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Abstract

We compute the relaxed Cartesian area for a general 0-homogeneous map of bounded vari-
ation, with respect to the strict BV -convergence. In particular, we show that the relaxed area
is finite for this class of maps and we provide an integral representation formula.
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1 Introduction

Let Q C R? be a bounded open set and v = (vy,vs) : © — R? be a map of class C*(;R?). The
graph of v is a Cartesian 2-manifold in  x R? C R* and its 2-dimensional Hausdorff measure 2
and is given byfl]

A(v: Q) ::/ VI+ Vil + Vo2 + (Jo)2da, (1.1)
Q

where

8’1)1 81)2 61)1 802

Jv:=det Vv = 021 D29 D9 011 (1.2)
is the Jacobian determinant of v. As opposite to the case when the map is scalar-valued, the area
functional A(-; ) is not convex, but only polyconvex in Vo, and its growth is not linear, due to
the presence of detVw.
It is interesting to extend the notion of area of a graph for singular maps. Following a well
established tradition starting from [22] and generalized in [28] (see also [1,|14]), a typical way
to proceed is by relaxation: in order to gain coercivity properties in some variational problems
involving the area functional, a reasonable choice is to relax with respect to the L'-convergence.
In this way, we are allowing to define for every u € L!(Q;R?)

Api(u; Q) = inf {liminf.A(vk; Q) : (v;) € CHQ:RY), vy, , u} (1.3)

k—4o00

It is not difficult to prove that if A1 (u; Q) < 400 then u € BV (Q;R?), i.e. the domain of A1 (-;Q)
is contained in BV (€; R?). In truth, this inclusion holds strict: an example is provided by the map
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u(z) = Irl%” inﬁ Q = Bi((1,0)). To our best knowledge, a characterization of the domain of the

L'-relaxed area is still missing in the literature, as opposite to the case of scalar valued maps, where
the domain is BV () and can be represented as an integral [13,21]. Moreover, the analysis of
turns out to be very challenging, due to its non-local behaviour. Indeed, as conjectured in [14]
and proved in [1], the set function Aj:i(u;-) is, in general, not subadditive: In two fundamental
examples, the authors provide the existence of a map u € BV,.(R? R?) and of three open sets
01,909,903 C R? such that Q3 € Q1 U Qy and Ap1(u; Q3) > Ap(u; Q1) + Api(u;Q2). In the first
example, denoting by By the disk of R? centered at 0 and of radius ¢, they consider the symmetric
triple point map ur : By — {a, 3,7} C R?, which sends three identical circular sectors of By to the
vertices «, 8,7 of an equilateral triangle. In the second one, they show that the non-subaddivity
arises even among Sobolev maps, like the vortex function uy : By — S! € R? defined by u(z) = ﬁ,

x # 0. For an explicit computation of the value of A1 (ur; Q) and Ay (uy; Q) we refer to [8,27]
and [6] (see also [7]), respectively. Moreover, for the analysis of the triple point map without
symmetry assumptions, we refer to [5].

Although the L'-topology induces some useful properties in Calculus of Variations, the previous
examples show that we cannot avoid non-locality issues. An alternative approach is to choose a
different topology in the relaxation, stronger than the L!-topology, to put on the space BV (£; R?)
in order to possibly get rid of non-local phenomena. Following [3}/4,25], we choose the strict BV -
convergence. We recall that for ug,u € BV (£;R?), we say that up — u strictly BV (Q;R?) if
up — w in L'(Q;R?) and |Dug|(Q) — |Du|(R), where |p|(Q2) stands for the total variation of a
Radon measure z on Q. So we are led to investigate for every u € BV (£2; R?)

Apy (u; Q) := inf {lim inf A(vg; Q) = (vg) € CHQ;R?), vy, — u strictly BV(Q;R2)} . (14

k—4o0

Another important functional, highly related to the area, is the total variation of the Jacobian
determinant, which is classically defined for every v € C'(Q;R?) by TVJ(v;Q) := [, |Jv|dz and
extended to every u € BV (€2;R?) by relaxation

TVJIgy(u; Q) := inf {liminf TVI(v; Q) = (vg) € CHLR?), v — w strictly BV(Q;RQ)} . (1.5)

k—4o00

We refer to [9,/10,/15,/16,24,26] for weak notion of area, total variation of the Jacobian determinant
and related energies via relaxation with other different topologies. Moreover, we address to [17-19]
for an approach to the study of graph of singular maps via Cartesian Currents.

In the present paper, we generalize at once the results in [3] about vortex-type maps and in [4]
about piecewise constant 0-homogeneous maps, by considering general 0-homogeneous maps in
BV (By; R?).

Definition 1.1. A map u € BV (By;R?) is 0-homogeneous if it is of the form

u(z) = <|i|) ae. z € By (1.6)

for some~y € BV (SY;R?). In this case, we say that u is the 0-homogeneous (or simply homogeneous)
extension of v on By.

®Notice that u € C'(Q;R?*) N WhH(Q;R?) C BV(;R?). Neverthless Ju ¢ L'(;R?), giving A1 (u;Q) =
A(u; Q) = +oo.



