.9)
=1 =1

We emphasize that the hypothesis ((x;,%;))ien C Q x Q\ Diagg, (instead that ((x;,¥;))ien C
Q x Q\ Diagg,)) is done for convenience, and it may happen that for some i € N, either x; € 99
or y; € 0 (or both). Of course, if z; € I then d,, = 0 in Lipy(R2)’; the presence of z; affects
the representation of A, but not its action on Lipy(2). Nevertheless, we can always assume that
for all 7 € N, at least one among z; and y; belongs to €. To indicate such a property, we briefly
write

(7i,y:) € Q x Q\ Diagy,.

Preferred representations will be discussed at the beginning of Section

Definition 2.3. We sef)

X(Q) ={A € Lipg()": 3((wi, y))ien © @ x 2\ Diagp,

+00 —+oc0o (210)
N da(zi,yi) < +oo, A= (8, — 5%.)} u{ol.
i=1 i=1
We have seen that
+oo
VA € X(Q) (A,o) = (e(xi) — o(yi)) Ve € Lipy(Q), (2.11)
i=1
the series in ([2.11]) being convergent.
Definition 2.4. We set
X4(Q) ;:{T € Lipy(Q) : 3m € N, I(zi,y;) € Q2 x @\ Diagh for i = 1,...,m,
(2.12)

= Z(axz - 5%)} U {0}

Every T' € X(Q) is a Radon measure and can be identified with an integral O-current in
Do(92).

Remark 2.5. If A € X(Q) then, adapting the arguments in |26, Proposition 18], it easily follows
that the suprema in (2.8)) are achieved (taking into account that we have Lipschitz maps which
are null on 00).

SWe take the union with {0} since later A will be typically the Jacobian determinant of a suitable map, and
we want to include the case in which the map is constant.



2.3 The classes Ry and S

In the sequel we need to consider the following classes of rectifiable currents in R?:

Ry := {R € DO(RQ) ‘R = Zaiézz- for some n >0, z € R%,0; € {-1, +1}},

i=1
+o0 oo
S = {S € Di(R?): S = Z [Zxwk] for some sequence ((zx,yx))x C R, Z lyr — zx| < +oo},
k=1 k=1

(2.13)
and denote by R(A) and S(A) the classes in (2.13|) when the currents are restricted to an open
set A C R2.

By [19, page 367] and Lemma in the appendix

A lae = inf{|Rlq + [S|a : (R,S) € Do() x D1(Q), A=R+S} VA€ X(Q), (2.14)
and similarly
|Alltace = inf {|Rlo + a”"|Slo : (R, S) € Do(@) x D1(Q), A= R+0S} VA€ X(Q),
(2.15)

where we recall that « is defined in (|1.4]). We shall prove that the infimum in (2.15]) is attained
and that, if A € X¢(Q), minimizers Ryin and Smin satisfy Rmin € Ry, Smin € S (similar

properties hold for (2.14))).

3 A minimization problem for atomic distributions

Our aim in this section is to show that, for all A € X(Q), the infimum on the right hand side of
(2.15) is a minimum, and to analyze the regularity of its minimizers (Proposition ; this will
be done supposing first that, in place of A, we consider T" € X ().

3.1 Properties (P) and (Py)

Given a distribution A = Z;Of((sxl — 0y,) € X(Q), we can modify the set of points ;,y; in the
following way. Take i € N;

if do(zi,yi) = |zi — yi| we introduce two (coinciding) points z; = y; at the center of the
segment T;y;;

if do(zi,yi) = d(zi, 09) + d(yi, 0) we choose two points Z;, y; € 02 so that

d(zi, 00) = |zi —ul,  d(yi, 09Q) = |zi — yil-
In this way
+oo +00
S (E =il + i — Gil) = dal@i, yi) < +oo,
i=1 =1
and we can write
+o00 +oo +oo
A= Z(él’z - 5@/1‘) = Z((th - 51/1‘) + Z(dﬂﬁz - 6?71') in D/(Q)
=1 i=1 =1

In particular, we may assume, after relabelling and renaming the points, that:



(P) There are sequences ((z;,v;)) C Q x Q \ Diag, such that
400 “+00 “+oo
A=) (6, —06y,)  and D i —yil =Y dal@i,yi) < +oo. (3.1)
i=1 i=1 i=1

Using that A = 3°°°(8,, — 6,,) admits a representation as in (3.1)), in (2.15]) we can choose
as a competitor the pair (R, S), with R =0, S = 3" [:7i], and we obtain

+o0
A fat.a < 2D |2 = wil. (3.2)
i=1

Recall that there can be repetitions among the z;’s, as well as among the y;’s. Now, let T' =
Yo (02, — 0y,) € Xf(2). After relabelling (and keeping the same symbols, for simplicity), T’
admits the representation

T = Z 633k - Z (5yk7 Tk, Yk € Q? Tk 7& Yk, (33)

keJ+ keJ—

in D'(Q2), where J* and J~ are finite (possibly empty) subsets of N and J* NJ~ = @. It is
convenient to add some atoms to T as follows: for any k € J+ we consider a point g, € 9 so
that |z — x| = d(zg, 0Q), and similarly for any k € J~ we consider a point Iy € 012, so that
|Zr — yk| = d(yx, ). In this way, again without changing the notation and calling once more
O by yr and &y, by z;, for simplicity, setting I = J™ U J~, we can always write T" as

T= Z(5$k - 5?/k)’ (3.4)
kel

with the following additional property:

(P¢) for every k € I one and only one among xj, and y; belongs to €2, x; # y; for any x;,y; €
{zk yn : 2k € Q,yp € Q}, and [2g — yi| = do(@k, yx)-

This implies that in (3.4) there are no cancellations in 2. Recall that there can be repetitions
among the x;’s, as well as among the y;’s.

3.2 Analysis of the minimum problem ([2.15])

Let T' € Xf(2) be represented as in (3.4) and satisfying (P¢). We consider a disjoint partition
{Ip,Ip} of I (i.e., I = Ip U Ip, IpNIp = &, where we allow Ip or Ip to be empty) and,
provided Ip # &, an injective map 7 : Ip — I. Along with this, we define the currents

R, = Z - Z Sy;s Sy = Z [Trwmzr] if Ip # 2,
kelp je\T(Ip) kelp (3'5)

R,:=T, S,:=0 if In =0

(clearly R, € Ry and S;, being a finite sum, belongs to S). Namely, we split the set I as the
union of 7(Ip) and I\ 7(Ip); a point labelled by an index h = 7(k) € 7(Ip) is coupled with zy,
while a point labelled by an index k € I \ 7(Ip) is uncoupled.



Notice that

R, +0S; = Z Oy, + Z Opy — Z Oy, + Z 5%(1@

kelp kelp jel\r(Ip) kelp in Dy ().
:Zéwk - Z5yk =T
kel kel

Lemma 3.1. For any T € X;(Q) we have

min {|R;|o +a 'S;q : (Rr,S;) as in (3.5) } (3.6)
=min {|R|qo +a '|S|q: (R, S) € Ry x S, T = R+ 0S in Dy(R?)}, ‘
where on the left-hand side the mimmunﬁ is taken over all disjoint partitions {Ip,Ip} of I and
all injective maps 7 : Ip — I, as above. In particular, a minimizer of the left-hand side is also
a minimizer of the right-hand side.

Proof. On the one hand, the inequality > trivially holds in . On the other hand also the
converse inequality holds, since every competitor (R,S) € Ry x S for the right-hand side, can
be modified, not increasing its energy, into a competitor for the minimum problem on the left-
hand side. More specifically, let (R,S) € Ry x S be such that R + S = T in Dy(R?), with
T represented as in and satisfies (Py); in particular 0S = T — R is a finite sum of Dirac
deltas. By Federer decomposition theorem for 1-currents [19, 4.2.25], we can write

“+o00
S=>5i, in Dy (R?),
i=1

with S; € S for all i € N, and either 9S; = 0 (so S; is a loop) or 0S; = J,, — 0w, for some
zi # wi, zi,w; € {xg,yr 2 k € I}, If 9S; = 0 we set S; := 0, i.e.,, we remove the loop. If
0S; = 6., — 64, and supp (S;) N (R?\ Q) = @, we set S; := [zw;] (the segment Zw; is not
necessarily included in Q). If S; = 6,, — &, and supp (S;) N (R?\ Q) # @ then, using (Py), we
set S; = [2%] + [@iw;] where %; € {yx : k € I} is a point on 9 such that d(z;, 00) = |z — %
and similarly, w; € {z} : k € I} is a point on 9 such that d(w;, Q) = |w; — w;|. Finally, if
some S; = [z;w;] is such that both z; and w; belong to 02, we remove S;, whereas if only one of
them belongs to 0%, say w; € 92, we replace S; by S; = [ziw;] where, again, w; € {xy : k € I}
is a point on 02 such that d(w;, Q) = |w; — w;|.
Then ‘§1|Q < |Si|q for all i € N, and moreover the support of

o~ +OO o~
S .= ZSZ-
=1

consists of finitely many segments (possibly with repetitions) joining some point in {zy : k € I}
to some point in {y : k£ € I'}. Furthermore, 08 = OS. From this remark one can easily define
two sets Ip, Ip C I of indices and an injective map 7 : Ip — I so that S = Sr, R=R;, and it
is checked that

[Rr[o + [Srlo < [Rlo + |S]o.

This concludes the proof. O

5The existence of a minimizer is guaranteed since the number of competitors is finite.



Remark 3.2. As a consequence of the previous arguments, the minimum in the right-hand side
can be taken among currents in supported on Q.

The following crucial fact is a result of regularity theory for minimal currents; since we
were not able to find a specific reference, for the reader convenience we propose a direct proof,
independent of regularity theory.

Proposition 3.3. Let T = SN (6., — 6,,) € X;(Q). Then the infimum in 2.15), with T in
place of A, is attained and there are minimizers (Rmin, Smin) € Ry X S.

Proof. The minimum problem on the right-hand side of (3.6 is attained, as a consequence of
Lemma and is trivially larger than or equal to ||T||fat,qa, see (2.15)). We claim that actually
equality holds, which will imply the thesis. To prove this, recalling ([2.8)), it is sufficient to show
that

min {|Rlo +a Sl (R,S) ERy xS, T=R+09S} < sup (T,y), (3.7)
¢€Lipy ()
llellLipy,a <1
and this readily follows from Proposition in the Appendix. O

Now we prove that, for a general A € X (Q2), the infimum on the right-hand side of (2.15))
can be obtained infimizing just on pairs (R, S) € Ry x S.

Corollary 3.4 (|| - [|fat,o @s an infimum over Ry x S). We have
[Allfiat,o = inf {|Rlo +a !|S|q : (R, S) € Ry x S,A=R+09S in Dy(R*)} VA € X(Q).
(3.8)

Proof. Given € > 0, it is sufficient to show that there exist R, € Ry, Sc € S, such that
A =R, + 0S5 and
|Relo + 2[Sela < [[Allat,a + €.

