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Abstract. We discuss the closability of directional derivative operators with respect
to a general Radon measure µ on Rd; our main theorem completely characterizes the
vectorfields for which the corresponding operator is closable from the space of Lips-
chitz functions Lip(Rd) to Lp(µ), for 1 ≤ p ≤ ∞. We also consider certain classes of
multilinear differential operators.
We then discuss the closability of the same operators from Lq(µ) to Lp(µ); we give
necessary conditions and sufficient conditions for closability, but we do not have an
exact characterization. As a corollary we obtain that classical differential operators
such as gradient, divergence and jacobian determinant are closable from Lq(µ) to Lp(µ)
only if µ is absolutely continuous with respect to the Lebesgue measure.
Lastly, we rephrase our results on multilinear operators in terms of metric currents.
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1. Introduction

One way of defining the Sobolev Spaces W 1,p
0 (Ω) for an open set Ω in Rd is

taking the completion of the space C1
c (Ω) of functions of class C

1 with compact
support on Ω with respect to the Sobolev norm ∥ · ∥W 1,p .

This construction can be made more precise as follows: we consider the graph
of the gradient operator ∇ : C1

c (Ω) → C0
c (Ω;Rd) as a subset of the product space

Lp(Ω) × Lp(Ω;Rd), we take its closure Γ, and we show that Γ is still a graph,
that is, for every u ∈ Lp(Ω) there exists at most one v ∈ Lp(Ω;Rd) such that
(u, v) ∈ Γ. We then consider the operator whose graph is Γ: the domain is the
Sobolev space W 1,p

0 (Ω) and the operator is the gradient for Sobolev functions.1

Note that the essential ingredient in this construction is that the closure of the
graph of the gradient is still a graph. The extension of this construction to more
general operators leads to the following abstract definition:

Closable operators. Given X,Y topological spaces, D subset of X, and a map
T : D → Y , we denote by Γ the closure of the graph {(x, T (x)) : x ∈ D} in X×Y ,
and we say T is closable (from X to Y ) if Γ is also a graph, that is, for every
x ∈ X there exists at most one y ∈ Y such that (x, y) ∈ Γ.

1 Moreover ∥u∥W1,p is the norm of (u,∇u) in the product space Lp(Ω)× Lp(Ω;Rd).
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In this paper we study the closability of certain first-order differential opera-
tors. The spaces X, D and Y will be always linear spaces of functions on Rd,
and we focus in particular on directional derivative operators.

More precisely:

Functions spaces. Through this paper X is either of the following spaces:

• Lq(µ) where µ is a Radon measure on Rd and 1 ≤ q ≤ ∞;

• the space Lip(Rd) of all Lipschitz functions u : Rd → R, endowed with
the weak∗ topology of W 1,∞; in particular a sequence (un) converges to u in
Lip(Rd) if and only if un → u uniformly and the Lipschitz constants Lip(un)
are uniformly bounded.

Moreover D is always the space C1
c (Rd), and Y is Lp(µ) with 1 ≤ p ≤ ∞.

We write Lp
w for the Lp space endowed with the weak topology, except that, with

a slight abuse of notation, both L∞ and L∞
w stand for L∞ endowed with the

weak* topology (as dual of L1).

Directional derivative operator. Let v be a vector field on Rd which is Borel
measurable. We denote by Tv directional derivative operator on C1

c (Rd) associ-
ated to v, that is,

Tvu :=
∂u

∂v
for every u ∈ C1

c (Rd). (1.1)

Next theorem is our main result. The statement involves the notion of decom-
posability bundle V (µ, ·) of a measure µ: the precise definition is given in §2.2;
for the time being it suffices to know that V (µ, x) is a linear subspace of Rd for
every x ∈ Rd.

1.1. Theorem. Let µ be a Radon measure, let v and Tv be as above, and assume
that v ∈ Lp(µ) for some p ∈ [1,∞].

(i) If v(x) ∈ V (µ, x) for µ-a.e. x, then every function u ∈ Lip(Rd) is dif-
ferentiable at µ-a.e. x ∈ Rd in the direction v(x), and the linear operator

T̃v : Lip(Rd) → Lp
w(µ) defined by

T̃vu(x) :=
∂u

∂v
(x) for µ-a.e. x ∈ Rd (1.2)

is a continuous extension of Tv.
It follows that Tv is closable from Lip(Rd) to Lp

w(µ).