In order to ensure the consistency of Definition [I.I} we shall prove in Proposition that the
homogeneous extension of a map v € BV (S'; R?) belongs to BV (By; R?). Notice that, according
to Definition the maps uy and ur are 0-homogeneous.

The fundamental idea in our analysis is to define a notion of area enclosed by the image of v, in
such a way it is compatible with the strict convergence. Precisely, we consider (compare [4]) the
relaxation

n—-+o0o

P(y) := inf {hm inf P(¢n) : @n € Lip(SY;R?), ¢, — 7 strictly BV(Sl;RQ)} (1.7)
of the (singular) Plateau problem
P(yp) = inf {/ |Jv| dz : v € Lip(B1;R?),vL0B; = gp} (1.8)
By

associated to any ¢ € Lip(S'; R?). Our main result is the following:

Theorem 1.2. Let v € BV (SY;R?) and u as in Definition . Then

Apy (u; By) = /B VI+ [VuPdz + |Dul(Bg) + P(3), (1.9)

where D*u is the singular part of the measure Du.

A crucial ingredient in the proof of Theorem will be the computation of TVJ gy (u; By).
Indeed, finding the value of corresponds to choose the most convenient way in terms of
surface area to "fill the holes” in the graph of u, according to the approximation in the strict
convergence. The same interpretation can be made for the functional , with the difference
that it concerns the way of filling holes in the image of u. By adopting this point of view, due to
the structure of the graph of a homogeneous map, it turns out that TV.J gy (u; By) is the correct
quantity to consider to fill the hole in the graph of u upon the origin. In other words, in the case of
homogeneous maps, the functional TV.J gy represents a sort of (completely) vertical part of Apgy .
In Theorem [3.5] we prove that TV.J gy (u; By) can be expressed in terms of the relaxed Plateau
problem . In turn, in Lemma we shall see that P(v) can be characterized as the area
enclosed by the ”completed map” 4 which ”fill the jumps” of v by means of segments, in other
words P(y) = P(¥). A precise construction of ¥ will be given in Lemma m
We point out that Apy (u;-) is a measure for u as in . However, to the best of our knowledge,
it is not known if Ay (u;-) is subadditive for a generic map u € BV (By; R?). Moreover, a complete
characterization of the set Dom(Apgy (-; By)) := {u € BV (By;R?) : Apy(u; By) < +0o0} is not yet
available: from [4], we only know that Dom(Agy (-; By)) € Dom(A;1(-; By)) € BV (By; R?).

2 Preliminaries

Let Q € R? be an open bounded set. For any u € BV (Q;R?), we recall that the distributional
derivative Du is a finite Radon measure valued in R?*2. Denoting by .#? the Lebesgue measure of
R?, by the Lebesgue decomposition theorem we have Du = Vu.Z? + Du, where Vu € L'(£; R?*2)
and D%u 1 #?. The symbol |Du|(f2) stands for the total variation of Du (see [2, Definition 3.4,
pag. 119]) with |- | the Frobenius norm.

Definition 2.1 (Strict convergence). Let u € BV (Q;R?) and (ux) C BV (Q;R?). We say that
(ug) converges to u strictly BV, if

we s w and  [Dugl(Q) — |Dul().



Now, let B, be the disk of R? centered at the origin of radius ¢ > 0. If u € BV (B,;R?), by
Lebesgue differentiation theorem and Fubini theorem, for almost every r < £ the restriction uL_0B,
is well defined and independent of the representative of u, since it coincides with the trace of u
on H!'-almost every point of OB,. In particular, for almost every r < ¢, we can define the total
variation of ulL_ 9B, as

27
|D(ul9B,)[(9B;) := sup {/0 a(r,0) - f'(0)dd; f € C'([0,27); B1(0)), £(0) = f(2m), f'(0) = f’(27r)}

(2.1)
which turns out to be finite (see Lemma[2.3)), giving that ul_ 0B, € BV (dB,;R?), for almost every

r < {. Here u(r,0) := u(r cos6,rsinf) for every r € (0,4],6 € [0, 2.
We want to relate this quantity with the notion of tangential total variation.

Definition 2.2 (Tangential total variation in an annulus). For z = (z1,2) € R2\ {(0,0)},
set T(x) = ﬁ(—l‘g,l‘l). Let 0 < e <l and Ac g := By \ B: be an annulus around 0. We define

the tangential total variation of u € BV(A&Z;RQ) as the total variation of the Radon measure
D;u := Dut, namely

IDu|(Acy) = |Dur|(Acy) = Sup{ _ /

u-(Vgr) do: g€ CHA;Bi(0) ). (22)
Ac

The first equality in (2.2) is a consequence of the definition of D, u, while the second equality is
justified as follows: since 7 € C*°(A. ¢;R?) satisfies divr = 0 everywhere, for any g = (¢!, ¢%) €
CL(Acr; R?) we have

—/ u-(Vgr) da;:—/ u1Vg1-Td:1:—/ u?Vg? 7 dx
Ae,l As,l As,é

= —/ utdiv(glT) dx —/ u?div(g*r) dx
Ace Ac e

= / g't - dDu! +/ ¢*7 - dDu?* = / g - (dDu)T = (Dur, g).
As,é AE,Z As,(
This computation shows that
|DTu|(A£,£) < ‘Du|(Aa,€)7 (2'3)

since |7| < 1, and also that (2.2) is compatible with the case u € WH1(A. ;;R?), where simply
|Dru|(Az ) = fAE,Z |Vur| dx.