Assuming A = >2°0(8,, — J,,) € X(Q) is a representation satisfying (P), select N, € N so that

“+o0

Z |z —yi| < § (3.9)
i=N.+1
Thus, for
+oo Ne
Ac = Z (0z; — 5%‘) € LipO(Q)/, T = Z(ém - 6yi) € Xf(Q)v
i=Ne+1 =1
we have

€ €
ga HTe”ﬂat,a < ”AHﬂat,a + ”AeHﬂat,a < HAHﬂat,a + g
By Proposition there are integral currents ﬁe € Ry and §6 € S with T, = ﬁe + 8§€ in
Do(R?) such that

||A6Hﬂat,a S (310)

HTeHﬁat,a = |§e|ﬂ + 2|§6|Q' (3.11)

Setting R, := EE and S, := §E + ZZL:DXQH [gizi] one sees that S, € S, A = R, + 0S,, and using
(3.9, (3.11)), and (3.10)),

~ ~ 2e 2¢
|R€|Q + 2|S€‘Q < |RE|Q + 2|S€|Q + § = ||Te||ﬂat,o¢ + E < ||AHﬂat,a + €.
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Proposition 3.5 (Existence of minimizers defining | - ||gat,a). Let A € X(2). Then the
infimum in (2.15)) is attained and there are minimizers Ruyin € Do(Q) and Spyin € D1(Q2) which
are wnteger multiplicity currents.

Proof. Represent A = > (5, — d,,) as in (P), with S dq(zi, ;) < +oo. By (3.8), we
can find a sequence ((Ry,Sk)) C Ry x S (in particular, of integer multiplicity currents) with
A = Ry, + 0Sk in Dy(Q) for any k € N, and such that

lim (|Rgla + 2[Skle) = [[Allgat,a-

k——+o0

By compactness [24, Theorem 7.5.2], up to a (not relabelled) subsequence, we know that Ry —
Ruin € Do(Q2) and Sk, — Smin € D1(2) weakly as currents, and we have to prove that Rpin
and Smin can be chosen with integer multiplicity. Suppose Ry = > % 00, for some my € N,
with z; € Q and 0; € {—1,+1}; we may assume that there are no cancellations in the previous
expression. We introduce w; € 99 so that |z;—w;| = d(z;, 0), and write Ry, = > % 04(82,— 0w, )-
In this way Ry = 0%y with Xj = > "% o;[wiz] € S. We have

|Rila < [[Allgat,a + 1

for k large enough, and after passing to a not-relabelled subsequence, we have R, — Ry, € Ry
weakly in Dy(2). Moreover, since |Ry|q = my, we find that (my) is a bounded sequence, and
thus the mass of X satisfies

|Zk]la < mpdiam(€2),

and is uniformly bounded in k. Since 0¥ = Ry in Dy(£2), also X — 3 weakly in D; (), with
Y an integral current.

Now we know that Ry + 9Sy = A in Do(Q). Writing A = 0T, with T = > % [7;wi] an
integer multiplicity current, we see that

05y = 0T — 0%, for k large enough,

and then S; + X + T € D1(Q) is an integral current without boundary. By compactness, we
can assume that the sequence (S + Xj + T') weakly converges in D;(2) to an integral current
@ without boundary. On the other hand, since Sy, — Spin weakly in D;(Q2), we conclude that
Smin+2+7T = @ is an integral current. In particular, Sy, = Q —3—7T is an integer multiplicity
current. O

3.3 Properties of minimizers

Here we prove a useful lemma which summarizes some properties of the minimizing partition
{Ip,Ip} and of the minimizing map 7 on the left-hand side of (3.6)).

Lemma 3.6 (Structure of minimizers of the combinatorial problem). Let T' € X;(12)
be of the form (3.4) satisfying (P¢). Then there exist a disjoint partition {Ip,Ip} of I and an
injective map T : Ip — I, minimizing the left-hand side of (3.6)) for which, setting

Ruin := Z Oy, — Z 6yj € Ry, Shnin 1= Z [[m]] €S, (3.12)

kelp jelNT(Ip) kelp

so that T' = Rpin + OSmin, the following properties hold:
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(a) for allk € Ip and j € I\ 7(Ip) for which xj, € Q and y; € Q, we have

loe —yil =1, d(er,09) = 5, d(y;; 090) = 5. (3.13)

N | —
N | =

Moreover, if k € Ip is such that either x € Q and y, ) € 082, or xy € O and y, () € €,
then (k) = k;

(b) for all k € Ip the (relative) interior of the segment Y )Tk is contained in 2, and

2k — Yr (| Smin{l, d(zg, 0Q) + d(y,u), 02)},
1 (3.14)

’xk - yT(k)’ §§ + mln{d(l‘/w 89)7 d(yT(k)v aQ)}7

(c) if x € supp (Smin) N2 for some k € Ip, then x = xy, for some h € Ip;

(d) if yj € supp (Swmin) N Q for some j € I\ 7(Ip), then y; = y.(x) for some k € Ip;

(e) if k,h € Ip, k # h, and YTk N YrmyTn = {7}, then either r = Y.y = Yr(n) OT
T= T = Tp;

(f) if k,h € Ip, k # h, and Yy Tk N Yr(n)Th contains more than one point, then either
Yr (k) Lk N Yr(m)Th = Y7 (k)Lh OT Yr(k)Lk N Yr(h)Th = Yr(h)Tk;

(g9) if the points in (3.12) contained in Q) are distinct and three by three not collinear, then the
segments Y- )Tk N2, k € Ip, are disjoint;

(h) |Sminle = > ker, [Tk — Yrw)l; in particular supp (Swmin) = Uker,Yr (k) Tk-

In words, (c) says that if 2 intersects supp(Smin), the intersection happens in one extremum
of the intervals composing Smin, and similarly for y; in (d). (e) says that if two intervals of Siin
intersect at one point, this point must be an extremum of both. (f) says that if two intervals of
Smin intersect at more than one point, then they cannot be contained one inside the other.

Proof.

(a) Let us prove the first inequalityﬂ in (3.13). Suppose, to the contrary, that there exist k € Ip
and j € I\ 7(Ip) such that z;, € Q , y; € Q and |z, — y;| < 1. Define the injective map
@ :IpU{k} — I as follows: ¢ =7 on Ip, ¢(k) := j. Then

R, = Z Oz), — Z 5% = Rumin — 0z, — 52;1’
help\{k} eN\p(IpU{k})

Se=" Y eman] = Smin + [yjai].
helpU{k}

Thus

|R<P|Q + 2|S<P|Q < |Rmin|Q + 2|Srnin|Q - |5ﬂck’ - |5yj| + 2|17k - yj|
:|Rmin|Q + 2’Smin|Q + 2(|7~3k - yj| - 1) < |Rmin|Q + 2|Smin|Qa

contradicting the minimality of (Rmin, Smin)-

"We shall prove a stronger statement, namely the validity of (3.13) for any minimizing Ip, Ip, T.
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Let us now show the last statement in (a). Let D" := {k € Ip : a1 € Q, y;u) € 00}
and D~ :={k € Ip : x; € 9Q, Y,y € Q}. For all k € D* U D~ define ¢(k) := k, whereas
o(k) :=7(k) for all k € Ip \ (DY U D™). It is easily checked that ¢ is injective, and

S lmk—veml = D lwe— ol + > 2k = Yrl < ) 12k — yrls

kelp keD+uD~— kelIp\(D+uD~) kelp

the inequality being true since, for k € D (and similarly for D™), by (Py), y is a closest point
on Jf) to zy. In particular, replacing 7 with ¢ we get a minimizing configuration satisfying the
last statement in (a). In words, by assumption z; € €2 implies y.(;) € 99, and d(w, S2) =
|Zk — Yr()|; We have shown that there are minimizers for which d(zy, 0Q) = |x), — yi|, so we are
“connecting” xj with yy.

To conclude the proof of (a), we need to show the second and third inequalities in ([3.13)).

Let k € Ip, and suppose by contradiction that d(zx, Q) = |zr — yi| < 3 We then extend 7

on Ip U{k} using ¢ := 7 on Ip and (k) := k. Notice that this extension is well-defined, since
yr € 002 and the last statement of (a) is satisfied by 7. Also in this case the new partition with
 has smaller energy than the original one with 7, since

1= [0z, l0 > 2|2k — Yol
and this is enough to prove that
|Rmin|ﬂ + 2‘S’min|ﬂ > ’R<,0|Q + 2‘S<p|ﬂ7

contradicting the minimality. In a similar manner we prove the third inequality in (3.13)).

(b) Let us start to prove that ¥ yZ) C Q for all k € Ip. Suppose, to the contrary, there exists
k € Ip for which 7% N (R*\ Q) # 0, so that |[y,x)zr]lo < |yrx) — 2|, and moreover it must
hold [[y-(xywklla > da(wk, yr@)). In such a case 7(k) # k, and so we set (k) := k and ¢(j) := j
for j = 7(k); moreover we set ¢ := 7 on the other indices. Owing to the last assertion in (a), ¢
is well-defined, and since

lze =yl + |25 — y5] < |ze — vy, j=1(k),

it easily follows that the new partition and ¢ minimize . This concludes the proof of the
first assertion in (b). Let us prove the first expression in (3.14): If |z, —Yr(k)l > do(Tk, Yrx)) We
modify the partition and 7 as before, getting a contradiction with the minimality. If [z —y )| >
1, we erase k from Ip, and we find out that the new partition with 7 replaced by its restriction
on Ip \ {k} realizes a smaller contribution, contradicting the minimality.

The last inequality in follows from the following argument: We may assume without
loss of generality that z,y, ) € (2 and that, by the first assertion in (b), the segment joining
them has interior in Q; by (a), we can also suppose that j := 7(k) ¢ Ip. Hence we can delete k
from Ip and add j to it, defining p(j) := j and ¢ := 7 elsewhere. In such a case, by minimality
assumption we obtain

L +d(y;,09) = |62, + 2|[yo(y7illa > 2|[yrmzello = 2|78 — Yr@)l-

(c) Suppose there exists k € Ip with x € Q, z; € supp (Smin) \ UheID xp; then necessarily
zy, belongs to the relative interior of some segment y-(;)T;, with j € Ip and j # k, so that

|25 — yr(y)| = |75 — k| + |26 — yr(5)|- Set Ip =IpU{k}\{j} and let ¢ : Ip — I be the injective
map such that ¢(i) := 7(i) if i # k, ¢(k) := 7(j). Now

2|.fcj — yT(j)] + [0z, | = 2|zx — yT(j)] + 2]a;j — x| + ‘53[;].’ > 2|xy — yw(k)| + ‘5%.‘,
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implying that |z; — y-(j| > |2k — Yp)|- Since Ryin and R, have the same mass in €, the
previous inequality readily gives

|Rmin|Q + Q‘Smin’Q > ’Rgo’Q + 2‘54,0’97

contradicting the minimality of (Rmin, Smin)- In a similar manner we prove (d).