(ii) Conversely, if {x : v(x) ̸∈ V (µ, x)} has positive µ-measure, then Tv, viewed
as an operator from C1

c (Rd) to Lp
w(µ), is not continuous at any u ∈ C1

c (Rd).
More precisely, for every ε > 0 there exist a sequence (un) in C1

c (Rd) such
that

• un → u uniformly;
• Lip(un) ≤ Lip(u) + ε for every n;
• Tvun → w in Lp(µ) for some w ̸= Tvu.

It follows that Tv is not closable from Lip(Rd) to Lp(µ).
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1.2. Remarks. . The following are immediate consequences of Theorem 1.1.

(i) If v(x) ∈ V (µ, x) for µ-a.e. x, then T̃v is continuous also as an operator from
Lip(Rd) to Lp(µ). It follows that Tv is closable from Lip(Rd) to Lp(µ).

(ii) If {x : v(x) ̸∈ V (µ, x)} has positive µ-measure, then Tv is discontinuous
everywhere also as an operator from C1

c (Rd) to Lp(µ). Moreover Tv is not closable
also from Lip(Rd) to Lp

w(µ) nor from Lq(µ) to Lp(µ), for any 1 ≤ q ≤ ∞. The
latter follows from the fact that one can choose the functions un so that un − u
is compactly supported, see also Remark 4.2.

From Theorem 1.1 and Remarks 1.2, we deduce the following corollaries:

1.3. Corollary. For 1 ≤ p ≤ ∞, the gradient operator is closable from Lip(Rd)
to Lp(µ) (resp. Lp

w(µ)) if and only if µ is absolutely continuous with respect to
the Lebesgue measure (µ ≪ L d). The same holds for the divergence and the
Jacobian determinant.2

1.4. Corollary. The gradient operator is a closable from Lq(µ) to Lp(µ) for some
1 ≤ p ≤ ∞ and 1 ≤ q ≤ ∞ only if µ ≪ L d.

1.5. Remarks. (i) These results are naturally connected to the definition of
Sobolev spaces in weighted Euclidean spaces and have applications in the rep-
resentation of low-dimensional elastic structures, see [7]. Theorem 1.1 leads to
a proof of the chain rule for BV function of [4] which can be adapted to finite
dimensional RCD spaces, see [8]. Corollary 1.4 answers a question posed by
Fukushima, see [6, Section 2.6] and [10].

(ii) We remind that the condition µ ≪ L d alone is not sufficient for the clos-
ability of the gradient operator from Lp(µ) to Lp(µ). In [3, Theorem 2.2], the
(absolutely continuous) measures µ on R with this property for p = 2 are charac-
terized, see also [12, Theorem 3.1.6]. The question on the closability from Lp(µ)
to Lp(µ) of directional derivative operators is also interesting. The condition
given in point (i) of Theorem 1.1 remains necessary but it is no longer sufficient.
In §4 we give some sufficient conditions on µ. We don’t know if these conditions
are also necessary.

(iii) In §5 we discuss the closability of some more general multilinear operators
than the jacobian and we rephrase these results in terms of Ambrosio-Kirchheim
metric currents in Rd.

Acknowledgements. This research was initiated during visits of D.B. and A.M. at the
Mathematics Department in Pisa. The visits of A.M. were partly supported by INdAM-
GNAMPA. The research of D.B. is supported by the European Union’s Horizon 2020
Research and Innovation Programme, grant agreement no. 948021. The research of G.A.
and A.M. has been partially supported by the Italian Ministry of University and Research
via the PRIN projects 2017BTM7SN and 2017TEXA3H, respectively.

2 The Jacobian determinant of u ∈ C1
c (Rd;Rd) is Ju := det(∇u).
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2. Notation and preliminary results

2.1. Classical currents. Recall that a k-dimensional current T in Rd is a con-
tinuous linear functional on the space of smooth and compactly supported dif-
ferential k-forms on Rd. The boundary of T , ∂T , is the k − 1-current defined via
⟨∂T, ω⟩ := ⟨T, dω⟩ for every smooth and compactly supported k− 1-form ω. The
mass of T , denoted by M(T ), is the supremum of ⟨T, ω⟩ over all k-forms ω such
that |ω| ≤ 1 everywhere. A current T is called normal if both T and ∂T have
finite mass.