In [4], the following slicing result for the strict convergence is proven.

Lemma 2.3 (Inheritance of strict convergence to circumferences). Let u € BV (By;R?).
Suppose that (vy,) C CH(By; R?) is a sequence converging to u strictly BV (Bg; R?). Then, for almost
every r € (0,1), there exists a subsequence (vy, ) C (vg), depending on r, such that

vk, L OB, — ul_dB, strictly BV (9B,;R?). (2.4)
In the proof of Lemma [2.3] a useful Coarea-type formula is provided:

Lemma 2.4. Let u € BV (By;R?). Then
Y4
D ul(Ay) = / \D(uL0B,)|(0B,) dr. (2.5)
£

4



This formula allows us to define a notion of tangential total variation for v € BV (B;;R?) on the
whole By, since the right hand side of (2.5) is monotone non-increasing and equibounded w.r.t. €.

Definition 2.5 (Tangential total variation in By). Let 7 and A., as in Definition 2.9 We
define the tangential total variation of u € BV (By;R?) as

4
[D-ul(By) = lim |Drul(Aee) = / \D(ul_0B,)|(dB,) dr. (2.6)
e—> 0

Proposition 2.6. Let v € BV (S';R?) and u be defined as in (1.6]). Then u € BV (By;R?) and
| Dul(Be) = €13|(Sh). (2.7)

Moreover,

[ Vs~ /S el 1D%l(BY) = (1S, (2.8)
)4

Proof. Since u does not depend on p, by (2.1)), we have |D(uLdB,)|(0B;) = |¥|(S'). So, thanks to
, in order to prove it is enough to show that the variation of u is purely tangential, namely
|Du|(By) = |D,u|(By). To this purpose we argue by approximation: Let (¢r) C C°°(S;R?) be
such that ¢y, — v strictly BV (S!;R?) (e.g. a mollifying sequence) and set

T
up(x) = g (!x\) Vx € By \ {(0,0)}.
Then up € WH(By;R?). Indeed, for every k € N, in polar coordinates

Vug(pcosb, psinf) = 9%/59) Vp € (0,40 € [0, 2], (2.9)

{ 2w = 0
/ |Vuk|d:c:// pm()’dﬁdpzf/ | ouldHL. (2.10)
By 0o Jo p st

Moreover, u, converges to u in L'(By; R?) since

so that

lue — ullLrByrey < llok = Visirey >0 as k — 4oo.

By the lower semicontinuity property of the total variation and ([2.10)), we obtain
\Dul(By) < liminf/ Vuylde = ¢ lim / GuldH! = £3|(S1),
k—+o00 B, k—+oco Js1

where we used the strict convergence assumption on the sequence (). The previous inequality
ensures that u € BV (By;R?). On the other hand, by (2.3 and definition we have

l
Du|(By) > |Dyul (B) = / D(uL0B,)|(9B,) dr = (3|(S)),

so that |Du|(By) = |Dyu|(By) = ¢|¥|(S!). Finally, as in (2.9) we can write

7(0)

Vu(pcosb, psinf) = a.e. p € (0,4, 6 € [0,2n], (2.11)



so that

/ \vuydx_z/ 44 dH?
By st

|D*u|(By) = |Dul(Be) — : Vulde = £13](S') ~ E/Sl [5¢1dy = €15°|(S").
)4

and

2.1 Further properties in dimension 1

In |3 Proposition 2.4] the following is proved:

Lemma 2.7. Let () C Whi([a,b];R?) be a sequence converging strictly BV ([a,b];R?) to v €
Whi([a,b];R?). Then i, — « uniformly in [a,b].

The same result holds also in case v € BV ([a, b]; R?), but only on those compact subsets of [a, b]
which do not intersect the jump set .J,.

Lemma 2.8. Let (y;) € Whi([a,b];R?) be a sequence converging strictly BV ([a,b]; R?) to v €
BV ([a,b]; R?). Then, for every compact subset K C [a,b]\ J, we have that

e =y uniformly in K as k — +oo. (2.12)
Proof. By contradiction, up to a not relabeled subsequence, we may suppose
30 >0 H(Tk)CK dko € N : "yk(Tk)—’y(Tk)’>5 Vk > ko,

and there exists 7 € K such that 7, — 7 as k — +o00, since K is compact. Now, consider an open
interval E C [a,b] such tha 7 € E, 0E C [a,b]\ Jy, and |§|(E) < 2. Such an interval E exists
because |¥|({7}) = 0. By hypothesis on strict convergence, since |¥|(0F) = 0, we have

li Yie|dt = |¥|(E).
i [ e = 131(2)