(e) Suppose to the contrary that r belongs to ¥ruy@k \ {Yr(x), T} Set ¢ : Ip — I, p(j) := 7(j)
if j £ k,h, o(k) :=7(h),o(h) =7(k). We have

12k = Yoy | = 126 — Yy | < 7 — Y7y + 121 — 7],

(3.15)
1Zh = Yom)| = 1T = Yr)] < |7 = Yrpy)l + |28 — 7],

where at least one of these inequalities holds strictly, because the points y, ), Tk, Yrn), Tn are
not collinear by construction. Summing the inequalities in (3.15) we get

[Tk = Yok | + [2n — Yoyl <12k — Yr)l + |20 — yra |,
and this is enough to deduce that
|Rmin|Q + 2‘5m1n|Q > ’R4p|Q + 2‘S¢|Q>

contradicting once again the minimality.

(f) If ¥r(x)Tk N Yr(n)Zn contains more than one point, it must contain a segment. In particular
we have to exclude the two cases: Yr(x)Tx N Yr(m)Th = TeTrn and Yr )Tk N Yr(n)Th = Yr(k)Yr(h);
let us discuss the former (the latter being similar). In such a case it is sufficient to set ¢(k) = h,
o(h) = k, and ¢ = 7 otherwise, and check that the new map ¢ associated with the same

partition provides
|Rmin|Q + 2‘Smin|ﬂ > ’R<p|ﬂ + 2|S<p|97

contradicting the hypothesis.
(g) Follows from (e) and (f).
(h) Follows from the last assertion in (a) and the first in (b). O

4 Distributional Jacobian; maps with values in S'

If u = (u1,uz) € WhH(Q; R?) N L*°(; R?) its distributional Jacobian determinant is the distri-
bution Det (Vu) € D'(Q) defined by

(Det (Vu),p) := / A - Vpdx Vo € C°(Q), (4.1)
Q
where
1 ou ou ou ou
1 1 2 1 2 1 1 2
wi= = (Vi — ueViun) = = (=i 22 12 0 T2 0, 21 e LY R?), (4.2
A (u1V—ug —uaV=uy) 2( Uy . Us Dy Uy . Us 6$1> e L ( ) (4.2)

hence (cfr. (2.1)))
Det (Vu) = — Div A\, € D'(Q).

Moreover, since A\, € L'(£;R?), equality (4.1)) extends to ¢ € Lipy(Q2), so that

Det (Vu) € Lipy(Q)".
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It follows from the definition that the distributional Jacobian enjoys some well-known compact-
ness properties. For instance, let u € WL1(Q;R?) N L®(Q;R?). Let (v) € WHH(Q;R?) N
L>(2;R?) be a bounded sequence in L>(Q2, R?), and suppose v — u in WH!(Q; R?). Then

Det (Vug) = Det (Vu) in D'(Q). (4.3)
Furthermore there exists C' > 0 such that
| Det (Vu)llgar < Cllul[pr. (4.4)
Remark 4.1. The convergence in can be strengthened into
| Det (Vog) — Det (Vu)||Lip, @y — 0. (4.5)
Indeed, take a subsequence (ky); for any ¢ € Lipy(£2) write
(Det (Vu) — Det (Vug, ), @)
= [ = A ) Vide < [l [ o= o (46)

<||Vel| Lo (Cl/ \Vu—Vvkh]d$+Cz/ ]Vu-(u—vkh)]d:v).
Q Q

Since (u—wy, ) tends to zero in L' (£2; R?) and since we can select a further subsequence (kj,) such
that (u — vkhl) tends to zero weakly-star in L>°, we deduce that the limit of the right-hand side
of vanishes along the sub-subsequence, as | — +oo. In particular, taking the supremum of
the left-hand side over ¢ € Lipy(2) with ||¢||Lip, < 1, we infer

| Det (Vg ) — Det (Vu)l1ip, ey — 0. (4.7)

Thus, (4.5) follows from the Uryshon property.

4.1 Maps with values in S'

We collect here some useful tools and results, mostly on Sobolev maps taking values in S'. A
large literature on this topic is available, e.g., following the results by Brezis and coauthors (see
for instance [13] and references therein). Together with the Jacobian determinant, it is useful
to introduce the notions of degree and lifting.

Definition 4.2 (Degree). Let B, C R? be a disc of radius r > 0, and v the outer unit normal
vector to OB,. The degree of a map u € WY (0B,;SY) is defined as

. - 1 8u2 . 8U1 1
deg(u, BBT) = 271_/8BT (’U/lﬁ U,2¥> d?‘l y (48)

where T := v+,

Notice that deg(u; 0B,) € Z.

Definition 4.3 (Lifting). Let u = (u1,us) € BV(Q;S!). We say that w € BV (Q) is a lifting
of u if €™ = (cosw,sinw) = (uy,uz) a.e. in §2.

The following result holds [20], |16, Théoréme 0.1, Remarque 0.1]:
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Theorem 4.4. Let u € BV (;SY). Then there exists a lifting w € BV (Q) of u such that

lwllpv < 2jull v (4.9)
If furthermore u € SBV (Q;S!), then w € SBV(Q).

Liftings w provided by Theoremsatisfy the following important feature: if u € W1 (Q;S!),
then

1
Det (Vu) = 5 Curl (Vw) in D'(Q),
see (2.2). Indeed, for any ¢ € C2°(Q),

1
(Det (Vu),p) = 2/ (ulvj‘u2 - uvaul) -Vpdx
Q

1

X (4.10)
= 2/ Viw - Vedr = ~(Curl (Vw), ¢).
Q

2

Let B = Bg(0) DD Q be an open disc, for some R > 0 big enough, and u € WhH1(Q;S!). We
claim that there exists an extension @ € W1 (B;S!) of u. Indeed, let w € BV (Q,S!) be a lifting
of u; since €2 has Lipschitz boundary, by [22, pag. 162] there exists w € W11(B\ Q) N BV (B),
with trace WL 9 = wlL 9. If we set

in €
we=4n M (4.11)
w in B\ Q,
the map
7= e (4.12)

is the map we are looking for. It is easy to see that by construction deg(w, 9B, (0)) = 0 for a.e.
r >0 with Q CC B,(0) C B.
In what follows, we will need the following standard density result:

Theorem 4.5 (Density of C* in WHi(A;SY)). If A C R? is a connected simply connected
domain with smooth boundary, then the class

{v e Wt 4;sYY:3neN, Hay,...,a,} CA v E COO(A\{al,...,an};Sl)}

is dense in WH(A;SY). Furthermore
Det (Vo) =7 Y difs, Vo€ WH(4S)NC®(A\{ay,...,an};Sh), (4.13)
i=1
where d; = deg(v; 0B, (a;)) for any r > 0 small enough.

Proof. See |11, Theorem 4 with k£ = 1], and |12, Lemma 2] for the second part of the statement.
O

The next theorem is an extension of |14, Theorems 3 and 3’| to non-simply connected domains
in R2. Even if it can be directly obtained from [14] and [12], for convenience we give a quick
proof; for a more detailed discussion we refer to [13, Chapter 14].
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Theorem 4.6 (Distributional Jacobian of S'-valued maps). Let u € WH1(Q;St). Then
1
—Det (Vu) € X(Q),
T
e., there exists a sequence ((z;,y;)) C Q x Q\ Diags such that 3. % do(vi,y;) < +oo and
Det (Vu) =TT Zj_:olo((smz - 5%’)'
Proof. We use an argument similar to [12, Lemma 12’]. Let u € W1!(B;S!) be an extension of
w as in (4.12)). Using Theorem we can select a sequence
(ug)r C {v e wh(B;sY):ImeN, Hay,...,a,} C B, ve C®(B\ {ay,... ,an};Sl)}
converging to @ in W11(B;R?). For all k > 0 we can assume that deg(ug; dB,(0)) = 0 for some

r > 0 big enough with Q CC B,(0) C B, and so we can also rewrite (4.13)) in the following way:

Nk

% Det (Vug) = > (6,6 — 0,00, (4.14)

i=1
for suitable (not necessarily distinct) points z¥, y¥ € B,.(0) and n;, € N. Furthermore, owing to

(4.5) we may supposelﬂ

1
| Det (Vugi1) — Det (Vug)||fat,B < oF Vk > 0. (4.15)

As a consequence, we can write Det (Vi) = Det (Vup) + Y125 (Det (Vugy1) — Det (Vauy)),
the series being absolutely convergent in LipO(B) Up to relabelhng the indices in (4.14]), we
assume that for k > 0

mi

Det (Vuy) =7 Y (6, — &y,) in Lipy(B)’, (4.16)
=1
ME41
Det (Vupy1) — Det (Vup) =7 Y (8a, —6y,)  in Lipy(B)', (4.17)

in such a way that

+oo
Det (V@) =7 » (dz, —0y,)  in Lipy(B).
i=1
At the same time, restricting to Lipy(2) the above linear functionals defined on LipO(B ), we can
replace the preceeding representatmns and assume that the points z; and y; in (4.16]) and -
belong to €, are of the form , and enjoy property (P). Up to a permutatlon of the points
(yi), one can further suppose that

Mp4+1

| Det (Vur)||as = ng 2, yi),  |IDet (Vupyr) — Det (Vup)llgae = > da(i,s).
i=mp+1

This, together with ([@.15), implies || Det (Vau)||gar < SiF da (@i, y;) < +oo, which concludes
the proof. n

$We use that || - [|aat,5 and || - ||Lip, (&) are equivalent.
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5 Density results in W11(Q; S

In this section we want to show the following density result, which is an immediate consequence
of Lemmas [5.3] and .5 below.

Proposition 5.1 (Density in WH1(Q;SY)). Let u € WH(Q;SY). Then for all € > 0 there
exists a map ue € WHH(Q; SY) with the following properties:

(i) Det (Vu.) = Wvazel(dxi — 0y,) i Lipy(Q) for some N, € N, with distinct and three by
three not collinear points x;, y; in §);

(i1) there exist positive numbers py, < € and py, < €, i =1,...,N, such that the discs of the
family {B,, (i), Bp,, (yi) : i € Q,y; € Q} are contained in Q and pairwise disjoint, (mﬂ

ue = €% in By, (xi), and ue = e~ 0y in By, (yi);
(i53) ||Ju — ue|lwr1 + || Det (Vu) — Det (Vue)l|gat < €.

Recalling the Deﬁnitionof the dipole map wy ,, we set v, ,, 1= e“rn € WH(Q;S1), which
satisfies

Det (Vvp) = m(0p — 0p).

Lemma 5.2 (Density: finite number of singular points). Letu € WHL(Q;SY) and write, by
property (P), Det (Vu) = 7> 5% (82, — 8y,), with xi,y; € Q, ; # yi, and S5 |z — yi| < +o0.
Then, for all € > 0 there exists a map uec € WH(Q;SY) such that:

(i) Det (Vu,) = WZZN;l(ézi — 0y,;) for some Ne € N;
(i1) ||lu — ue|lywr1 + || Det (Vu) — Det (Vue)l|gat < €.