By the Radon–Nikodým theorem, a k-dimensional current T with finite mass
can be written in the form T = τµ where µ is a finite positive measure and τ is a
k-vector field in L1(µ). In particular, the action of T on a smooth and compactly
supported k-form ω is given by

⟨T, ω⟩ =
∫
Rd

⟨ω(x), τ(x)⟩dµ(x) .

Given a Lipschitz curve γ : [0, 1] → Rd, we denote by [γ] the associated current,
that is the current defined by

⟨[γ], ω⟩ =
∫ 1

0
⟨ω(γ(t)), γ′(t)⟩dt ,

for every smooth and compactly supported 1-form ω. More information on cur-
rents can be found in [11].

2.2. Decomposability bundle. We recall the definition of decomposability
bundle of a Radon measure, see [1, §2.6] and its relation with the differentia-
bility properties of Lipschitz functions. We prefer to give a definition which is
different from the original one, but it is equivalent and easier to state, see [1, §6.1
and Theorem 6.4].

2.3. Definition (Decomposability bundle). Given a Radon measure µ on Rd

its decomposability bundle is a Borel map V (µ, ·) on Rd and taking values in
the set Gr :=

⋃
0≤k≤dGr(k, d) (where Gr(k, d) denotes the Grassmannian of k-

dimensional vector subspaces of Rd) defined as follows. A vector v ∈ Rd belongs
to V (µ, x) if and only if there exists 1-dimensional normal current N with ∂N = 0
such that

lim
r→0

M((N − vµ)⌞B(x, r))

µ(B(x, r))
= 0.

2.4. Definition. For 1 < m ≤ d we will denote Vm(µ, ·) the map corresponding to
V (µ, ·) obtained by replacing 1-dimensional normal currents with m-dimensional
ones and substituting Gr(k, d) with Gr(k,Λm(Rd)), where Λm(Rd) denotes the
space of m-vectors in Rd.

2.5. Theorem (see Theorem 1.1 of [1]). Let µ be a positive Radon measure on Rd

and let V (µ, ·) be the decomposability bundle of µ. Then the following statements
hold:
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(i) Every Lipschitz function f on Rd is differentiable at µ-a.e. x with respect
to the linear subspace V (µ, x). That is, there exists a linear function from
V (µ, x) to R, denoted by dV f(x), such that

f(x+ h) = f(x) + ⟨dV f(x), h⟩+ o(|h|) for h ∈ V (µ, x).

(ii) The previous statement is optimal in the sense that there exists a Lips-
chitz function f on Rd such that for µ-a.e. x and every v /∈ V (µ, x) the
derivative of f at x in the direction v does not exist.

We conclude by recalling the converse of Rademacher’s theorem. Its combi-
nation with Theorem 2.5 ensures that the decomposability bundle of a singular
measure µ is a proper subspace µ-a.e.

2.6. Theorem (see Theorem 1.14 of [9]). Let µ be a positive Radon measure on
Rd such that every Lipschitz function f : Rd → R is differentiable µ-a.e. Then
µ ≪ L d.

2.7. Corollary. Let µ be a positive Radon measure on Rd such that V (µ, x) = Rd

for µ-a.e. x. Then µ ≪ L d.

3. Closability of operators from Lip to Lp

Proof of Theorem 1.1: case p = ∞. (i) By [1, Theorem 6.3] there exists a
normal 1-current N = ṽµ̃ on Rd with ∂N = 0 such that ṽ ∈ L∞(µ̃) and ṽ and
µ̃ are extensions of v and µ in the following sense: µ̃ = µ + σ with σ ⊥ µ and
ṽ(x) = v(x) for µ-a.e. x. Let un be a sequence such that un → u in Lip(Rd).
Using [1, Proposition 5.13] and the fact that ∂N = 0, we have

∂(unN) = −dṽunµ̃, and ∂(uN) = −dṽuµ̃. (3.1)

The uniform convergence un → u implies thatM(unN−uN) → 0 and therefore
the convergence is also in the sense of currents, and the same holds for their
boundaries, that is,

lim
n→∞

∫
Rd

fdṽundµ̃ =

∫
Rd

fdṽudµ̃, for every f ∈ C∞
c (Rd). (3.2)

The density of C∞
c (Rd) in L1(µ̃) implies that (3.2) holds for every f ∈ L1(µ̃) and

therefore dṽun → dṽu in L∞
w∗(µ̃). In particular dvun → dvu = ⟨dV u, v⟩ in L∞

w∗(µ).