So, we can find an index k1 € N such that k1 > k¢ and fE |9k |dt < %, for every k > k1. Moreover,
there exists ko € N, ko > k1, such that 7, € E for every k > ko. Now fix F' C E such that |F| = |E]
and vL F' can be identified with its natural continuous representative. Pick a point z € F', then

[76(2) = (2)] = =l (2) = v (m)| + [y (7) =¥ (7w)] = [v(7h) = 7(2)]

>~ | [ Tilde] + 6= 51(E) = = [ Jinldt 6§
Tk

6 3 1)

A

Therefore, (v;) does not converge to v pointwise at any point of F', which leads to a contradiction
with the fact that vy, — v in L([a,b]). So, (2.12)) is proved. O

An immediate consequence of Lemma [2.8]is that the uniform convergence takes place on the full
interval if J, = @. Precisely the following holds.

31f 7 =a or 7 = b, E is a semi-open interval.



Figure 1: The curve 7 obtained from ~ by filling the jumps with segments.

Corollary 2.9. Let (7;) € Whi([a,b];R?) be a sequence converging strictly BV ([a,b]; R?) to v €
C([a,b); R?) N BV ([a, b]; R?). Then,

Ve — v uniformly as k — 4o00.

This is clearly impossible if J, is non-empty, but becomes true (up to extracting a subsequence)

if we suitably reparametrize v, and if instead of v we consider its ”completed curve” 7, obtained
by filling the jumps with line segments (see Fig. . This is the content of [4, Lemma 2.7, Corollary
2.8], where the authors prove the result for v € SBV([a,b]; R?), which is allowed to jump on a
finite number of points. Our goal is to provide a further improvement of this result, namely, when
v is just a function of bounded variation.
To this purpose, suppose that v € BV([a,b];R?). Then, it is well known that J, is at most
countable. So, let {¢;};cny be an enumeratiorﬁ of J, and 7E(t;) be the traces of  at t;. We want to
associate to 7 a unique continuous curve ¥ which ”completes” the image of v by means of segments
connecting v~ (;) to vt (¢;). In particular, we require that 5 has the same total variation L of v and
is compatible with the approximation via strict BV -convergence. Precisely we show the following
result.

Lemma 2.10. Suppose that () C Wi([a,b]; R?) is a sequence converging strictly BV ([a, b]; R?)
to v € BV ([a,b];R?). Then there exist:

(a) a curve ¥ € Lip([a, b]; R?),

(b) Lipschitz strictly increasing surjective reparametrizations hy : [a,b] — [a,b] for any k € N,
with supy, ||hillco < 400,

such that

lim ~gohr =75 wuniformly in [a,b)]. (2.13)

Jj—+oo

Moreover, 5 does not depend on the approrimating sequence -y, in the sense that if (ng) C
Whi([a,b];R?) is another sequence converging strictly BV ([a,b]; R?) to v, then the corresponding
7 € Lip([a, b]; R?) coincides with 5.

Proof. The lengths L of v and L of « are given by

b
L= / Skl dr, L= |3l(la,b])-

*If the number of jumps is finite, then {t;} is definitively constant.



Since, by assumption, v — 7 strictly BV ([a, b]; R?), we have that Ly — L as k — +oo. For every
k € N, define

L t
:la,b 0,L = — 3 2.14
seilat] 2 0.0 s(0)= s [ (el 1) dn (2.14)
with Lipschitz inverse oy, := s, : [0, L] — [a,b]. Notice that
. 1 Ly+b—a 1 Lpy+b—a
Qp(s) = - = - — < <C for a.e. s € [0, L], (2.15
)] R A AP ) [ b 21

for some constant C' > 0 independent of k. Define
B [0, L] = R? 3i(s) = m(aw(s)) Vs €[0,L].

Since

@i | < o] Ly +b—a
ds |3k (ke (5))]

the sequence (%) is bounded in W1°([0, L]; R?). Thus, there exists a subsequence (k;) C (k) and

5 € WHe°([0, L]; R?) such that

<C  forae. s€el0,L]

Yk, — 7 weakly™ in W ([0, L];R?) and uniformly in [0, L]. (2.16)

Then, we define 7 and hj as the compositions of 4 and «ay, respectively, with an affine increasing
diffeomorphism ¥ : [a,b] — [0, L]. In particular, by (2.15)) we have

h .
sup [k o, < +o0

Now ([2.16) reads as
lim 4y, o hg; = 7 uniformly in [a, b]. (2.17)

j—+oo

Let us show the indipendence of 4 (and consequently of %) from the sequence 7. Suppose that
. € Wh([a, b]; R?) converges to v strictly BV ([a,b]; R?). Let oy : [a,b] — [0, L] be defined as sj
with n in place of v and By := 0'k_1 : [0, L] — [a,b] its (equi-)Lipschitz inverse. As before, we
obtain that there exists (k) C (k) and 7 such that

Mk, — 1 weakly™® in wte([0, L); R?) and uniformly in [0, L].