Proof. Let nn > 0 and choose N,, € N so that Z;L:O&,H |z; —yi| <n/2. Given (x;,y;) with i > N,
consider the dipole map w; := wy, 4, € BVioe(R?) in (2.3)) and the cut-off function (X RZ 5 R
given by

@) = o Hdw 7)), me=2n (5.1)

(3
where o € C°°([0,1]) is non-increasing, p = 1 in a right neighborhood of 0, p = 0 in a left
neighborhood of 1, and |¢/| < 2. The support of ¢ satisfies

[spt(v])| <m0 + 2mile —yil Vi > Ny, (5.2)
By (2.4) one checkﬂ for the approximate gradients, that there exists a constant C' > 0 inde-
pendent of 1 such that
/ |Vw;|dx < C(n; + |zi — vil) Vi > N,,. (5.3)
spt (')

Let w € BV() be a lifting of u given by Theorem and consider its extension w in B as in
(4.11)); substracting a phase contribution to u, we then define in B

+oo
Wy =W — Z wi, u, = e € Wh(B;Sh).
i=Ny+1

9Here and in the sequel, 8, is the polar angular coordinate around .
0This estimate can be obtained integrating the right-hand side of (2.4) in the two discs By, (z;) and By, (vi),
and estimating |Vw;| by C/n; in the remaining part of spt(}).
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Let also u := €', in particular & = u in Q. Setting Vj, := U;sn,spt(¢]) C R? we infer, using

and (2)

+o0
C
Vulde = [ [Vuylde < [ (vaide+ Y (Slsptw] + Clo+ o i)
n n

Vi )

i=Ny+1
—+o00
<[ vade+C S i fai - i) (5.4
Vn i=Ny+1
—+o00
<[ valde+C Y i+ b= i) + 0, (1),
VpnQ 1=Ny+1

where 0,(1) — 0 as 7 — 07. The presence of @ is due to the fact that in general V;, \ © might
be nonempty. However, since |V, \ Q] = 0 as 7 — 0T, the last estimate in (5.4]) holds.
From this and the definition of n; in (5.1)) we conclude

o= nllwraaze) <2 [ [Vulde +Cnt o), (5.5)
n

where we use that u = u, on Q\ V.
Now, we claim that

N"I
Det (Vy) =7 Y (6, — 8y,), (5.6)
i=1
which implies in turn that
“+o0o +00 ™
I Det (V) — Det (Vi) |lgae = 7| Y (Gay = 6y llae < ™ Yo lwi—wil < 5
i=Np+1 i=Np+1

To show the claim, for all m > N,, define in B
m .
fmi=w— Z wi}, Uy 1= €V,
i=N,+1

Using an estimate similar to (5.4)), (5.5)), we see that v, — u, in WHH(€Q;R?) as m — +o0, and
therefore, owing to the same observation leading to (4.5)),

ml—i>r£oo | Det (V) — Det (Vuy)||Lip, ) — 0 (5.7)
and also
Det (Vvp,) — Det (Vuy,) in D'(Q). (5.8)

On the other hand Det (Voup,) =7 Zf\;"l (0z; — Oy,) + ;LZO;H((SIZ. —dy,), and since the second
term tends to zero in the flat distance, we conclude
N”I
Det (Vvm) = 7Y (5, — 0y,), in Lipy(Q)'. (5.9)
i=1

In particular, from (5.8) and (5.9), (5.6) follows. From this and (5.5) it suffices to choose
n = n(e) small enough to guarantee that (ii) holds. Hence setting N. := N,, and u, := u, the

thesis follows. O
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Now we refine the approximation of Lemma, [5.2

Wzi]\il(&xi — 0y,) is a representation as in (3.4) satisfying property (Pg) in Section |3.1], with

Lemma 5.3 (Density: not collinear points). Let u € W1(Q;S!) be such that Dei?u) =
2, €Q, x; #yi, i =1,...,N. Then, for all ¢ > 0 there exists a map ue € WH1(Q; St such
that:

(i) Det (Vu.) = ﬂZf\;l(éx; — Oye) and the points xf, yi in Q0 are distinct and three by three

not collinear;

(11) ||u — uellwra + || Det (Vu) — Det (Vue)|gas < €.

Proof. Define
IT:={ie{l,...,N}:z; € Q}, I":={ie{l,...,N}:y; € Q}.

Fix n > 0. For all i € I'* let us choose Z;, 7; € Q with 7j; := x; and in such a way that the points
Z;, i € I, are all distinct, three by three not collinear, and satisfy

STz -wl <. (5.10)
el +

For all i € I'", let W; := wz, 3, be the dipole map defined in (2.3), and let ¢} : R> — R be the
cut-off function given by

vi(@) = o dle 7))

where g is as in the proof of Lemma In particular ;' is Lipschitz continuous with Lipschitz
constant % and is supported in V" := {z € R? : d(z,7;4;) < n}. Supposing n > 0 sufficiently
small, we have V" C Q. Now, using also ([5.10), notice that

V' =7’ + 2|3 — G| < Cn®  Vielh, (5.11)

where C' > 0 is a constant independent of ¢ and 7. Further, by (2.4)) and (5.10]), we deduce that
there is a constant, still denoted by C' > 0, and independent of 7 and ¢, such that

/ |V |de <Cn  Viel. (5.12)
‘/i”?

Similarly for all i € I~ we choose Z;,y; € €2 with Z; := y; and in such a way that the points Z;,
i€ I, and ;, i € I~ are all distinct, three by three not collinear, and satisfy

> F -l <. (5.13)

<

Also in this case we introduce, for i € I™, the maps w; := wz, 5, and @] : R? — R, the latter
defined as ¢} (z) := max{0,1 — %d(x, Z;;) }, which enjoy the same features of ¢'; in particular,
the supports W' of ¢, i € I~, are contained in  and have Lebesgue measures bounded by
Cn?. The same estimate as in (5.12)) holds for w;.

Eventually, let us consider a lifting w € BV (Q2) of u provided by Theorem and (4.11));

we define

- N5 UFod W
Wy 1= w + E P w; + E OXSTITR vy = e,

el t iel—
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Owing to the fact that wy, = w out of U;c;+ V;" U U,e;- W/, it is immediate that v, — u in
LY R?) as np — 0T, Since |Vv,| = |[Vuwy,| a.e. in Q, we can estimate

2 . _ N _
[Vop| < [Vw[+ = Z @il Lo + Z lwillpe | + Z |Vw;| + Z |V
T\ iert iel~ iert iel-
From this, in view of the fact that v, = win Q\ (U;c;+ V;"UU, e~ W), using (5.12)) we conclude

A
[Voy = Vullpr < [[Vullpia —|—C’| ol +Chn.

The right-hand side being negligible as 7 — 07 (see (5.11))), we conclude

lim v, = uin W-1(Q;R?). (5.14)

n—0~+

Furthermore, using (4.10)), we readily see that

1
Det (Vv,) = fCurl(an) 3 Curl (Vw) + Z Curl (v]'w;) + Z Curl (

ielt iel—
=Det (Vu) + Y Det (Vog,z)+ > Det (Vog 7).
iel+ el
which implies
Det (Vu) — Det (Vo) = Z Det (Vuz, 5,) Z Det (Vvg, 5,)
iclt i€l
= Z (651 - 5@) - Z (551 - 6@1)

ielt+ i€l

in D'(2). Thus, using and (5.13)), we get
| Det (Vu) — Det (Vuy)|lfat < 2.

In particular, from this and (5.14)), setting u, := v, for n > 0 small enough, the thesis follows. [

Remark 5.4. The noncollinearity condition will be used in the proof of Theorem to guar-
antee the validity of condition (6.2)).

The approximating maps in Lemma can be suitably refined around the singular points
as follows.

Lemma 5.5 (Density: behaviour near w;, ;). Let u € WH1(Q;SY) be such that Det (Vu) =
T E?Zl(ézj —0y;), with xj,y; € Q, j=1,...,m; let us assume that the points x;,y; which belong
to Q are distinct and three by three not collinear, as in the thesis of Lemmal[5.3 Then, for all

€ > 0 there exists a map ue € WH(;SY) such that:
(i) there exist positive numbers p,, < € and py, < € such that the discs of{Bij (), By, (yi) :
xzj € Q,uy; € Q} are contained in Q and pairwise disjoint, and ue = ¢ in By, (x5),

Ue = e Wi in, prj (yj);
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(11) ||u — ue|lwir + || Det (Vu) — Det (Vue)||far < €.

Proof. Let {zj : j = 1,..., N} be the set, suitably relabelled, of those points among the z;’s
and y;’s which belong to 2. Moreover, let 7 > 0 be small enough so that the discs B, (z;) are
contained in §2 and pairwise disjoint. We can choose r > 0 arbitrarily small so that uL 0B, (z;) €
WLLOB,(2;);S!) forall j = 1,..., N. We show how to modify u in one of these discs, say B;(21),
and then proceed similarly for the other discs.

Let us assume without loss of generality that z; = ; = 0 for some j (i.e., z is a positive pole
at the origin), and write B, = B,(0) in place of B,(z;). Since in B, we have Det (Vu) = mdy,
it is not difficult to see that

;/BB (u1 aalf - u%ul) dH' = 7 deg(u; 0B,) = (5.15)
for all s € (0,r) such that ul_0Bs € W11(0B;S!). By the mean value theorem, we fix
d=d; € (r/2,r) so that

/ |Vu|dH! < / / \Vu|dH'ds = / |Vu|dz, (5.16)
0By ’f‘ 2 J0Bs T\BT/Z

and ul_ 0By € WH1(0By;SY). Let 6, € BV (0By) denote a lifting of ul_ 9By such that, owing
to (5.15), 6, has a unique jump point (say at (d,0) € 9By) with [u] = 27. Consider a polar
coordinate system (p,0) around 0, and define H : Bg\ Bgjs — R as

d— |z|

2| —d/2
) — 4 0(a)

The function H has a jump of size 27 on the segment with endpoints (d/2,0) and (d,0). Also,
e e Wh(By\ Bgy2), it equals u on 0By and ﬁ on 9B;/5. We set

H(z) =26, (d

|z

u(x) if x € Q\ By,
uc(z) == @ if x € By \ By,
= ifzx e Bd/27

|]
in particular u. € WH1(Q;S!). Let us estimate the gradient of H; we have
dx Id — |%| ® |"%|
VH (x) =26, ( ) ( (lx| — d/2)
|| ||
da;) x — |z 0 x

2]/ ﬂ—i—VG() 1 (@ma

where 6, denotes the (abs%utely continuous part of the) derivative of ,,. Therefore, using that
|z| € (d/2,d) for x € By \ Bgys, there is a constant C' > 0 independent of d such that

(G)l+ %

+ "l for a.e. x € By \Ed/Q.
On the other hand, since e = u on By, we have

«()] = [ ()

+29u<

\VH (z)| < 2|0,

, and integrating on

By \Ed/Q we get

/ |Vueldr = / |VH|dx < Cd+2 /
Ba\Ba» Ba\B2 d/2 JOBs

= Cd+(]/ / |Vu|dH'ds < Cd + C |Vul|de,
d/2J0Bq Br\B, /2

Vu(|x|>‘d7-[ (z)ds
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where we have used (5.16) and that /2 < d < r in the last inequality.
Now, applying a similar modification of u in the other discs centered at z;, we can finally
estimate the distance between u and u, in WH1(€;R?), namely

[lw — el < nar?,

N N
HVu—VmM4§NCd+C§:/ nmmx+§:/
j=1 Br(z;) j=1 ij/2(zj)

v(éme

Since r can be chosen arbitrarily small, the sum of the above right-hand sides can be bounded
by €. Observing that Det (Vu) = Det (Vuc), the thesis follows by setting p., := d;/2, for all
j=1,...,N. O

6 Proof of Theorem [1.1]

In this section we prove Theorem Recalling the definition of || - ||gat,o in (1.3), we start with:
Theorem 6.1. Let u € WH(Q;S!). Suppose:

(i) LDet (Vu)= Zfil(ém —dy,) =: T admits a representation in Q satisfying (Py) and such
that the points x;,y; belonging to Q are distinct and three by three not collinear;

(i1) there exists R > 0 such that the discs Br(x;), Br(y;) with x;,y; € Q, are contained in

and pairwise disjoint, and u = e in Br(z;), u=e " in Br(y;).