(ii) For every w ∈ Rd and 0 < θ < π
2 , let C(w, θ) be the cone

C(w, θ) = {x ∈ Rd : x · w ≥ |x| cos θ}.
By assumption, there exists w ∈ Rd and 0 < α < β < π

2 such that the Borel set

E := {x ∈ Rd : v(x) ∈ C(w,α) and V (µ, x) ∩ C(w, β) = {0}},
has positive µ-measure. By [1, Lemma 7.5], there exists a compact set F ⊂ E
with µ(F ) > 0 and F is C(w, β)-null, in the sense of [1, §4.11]. By [1, Lemma
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4.12], for every n = 1, 2, . . . there exists fn : Rd → R smooth such that for every
x ∈ Rd:

(a) 0 ≤ fn(x) ≤ 1
n ;

(b) 0 ≤ dwfn(x) ≤ 1 and dwfn(x) ≡ 1 on F ;
(c) |dW fn(x)| ≤ 1

tanβ where W = w⊥, dW is the restriction of the differential

d to W and | · | is the operator norm.

By (b) and (c) there exists L > 0 such that every fn is L-Lipschitz and moreover
there is a constant C > 0 depending on α and β such that dv(x)fn(x) ≥ C for

every x ∈ F . Clearly the functions un := u+L−1εfn satisfy the requirements. □

Before proving Theorem 1.1 for p < ∞ we state the following corollary of
Mazur’s lemma.

3.1. Proposition. Let 1 ≤ p < ∞ and T : C1
c (Rd) → Lp(µ) be a bounded linear

operator. Let un be a sequence of functions in C1
c (Rd) such that un → u uniformly

and Tun → w in Lp
w(µ). Then there is a sequence ũn of convex combinations of

the elements of un such that ũn → u uniformly and T ũn → w strongly in Lp(µ).

Proof. For everym ∈ N we consider the set Am which is the w-closed convex hull
of the set {Tum, Tum+1, . . . }. By Mazur’s Lemma the set Am coincides with the
(strongly)-closed convex hull of the set {Tum, Tum+1, . . . }. Since by assumption
w ∈ Am for every m, then for every m there exists a sequence (wm

n )n∈N of convex
combinations of the elements of the set {Tum, Tum+1, . . . } such that wm

n → w
(strongly). For every m and n we denote by ũmn the convex combination of the
elements of the set {um, um+1, . . . } with the same coefficients as those used to
obtain wm

n . Clearly the diagonal sequence ũn := ũnn has the desired properties.
In particular the fact that ũnn → u uniformly as n → ∞ follows from the fact
that the diameter of the convex hull of the set {um, um+1, . . . } (with respect to
the uniform norm) tends to zero as m → ∞. □

In what follows we denote by p′ the conjugate Hölder exponent of p. Moreover,
for every v ∈ Rd we denote

v̂ :=

{
v
|v| if v ̸= 0

0 otherwise.
(3.3)

Proof of Theorem 1.1: case p < ∞. Towards a proof of (i), we observe that
the condition v(x) ∈ V (µ, x) is µ-a.e equivalent to the condition v̂(x) ∈ V (µ, x).
Therefore if v(x) ∈ V (µ, x) for µ-a.e. x, by the case p = ∞, Tv̂ can be extended

to the continuous operator T̃v̂ : Lip(Rd) → L∞
w∗(µ) given by T̃v̂ = ⟨dV u(x), v̂(x)⟩.

It follows that the operator T̂v : Lip(Rd) → Lp
w(µ) given by

T̂v(u) := |v|T̃v̂u = |v|⟨dV u(x) , v̂(x)⟩ = ⟨dV u(x) , v(x)⟩
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is a continuous extension of Tv. Indeed, assume un → u in Lip and take ϕ ∈
Lp′(µ). Then we have

⟨T̂vun, ϕ⟩ = ⟨T̃v̂un, |v|ϕ⟩.
Since |v|ϕ ∈ L1(µ), by the continuity of T̃v̂ : Lip(Rd) → L∞

w∗(µ) we have

lim
n→∞

⟨T̃v̂un, |v|ϕ⟩ = ⟨T̃v̂u, |v|ϕ⟩ = ⟨T̂vu, ϕ⟩.