Observe that for any open interval J C [0, L],

. . L — L —
bt < it s = g B2 = S
and thus
Al <1+ 2 ae in0,L]. (2.18)

Now, recalling that J, = {t;}ien, fix ¢ € N and take any sequence (ti[j)j C [a,b] \ J such that
t;; /" ti and t;rj N\ t; as j — 4+00. By Lemmaﬁ7 for every j € N, Vk(tiij) — ’y(tiij) as k — 4oo.
On the other hand, by definition of 4=, we have ’y(tfj) — vE(t;) as j — 4o0. Therefore, by using

a diagonal argument and by extracting a further (not relabeled) subsequence of (k;) if needed, we
can assume that

lim g, () = v (t). (2.19)

Jj—+oo



Setting

t
rig =Sk () = L. +b a/ (Im; 1 +1) @

(2.20)
=) = [ G
we have I
jEToori_,j =TI+ _a [14I([a, i) + ti — a] =: s~ (t:),
i = e Bl ) + - a (2.21)
- [wr([a,ti)) ()~ @) - a] =5t @),

As a consequence of | -, -, and , we get
V(s (1) < A, (r75) = %j(akj(ﬁj)) =, () = v (t)  as j — +oo.

Therefore the curve 4 maps the segment [s™(;), s (¢;)] into a curve joining v~ (¢;) and vy (¢;).
Now, since sT(t;) — s~ (t;) = ﬁ]y* (t;) —~~ (ti)], from (2.18)) we conclude that 4 coincides with
the (1 + 22%)-speed parametrization ¢; of the segment joining v~ (¢;) and v (t;) on [s™(t;), s (%;)].
Hence we have shown that for every i € N

Vi, © ag; — £; uniformly in [s7(t;), 57 (t;)] as j — +o0.

An analogous conclusion holds also for 7, : indeed, let oy, (tiih) be as in (2.20) but with n, in
place of 7, then it is clear that oy, (tlih) — sT(t;) as h — +o0 and so

ky © Bk, — £ uniformly in [s7(¢;), s1(t;)] as h — +oo.

Therefore, 7 = 7 on S = U;enS;, where S; := [s™(t;),sT(¢;)]. It remains to show that 77 = 4 on
[0,L]\ S.

By , up to extract a not relabeled subsequence, we can assume that there exists a €
Wheo([0, L]) such that

ay; — a uniformly in [0, L] as j — 400 (2.22)
and, for the same reason, there exists 3 € W1>°([0, L]) such that
Bk, —  uniformly in [0, L] as h — +o0. (2.23)

From Lemma we deduce that 7 = v o a on every compact subset H C [0, L]\ S. But, since
« does not depend on the compact H, we deduce that 7y = yo«a on [0, L]\ S. In the same way,
we infer that 7 =y o on [0,L] \ S. Let us show that & = 5 on [0, L] \ S. Indeed, notice that by
definition of s,

sk(t) = s(t) :== (t—a+1%|([a,t])) Vtela,b]\ Jy.

L+b—a

The map s : [a,b] — [0, L] is strictly increasing with jumps at each point of J,. Notice that the
traces of s at every t; € J, are exactly the numbers s*(¢;) in ([2:2I). We claim that o = s~ on
[0,L] \ S. Indeed, by (2.22)) we have that for every ¢ € [a,b] \ J,

t = oy, (s, (t)) = a(s(t)) asj— +oo,



then o = s™1 on s([a, b] \ Jy) = [0, L]\ S. In the same way, using one can prove that 3 = s71
on [0,L]\ S.

Finally, it remains to show that holds without passing to a subsequence. To this purpose, by
applying to any subsequence (v, ) of (vx), with reparametrizations (hy, ) C (hy), we obtain
that for a further subsequence (kp;) C (kn)

jEIJPoo Vhn; © hkh]_ = 7 uniformly in [a, b].

Since ¥ does not depend on the approximating sequence, we deduce (2.13]), which concludes the
proof.

Remark 2.11. From the previous proof, we deduce that the ”completed” curve 7 does not depend
on the subsequence of the approximating sequence 7y,. Moreover, we do not need to discuss the
dependence on the reparametrization hy, because, for our purpose, we shall consider in the sequel a
Plateau-type problem associated to 7 which is independent of the reparametrization of the curve.