A(u, Q) < / V14 |Vul? dz + ||[Det(Vu)|gat,a- (6.1)
Q

Proof. We need to exhibitiﬂ a sequence (u,) C C1(Q;R?) converging to u in L*(Q; R?) such that
liminf, ,o+ A(ur, Q) is less than or equal to the right-hand side of (6.1)).

For the measure T we consider currents Rp,in € Do(£2) and Spin € D1(2) given by Lemma
After relabelling, we write

Then

k
Rminzzo—iéz“ o; € {—1,+1}, ZiGQ, kSN, Smin:Z[[yj«Tjﬂ, JC{I,...,N},
i=1 jeJ

with T' = Rpin + OSmin (it may happen that k& = 0, in which case we understand Ry, = 0, or
that J = 0, in which case Spyin = 0). By Lemma (b), the segment Z;y; is contained in €,
with the only (possible) exception of an endpoint (thanks to condition (P¢)). We will work in a
disc B DD (), that we fix from now on.

Take r € (0, R/2), and consider the set {Bo,(z;) : i = 1,...,k} (the z;’s are among the z;,
y; and, being contained in €2, satisfy assumption (ii)); these discs are contained in €2, and the
tubular neighborhoods

Ty(7575) :== {z € B : d(z,7;7;) < t}, JjeJ

of Z;y; are disjoint from this family of discs. Moreover, by hypothesis (i), due to noncollinearity,
the segments Z;y; are pairwise disjoint (see Lemma [3.6[), and so for all ¢ > 0 sufficiently small

j17j2 S J7 jl 7& j? = Tt(%lyﬁ) mTt(xJQyjz) = @ (62)

HSee (6.10) below.
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Set also

Vi = | Biamm). (6.3)
jeJ

Ifk>1, foralli=1,...,k we fix a simple polygonaﬂ curve 7., starting at z; and reaching
the external boundaryﬁ of 0. Curves 7;,’s can be chosen mutually disjoint, and disjoint
from V. Further, it is convenient to extend +,, (keeping the same notation) in order to reach
OB transversely. We set To,(7v,,) = {z € B : d(z,v;) < 2r}, i = 1,...,k, and observe
that Ba,(z;) C Tor(vs,) for all i = 1,... k. If r is small enough the elements of the family
{To (7)1 =1,...,k} do not intersect each other, and moreover (choosing smaller ¢ and r if
necessary) To,(v,,) NV = 0 for all i = 1,..., k. Consider also the connected curves 7, and
vz which run parallel to v, at distance r, defined as

73?7“ = {Jj‘ S TQT’('Yzl) \ BT’(Zi) : 8(1‘7’)/ZL) — j:r,a}7

where d denotes a signed distance from ., (defined in a suitable neighborhood of 7.,). For every
connected component 9y82 of 9N different from the external boundary (¢ € L, L some finite set
of indices), we consider a simple polygonal curve wy C B connecting 9y to 0B, disjoint from
Vi, from UY_ Ty, (y,) and from 9pQ, ¢ # ¢. Extending slightly wy inside €, Q the region
outside Q and enclosed by 0,€2, we assume that wy starts at a point Ay €  with Ba,(Ay) C Qy,
for all ¢ € L. Together with this we consider the connected curves w,”" and w,”" which run
parallel to wy at distance r from each side, and join B, (Ay) with the external boundary,

wzt’r C {z € B\ Br(Ay) : d(z,wy) = 1},

where, again, d denotes a signed distance from w; (defined in a suitable neighborhood of wy). We
may assume, choosing smaller 7 and ¢ if necessary, that the curves wy, wét’r are pairwise disjoint
and do not intersect V; U Ui?:ngr (72;) UUp£00p 2. Finally, we define

k k
B* := B\ [U B,(z) U U z7;y; U U 7;5’7’ U U wzt’r U U BT(AK)] (6.4)
i=1 =1

jed Lel el

Using our assumptions it follows that BT and B~ are connected; however, they are not neces-
sarily simply connected. By construction, for any closed simple Lipschitz curve o : S* — QN B*
such that u® :=uoa € WH(SL;S!), we have

1

1 1L .
5 Sl(uf‘v uy —usV-uf) - & ds =0,

since the left-hand side is the degree of u on the boundary of the domain enclosed by the support
of a, and such curves cannot enclose any connected component of B\ €2 due to the presence
of Uy, we, and cannot enclose any single pole due to the presence of 7.,’s (note that they can
enclose some segment Z;7;). In particular, there exist two 1iftingﬁ w4 of u with

w, € WHH(Qn BT), w_ € WhH(Qn B7).

121 e., not self-intersecting and obtained by a finite number of concatenations of segments.

1390 is, in general, not connected, and consists of a finite number of loops. The external boundary of 9 is the
loop whose interior contains all the others.

1if J =0, i.e., no dipoles, and if Q is simply connected, then we can take w; = w_.
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For w, and w_ we consider (not-relabelled) extensions wy € WH1(B*) and w_ € WH1(B™) as
in (4.11). We are now going to suitably smoothen these liftings through a function w,, that will

allow us to eventually define the map w, in (6.10)).
We may assume that

k k
Wy = W- on BT\ (U T (7z,) U U Tr(‘*’ﬁ)) =B\ (U Tr(72,) U U TT(W€)> , (6.5)
1=1

i=1 lel lel

where T,.(v,,) C {x € B : d(x,v,,) € (—r,r)} is the region enclosed by v;,;" and v;," and
T (w) :=={zx € B\ UperBr(Ay) : d(z,wp) € (—r,7)} is the tubular neighborhood of wy enclosed
by wZ’r and wé_’T. In addition, since the degree of w around z; is o;, we se that

[wi] =2m0; H'—ae. on~f", [w_]=2m0; H'—ae on~., " Vi=1,...,k. (6.6)

Furthermore

[wi] = [w-] = 2x H' — a.e. on T;y; Vi€ J,
and

[we] €270Z  H' —ae. on | Jw; "
Lel

From it follows that

wy =w_ +2wo;  a.e. in T(7s,) Vi=1,...,k. (6.7)
Similarly, given ¢ € L, there exists hy € Z such that

wy =w_ +27hy  a.e. in T (wy). (6.8)

Finally, we extend wx to 0 on Ule By (2i) U Uper, Br(Ag), and mollify ws using a kernel o,
supported in B, /4(0). In particular, using also (6.7) and , we infer that the traces of the
mollifications on ., and wy satisfy

Wy * 0p = W_ * 0 + 2705 Hl-a.e. on Vi

Wy * 0p = W_ * 0p + 2hy H'-a.e. on wy,

and therefore, setting B, = {z € B : d(x,0B) > r} and defining w, : B, \ (UF 1y U
UF_ By (21) U Uperwe U Uper Q) — R? as

(wix 0 in By \ (UL T3 (92)) \ (U1 Br(20)) \ (UeTr (wi) \ (Uee),

w_x o, in U {z €T (v,)\ Br(2i) : d(,7s,) € (0,7)},
(72 \ Br(2i)  d(w,7z,) € (=7, 0)},

(we) (z,wp) € (0,7)}

(we) (z,w) € (=1, 0)},

we see that w, € C®(B,\ ( " 17z U LJZ 1Br B, (2) U Uperwe) UUperQy), and

(3

2
wy = wy ko in UL {zeT, 2

w_ x o, in Uper {z € T (wy E

\
\
\ d
(wi x 0, in Upep {x € Tr(we) \ Q: d

0 - z,w

[wy] = 2mo; Hl-ae onny,, i=1,...,k,
[wy] = 2mhy H'-a.e. on wy, £ € L. (6.9)

5The degree around a pole is computed using counterclockwise turns, and this implicitely determines an
orientation of the jump of w4.
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Eventually, for all i = 1, ..., k, by the assumptions on u and the choice of r € (0, R/2), we have
u(z) = €% for x € Ba(2;) \ {2} for suitable o; € {#1}.
Thus

w4 — Uiezi € 217 in BQT(ZZ‘) \Br(zi).

Assuming without loss of generality that 6, jumps on v,, in Bar(2;) \ Br(zi), by (6.5)), for all
1=1,...,k we find an integer (; such that

wy =w_ =030, +27¢  in Boy(2) \ Br(zi) \ Tr(7z,)s

whereas in Boy(2;) N Tr(7z,) \ Br(z:) we have

wy = 0i0,, + 27(; — 270, in {z:d(z,7,) € (0,7)},
wi = 040, + 2w — 2m(0o; + 1) in {z:d(z,v,) € (-r,0)},
w_ = 040, + 27¢; in {x:d(z,7,) € (0,7)},
w_ = 0i0,, + 2m(¢; — 1) in {x:d(z,7,,) € (-r,0)}.
Therefore
wy — 00, % 0p € 277 in (B%T(zz) \ B%T(zl)) \ T (72)
wy — 0i0z, * o € 277 in (Bs,(2i) \ B, () N T (7z,),

where U,@\Zi is any lifting of é:zi

o which is continuous in T} (7, ).
We introduce a nondecreasing cut-off function # : [0, 27] — [0,1] of class C'* such that ¢ = 0
on [0, %r], ¥ =1on [%r, 2r], with ¢’ < % Finally, we define

iwy () : — k .
e () = {e if z € B\ Uj_; Bar(25), (6.10)

e™r@ah(|x — zj|)  if 2 € Bay(2;) for some j = 1,...,k,
where we extend w, in B to 0 outside its domain. In particular u,(z) = ei"ié\zi*grw(la: — z|) for
x € (Bgr(zi) \ B%T(zi)) N T (7z,), for any i = 1,...,k. We also observe that if we suppose that

the kernel g, is radial, a direct computation shows that GAZZ, * 0p = GAZZ, in Bs, () \ Ba,(z). So
3 3

wn(@) = (o = zl) Vo € (Bs,(2) \ Ba,(20) N Ty(3).