Towards a proof of (ii), the possibility to replace L∞
w∗(µ) with Lp

w(µ) in the
third bullet point can be proved with the same sequence un used in the case
p = ∞. In order to replace Lp

w(µ) with Lp(µ), fix ε > 0 and a sequence un of
functions in C1

c (Rd) such that

• un → u uniformly as n → ∞;
• Lip(un) ≤ Lip(u) + ε for every n ∈ N;
• Tvun → w in Lp

w(µ) with w ̸= Tvu.

Applying Proposition 3.1 to such sequence we obtain a new sequence satisfying
the required properties. □

Proof of Corollary 1.3. The closability of the gradient operator (as well as the
closability of the divergence and the Jacobian determinant) implies the closability
of all the partial derivatives operators. By point (ii) of Theorem 1.1, this implies
that V (µ, x) = Rd for µ-a.e. x. We deduce from Corollary 2.7 that µ ≪ L d. □

Proof of Corollary 1.4. This follows immediately from Remark 1.2 (ii) and
Corollary 2.7. □

4. Closability of operators from Lq to Lp

4.1. Theorem. Let µ be a Radon measure and let v ∈ Lp(µ,Rd). Let Tv :
C1
c (Rd) → Lp(µ) be the directional derivative operator defined in (1.1). Assume

there exists a real valued function α such that

• α ̸= 0 µ-a.e.;
• α ∈ Lp′(µ) and αv ∈ Lq′(µ);
• N := αvµ is a normal 1-current.

Then Tv is closable from Lq(µ) to Lp(µ).

Proof of Theorem 4.1. Assume by contradiction that Tv is not closable from
Lq(µ) to Lp(µ). Since Tv is linear, this is equivalent to assuming that Tv is not
closable ”at u = 0”, that is, there is a sequences un such that un → 0 in Lq(µ)
and Tvun → w ̸= 0 ∈ Lp(µ). Denote τ := αv and let τ̂ be defined as in (3.3).

It follows from Smirnov’s theorem, see [16], that N can be written as

(a) N =
∫ 1
0 [γs]ds, where γs : [0, Ls] → Rd are 1-Lipschitz, nontrivial, and

parametrized with constant speed;

(b) ∥N∥ =
∫ 1
0 ∥[γs]∥ds;

(c) γ′
s(t)

|γ′
s(t)|

= τ̂(γs(t)) for a.e. s and a.e. t.
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The existence of such decomposition can be found in [14, Theorem 3.1] and in
particular the validity of (c) can be proved as in [1, Theorem 5.5 (ii)].

Since un → 0 in Lq(µ) and |τ | ∈ Lq′(µ), then un|τ | → 0 in L1(µ) or equivalently
un → 0 in L1(|τ |µ) = L1(∥N∥). Hence by (b), denoting µs := ∥[γs]∥ for every
s ∈ [0, 1], we have, up to subsequences,

un → 0 in L1(µs) for a.e. s ∈ [0, 1]. (4.1)

Since Tvun → w in Lp(µ) and α ∈ Lp′(µ), then αTvun → αw in L1(µ) or equiva-

lently ∂un
∂τ̂ → sign(α) w

|v| in L1(|τ |µ). Hence by (b) we have, up to subsequences,

∂un
∂τ̂

→ sign(α)
w

|v|
in L1(µs) for a.e. s ∈ [0, 1]. (4.2)

By (4.1) and property (a) for a.e. s ∈ [0, 1], up to subsequences,

un ◦ γs → 0 in L1([0, Ls]). (4.3)

Moreover by property (c), for every n and for a.e. s, t, up to subsequences,

(un ◦ γs)′(t) =
∂un
∂τ̂

(γs(t))|γ′s(t)|, (4.4)

so that, by (4.2) and (4.3), for a.e. s we have that (sign(α) w
|v|) ◦ γs|γ

′
s| = 0. Since

α ̸= 0 µ-a.e., this contradicts the fact that w ̸= 0 ∈ Lp(µ). □

4.2. Remark. Theorem 1.1, and Theorem 4.1 can be localized, namely they
hold true also when the function spaces are replaced by their local versions. This
follows from the fact that, by a standard cutoff argument, the functions fn in the
proof of Theorem 1.1 (ii) can be chosen to be compactly supported.