O]

2.2 Planar Plateau-type problem

In [4], the authors consider the following planar Plateau-type problem spanning a closed Lipschitz
curve ¢ : St — R? (see also [26] and [16]):

P(p) :=inf {/ |Ju| dx : v € Lip(B1;R?),vL 0B = <p} (2.24)
By
and the corresponding relaxation problem for a general BV-map 7 : S' — R?:
P(y) := inf {liginf P(n) : ¢n € Lip(SL;R?), ¢, — 7 strictly BV(SI;RQ)} . (2.25)

The authors of [4] show that, for ¢ € Lip(S!; R?), P(i) is invariant under rescaling of the integration
domain, precisely if 7 > 0 and

— (Y
er(y) == (T) y € 0B, (2.26)
then
P(p) = Pr(¢p,) := inf {/ |Jv| dz : v € Lip(B,;R?), v 0B, = cpr} ) (2.27)

Of course, we can consider also the rescaled version of (2.25)) for ~,:

P,(v,) := inf {1121 inf P(pn) : on € Lip(8B,;R?), ¢, — 7 strictly BV(@BT;RQ)} . (2.28)

Now we collect some useful properties of P(-) and P(-). Without further specifying, all of these
properties will be valid for P,(-) and P,(-) as well.
First, P(-) is also invariant under reparametrization of the boundary datum, namely

P(p) = P(poh) Vh : S' — S! Lipschitz homeomorphism. (2.29)

Moreover, the following continuity result for P(-) holds.

10



Lemma 2.12 (Continuity of P). Let ¢ € Lip(S!;R?) and suppose that (pr)r C Lip(S';R?) is
such that
o — ¢ uniformly and  sup || (SY) < +oo.
k

Then P(¢r) — P(p).

In [4, Lemma 2.14], the authors show that if v € SBV(S!;R?) has a finite number of jump
points, then P(vy) = P(¥), where 7 is the Lipschitz curv of Lemma associated to v. We want
to extend this result to the case v € BV (S';R?).

Lemma 2.13. Let v € BV(S';R?) and 7 : St — R? be the corresponding Lipschitz curve of Lemma
[2.10. Then

P(y) = P(). (2.30)

Proof. Let (%) C Lip(S';R?) be a sequence converging strictly to 7. By Lemma there are
reparametrized maps 75 := yx o hi, € Lip(S'; R?) of v, such that 5, — 7 uniformly as & — +oo.
Moreover, since by Lemma (b) the homeomorphism hj can be chosen with uniformly bounded
Lipschitz constant, it follows that 7 has uniformly bounded total variation. Hence it follows from
Lemma that P(J;) — P(7) as k — +oco. Thanks to (2.29), we have also P(v;) — P(7) as
k — 4o00. Finally, since by Lemma [2.10] 7 does not depend on the approximating sequence, we
can repeat the previous argument for another sequence (1) C Lip(S!; R?) converging strictly to v,
obtaining that P(n;) — P(¥). Therefore, we conclude P(y) = P(7). O

As a consequence of the argument in the proof of Lemma [2.13] we easily infer the following
continuity property:

Corollary 2.14. Let v € BV(S';R?) and 5 be as in Lemma and assume that (yg)r C
Lip(S'; R?) is a sequence converging strictly to vy. Then

lim P(v) = P(y) = P(7).

k—+o00

3 Relaxation results

In this section, we extend the results in [4, Sec.4] to homogeneous maps as in Definition
To start with, it is worth to consider the case of homogeneous extension u of a Lipschitz map
¢ : S' — R?, namely

T
ulw) = ¢ (H) va € B\ {(0,0)}. (3.1)
In this case, clearly u € Wh1(By; R?) and Jp, IVuldz = £ [ |p|dH . The following result extends

the validity of [26, Thm.1] also for the relaxation with respect to the strict BV -convergence.

Theorem 3.1. Suppose that o : S' — R? is Lipschitz continuous and let u be defined as in (3.1)).
Then
TVng(u; Bg) = P((p) (3,2)

5§ is identified with [0, 27].
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Proof. Let us show the upper bound inequality. Following the proof of Theorem 1 in [26], for k > 2,
a recovery sequence vy, € Lip(By;R?) is given by

u(z) if |z] > £/k,
uele) = {(U)i(x) i 2] < 0/k, 3.3)

where v € Lip(By;R?) is any map with v = ¢ on 0By and (v):(z) := v (£2) for z € B.. It is not
k k

difficult to see that vy — u strongly in W11(By; R?) (and hence strictly BV (By;R?)). Moreover,
by change of variable

]Jvk\dx:/ ]J(v)e|da;:/ |Ju|dx Yk € N. (3.4)
By By k By
k
Finally, we get
TVJpy(u; By) < liminf/ | Jog|dx :/ |Jv|dx
k—+o0 By B

for any v € Lip(B1;R?) such that v = ¢ on 9By, so we deduce that TVJ gy (u; By) < P(p).

Now let us prove the lower bound inequality. Assume that v, € C! (Bg;RQ) is such that vy — u
strictly BV (By;R?). Then for almost every p < ¢, there exists a subsequence (vg, ) (depending on
p) such that its restriction to 9B, converges strictly BV (9B,;R?) to uL dB,. So, fix e < 1 and a
not-relabeled subsequence of (vg) such that

vp LOB. — ulL 0B, strictly BV (0B.;R?). (3.5)
Now, define wy, : By — R? as

vp(x) if |z <e

_ B B 3.6
wk(m) 4 ‘l‘|vk (6 X > + ‘5U| Eu <€$> ife< |;U| < /. ( )

l—e¢ |z l—¢ ||

Then wy, is Lipschitz and w = u on 0By. Moreover, by (3.5)), the convergence of v to u on B; is
also uniform, so we have (see the proof of [3, Proposition 3.3, (3.29)])

lim | Jwg|dz = 0. (3.7)
k—-+o00 Bg\Bg

Finally, since wy = v in Be, by (3.7)) we get

liminf [ |Jugldz > liminf/ | Jug|dz = liminf/ | Jwg|dx > Py(ul0By) = Py(¢r) = P(p),
k—+oc0 BZ k—+o00 B. k—+o0 B[