Now, u, is of class C!, |u,.| < 1 and it is straightforward that u, — u pointwise almost everywhere
in Q as r — 0T. In particular, lim,_,o+ u, = u in L'(2;R?).

We are now in a position to estimate the graph area of the map w,. In order to estimate it
in Q\ U; By, (z;) it is convenient to consider a lifting

k

we W (B\ (J0s UB ) u [ 77 U U e UBL(A)),
i=1 =2 tel

which coincides with w in the set in (6.5). Such a lifting w € BV (Q\ UL, B,(z;)) satisfies

[w] = 27o; Hl-ae ony., i=1,...,k,
[w] = 27 H'-a.e. on Ty, j € J,
[w] = 27hy H'-ae. on .., L€ L.
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Notice that lim,_,g+ w, = w strictly in BV (V}) (for ¢ small enough as in (6.3])), since w, = w * g,
on these sets. In particular, by classical results (see for instance |2, Theorem 2.39]) one has

/\/1—|—|Vur]2dx:/ \/1—|—|Vwr|2dx—>/ V14 |[Vw|2dz + | Dw|(V})
Vi
/\/1—|—|Vu|2dx—|—27r2\azj il

JjeJ

(6.11)

as r — 07. Concerning the integral over 2\ V;, using that u, takes values in S' in Q\ Ba,(z;),
we can estimate

/ \/1+\Vu7«]2+]det Vu,) \2d:n</ \/1+|Vur2dx+/ | det(Vu,)|dx
OV B

2'r zl)

/ V14 |Vu,|?dx +/ 1+ |Vu, |?dx +/ | det(Vu,)|dx. (6.12)
Q\W\Bzr ZrL B2'r Z'L Bar Zl)
Let us estimate the last term; so fix ¢ € {1,...,k} and assume without loss of generality that

o; = 1. In By,(z;) we then have

Uy = (Cos(ezi)7Sin(ezi))w(pzi)7

where (p,,0,,) is a polar coordinate system around z;. Thus

V' (ps) cos(0,)  —2sin(.,)

Yy (ps,,0-,) = 6.13
S TP “”Zﬂ cos(0-,) (019
and therefore det(Vu,(pz,,0z,)) = ¢/ (pz,)1(p2,)pz,}, which gives
5,
/ | det(Vu,)|de = 27 \ P(p)Y' (p)dp = 7. (6.14)
BZT(Zi) §T

Moreover 3) implies |Vu,| < o ZI in Ba,(z;). In particular,

/ V14 |Vu,|?de — 0 asr — 0.
Ui Bar(2i)

Finally, due to the fact that Vu, — Vu in L1(Q\ V;; R?*?) we infer

\/1+\Vur|2dx—>/ 1+ [Vul2da. (6.15)
NV:

Allin all, we have proved that the right-hand side in formula ((6.12)) tends to fQ\‘/t 1+ |Vu|?dz+
km as 7 — 07. Thus, from (6.11)) and (6.12) we get

liminf/ \/l+|VuT]2—i—\det Vu,) |2d:1:</ \/1+!Vu\2da:+k7r+27r2|x] il

—0t
" jeJ

/Q\Vt\UiBzr(zi)

which, in view of the results in Section |3 concerning || - ||gat,qa, gives (6.1]). O

We are now in a position to conclude the proof of Theorem .
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Proof of Theorem[1.1]. Let u € Wh1(Q;S!). In view of Proposition we can pick a sequence
(ug)p € WHL(;SY) such that:

(a) Det (Vuyg) = TFZ;Nzkl((Sx? - 5%@) for some N € N, with each uy satisfying (i) and (ii) of
Proposition
() |lu — uk|lwra + || Det (Vu) — Det (Vuy)||gat < £ for all k € N.

Hence, owing to (a), we are in a position to apply Theorem ﬂ to each ug, so that

Alug, Q /\/1+\Vuk\2dx+\|Det (Var)lfare Yk >0, (6.16)

and therefore

A(u, Q) < liminf A(ug, Q) < lim / 1+ |Vug|?dx + || Det (Vug))|lgat, a)

k—+o00 k—+o00

:/ V14 [Vul?de + || Det (Vu) |a o
Q

(6.17)

7 On the countably subadditive interior envelope of A

As we have seen, the nonlocality of A(u,-) is unavoidable. Therefore, it seems interesting to
consider the largest countably subadditive set function non larger than A(u,-), as defined in
(1.8). We have the following integral representation result:

Proposition 7.1 (“Double” relaxation). Let u € WH1(Q;S!). Then

A(u, Q) = /Q V14 |Vul2da. (7.1)

Proof. Since A(u,A) > [, \/1+ |Vu|?dz for any open set A C €2, we only need to show the <

inequality in ([7.1)).
We know from Theorem [4.6{ that A := 1 Det (Vu) = 3% (65, — dy,) with 37 [z — yi] <
+o0. Fix € > 0 and N, GNsothat E+N+1|xi—yi| < €. Set

+oo

Aci= D (6 — by,).

i=Ne+1

Then, as ||A¢|laat < €, we infer
| Acllfiat,a < 2€. (7.2)

Let {zx : k = 1,...,m¢} be the set of points in {zy,yr : k& < N} which are contained in .
Choose mutually disjoint discs Ba,(2x) C Q for k =1,...,m,, and set

Ge == Q\ (U By (2));

notice that G, and Ba,(2;) overlap on annuli of radii r and 2r. By definition of j(u, -) and
using Theorem [I.1], we have

A(u, Q) <A(u, G.) + ZA (u, Bar(21)) / 1+ |Vu|?dz + || Det (Vu)| gat,0.c.

k=1

+ Z (/B \/1+ |Vu|?2dx + || Det (Vu)\|ﬁat7a732r(2k)) .
27 Zk:

28

(7.3)



We claim that

Me
I Det (el + 3 1 Det (Tl a o) < 57 (74)
k=1

for r > 0 sufficiently small. Since the discs Ba,(z)) are mutually disjoint for k& > 1, we see that

HA ||ﬂataU;€n 1B2r zZK) Z ||A I—BQ’I’(Zk)”ﬂat(szr(zk) (75)
k=1

whereas, recalling ,
[Acllfat,o,cc < [|Ae]lflat,a < 2e. (7.6)
In Bo,(21), connecting z; to OB, (21,) with a segment, we see that
| hi02, |fat,a < 2|hg|r, kE=1,...,me,

where hy € Z denotes the multiplicity of z; in the distribution A — A, = kN;I((Sxk — 0y, )- On
the other hand, by construction (A — A¢)L Ba,(2x) = hgd, and therefore

AI—EQT(Zk) = Ae I—EZT(Zk’) + hkdzka

which implies
1A a5 (o) < 1A Bor (21 a0 + 217

Summing over k = 1,...,m,, by (7.5 one gets

Me Me Me
DA gt o e < 22 1L Br () a0 B ) + D 21l
k=1 k=1 k=1

Me Me
I o + 32l 2+ 2l (7
k=1 k=1

where the last inequality follows from (7.2), since ||Acl|g,; U Bay () < | Acllfiat,o- From (7.6)
we conclude

I Det (V) + 3 1Det (V) a5 o) < A+ 75 2l
k=1 k=1

for any r > 0 small enough, and ([7.4)) follows.
Now, from ([7.3]), we conclude that for every r > 0 sufficiently small we have

Au,Q) < / \/1+|Vu\2d:c+2(/ \/1+|Vu]2dx>+57re
Ba, Zk
/ 1+ yvu\2dx+2/ V14 [Vul2dz + 5re,
B

2r (26)\Br(21)

which in turn (since Vu € L'(Q;R?*?)) implies, letting r — 07,
A(u, Q) < / V14 |Vul2dz + 5re.
Q
By the arbitrariness of € we have ¢:4(u, Q) < [ v/1+|Vu|?dz, and this concludes the proof. [
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As a direct consequence of Proposition we readily get the following:

Corollary 7.2 (Integral representation). Let u € WHL(Q;SY). Then the set function E —

A(u, E) defines a Borel measure absolutely continuous with respect to the Lebesque measure L2
and coincides with

j(u, E) = / 1+ |Vul?dzx for all Borel sets E C Q.
E

In order to prove Theorem we now extend Theorem to the case of open sets obtained
from Q by removing a finite set of points:

Theorem 7.3. Let C := {c1,...,cn} be a finite set of distinct points of Q. Let u € WH1(€;Sh)
satisfy (i) and (ii) of Theorem and suppose that

{dist(xi, 00) # |x; — cxl
dist(y;, Q) # |y; — k|

and that the points x;,y;,cx, t =1,....,n, k=1,..., N, are three by three not collinear. Then

A, 0\ C) < / VI [VulPdz + [Det (V) as a0
Q

Proof. Fix p > 0 small enough so that the discs Egp(ck), k=1,...,N, are contained in €}, are
mutually disjoint and, for each z; or y; € Q, we have z;,y; € Q\ (UY_, Bos(cy)), respectively. For
all p € (0,2p) let us denote Q, := Q\ (U}, B,(cx)), and let R?. € R;(€2,) and S”. € S(12,) be
minimal currents as in Lemma|3.6, with 7 = 1Det(Vu). In particular, R, = Z?_l 0i05, (notice
that, possibly reducing p > 0, Rmm = Rmm becomes independent of p), SP. =Y jeJ [Pid;]
and there might be points p; = pj or q; = q] on 0B,(cy) for some j and k. However, since by
assumption the points z;, y;, ¢ are three by three not collinear, it is easy to see that the points
in {p;,q; € 0B,(cx),for some j,k}, if any, are distinct. In particular, the segments p;q;, j € J
are pairwise disjoint. Finally, as a consequence of , we may assume that if n” € 9B,(cy) is
one of the points in the set {p;,q; € 9B,(c;) for some j,k}, then

Vk=1,...,N,Vi=1,...,n. (7.8)

n’ — cx as p— 0T, (7.9)

Using Rpin and Smm, we can now consider the sequence (uf) C C*(€2,; R?) found in the proof of
Theorem [6.1] (see ) with Q replaced by 2,; so, for any m € N, we find r,, € (0,2p) small
enough so that vf, := uy  satisfies

1
lvp, — ull L) < oo
(7.10)
A, ) / 1+ [Valde + [Det(Va) lat a2, +—
Furthermore, as lim,+oc v, = u in WH1(Q,;R?), we may also suppose
1
/ Vb lde < / | Vuldz + —. (7.11)
p\Q2p QP\Q2p m

Now we suitably modify v, and extend it to Q \ C: For any k = 1,..., N, we pick a radius
sk € (p,2p) so that

/ |Vl | dH' < 1/ | Vb |da. (7.12)
0Bs, (ck) P J Bap(ck)\Bp(ck)
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Then we define

o if z € Q
o, (2) == vp (=) e L (7.13)
vm(cg + sp—2) if x € By, (cx) \ {cx}, kE=1,...,N,

|z—ck|

where, with a little abuse of notation, we denoted €2, := Q\ (U}, By, (cx)). From (7.11]) we get