5. Closability of multilinear operators and metric currents

In this section we extend point (i) of Theorem 1.1 to the setting of multilinear
operators and we rephrase some of the results of the paper in terms of metric
currents. Our remarks are mostly consequences of the fact that the continuity
property in the definition of metric current is equivalent to the closability of the
operator Jv of Theorem 5.1 for a suitable k-vectorfield v and a measure µ.

5.1. Theorem. Let v ∈ L∞(µ,Λk(Rd)) and let Jv : C1
c (Rd,Rk) → L∞(µ) be the

multilinear differential operator

Jv : (u1, . . . , uk) 7→ ⟨du1 ∧ · · · ∧ duk; v⟩.

If v(x) ∈ Vk(µ, x) for µ-a.e. x, then Jv can be extended to a continuous operator

J̃v : Lip(Rd,Rk) → L∞
w∗(µ) and more precisely

J̃v(u1, . . . , uk)(x) = ⟨dV u1(x) ∧ · · · ∧ dV uk(x); v(x)⟩, for µ-a.e. x

where V = V (µ, ·). It follows that Jv is closable from Lip(Rd,Rk) to L∞
w∗(µ).



On the closability of differential operators 9

Proof. The theorem can be proved verbatim as Theorem 1.1 (i), replacing the
1-current N with a k-current with the same properties, whose existence is proved
by combining Theorems 1.1 and 1.2 of [2]. □

We do not know whether the condition v(x) ∈ Vk(µ, x) for µ-a.e. x is necessary
for the closability of Jv, see Remark 5.6.

5.2. Metric currents. Let (X, d) be a complete metric space. We denote
Dk(X) := Lipb(X,R) × Lip(X,R)k, where Lipb(X,R) is the space of bounded
Lipschitz functions on X.

5.3. Definition (Metric current). A multilinear functional T : Dk(X) → R is
said to be a k-dimensional metric current if

(i) continuity : for every f ∈ Lipb(X,R), (πn
1 )n∈N, . . . , (π

n
k )n∈N ⊂ Lip(X,R)

converging pointwise to π1, . . . , πk with Lip(πn
i ) ≤ C for every n

T (f, πn
1 , . . . , π

n
k ) → T (f, π1, . . . , πk);

(ii) locality : if there exists i ∈ {1, . . . , k} such that πi ≡ c on a neighbourhood
of suppf then T (f, π1, . . . , πk) = 0;

(iii) finite mass: there exists a finite Radon measure µ such that

|T (f, π1, . . . , πk)| ≤ Lip(π1) · · ·Lip(πk)
∫
X
|f |dµ.

More information on metric currents can be found in [5] and [13].

We will now focus on the choice X = Rd, endowed with the Euclidean distance.
We recall that to every k-dimensional metric current T on Rd with compact
support one can associate a ”classical” k-dimensional current T̃ as follows, see
[5, Theorem 11.1]. Denoting Λ(k, d) the set of multi-indices α = (1 ≤ α1 < · · · <
αk ≤ d) of length k in Rd, one requires that for every smooth and compactly
supported k-form

ω =
∑

α∈Λ(k,d)

ωαdxα1 ∧ · · · ∧ dxαk

it holds

⟨T̃ , ω⟩ =
∑

α∈Λ(k,d)

T (ωα, xα1 , . . . , xαk
). (5.1)

Conversely, to every flat chain T with finite mass and compact support one
can associate a metric current T̂ in such a way that the two maps are one the
inverse of the other, when restricted to normal currents, see also [13, Theorem
5.5].

5.4. Proposition. Let T be a k-dimensional metric current on Rd with com-
pact support. Then there exists a k-vector field τ and a positive measure µ with
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span(τ(x)) ⊂ V (µ, x) for µ-a.e. x ∈ Rd such that, for every (f, π1, . . . , πk) ∈
Dk(Rd),

T (f, π1, . . . , πk) =

∫
Rd

f⟨dV π1 ∧ · · · ∧ dV πk, τ⟩dµ. (5.2)

Proof. Consider the positive measure µ and the unit k-vector field τ such that
T̃ = τµ. Assume by contradiction that there exists a Borel set E with µ(E) > 0
and a Borel vector field w : E → Rd with w(x) ∈ span(τ(x)) such that w(x) ̸∈
V (µ, x) for every x ∈ E.