(3.8)

where we used (2.27). We conclude by taking the infimum in the left hand side. O

Corollary 3.2. Let ¢ and u as in Theorem[3.1. Then

Ay (u: By) :/B I+ [ValPdz + P(p). (3.9)
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Proof. For the lower bound, suppose that vy € C1(By; R?) is such that vy, — u strictly BV (By; R?).
Now, let € < £ such that (3.5 holds, and write A(vy; By) = A(vk; Be\ Be) + A(vg; Be) > A(vg; B\
B:) + fBg |Jug|dz, so that, by [1, Theorem 3.7,

li ; Bp) > lim inf By \ B lim inf
i Ao B > onind A B\ Be) + it | s
>/ \/1+\Vu|2d:v+liminf/ | Jug|dz.
BZ\BE k——4o0 Be

We now apply and next pass to the limit as € — 0T to get the lower bound in .

Concerning the proof of the upper bound for , consider the sequence (vg) defined in ,
which converges to u in W11 (By;R?). Then, upon extracting a subsequence such that (Vuy) con-
verges almost everywhere to Vu, by and dominated convergence we have, using the inequality
VI+a2+b2+c2<V1+a2+b%+|c| fora,b,ceR,

Apv (u; B) < limsup A(vg; Be) < lim / V14 |[Vug2dz + lim / | Jug|dx
k—+o00 By k—+oco By

k—+o0

:/ \/1+|Vu]2dx—|—/ |Jvldz,
Bg By

for any v € Lip(By; R?) such that v = ¢ on dB;. Passing to the infimum on the right hand side we
obtain the upper bound inequality in (3.9)). O

Remark 3.3. We point out that the result of Corollary is compatible with [3, Theorem 1.1],
where ¢ is valued in S'. Indeed, one can argue as in the proof of [26, Theorem 4] to show that
P(¢) = rldeg(e)| for any @ € Lip(S};SL).

Example 3.4 (The double eight curve). A very interesting example is the homogeneous extension
ug of the so called double eight map g € Lip(S'; R?), defined as pg = a-b-a~1-b~!, where a, b are the
loops in Fig. [2 This example was firstly considered by Maly [23] (see also [17], [16], [24], [26], |15]).
Clearly, deg(ys) = 0, however one can compute as in [26, Thm. 5] (see also [24, Thm. 1.2]) that

P(pg) = inf {/ |Jv|dx; v € Lip(By; R?) : v 0By = ¢8} = 2min{|D1|, |D2|}.
B

Differently from the case of maps valued in S', it is not possible to associate to ug a Cartesian
current (with underlying map ug) whose mass coincides with Apgy (us; By) (see also [25]). The
reason is that the graph of ug, regarded as a current, is already a Cartesian current, even if the
origin is a non-removable singularity for ug. Finally, an interesting problem would be the study of
A1 (ug; By): since the obstruction generated by g has a topological nature, we conjecture that,
for ¢ sufficiently large, A1 (us; Be) = Apy (us; By).

Now, we treat the case v € BV (S!;R?). We recall that, by Proposition its homogeneouos
extension u is still BV (By; R?).

Theorem 3.5. Let v € BV(SY;R?) and u as in ([.1). Let7 : S' — R? be as in Lemmal[2.10 Then
TVJpy(u; Be) = P(v) = P(3). (3.10)

Proof. In order to show the upper bound inequality, consider a Lipschitz sequence ¢y, : S' — R?
converging to v strictly BV (S'; R?) (e.g. a mollifying sequence). Then, by Lemma there
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b

Figure 2: The double eight curve g.

exists a equi-Lipschitz reparameterization ¢y, of ¢y that converges to 4 uniformly (up to extracting
a subsequence). For k € N, consider the map

we(2) = i <é’> vz € B, \ {(0,0)}. (3.11)

In the proof of Proposition We proved that u, € W (B,; R?) and uy, — u strictly BV (By; R?),
since

luk — ullr(Brre) < ok =Vl strz) = 0,

/ Vgl = € /S IgelaH! — 51(8") = | Dl (Bo).
By

Now, by lower semicontinuity of T'V.J gy (- ; By), Theorem (2.29), and Lemma we have
TVJpy(u; By) < liminf TVJ gy (ug; Be) = liminf P(py) = liminf P(gr) = P(7).
k—+oo k—+o0 k—+o00
Let us prove the lower bound inequality. Assume that v, € C*(By; R?) is such that vy — u strictly
BV (By; R?) and

lim |Jog|dx = T'VJ gy (u; By).
k—+o00 By

We use Lemma to fix ¢ < £ and a subsequence (vg;) C (vg) such that v, L 0B — ul 0B
strictly BV (0B;;R?). According to (2.26]), we have ul_9dB. = 7. So, let 7. be the Lipschitz curve

of Lemma associatedﬂ to .. Using Corollary and (2.27)), we conclude

TVJpy(u; By) > lim inf/ | Jvg, |dx > ljm_&nf P.(vg, LOB;) = P(v:) = P-(3.) = P(7). (3.12)
B. J—+0o0