/ VoL dx:/ Vol | da g/
st\§2p st\§2p Q \ﬁ

p\IE2p

1
|Vl |dx < / |Vuldz + —.
a m

Qp 929

On the other hand, for any k =1,..., N,

Sk
/ V3, | da —/ / |Vt | dH! ds = sk/ VP, | dH?,
Bg, (ck) 0 OBs(ck) 0Bs, (cx)

where the last equality follows since, by definition, v, is 0-homogeneous in B, (c), and the
integral faBs(ck) |Vor,| dH! does not depend on s € (0, s). Using (7.12)), and since s < 2p, it
then follows

/ |Vt |dx :/
2\ Q2 Qs \Q2

Sk

|Vob |dx < 2/ B |Vu]dx+%. (7.14)
)

N
VP, | da + Z/
2p k=175

k Sk (ck P\QQP
Furthermore, using that |v),| < 1, also [v,| < 1 and it easily follows
limsup |07, — ullp1re) < limsup |07, — ul|p1@\Q,,r2) < 8T N p2. (7.15)

m——+00 m——+00

Since in 2, \ Qg, the map vf), takes values in S!, using (7.10) and (7.14) we can estimate

N
2
A, 00\ C) < A, 9\ (UY By (c)) + 3 ms? + 2/ Vulde + 2
k=1 2\ 22 " (7.16)

3
g/ S+ [Vul2de + HDet(Vu)Hﬁat,me—i-Q/ Vuldr + >
Qp

QP\QQP

We have proved that for every p > 0 small enough we can find a Lipschitz map o5, : Q\ C — R?
satisfying ([7.16)). In particular, choosing a sequence pp \, 0, by a diagonal argument we find a
sequence (vp) of Lipschitz mapﬁ on Q\ C to R? satisfying v, — u in L'(;R?) (by (7.15)),
and

— 3
A(vh,Q\o)g/ V14 Vulde +|Det(Va) a0, +2Dul(Qp, \ Dap) + 7. (7.17)
Qph

Letting h — 400, we use that Det(Vu) is a measure so that it is easy to see, owing to (2.8)),

IDet(Vu)||nat,a.0,, = [Pet(Vt)lgat,a0\c;
then the thesis easily follows. O

Using Theorem [7.3] and a density argument, we can prove the following:

%Even if vy, is not C', by a density argument finding such a sequence is sufficient (see |3, Proposition 3.5]).
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Theorem 7.4. Let C be a finite set of distinct points of Q, and u € WH(Q;St). Then

A, 0\ C) < /Q VI [VulPdz + [Det(Ve) as acnc-
Proof. 1t is sufficient to argue along the lines of the proof of Theorem replacing, in (6.16]),
| - [lfat,a bY || - llgat,a,0\c- More specifically, in view of Proposition e can pick a sequence

(up)r, € WHH(Q;S!) satisfying (a) and (b) of the proof of Theorem [1.1} and (7.8). Applying
Theorem [7.3] to each uy, we obtain

X(uk, Q \ C) < / \/ 1+ ]Vuk\Qda: + H Det (VU]C)Hﬂama’Q\C vk > 0. (7.18)
Q

By lower-semicontinuity we conclude

A(u, Q) <liminf A(ug, Q) < lim </ v/ 1+ |Vug|?dz + || Det (VUk))||ﬂat7a7Q\C>
Q

k——+o00 k—4-o00
:/ 1+ |Vul2dz + || Det (Vu))||fat.os
Q

where the equality is obtained since by (b), ux — u in WH(Q; R?) | |Det(Vu)—Det(Vug) || gay —
0, and || - ||fat,o is continuous in the flat metric. O

(7.19)

Theorem 7.5. Let u € WHL(Q;SY). Then for every e > 0 there exists a finite set C, of points

of Q such that
A, 0\ C,) < / J1+ [Vulde + e (7.20)
Q

Proof. We know that 2 Det (Vu) = 375 (6, — 6y,) with 3% |z — yi| < +00. Take N, € N
so that Y% |1 7 — il < o5, and let Ce:={z, € Q: 1<k < N} U{y, € Q:1<k < N}
Set T := Det (Vu)L(Q\ C), so that ||T|[gat,a,0\c. < €. Then Theorem 7.4 implies (7.20). [

Using Theorem we can positively answer to a modification of a conjecture by De Giorgi
[17], adapted to the context of S!-valued Sobolev maps.

Corollary 7.6. Let u € WH(Q;SY). Then

A(u, Q) = inf A(u, )\ O).
CCQHO(C)<+00

Proof. From Theorem [7.5] we get

inf A(u,Q\C)g/\/1+|Vu|2 dx = A(u, Q),
Q

CCQHO(C)<+00

where the last equality follows from Corollary On the other hand, for any finite set C' C 2,
we know [1] that

A(U,Q\C)Z/ 1+ |Vul? cl:U:/\/1+|Vu|2 dxzj(u,ﬂ).
o\C Q
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8 Appendix

In this appendix we collect a first standard result, and a proposition with an independent
interest.

Lemma 8.1. Let A € Lipy(Q2)'. Then

sup (A, @) =inf {\Rm +a Sl : (R,S) € Do(Q) x Di(Q), A =R+ as}

peC(Q)
ichl
”SOIILPOa (81)
= sup (A ).
©€Lipy ()
IlLipg 0 <1

Proof. We adapt the arguments of [19, page 367]. Let R € Dy(2) and S € D1(Q2) be such that
A =R+0S in Dy(). Then, as o = 1,
(A, @) < [R()] +[S(dp)| < (|Rla +2[S[a)|¢llLipg.a Ve € Ca(9),
so the inequality < holds in the first line of (8.1]). To prove the converse inequality, set
Y= {(p,¥) € Ce() x CZ( R}

endowed with the norm ||(¢, )|y := max{||¢||r, 2||¥)|L}, and define the linear injective
operator

Q:C) =Y, Qp):=(2Vy) Vel
Since Q(CL(Q)) C Y, we have

(A, Q71 (¢, Vo)) < [Mlaatall (o, Vo) ly Vo € Co(9),

and therefore we can extend the linear functional A o Q7! : Q(C1(f2)) — R to some linear
functional L : Y — R with

L, ¥) < [[Allgatall(es ¥y V(g 9) €Y. (8.2)

Now we define
R(g) := L(p,0)  Vp e CLR),
S() == L(0,%)) Vo € COLR?),

o that, from (§2), [|(¢, )y < 1 implies R(¢) + S(¥) = L(¢,6) < [Algasa In particular,
R € Dy(2), S € D1(Q), and passing to the supremum,

|Rlo + 2[S]a < [|Allfat,a-

Since R(p) + S(dp) = L(p, V) = (A, @) for all p € CL(Q), it follows A = R+ 95, and the first

equality in (8.1) follows.
To show the second equality in (8.1]), we first observe that, from the first equality,

sup <A7§0> < HAHﬂat,aa
peC(Q)
lellLipy,a<1

and so < holds. On the other hand, if R € Ry and S € S are such that A = R+ 95 in Dy(1Q2),
then

(A )| = [R(p)] + [S(dp)] < ([Rla + 2|S])ll¢llipy.a Ve € Lip(%),
so also the inequality < holds, thanks to Corollary O
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The next result has been used in the proof of Proposition [3.3] and is based on Lemma,|3.6

Proposition 8.2. Let T = Y7 (05, — 0y,) € D'(Q) be as in (3.4) and satisfying (Pg), where
T,y €Q, x; #yi. Let Ip, Ip, 7, Rmin and Smin be as in (3.12). Then

Jp € Lipg(2) with |¢||Lipy,a <1 such that (T, ¢) = [Rminl|o + a_llSmin\Q.

As a consequence, for all k € Ip and j € I\ 7(Ip) with x € Q and y; € Q, we have p(xy) =
—p(y;) = 1, and for all k € Ip we have p(vk) — o(Yra)) = a Yy, — Yr()|- In particular,
min{|Rjq +a !Slo: RER;, SE€ES, T=R+0S} = max (T,¢).

¢E€Lipy(2)

l¢llLipg,a <1
Proof. Define Pt :={k € Ip : z, € Q} and P~ :={k € I\ 7(Ip) : yr € Q}. The function ¢
in the statement must satisfy p(x;) = 1 for all k € PT and ¢(yx) = —1 for all k € P~, and,
recalling that a~! = 2, also (k) — ©(Yrx)) = 2|k — Yr(| for all k € Ip.

For any k € Pt, we define ¢y (z) := 1 — 2|z — x| for all x € Q, and set

. maxpept{¢r} if P #0,
] if P+ =40.

Define also ¥ := max{¢o, ¢}, where ¢o(x) := max{—1, —2d(z,00)} for all z € Q, i.e.,
Uo(z) = max{—1, —2d(x,00),1 — 2|z — 21|,k € PT} V€ Q, (8.3)

and observe that Wo € Lipy(2) with ||[Wo||Lip,,a < 1.

Using the minimality, and in particular , one verifies that Wo(zy) = 1 for all k € PT.
Let us check that Wo(y,) = —1 for all k € P~. If not, either ¢o(yx) > —1 or ¢(yx) > —1, and
both the two cases are excluded again by .

Now, we have to take into account the dipoles and the boundary values of ¥y. We divide
the proof into three steps.

Step 1: For all k € Ip with y. ), 2% € £,

Wo(zy) <1, Yo(Yr(r) <1 —=20xk = Yrp)|- (84)

Moreover, if either y ) € OS2 or zy € OS2 for some k € Ip , then
either Wo(zy) < 2d(zg, 02) or \I’o(yT(k)) = —2d(y7(k), o0), (8.5)

respectively.

Let us check . The first inequality follows since g < 1 on . The second inequality
is deduced as follows: By (8.3), if Vo(Yrk)) = —2d(wg, 082), then we conclude by (3.14). 1f
instead Wo(y,x)) = 1 — 2[xn — Yr()| for some h € P*, then we conclude since by minimality
|2h — Y7yl > |2k — Yry| (where we have used that h € PT).

Let us now check . Assume y, ;) € 0Q and, by B.3), that Wo(zy) = 1 — 2|z, — x| for
some h € PT. By the triangle inequality and , we have

Wo(rr) < 1+ 2)wp — yre)l = 220 — Yro)| < 2|0k — Yo ()] = 2d(, 0Q).

Assume instead xy, € JQ. If, by contradiction, Wo(yrx)) > —2d(Yr(x), 0?) = —2|yr(x) — T/, for
some h € P* we necessarily have Wo(y-(x)) = 1—=2[n — Yr@)| > —2|y-(k) — x| This contradicts
the minimality of Ry, and Shin, because a direct check shows that

R |q +2|5"|a < [Ruinle + 2|Sminlo — 1+ 2[zh — Yrp)| — 2/2% — yr| < [Rminlo + 2[Shimlo,

34



where R’ := Rpyin — 05, and S" := Spin — [T x] + [Ur (i) Trl-
Eventually we check that

Uo=0  on . (8.6)

Indeed, if Uo(z) = 1 — 2|z — x| > 0 for some k € PT, then arguing as before we can define
R' = Ruyin — 05, and S’ = Spyin + [7ZT%], and an easy check shows that |R'|q + 2|5|q <
| Riin|o + 2|Smin|0, against the minimality.