By [1, Proposition 5.9 (v)] there exist α1, . . . , αk−1 and a set E′ ⊂ E with
µ(E′) > 0 such that

v(x) := τ(x)⌞dxα1 ∧ · · · ∧ dxαk−1
̸∈ V (µ, x),

for every x ∈ E′. Now consider the 1-dimensional metric current S := T⌞dxα1 ∧
· · ·∧dxαk−1

(see [5, Definition 2.5]). Since S̃ = T̃⌞dxα1 ∧· · ·∧dxαk−1
, then we can

write S̃ = (τ⌞dxα1 ∧ · · · ∧ dxαk−1
)µ. Choose any αk different from α1, . . . , αk−1

and let un → xαk
be as in Theorem 1.1 (ii) for the vector field v. For every

f ∈ Lipb(Rd) we have

S(f, xαk
) = T (f, xα1 , . . . , xαk

) = ⟨T̃ , fdxα1 ∧ · · · ∧ dxαk
⟩

=

∫
Rd

⟨fdxα1 ∧ · · · ∧ dxαk
, τ⟩dµ =

∫
Rd

f⟨dxαk
, v(x)⟩dµ

(5.3)

and similarly

S(f, un) = T (f, xα1 , . . . , xαk−1
, un) =

∫
Rd

f⟨dun, v(x)⟩dµ. (5.4)

By the density of bounded Lipschitz functions in L1(µ), the validity of (5.3) and
(5.4) may be extended to f ∈ L1(µ). The continuity of metric currents, see
Definition 5.3 (i), implies that limn→∞ S(f, un) = S(f, xα). However, Theorem
1.1(ii) implies that there exists f ∈ L1(µ) such that the limit of the RHS of (5.4)
is different from the the RHS of (5.3), which is a contradiction.

The validity of

T (f, π1, . . . , πk) = ⟨T̃ , f ∧ dπ1 ∧ . . . ∧ dπk)

for smooth f, π1, . . . , πk is shown in [13, Theorem 5.5]. Consequently, (5.2)
holds in this case, with dV replaced by the full derivative. Its extension to
(f, π1, . . . , πk) ∈ Dk(Rd) follows from [1, Corollary 8.3]. □

5.5. Proposition. Let T = τµ be a classical k-dimensional current on Rd with
compact support with span(τ(x)) ⊂ V (µ, x) for µ-a.e. x ∈ Rd. Then the multi-

linear functional
ˆ̂
T defined, for every (f, π1, . . . , πk) ∈ Dk(Rd), by

ˆ̂
T (f, π1, . . . , πk) =

∫
Rd

f⟨dV π1 ∧ · · · ∧ dV πk, τ⟩dµ (5.5)
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is separately continuous in each variable. If additionally τ(x) ∈ Vk(µ, x) for µ-

a.e. x ∈ Rd, then T is a classical flat chain and therefore
ˆ̂
T is a metric current

and coincides with T̂ .

Proof. The continuity of
ˆ̂
T in each variable is an immediate consequence of

Theorem 1.1 (i). If τ(x) ∈ Vk(µ, x), then [2, Theorem 1.2] implies that T is a
flat chain, and hence by [2, Theorem 1.2] there exists a (classical) k-dimensional
normal current N and a Borel set E such that T = N⌞E. By Proposition 5.4
the metric current N̂ can be written as in (5.2) for a k-vector field σ in place of

τ and a positive measure ν in place of µ, so that, since
˜̂
N = N then σν = τµ as

vector measures. Since T̂ = N̂⌞E, then it follows that T̂ =
ˆ̂
T . □

5.6. Remark. The Ambrosio-Kirchheim flat chain conjecture can be equivalently
reformulated as follows. If T is a metric current such that T̃ = τµ then τ ∈
Vk(µ, ·).

The following corollary is a known fact, see [15, Theorem 1.6] and [9, Theorem
1.15]. We simply remark that it follows from the previous results.

5.7. Corollary. Let T be either a 1-dimensional or a d-dimensional metric cur-
rent on Rd. Then T̃ is a flat chain.

Proof. For k = 1, the result follows from Proposition 5.4 and Proposition 5.5.
For k = d, the result follows additionally from Corollary 2.7. □
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