Jj—+oo
t

Remark 3.6. Setting u(x) := 7 (é—'), then u € WH1(By; R?). So, by Theorem and Theorem
[B-5 we have

TVJBv(ﬂ; Bg) = TVng<u; Bg). (3.13)

5We identify dB. with [0, 27e].
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We are in the position to prove Theorem
Proof of Theorem |1.4. For the lower bound, suppose that vy € C'(B,;R?) is such that vy — u
strictly BV (By;R?). Now, let € < £ such that holds, and write A(vg; By) = A(vk; Be \ Be) +
A(vy; Be) > A(vg; Be \ Be) + [ |Jvg|dz, so that, by [1, Theorem 3.7],

lim A(vg; By) > hm 1nf A(vg; Be \ Be) + hm mf/ | Jvg|dx

k——+o0
> / V 1+ |Vul?dz + |D%ul(B \ B:) + liminf/ | Jog|dx.
BZ\BE k——+o00 Be

We now apply (3.8)) and next pass to the limit as € — 07 to get the lower bound in (1.9).
Concerning the proof of the upper bound for (1.9)), consider the sequence (uz) C Wh!(B,;R?)
defined in (3.11]), which converges to u strictly BV (By;R?). Let us prove that

lim \/1 + |Vug|?dx = / V' 1+ |Vul|?dz + |D?u|(By). (3.14)

k——+o0

In polar coordinates, we get

{ 2w
/ \/1—|—|Vuk|2dx:/ / p
By 0o Jo

2

For a fixed p € (0,£), consider f,(§) = py/1+ |£ , & € R%. Then, f, is convex on R% Now, if
p € M([0,27]; R?), one can consider the measure fp ) € M™([0,27]) defined a&ﬂ

H- Fdeﬂ ‘(4

for any Borel set A C [0,27], where pu® = a.¢? for some a € L'([0,27]). By [20, Theorem 4],
f»(+) is continuous w.r.t. the approximation by convolution. In particular, choosing p := 5 €
M([0,27]; R?) and A = [0, 27], for every p € (0, /) we have

2 %
kll)r_il_loo fp(@k)([o’ 2m)) = Er_{_loo \/7

2T L
/ d0+| s|(Sh)

= f,(¥)([0,27])

Integrating in (0, ¢), by dominated convergence we infer

0 r2m = 2
lim / VI+ [VuPde = lim // o1+ 12O 4o,
k—+o0 J g, k—+o0 0 P
l 27 =
a(f 2
:// o141 (2” dodp + £5°)(S1)
0 Jo p

_ / V1T [VuPdz + |Du|(By),
By

"See Theorem 2’ in [20]: notice that f; = |- | for every p € (0,£), where f; is the recession function associated to

o
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where we used ( and (2.8). Therefore, we obtain (3.14]).

Finally, by lower semlcontlnulty of Ay (-, By) and by Corollary [3.2) . we conclude

Apv(u; By) < hmianBV(UkaBe lim [/ V14 |Vug|2dz + P(er)

k—+00
—/ VI ¥ [ValPdz + |D%u|(Be) + P(7).
By

O]

Remark 3.7. We notice that, as a function of the set variable, TV.J gy (u,-) is a (finite) measure.
Precisely, for every open set A C By

TVJy (u; A) = P(v)do(A).

Indeed, if 0 € A then B, C A for some ¢ € (0, /) and we can argue as in ([3.12)). On the other hand,
suppose that 0 ¢ A and consider uy as in . Then, ug L A € Lip(A4;R?) and converges strictly
BV (A;R?) to ul_ A. Since the image of uj, has zero Lebesgue measure, by lower semicontinuity of
TVIgy(-;A), we get that TV.J gy (u; A) = 0.

In the same way, one can prove that for every open set A C By
Apv(u; A) / V 1+ |Vul2dx + | D*u|(A) + P(7)do(A).

Therefore, also Agy (u; -) is a measure and ([1.9) is an integral representation.

Remark 3.8 (On the Plateau problem (2.24)). Let ¢ : S' — R? be Lipschitz. From [11
Theorem 1.3], there exists a least area mapping v € WHP(By;R?), for some p > 2, spanning ¢,
i.e. realizing the infimum of the total variation of the Jacobian determinant in the class of Sobolev
maps in WP (By; R?) whose trace on OBj is ¢. In truth, one can prove that the least area mapping
is Lipschitz, so that the Plateau problem attains a minimum. The proof is a consequence
of results contained in [12]: interestingly, it seems that one needs to pass through a more general
metric result, concerning spaces with upper curvature bounds.
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