Before proceeding to the next step, for the sake of simplicity and without loss of generality,
we relabel the indices and assume that 7 : Ip — Ip is the identity map, so that Ip =1\ Ip =
I\ 7(Ip). The function ¢, that will be constructed starting from Wy, should satisfy ¢(zy) =
Uo(zg) =1 for all k € P, o(yr) = Wo(yr) = —1 for all k € P~, and p(xx) — o(yx) = 2|2k — Y|
for every k € Ip. To build such a ¢, we apply a recursive procedure. We define, for all m > 1,
the function ¥,,, as follows:

U (2) := max{W,,_1(x), Py (x)} Vz € Q, (8.7)
where @, is given by

D,,(x) = géz}x{d)?(az)}, ot (x) == U1 (ng) + 2|z — ni| — 2|ag — |, Vz € Q.
D

Trivially, ®,, is Lipschitz continuous with Lipschitz constant 2, for all m > 0.
Step 2: We claim that

(a) Up(yr) <1 —2|zk — yg| and ¥, (xx) < 1 for all k € Ip with zy, yi € Q;
(b) U, (zx) =1 and ¥,,(yp) = —1 for all k € P*, h e P~
(¢) ¥p(x) =0 for x € 0%
(d) if, for some k € Ip, either y, € 9N or 3, € I, then
either W,,(zy) < 2d(xy, 0N), or Vo, (yx) = —2d(yx, 092), (8.8)
respectively.

Proof of (a): First we notice that, if {hy,...,h;} C Ip with h; # hy for i # ¢, then the
minimality of Sy, implies that

J
Z ’xhi - yhi‘ < ‘xhl - yhz‘ + ’xhz - yhs‘ +oF |mhj - yh1|‘ (8.9)
=1

Now, by construction and definition of ®,,, we can find a set of > 0 indices (possibly r = 0)
0=mq <---<m, <m, and indices k1,..., k. € Ip such that

Uin(yk) = O (Yk) = Ui, (Yk,) + 2|@k, — Yk, | — 2|2k, — Yal,
Uin, (Yk,) = O Wk, ) = Yo,y (Y1) + 200 = Yk o] = 202k, — Wk, |,
(8.10)
Ui (Yks) = Dpe’ (k) = Winy (Yks) + 2|Thy — Ykl — 2|1y — Yy,
Uiy (Uks) = O (Yka) = Yo (Uk,) + 2@k — Yky | — 20Tk, — Yio-
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Notice that, if » = 0 we simply have ®,,(yx) = Po(yx) and (a) follows from (8.4) and thanks
to the fact that Wg € Lipy(2), [[Wol|Lipy,a < 1. Assume then that r > 0, and so from (8.10) it
follows that

T T
i=1 i=1

where we have set ¥ ., = yr. Now we have two cases:

r+1
(al) \IIO(ykl) = _2d(8Qa yk1);
(a2) Wo(yg,) = 1 — 2|z — yg, | for some h € PT.

In case (al) we will show that
r r
2> ok, = Ukl =2 Tk, — Yry | < 14 2d(09Q, yry) — 2|z — il (8.11)
i=1 i=1
whereas in case (a2) we will show that
r r
23 Nk =yl = 2 Tk — Yk | < 2l@n — vk, | — 2lzk — wkl, (8.12)
i=1 i=1

and this will conclude (a). First, in view of (3.14)), we can assume that the indices ki, ko, ..., ky
are all distinct. Indeed, if k; = k; for some ¢ # #’, then we can erase the indices k;, kit1, ..., ky_1,

. i —1 i —1
simce E;:z ‘xkj - ykj‘ - Z;:z ‘xkj - ykj+1’ < 0 by (3.14).
Therefore, assuming (al), let us prove (8.11). Consider the point p on 92 so that [p —yi, | =
d(0Q, yg, ); then (8.11) is a consequence of the minimality of Rpyi, and Spin. Indeed, setting

r—+1 r
R = Ruin + 5mk S = Shmin — Z [I:xkzykz]] + Z [[$kiyki+1]] + H.pyklﬂ7
=1 i=1

the inequality |R'|q + 2|5|q > |Rminla + 2|Smin|o is equivalent to (8.11])).
In case (a2), instead, to get (8.12), arguing as before, it suffices to write |R'|q + 2|5"|q
|Rmin|Q + Q‘Sminh% with

v

r+1 r
R/ — Rmin + 5yk1 + 6xh Sl — Smin - Z [[:Eklykz]] + Z [[xkiyki+1]] + [[xhyklﬂ-
=1 =1

So far we have proved that W,,(yx) < 1 — 2|z — ygl|, for all k£ € Ip. The fact that ¥,,(zg) <1
for all k € Ip follows thanks to the fact that W, € Lipy(Q2), with [|¥,,[|Lipy,a < 1.

Proof of (b): Let us check that ¥(pp) < 1 for all h € P™. To this aim it is sufficient to
observe that ®,,(z) <1 for all z € Q, since ¢*(x) < ¢ (k) = Vpn—1(ys) + 2|z — yi| < 1, for
all k € Ip, thanks to point (a).

Let us check that W(z,) = —1 for all h € P~. Arguing as in (8.10)), we can find a set of
r > 0 indices 0 = mq < --- < m, < m, and indices ki,..., k. € Ip such that

T T
Wi (yn) = \I,O(ykl) +2 Z ’xkz - yki‘ - 22 ‘xkz - ykiJrl‘?
i=1 i=1

where k11 := h. If r = 0, we readily conclude that ¥,,(yn) = Vo(yn) and the thesis follows
from the fact that Wo(yp) = —1 for all h € P~. Hence assume r > 0. Also here we have to
cases:
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(b1) Wo(yk,) =1 —2|xj — yk, | for some j € PT;
(b2) \IIO(yk‘l) = _Qd(ykmag)'

In the first case the thesis is equivalent to
T T
1- 2‘$j - yk1| +2 Z ’xkz - yki‘ - 22 |xk7, - yki+1‘ <-L (8'13)
i=1 i=1

As before we might assume that the indices k; are distinct. Writing R’ := Ryin + 0z, — 5yj and
S" = Smin — Yoiey [T Tk + 2ot [T Uka ] + [T508 ], (8.13) readily follows by the inequality
|R'|q +2]S"|q > |Rmin|a + 2|Smin|a-

Now, if (b2) holds, we will conclude by showing that

T T
—2d(yk,, O + 2D |2k, — Yl = 2D ok, — Uk | < 1. (8.14)
=1 i=1

Also this is obtained using the minimality of Ry, and Smin, by setting R := Ry + 0y, and
S" = Smin — 2oy [Tkl + 2oizt [TkiVkira] + [759k,] where x; € 02 is such that [z; — yi, | =
d(yk’l ) 89)

Proof of (c): To show this, fix x € 99Q; if ¥,,(x) = ¥p(z) = 0 there is nothing to prove. If
not, we can find a set of r > 0 indices 0 = my < --- < m, < m, and indices ki,...,k, € Ip such
that

' T
U () = Colyry) + 2D ok, — Ukl — 2D 12k, — Ykoa |,
=1 =1

where yi, = x. If Uo(yp,) = —2d(yx,,0%), we show that

r r
=1 =1

As usual we might assume that the indices k; are distinct; being = € 92, we have |z, — x| >
d(xy,,08), and so the previous inequality is obtained by minimality of Ruyin and Smin, arguing
similarly as in the preceding cases.

If instead Wo(yx,) = 1 — 2|z, — yg,| for some h € P, we reduce ourselves to prove that

r r
1+ Z ‘xki - yki| < Z ’xkl - yki-o—l’ + |$h - ykl‘v
=1 =1

which is again implied by the minimality of Ry, and Swmin-

Proof of (d): The first condition in is a consequence of point (c) and the fact that ¥,,, €
Lipy(©2), with || W, [|Lipy,o < 1. Let us prove the second condition. If W,,(yx) = Wo(yx) then the
thesis follows from ; if not, we can find a sequence of r > 0 indices 0 =my1 < --- < m, < m,
and indices k1, ..., k. € Ip such that

s T
(k) = Yol(yr,) + 22 Tk — Y| — 2 Z |k, — yki+1|’
i=1 i=1
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where ky41 := k. Now, either ¥o(yx,) = —2d(9Q, yx,) or Vo(yx,) = 1 — 2|z}, — yg,| for some
h € PT. Again assuming that the indices k; are distinct, in the first case it is sufficient to
observe that

T '
i=1 i=1
which follows once more by the minimality of Rpyin and Smin, since d(9€, yx) = |z — yk|, and

x € 0N,
Assuming instead that Wo(yg,) = 1 — 2|z, — yg, | for some h € Pt we can show that

' '
L+ d(09yk) + D |k, — Ul < Y [0k = Ykin |+ lon — yk, |,
i=1 =1

using once again the minimality of Ryin and Spin.
Before passing to the next step, observe that since ¥,, < WU, for all m > 0, we can take
the limit

SO = mgr—rl-loo \I/Trb

and thanks to the properties of ¥,,, we easily infer that conditions (a), (b), (c), and (d) are still
valid for ¢. Furthermore, since ¥, is Lipschitz continuous with Lipschitz constant 2, we also
have that ¥,, — ¢ uniformly on 2.

The next step concludes the proof of the lemma.
Step 3. The function ¢ satisfies
o(zk) = e(ng) + 2|zk — yi| Vk € Ip. (8.15)
To see this we define

B = irég}x{gbk}, k() = @(yr) + 2|lzk — Y| — 2|z — |, Vk € Ip, Yz € Q.
D

In order to prove we show that ¢ > @; this implies that p(xr) > dr(zr) = ©(yr)+2|xr — Y|
for all k € Ip, and since the opposite inequality is guaranteed due to the fact that ¢ is 2-Lipschitz,
follows. Now, for all € > 0 we can find m. so that U,,(z) + ¢ > p(x) for all z € Q and
m > me. We compute

() = @(yr) + 2|on — Y| — 2|op — 2| < e+ V() + 2|2) — Yi| — 2|7p — 2
Set Unyi(z) < e+ (),

where the last but one inequality follows from the definition of ¥,,11. This implies $(z) <
€ + ¢(x) which, by the arbitrariness of € > 0, implies the claim. O

Remark 8.3. If one knows in advance the regularity result
[Tl fat,e = min {|Rlo + o '|S|o : (R, S) € Ry x S, T = R+ 0S5},

since [|7'[|fiat,a = max yerip, ) (5 ) = (T,9), it is not difficult to check that a maximizing @
l#llLipg,a<1

satisfies the properties of ti]le function ¢ in the proof of Proposition [8.2
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